xref: /titanic_50/usr/src/uts/sparc/os/archdep.c (revision c69906bdd99a073749de104d2fa9cd6bf889f3c5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/param.h>
34 #include <sys/types.h>
35 #include <sys/vmparam.h>
36 #include <sys/systm.h>
37 #include <sys/sysmacros.h>
38 #include <sys/signal.h>
39 #include <sys/stack.h>
40 #include <sys/frame.h>
41 #include <sys/proc.h>
42 #include <sys/ucontext.h>
43 #include <sys/siginfo.h>
44 #include <sys/cpuvar.h>
45 #include <sys/asm_linkage.h>
46 #include <sys/kmem.h>
47 #include <sys/errno.h>
48 #include <sys/bootconf.h>
49 #include <sys/archsystm.h>
50 #include <sys/fpu/fpusystm.h>
51 #include <sys/auxv.h>
52 #include <sys/debug.h>
53 #include <sys/elf.h>
54 #include <sys/elf_SPARC.h>
55 #include <sys/cmn_err.h>
56 #include <sys/spl.h>
57 #include <sys/privregs.h>
58 #include <sys/kobj.h>
59 #include <sys/modctl.h>
60 #include <sys/reboot.h>
61 #include <sys/time.h>
62 #include <sys/panic.h>
63 #include <vm/seg_kmem.h>
64 #include <vm/page.h>
65 #include <sys/machpcb.h>
66 
67 extern struct bootops *bootops;
68 
69 /*
70  * Workaround for broken FDDI driver (remove when 4289172 is fixed)
71  */
72 short cputype = 0x80;
73 
74 extern int getpcstack_top(pc_t *pcstack, int limit, uintptr_t *lastfp,
75     pc_t *lastpc);
76 
77 /*
78  * Get a pc-only stacktrace.  Used for kmem_alloc() buffer ownership tracking.
79  * Returns MIN(current stack depth, pcstack_limit).
80  */
81 int
82 getpcstack(pc_t *pcstack, int pcstack_limit)
83 {
84 	struct frame *fp, *minfp, *stacktop;
85 	uintptr_t nextfp;
86 	pc_t nextpc;
87 	int depth;
88 	int on_intr;
89 	pc_t pcswin[MAXWIN];
90 	int npcwin = MIN(MAXWIN, pcstack_limit);
91 
92 	if ((on_intr = CPU_ON_INTR(CPU)) != 0)
93 		stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME));
94 	else
95 		stacktop = (struct frame *)curthread->t_stk;
96 
97 	minfp = (struct frame *)((uintptr_t)getfp() + STACK_BIAS);
98 
99 	/*
100 	 * getpcstack_top() processes the frames still in register windows,
101 	 * fills nextfp and nextpc with our starting point, and returns
102 	 * the number of frames it wrote into pcstack.
103 	 *
104 	 * Since we cannot afford to take a relocation trap while we are
105 	 * messing with register windows, we pass getpcstack_top() a buffer
106 	 * on our stack and then copy the result out to the pcstack buffer
107 	 * provided by the caller.  The size of this buffer is the maximum
108 	 * supported number of SPARC register windows; however we ASSERT
109 	 * that it returns fewer than that, since it will skip the current
110 	 * frame.
111 	 */
112 	npcwin = getpcstack_top(pcswin, npcwin, &nextfp, &nextpc);
113 	ASSERT(npcwin >= 0 && npcwin < MAXWIN && npcwin <= pcstack_limit);
114 	for (depth = 0; depth < npcwin; depth++) {
115 		pcstack[depth] = pcswin[depth];
116 	}
117 
118 	fp = (struct frame *)(nextfp + STACK_BIAS);
119 
120 	while (depth < pcstack_limit) {
121 		if (fp <= minfp || fp >= stacktop) {
122 			if (on_intr) {
123 				/*
124 				 * Hop from interrupt stack to thread stack.
125 				 */
126 				stacktop = (struct frame *)curthread->t_stk;
127 				minfp = (struct frame *)curthread->t_stkbase;
128 				on_intr = 0;
129 				continue;
130 			}
131 			break;
132 		}
133 
134 		pcstack[depth++] = nextpc;
135 		minfp = fp;
136 
137 		nextpc = (pc_t)fp->fr_savpc;
138 		fp = (struct frame *)((uintptr_t)fp->fr_savfp + STACK_BIAS);
139 	}
140 
141 	return (depth);
142 }
143 
144 /*
145  * The following ELF header fields are defined as processor-specific
146  * in the SPARC V8 ABI:
147  *
148  *	e_ident[EI_DATA]	encoding of the processor-specific
149  *				data in the object file
150  *	e_machine		processor identification
151  *	e_flags			processor-specific flags associated
152  *				with the file
153  */
154 
155 /*
156  * The value of at_flags reflects a platform's cpu module support.
157  * at_flags is used to check for allowing a binary to execute and
158  * is passed as the value of the AT_FLAGS auxiliary vector.
159  */
160 int at_flags = 0;
161 
162 /*
163  * Check the processor-specific fields of an ELF header.
164  *
165  * returns 1 if the fields are valid, 0 otherwise
166  */
167 int
168 elfheadcheck(
169 	unsigned char e_data,
170 	Elf32_Half e_machine,
171 	Elf32_Word e_flags)
172 {
173 	Elf32_Word needed_flags;
174 	int supported_flags;
175 
176 	if (e_data != ELFDATA2MSB)
177 		return (0);
178 
179 	switch (e_machine) {
180 	case EM_SPARC:
181 		if (e_flags == 0)
182 			return (1);
183 		else
184 			return (0);
185 	case EM_SPARCV9:
186 		/*
187 		 * Check that ELF flags are set to supported SPARC V9 flags
188 		 */
189 		needed_flags = e_flags & EF_SPARC_EXT_MASK;
190 		supported_flags = at_flags & ~EF_SPARC_32PLUS;
191 
192 		if (needed_flags & ~supported_flags)
193 			return (0);
194 		else
195 			return (1);
196 	case EM_SPARC32PLUS:
197 		if ((e_flags & EF_SPARC_32PLUS) != 0 &&
198 		    ((e_flags & ~at_flags) & EF_SPARC_32PLUS_MASK) == 0)
199 			return (1);
200 		else
201 			return (0);
202 	default:
203 		return (0);
204 	}
205 }
206 
207 uint_t auxv_hwcap_include = 0;	/* patch to enable unrecognized features */
208 uint_t auxv_hwcap_exclude = 0;	/* patch for broken cpus, debugging */
209 #if defined(_SYSCALL32_IMPL)
210 uint_t auxv_hwcap32_include = 0;	/* ditto for 32-bit apps */
211 uint_t auxv_hwcap32_exclude = 0;	/* ditto for 32-bit apps */
212 #endif
213 
214 uint_t cpu_hwcap_flags = 0;	/* set by cpu-dependent code */
215 
216 /*
217  * Gather information about the processor and place it into auxv_hwcap
218  * so that it can be exported to the linker via the aux vector.
219  *
220  * We use this seemingly complicated mechanism so that we can ensure
221  * that /etc/system can be used to override what the system can or
222  * cannot discover for itself.
223  */
224 void
225 bind_hwcap(void)
226 {
227 	auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags) &
228 	    ~auxv_hwcap_exclude;
229 
230 	if (auxv_hwcap_include || auxv_hwcap_exclude)
231 		cmn_err(CE_CONT, "?user ABI extensions: %b\n",
232 		    auxv_hwcap, FMT_AV_SPARC);
233 
234 #if defined(_SYSCALL32_IMPL)
235 	/*
236 	 * These are now a compatibility artifact; all supported SPARC CPUs
237 	 * are V9-capable (and thus support v8plus) and fully implement
238 	 * {s,u}mul and {s,u}div.
239 	 */
240 	cpu_hwcap_flags |= AV_SPARC_MUL32 | AV_SPARC_DIV32 | AV_SPARC_V8PLUS;
241 
242 	auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags) &
243 	    ~auxv_hwcap32_exclude;
244 
245 	if (auxv_hwcap32_include || auxv_hwcap32_exclude)
246 		cmn_err(CE_CONT, "?32-bit user ABI extensions: %b\n",
247 		    auxv_hwcap32, FMT_AV_SPARC);
248 #endif
249 }
250 
251 int
252 __ipltospl(int ipl)
253 {
254 	return (ipltospl(ipl));
255 }
256 
257 /*
258  * Print a stack backtrace using the specified stack pointer.  We delay two
259  * seconds before continuing, unless this is the panic traceback.  Note
260  * that the frame for the starting stack pointer value is omitted because
261  * the corresponding %pc is not known.
262  */
263 void
264 traceback(caddr_t sp)
265 {
266 	struct frame *fp = (struct frame *)(sp + STACK_BIAS);
267 	struct frame *nextfp, *minfp, *stacktop;
268 	int on_intr;
269 
270 	cpu_t *cpu;
271 
272 	flush_windows();
273 
274 	if (!panicstr)
275 		printf("traceback: %%sp = %p\n", (void *)sp);
276 
277 	/*
278 	 * If we are panicking, the high-level interrupt information in
279 	 * CPU was overwritten.  panic_cpu has the correct values.
280 	 */
281 	kpreempt_disable();			/* prevent migration */
282 
283 	cpu = (panicstr && CPU->cpu_id == panic_cpu.cpu_id)? &panic_cpu : CPU;
284 
285 	if ((on_intr = CPU_ON_INTR(cpu)) != 0)
286 		stacktop = (struct frame *)(cpu->cpu_intr_stack + SA(MINFRAME));
287 	else
288 		stacktop = (struct frame *)curthread->t_stk;
289 
290 	kpreempt_enable();
291 
292 	minfp = fp;
293 
294 	while ((uintptr_t)fp >= KERNELBASE) {
295 		uintptr_t pc = (uintptr_t)fp->fr_savpc;
296 		ulong_t off;
297 		char *sym;
298 
299 		nextfp = (struct frame *)((uintptr_t)fp->fr_savfp + STACK_BIAS);
300 		if (nextfp <= minfp || nextfp >= stacktop) {
301 			if (on_intr) {
302 				/*
303 				 * Hop from interrupt stack to thread stack.
304 				 */
305 				stacktop = (struct frame *)curthread->t_stk;
306 				minfp = (struct frame *)curthread->t_stkbase;
307 				on_intr = 0;
308 				continue;
309 			}
310 			break; /* we're outside of the expected range */
311 		}
312 
313 		if ((uintptr_t)nextfp & (STACK_ALIGN - 1)) {
314 			printf("  >> mis-aligned %%fp = %p\n", (void *)nextfp);
315 			break;
316 		}
317 
318 		if ((sym = kobj_getsymname(pc, &off)) != NULL) {
319 			printf("%016lx %s:%s+%lx "
320 			    "(%lx, %lx, %lx, %lx, %lx, %lx)\n", (ulong_t)nextfp,
321 			    mod_containing_pc((caddr_t)pc), sym, off,
322 			    nextfp->fr_arg[0], nextfp->fr_arg[1],
323 			    nextfp->fr_arg[2], nextfp->fr_arg[3],
324 			    nextfp->fr_arg[4], nextfp->fr_arg[5]);
325 		} else {
326 			printf("%016lx %p (%lx, %lx, %lx, %lx, %lx, %lx)\n",
327 			    (ulong_t)nextfp, (void *)pc,
328 			    nextfp->fr_arg[0], nextfp->fr_arg[1],
329 			    nextfp->fr_arg[2], nextfp->fr_arg[3],
330 			    nextfp->fr_arg[4], nextfp->fr_arg[5]);
331 		}
332 
333 		printf("  %%l0-3: %016lx %016lx %016lx %016lx\n"
334 		    "  %%l4-7: %016lx %016lx %016lx %016lx\n",
335 		    nextfp->fr_local[0], nextfp->fr_local[1],
336 		    nextfp->fr_local[2], nextfp->fr_local[3],
337 		    nextfp->fr_local[4], nextfp->fr_local[5],
338 		    nextfp->fr_local[6], nextfp->fr_local[7]);
339 
340 		fp = nextfp;
341 		minfp = fp;
342 	}
343 
344 	if (!panicstr) {
345 		printf("end of traceback\n");
346 		DELAY(2 * MICROSEC);
347 	}
348 }
349 
350 /*
351  * Generate a stack backtrace from a saved register set.
352  */
353 void
354 traceregs(struct regs *rp)
355 {
356 	traceback((caddr_t)rp->r_sp);
357 }
358 
359 void
360 exec_set_sp(size_t stksize)
361 {
362 	klwp_t *lwp = ttolwp(curthread);
363 
364 	lwp->lwp_pcb.pcb_xregstat = XREGNONE;
365 	if (curproc->p_model == DATAMODEL_NATIVE)
366 		stksize += sizeof (struct rwindow) + STACK_BIAS;
367 	else
368 		stksize += sizeof (struct rwindow32);
369 	lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize;
370 }
371 
372 /*
373  * Allocate a region of virtual address space, unmapped.
374  *
375  * When a hard-redzone (firewall) is in effect, redzone violations are
376  * caught by the hardware the instant they happen because the first byte
377  * past the logical end of a firewalled buffer lies at the start of an
378  * unmapped page.  This firewalling is accomplished by bumping up the
379  * requested address allocation, effectively removing an additional page
380  * beyond the original request from the available virtual memory arena.
381  * However, the size of the allocation passed to boot, in boot_alloc(),
382  * doesn't reflect this additional page and fragmentation of the OBP
383  * "virtual-memory" "available" lists property occurs.  Calling
384  * prom_claim_virt() for the firewall page avoids this fragmentation.
385  */
386 void *
387 boot_virt_alloc(void *addr, size_t size)
388 {
389 	return (BOP_ALLOC_VIRT(bootops, (caddr_t)addr, size));
390 }
391 
392 
393 /*ARGSUSED*/
394 int
395 xcopyin_nta(const void *uaddr, void *kaddr, size_t count, int dummy)
396 {
397 	return (xcopyin(uaddr, kaddr, count));
398 }
399 /*ARGSUSED*/
400 int
401 xcopyout_nta(const void *kaddr, void *uaddr, size_t count, int dummy)
402 {
403 	return (xcopyout(kaddr, uaddr, count));
404 }
405 /*ARGSUSED*/
406 int
407 kcopy_nta(const void *from, void *to, size_t count, int dummy)
408 {
409 	return (kcopy(from, to, count));
410 }
411