xref: /titanic_50/usr/src/uts/sparc/dtrace/fasttrap_isa.c (revision 0afa4f7c4689bde35d7c62ea8b538e18ba09af65)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/fasttrap_isa.h>
30 #include <sys/fasttrap_impl.h>
31 #include <sys/dtrace.h>
32 #include <sys/dtrace_impl.h>
33 #include <sys/cmn_err.h>
34 #include <sys/frame.h>
35 #include <sys/stack.h>
36 #include <sys/sysmacros.h>
37 #include <sys/trap.h>
38 
39 #include <v9/sys/machpcb.h>
40 #include <v9/sys/privregs.h>
41 
42 /*
43  * Lossless User-Land Tracing on SPARC
44  * -----------------------------------
45  *
46  * The Basic Idea
47  *
48  * The most important design constraint is, of course, correct execution of
49  * the user thread above all else. The next most important goal is rapid
50  * execution. We combine execution of instructions in user-land with
51  * emulation of certain instructions in the kernel to aim for complete
52  * correctness and maximal performance.
53  *
54  * We take advantage of the split PC/NPC architecture to speed up logical
55  * single-stepping; when we copy an instruction out to the scratch space in
56  * the ulwp_t structure (held in the %g7 register on SPARC), we can
57  * effectively single step by setting the PC to our scratch space and leaving
58  * the NPC alone. This executes the replaced instruction and then continues
59  * on without having to reenter the kernel as with single- stepping. The
60  * obvious caveat is for instructions whose execution is PC dependant --
61  * branches, call and link instructions (call and jmpl), and the rdpc
62  * instruction. These instructions cannot be executed in the manner described
63  * so they must be emulated in the kernel.
64  *
65  * Emulation for this small set of instructions if fairly simple; the most
66  * difficult part being emulating branch conditions.
67  *
68  *
69  * A Cache Heavy Portfolio
70  *
71  * It's important to note at this time that copying an instruction out to the
72  * ulwp_t scratch space in user-land is rather complicated. SPARC has
73  * separate data and instruction caches so any writes to the D$ (using a
74  * store instruction for example) aren't necessarily reflected in the I$.
75  * The flush instruction can be used to synchronize the two and must be used
76  * for any self-modifying code, but the flush instruction only applies to the
77  * primary address space (the absence of a flusha analogue to the flush
78  * instruction that accepts an ASI argument is an obvious omission from SPARC
79  * v9 where the notion of the alternate address space was introduced on
80  * SPARC). To correctly copy out the instruction we must use a block store
81  * that doesn't allocate in the D$ and ensures synchronization with the I$;
82  * see dtrace_blksuword32() for the implementation  (this function uses
83  * ASI_BLK_COMMIT_S to write a block through the secondary ASI in the manner
84  * described). Refer to the UltraSPARC I/II manual for details on the
85  * ASI_BLK_COMMIT_S ASI.
86  *
87  *
88  * Return Subtleties
89  *
90  * When we're firing a return probe we need to expose the value returned by
91  * the function being traced. Since the function can set the return value
92  * in its last instruction, we need to fire the return probe only _after_
93  * the effects of the instruction are apparent. For instructions that we
94  * emulate, we can call dtrace_probe() after we've performed the emulation;
95  * for instructions that we execute after we return to user-land, we set
96  * %pc to the instruction we copied out (as described above) and set %npc
97  * to a trap instruction stashed in the ulwp_t structure. After the traced
98  * instruction is executed, the trap instruction returns control to the
99  * kernel where we can fire the return probe.
100  *
101  * This need for a second trap in cases where we execute the traced
102  * instruction makes it all the more important to emulate the most common
103  * instructions to avoid the second trip in and out of the kernel.
104  *
105  *
106  * Making it Fast
107  *
108  * Since copying out an instruction is neither simple nor inexpensive for the
109  * CPU, we should attempt to avoid doing it in as many cases as possible.
110  * Since function entry and return are usually the most interesting probe
111  * sites, we attempt to tune the performance of the fasttrap provider around
112  * instructions typically in those places.
113  *
114  * Looking at a bunch of functions in libraries and executables reveals that
115  * most functions begin with either a save or a sethi (to setup a larger
116  * argument to the save) and end with a restore or an or (in the case of leaf
117  * functions). To try to improve performance, we emulate all of these
118  * instructions in the kernel.
119  *
120  * The save and restore instructions are a little tricky since they perform
121  * register window maniplulation. Rather than trying to tinker with the
122  * register windows from the kernel, we emulate the implicit add that takes
123  * place as part of those instructions and set the %pc to point to a simple
124  * save or restore we've hidden in the ulwp_t structure. If we're in a return
125  * probe so want to make it seem as though the tracepoint has been completely
126  * executed we need to remember that we've pulled this trick with restore and
127  * pull registers from the previous window (the one that we'll switch to once
128  * the simple store instruction is executed) rather than the current one. This
129  * is why in the case of emulating a restore we set the DTrace CPU flag
130  * CPU_DTRACE_FAKERESTORE before calling dtrace_probe() for the return probes
131  * (see fasttrap_return_common()).
132  */
133 
134 #define	OP(x)		((x) >> 30)
135 #define	OP2(x)		(((x) >> 22) & 0x07)
136 #define	OP3(x)		(((x) >> 19) & 0x3f)
137 #define	RCOND(x)	(((x) >> 25) & 0x07)
138 #define	COND(x)		(((x) >> 25) & 0x0f)
139 #define	A(x)		(((x) >> 29) & 0x01)
140 #define	I(x)		(((x) >> 13) & 0x01)
141 #define	RD(x)		(((x) >> 25) & 0x1f)
142 #define	RS1(x)		(((x) >> 14) & 0x1f)
143 #define	RS2(x)		(((x) >> 0) & 0x1f)
144 #define	CC(x)		(((x) >> 20) & 0x03)
145 #define	DISP16(x)	((((x) >> 6) & 0xc000) | ((x) & 0x3fff))
146 #define	DISP22(x)	((x) & 0x3fffff)
147 #define	DISP19(x)	((x) & 0x7ffff)
148 #define	DISP30(x)	((x) & 0x3fffffff)
149 #define	SW_TRAP(x)	((x) & 0x7f)
150 
151 #define	OP3_OR		0x02
152 #define	OP3_RD		0x28
153 #define	OP3_JMPL	0x38
154 #define	OP3_RETURN	0x39
155 #define	OP3_TCC		0x3a
156 #define	OP3_SAVE	0x3c
157 #define	OP3_RESTORE	0x3d
158 
159 #define	OP3_PREFETCH	0x2d
160 #define	OP3_CASA	0x3c
161 #define	OP3_PREFETCHA	0x3d
162 #define	OP3_CASXA	0x3e
163 
164 #define	OP2_ILLTRAP	0x0
165 #define	OP2_BPcc	0x1
166 #define	OP2_Bicc	0x2
167 #define	OP2_BPr		0x3
168 #define	OP2_SETHI	0x4
169 #define	OP2_FBPfcc	0x5
170 #define	OP2_FBfcc	0x6
171 
172 #define	R_G0		0
173 #define	R_O0		8
174 #define	R_SP		14
175 #define	R_I0		24
176 #define	R_I1		25
177 #define	R_I2		26
178 #define	R_I3		27
179 
180 /*
181  * Check the comment in fasttrap.h when changing these offsets or adding
182  * new instructions.
183  */
184 #define	FASTTRAP_OFF_SAVE	64
185 #define	FASTTRAP_OFF_RESTORE	68
186 #define	FASTTRAP_OFF_FTRET	72
187 #define	FASTTRAP_OFF_RETURN	76
188 
189 #define	BREAKPOINT_INSTR	0x91d02001	/* ta 1 */
190 
191 /*
192  * Tunable to let users turn off the fancy save instruction optimization.
193  * If a program is non-ABI compliant, there's a possibility that the save
194  * instruction optimization could cause an error.
195  */
196 int fasttrap_optimize_save = 1;
197 
198 static uint64_t
199 fasttrap_anarg(struct regs *rp, int argno)
200 {
201 	uint64_t value;
202 
203 	if (argno < 6)
204 		return ((&rp->r_o0)[argno]);
205 
206 	if (curproc->p_model == DATAMODEL_NATIVE) {
207 		struct frame *fr = (struct frame *)(rp->r_sp + STACK_BIAS);
208 
209 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
210 		value = dtrace_fulword(&fr->fr_argd[argno]);
211 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR |
212 		    CPU_DTRACE_BADALIGN);
213 	} else {
214 		struct frame32 *fr = (struct frame32 *)rp->r_sp;
215 
216 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
217 		value = dtrace_fuword32(&fr->fr_argd[argno]);
218 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR |
219 		    CPU_DTRACE_BADALIGN);
220 	}
221 
222 	return (value);
223 }
224 
225 static ulong_t fasttrap_getreg(struct regs *, uint_t);
226 static void fasttrap_putreg(struct regs *, uint_t, ulong_t);
227 
228 int
229 fasttrap_probe(struct regs *rp)
230 {
231 	dtrace_probe(fasttrap_probe_id,
232 	    rp->r_o0, rp->r_o1, rp->r_o2, rp->r_o3, rp->r_o4);
233 
234 	rp->r_pc = rp->r_npc;
235 	rp->r_npc = rp->r_pc + 4;
236 
237 	return (0);
238 }
239 
240 static void
241 fasttrap_usdt_args(fasttrap_probe_t *probe, struct regs *rp, int argc,
242     uintptr_t *argv)
243 {
244 	int i, x, cap = MIN(argc, probe->ftp_nargs);
245 
246 	if (curproc->p_model == DATAMODEL_NATIVE) {
247 		struct frame *fr = (struct frame *)(rp->r_sp + STACK_BIAS);
248 		uintptr_t v;
249 
250 		for (i = 0; i < cap; i++) {
251 			x = probe->ftp_argmap[i];
252 
253 			if (x < 6)
254 				argv[i] = (&rp->r_o0)[x];
255 			else if (fasttrap_fulword(&fr->fr_argd[x], &v) != 0)
256 				argv[i] = 0;
257 		}
258 
259 	} else {
260 		struct frame32 *fr = (struct frame32 *)rp->r_sp;
261 		uint32_t v;
262 
263 		for (i = 0; i < cap; i++) {
264 			x = probe->ftp_argmap[i];
265 
266 			if (x < 6)
267 				argv[i] = (&rp->r_o0)[x];
268 			else if (fasttrap_fuword32(&fr->fr_argd[x], &v) != 0)
269 				argv[i] = 0;
270 		}
271 	}
272 
273 	for (; i < argc; i++) {
274 		argv[i] = 0;
275 	}
276 }
277 
278 static void
279 fasttrap_return_common(struct regs *rp, uintptr_t pc, pid_t pid,
280     uint_t fake_restore)
281 {
282 	fasttrap_tracepoint_t *tp;
283 	fasttrap_bucket_t *bucket;
284 	fasttrap_id_t *id;
285 	kmutex_t *pid_mtx;
286 	dtrace_icookie_t cookie;
287 
288 	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
289 	mutex_enter(pid_mtx);
290 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
291 
292 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
293 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
294 		    !tp->ftt_proc->ftpc_defunct)
295 			break;
296 	}
297 
298 	/*
299 	 * Don't sweat it if we can't find the tracepoint again; unlike
300 	 * when we're in fasttrap_pid_probe(), finding the tracepoint here
301 	 * is not essential to the correct execution of the process.
302 	 */
303 	if (tp == NULL || tp->ftt_retids == NULL) {
304 		mutex_exit(pid_mtx);
305 		return;
306 	}
307 
308 	for (id = tp->ftt_retids; id != NULL; id = id->fti_next) {
309 		fasttrap_probe_t *probe = id->fti_probe;
310 
311 		if (id->fti_ptype == DTFTP_POST_OFFSETS) {
312 			if (probe->ftp_argmap == NULL) {
313 				dtrace_probe(probe->ftp_id, rp->r_o0, rp->r_o1,
314 				    rp->r_o2, rp->r_o3, rp->r_o4);
315 			} else {
316 				uintptr_t t[5];
317 
318 				fasttrap_usdt_args(probe, rp,
319 				    sizeof (t) / sizeof (t[0]), t);
320 
321 				dtrace_probe(probe->ftp_id, t[0], t[1],
322 				    t[2], t[3], t[4]);
323 			}
324 			continue;
325 		}
326 
327 		/*
328 		 * If this is only a possible return point, we must
329 		 * be looking at a potential tail call in leaf context.
330 		 * If the %npc is still within this function, then we
331 		 * must have misidentified a jmpl as a tail-call when it
332 		 * is, in fact, part of a jump table. It would be nice to
333 		 * remove this tracepoint, but this is neither the time
334 		 * nor the place.
335 		 */
336 		if ((tp->ftt_flags & FASTTRAP_F_RETMAYBE) &&
337 		    rp->r_npc - probe->ftp_faddr < probe->ftp_fsize)
338 			continue;
339 
340 		/*
341 		 * It's possible for a function to branch to the delay slot
342 		 * of an instruction that we've identified as a return site.
343 		 * We can dectect this spurious return probe activation by
344 		 * observing that in this case %npc will be %pc + 4 and %npc
345 		 * will be inside the current function (unless the user is
346 		 * doing _crazy_ instruction picking in which case there's
347 		 * very little we can do). The second check is important
348 		 * in case the last instructions of a function make a tail-
349 		 * call to the function located immediately subsequent.
350 		 */
351 		if (rp->r_npc == rp->r_pc + 4 &&
352 		    rp->r_npc - probe->ftp_faddr < probe->ftp_fsize)
353 			continue;
354 
355 		/*
356 		 * The first argument is the offset of return tracepoint
357 		 * in the function; the remaining arguments are the return
358 		 * values.
359 		 *
360 		 * If fake_restore is set, we need to pull the return values
361 		 * out of the %i's rather than the %o's -- a little trickier.
362 		 */
363 		if (!fake_restore) {
364 			dtrace_probe(probe->ftp_id, pc - probe->ftp_faddr,
365 			    rp->r_o0, rp->r_o1, rp->r_o2, rp->r_o3);
366 		} else {
367 			uintptr_t arg0 = fasttrap_getreg(rp, R_I0);
368 			uintptr_t arg1 = fasttrap_getreg(rp, R_I1);
369 			uintptr_t arg2 = fasttrap_getreg(rp, R_I2);
370 			uintptr_t arg3 = fasttrap_getreg(rp, R_I3);
371 
372 			cookie = dtrace_interrupt_disable();
373 			DTRACE_CPUFLAG_SET(CPU_DTRACE_FAKERESTORE);
374 			dtrace_probe(probe->ftp_id, pc - probe->ftp_faddr,
375 			    arg0, arg1, arg2, arg3);
376 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_FAKERESTORE);
377 			dtrace_interrupt_enable(cookie);
378 		}
379 	}
380 
381 	mutex_exit(pid_mtx);
382 }
383 
384 int
385 fasttrap_pid_probe(struct regs *rp)
386 {
387 	proc_t *p = curproc;
388 	fasttrap_tracepoint_t *tp, tp_local;
389 	fasttrap_id_t *id;
390 	pid_t pid;
391 	uintptr_t pc = rp->r_pc;
392 	uintptr_t npc = rp->r_npc;
393 	uintptr_t orig_pc = pc;
394 	fasttrap_bucket_t *bucket;
395 	kmutex_t *pid_mtx;
396 	uint_t fake_restore = 0, is_enabled = 0;
397 	dtrace_icookie_t cookie;
398 
399 	/*
400 	 * It's possible that a user (in a veritable orgy of bad planning)
401 	 * could redirect this thread's flow of control before it reached the
402 	 * return probe fasttrap. In this case we need to kill the process
403 	 * since it's in a unrecoverable state.
404 	 */
405 	if (curthread->t_dtrace_step) {
406 		ASSERT(curthread->t_dtrace_on);
407 		fasttrap_sigtrap(p, curthread, pc);
408 		return (0);
409 	}
410 
411 	/*
412 	 * Clear all user tracing flags.
413 	 */
414 	curthread->t_dtrace_ft = 0;
415 	curthread->t_dtrace_pc = 0;
416 	curthread->t_dtrace_npc = 0;
417 	curthread->t_dtrace_scrpc = 0;
418 	curthread->t_dtrace_astpc = 0;
419 
420 	/*
421 	 * Treat a child created by a call to vfork(2) as if it were its
422 	 * parent. We know that there's only one thread of control in such a
423 	 * process: this one.
424 	 */
425 	while (p->p_flag & SVFORK) {
426 		p = p->p_parent;
427 	}
428 
429 	pid = p->p_pid;
430 	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
431 	mutex_enter(pid_mtx);
432 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
433 
434 	/*
435 	 * Lookup the tracepoint that the process just hit.
436 	 */
437 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
438 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
439 		    !tp->ftt_proc->ftpc_defunct)
440 			break;
441 	}
442 
443 	/*
444 	 * If we couldn't find a matching tracepoint, either a tracepoint has
445 	 * been inserted without using the pid<pid> ioctl interface (see
446 	 * fasttrap_ioctl), or somehow we have mislaid this tracepoint.
447 	 */
448 	if (tp == NULL) {
449 		mutex_exit(pid_mtx);
450 		return (-1);
451 	}
452 
453 	for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
454 		fasttrap_probe_t *probe = id->fti_probe;
455 		int isentry = (id->fti_ptype == DTFTP_ENTRY);
456 
457 		if (id->fti_ptype == DTFTP_IS_ENABLED) {
458 			is_enabled = 1;
459 			continue;
460 		}
461 
462 		/*
463 		 * We note that this was an entry probe to help ustack() find
464 		 * the first caller.
465 		 */
466 		if (isentry) {
467 			cookie = dtrace_interrupt_disable();
468 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
469 		}
470 		dtrace_probe(probe->ftp_id, rp->r_o0, rp->r_o1, rp->r_o2,
471 		    rp->r_o3, rp->r_o4);
472 		if (isentry) {
473 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
474 			dtrace_interrupt_enable(cookie);
475 		}
476 	}
477 
478 	/*
479 	 * We're about to do a bunch of work so we cache a local copy of
480 	 * the tracepoint to emulate the instruction, and then find the
481 	 * tracepoint again later if we need to light up any return probes.
482 	 */
483 	tp_local = *tp;
484 	mutex_exit(pid_mtx);
485 	tp = &tp_local;
486 
487 	/*
488 	 * If there's an is-enabled probe conntected to this tracepoint it
489 	 * means that there was a 'mov %g0, %o0' instruction that was placed
490 	 * there by DTrace when the binary was linked. As this probe is, in
491 	 * fact, enabled, we need to stuff 1 into %o0. Accordingly, we can
492 	 * bypass all the instruction emulation logic since we know the
493 	 * inevitable result. It's possible that a user could construct a
494 	 * scenario where the 'is-enabled' probe was on some other
495 	 * instruction, but that would be a rather exotic way to shoot oneself
496 	 * in the foot.
497 	 */
498 	if (is_enabled) {
499 		rp->r_o0 = 1;
500 		pc = rp->r_npc;
501 		npc = pc + 4;
502 		goto done;
503 	}
504 
505 	/*
506 	 * We emulate certain types of instructions to ensure correctness
507 	 * (in the case of position dependent instructions) or optimize
508 	 * common cases. The rest we have the thread execute back in user-
509 	 * land.
510 	 */
511 	switch (tp->ftt_type) {
512 	case FASTTRAP_T_SAVE:
513 	{
514 		int32_t imm;
515 
516 		/*
517 		 * This an optimization to let us handle function entry
518 		 * probes more efficiently. Many functions begin with a save
519 		 * instruction that follows the pattern:
520 		 *	save	%sp, <imm>, %sp
521 		 *
522 		 * Meanwhile, we've stashed the instruction:
523 		 *	save	%g1, %g0, %sp
524 		 *
525 		 * off of %g7, so all we have to do is stick the right value
526 		 * into %g1 and reset %pc to point to the instruction we've
527 		 * cleverly hidden (%npc should not be touched).
528 		 */
529 
530 		imm = tp->ftt_instr << 19;
531 		imm >>= 19;
532 		rp->r_g1 = rp->r_sp + imm;
533 		pc = rp->r_g7 + FASTTRAP_OFF_SAVE;
534 		break;
535 	}
536 
537 	case FASTTRAP_T_RESTORE:
538 	{
539 		ulong_t value;
540 		uint_t rd;
541 
542 		/*
543 		 * This is an optimization to let us handle function
544 		 * return probes more efficiently. Most non-leaf functions
545 		 * end with the sequence:
546 		 *	ret
547 		 *	restore	<reg>, <reg_or_imm>, %oX
548 		 *
549 		 * We've stashed the instruction:
550 		 *	restore	%g0, %g0, %g0
551 		 *
552 		 * off of %g7 so we just need to place the correct value
553 		 * in the right %i register (since after our fake-o
554 		 * restore, the %i's will become the %o's) and set the %pc
555 		 * to point to our hidden restore. We also set fake_restore to
556 		 * let fasttrap_return_common() know that it will find the
557 		 * return values in the %i's rather than the %o's.
558 		 */
559 
560 		if (I(tp->ftt_instr)) {
561 			int32_t imm;
562 
563 			imm = tp->ftt_instr << 19;
564 			imm >>= 19;
565 			value = fasttrap_getreg(rp, RS1(tp->ftt_instr)) + imm;
566 		} else {
567 			value = fasttrap_getreg(rp, RS1(tp->ftt_instr)) +
568 			    fasttrap_getreg(rp, RS2(tp->ftt_instr));
569 		}
570 
571 		/*
572 		 * Convert %o's to %i's; leave %g's as they are.
573 		 */
574 		rd = RD(tp->ftt_instr);
575 		fasttrap_putreg(rp, ((rd & 0x18) == 0x8) ? rd + 16 : rd, value);
576 
577 		pc = rp->r_g7 + FASTTRAP_OFF_RESTORE;
578 		fake_restore = 1;
579 		break;
580 	}
581 
582 	case FASTTRAP_T_RETURN:
583 	{
584 		uintptr_t target;
585 
586 		/*
587 		 * A return instruction is like a jmpl (without the link
588 		 * part) that executes an implicit restore. We've stashed
589 		 * the instruction:
590 		 *	return %o0
591 		 *
592 		 * off of %g7 so we just need to place the target in %o0
593 		 * and set the %pc to point to the stashed return instruction.
594 		 * We use %o0 since that register disappears after the return
595 		 * executes, erasing any evidence of this tampering.
596 		 */
597 		if (I(tp->ftt_instr)) {
598 			int32_t imm;
599 
600 			imm = tp->ftt_instr << 19;
601 			imm >>= 19;
602 			target = fasttrap_getreg(rp, RS1(tp->ftt_instr)) + imm;
603 		} else {
604 			target = fasttrap_getreg(rp, RS1(tp->ftt_instr)) +
605 			    fasttrap_getreg(rp, RS2(tp->ftt_instr));
606 		}
607 
608 		fasttrap_putreg(rp, R_O0, target);
609 
610 		pc = rp->r_g7 + FASTTRAP_OFF_RETURN;
611 		fake_restore = 1;
612 		break;
613 	}
614 
615 	case FASTTRAP_T_OR:
616 	{
617 		ulong_t value;
618 
619 		if (I(tp->ftt_instr)) {
620 			int32_t imm;
621 
622 			imm = tp->ftt_instr << 19;
623 			imm >>= 19;
624 			value = fasttrap_getreg(rp, RS1(tp->ftt_instr)) | imm;
625 		} else {
626 			value = fasttrap_getreg(rp, RS1(tp->ftt_instr)) |
627 			    fasttrap_getreg(rp, RS2(tp->ftt_instr));
628 		}
629 
630 		fasttrap_putreg(rp, RD(tp->ftt_instr), value);
631 		pc = rp->r_npc;
632 		npc = pc + 4;
633 		break;
634 	}
635 
636 	case FASTTRAP_T_SETHI:
637 		if (RD(tp->ftt_instr) != R_G0) {
638 			uint32_t imm32 = tp->ftt_instr << 10;
639 			fasttrap_putreg(rp, RD(tp->ftt_instr), (ulong_t)imm32);
640 		}
641 		pc = rp->r_npc;
642 		npc = pc + 4;
643 		break;
644 
645 	case FASTTRAP_T_CCR:
646 	{
647 		uint_t c, v, z, n, taken;
648 		uint_t ccr = rp->r_tstate >> TSTATE_CCR_SHIFT;
649 
650 		if (tp->ftt_cc != 0)
651 			ccr >>= 4;
652 
653 		c = (ccr >> 0) & 1;
654 		v = (ccr >> 1) & 1;
655 		z = (ccr >> 2) & 1;
656 		n = (ccr >> 3) & 1;
657 
658 		switch (tp->ftt_code) {
659 		case 0x0:	/* BN */
660 			taken = 0;		break;
661 		case 0x1:	/* BE */
662 			taken = z;		break;
663 		case 0x2:	/* BLE */
664 			taken = z | (n ^ v);	break;
665 		case 0x3:	/* BL */
666 			taken = n ^ v;		break;
667 		case 0x4:	/* BLEU */
668 			taken = c | z;		break;
669 		case 0x5:	/* BCS (BLU) */
670 			taken = c;		break;
671 		case 0x6:	/* BNEG */
672 			taken = n;		break;
673 		case 0x7:	/* BVS */
674 			taken = v;		break;
675 		case 0x8:	/* BA */
676 			/*
677 			 * We handle the BA case differently since the annul
678 			 * bit means something slightly different.
679 			 */
680 			panic("fasttrap: mishandled a branch");
681 			taken = 1;		break;
682 		case 0x9:	/* BNE */
683 			taken = ~z;		break;
684 		case 0xa:	/* BG */
685 			taken = ~(z | (n ^ v));	break;
686 		case 0xb:	/* BGE */
687 			taken = ~(n ^ v);	break;
688 		case 0xc:	/* BGU */
689 			taken = ~(c | z);	break;
690 		case 0xd:	/* BCC (BGEU) */
691 			taken = ~c;		break;
692 		case 0xe:	/* BPOS */
693 			taken = ~n;		break;
694 		case 0xf:	/* BVC */
695 			taken = ~v;		break;
696 		}
697 
698 		if (taken & 1) {
699 			pc = rp->r_npc;
700 			npc = tp->ftt_dest;
701 		} else if (tp->ftt_flags & FASTTRAP_F_ANNUL) {
702 			/*
703 			 * Untaken annulled branches don't execute the
704 			 * instruction in the delay slot.
705 			 */
706 			pc = rp->r_npc + 4;
707 			npc = pc + 4;
708 		} else {
709 			pc = rp->r_npc;
710 			npc = pc + 4;
711 		}
712 		break;
713 	}
714 
715 	case FASTTRAP_T_FCC:
716 	{
717 		uint_t fcc;
718 		uint_t taken;
719 		uint64_t fsr;
720 
721 		dtrace_getfsr(&fsr);
722 
723 		if (tp->ftt_cc == 0) {
724 			fcc = (fsr >> 10) & 0x3;
725 		} else {
726 			uint_t shift;
727 			ASSERT(tp->ftt_cc <= 3);
728 			shift = 30 + tp->ftt_cc * 2;
729 			fcc = (fsr >> shift) & 0x3;
730 		}
731 
732 		switch (tp->ftt_code) {
733 		case 0x0:	/* FBN */
734 			taken = (1 << fcc) & (0|0|0|0);	break;
735 		case 0x1:	/* FBNE */
736 			taken = (1 << fcc) & (8|4|2|0);	break;
737 		case 0x2:	/* FBLG */
738 			taken = (1 << fcc) & (0|4|2|0);	break;
739 		case 0x3:	/* FBUL */
740 			taken = (1 << fcc) & (8|0|2|0);	break;
741 		case 0x4:	/* FBL */
742 			taken = (1 << fcc) & (0|0|2|0);	break;
743 		case 0x5:	/* FBUG */
744 			taken = (1 << fcc) & (8|4|0|0);	break;
745 		case 0x6:	/* FBG */
746 			taken = (1 << fcc) & (0|4|0|0);	break;
747 		case 0x7:	/* FBU */
748 			taken = (1 << fcc) & (8|0|0|0);	break;
749 		case 0x8:	/* FBA */
750 			/*
751 			 * We handle the FBA case differently since the annul
752 			 * bit means something slightly different.
753 			 */
754 			panic("fasttrap: mishandled a branch");
755 			taken = (1 << fcc) & (8|4|2|1);	break;
756 		case 0x9:	/* FBE */
757 			taken = (1 << fcc) & (0|0|0|1);	break;
758 		case 0xa:	/* FBUE */
759 			taken = (1 << fcc) & (8|0|0|1);	break;
760 		case 0xb:	/* FBGE */
761 			taken = (1 << fcc) & (0|4|0|1);	break;
762 		case 0xc:	/* FBUGE */
763 			taken = (1 << fcc) & (8|4|0|1);	break;
764 		case 0xd:	/* FBLE */
765 			taken = (1 << fcc) & (0|0|2|1);	break;
766 		case 0xe:	/* FBULE */
767 			taken = (1 << fcc) & (8|0|2|1);	break;
768 		case 0xf:	/* FBO */
769 			taken = (1 << fcc) & (0|4|2|1);	break;
770 		}
771 
772 		if (taken) {
773 			pc = rp->r_npc;
774 			npc = tp->ftt_dest;
775 		} else if (tp->ftt_flags & FASTTRAP_F_ANNUL) {
776 			/*
777 			 * Untaken annulled branches don't execute the
778 			 * instruction in the delay slot.
779 			 */
780 			pc = rp->r_npc + 4;
781 			npc = pc + 4;
782 		} else {
783 			pc = rp->r_npc;
784 			npc = pc + 4;
785 		}
786 		break;
787 	}
788 
789 	case FASTTRAP_T_REG:
790 	{
791 		uint64_t value;
792 		uint_t taken;
793 		uint_t reg = RS1(tp->ftt_instr);
794 
795 		/*
796 		 * An ILP32 process shouldn't be using a branch predicated on
797 		 * an %i or an %l since it would violate the ABI. It's a
798 		 * violation of the ABI because we can't ensure deterministic
799 		 * behavior. We should have identified this case when we
800 		 * enabled the probe.
801 		 */
802 		ASSERT(p->p_model == DATAMODEL_LP64 || reg < 16);
803 
804 		value = fasttrap_getreg(rp, reg);
805 
806 		switch (tp->ftt_code) {
807 		case 0x1:	/* BRZ */
808 			taken = (value == 0);	break;
809 		case 0x2:	/* BRLEZ */
810 			taken = (value <= 0);	break;
811 		case 0x3:	/* BRLZ */
812 			taken = (value < 0);	break;
813 		case 0x5:	/* BRNZ */
814 			taken = (value != 0);	break;
815 		case 0x6:	/* BRGZ */
816 			taken = (value > 0);	break;
817 		case 0x7:	/* BRGEZ */
818 			taken = (value <= 0);	break;
819 		default:
820 		case 0x0:
821 		case 0x4:
822 			panic("fasttrap: mishandled a branch");
823 		}
824 
825 		if (taken) {
826 			pc = rp->r_npc;
827 			npc = tp->ftt_dest;
828 		} else if (tp->ftt_flags & FASTTRAP_F_ANNUL) {
829 			/*
830 			 * Untaken annulled branches don't execute the
831 			 * instruction in the delay slot.
832 			 */
833 			pc = rp->r_npc + 4;
834 			npc = pc + 4;
835 		} else {
836 			pc = rp->r_npc;
837 			npc = pc + 4;
838 		}
839 		break;
840 	}
841 
842 	case FASTTRAP_T_ALWAYS:
843 		/*
844 		 * BAs, BA,As...
845 		 */
846 
847 		if (tp->ftt_flags & FASTTRAP_F_ANNUL) {
848 			/*
849 			 * Annulled branch always instructions never execute
850 			 * the instruction in the delay slot.
851 			 */
852 			pc = tp->ftt_dest;
853 			npc = tp->ftt_dest + 4;
854 		} else {
855 			pc = rp->r_npc;
856 			npc = tp->ftt_dest;
857 		}
858 		break;
859 
860 	case FASTTRAP_T_RDPC:
861 		fasttrap_putreg(rp, RD(tp->ftt_instr), rp->r_pc);
862 		pc = rp->r_npc;
863 		npc = pc + 4;
864 		break;
865 
866 	case FASTTRAP_T_CALL:
867 		/*
868 		 * It's a call _and_ link remember...
869 		 */
870 		rp->r_o7 = rp->r_pc;
871 		pc = rp->r_npc;
872 		npc = tp->ftt_dest;
873 		break;
874 
875 	case FASTTRAP_T_JMPL:
876 		pc = rp->r_npc;
877 
878 		if (I(tp->ftt_instr)) {
879 			uint_t rs1 = RS1(tp->ftt_instr);
880 			int32_t imm;
881 
882 			imm = tp->ftt_instr << 19;
883 			imm >>= 19;
884 			npc = fasttrap_getreg(rp, rs1) + imm;
885 		} else {
886 			uint_t rs1 = RS1(tp->ftt_instr);
887 			uint_t rs2 = RS2(tp->ftt_instr);
888 
889 			npc = fasttrap_getreg(rp, rs1) +
890 			    fasttrap_getreg(rp, rs2);
891 		}
892 
893 		/*
894 		 * Do the link part of the jump-and-link instruction.
895 		 */
896 		fasttrap_putreg(rp, RD(tp->ftt_instr), rp->r_pc);
897 
898 		break;
899 
900 	case FASTTRAP_T_COMMON:
901 	{
902 		curthread->t_dtrace_scrpc = rp->r_g7;
903 		curthread->t_dtrace_astpc = rp->r_g7 + FASTTRAP_OFF_FTRET;
904 
905 		/*
906 		 * Copy the instruction to a reserved location in the
907 		 * user-land thread structure, then set the PC to that
908 		 * location and leave the NPC alone. We take pains to ensure
909 		 * consistency in the instruction stream (See SPARC
910 		 * Architecture Manual Version 9, sections 8.4.7, A.20, and
911 		 * H.1.6; UltraSPARC I/II User's Manual, sections 3.1.1.1,
912 		 * and 13.6.4) by using the ASI ASI_BLK_COMMIT_S to copy the
913 		 * instruction into the user's address space without
914 		 * bypassing the I$. There's no AS_USER version of this ASI
915 		 * (as exist for other ASIs) so we use the lofault
916 		 * mechanism to catch faults.
917 		 */
918 		if (dtrace_blksuword32(rp->r_g7, &tp->ftt_instr, 1) == -1) {
919 			/*
920 			 * If the copyout fails, then the process's state
921 			 * is not consistent (the effects of the traced
922 			 * instruction will never be seen). This process
923 			 * cannot be allowed to continue execution.
924 			 */
925 			fasttrap_sigtrap(curproc, curthread, pc);
926 			return (0);
927 		}
928 
929 		curthread->t_dtrace_pc = pc;
930 		curthread->t_dtrace_npc = npc;
931 		curthread->t_dtrace_on = 1;
932 
933 		pc = curthread->t_dtrace_scrpc;
934 
935 		if (tp->ftt_retids != NULL) {
936 			curthread->t_dtrace_step = 1;
937 			curthread->t_dtrace_ret = 1;
938 			npc = curthread->t_dtrace_astpc;
939 		}
940 		break;
941 	}
942 
943 	default:
944 		panic("fasttrap: mishandled an instruction");
945 	}
946 
947 	/*
948 	 * This bit me in the ass a couple of times, so lets toss this
949 	 * in as a cursory sanity check.
950 	 */
951 	ASSERT(pc != rp->r_g7 + 4);
952 	ASSERT(pc != rp->r_g7 + 8);
953 
954 done:
955 	/*
956 	 * If there were no return probes when we first found the tracepoint,
957 	 * we should feel no obligation to honor any return probes that were
958 	 * subsequently enabled -- they'll just have to wait until the next
959 	 * time around.
960 	 */
961 	if (tp->ftt_retids != NULL) {
962 		/*
963 		 * We need to wait until the results of the instruction are
964 		 * apparent before invoking any return probes. If this
965 		 * instruction was emulated we can just call
966 		 * fasttrap_return_common(); if it needs to be executed, we
967 		 * need to wait until we return to the kernel.
968 		 */
969 		if (tp->ftt_type != FASTTRAP_T_COMMON) {
970 			fasttrap_return_common(rp, orig_pc, pid, fake_restore);
971 		} else {
972 			ASSERT(curthread->t_dtrace_ret != 0);
973 			ASSERT(curthread->t_dtrace_pc == orig_pc);
974 			ASSERT(curthread->t_dtrace_scrpc == rp->r_g7);
975 			ASSERT(npc == curthread->t_dtrace_astpc);
976 		}
977 	}
978 
979 	ASSERT(pc != 0);
980 	rp->r_pc = pc;
981 	rp->r_npc = npc;
982 
983 	return (0);
984 }
985 
986 int
987 fasttrap_return_probe(struct regs *rp)
988 {
989 	proc_t *p = ttoproc(curthread);
990 	pid_t pid;
991 	uintptr_t pc = curthread->t_dtrace_pc;
992 	uintptr_t npc = curthread->t_dtrace_npc;
993 
994 	curthread->t_dtrace_pc = 0;
995 	curthread->t_dtrace_npc = 0;
996 	curthread->t_dtrace_scrpc = 0;
997 	curthread->t_dtrace_astpc = 0;
998 
999 	/*
1000 	 * Treat a child created by a call to vfork(2) as if it were its
1001 	 * parent. We know there's only one thread of control in such a
1002 	 * process: this one.
1003 	 */
1004 	while (p->p_flag & SVFORK) {
1005 		p = p->p_parent;
1006 	}
1007 
1008 	/*
1009 	 * We set the %pc and %npc to their values when the traced
1010 	 * instruction was initially executed so that it appears to
1011 	 * dtrace_probe() that we're on the original instruction, and so that
1012 	 * the user can't easily detect our complex web of lies.
1013 	 * dtrace_return_probe() (our caller) will correctly set %pc and %npc
1014 	 * after we return.
1015 	 */
1016 	rp->r_pc = pc;
1017 	rp->r_npc = npc;
1018 
1019 	pid = p->p_pid;
1020 	fasttrap_return_common(rp, pc, pid, 0);
1021 
1022 	return (0);
1023 }
1024 
1025 int
1026 fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp)
1027 {
1028 	fasttrap_instr_t instr = FASTTRAP_INSTR;
1029 
1030 	if (uwrite(p, &instr, 4, tp->ftt_pc) != 0)
1031 		return (-1);
1032 
1033 	return (0);
1034 }
1035 
1036 int
1037 fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp)
1038 {
1039 	fasttrap_instr_t instr;
1040 
1041 	/*
1042 	 * Distinguish between read or write failures and a changed
1043 	 * instruction.
1044 	 */
1045 	if (uread(p, &instr, 4, tp->ftt_pc) != 0)
1046 		return (0);
1047 	if (instr != FASTTRAP_INSTR && instr != BREAKPOINT_INSTR)
1048 		return (0);
1049 	if (uwrite(p, &tp->ftt_instr, 4, tp->ftt_pc) != 0)
1050 		return (-1);
1051 
1052 	return (0);
1053 }
1054 
1055 int
1056 fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, uintptr_t pc,
1057     fasttrap_probe_type_t type)
1058 {
1059 	uint32_t instr;
1060 	int32_t disp;
1061 
1062 	/*
1063 	 * Read the instruction at the given address out of the process's
1064 	 * address space. We don't have to worry about a debugger
1065 	 * changing this instruction before we overwrite it with our trap
1066 	 * instruction since P_PR_LOCK is set.
1067 	 */
1068 	if (uread(p, &instr, 4, pc) != 0)
1069 		return (-1);
1070 
1071 	/*
1072 	 * Decode the instruction to fill in the probe flags. We can have
1073 	 * the process execute most instructions on its own using a pc/npc
1074 	 * trick, but pc-relative control transfer present a problem since
1075 	 * we're relocating the instruction. We emulate these instructions
1076 	 * in the kernel. We assume a default type and over-write that as
1077 	 * needed.
1078 	 *
1079 	 * pc-relative instructions must be emulated for correctness;
1080 	 * other instructions (which represent a large set of commonly traced
1081 	 * instructions) are emulated or otherwise optimized for performance.
1082 	 */
1083 	tp->ftt_type = FASTTRAP_T_COMMON;
1084 	if (OP(instr) == 1) {
1085 		/*
1086 		 * Call instructions.
1087 		 */
1088 		tp->ftt_type = FASTTRAP_T_CALL;
1089 		disp = DISP30(instr) << 2;
1090 		tp->ftt_dest = pc + (intptr_t)disp;
1091 
1092 	} else if (OP(instr) == 0) {
1093 		/*
1094 		 * Branch instructions.
1095 		 *
1096 		 * Unconditional branches need careful attention when they're
1097 		 * annulled: annulled unconditional branches never execute
1098 		 * the instruction in the delay slot.
1099 		 */
1100 		switch (OP2(instr)) {
1101 		case OP2_ILLTRAP:
1102 		case 0x7:
1103 			/*
1104 			 * The compiler may place an illtrap after a call to
1105 			 * a function that returns a structure. In the case of
1106 			 * a returned structure, the compiler places an illtrap
1107 			 * whose const22 field is the size of the returned
1108 			 * structure immediately following the delay slot of
1109 			 * the call. To stay out of the way, we refuse to
1110 			 * place tracepoints on top of illtrap instructions.
1111 			 *
1112 			 * This is one of the dumbest architectural decisions
1113 			 * I've ever had to work around.
1114 			 *
1115 			 * We also identify the only illegal op2 value (See
1116 			 * SPARC Architecture Manual Version 9, E.2 table 31).
1117 			 */
1118 			return (-1);
1119 
1120 		case OP2_BPcc:
1121 			if (COND(instr) == 8) {
1122 				tp->ftt_type = FASTTRAP_T_ALWAYS;
1123 			} else {
1124 				/*
1125 				 * Check for an illegal instruction.
1126 				 */
1127 				if (CC(instr) & 1)
1128 					return (-1);
1129 				tp->ftt_type = FASTTRAP_T_CCR;
1130 				tp->ftt_cc = CC(instr);
1131 				tp->ftt_code = COND(instr);
1132 			}
1133 
1134 			if (A(instr) != 0)
1135 				tp->ftt_flags |= FASTTRAP_F_ANNUL;
1136 
1137 			disp = DISP19(instr);
1138 			disp <<= 13;
1139 			disp >>= 11;
1140 			tp->ftt_dest = pc + (intptr_t)disp;
1141 			break;
1142 
1143 		case OP2_Bicc:
1144 			if (COND(instr) == 8) {
1145 				tp->ftt_type = FASTTRAP_T_ALWAYS;
1146 			} else {
1147 				tp->ftt_type = FASTTRAP_T_CCR;
1148 				tp->ftt_cc = 0;
1149 				tp->ftt_code = COND(instr);
1150 			}
1151 
1152 			if (A(instr) != 0)
1153 				tp->ftt_flags |= FASTTRAP_F_ANNUL;
1154 
1155 			disp = DISP22(instr);
1156 			disp <<= 10;
1157 			disp >>= 8;
1158 			tp->ftt_dest = pc + (intptr_t)disp;
1159 			break;
1160 
1161 		case OP2_BPr:
1162 			/*
1163 			 * Check for an illegal instruction.
1164 			 */
1165 			if ((RCOND(instr) & 3) == 0)
1166 				return (-1);
1167 
1168 			/*
1169 			 * It's a violation of the v8plus ABI to use a
1170 			 * register-predicated branch in a 32-bit app if
1171 			 * the register used is an %l or an %i (%gs and %os
1172 			 * are legit because they're not saved to the stack
1173 			 * in 32-bit words when we take a trap).
1174 			 */
1175 			if (p->p_model == DATAMODEL_ILP32 && RS1(instr) >= 16)
1176 				return (-1);
1177 
1178 			tp->ftt_type = FASTTRAP_T_REG;
1179 			if (A(instr) != 0)
1180 				tp->ftt_flags |= FASTTRAP_F_ANNUL;
1181 			disp = DISP16(instr);
1182 			disp <<= 16;
1183 			disp >>= 14;
1184 			tp->ftt_dest = pc + (intptr_t)disp;
1185 			tp->ftt_code = RCOND(instr);
1186 			break;
1187 
1188 		case OP2_SETHI:
1189 			tp->ftt_type = FASTTRAP_T_SETHI;
1190 			break;
1191 
1192 		case OP2_FBPfcc:
1193 			if (COND(instr) == 8) {
1194 				tp->ftt_type = FASTTRAP_T_ALWAYS;
1195 			} else {
1196 				tp->ftt_type = FASTTRAP_T_FCC;
1197 				tp->ftt_cc = CC(instr);
1198 				tp->ftt_code = COND(instr);
1199 			}
1200 
1201 			if (A(instr) != 0)
1202 				tp->ftt_flags |= FASTTRAP_F_ANNUL;
1203 
1204 			disp = DISP19(instr);
1205 			disp <<= 13;
1206 			disp >>= 11;
1207 			tp->ftt_dest = pc + (intptr_t)disp;
1208 			break;
1209 
1210 		case OP2_FBfcc:
1211 			if (COND(instr) == 8) {
1212 				tp->ftt_type = FASTTRAP_T_ALWAYS;
1213 			} else {
1214 				tp->ftt_type = FASTTRAP_T_FCC;
1215 				tp->ftt_cc = 0;
1216 				tp->ftt_code = COND(instr);
1217 			}
1218 
1219 			if (A(instr) != 0)
1220 				tp->ftt_flags |= FASTTRAP_F_ANNUL;
1221 
1222 			disp = DISP22(instr);
1223 			disp <<= 10;
1224 			disp >>= 8;
1225 			tp->ftt_dest = pc + (intptr_t)disp;
1226 			break;
1227 		}
1228 
1229 	} else if (OP(instr) == 2) {
1230 		switch (OP3(instr)) {
1231 		case OP3_RETURN:
1232 			tp->ftt_type = FASTTRAP_T_RETURN;
1233 			break;
1234 
1235 		case OP3_JMPL:
1236 			tp->ftt_type = FASTTRAP_T_JMPL;
1237 			break;
1238 
1239 		case OP3_RD:
1240 			if (RS1(instr) == 5)
1241 				tp->ftt_type = FASTTRAP_T_RDPC;
1242 			break;
1243 
1244 		case OP3_SAVE:
1245 			/*
1246 			 * We optimize for save instructions at function
1247 			 * entry; see the comment in fasttrap_pid_probe()
1248 			 * (near FASTTRAP_T_SAVE) for details.
1249 			 */
1250 			if (fasttrap_optimize_save != 0 &&
1251 			    type == DTFTP_ENTRY &&
1252 			    I(instr) == 1 && RD(instr) == R_SP)
1253 				tp->ftt_type = FASTTRAP_T_SAVE;
1254 			break;
1255 
1256 		case OP3_RESTORE:
1257 			/*
1258 			 * We optimize restore instructions at function
1259 			 * return; see the comment in fasttrap_pid_probe()
1260 			 * (near FASTTRAP_T_RESTORE) for details.
1261 			 *
1262 			 * rd must be an %o or %g register.
1263 			 */
1264 			if ((RD(instr) & 0x10) == 0)
1265 				tp->ftt_type = FASTTRAP_T_RESTORE;
1266 			break;
1267 
1268 		case OP3_OR:
1269 			/*
1270 			 * A large proportion of instructions in the delay
1271 			 * slot of retl instructions are or's so we emulate
1272 			 * these downstairs as an optimization.
1273 			 */
1274 			tp->ftt_type = FASTTRAP_T_OR;
1275 			break;
1276 
1277 		case OP3_TCC:
1278 			/*
1279 			 * Breakpoint instructions are effectively position-
1280 			 * dependent since the debugger uses the %pc value
1281 			 * to lookup which breakpoint was executed. As a
1282 			 * result, we can't actually instrument breakpoints.
1283 			 */
1284 			if (SW_TRAP(instr) == ST_BREAKPOINT)
1285 				return (-1);
1286 			break;
1287 
1288 		case 0x19:
1289 		case 0x1d:
1290 		case 0x29:
1291 		case 0x33:
1292 		case 0x3f:
1293 			/*
1294 			 * Identify illegal instructions (See SPARC
1295 			 * Architecture Manual Version 9, E.2 table 32).
1296 			 */
1297 			return (-1);
1298 		}
1299 	} else if (OP(instr) == 3) {
1300 		uint32_t op3 = OP3(instr);
1301 
1302 		/*
1303 		 * Identify illegal instructions (See SPARC Architecture
1304 		 * Manual Version 9, E.2 table 33).
1305 		 */
1306 		if ((op3 & 0x28) == 0x28) {
1307 			if (op3 != OP3_PREFETCH && op3 != OP3_CASA &&
1308 			    op3 != OP3_PREFETCHA && op3 != OP3_CASXA)
1309 				return (-1);
1310 		} else {
1311 			if ((op3 & 0x0f) == 0x0c || (op3 & 0x3b) == 0x31)
1312 				return (-1);
1313 		}
1314 	}
1315 
1316 	tp->ftt_instr = instr;
1317 
1318 	/*
1319 	 * We don't know how this tracepoint is going to be used, but in case
1320 	 * it's used as part of a function return probe, we need to indicate
1321 	 * whether it's always a return site or only potentially a return
1322 	 * site. If it's part of a return probe, it's always going to be a
1323 	 * return from that function if it's a restore instruction or if
1324 	 * the previous instruction was a return. If we could reliably
1325 	 * distinguish jump tables from return sites, this wouldn't be
1326 	 * necessary.
1327 	 */
1328 	if (tp->ftt_type != FASTTRAP_T_RESTORE &&
1329 	    (uread(p, &instr, 4, pc - sizeof (instr)) != 0 ||
1330 	    !(OP(instr) == 2 && OP3(instr) == OP3_RETURN)))
1331 		tp->ftt_flags |= FASTTRAP_F_RETMAYBE;
1332 
1333 	return (0);
1334 }
1335 
1336 /*ARGSUSED*/
1337 uint64_t
1338 fasttrap_getarg(void *arg, dtrace_id_t id, void *parg, int argno, int aframes)
1339 {
1340 	return (fasttrap_anarg(ttolwp(curthread)->lwp_regs, argno));
1341 }
1342 
1343 /*ARGSUSED*/
1344 uint64_t
1345 fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1346     int aframes)
1347 {
1348 	return (fasttrap_anarg(ttolwp(curthread)->lwp_regs, argno));
1349 }
1350 
1351 static uint64_t fasttrap_getreg_fast_cnt;
1352 static uint64_t fasttrap_getreg_mpcb_cnt;
1353 static uint64_t fasttrap_getreg_slow_cnt;
1354 
1355 static ulong_t
1356 fasttrap_getreg(struct regs *rp, uint_t reg)
1357 {
1358 	ulong_t value;
1359 	dtrace_icookie_t cookie;
1360 	struct machpcb *mpcb;
1361 	extern ulong_t dtrace_getreg_win(uint_t, uint_t);
1362 
1363 	/*
1364 	 * We have the %os and %gs in our struct regs, but if we need to
1365 	 * snag a %l or %i we need to go scrounging around in the process's
1366 	 * address space.
1367 	 */
1368 	if (reg == 0)
1369 		return (0);
1370 
1371 	if (reg < 16)
1372 		return ((&rp->r_g1)[reg - 1]);
1373 
1374 	/*
1375 	 * Before we look at the user's stack, we'll check the register
1376 	 * windows to see if the information we want is in there.
1377 	 */
1378 	cookie = dtrace_interrupt_disable();
1379 	if (dtrace_getotherwin() > 0) {
1380 		value = dtrace_getreg_win(reg, 1);
1381 		dtrace_interrupt_enable(cookie);
1382 
1383 		atomic_add_64(&fasttrap_getreg_fast_cnt, 1);
1384 
1385 		return (value);
1386 	}
1387 	dtrace_interrupt_enable(cookie);
1388 
1389 	/*
1390 	 * First check the machpcb structure to see if we've already read
1391 	 * in the register window we're looking for; if we haven't, (and
1392 	 * we probably haven't) try to copy in the value of the register.
1393 	 */
1394 	mpcb = (struct machpcb *)((caddr_t)rp - REGOFF);
1395 
1396 	if (get_udatamodel() == DATAMODEL_NATIVE) {
1397 		struct frame *fr = (struct frame *)(rp->r_sp + STACK_BIAS);
1398 
1399 		if (mpcb->mpcb_wbcnt > 0) {
1400 			struct rwindow *rwin = (void *)mpcb->mpcb_wbuf;
1401 			int i = mpcb->mpcb_wbcnt;
1402 			do {
1403 				i--;
1404 				if ((long)mpcb->mpcb_spbuf[i] != rp->r_sp)
1405 					continue;
1406 
1407 				atomic_add_64(&fasttrap_getreg_mpcb_cnt, 1);
1408 				return (rwin[i].rw_local[reg - 16]);
1409 			} while (i > 0);
1410 		}
1411 
1412 		if (fasttrap_fulword(&fr->fr_local[reg - 16], &value) != 0)
1413 			goto err;
1414 	} else {
1415 		struct frame32 *fr =
1416 		    (struct frame32 *)(uintptr_t)(caddr32_t)rp->r_sp;
1417 		uint32_t *v32 = (uint32_t *)&value;
1418 
1419 		if (mpcb->mpcb_wbcnt > 0) {
1420 			struct rwindow32 *rwin = (void *)mpcb->mpcb_wbuf;
1421 			int i = mpcb->mpcb_wbcnt;
1422 			do {
1423 				i--;
1424 				if ((long)mpcb->mpcb_spbuf[i] != rp->r_sp)
1425 					continue;
1426 
1427 				atomic_add_64(&fasttrap_getreg_mpcb_cnt, 1);
1428 				return (rwin[i].rw_local[reg - 16]);
1429 			} while (i > 0);
1430 		}
1431 
1432 		if (fasttrap_fuword32(&fr->fr_local[reg - 16], &v32[1]) != 0)
1433 			goto err;
1434 
1435 		v32[0] = 0;
1436 	}
1437 
1438 	atomic_add_64(&fasttrap_getreg_slow_cnt, 1);
1439 	return (value);
1440 
1441 err:
1442 	/*
1443 	 * If the copy in failed, the process will be in a irrecoverable
1444 	 * state, and we have no choice but to kill it.
1445 	 */
1446 	psignal(ttoproc(curthread), SIGILL);
1447 	return (0);
1448 }
1449 
1450 static uint64_t fasttrap_putreg_fast_cnt;
1451 static uint64_t fasttrap_putreg_mpcb_cnt;
1452 static uint64_t fasttrap_putreg_slow_cnt;
1453 
1454 static void
1455 fasttrap_putreg(struct regs *rp, uint_t reg, ulong_t value)
1456 {
1457 	dtrace_icookie_t cookie;
1458 	struct machpcb *mpcb;
1459 	extern void dtrace_putreg_win(uint_t, ulong_t);
1460 
1461 	if (reg == 0)
1462 		return;
1463 
1464 	if (reg < 16) {
1465 		(&rp->r_g1)[reg - 1] = value;
1466 		return;
1467 	}
1468 
1469 	/*
1470 	 * If the user process is still using some register windows, we
1471 	 * can just place the value in the correct window.
1472 	 */
1473 	cookie = dtrace_interrupt_disable();
1474 	if (dtrace_getotherwin() > 0) {
1475 		dtrace_putreg_win(reg, value);
1476 		dtrace_interrupt_enable(cookie);
1477 		atomic_add_64(&fasttrap_putreg_fast_cnt, 1);
1478 		return;
1479 	}
1480 	dtrace_interrupt_enable(cookie);
1481 
1482 	/*
1483 	 * First see if there's a copy of the register window in the
1484 	 * machpcb structure that we can modify; if there isn't try to
1485 	 * copy out the value. If that fails, we try to create a new
1486 	 * register window in the machpcb structure. While this isn't
1487 	 * _precisely_ the intended use of the machpcb structure, it
1488 	 * can't cause any problems since we know at this point in the
1489 	 * code that all of the user's data have been flushed out of the
1490 	 * register file (since %otherwin is 0).
1491 	 */
1492 	mpcb = (struct machpcb *)((caddr_t)rp - REGOFF);
1493 
1494 	if (get_udatamodel() == DATAMODEL_NATIVE) {
1495 		struct frame *fr = (struct frame *)(rp->r_sp + STACK_BIAS);
1496 		struct rwindow *rwin = (struct rwindow *)mpcb->mpcb_wbuf;
1497 
1498 		if (mpcb->mpcb_wbcnt > 0) {
1499 			int i = mpcb->mpcb_wbcnt;
1500 			do {
1501 				i--;
1502 				if ((long)mpcb->mpcb_spbuf[i] != rp->r_sp)
1503 					continue;
1504 
1505 				rwin[i].rw_local[reg - 16] = value;
1506 				atomic_add_64(&fasttrap_putreg_mpcb_cnt, 1);
1507 				return;
1508 			} while (i > 0);
1509 		}
1510 
1511 		if (fasttrap_sulword(&fr->fr_local[reg - 16], value) != 0) {
1512 			if (mpcb->mpcb_wbcnt >= MAXWIN || copyin(fr,
1513 			    &rwin[mpcb->mpcb_wbcnt], sizeof (*rwin)) != 0)
1514 				goto err;
1515 
1516 			rwin[mpcb->mpcb_wbcnt].rw_local[reg - 16] = value;
1517 			mpcb->mpcb_spbuf[mpcb->mpcb_wbcnt] = (caddr_t)rp->r_sp;
1518 			mpcb->mpcb_wbcnt++;
1519 			atomic_add_64(&fasttrap_putreg_mpcb_cnt, 1);
1520 			return;
1521 		}
1522 	} else {
1523 		struct frame32 *fr =
1524 		    (struct frame32 *)(uintptr_t)(caddr32_t)rp->r_sp;
1525 		struct rwindow32 *rwin = (struct rwindow32 *)mpcb->mpcb_wbuf;
1526 		uint32_t v32 = (uint32_t)value;
1527 
1528 		if (mpcb->mpcb_wbcnt > 0) {
1529 			int i = mpcb->mpcb_wbcnt;
1530 			do {
1531 				i--;
1532 				if ((long)mpcb->mpcb_spbuf[i] != rp->r_sp)
1533 					continue;
1534 
1535 				rwin[i].rw_local[reg - 16] = v32;
1536 				atomic_add_64(&fasttrap_putreg_mpcb_cnt, 1);
1537 				return;
1538 			} while (i > 0);
1539 		}
1540 
1541 		if (fasttrap_suword32(&fr->fr_local[reg - 16], v32) != 0) {
1542 			if (mpcb->mpcb_wbcnt >= MAXWIN || copyin(fr,
1543 			    &rwin[mpcb->mpcb_wbcnt], sizeof (*rwin)) != 0)
1544 				goto err;
1545 
1546 			rwin[mpcb->mpcb_wbcnt].rw_local[reg - 16] = v32;
1547 			mpcb->mpcb_spbuf[mpcb->mpcb_wbcnt] = (caddr_t)rp->r_sp;
1548 			mpcb->mpcb_wbcnt++;
1549 			atomic_add_64(&fasttrap_putreg_mpcb_cnt, 1);
1550 			return;
1551 		}
1552 	}
1553 
1554 	atomic_add_64(&fasttrap_putreg_slow_cnt, 1);
1555 	return;
1556 
1557 err:
1558 	/*
1559 	 * If we couldn't record this register's value, the process is in an
1560 	 * irrecoverable state and we have no choice but to euthanize it.
1561 	 */
1562 	psignal(ttoproc(curthread), SIGILL);
1563 }
1564