xref: /titanic_50/usr/src/uts/sparc/v9/os/simulator.c (revision 2917a9c9c3eee6fcaedb239f5f68da01f4ed0da9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /* common code with bug fixes from original version in trap.c */
29 
30 #include <sys/param.h>
31 #include <sys/types.h>
32 #include <sys/systm.h>
33 #include <sys/archsystm.h>
34 #include <sys/vmsystm.h>
35 #include <sys/fpu/fpusystm.h>
36 #include <sys/fpu/fpu_simulator.h>
37 #include <sys/inline.h>
38 #include <sys/debug.h>
39 #include <sys/privregs.h>
40 #include <sys/machpcb.h>
41 #include <sys/simulate.h>
42 #include <sys/proc.h>
43 #include <sys/cmn_err.h>
44 #include <sys/stack.h>
45 #include <sys/watchpoint.h>
46 #include <sys/trap.h>
47 #include <sys/machtrap.h>
48 #include <sys/mman.h>
49 #include <sys/asi.h>
50 #include <sys/copyops.h>
51 #include <vm/as.h>
52 #include <vm/page.h>
53 #include <sys/model.h>
54 #include <vm/seg_vn.h>
55 #include <sys/byteorder.h>
56 
57 #define	IS_IBIT_SET(x)	(x & 0x2000)
58 #define	IS_VIS1(op, op3)(op == 2 && op3 == 0x36)
59 #define	IS_FLOAT_QUAD_OP(op, op3)(op == 2 && (op3 == 0x34 ||	\
60 		op3 == 0x35))
61 #define	IS_PARTIAL_OR_SHORT_FLOAT_LD_ST(op, op3, asi)		\
62 		(op == 3 && (op3 == IOP_V8_LDDFA ||		\
63 		op3 == IOP_V8_STDFA) &&	asi > ASI_SNFL)
64 
65 static int aligndebug = 0;
66 
67 /*
68  * For the sake of those who must be compatible with unaligned
69  * architectures, users can link their programs to use a
70  * corrective trap handler that will fix unaligned references
71  * a special trap #6 (T_FIX_ALIGN) enables this 'feature'.
72  * Returns 1 for success, 0 for failure.
73  */
74 
75 int
76 do_unaligned(struct regs *rp, caddr_t *badaddr)
77 {
78 	uint_t	inst, op3, asi = 0;
79 	uint_t	rd, rs1, rs2;
80 	int	sz, nf = 0, ltlend = 0;
81 	int	floatflg;
82 	int	fsrflg;
83 	int	immflg;
84 	int	lddstdflg;
85 	caddr_t	addr;
86 	uint64_t val;
87 	union {
88 		uint64_t	l[2];
89 		uint32_t	i[4];
90 		uint16_t	s[8];
91 		uint8_t		c[16];
92 	} data;
93 
94 	ASSERT(USERMODE(rp->r_tstate));
95 	inst = fetch_user_instr((caddr_t)rp->r_pc);
96 
97 	op3 = (inst >> 19) & 0x3f;
98 	rd = (inst >> 25) & 0x1f;
99 	rs1 = (inst >> 14) & 0x1f;
100 	rs2 = inst & 0x1f;
101 	floatflg = (inst >> 24) & 1;
102 	immflg = (inst >> 13) & 1;
103 	lddstdflg = fsrflg = 0;
104 
105 	/* if not load or store do nothing */
106 	if ((inst >> 30) != 3)
107 		return (0);
108 
109 	/* if ldstub or swap, do nothing */
110 	if ((inst & 0xc1680000) == 0xc0680000)
111 		return (0);
112 
113 	/* if cas/casx, do nothing */
114 	if ((inst & 0xc1e00000) == 0xc1e00000)
115 		return (0);
116 
117 	if (floatflg) {
118 		switch ((inst >> 19) & 3) {	/* map size bits to a number */
119 		case 0: sz = 4;
120 			break;			/* ldf{a}/stf{a} */
121 		case 1: fsrflg = 1;
122 			if (rd == 0)
123 				sz = 4;		/* ldfsr/stfsr */
124 			else  if (rd == 1)
125 				sz = 8;		/* ldxfsr/stxfsr */
126 			else
127 				return (SIMU_ILLEGAL);
128 			break;
129 		case 2: sz = 16;
130 			break;		/* ldqf{a}/stqf{a} */
131 		case 3: sz = 8;
132 			break;		/* lddf{a}/stdf{a} */
133 		}
134 		/*
135 		 * Fix to access extra double register encoding plus
136 		 * compensate to access the correct fpu_dreg.
137 		 */
138 		if ((sz > 4) && (fsrflg == 0)) {
139 			if ((rd & 1) == 1)
140 				rd = (rd & 0x1e) | 0x20;
141 			rd = rd >> 1;
142 			if ((sz == 16) && ((rd & 0x1) != 0))
143 				return (SIMU_ILLEGAL);
144 		}
145 	} else {
146 		int sz_bits = (inst >> 19) & 0xf;
147 		switch (sz_bits) {		/* map size bits to a number */
148 		case 0:				/* lduw{a} */
149 		case 4:				/* stw{a} */
150 		case 8:				/* ldsw{a} */
151 		case 0xf:			/* swap */
152 			sz = 4; break;
153 		case 1:				/* ldub{a} */
154 		case 5:				/* stb{a} */
155 		case 9:				/* ldsb{a} */
156 		case 0xd:			/* ldstub */
157 			sz = 1; break;
158 		case 2:				/* lduh{a} */
159 		case 6:				/* sth{a} */
160 		case 0xa:			/* ldsh{a} */
161 			sz = 2; break;
162 		case 3:				/* ldd{a} */
163 		case 7:				/* std{a} */
164 			lddstdflg = 1;
165 			sz = 8; break;
166 		case 0xb:			/* ldx{a} */
167 		case 0xe:			/* stx{a} */
168 			sz = 8; break;
169 		}
170 	}
171 
172 
173 	/* only support primary and secondary asi's */
174 	if ((op3 >> 4) & 1) {
175 		if (immflg) {
176 			asi = (uint_t)(rp->r_tstate >> TSTATE_ASI_SHIFT) &
177 					TSTATE_ASI_MASK;
178 		} else {
179 			asi = (inst >> 5) & 0xff;
180 		}
181 		switch (asi) {
182 		case ASI_P:
183 		case ASI_S:
184 			break;
185 		case ASI_PNF:
186 		case ASI_SNF:
187 			nf = 1;
188 			break;
189 		case ASI_PL:
190 		case ASI_SL:
191 			ltlend = 1;
192 			break;
193 		case ASI_PNFL:
194 		case ASI_SNFL:
195 			ltlend = 1;
196 			nf = 1;
197 			break;
198 		default:
199 			return (0);
200 		}
201 		/*
202 		 * Non-faulting stores generate a data_access_exception trap,
203 		 * according to the Spitfire manual, which should be signaled
204 		 * as an illegal instruction trap, because it can't be fixed.
205 		 */
206 		if ((nf) && ((op3 == IOP_V8_STQFA) || (op3 == IOP_V8_STDFA)))
207 			return (SIMU_ILLEGAL);
208 	}
209 
210 	if (aligndebug) {
211 		printf("unaligned access at %p, instruction: 0x%x\n",
212 		    (void *)rp->r_pc, inst);
213 		printf("type %s", (((inst >> 21) & 1) ? "st" : "ld"));
214 		if (((inst >> 21) & 1) == 0)
215 		    printf(" %s", (((inst >> 22) & 1) ? "signed" : "unsigned"));
216 		printf(" asi 0x%x size %d immflg %d\n", asi, sz, immflg);
217 		printf("rd = %d, op3 = 0x%x, rs1 = %d, rs2 = %d, imm13=0x%x\n",
218 			rd, op3, rs1, rs2, (inst & 0x1fff));
219 	}
220 
221 	(void) flush_user_windows_to_stack(NULL);
222 	if (getreg(rp, rs1, &val, badaddr))
223 		return (SIMU_FAULT);
224 	addr = (caddr_t)val;		/* convert to 32/64 bit address */
225 	if (aligndebug)
226 		printf("addr 1 = %p\n", (void *)addr);
227 
228 	/* check immediate bit and use immediate field or reg (rs2) */
229 	if (immflg) {
230 		int imm;
231 		imm  = inst & 0x1fff;		/* mask out immediate field */
232 		imm <<= 19;			/* sign extend it */
233 		imm >>= 19;
234 		addr += imm;			/* compute address */
235 	} else {
236 		if (getreg(rp, rs2, &val, badaddr))
237 			return (SIMU_FAULT);
238 		addr += val;
239 	}
240 
241 	/*
242 	 * If this is a 32-bit program, chop the address accordingly.  The
243 	 * intermediate uintptr_t casts prevent warnings under a certain
244 	 * compiler, and the temporary 32 bit storage is intended to force
245 	 * proper code generation and break up what would otherwise be a
246 	 * quadruple cast.
247 	 */
248 	if (curproc->p_model == DATAMODEL_ILP32) {
249 		caddr32_t addr32 = (caddr32_t)(uintptr_t)addr;
250 		addr = (caddr_t)(uintptr_t)addr32;
251 	}
252 
253 	if (aligndebug)
254 		printf("addr 2 = %p\n", (void *)addr);
255 
256 	if (addr >= curproc->p_as->a_userlimit) {
257 		*badaddr = addr;
258 		goto badret;
259 	}
260 
261 	/* a single bit differentiates ld and st */
262 	if ((inst >> 21) & 1) {			/* store */
263 		if (floatflg) {
264 			klwp_id_t lwp = ttolwp(curthread);
265 			kfpu_t *fp = lwptofpu(lwp);
266 			/* Ensure fp has been enabled */
267 			if (fpu_exists) {
268 				if (!(_fp_read_fprs() & FPRS_FEF))
269 					fp_enable();
270 			} else {
271 				if (!fp->fpu_en)
272 					fp_enable();
273 			}
274 			/* if fpu_exists read fpu reg */
275 			if (fpu_exists) {
276 				if (fsrflg) {
277 					_fp_read_pfsr(&data.l[0]);
278 				} else {
279 					if (sz == 4) {
280 						data.i[0] = 0;
281 						_fp_read_pfreg(
282 						    (unsigned *)&data.i[1], rd);
283 					}
284 					if (sz >= 8)
285 						_fp_read_pdreg(
286 							&data.l[0], rd);
287 					if (sz == 16)
288 						_fp_read_pdreg(
289 							&data.l[1], rd+1);
290 				}
291 			} else {
292 				if (fsrflg) {
293 					/* Clear reserved bits, set version=7 */
294 					fp->fpu_fsr &= ~0x30301000;
295 					fp->fpu_fsr |= 0xE0000;
296 					data.l[0] = fp->fpu_fsr;
297 				} else {
298 					if (sz == 4) {
299 						data.i[0] = 0;
300 						data.i[1] =
301 					    (unsigned)fp->fpu_fr.fpu_regs[rd];
302 					}
303 					if (sz >= 8)
304 						data.l[0] =
305 						    fp->fpu_fr.fpu_dregs[rd];
306 					if (sz == 16)
307 						data.l[1] =
308 						    fp->fpu_fr.fpu_dregs[rd+1];
309 				}
310 			}
311 		} else {
312 			if (lddstdflg) {		/* combine the data */
313 				if (getreg(rp, rd, &data.l[0], badaddr))
314 					return (SIMU_FAULT);
315 				if (getreg(rp, rd+1, &data.l[1], badaddr))
316 					return (SIMU_FAULT);
317 				if (ltlend) {
318 					/*
319 					 * For STD, each 32-bit word is byte-
320 					 * swapped individually.  For
321 					 * simplicity we don't want to do that
322 					 * below, so we swap the words now to
323 					 * get the desired result in the end.
324 					 */
325 					data.i[0] = data.i[3];
326 				} else {
327 					data.i[0] = data.i[1];
328 					data.i[1] = data.i[3];
329 				}
330 			} else {
331 				if (getreg(rp, rd, &data.l[0], badaddr))
332 					return (SIMU_FAULT);
333 			}
334 		}
335 
336 		if (aligndebug) {
337 			if (sz == 16) {
338 				printf("data %x %x %x %x\n",
339 				    data.i[0], data.i[1], data.i[2], data.c[3]);
340 			} else {
341 				printf("data %x %x %x %x %x %x %x %x\n",
342 				    data.c[0], data.c[1], data.c[2], data.c[3],
343 				    data.c[4], data.c[5], data.c[6], data.c[7]);
344 			}
345 		}
346 
347 		if (ltlend) {
348 			if (sz == 1) {
349 				if (xcopyout_little(&data.c[7], addr,
350 				    (size_t)sz) != 0)
351 					goto badret;
352 			} else if (sz == 2) {
353 				if (xcopyout_little(&data.s[3], addr,
354 				    (size_t)sz) != 0)
355 					goto badret;
356 			} else if (sz == 4) {
357 				if (xcopyout_little(&data.i[1], addr,
358 				    (size_t)sz) != 0)
359 					goto badret;
360 			} else {
361 				if (xcopyout_little(&data.l[0], addr,
362 				    (size_t)sz) != 0)
363 					goto badret;
364 			}
365 		} else {
366 			if (sz == 1) {
367 				if (copyout(&data.c[7], addr, (size_t)sz) == -1)
368 					goto badret;
369 			} else if (sz == 2) {
370 				if (copyout(&data.s[3], addr, (size_t)sz) == -1)
371 					goto badret;
372 			} else if (sz == 4) {
373 				if (copyout(&data.i[1], addr, (size_t)sz) == -1)
374 					goto badret;
375 			} else {
376 				if (copyout(&data.l[0], addr, (size_t)sz) == -1)
377 					goto badret;
378 			}
379 		}
380 	} else {				/* load */
381 		if (sz == 1) {
382 			if (ltlend) {
383 				if (xcopyin_little(addr, &data.c[7],
384 				    (size_t)sz) != 0) {
385 					if (nf)
386 						data.c[7] = 0;
387 					else
388 						goto badret;
389 				}
390 			} else {
391 				if (copyin(addr, &data.c[7],
392 				    (size_t)sz) == -1) {
393 					if (nf)
394 						data.c[7] = 0;
395 					else
396 						goto badret;
397 				}
398 			}
399 			/* if signed and the sign bit is set extend it */
400 			if (((inst >> 22) & 1) && ((data.c[7] >> 7) & 1)) {
401 				data.i[0] = (uint_t)-1;	/* extend sign bit */
402 				data.s[2] = (ushort_t)-1;
403 				data.c[6] = (uchar_t)-1;
404 			} else {
405 				data.i[0] = 0;	/* clear upper 32+24 bits */
406 				data.s[2] = 0;
407 				data.c[6] = 0;
408 			}
409 		} else if (sz == 2) {
410 			if (ltlend) {
411 				if (xcopyin_little(addr, &data.s[3],
412 				    (size_t)sz) != 0) {
413 					if (nf)
414 						data.s[3] = 0;
415 					else
416 						goto badret;
417 				}
418 			} else {
419 				if (copyin(addr, &data.s[3],
420 				    (size_t)sz) == -1) {
421 					if (nf)
422 						data.s[3] = 0;
423 					else
424 						goto badret;
425 				}
426 			}
427 			/* if signed and the sign bit is set extend it */
428 			if (((inst >> 22) & 1) && ((data.s[3] >> 15) & 1)) {
429 				data.i[0] = (uint_t)-1;	/* extend sign bit */
430 				data.s[2] = (ushort_t)-1;
431 			} else {
432 				data.i[0] = 0;	/* clear upper 32+16 bits */
433 				data.s[2] = 0;
434 			}
435 		} else if (sz == 4) {
436 			if (ltlend) {
437 				if (xcopyin_little(addr, &data.i[1],
438 				    (size_t)sz) != 0) {
439 					if (!nf)
440 						goto badret;
441 					data.i[1] = 0;
442 				}
443 			} else {
444 				if (copyin(addr, &data.i[1],
445 				    (size_t)sz) == -1) {
446 					if (!nf)
447 						goto badret;
448 					data.i[1] = 0;
449 				}
450 			}
451 			/* if signed and the sign bit is set extend it */
452 			if (((inst >> 22) & 1) && ((data.i[1] >> 31) & 1)) {
453 				data.i[0] = (uint_t)-1;	/* extend sign bit */
454 			} else {
455 				data.i[0] = 0;	/* clear upper 32 bits */
456 			}
457 		} else {
458 			if (ltlend) {
459 				if (xcopyin_little(addr, &data.l[0],
460 				    (size_t)sz) != 0) {
461 					if (!nf)
462 						goto badret;
463 					data.l[0] = 0;
464 				}
465 			} else {
466 				if (copyin(addr, &data.l[0],
467 				    (size_t)sz) == -1) {
468 					if (!nf)
469 						goto badret;
470 					data.l[0] = 0;
471 				}
472 			}
473 		}
474 
475 		if (aligndebug) {
476 			if (sz == 16) {
477 				printf("data %x %x %x %x\n",
478 				    data.i[0], data.i[1], data.i[2], data.c[3]);
479 			} else {
480 				printf("data %x %x %x %x %x %x %x %x\n",
481 				    data.c[0], data.c[1], data.c[2], data.c[3],
482 				    data.c[4], data.c[5], data.c[6], data.c[7]);
483 			}
484 		}
485 
486 		if (floatflg) {		/* if fpu_exists write fpu reg */
487 			klwp_id_t lwp = ttolwp(curthread);
488 			kfpu_t *fp = lwptofpu(lwp);
489 			/* Ensure fp has been enabled */
490 			if (fpu_exists) {
491 				if (!(_fp_read_fprs() & FPRS_FEF))
492 					fp_enable();
493 			} else {
494 				if (!fp->fpu_en)
495 					fp_enable();
496 			}
497 			/* if fpu_exists read fpu reg */
498 			if (fpu_exists) {
499 				if (fsrflg) {
500 					_fp_write_pfsr(&data.l[0]);
501 				} else {
502 					if (sz == 4)
503 						_fp_write_pfreg(
504 						    (unsigned *)&data.i[1], rd);
505 					if (sz >= 8)
506 						_fp_write_pdreg(
507 							&data.l[0], rd);
508 					if (sz == 16)
509 						_fp_write_pdreg(
510 							&data.l[1], rd+1);
511 				}
512 			} else {
513 				if (fsrflg) {
514 					fp->fpu_fsr = data.l[0];
515 				} else {
516 					if (sz == 4)
517 						fp->fpu_fr.fpu_regs[rd] =
518 							(unsigned)data.i[1];
519 					if (sz >= 8)
520 						fp->fpu_fr.fpu_dregs[rd] =
521 							data.l[0];
522 					if (sz == 16)
523 						fp->fpu_fr.fpu_dregs[rd+1] =
524 							data.l[1];
525 				}
526 			}
527 		} else {
528 			if (lddstdflg) {		/* split the data */
529 				if (ltlend) {
530 					/*
531 					 * For LDD, each 32-bit word is byte-
532 					 * swapped individually.  We didn't
533 					 * do that above, but this will give
534 					 * us the desired result.
535 					 */
536 					data.i[3] = data.i[0];
537 				} else {
538 					data.i[3] = data.i[1];
539 					data.i[1] = data.i[0];
540 				}
541 				data.i[0] = 0;
542 				data.i[2] = 0;
543 				if (putreg(&data.l[0], rp, rd, badaddr) == -1)
544 					goto badret;
545 				if (putreg(&data.l[1], rp, rd+1, badaddr) == -1)
546 					goto badret;
547 			} else {
548 				if (putreg(&data.l[0], rp, rd, badaddr) == -1)
549 					goto badret;
550 			}
551 		}
552 	}
553 	return (SIMU_SUCCESS);
554 badret:
555 	return (SIMU_FAULT);
556 }
557 
558 
559 int
560 simulate_lddstd(struct regs *rp, caddr_t *badaddr)
561 {
562 	uint_t	inst, op3, asi = 0;
563 	uint_t	rd, rs1, rs2;
564 	int	nf = 0, ltlend = 0, usermode;
565 	int	immflg;
566 	uint64_t reven;
567 	uint64_t rodd;
568 	caddr_t	addr;
569 	uint64_t val;
570 	uint64_t data;
571 
572 	usermode = USERMODE(rp->r_tstate);
573 
574 	if (usermode)
575 		inst = fetch_user_instr((caddr_t)rp->r_pc);
576 	else
577 		inst = *(uint_t *)rp->r_pc;
578 
579 	op3 = (inst >> 19) & 0x3f;
580 	rd = (inst >> 25) & 0x1f;
581 	rs1 = (inst >> 14) & 0x1f;
582 	rs2 = inst & 0x1f;
583 	immflg = (inst >> 13) & 1;
584 
585 	if (USERMODE(rp->r_tstate))
586 		(void) flush_user_windows_to_stack(NULL);
587 	else
588 		flush_windows();
589 
590 	if ((op3 >> 4) & 1) {		/* is this LDDA/STDA? */
591 		if (immflg) {
592 			asi = (uint_t)(rp->r_tstate >> TSTATE_ASI_SHIFT) &
593 					TSTATE_ASI_MASK;
594 		} else {
595 			asi = (inst >> 5) & 0xff;
596 		}
597 		switch (asi) {
598 		case ASI_P:
599 		case ASI_S:
600 			break;
601 		case ASI_PNF:
602 		case ASI_SNF:
603 			nf = 1;
604 			break;
605 		case ASI_PL:
606 		case ASI_SL:
607 			ltlend = 1;
608 			break;
609 		case ASI_PNFL:
610 		case ASI_SNFL:
611 			ltlend = 1;
612 			nf = 1;
613 			break;
614 		case ASI_AIUP:
615 		case ASI_AIUS:
616 			usermode = 1;
617 			break;
618 		case ASI_AIUPL:
619 		case ASI_AIUSL:
620 			usermode = 1;
621 			ltlend = 1;
622 			break;
623 		default:
624 			return (SIMU_ILLEGAL);
625 		}
626 	}
627 
628 	if (getreg(rp, rs1, &val, badaddr))
629 		return (SIMU_FAULT);
630 	addr = (caddr_t)val;		/* convert to 32/64 bit address */
631 
632 	/* check immediate bit and use immediate field or reg (rs2) */
633 	if (immflg) {
634 		int imm;
635 		imm  = inst & 0x1fff;		/* mask out immediate field */
636 		imm <<= 19;			/* sign extend it */
637 		imm >>= 19;
638 		addr += imm;			/* compute address */
639 	} else {
640 		if (getreg(rp, rs2, &val, badaddr))
641 			return (SIMU_FAULT);
642 		addr += val;
643 	}
644 
645 	/*
646 	 * T_UNIMP_LDD and T_UNIMP_STD are higher priority than
647 	 * T_ALIGNMENT.  So we have to make sure that the address is
648 	 * kosher before trying to use it, because the hardware hasn't
649 	 * checked it for us yet.
650 	 */
651 	if (((uintptr_t)addr & 0x7) != 0) {
652 		if (curproc->p_fixalignment)
653 			return (do_unaligned(rp, badaddr));
654 		else
655 			return (SIMU_UNALIGN);
656 	}
657 
658 	/*
659 	 * If this is a 32-bit program, chop the address accordingly.  The
660 	 * intermediate uintptr_t casts prevent warnings under a certain
661 	 * compiler, and the temporary 32 bit storage is intended to force
662 	 * proper code generation and break up what would otherwise be a
663 	 * quadruple cast.
664 	 */
665 	if (curproc->p_model == DATAMODEL_ILP32 && usermode) {
666 		caddr32_t addr32 = (caddr32_t)(uintptr_t)addr;
667 		addr = (caddr_t)(uintptr_t)addr32;
668 	}
669 
670 	if ((inst >> 21) & 1) {			/* store */
671 		if (getreg(rp, rd, &reven, badaddr))
672 			return (SIMU_FAULT);
673 		if (getreg(rp, rd+1, &rodd, badaddr))
674 			return (SIMU_FAULT);
675 		if (ltlend) {
676 			reven = BSWAP_32(reven);
677 			rodd  = BSWAP_32(rodd);
678 		}
679 		data = (reven << 32) | rodd;
680 		if (usermode) {
681 			if (suword64_nowatch(addr, data) == -1)
682 				return (SIMU_FAULT);
683 		} else {
684 			*(uint64_t *)addr = data;
685 		}
686 	} else {				/* load */
687 		if (usermode) {
688 			if (fuword64_nowatch(addr, &data)) {
689 				if (nf)
690 					data = 0;
691 				else
692 					return (SIMU_FAULT);
693 			}
694 		} else
695 			data = *(uint64_t *)addr;
696 
697 		reven = (data >> 32);
698 		rodd  = (uint64_t)(uint32_t)data;
699 		if (ltlend) {
700 			reven = BSWAP_32(reven);
701 			rodd  = BSWAP_32(rodd);
702 		}
703 
704 		if (putreg(&reven, rp, rd, badaddr) == -1)
705 			return (SIMU_FAULT);
706 		if (putreg(&rodd, rp, rd+1, badaddr) == -1)
707 			return (SIMU_FAULT);
708 	}
709 	return (SIMU_SUCCESS);
710 }
711 
712 
713 /*
714  * simulate popc
715  */
716 static int
717 simulate_popc(struct regs *rp, caddr_t *badaddr, uint_t inst)
718 {
719 	uint_t	rd, rs2, rs1;
720 	uint_t	immflg;
721 	uint64_t val, cnt = 0;
722 
723 	rd = (inst >> 25) & 0x1f;
724 	rs1 = (inst >> 14) & 0x1f;
725 	rs2 = inst & 0x1f;
726 	immflg = (inst >> 13) & 1;
727 
728 	if (rs1 > 0)
729 		return (SIMU_ILLEGAL);
730 
731 	(void) flush_user_windows_to_stack(NULL);
732 
733 	/* check immediate bit and use immediate field or reg (rs2) */
734 	if (immflg) {
735 		int64_t imm;
736 		imm  = inst & 0x1fff;		/* mask out immediate field */
737 		imm <<= 51;			/* sign extend it */
738 		imm >>= 51;
739 		if (imm != 0) {
740 			for (cnt = 0; imm != 0; imm &= imm-1)
741 				cnt++;
742 		}
743 	} else {
744 		if (getreg(rp, rs2, &val, badaddr))
745 			return (SIMU_FAULT);
746 		if (val != 0) {
747 			for (cnt = 0; val != 0; val &= val-1)
748 				cnt++;
749 		}
750 	}
751 
752 	if (putreg(&cnt, rp, rd, badaddr) == -1)
753 		return (SIMU_FAULT);
754 
755 	return (SIMU_SUCCESS);
756 }
757 
758 /*
759  * simulate unimplemented instructions (popc, ldqf{a}, stqf{a})
760  */
761 int
762 simulate_unimp(struct regs *rp, caddr_t *badaddr)
763 {
764 	uint_t	inst, optype, op3, asi;
765 	uint_t	rs1, rd;
766 	uint_t	ignor, i;
767 	machpcb_t *mpcb = lwptompcb(ttolwp(curthread));
768 	int	nomatch = 0;
769 	caddr_t	addr = (caddr_t)rp->r_pc;
770 	struct as *as;
771 	caddr_t	ka;
772 	pfn_t	pfnum;
773 	page_t *pp;
774 	proc_t *p = ttoproc(curthread);
775 	struct seg *mapseg;
776 	struct segvn_data *svd;
777 
778 	ASSERT(USERMODE(rp->r_tstate));
779 	inst = fetch_user_instr(addr);
780 	if (inst == (uint_t)-1) {
781 		mpcb->mpcb_illexcaddr = addr;
782 		mpcb->mpcb_illexcinsn = (uint32_t)-1;
783 		return (SIMU_ILLEGAL);
784 	}
785 
786 	/*
787 	 * When fixing dirty v8 instructions there's a race if two processors
788 	 * are executing the dirty executable at the same time.  If one
789 	 * cleans the instruction as the other is executing it the second
790 	 * processor will see a clean instruction when it comes through this
791 	 * code and will return SIMU_ILLEGAL.  To work around the race
792 	 * this code will keep track of the last illegal instruction seen
793 	 * by each lwp and will only take action if the illegal instruction
794 	 * is repeatable.
795 	 */
796 	if (addr != mpcb->mpcb_illexcaddr ||
797 	    inst != mpcb->mpcb_illexcinsn)
798 		nomatch = 1;
799 	mpcb->mpcb_illexcaddr = addr;
800 	mpcb->mpcb_illexcinsn = inst;
801 
802 	/* instruction fields */
803 	i = (inst >> 13) & 0x1;
804 	rd = (inst >> 25) & 0x1f;
805 	optype = (inst >> 30) & 0x3;
806 	op3 = (inst >> 19) & 0x3f;
807 	ignor = (inst >> 5) & 0xff;
808 	if (IS_IBIT_SET(inst)) {
809 		asi = (uint32_t)((rp->r_tstate >> TSTATE_ASI_SHIFT) &
810 		    TSTATE_ASI_MASK);
811 	} else {
812 		asi = ignor;
813 	}
814 
815 	if (IS_VIS1(optype, op3) ||
816 	    IS_PARTIAL_OR_SHORT_FLOAT_LD_ST(optype, op3, asi) ||
817 	    IS_FLOAT_QUAD_OP(optype, op3)) {
818 		klwp_t *lwp = ttolwp(curthread);
819 		kfpu_t *fp = lwptofpu(lwp);
820 		if (fpu_exists) {
821 			if (!(_fp_read_fprs() & FPRS_FEF))
822 				fp_enable();
823 			_fp_read_pfsr(&fp->fpu_fsr);
824 		} else {
825 			if (!fp->fpu_en)
826 				fp_enable();
827 		}
828 		fp_precise(rp);
829 		return (SIMU_RETRY);
830 	}
831 
832 	if (optype == 2 && op3 == IOP_V8_POPC) {
833 		return (simulate_popc(rp, badaddr, inst));
834 	} else if (optype == 3 && op3 == IOP_V8_POPC) {
835 		return (SIMU_ILLEGAL);
836 	}
837 
838 	if (optype == OP_V8_LDSTR) {
839 		if (op3 == IOP_V8_LDQF || op3 == IOP_V8_LDQFA ||
840 		    op3 == IOP_V8_STQF || op3 == IOP_V8_STQFA)
841 			return (do_unaligned(rp, badaddr));
842 	}
843 
844 	if (nomatch)
845 		return (SIMU_RETRY);
846 
847 	/*
848 	 * The rest of the code handles v8 binaries with instructions
849 	 * that have dirty (non-zero) bits in reserved or 'ignored'
850 	 * fields; these will cause core dumps on v9 machines.
851 	 *
852 	 * We only clean dirty instructions in 32-bit programs (ie, v8)
853 	 * running on SPARCv9 processors.  True v9 programs are forced
854 	 * to use the instruction set as intended.
855 	 */
856 	if (lwp_getdatamodel(curthread->t_lwp) != DATAMODEL_ILP32)
857 		return (SIMU_ILLEGAL);
858 	switch (optype) {
859 	case OP_V8_BRANCH:
860 	case OP_V8_CALL:
861 		return (SIMU_ILLEGAL);	/* these don't have ignored fields */
862 		/*NOTREACHED*/
863 	case OP_V8_ARITH:
864 		switch (op3) {
865 		case IOP_V8_RETT:
866 			if (rd == 0 && !(i == 0 && ignor))
867 				return (SIMU_ILLEGAL);
868 			if (rd)
869 				inst &= ~(0x1f << 25);
870 			if (i == 0 && ignor)
871 				inst &= ~(0xff << 5);
872 			break;
873 		case IOP_V8_TCC:
874 			if (i == 0 && ignor != 0) {
875 				inst &= ~(0xff << 5);
876 			} else if (i == 1 && (((inst >> 7) & 0x3f) != 0)) {
877 				inst &= ~(0x3f << 7);
878 			} else {
879 				return (SIMU_ILLEGAL);
880 			}
881 			break;
882 		case IOP_V8_JMPL:
883 		case IOP_V8_RESTORE:
884 		case IOP_V8_SAVE:
885 			if ((op3 == IOP_V8_RETT && rd) ||
886 			    (i == 0 && ignor)) {
887 				inst &= ~(0xff << 5);
888 			} else {
889 				return (SIMU_ILLEGAL);
890 			}
891 			break;
892 		case IOP_V8_FCMP:
893 			if (rd == 0)
894 				return (SIMU_ILLEGAL);
895 			inst &= ~(0x1f << 25);
896 			break;
897 		case IOP_V8_RDASR:
898 			rs1 = ((inst >> 14) & 0x1f);
899 			if (rs1 == 1 || (rs1 >= 7 && rs1 <= 14)) {
900 				/*
901 				 * The instruction specifies an invalid
902 				 * state register - better bail out than
903 				 * "fix" it when we're not sure what was
904 				 * intended.
905 				 */
906 				return (SIMU_ILLEGAL);
907 			}
908 				/*
909 				 * Note: this case includes the 'stbar'
910 				 * instruction (rs1 == 15 && i == 0).
911 				 */
912 				if ((ignor = (inst & 0x3fff)) != 0)
913 					inst &= ~(0x3fff);
914 			break;
915 		case IOP_V8_SRA:
916 		case IOP_V8_SRL:
917 		case IOP_V8_SLL:
918 			if (ignor == 0)
919 				return (SIMU_ILLEGAL);
920 			inst &= ~(0xff << 5);
921 			break;
922 		case IOP_V8_ADD:
923 		case IOP_V8_AND:
924 		case IOP_V8_OR:
925 		case IOP_V8_XOR:
926 		case IOP_V8_SUB:
927 		case IOP_V8_ANDN:
928 		case IOP_V8_ORN:
929 		case IOP_V8_XNOR:
930 		case IOP_V8_ADDC:
931 		case IOP_V8_UMUL:
932 		case IOP_V8_SMUL:
933 		case IOP_V8_SUBC:
934 		case IOP_V8_UDIV:
935 		case IOP_V8_SDIV:
936 		case IOP_V8_ADDcc:
937 		case IOP_V8_ANDcc:
938 		case IOP_V8_ORcc:
939 		case IOP_V8_XORcc:
940 		case IOP_V8_SUBcc:
941 		case IOP_V8_ANDNcc:
942 		case IOP_V8_ORNcc:
943 		case IOP_V8_XNORcc:
944 		case IOP_V8_ADDCcc:
945 		case IOP_V8_UMULcc:
946 		case IOP_V8_SMULcc:
947 		case IOP_V8_SUBCcc:
948 		case IOP_V8_UDIVcc:
949 		case IOP_V8_SDIVcc:
950 		case IOP_V8_TADDcc:
951 		case IOP_V8_TSUBcc:
952 		case IOP_V8_TADDccTV:
953 		case IOP_V8_TSUBccTV:
954 		case IOP_V8_MULScc:
955 		case IOP_V8_WRASR:
956 		case IOP_V8_FLUSH:
957 			if (i != 0 || ignor == 0)
958 				return (SIMU_ILLEGAL);
959 			inst &= ~(0xff << 5);
960 			break;
961 		default:
962 			return (SIMU_ILLEGAL);
963 		}
964 		break;
965 	case OP_V8_LDSTR:
966 		switch (op3) {
967 		case IOP_V8_STFSR:
968 		case IOP_V8_LDFSR:
969 			if (rd == 0 && !(i == 0 && ignor))
970 				return (SIMU_ILLEGAL);
971 			if (rd)
972 				inst &= ~(0x1f << 25);
973 			if (i == 0 && ignor)
974 				inst &= ~(0xff << 5);
975 			break;
976 		default:
977 			if (optype == OP_V8_LDSTR && !IS_LDST_ALT(op3) &&
978 			    i == 0 && ignor)
979 				inst &= ~(0xff << 5);
980 			else
981 				return (SIMU_ILLEGAL);
982 			break;
983 		}
984 		break;
985 	default:
986 		return (SIMU_ILLEGAL);
987 	}
988 
989 	as = p->p_as;
990 
991 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
992 	mapseg = as_findseg(as, (caddr_t)rp->r_pc, 0);
993 	ASSERT(mapseg != NULL);
994 	svd = (struct segvn_data *)mapseg->s_data;
995 
996 	/*
997 	 * We only create COW page for MAP_PRIVATE mappings.
998 	 */
999 	SEGVN_LOCK_ENTER(as, &svd->lock, RW_READER);
1000 	if ((svd->type & MAP_TYPE) & MAP_SHARED) {
1001 		SEGVN_LOCK_EXIT(as, &svd->lock);
1002 		AS_LOCK_EXIT(as, &as->a_lock);
1003 		return (SIMU_ILLEGAL);
1004 	}
1005 	SEGVN_LOCK_EXIT(as, &svd->lock);
1006 	AS_LOCK_EXIT(as, &as->a_lock);
1007 
1008 	/*
1009 	 * A "flush" instruction using the user PC's vaddr will not work
1010 	 * here, at least on Spitfire. Instead we create a temporary kernel
1011 	 * mapping to the user's text page, then modify and flush that.
1012 	 * Break COW by locking user page.
1013 	 */
1014 	if (as_fault(as->a_hat, as, (caddr_t)(rp->r_pc & PAGEMASK), PAGESIZE,
1015 	    F_SOFTLOCK, S_READ))
1016 		return (SIMU_FAULT);
1017 
1018 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1019 	pfnum = hat_getpfnum(as->a_hat, (caddr_t)rp->r_pc);
1020 	AS_LOCK_EXIT(as, &as->a_lock);
1021 	if (pf_is_memory(pfnum)) {
1022 		pp = page_numtopp_nolock(pfnum);
1023 		ASSERT(pp == NULL || PAGE_LOCKED(pp));
1024 	} else {
1025 		(void) as_fault(as->a_hat, as, (caddr_t)(rp->r_pc & PAGEMASK),
1026 		    PAGESIZE, F_SOFTUNLOCK, S_READ);
1027 		return (SIMU_FAULT);
1028 	}
1029 
1030 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1031 	ka = ppmapin(pp, PROT_READ|PROT_WRITE, (caddr_t)rp->r_pc);
1032 	*(uint_t *)(ka + (uintptr_t)(rp->r_pc % PAGESIZE)) = inst;
1033 	doflush(ka + (uintptr_t)(rp->r_pc % PAGESIZE));
1034 	ppmapout(ka);
1035 	AS_LOCK_EXIT(as, &as->a_lock);
1036 
1037 	(void) as_fault(as->a_hat, as, (caddr_t)(rp->r_pc & PAGEMASK),
1038 	    PAGESIZE, F_SOFTUNLOCK, S_READ);
1039 	return (SIMU_RETRY);
1040 }
1041 
1042 /*
1043  * Get the value of a register for instruction simulation
1044  * by using the regs or window structure pointers.
1045  * Return 0 for success, and -1 for failure.  If there is a failure,
1046  * save the faulting address using badaddr pointer.
1047  * We have 64 bit globals and outs, and 32 or 64 bit ins and locals.
1048  * Don't truncate globals/outs for 32 bit programs, for v8+ support.
1049  */
1050 int
1051 getreg(struct regs *rp, uint_t reg, uint64_t *val, caddr_t *badaddr)
1052 {
1053 	uint64_t *rgs, *sp;
1054 	int rv = 0;
1055 
1056 	rgs = (uint64_t *)&rp->r_ps;		/* globals and outs */
1057 	sp = (uint64_t *)rp->r_sp;		/* ins and locals */
1058 	if (reg == 0) {
1059 		*val = 0;
1060 	} else if (reg < 16) {
1061 		*val = rgs[reg];
1062 	} else if (IS_V9STACK(sp)) {
1063 		uint64_t *rw = (uint64_t *)((uintptr_t)sp + V9BIAS64);
1064 		uint64_t *addr = (uint64_t *)&rw[reg - 16];
1065 		uint64_t res;
1066 
1067 		if (USERMODE(rp->r_tstate)) {
1068 			if (fuword64_nowatch(addr, &res) == -1) {
1069 				*badaddr = (caddr_t)addr;
1070 				rv = -1;
1071 			}
1072 		} else {
1073 			res = *addr;
1074 		}
1075 		*val = res;
1076 	} else {
1077 		caddr32_t sp32 = (caddr32_t)(uintptr_t)sp;
1078 		uint32_t *rw = (uint32_t *)(uintptr_t)sp32;
1079 		uint32_t *addr = (uint32_t *)&rw[reg - 16];
1080 		uint32_t res;
1081 
1082 		if (USERMODE(rp->r_tstate)) {
1083 			if (fuword32_nowatch(addr, &res) == -1) {
1084 				*badaddr = (caddr_t)addr;
1085 				rv = -1;
1086 			}
1087 		} else {
1088 			res = *addr;
1089 		}
1090 		*val = (uint64_t)res;
1091 	}
1092 	return (rv);
1093 }
1094 
1095 /*
1096  * Set the value of a register after instruction simulation
1097  * by using the regs or window structure pointers.
1098  * Return 0 for succes -1 failure.
1099  * save the faulting address using badaddr pointer.
1100  * We have 64 bit globals and outs, and 32 or 64 bit ins and locals.
1101  * Don't truncate globals/outs for 32 bit programs, for v8+ support.
1102  */
1103 int
1104 putreg(uint64_t	*data, struct regs *rp, uint_t reg, caddr_t *badaddr)
1105 {
1106 	uint64_t *rgs, *sp;
1107 	int rv = 0;
1108 
1109 	rgs = (uint64_t *)&rp->r_ps;		/* globals and outs */
1110 	sp = (uint64_t *)rp->r_sp;		/* ins and locals */
1111 	if (reg == 0) {
1112 		return (0);
1113 	} else if (reg < 16) {
1114 		rgs[reg] = *data;
1115 	} else if (IS_V9STACK(sp)) {
1116 		uint64_t *rw = (uint64_t *)((uintptr_t)sp + V9BIAS64);
1117 		uint64_t *addr = (uint64_t *)&rw[reg - 16];
1118 		uint64_t res;
1119 
1120 		if (USERMODE(rp->r_tstate)) {
1121 			struct machpcb *mpcb = lwptompcb(curthread->t_lwp);
1122 
1123 			res = *data;
1124 			if (suword64_nowatch(addr, res) != 0) {
1125 				*badaddr = (caddr_t)addr;
1126 				rv = -1;
1127 			}
1128 			/*
1129 			 * We have changed a local or in register;
1130 			 * nuke the watchpoint return windows.
1131 			 */
1132 			mpcb->mpcb_rsp[0] = NULL;
1133 			mpcb->mpcb_rsp[1] = NULL;
1134 		} else {
1135 			res = *data;
1136 			*addr = res;
1137 		}
1138 	} else {
1139 		caddr32_t sp32 = (caddr32_t)(uintptr_t)sp;
1140 		uint32_t *rw = (uint32_t *)(uintptr_t)sp32;
1141 		uint32_t *addr = (uint32_t *)&rw[reg - 16];
1142 		uint32_t res;
1143 
1144 		if (USERMODE(rp->r_tstate)) {
1145 			struct machpcb *mpcb = lwptompcb(curthread->t_lwp);
1146 
1147 			res = (uint_t)*data;
1148 			if (suword32_nowatch(addr, res) != 0) {
1149 				*badaddr = (caddr_t)addr;
1150 				rv = -1;
1151 			}
1152 			/*
1153 			 * We have changed a local or in register;
1154 			 * nuke the watchpoint return windows.
1155 			 */
1156 			mpcb->mpcb_rsp[0] = NULL;
1157 			mpcb->mpcb_rsp[1] = NULL;
1158 
1159 		} else {
1160 			res = (uint_t)*data;
1161 			*addr = res;
1162 		}
1163 	}
1164 	return (rv);
1165 }
1166 
1167 /*
1168  * Calculate a memory reference address from instruction
1169  * operands, used to return the address of a fault, instead
1170  * of the instruction when an error occurs.  This is code that is
1171  * common with most of the routines that simulate instructions.
1172  */
1173 int
1174 calc_memaddr(struct regs *rp, caddr_t *badaddr)
1175 {
1176 	uint_t	inst;
1177 	uint_t	rd, rs1, rs2;
1178 	int	sz;
1179 	int	immflg;
1180 	int	floatflg;
1181 	caddr_t  addr;
1182 	uint64_t val;
1183 
1184 	if (USERMODE(rp->r_tstate))
1185 		inst = fetch_user_instr((caddr_t)rp->r_pc);
1186 	else
1187 		inst = *(uint_t *)rp->r_pc;
1188 
1189 	rd = (inst >> 25) & 0x1f;
1190 	rs1 = (inst >> 14) & 0x1f;
1191 	rs2 = inst & 0x1f;
1192 	floatflg = (inst >> 24) & 1;
1193 	immflg = (inst >> 13) & 1;
1194 
1195 	if (floatflg) {
1196 		switch ((inst >> 19) & 3) {	/* map size bits to a number */
1197 		case 0: sz = 4; break;		/* ldf/stf */
1198 		case 1: return (0);		/* ld[x]fsr/st[x]fsr */
1199 		case 2: sz = 16; break;		/* ldqf/stqf */
1200 		case 3: sz = 8; break;		/* lddf/stdf */
1201 		}
1202 		/*
1203 		 * Fix to access extra double register encoding plus
1204 		 * compensate to access the correct fpu_dreg.
1205 		 */
1206 		if (sz > 4) {
1207 			if ((rd & 1) == 1)
1208 				rd = (rd & 0x1e) | 0x20;
1209 			rd = rd >> 1;
1210 		}
1211 	} else {
1212 		switch ((inst >> 19) & 0xf) {	/* map size bits to a number */
1213 		case 0:				/* lduw */
1214 		case 4:				/* stw */
1215 		case 8:				/* ldsw */
1216 		case 0xf:			/* swap */
1217 			sz = 4; break;
1218 		case 1:				/* ldub */
1219 		case 5:				/* stb */
1220 		case 9:				/* ldsb */
1221 		case 0xd:			/* ldstub */
1222 			sz = 1; break;
1223 		case 2:				/* lduh */
1224 		case 6:				/* sth */
1225 		case 0xa:			/* ldsh */
1226 			sz = 2; break;
1227 		case 3:				/* ldd */
1228 		case 7:				/* std */
1229 		case 0xb:			/* ldx */
1230 		case 0xe:			/* stx */
1231 			sz = 8; break;
1232 		}
1233 	}
1234 
1235 	if (USERMODE(rp->r_tstate))
1236 		(void) flush_user_windows_to_stack(NULL);
1237 	else
1238 		flush_windows();
1239 
1240 	if (getreg(rp, rs1, &val, badaddr))
1241 		return (SIMU_FAULT);
1242 	addr = (caddr_t)val;
1243 
1244 	/* check immediate bit and use immediate field or reg (rs2) */
1245 	if (immflg) {
1246 		int imm;
1247 		imm = inst & 0x1fff;		/* mask out immediate field */
1248 		imm <<= 19;			/* sign extend it */
1249 		imm >>= 19;
1250 		addr += imm;			/* compute address */
1251 	} else {
1252 		if (getreg(rp, rs2, &val, badaddr))
1253 			return (SIMU_FAULT);
1254 		addr += val;
1255 	}
1256 
1257 	/*
1258 	 * If this is a 32-bit program, chop the address accordingly.  The
1259 	 * intermediate uintptr_t casts prevent warnings under a certain
1260 	 * compiler, and the temporary 32 bit storage is intended to force
1261 	 * proper code generation and break up what would otherwise be a
1262 	 * quadruple cast.
1263 	 */
1264 	if (curproc->p_model == DATAMODEL_ILP32 && USERMODE(rp->r_tstate)) {
1265 		caddr32_t addr32 = (caddr32_t)(uintptr_t)addr;
1266 		addr = (caddr_t)(uintptr_t)addr32;
1267 	}
1268 
1269 	*badaddr = addr;
1270 	return ((uintptr_t)addr & (sz - 1) ? SIMU_UNALIGN : SIMU_SUCCESS);
1271 }
1272 
1273 /*
1274  * Return the size of a load or store instruction (1, 2, 4, 8, 16, 64).
1275  * Also compute the precise address by instruction disassembly.
1276  * (v9 page faults only provide the page address via the hardware.)
1277  * Return 0 on failure (not a load or store instruction).
1278  */
1279 int
1280 instr_size(struct regs *rp, caddr_t *addrp, enum seg_rw rdwr)
1281 {
1282 	uint_t	inst, op3, asi;
1283 	uint_t	rd, rs1, rs2;
1284 	int	sz = 0;
1285 	int	immflg;
1286 	int	floatflg;
1287 	caddr_t	addr;
1288 	caddr_t badaddr;
1289 	uint64_t val;
1290 
1291 	if (rdwr == S_EXEC) {
1292 		*addrp = (caddr_t)rp->r_pc;
1293 		return (4);
1294 	}
1295 
1296 	/*
1297 	 * Fetch the instruction from user-level.
1298 	 * We would like to assert this:
1299 	 *   ASSERT(USERMODE(rp->r_tstate));
1300 	 * but we can't because we can reach this point from a
1301 	 * register window underflow/overflow and the v9 wbuf
1302 	 * traps call trap() with T_USER even though r_tstate
1303 	 * indicates a system trap, not a user trap.
1304 	 */
1305 	inst = fetch_user_instr((caddr_t)rp->r_pc);
1306 
1307 	op3 = (inst >> 19) & 0x3f;
1308 	rd = (inst >> 25) & 0x1f;
1309 	rs1 = (inst >> 14) & 0x1f;
1310 	rs2 = inst & 0x1f;
1311 	floatflg = (inst >> 24) & 1;
1312 	immflg = (inst >> 13) & 1;
1313 
1314 	/* if not load or store do nothing.  can't happen? */
1315 	if ((inst >> 30) != 3)
1316 		return (0);
1317 
1318 	if (immflg)
1319 		asi = (uint_t)((rp->r_tstate >> TSTATE_ASI_SHIFT) &
1320 				TSTATE_ASI_MASK);
1321 	else
1322 		asi = (inst >> 5) & 0xff;
1323 
1324 	if (floatflg) {
1325 		/* check for ld/st alternate and highest defined V9 asi */
1326 		if ((op3 & 0x30) == 0x30 && asi > ASI_SNFL) {
1327 			sz = extended_asi_size(asi);
1328 		} else {
1329 			switch (op3 & 3) {
1330 			case 0:
1331 				sz = 4;			/* ldf/stf/cas */
1332 				break;
1333 			case 1:
1334 				if (rd == 0)
1335 					sz = 4;		/* ldfsr/stfsr */
1336 				else
1337 					sz = 8;		/* ldxfsr/stxfsr */
1338 				break;
1339 			case 2:
1340 				if (op3 == 0x3e)
1341 					sz = 8;		/* casx */
1342 				else
1343 					sz = 16;	/* ldqf/stqf */
1344 				break;
1345 			case 3:
1346 				sz = 8;			/* lddf/stdf */
1347 				break;
1348 			}
1349 		}
1350 	} else {
1351 		switch (op3 & 0xf) {		/* map size bits to a number */
1352 		case 0:				/* lduw */
1353 		case 4:				/* stw */
1354 		case 8:				/* ldsw */
1355 		case 0xf:			/* swap */
1356 			sz = 4; break;
1357 		case 1:				/* ldub */
1358 		case 5:				/* stb */
1359 		case 9:				/* ldsb */
1360 		case 0xd:			/* ldstub */
1361 			sz = 1; break;
1362 		case 2:				/* lduh */
1363 		case 6:				/* sth */
1364 		case 0xa:			/* ldsh */
1365 			sz = 2; break;
1366 		case 3:				/* ldd */
1367 		case 7:				/* std */
1368 		case 0xb:			/* ldx */
1369 		case 0xe:			/* stx */
1370 			sz = 8; break;
1371 		}
1372 	}
1373 
1374 	if (sz == 0)	/* can't happen? */
1375 		return (0);
1376 	(void) flush_user_windows_to_stack(NULL);
1377 
1378 	if (getreg(rp, rs1, &val, &badaddr))
1379 		return (0);
1380 	addr = (caddr_t)val;
1381 
1382 	/* cas/casx don't use rs2 / simm13 to compute the address */
1383 	if ((op3 & 0x3d) != 0x3c) {
1384 		/* check immediate bit and use immediate field or reg (rs2) */
1385 		if (immflg) {
1386 			int imm;
1387 			imm  = inst & 0x1fff;	/* mask out immediate field */
1388 			imm <<= 19;		/* sign extend it */
1389 			imm >>= 19;
1390 			addr += imm;		/* compute address */
1391 		} else {
1392 			/*
1393 			 * asi's in the 0xCx range are partial store
1394 			 * instructions.  For these, rs2 is a mask, not part of
1395 			 * the address.
1396 			 */
1397 			if (!(floatflg && (asi & 0xf0) == 0xc0)) {
1398 				if (getreg(rp, rs2, &val, &badaddr))
1399 					return (0);
1400 				addr += val;
1401 			}
1402 		}
1403 	}
1404 
1405 	/*
1406 	 * If this is a 32-bit program, chop the address accordingly.  The
1407 	 * intermediate uintptr_t casts prevent warnings under a certain
1408 	 * compiler, and the temporary 32 bit storage is intended to force
1409 	 * proper code generation and break up what would otherwise be a
1410 	 * quadruple cast.
1411 	 */
1412 	if (curproc->p_model == DATAMODEL_ILP32) {
1413 		caddr32_t addr32 = (caddr32_t)(uintptr_t)addr;
1414 		addr = (caddr_t)(uintptr_t)addr32;
1415 	}
1416 
1417 	*addrp = addr;
1418 	ASSERT(sz != 0);
1419 	return (sz);
1420 }
1421 
1422 /*
1423  * Fetch an instruction from user-level.
1424  * Deal with watchpoints, if they are in effect.
1425  */
1426 int32_t
1427 fetch_user_instr(caddr_t vaddr)
1428 {
1429 	proc_t *p = curproc;
1430 	int32_t instr;
1431 
1432 	/*
1433 	 * If this is a 32-bit program, chop the address accordingly.  The
1434 	 * intermediate uintptr_t casts prevent warnings under a certain
1435 	 * compiler, and the temporary 32 bit storage is intended to force
1436 	 * proper code generation and break up what would otherwise be a
1437 	 * quadruple cast.
1438 	 */
1439 	if (p->p_model == DATAMODEL_ILP32) {
1440 		caddr32_t vaddr32 = (caddr32_t)(uintptr_t)vaddr;
1441 		vaddr = (caddr_t)(uintptr_t)vaddr32;
1442 	}
1443 
1444 	if (fuword32_nowatch(vaddr, (uint32_t *)&instr) == -1)
1445 		instr = -1;
1446 
1447 	return (instr);
1448 }
1449