xref: /titanic_50/usr/src/uts/sfmmu/vm/hat_sfmmu.h (revision f841f6ad96ea6675d6c6b35c749eaac601799fdf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * VM - Hardware Address Translation management.
28  *
29  * This file describes the contents of the sun-reference-mmu(sfmmu)-
30  * specific hat data structures and the sfmmu-specific hat procedures.
31  * The machine-independent interface is described in <vm/hat.h>.
32  */
33 
34 #ifndef	_VM_HAT_SFMMU_H
35 #define	_VM_HAT_SFMMU_H
36 
37 #pragma ident	"%Z%%M%	%I%	%E% SMI"
38 
39 #ifdef	__cplusplus
40 extern "C" {
41 #endif
42 
43 #ifndef _ASM
44 
45 #include <sys/types.h>
46 
47 #endif /* _ASM */
48 
49 #ifdef	_KERNEL
50 
51 #include <sys/pte.h>
52 #include <vm/mach_sfmmu.h>
53 #include <sys/mmu.h>
54 
55 /*
56  * Don't alter these without considering changes to ism_map_t.
57  */
58 #define	DEFAULT_ISM_PAGESIZE		MMU_PAGESIZE4M
59 #define	ISM_PG_SIZE(ism_vbshift)	(1 << ism_vbshift)
60 #define	ISM_SZ_MASK(ism_vbshift)	(ISM_PG_SIZE(ism_vbshift) - 1)
61 #define	ISM_MAP_SLOTS	8	/* Change this carefully. */
62 
63 #ifndef _ASM
64 
65 #include <sys/t_lock.h>
66 #include <vm/hat.h>
67 #include <vm/seg.h>
68 #include <sys/machparam.h>
69 #include <sys/systm.h>
70 #include <sys/x_call.h>
71 #include <vm/page.h>
72 #include <sys/ksynch.h>
73 
74 typedef struct hat sfmmu_t;
75 
76 /*
77  * SFMMU attributes for hat_memload/hat_devload
78  */
79 #define	SFMMU_UNCACHEPTTE	0x01000000	/* unencache in physical $ */
80 #define	SFMMU_UNCACHEVTTE	0x02000000	/* unencache in virtual $ */
81 #define	SFMMU_SIDEFFECT		0x04000000	/* set side effect bit */
82 #define	SFMMU_LOAD_ALLATTR	(HAT_PROT_MASK | HAT_ORDER_MASK |	\
83 		HAT_ENDIAN_MASK | HAT_NOFAULT | HAT_NOSYNC |		\
84 		SFMMU_UNCACHEPTTE | SFMMU_UNCACHEVTTE | SFMMU_SIDEFFECT)
85 
86 
87 /*
88  * sfmmu flags for hat_memload/hat_devload
89  */
90 #define	SFMMU_NO_TSBLOAD	0x08000000	/* do not preload tsb */
91 #define	SFMMU_LOAD_ALLFLAG	(HAT_LOAD | HAT_LOAD_LOCK |		\
92 		HAT_LOAD_ADV | HAT_LOAD_CONTIG | HAT_LOAD_NOCONSIST |	\
93 		HAT_LOAD_SHARE | HAT_LOAD_REMAP | SFMMU_NO_TSBLOAD |	\
94 		HAT_RELOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_TEXT)
95 
96 /*
97  * sfmmu internal flag to hat_pageunload that spares locked mappings
98  */
99 #define	SFMMU_KERNEL_RELOC	0x8000
100 
101 /*
102  * mode for sfmmu_chgattr
103  */
104 #define	SFMMU_SETATTR	0x0
105 #define	SFMMU_CLRATTR	0x1
106 #define	SFMMU_CHGATTR	0x2
107 
108 /*
109  * sfmmu specific flags for page_t
110  */
111 #define	P_PNC	0x8		/* non-caching is permanent bit */
112 #define	P_TNC	0x10		/* non-caching is temporary bit */
113 #define	P_KPMS	0x20		/* kpm mapped small (vac alias prevention) */
114 #define	P_KPMC	0x40		/* kpm conflict page (vac alias prevention) */
115 
116 #define	PP_GENERIC_ATTR(pp)	((pp)->p_nrm & (P_MOD | P_REF | P_RO))
117 #define	PP_ISMOD(pp)		((pp)->p_nrm & P_MOD)
118 #define	PP_ISREF(pp)		((pp)->p_nrm & P_REF)
119 #define	PP_ISRO(pp)		((pp)->p_nrm & P_RO)
120 #define	PP_ISNC(pp)		((pp)->p_nrm & (P_PNC|P_TNC))
121 #define	PP_ISPNC(pp)		((pp)->p_nrm & P_PNC)
122 #define	PP_ISTNC(pp)		((pp)->p_nrm & P_TNC)
123 #define	PP_ISKPMS(pp)		((pp)->p_nrm & P_KPMS)
124 #define	PP_ISKPMC(pp)		((pp)->p_nrm & P_KPMC)
125 
126 #define	PP_SETMOD(pp)		((pp)->p_nrm |= P_MOD)
127 #define	PP_SETREF(pp)		((pp)->p_nrm |= P_REF)
128 #define	PP_SETREFMOD(pp)	((pp)->p_nrm |= (P_REF|P_MOD))
129 #define	PP_SETRO(pp)		((pp)->p_nrm |= P_RO)
130 #define	PP_SETREFRO(pp)		((pp)->p_nrm |= (P_REF|P_RO))
131 #define	PP_SETPNC(pp)		((pp)->p_nrm |= P_PNC)
132 #define	PP_SETTNC(pp)		((pp)->p_nrm |= P_TNC)
133 #define	PP_SETKPMS(pp)		((pp)->p_nrm |= P_KPMS)
134 #define	PP_SETKPMC(pp)		((pp)->p_nrm |= P_KPMC)
135 
136 #define	PP_CLRMOD(pp)		((pp)->p_nrm &= ~P_MOD)
137 #define	PP_CLRREF(pp)		((pp)->p_nrm &= ~P_REF)
138 #define	PP_CLRREFMOD(pp)	((pp)->p_nrm &= ~(P_REF|P_MOD))
139 #define	PP_CLRRO(pp)		((pp)->p_nrm &= ~P_RO)
140 #define	PP_CLRPNC(pp)		((pp)->p_nrm &= ~P_PNC)
141 #define	PP_CLRTNC(pp)		((pp)->p_nrm &= ~P_TNC)
142 #define	PP_CLRKPMS(pp)		((pp)->p_nrm &= ~P_KPMS)
143 #define	PP_CLRKPMC(pp)		((pp)->p_nrm &= ~P_KPMC)
144 
145 /*
146  * All shared memory segments attached with the SHM_SHARE_MMU flag (ISM)
147  * will be constrained to a 4M, 32M or 256M alignment. Also since every newly-
148  * created ISM segment is created out of a new address space at base va
149  * of 0 we don't need to store it.
150  */
151 #define	ISM_ALIGN(shift)	(1 << shift)	/* base va aligned to <n>M  */
152 #define	ISM_ALIGNED(shift, va)	(((uintptr_t)va & (ISM_ALIGN(shift) - 1)) == 0)
153 #define	ISM_SHIFT(shift, x)	((uintptr_t)x >> (shift))
154 
155 /*
156  * Pad locks out to cache sub-block boundaries to prevent
157  * false sharing, so several processes don't contend for
158  * the same line if they aren't using the same lock.  Since
159  * this is a typedef we also have a bit of freedom in
160  * changing lock implementations later if we decide it
161  * is necessary.
162  */
163 typedef struct hat_lock {
164 	kmutex_t hl_mutex;
165 	uchar_t hl_pad[64 - sizeof (kmutex_t)];
166 } hatlock_t;
167 
168 #define	HATLOCK_MUTEXP(hatlockp)	(&((hatlockp)->hl_mutex))
169 
170 /*
171  * All segments mapped with ISM are guaranteed to be 4M, 32M or 256M aligned.
172  * Also size is guaranteed to be in 4M, 32M or 256M chunks.
173  * ism_seg consists of the following members:
174  * [XX..22] base address of ism segment. XX is 63 or 31 depending whether
175  *	caddr_t is 64 bits or 32 bits.
176  * [21..0] size of segment.
177  *
178  * NOTE: Don't alter this structure without changing defines above and
179  * the tsb_miss and protection handlers.
180  */
181 typedef struct ism_map {
182 	uintptr_t	imap_seg;  	/* base va + sz of ISM segment */
183 	ushort_t	imap_vb_shift;	/* mmu_pageshift for ism page size */
184 	ushort_t	imap_hatflags;	/* primary ism page size */
185 	uint_t		imap_sz_mask;	/* mmu_pagemask for ism page size */
186 	sfmmu_t		*imap_ismhat; 	/* hat id of dummy ISM as */
187 	struct ism_ment	*imap_ment;	/* pointer to mapping list entry */
188 } ism_map_t;
189 
190 #define	ism_start(map)	((caddr_t)((map).imap_seg & \
191 				~ISM_SZ_MASK((map).imap_vb_shift)))
192 #define	ism_size(map)	((map).imap_seg & ISM_SZ_MASK((map).imap_vb_shift))
193 #define	ism_end(map)	((caddr_t)(ism_start(map) + (ism_size(map) * \
194 				ISM_PG_SIZE((map).imap_vb_shift))))
195 /*
196  * ISM mapping entry. Used to link all hat's sharing a ism_hat.
197  * Same function as the p_mapping list for a page.
198  */
199 typedef struct ism_ment {
200 	sfmmu_t		*iment_hat;	/* back pointer to hat_share() hat */
201 	caddr_t		iment_base_va;	/* hat's va base for this ism seg */
202 	struct ism_ment	*iment_next;	/* next ism map entry */
203 	struct ism_ment	*iment_prev;	/* prev ism map entry */
204 } ism_ment_t;
205 
206 /*
207  * ISM segment block. One will be hung off the sfmmu structure if a
208  * a process uses ISM.  More will be linked using ismblk_next if more
209  * than ISM_MAP_SLOTS segments are attached to this proc.
210  *
211  * All modifications to fields in this structure will be protected
212  * by the hat mutex.  In order to avoid grabbing this lock in low level
213  * routines (tsb miss/protection handlers and vatopfn) while not
214  * introducing any race conditions with hat_unshare, we will set
215  * CTX_ISM_BUSY bit in the ctx struct. Any mmu traps that occur
216  * for this ctx while this bit is set will be handled in sfmmu_tsb_excption
217  * where it will synchronize behind the hat mutex.
218  */
219 typedef struct ism_blk {
220 	ism_map_t		iblk_maps[ISM_MAP_SLOTS];
221 	struct ism_blk		*iblk_next;
222 	uint64_t		iblk_nextpa;
223 } ism_blk_t;
224 
225 /*
226  * TSB access information.  All fields are protected by the process's
227  * hat lock.
228  */
229 
230 struct tsb_info {
231 	caddr_t		tsb_va;		/* tsb base virtual address */
232 	uint64_t	tsb_pa;		/* tsb base physical address */
233 	struct tsb_info	*tsb_next;	/* next tsb used by this process */
234 	uint16_t	tsb_szc;	/* tsb size code */
235 	uint16_t	tsb_flags;	/* flags for this tsb; see below */
236 	uint_t		tsb_ttesz_mask;	/* page size masks; see below */
237 
238 	tte_t		tsb_tte;	/* tte to lock into DTLB */
239 	sfmmu_t		*tsb_sfmmu;	/* sfmmu */
240 	kmem_cache_t	*tsb_cache;	/* cache from which mem allocated */
241 	vmem_t		*tsb_vmp;	/* vmem arena from which mem alloc'd */
242 };
243 
244 /*
245  * Values for "tsb_ttesz_mask" bitmask.
246  */
247 #define	TSB8K	(1 << TTE8K)
248 #define	TSB64K  (1 << TTE64K)
249 #define	TSB512K (1 << TTE512K)
250 #define	TSB4M   (1 << TTE4M)
251 #define	TSB32M  (1 << TTE32M)
252 #define	TSB256M (1 << TTE256M)
253 
254 /*
255  * Values for "tsb_flags" field.
256  */
257 #define	TSB_RELOC_FLAG		0x1
258 #define	TSB_FLUSH_NEEDED	0x2
259 #define	TSB_SWAPPED	0x4
260 
261 /*
262  * Per-MMU context domain kstats.
263  *
264  * TSB Miss Exceptions
265  *	Number of times a TSB miss exception is handled in an MMU. See
266  *	sfmmu_tsbmiss_exception() for more details.
267  * TSB Raise Exception
268  *	Number of times the CPUs within an MMU are cross-called
269  *	to invalidate either a specific process context (when the process
270  *	switches MMU contexts) or the context of any process that is
271  *	running on those CPUs (as part of the MMU context wrap-around).
272  * Wrap Around
273  *	The number of times a wrap-around of MMU context happens.
274  */
275 typedef enum mmu_ctx_stat_types {
276 	MMU_CTX_TSB_EXCEPTIONS,		/* TSB miss exceptions handled */
277 	MMU_CTX_TSB_RAISE_EXCEPTION,	/* ctx invalidation cross calls */
278 	MMU_CTX_WRAP_AROUND,		/* wraparounds */
279 	MMU_CTX_NUM_STATS
280 } mmu_ctx_stat_t;
281 
282 /*
283  * Per-MMU context domain structure. This is instantiated the first time a CPU
284  * belonging to the MMU context domain is configured into the system, at boot
285  * time or at DR time.
286  *
287  * mmu_gnum
288  *	The current generation number for the context IDs on this MMU context
289  *	domain. It is protected by mmu_lock.
290  * mmu_cnum
291  *	The current cnum to be allocated on this MMU context domain. It
292  *	is protected via CAS.
293  * mmu_nctxs
294  *	The max number of context IDs supported on every CPU in this
295  *	MMU context domain. It is 8K except for Rock where it is 64K.
296  *      This is needed here in case the system supports mixed type of
297  *      processors/MMUs. It also helps to make ctx switch code access
298  *      fewer cache lines i.e. no need to retrieve it from some global nctxs.
299  * mmu_lock
300  *	The mutex spin lock used to serialize context ID wrap around
301  * mmu_idx
302  *	The index for this MMU context domain structure in the global array
303  *	mmu_ctxdoms.
304  * mmu_ncpus
305  *	The actual number of CPUs that have been configured in this
306  *	MMU context domain. This also acts as a reference count for the
307  *	structure. When the last CPU in an MMU context domain is unconfigured,
308  *	the structure is freed. It is protected by mmu_lock.
309  * mmu_cpuset
310  *	The CPU set of configured CPUs for this MMU context domain. Used
311  *	to cross-call all the CPUs in the MMU context domain to invalidate
312  *	context IDs during a wraparound operation. It is protected by mmu_lock.
313  */
314 
315 typedef struct mmu_ctx {
316 	uint64_t	mmu_gnum;
317 	uint_t		mmu_cnum;
318 	uint_t		mmu_nctxs;
319 	kmutex_t	mmu_lock;
320 	uint_t		mmu_idx;
321 	uint_t		mmu_ncpus;
322 	cpuset_t	mmu_cpuset;
323 	kstat_t		*mmu_kstat;
324 	kstat_named_t	mmu_kstat_data[MMU_CTX_NUM_STATS];
325 } mmu_ctx_t;
326 
327 #define	mmu_tsb_exceptions	\
328 		mmu_kstat_data[MMU_CTX_TSB_EXCEPTIONS].value.ui64
329 #define	mmu_tsb_raise_exception	\
330 		mmu_kstat_data[MMU_CTX_TSB_RAISE_EXCEPTION].value.ui64
331 #define	mmu_wrap_around		\
332 		mmu_kstat_data[MMU_CTX_WRAP_AROUND].value.ui64
333 
334 extern uint_t		max_mmu_ctxdoms;
335 extern mmu_ctx_t	**mmu_ctxs_tbl;
336 
337 extern void	sfmmu_cpu_init(cpu_t *);
338 extern void	sfmmu_cpu_cleanup(cpu_t *);
339 
340 /*
341  * The following structure is used to get MMU context domain information for
342  * a CPU from the platform.
343  *
344  * mmu_idx
345  *	The MMU context domain index within the global array mmu_ctxs
346  * mmu_nctxs
347  *	The number of context IDs supported in the MMU context domain
348  *	(64K for Rock)
349  */
350 typedef struct mmu_ctx_info {
351 	uint_t		mmu_idx;
352 	uint_t		mmu_nctxs;
353 } mmu_ctx_info_t;
354 
355 #pragma weak plat_cpuid_to_mmu_ctx_info
356 
357 extern void	plat_cpuid_to_mmu_ctx_info(processorid_t, mmu_ctx_info_t *);
358 
359 /*
360  * Each address space has an array of sfmmu_ctx_t structures, one structure
361  * per MMU context domain.
362  *
363  * cnum
364  *	The context ID allocated for an address space on an MMU context domain
365  * gnum
366  *	The generation number for the context ID in the MMU context domain.
367  *
368  * This structure needs to be a power-of-two in size.
369  */
370 typedef struct sfmmu_ctx {
371 	uint64_t	gnum:48;
372 	uint64_t	cnum:16;
373 } sfmmu_ctx_t;
374 
375 
376 /*
377  * The platform dependent hat structure.
378  * tte counts should be protected by cas.
379  * cpuset is protected by cas.
380  *
381  * Note that sfmmu_xhat_provider MUST be the first element.
382  */
383 struct hat {
384 	void		*sfmmu_xhat_provider;	/* NULL for CPU hat */
385 	cpuset_t	sfmmu_cpusran;	/* cpu bit mask for efficient xcalls */
386 	struct	as	*sfmmu_as;	/* as this hat provides mapping for */
387 	ulong_t		sfmmu_ttecnt[MMU_PAGE_SIZES]; /* per sz tte counts */
388 	ulong_t		sfmmu_ismttecnt[MMU_PAGE_SIZES]; /* est. ism ttes */
389 	union _h_un {
390 		ism_blk_t	*sfmmu_iblkp;  /* maps to ismhat(s) */
391 		ism_ment_t	*sfmmu_imentp; /* ism hat's mapping list */
392 	} h_un;
393 	uint_t		sfmmu_free:1;	/* hat to be freed - set on as_free */
394 	uint_t		sfmmu_ismhat:1;	/* hat is dummy ism hatid */
395 	uint_t		sfmmu_ctxflushed:1;	/* ctx has been flushed */
396 	uchar_t		sfmmu_rmstat;	/* refmod stats refcnt */
397 	uchar_t		sfmmu_clrstart;	/* start color bin for page coloring */
398 	ushort_t	sfmmu_clrbin;	/* per as phys page coloring bin */
399 	ushort_t	sfmmu_flags;	/* flags */
400 	struct tsb_info	*sfmmu_tsb;	/* list of per as tsbs */
401 	uint64_t	sfmmu_ismblkpa; /* pa of sfmmu_iblkp, or -1 */
402 	lock_t		sfmmu_ctx_lock;	/* sync ctx alloc and invalidation */
403 	kcondvar_t	sfmmu_tsb_cv;	/* signals TSB swapin or relocation */
404 	uchar_t		sfmmu_cext;	/* context page size encoding */
405 	uint8_t		sfmmu_pgsz[MMU_PAGE_SIZES];  /* ranking for MMU */
406 #ifdef sun4v
407 	struct hv_tsb_block sfmmu_hvblock;
408 #endif
409 	/*
410 	 * sfmmu_ctxs is a variable length array of max_mmu_ctxdoms # of
411 	 * elements. max_mmu_ctxdoms is determined at run-time.
412 	 * sfmmu_ctxs[1] is just the fist element of an array, it always
413 	 * has to be the last field to ensure that the memory allocated
414 	 * for sfmmu_ctxs is consecutive with the memory of the rest of
415 	 * the hat data structure.
416 	 */
417 	sfmmu_ctx_t	sfmmu_ctxs[1];
418 
419 };
420 
421 #define	sfmmu_iblk	h_un.sfmmu_iblkp
422 #define	sfmmu_iment	h_un.sfmmu_imentp
423 
424 /*
425  * bit mask for managing vac conflicts on large pages.
426  * bit 1 is for uncache flag.
427  * bits 2 through min(num of cache colors + 1,31) are
428  * for cache colors that have already been flushed.
429  */
430 #define	CACHE_UNCACHE		1
431 #define	CACHE_NUM_COLOR		(shm_alignment >> MMU_PAGESHIFT)
432 
433 #define	CACHE_VCOLOR_MASK(vcolor)	(2 << (vcolor & (CACHE_NUM_COLOR - 1)))
434 
435 #define	CacheColor_IsFlushed(flag, vcolor) \
436 					((flag) & CACHE_VCOLOR_MASK(vcolor))
437 
438 #define	CacheColor_SetFlushed(flag, vcolor) \
439 					((flag) |= CACHE_VCOLOR_MASK(vcolor))
440 /*
441  * Flags passed to sfmmu_page_cache to flush page from vac or not.
442  */
443 #define	CACHE_FLUSH	0
444 #define	CACHE_NO_FLUSH	1
445 
446 /*
447  * Flags passed to sfmmu_tlbcache_demap
448  */
449 #define	FLUSH_NECESSARY_CPUS	0
450 #define	FLUSH_ALL_CPUS		1
451 
452 #ifdef	DEBUG
453 /*
454  * For debugging purpose only. Maybe removed later.
455  */
456 struct ctx_trace {
457 	sfmmu_t		*sc_sfmmu_stolen;
458 	sfmmu_t		*sc_sfmmu_stealing;
459 	clock_t		sc_time;
460 	ushort_t	sc_type;
461 	ushort_t	sc_cnum;
462 };
463 #define	CTX_TRC_STEAL	0x1
464 #define	CTX_TRC_FREE	0x0
465 #define	TRSIZE	0x400
466 #define	NEXT_CTXTR(ptr)	(((ptr) >= ctx_trace_last) ? \
467 		ctx_trace_first : ((ptr) + 1))
468 #define	TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type) \
469 	mutex_enter(mutex);						\
470 	(ptr)->sc_sfmmu_stolen = (stolen_sfmmu);			\
471 	(ptr)->sc_sfmmu_stealing = (stealing_sfmmu);			\
472 	(ptr)->sc_cnum = (cnum);					\
473 	(ptr)->sc_type = (type);					\
474 	(ptr)->sc_time = lbolt;						\
475 	(ptr) = NEXT_CTXTR(ptr);					\
476 	num_ctx_stolen += (type);					\
477 	mutex_exit(mutex);
478 #else
479 
480 #define	TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type)
481 
482 #endif	/* DEBUG */
483 
484 #endif	/* !_ASM */
485 
486 /*
487  * Macros for sfmmup->sfmmu_flags access.  The macros that change the flags
488  * ASSERT() that we're holding the HAT lock before changing the flags;
489  * however callers that read the flags may do so without acquiring the lock
490  * in a fast path, and then recheck the flag after acquiring the lock in
491  * a slow path.
492  */
493 #define	SFMMU_FLAGS_ISSET(sfmmup, flags) \
494 	(((sfmmup)->sfmmu_flags & (flags)) == (flags))
495 
496 #define	SFMMU_FLAGS_CLEAR(sfmmup, flags) \
497 	(ASSERT(sfmmu_hat_lock_held((sfmmup))), \
498 	(sfmmup)->sfmmu_flags &= ~(flags))
499 
500 #define	SFMMU_FLAGS_SET(sfmmup, flags) \
501 	(ASSERT(sfmmu_hat_lock_held((sfmmup))), \
502 	(sfmmup)->sfmmu_flags |= (flags))
503 
504 /*
505  * sfmmu HAT flags
506  */
507 #define	HAT_64K_FLAG	0x01
508 #define	HAT_512K_FLAG	0x02
509 #define	HAT_4M_FLAG	0x04
510 #define	HAT_32M_FLAG	0x08
511 #define	HAT_256M_FLAG	0x10
512 #define	HAT_4MTEXT_FLAG	0x80
513 #define	HAT_SWAPPED	0x100	/* swapped out */
514 #define	HAT_SWAPIN	0x200	/* swapping in */
515 #define	HAT_BUSY	0x400	/* replacing TSB(s) */
516 #define	HAT_ISMBUSY	0x800	/* adding/removing/traversing ISM maps */
517 
518 #define	HAT_LGPG_FLAGS						\
519 	(HAT_64K_FLAG | HAT_512K_FLAG | HAT_4M_FLAG |		\
520 	    HAT_32M_FLAG | HAT_256M_FLAG)
521 
522 #define	HAT_FLAGS_MASK						\
523 	(HAT_LGPG_FLAGS | HAT_4MTEXT_FLAG | HAT_SWAPPED |	\
524 	    HAT_SWAPIN | HAT_BUSY | HAT_ISMBUSY)
525 
526 /*
527  * Context flags
528  */
529 #define	CTX_FREE_FLAG		0x1
530 #define	CTX_FLAGS_MASK		0x1
531 
532 #define	CTX_SET_FLAGS(ctx, flag)					\
533 {									\
534 	uint32_t old, new;						\
535 									\
536 	do {								\
537 		new = old = (ctx)->ctx_flags;				\
538 		new &= CTX_FLAGS_MASK;					\
539 		new |= flag;						\
540 		new = cas32(&(ctx)->ctx_flags, old, new);		\
541 	} while (new != old);						\
542 }
543 
544 #define	CTX_CLEAR_FLAGS(ctx, flag)					\
545 {									\
546 	uint32_t old, new;						\
547 									\
548 	do {								\
549 		new = old = (ctx)->ctx_flags;				\
550 		new &= CTX_FLAGS_MASK & ~(flag);			\
551 		new = cas32(&(ctx)->ctx_flags, old, new);		\
552 	} while (new != old);						\
553 }
554 
555 #define	ctxtoctxnum(ctx)	((ushort_t)((ctx) - ctxs))
556 
557 /*
558  * Defines needed for ctx stealing.
559  */
560 #define	GET_CTX_RETRY_CNT	100
561 
562 /*
563  * Starting with context 0, the first NUM_LOCKED_CTXS contexts
564  * are locked so that sfmmu_getctx can't steal any of these
565  * contexts.  At the time this software was being developed, the
566  * only context that needs to be locked is context 0 (the kernel
567  * context), and context 1 (reserved for stolen context). So this constant
568  * was originally defined to be 2.
569  */
570 #define	NUM_LOCKED_CTXS 2
571 #define	INVALID_CONTEXT	1
572 
573 #ifndef	_ASM
574 
575 /*
576  * Kernel page relocation stuff.
577  */
578 struct sfmmu_callback {
579 	int key;
580 	int (*prehandler)(caddr_t, uint_t, uint_t, void *);
581 	int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t);
582 	int (*errhandler)(caddr_t, uint_t, uint_t, void *);
583 	int capture_cpus;
584 };
585 
586 extern int sfmmu_max_cb_id;
587 extern struct sfmmu_callback *sfmmu_cb_table;
588 
589 extern int hat_kpr_enabled;
590 
591 struct pa_hment;
592 
593 /*
594  * RFE: With multihat gone we gain back an int.  We could use this to
595  * keep ref bits on a per cpu basis to eliminate xcalls.
596  */
597 struct sf_hment {
598 	tte_t hme_tte;			/* tte for this hment */
599 
600 	union {
601 		struct page *page;	/* what page this maps */
602 		struct pa_hment *data;	/* pa_hment */
603 	} sf_hment_un;
604 
605 	struct	sf_hment *hme_next;	/* next hment */
606 	struct	sf_hment *hme_prev;	/* prev hment */
607 };
608 
609 struct pa_hment {
610 	caddr_t		addr;		/* va */
611 	uint_t		len;		/* bytes */
612 	ushort_t	flags;		/* internal flags */
613 	ushort_t	refcnt;		/* reference count */
614 	id_t		cb_id;		/* callback id, table index */
615 	void		*pvt;		/* handler's private data */
616 	struct sf_hment	sfment;		/* corresponding dummy sf_hment */
617 };
618 
619 #define	hme_page		sf_hment_un.page
620 #define	hme_data		sf_hment_un.data
621 #define	hme_size(sfhmep)	((int)(TTE_CSZ(&(sfhmep)->hme_tte)))
622 #define	PAHME_SZ		(sizeof (struct pa_hment))
623 #define	SFHME_SZ		(sizeof (struct sf_hment))
624 
625 #define	IS_PAHME(hme)	((hme)->hme_tte.ll == 0)
626 
627 /*
628  * hmeblk_tag structure
629  * structure used to obtain a match on a hme_blk.  Currently consists of
630  * the address of the sfmmu struct (or hatid), the base page address of the
631  * hme_blk, and the rehash count.  The rehash count is actually only 2 bits
632  * and has the following meaning:
633  * 1 = 8k or 64k hash sequence.
634  * 2 = 512k hash sequence.
635  * 3 = 4M hash sequence.
636  * We require this count because we don't want to get a false hit on a 512K or
637  * 4M rehash with a base address corresponding to a 8k or 64k hmeblk.
638  * Note:  The ordering and size of the hmeblk_tag members are implictly known
639  * by the tsb miss handlers written in assembly.  Do not change this structure
640  * without checking those routines.  See HTAG_SFMMUPSZ define.
641  */
642 
643 typedef union {
644 	struct {
645 		uint64_t	hblk_basepg: 51, /* hme_blk base pg # */
646 				hblk_rehash: 13; /* rehash number */
647 		sfmmu_t		*sfmmup;
648 	} hblk_tag_un;
649 	uint64_t		htag_tag[2];
650 } hmeblk_tag;
651 
652 #define	htag_id		hblk_tag_un.sfmmup
653 #define	htag_bspage	hblk_tag_un.hblk_basepg
654 #define	htag_rehash	hblk_tag_un.hblk_rehash
655 
656 #define	HTAGS_EQ(tag1, tag2)	(((tag1.htag_tag[0] ^ tag2.htag_tag[0]) | \
657 				(tag1.htag_tag[1] ^ tag2.htag_tag[1])) == 0)
658 #define	HME_REHASH(sfmmup)						\
659 	((sfmmup)->sfmmu_ttecnt[TTE512K] != 0 ||			\
660 	(sfmmup)->sfmmu_ttecnt[TTE4M] != 0 ||				\
661 	(sfmmup)->sfmmu_ttecnt[TTE32M] != 0 ||				\
662 	(sfmmup)->sfmmu_ttecnt[TTE256M] != 0)
663 
664 #endif /* !_ASM */
665 
666 #define	NHMENTS		8		/* # of hments in an 8k hme_blk */
667 					/* needs to be multiple of 2 */
668 #ifndef	_ASM
669 
670 #ifdef	HBLK_TRACE
671 
672 #define	HBLK_LOCK		1
673 #define	HBLK_UNLOCK		0
674 #define	HBLK_STACK_DEPTH	6
675 #define	HBLK_AUDIT_CACHE_SIZE	16
676 #define	HBLK_LOCK_PATTERN	0xaaaaaaaa
677 #define	HBLK_UNLOCK_PATTERN	0xbbbbbbbb
678 
679 struct hblk_lockcnt_audit {
680 	int		flag;		/* lock or unlock */
681 	kthread_id_t	thread;
682 	int		depth;
683 	pc_t		stack[HBLK_STACK_DEPTH];
684 };
685 
686 #endif	/* HBLK_TRACE */
687 
688 
689 /*
690  * Hment block structure.
691  * The hme_blk is the node data structure which the hash structure
692  * mantains. An hme_blk can have 2 different sizes depending on the
693  * number of hments it implicitly contains.  When dealing with 64K, 512K,
694  * or 4M hments there is one hment per hme_blk.  When dealing with
695  * 8k hments we allocate an hme_blk plus an additional 7 hments to
696  * give us a total of 8 (NHMENTS) hments that can be referenced through a
697  * hme_blk.
698  *
699  * The hmeblk structure contains 2 tte reference counters used to determine if
700  * it is ok to free up the hmeblk.  Both counters have to be zero in order
701  * to be able to free up hmeblk.  They are protected by cas.
702  * hblk_hmecnt is the number of hments present on pp mapping lists.
703  * hblk_vcnt reflects number of valid ttes in hmeblk.
704  *
705  * The hmeblk now also has per tte lock cnts.  This is required because
706  * the counts can be high and there are not enough bits in the tte. When
707  * physio is fixed to not lock the translations we should be able to move
708  * the lock cnt back to the tte.  See bug id 1198554.
709  *
710  * Note that xhat_hme_blk's layout follows this structure: hme_blk_misc
711  * and sf_hment are at the same offsets in both structures. Whenever
712  * hme_blk is changed, xhat_hme_blk may need to be updated as well.
713  */
714 
715 struct hme_blk_misc {
716 	ushort_t locked_cnt;	/* HAT_LOAD_LOCK ref cnt */
717 	uint_t	notused:10;
718 	uint_t	xhat_bit:1;	/* set for an xhat hme_blk */
719 	uint_t	shadow_bit:1;	/* set for a shadow hme_blk */
720 	uint_t	nucleus_bit:1;	/* set for a nucleus hme_blk */
721 	uint_t	ttesize:3;	/* contains ttesz of hmeblk */
722 };
723 
724 struct hme_blk {
725 	uint64_t	hblk_nextpa;	/* physical address for hash list */
726 
727 	hmeblk_tag	hblk_tag;	/* tag used to obtain an hmeblk match */
728 
729 	struct hme_blk	*hblk_next;	/* on free list or on hash list */
730 					/* protected by hash lock */
731 
732 	struct hme_blk	*hblk_shadow;	/* pts to shadow hblk */
733 					/* protected by hash lock */
734 	uint_t		hblk_span;	/* span of memory hmeblk maps */
735 
736 	struct hme_blk_misc	hblk_misc;
737 
738 	union {
739 		struct {
740 			ushort_t hblk_hmecount;	/* hment on mlists counter */
741 			ushort_t hblk_validcnt;	/* valid tte reference count */
742 		} hblk_counts;
743 		uint_t		hblk_shadow_mask;
744 	} hblk_un;
745 
746 #ifdef	HBLK_TRACE
747 	kmutex_t	hblk_audit_lock;	/* lock to protect index */
748 	uint_t		hblk_audit_index;	/* index into audit_cache */
749 	struct	hblk_lockcnt_audit hblk_audit_cache[HBLK_AUDIT_CACHE_SIZE];
750 #endif	/* HBLK_AUDIT */
751 
752 	struct sf_hment hblk_hme[1];	/* hment array */
753 };
754 
755 #define	hblk_lckcnt	hblk_misc.locked_cnt
756 #define	hblk_xhat_bit   hblk_misc.xhat_bit
757 #define	hblk_shw_bit	hblk_misc.shadow_bit
758 #define	hblk_nuc_bit	hblk_misc.nucleus_bit
759 #define	hblk_ttesz	hblk_misc.ttesize
760 #define	hblk_hmecnt	hblk_un.hblk_counts.hblk_hmecount
761 #define	hblk_vcnt	hblk_un.hblk_counts.hblk_validcnt
762 #define	hblk_shw_mask	hblk_un.hblk_shadow_mask
763 
764 #define	MAX_HBLK_LCKCNT	0xFFFF
765 #define	HMEBLK_ALIGN	0x8		/* hmeblk has to be double aligned */
766 
767 #ifdef	HBLK_TRACE
768 
769 #define	HBLK_STACK_TRACE(hmeblkp, lock)					\
770 {									\
771 	int flag = lock;	/* to pacify lint */			\
772 	int audit_index;						\
773 									\
774 	mutex_enter(&hmeblkp->hblk_audit_lock);				\
775 	audit_index = hmeblkp->hblk_audit_index;			\
776 	hmeblkp->hblk_audit_index = ((hmeblkp->hblk_audit_index + 1) &	\
777 	    (HBLK_AUDIT_CACHE_SIZE - 1));				\
778 	mutex_exit(&hmeblkp->hblk_audit_lock);				\
779 									\
780 	if (flag)							\
781 		hmeblkp->hblk_audit_cache[audit_index].flag =		\
782 		    HBLK_LOCK_PATTERN;					\
783 	else								\
784 		hmeblkp->hblk_audit_cache[audit_index].flag =		\
785 		    HBLK_UNLOCK_PATTERN;				\
786 									\
787 	hmeblkp->hblk_audit_cache[audit_index].thread = curthread;	\
788 	hmeblkp->hblk_audit_cache[audit_index].depth =			\
789 	    getpcstack(hmeblkp->hblk_audit_cache[audit_index].stack,	\
790 	    HBLK_STACK_DEPTH);						\
791 }
792 
793 #else
794 
795 #define	HBLK_STACK_TRACE(hmeblkp, lock)
796 
797 #endif	/* HBLK_TRACE */
798 
799 #define	HMEHASH_FACTOR	16	/* used to calc # of buckets in hme hash */
800 
801 /*
802  * A maximum number of user hmeblks is defined in order to place an upper
803  * limit on how much nucleus memory is required and to avoid overflowing the
804  * tsbmiss uhashsz and khashsz data areas. The number below corresponds to
805  * the number of buckets required, for an average hash chain length of 4 on
806  * a 16TB machine.
807  */
808 
809 #define	MAX_UHME_BUCKETS	(0x1 << 30)
810 #define	MAX_KHME_BUCKETS	(0x1 << 30)
811 
812 /*
813  * The minimum number of kernel hash buckets.
814  */
815 #define	MIN_KHME_BUCKETS	0x800
816 
817 /*
818  * The number of hash buckets must be a power of 2. If the initial calculated
819  * value is less than USER_BUCKETS_THRESHOLD we round up to the next greater
820  * power of 2, otherwise we round down to avoid huge over allocations.
821  */
822 #define	USER_BUCKETS_THRESHOLD	(1<<22)
823 
824 #define	MAX_NUCUHME_BUCKETS	0x4000
825 #define	MAX_NUCKHME_BUCKETS	0x2000
826 
827 /*
828  * There are 2 locks in the hmehash bucket.  The hmehash_mutex is
829  * a regular mutex used to make sure operations on a hash link are only
830  * done by one thread.  Any operation which comes into the hat with
831  * a <vaddr, as> will grab the hmehash_mutex.  Normally one would expect
832  * the tsb miss handlers to grab the hash lock to make sure the hash list
833  * is consistent while we traverse it.  Unfortunately this can lead to
834  * deadlocks or recursive mutex enters since it is possible for
835  * someone holding the lock to take a tlb/tsb miss.
836  * To solve this problem we have added the hmehash_listlock.  This lock
837  * is only grabbed by the tsb miss handlers, vatopfn, and while
838  * adding/removing a hmeblk from the hash list. The code is written to
839  * guarantee we won't take a tlb miss while holding this lock.
840  */
841 struct hmehash_bucket {
842 	kmutex_t	hmehash_mutex;
843 	uint64_t	hmeh_nextpa;	/* physical address for hash list */
844 	struct hme_blk *hmeblkp;
845 	uint_t		hmeh_listlock;
846 };
847 
848 #endif /* !_ASM */
849 
850 /* Proc Count Project */
851 #define	SFMMU_PGCNT_MASK	0x3f
852 #define	SFMMU_PGCNT_SHIFT	6
853 #define	INVALID_MMU_ID		-1
854 #define	SFMMU_MMU_GNUM_RSHIFT	16
855 #define	SFMMU_MMU_CNUM_LSHIFT	(64 - SFMMU_MMU_GNUM_RSHIFT)
856 #define	MAX_SFMMU_CTX_VAL	((1 << 16) - 1) /* for sanity check */
857 #define	MAX_SFMMU_GNUM_VAL	((0x1UL << 48) - 1)
858 
859 /*
860  * The tsb miss handlers written in assembly know that sfmmup
861  * is a 64 bit ptr.
862  *
863  * The bspage and re-hash part is 64 bits, with the sfmmup being another 64
864  * bits.
865  */
866 #define	HTAG_SFMMUPSZ		0	/* Not really used for LP64 */
867 #define	HTAG_REHASHSZ		13
868 
869 /*
870  * Assembly routines need to be able to get to ttesz
871  */
872 #define	HBLK_SZMASK		0x7
873 
874 #ifndef _ASM
875 
876 /*
877  * Returns the number of bytes that an hmeblk spans given its tte size
878  */
879 #define	get_hblk_span(hmeblkp) ((hmeblkp)->hblk_span)
880 #define	get_hblk_ttesz(hmeblkp)	((hmeblkp)->hblk_ttesz)
881 #define	get_hblk_cache(hmeblkp)	(((hmeblkp)->hblk_ttesz == TTE8K) ? \
882 	sfmmu8_cache : sfmmu1_cache)
883 #define	HMEBLK_SPAN(ttesz)						\
884 	((ttesz == TTE8K)? (TTEBYTES(ttesz) * NHMENTS) : TTEBYTES(ttesz))
885 
886 #define	set_hblk_sz(hmeblkp, ttesz)				\
887 	(hmeblkp)->hblk_ttesz = (ttesz);			\
888 	(hmeblkp)->hblk_span = HMEBLK_SPAN(ttesz)
889 
890 #define	get_hblk_base(hmeblkp)					\
891 	((uintptr_t)(hmeblkp)->hblk_tag.htag_bspage << MMU_PAGESHIFT)
892 
893 #define	get_hblk_endaddr(hmeblkp)				\
894 	((caddr_t)(get_hblk_base(hmeblkp) + get_hblk_span(hmeblkp)))
895 
896 #define	in_hblk_range(hmeblkp, vaddr)					\
897 	(((uintptr_t)(vaddr) >= get_hblk_base(hmeblkp)) &&		\
898 	((uintptr_t)(vaddr) < (get_hblk_base(hmeblkp) +			\
899 	get_hblk_span(hmeblkp))))
900 
901 #define	tte_to_vaddr(hmeblkp, tte)	((caddr_t)(get_hblk_base(hmeblkp) \
902 	+ (TTEBYTES(TTE_CSZ(&tte)) * (tte).tte_hmenum)))
903 
904 #define	vaddr_to_vshift(hblktag, vaddr, shwsz)				\
905 	((((uintptr_t)(vaddr) >> MMU_PAGESHIFT) - (hblktag.htag_bspage)) >>\
906 	TTE_BSZS_SHIFT((shwsz) - 1))
907 
908 #define	HME8BLK_SZ	(sizeof (struct hme_blk) + \
909 			(NHMENTS - 1) * sizeof (struct sf_hment))
910 #define	HME1BLK_SZ	(sizeof (struct hme_blk))
911 #define	H8TOH1		(MMU_PAGESIZE4M / MMU_PAGESIZE)
912 #define	H1MIN		(2 + MAX_BIGKTSB_TTES)	/* nucleus text+data, ktsb */
913 
914 /*
915  * Hme_blk hash structure
916  * Active mappings are kept in a hash structure of hme_blks.  The hash
917  * function is based on (ctx, vaddr) The size of the hash table size is a
918  * power of 2 such that the average hash chain lenth is HMENT_HASHAVELEN.
919  * The hash actually consists of 2 separate hashes.  One hash is for the user
920  * address space and the other hash is for the kernel address space.
921  * The number of buckets are calculated at boot time and stored in the global
922  * variables "uhmehash_num" and "khmehash_num".  By making the hash table size
923  * a power of 2 we can use a simply & function to derive an index instead of
924  * a divide.
925  *
926  * HME_HASH_FUNCTION(hatid, vaddr, shift) returns a pointer to a hme_hash
927  * bucket.
928  * An hme hash bucket contains a pointer to an hme_blk and the mutex that
929  * protects the link list.
930  * Spitfire supports 4 page sizes.  8k and 64K pages only need one hash.
931  * 512K pages need 2 hashes and 4M pages need 3 hashes.
932  * The 'shift' parameter controls how many bits the vaddr will be shifted in
933  * the hash function. It is calculated in the HME_HASH_SHIFT(ttesz) function
934  * and it varies depending on the page size as follows:
935  *	8k pages:  	HBLK_RANGE_SHIFT
936  *	64k pages:	MMU_PAGESHIFT64K
937  *	512K pages:	MMU_PAGESHIFT512K
938  *	4M pages:	MMU_PAGESHIFT4M
939  * An assembly version of the hash function exists in sfmmu_ktsb_miss(). All
940  * changes should be reflected in both versions.  This function and the TSB
941  * miss handlers are the only places which know about the two hashes.
942  *
943  * HBLK_RANGE_SHIFT controls range of virtual addresses that will fall
944  * into the same bucket for a particular process.  It is currently set to
945  * be equivalent to 64K range or one hme_blk.
946  *
947  * The hme_blks in the hash are protected by a per hash bucket mutex
948  * known as SFMMU_HASH_LOCK.
949  * You need to acquire this lock before traversing the hash bucket link
950  * list, while adding/removing a hme_blk to the list, and while
951  * modifying an hme_blk.  A possible optimization is to replace these
952  * mutexes by readers/writer lock but right now it is not clear whether
953  * this is a win or not.
954  *
955  * The HME_HASH_TABLE_SEARCH will search the hash table for the
956  * hme_blk that contains the hment that corresponds to the passed
957  * ctx and vaddr.  It assumed the SFMMU_HASH_LOCK is held.
958  */
959 
960 #endif /* ! _ASM */
961 
962 #define	KHATID			ksfmmup
963 #define	UHMEHASH_SZ		uhmehash_num
964 #define	KHMEHASH_SZ		khmehash_num
965 #define	HMENT_HASHAVELEN	4
966 #define	HBLK_RANGE_SHIFT	MMU_PAGESHIFT64K /* shift for HBLK_BS_MASK */
967 #define	MAX_HASHCNT		5
968 #define	DEFAULT_MAX_HASHCNT	3
969 
970 #ifndef _ASM
971 
972 #define	HASHADDR_MASK(hashno)	TTE_PAGEMASK(hashno)
973 
974 #define	HME_HASH_SHIFT(ttesz)						\
975 	((ttesz == TTE8K)? HBLK_RANGE_SHIFT : TTE_PAGE_SHIFT(ttesz))	\
976 
977 #define	HME_HASH_ADDR(vaddr, hmeshift)					\
978 	((caddr_t)(((uintptr_t)(vaddr) >> (hmeshift)) << (hmeshift)))
979 
980 #define	HME_HASH_BSPAGE(vaddr, hmeshift)				\
981 	(((uintptr_t)(vaddr) >> (hmeshift)) << ((hmeshift) - MMU_PAGESHIFT))
982 
983 #define	HME_HASH_REHASH(ttesz)						\
984 	(((ttesz) < TTE512K)? 1 : (ttesz))
985 
986 #define	HME_HASH_FUNCTION(hatid, vaddr, shift)				\
987 	((hatid != KHATID)?						\
988 	(&uhme_hash[ (((uintptr_t)(hatid) ^	\
989 	    ((uintptr_t)vaddr >> (shift))) & UHMEHASH_SZ) ]):		\
990 	(&khme_hash[ (((uintptr_t)(hatid) ^	\
991 	    ((uintptr_t)vaddr >> (shift))) & KHMEHASH_SZ) ]))
992 
993 /*
994  * This macro will traverse a hmeblk hash link list looking for an hme_blk
995  * that owns the specified vaddr and hatid.  If if doesn't find one , hmeblkp
996  * will be set to NULL, otherwise it will point to the correct hme_blk.
997  * This macro also cleans empty hblks.
998  */
999 #define	HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, hblkpa,		\
1000 	pr_hblk, prevpa, listp)						\
1001 {									\
1002 	struct hme_blk *nx_hblk;					\
1003 	uint64_t 	nx_pa;						\
1004 									\
1005 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));				\
1006 	hblkp = hmebp->hmeblkp;						\
1007 	hblkpa = hmebp->hmeh_nextpa;					\
1008 	prevpa = 0;							\
1009 	pr_hblk = NULL;							\
1010 	while (hblkp) {							\
1011 		if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) {		\
1012 			/* found hme_blk */				\
1013 			break;						\
1014 		}							\
1015 		nx_hblk = hblkp->hblk_next;				\
1016 		nx_pa = hblkp->hblk_nextpa;				\
1017 		if (!hblkp->hblk_vcnt && !hblkp->hblk_hmecnt) {		\
1018 			sfmmu_hblk_hash_rm(hmebp, hblkp, prevpa, pr_hblk); \
1019 			sfmmu_hblk_free(hmebp, hblkp, hblkpa, listp);   \
1020 		} else {						\
1021 			pr_hblk = hblkp;				\
1022 			prevpa = hblkpa;				\
1023 		}							\
1024 		hblkp = nx_hblk;					\
1025 		hblkpa = nx_pa;						\
1026 	}								\
1027 }
1028 
1029 #define	HME_HASH_SEARCH(hmebp, hblktag, hblkp, listp)			\
1030 {									\
1031 	struct hme_blk *pr_hblk;					\
1032 	uint64_t hblkpa, prevpa;					\
1033 									\
1034 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, hblkpa, pr_hblk,	\
1035 		prevpa, listp);						\
1036 }
1037 
1038 /*
1039  * This macro will traverse a hmeblk hash link list looking for an hme_blk
1040  * that owns the specified vaddr and hatid.  If if doesn't find one , hmeblkp
1041  * will be set to NULL, otherwise it will point to the correct hme_blk.
1042  * It doesn't remove empty hblks.
1043  */
1044 #define	HME_HASH_FAST_SEARCH(hmebp, hblktag, hblkp)			\
1045 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));				\
1046 	for (hblkp = hmebp->hmeblkp; hblkp;				\
1047 	    hblkp = hblkp->hblk_next) {					\
1048 		if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) {		\
1049 			/* found hme_blk */				\
1050 			break;						\
1051 		}							\
1052 	}								\
1053 
1054 
1055 #define	SFMMU_HASH_LOCK(hmebp)						\
1056 		(mutex_enter(&hmebp->hmehash_mutex))
1057 
1058 #define	SFMMU_HASH_UNLOCK(hmebp)					\
1059 		(mutex_exit(&hmebp->hmehash_mutex))
1060 
1061 #define	SFMMU_HASH_LOCK_TRYENTER(hmebp)					\
1062 		(mutex_tryenter(&hmebp->hmehash_mutex))
1063 
1064 #define	SFMMU_HASH_LOCK_ISHELD(hmebp)					\
1065 		(mutex_owned(&hmebp->hmehash_mutex))
1066 
1067 #define	SFMMU_XCALL_STATS(sfmmup)					\
1068 {									\
1069 	if (sfmmup == ksfmmup) {					\
1070 		SFMMU_STAT(sf_kernel_xcalls);				\
1071 	} else {							\
1072 		SFMMU_STAT(sf_user_xcalls);				\
1073 	}								\
1074 }
1075 
1076 #define	astosfmmu(as)		((as)->a_hat)
1077 #define	hblktosfmmu(hmeblkp)	((sfmmu_t *)(hmeblkp)->hblk_tag.htag_id)
1078 #define	sfmmutoas(sfmmup)	((sfmmup)->sfmmu_as)
1079 /*
1080  * We use the sfmmu data structure to keep the per as page coloring info.
1081  */
1082 #define	as_color_bin(as)	(astosfmmu(as)->sfmmu_clrbin)
1083 #define	as_color_start(as)	(astosfmmu(as)->sfmmu_clrstart)
1084 
1085 typedef struct {
1086 	char	h8[HME8BLK_SZ];
1087 } hblk8_t;
1088 
1089 typedef struct {
1090 	char	h1[HME1BLK_SZ];
1091 } hblk1_t;
1092 
1093 typedef struct {
1094 	ulong_t  	index;
1095 	ulong_t  	len;
1096 	hblk8_t		*list;
1097 } nucleus_hblk8_info_t;
1098 
1099 typedef struct {
1100 	ulong_t		index;
1101 	ulong_t		len;
1102 	hblk1_t		*list;
1103 } nucleus_hblk1_info_t;
1104 
1105 /*
1106  * This struct is used for accumlating information about a range
1107  * of pages that are unloading so that a single xcall can flush
1108  * the entire range from remote tlbs. A function that must demap
1109  * a range of virtual addresses declares one of these structures
1110  * and initializes using DEMP_RANGE_INIT(). It then passes a pointer to this
1111  * struct to the appropriate sfmmu_hblk_* level function which does
1112  * all the bookkeeping using the other macros. When the function has
1113  * finished the virtual address range, it needs to call DEMAP_RANGE_FLUSH()
1114  * macro to take care of any remaining unflushed mappings.
1115  *
1116  * The maximum range this struct can represent is the number of bits
1117  * in the dmr_bitvec field times the pagesize in dmr_pgsz. Currently, only
1118  * MMU_PAGESIZE pages are supported.
1119  *
1120  * Since there are now cases where it's no longer necessary to do
1121  * flushes (e.g. when the process isn't runnable because it's swapping
1122  * out or exiting) we allow these macros to take a NULL dmr input and do
1123  * nothing in that case.
1124  */
1125 typedef struct {
1126 	sfmmu_t		*dmr_sfmmup;	/* relevent hat */
1127 	caddr_t		dmr_addr;	/* beginning address */
1128 	caddr_t		dmr_endaddr;	/* ending  address */
1129 	ulong_t		dmr_bitvec;	/* valid pages found */
1130 	ulong_t		dmr_bit;	/* next page to examine */
1131 	ulong_t		dmr_maxbit;	/* highest page in range */
1132 	ulong_t		dmr_pgsz;	/* page size in range */
1133 } demap_range_t;
1134 
1135 #define	DMR_MAXBIT ((ulong_t)1<<63) /* dmr_bit high bit */
1136 
1137 #define	DEMAP_RANGE_INIT(sfmmup, dmrp) \
1138 	if ((dmrp) != NULL) { \
1139 	(dmrp)->dmr_sfmmup = (sfmmup); \
1140 	(dmrp)->dmr_bitvec = 0; \
1141 	(dmrp)->dmr_maxbit = sfmmu_dmr_maxbit; \
1142 	(dmrp)->dmr_pgsz = MMU_PAGESIZE; \
1143 	}
1144 
1145 #define	DEMAP_RANGE_PGSZ(dmrp) ((dmrp)? (dmrp)->dmr_pgsz : MMU_PAGESIZE)
1146 
1147 #define	DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr) \
1148 	if ((dmrp) != NULL) { \
1149 	if ((dmrp)->dmr_bitvec != 0 && (dmrp)->dmr_endaddr != (addr)) \
1150 		sfmmu_tlb_range_demap(dmrp); \
1151 	(dmrp)->dmr_endaddr = (endaddr); \
1152 	}
1153 
1154 #define	DEMAP_RANGE_FLUSH(dmrp) \
1155 	if ((dmrp) != NULL) { \
1156 		if ((dmrp)->dmr_bitvec != 0) \
1157 			sfmmu_tlb_range_demap(dmrp); \
1158 	}
1159 
1160 #define	DEMAP_RANGE_MARKPG(dmrp, addr) \
1161 	if ((dmrp) != NULL) { \
1162 		if ((dmrp)->dmr_bitvec == 0) { \
1163 			(dmrp)->dmr_addr = (addr); \
1164 			(dmrp)->dmr_bit = 1; \
1165 		} \
1166 		(dmrp)->dmr_bitvec |= (dmrp)->dmr_bit; \
1167 	}
1168 
1169 #define	DEMAP_RANGE_NEXTPG(dmrp) \
1170 	if ((dmrp) != NULL && (dmrp)->dmr_bitvec != 0) { \
1171 		if ((dmrp)->dmr_bit & (dmrp)->dmr_maxbit) { \
1172 			sfmmu_tlb_range_demap(dmrp); \
1173 		} else { \
1174 			(dmrp)->dmr_bit <<= 1; \
1175 		} \
1176 	}
1177 
1178 /*
1179  * TSB related structures
1180  *
1181  * The TSB is made up of tte entries.  Both the tag and data are present
1182  * in the TSB.  The TSB locking is managed as follows:
1183  * A software bit in the tsb tag is used to indicate that entry is locked.
1184  * If a cpu servicing a tsb miss reads a locked entry the tag compare will
1185  * fail forcing the cpu to go to the hat hash for the translation.
1186  * The cpu who holds the lock can then modify the data side, and the tag side.
1187  * The last write should be to the word containing the lock bit which will
1188  * clear the lock and allow the tsb entry to be read.  It is assumed that all
1189  * cpus reading the tsb will do so with atomic 128-bit loads.  An atomic 128
1190  * bit load is required to prevent the following from happening:
1191  *
1192  * cpu 0			cpu 1			comments
1193  *
1194  * ldx tag						tag unlocked
1195  *				ldstub lock		set lock
1196  *				stx data
1197  *				stx tag			unlock
1198  * ldx tag						incorrect tte!!!
1199  *
1200  * The software also maintains a bit in the tag to indicate an invalid
1201  * tsb entry.  The purpose of this bit is to allow the tsb invalidate code
1202  * to invalidate a tsb entry with a single cas.  See code for details.
1203  */
1204 
1205 union tsb_tag {
1206 	struct {
1207 		uint32_t	tag_res0:16;	/* reserved - context area */
1208 		uint32_t	tag_inv:1;	/* sw - invalid tsb entry */
1209 		uint32_t	tag_lock:1;	/* sw - locked tsb entry */
1210 		uint32_t	tag_res1:4;	/* reserved */
1211 		uint32_t	tag_va_hi:10;	/* va[63:54] */
1212 		uint32_t	tag_va_lo;	/* va[53:22] */
1213 	} tagbits;
1214 	struct tsb_tagints {
1215 		uint32_t	inthi;
1216 		uint32_t	intlo;
1217 	} tagints;
1218 };
1219 #define	tag_invalid		tagbits.tag_inv
1220 #define	tag_locked		tagbits.tag_lock
1221 #define	tag_vahi		tagbits.tag_va_hi
1222 #define	tag_valo		tagbits.tag_va_lo
1223 #define	tag_inthi		tagints.inthi
1224 #define	tag_intlo		tagints.intlo
1225 
1226 struct tsbe {
1227 	union tsb_tag	tte_tag;
1228 	tte_t		tte_data;
1229 };
1230 
1231 /*
1232  * A per cpu struct is kept that duplicates some info
1233  * used by the tl>0 tsb miss handlers plus it provides
1234  * a scratch area.  Its purpose is to minimize cache misses
1235  * in the tsb miss handler and is 128 bytes (2 e$ lines).
1236  *
1237  * There should be one allocated per cpu in nucleus memory
1238  * and should be aligned on an ecache line boundary.
1239  */
1240 struct tsbmiss {
1241 	sfmmu_t			*ksfmmup;	/* kernel hat id */
1242 	sfmmu_t			*usfmmup;	/* user hat id */
1243 	struct tsbe		*tsbptr;	/* hardware computed ptr */
1244 	struct tsbe		*tsbptr4m;	/* hardware computed ptr */
1245 	uint64_t		ismblkpa;
1246 	struct hmehash_bucket	*khashstart;
1247 	struct hmehash_bucket	*uhashstart;
1248 	uint_t			khashsz;
1249 	uint_t			uhashsz;
1250 	uint16_t 		dcache_line_mask; /* used to flush dcache */
1251 	uint16_t		hat_flags;
1252 	uint32_t		itlb_misses;
1253 	uint32_t		dtlb_misses;
1254 	uint32_t		utsb_misses;
1255 	uint32_t		ktsb_misses;
1256 	uint16_t		uprot_traps;
1257 	uint16_t		kprot_traps;
1258 
1259 	/*
1260 	 * scratch[0] -> TSB_TAGACC
1261 	 * scratch[1] -> TSBMISS_HMEBP
1262 	 * scratch[2] -> TSBMISS_HATID
1263 	 */
1264 	uintptr_t		scratch[3];
1265 	uint8_t			pad[0x10];
1266 };
1267 
1268 /*
1269  * A per cpu struct is kept for the use within the tl>0 kpm tsb
1270  * miss handler. Some members are duplicates of common data or
1271  * the physical addresses of common data. A few members are also
1272  * written by the tl>0 kpm tsb miss handler. Its purpose is to
1273  * minimize cache misses in the kpm tsb miss handler and occupies
1274  * one ecache line. There should be one allocated per cpu in
1275  * nucleus memory and it should be aligned on an ecache line
1276  * boundary. It is not merged w/ struct tsbmiss since there is
1277  * not much to share and the tsbmiss pathes are different, so
1278  * a kpm tlbmiss/tsbmiss only touches one cacheline, except for
1279  * (DEBUG || SFMMU_STAT_GATHER) where the dtlb_misses counter
1280  * of struct tsbmiss is used on every dtlb miss.
1281  */
1282 struct kpmtsbm {
1283 	caddr_t		vbase;		/* start of address kpm range */
1284 	caddr_t		vend;		/* end of address kpm range */
1285 	uchar_t		flags;		/* flags needed in TL tsbmiss handler */
1286 	uchar_t		sz_shift;	/* for single kpm window */
1287 	uchar_t		kpmp_shift;	/* hash lock shift */
1288 	uchar_t		kpmp2pshft;	/* kpm page to page shift */
1289 	uint_t		kpmp_table_sz;	/* size of kpmp_table or kpmp_stable */
1290 	uint64_t	kpmp_tablepa;	/* paddr of kpmp_table or kpmp_stable */
1291 	uint64_t	msegphashpa;	/* paddr of memseg_phash */
1292 	struct tsbe	*tsbptr;	/* saved ktsb pointer */
1293 	uint_t		kpm_dtlb_misses; /* kpm tlbmiss counter */
1294 	uint_t		kpm_tsb_misses;	/* kpm tsbmiss counter */
1295 	uintptr_t	pad[1];
1296 };
1297 
1298 extern uint_t  tsb_slab_size;
1299 extern uint_t  tsb_slab_shift;
1300 extern uint_t  tsb_slab_ttesz;
1301 extern uint_t  tsb_slab_pamask;
1302 
1303 #endif /* !_ASM */
1304 
1305 /*
1306  * Flags for TL kpm tsbmiss handler
1307  */
1308 #define	KPMTSBM_ENABLE_FLAG	0x01	/* bit copy of kpm_enable */
1309 #define	KPMTSBM_TLTSBM_FLAG	0x02	/* use TL tsbmiss handler */
1310 #define	KPMTSBM_TSBPHYS_FLAG	0x04	/* use ASI_MEM for TSB update */
1311 
1312 /*
1313  * The TSB
1314  * All TSB sizes supported by the hardware are now supported (8K - 1M).
1315  * For kernel TSBs we may go beyond the hardware supported sizes and support
1316  * larger TSBs via software.
1317  * All TTE sizes are supported in the TSB; the manner in which this is
1318  * done is cpu dependent.
1319  */
1320 #define	TSB_MIN_SZCODE		TSB_8K_SZCODE	/* min. supported TSB size */
1321 #define	TSB_MIN_OFFSET_MASK	(TSB_OFFSET_MASK(TSB_MIN_SZCODE))
1322 
1323 #define	UTSB_MAX_SZCODE		TSB_1M_SZCODE /* max. supported TSB size */
1324 #define	UTSB_MAX_OFFSET_MASK	(TSB_OFFSET_MASK(UTSB_MAX_SZCODE))
1325 
1326 #define	TSB_FREEMEM_MIN		0x1000		/* 32 mb */
1327 #define	TSB_FREEMEM_LARGE	0x10000		/* 512 mb */
1328 #define	TSB_8K_SZCODE		0		/* 512 entries */
1329 #define	TSB_16K_SZCODE		1		/* 1k entries */
1330 #define	TSB_32K_SZCODE		2		/* 2k entries */
1331 #define	TSB_64K_SZCODE		3		/* 4k entries */
1332 #define	TSB_128K_SZCODE		4		/* 8k entries */
1333 #define	TSB_256K_SZCODE		5		/* 16k entries */
1334 #define	TSB_512K_SZCODE		6		/* 32k entries */
1335 #define	TSB_1M_SZCODE		7		/* 64k entries */
1336 #define	TSB_2M_SZCODE		8		/* 128k entries */
1337 #define	TSB_4M_SZCODE		9		/* 256k entries */
1338 #define	TSB_ENTRY_SHIFT		4	/* each entry = 128 bits = 16 bytes */
1339 #define	TSB_ENTRY_SIZE		(1 << 4)
1340 #define	TSB_START_SIZE		9
1341 #define	TSB_ENTRIES(tsbsz)	(1 << (TSB_START_SIZE + tsbsz))
1342 #define	TSB_BYTES(tsbsz)	(TSB_ENTRIES(tsbsz) << TSB_ENTRY_SHIFT)
1343 #define	TSB_OFFSET_MASK(tsbsz)	(TSB_ENTRIES(tsbsz) - 1)
1344 #define	TSB_BASEADDR_MASK	((1 << 12) - 1)
1345 
1346 /*
1347  * sun4u platforms
1348  * ---------------
1349  * We now support two user TSBs with one TSB base register.
1350  * Hence the TSB base register is split up as follows:
1351  *
1352  * When only one TSB present:
1353  *   [63  62..42  41..13  12..4  3..0]
1354  *     ^   ^       ^       ^     ^
1355  *     |   |       |       |     |
1356  *     |   |       |       |     |_ TSB size code
1357  *     |   |       |       |
1358  *     |   |       |       |_ Reserved 0
1359  *     |   |       |
1360  *     |   |       |_ TSB VA[41..13]
1361  *     |   |
1362  *     |   |_ VA hole (Spitfire), zeros (Cheetah and beyond)
1363  *     |
1364  *     |_ 0
1365  *
1366  * When second TSB present:
1367  *   [63  62..42  41..33  32..29  28..22  21..13  12..4  3..0]
1368  *     ^   ^       ^       ^       ^       ^       ^     ^
1369  *     |   |       |       |       |       |       |     |
1370  *     |   |       |       |       |       |       |     |_ First TSB size code
1371  *     |   |       |       |       |       |       |
1372  *     |   |       |       |       |       |       |_ Reserved 0
1373  *     |   |       |       |       |       |
1374  *     |   |       |       |       |       |_ First TSB's VA[21..13]
1375  *     |   |       |       |       |
1376  *     |   |       |       |       |_ Reserved for future use
1377  *     |   |       |       |
1378  *     |   |       |       |_ Second TSB's size code
1379  *     |   |       |
1380  *     |   |       |_ Second TSB's VA[21..13]
1381  *     |   |
1382  *     |   |_ VA hole (Spitfire) / ones (Cheetah and beyond)
1383  *     |
1384  *     |_ 1
1385  *
1386  * Note that since we store 21..13 of each TSB's VA, TSBs and their slabs
1387  * may be up to 4M in size.  For now, only hardware supported TSB sizes
1388  * are supported, though the slabs are usually 4M in size.
1389  *
1390  * sun4u platforms that define UTSB_PHYS use physical addressing to access
1391  * the user TSBs at TL>0.  The first user TSB base is in the MMU I/D TSB Base
1392  * registers.  The second TSB base uses a dedicated scratchpad register which
1393  * requires a definition of SCRATCHPAD_UTSBREG in mach_sfmmu.h.  The layout for
1394  * both registers is equivalent to sun4v below, except the TSB PA range is
1395  * [46..13] for sun4u.
1396  *
1397  * sun4v platforms
1398  * ---------------
1399  * On sun4v platforms, we use two dedicated scratchpad registers as pseudo
1400  * hardware TSB base registers to hold up to two different user TSBs.
1401  *
1402  * Each register contains TSB's physical base and size code information
1403  * as follows:
1404  *
1405  *   [63..56  55..13  12..4  3..0]
1406  *      ^       ^       ^     ^
1407  *      |       |       |     |
1408  *      |       |       |     |_ TSB size code
1409  *      |       |       |
1410  *      |       |       |_ Reserved 0
1411  *      |       |
1412  *      |       |_ TSB PA[55..13]
1413  *      |
1414  *      |
1415  *      |
1416  *      |_ 0 for valid TSB
1417  *
1418  * Absence of a user TSB (primarily the second user TSB) is indicated by
1419  * storing a negative value in the TSB base register. This allows us to
1420  * check for presence of a user TSB by simply checking bit# 63.
1421  */
1422 #define	TSBREG_MSB_SHIFT	32		/* set upper bits */
1423 #define	TSBREG_MSB_CONST	0xfffff800	/* set bits 63..43 */
1424 #define	TSBREG_FIRTSB_SHIFT	42		/* to clear bits 63:22 */
1425 #define	TSBREG_SECTSB_MKSHIFT	20		/* 21:13 --> 41:33 */
1426 #define	TSBREG_SECTSB_LSHIFT	22		/* to clear bits 63:42 */
1427 #define	TSBREG_SECTSB_RSHIFT	(TSBREG_SECTSB_MKSHIFT + TSBREG_SECTSB_LSHIFT)
1428 						/* sectsb va -> bits 21:13 */
1429 						/* after clearing upper bits */
1430 #define	TSBREG_SECSZ_SHIFT	29		/* to get sectsb szc to 3:0 */
1431 #define	TSBREG_VAMASK_SHIFT	13		/* set up VA mask */
1432 
1433 #define	BIGKTSB_SZ_MASK		0xf
1434 #define	TSB_SOFTSZ_MASK		BIGKTSB_SZ_MASK
1435 #define	MIN_BIGKTSB_SZCODE	9	/* 256k entries */
1436 #define	MAX_BIGKTSB_SZCODE	11	/* 1024k entries */
1437 #define	MAX_BIGKTSB_TTES	(TSB_BYTES(MAX_BIGKTSB_SZCODE) / MMU_PAGESIZE4M)
1438 
1439 #define	TAG_VALO_SHIFT		22		/* tag's va are bits 63-22 */
1440 /*
1441  * sw bits used on tsb_tag - bit masks used only in assembly
1442  * use only a sethi for these fields.
1443  */
1444 #define	TSBTAG_INVALID	0x00008000		/* tsb_tag.tag_invalid */
1445 #define	TSBTAG_LOCKED	0x00004000		/* tsb_tag.tag_locked */
1446 
1447 #ifdef	_ASM
1448 
1449 /*
1450  * Marker to indicate that this instruction will be hot patched at runtime
1451  * to some other value.
1452  * This value must be zero since it fills in the imm bits of the target
1453  * instructions to be patched
1454  */
1455 #define	RUNTIME_PATCH	(0)
1456 
1457 /*
1458  * V9 defines nop instruction as the following, which we use
1459  * at runtime to nullify some instructions we don't want to
1460  * execute in the trap handlers on certain platforms.
1461  */
1462 #define	MAKE_NOP_INSTR(reg)	\
1463 	sethi	%hi(0x1000000), reg
1464 
1465 /*
1466  * Macro to get hat per-MMU cnum on this CPU.
1467  * sfmmu - In, pass in "sfmmup" from the caller.
1468  * cnum	- Out, return 'cnum' to the caller
1469  * scr	- scratch
1470  */
1471 #define	SFMMU_CPU_CNUM(sfmmu, cnum, scr)				      \
1472 	CPU_ADDR(scr, cnum);	/* scr = load CPU struct addr */	      \
1473 	ld	[scr + CPU_MMU_IDX], cnum;	/* cnum = mmuid */	      \
1474 	add	sfmmu, SFMMU_CTXS, scr;	/* scr = sfmmup->sfmmu_ctxs[] */      \
1475 	sllx    cnum, SFMMU_MMU_CTX_SHIFT, cnum;			      \
1476 	add	scr, cnum, scr;		/* scr = sfmmup->sfmmu_ctxs[id] */    \
1477 	ldx	[scr + SFMMU_MMU_GC_NUM], scr;	/* sfmmu_ctxs[id].gcnum */    \
1478 	sllx    scr, SFMMU_MMU_CNUM_LSHIFT, scr;			      \
1479 	srlx    scr, SFMMU_MMU_CNUM_LSHIFT, cnum;	/* cnum = sfmmu cnum */
1480 
1481 /*
1482  * Macro to get hat gnum & cnum assocaited with sfmmu_ctx[mmuid] entry
1483  * entry - In,  pass in (&sfmmu_ctxs[mmuid] - SFMMU_CTXS) from the caller.
1484  * gnum - Out, return sfmmu gnum
1485  * cnum - Out, return sfmmu cnum
1486  * reg	- scratch
1487  */
1488 #define	SFMMU_MMUID_GNUM_CNUM(entry, gnum, cnum, reg)			     \
1489 	ldx	[entry + SFMMU_CTXS], reg;  /* reg = sfmmu (gnum | cnum) */  \
1490 	srlx	reg, SFMMU_MMU_GNUM_RSHIFT, gnum;    /* gnum = sfmmu gnum */ \
1491 	sllx	reg, SFMMU_MMU_CNUM_LSHIFT, cnum;			     \
1492 	srlx	cnum, SFMMU_MMU_CNUM_LSHIFT, cnum;   /* cnum = sfmmu cnum */
1493 
1494 /*
1495  * Macro to get this CPU's tsbmiss area.
1496  */
1497 #define	CPU_TSBMISS_AREA(tsbmiss, tmp1)					\
1498 	CPU_INDEX(tmp1, tsbmiss);		/* tmp1 = cpu idx */	\
1499 	sethi	%hi(tsbmiss_area), tsbmiss;	/* tsbmiss base ptr */	\
1500 	sllx    tmp1, TSBMISS_SHIFT, tmp1;	/* byte offset */	\
1501 	or	tsbmiss, %lo(tsbmiss_area), tsbmiss;			\
1502 	add	tsbmiss, tmp1, tsbmiss		/* tsbmiss area of CPU */
1503 
1504 
1505 /*
1506  * Macro to set kernel context + page size codes in DMMU primary context
1507  * register. It is only necessary for sun4u because sun4v does not need
1508  * page size codes
1509  */
1510 #ifdef sun4v
1511 
1512 #define	SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3)
1513 
1514 #else
1515 
1516 #define	SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3) \
1517 	sethi	%hi(kcontextreg), reg0;					\
1518 	ldx	[reg0 + %lo(kcontextreg)], reg0;			\
1519 	mov	MMU_PCONTEXT, reg1;					\
1520 	ldxa	[reg1]ASI_MMU_CTX, reg2;				\
1521 	xor	reg0, reg2, reg2;					\
1522 	brz	reg2, label3;						\
1523 	srlx	reg2, CTXREG_NEXT_SHIFT, reg2;				\
1524 	rdpr	%pstate, reg3;		/* disable interrupts */	\
1525 	btst	PSTATE_IE, reg3;					\
1526 /*CSTYLED*/								\
1527 	bnz,a,pt %icc, label1;						\
1528 	wrpr	reg3, PSTATE_IE, %pstate;				\
1529 /*CSTYLED*/								\
1530 label1:;								\
1531 	brz	reg2, label2;	   /* need demap if N_pgsz0/1 change */	\
1532 	sethi	%hi(FLUSH_ADDR), reg4;					\
1533 	mov	DEMAP_ALL_TYPE, reg2;					\
1534 	stxa	%g0, [reg2]ASI_DTLB_DEMAP;				\
1535 	stxa	%g0, [reg2]ASI_ITLB_DEMAP;				\
1536 /*CSTYLED*/								\
1537 label2:;								\
1538 	stxa	reg0, [reg1]ASI_MMU_CTX;				\
1539 	flush	reg4;							\
1540 	btst	PSTATE_IE, reg3;					\
1541 /*CSTYLED*/								\
1542 	bnz,a,pt %icc, label3;						\
1543 	wrpr	%g0, reg3, %pstate;	/* restore interrupt state */	\
1544 label3:;
1545 
1546 #endif
1547 
1548 /*
1549  * Macro to setup arguments with kernel sfmmup context + page size before
1550  * calling sfmmu_setctx_sec()
1551  */
1552 #ifdef sun4v
1553 #define	SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1)			\
1554 	set	KCONTEXT, arg0;					\
1555 	set	0, arg1;
1556 #else
1557 #define	SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1)			\
1558 	ldub	[sfmmup + SFMMU_CEXT], arg1;			\
1559 	set	KCONTEXT, arg0;					\
1560 	sll	arg1, CTXREG_EXT_SHIFT, arg1;
1561 #endif
1562 
1563 #define	PANIC_IF_INTR_DISABLED_PSTR(pstatereg, label, scr)	       	\
1564 	andcc	pstatereg, PSTATE_IE, %g0;	/* panic if intrs */	\
1565 /*CSTYLED*/								\
1566 	bnz,pt	%icc, label;			/* already disabled */	\
1567 	nop;								\
1568 									\
1569 	sethi	%hi(panicstr), scr;					\
1570 	ldx	[scr + %lo(panicstr)], scr;				\
1571 	tst	scr;							\
1572 /*CSTYLED*/								\
1573 	bnz,pt	%xcc, label;						\
1574 	nop;								\
1575 									\
1576 	save	%sp, -SA(MINFRAME), %sp;				\
1577 	sethi	%hi(sfmmu_panic1), %o0;					\
1578 	call	panic;							\
1579 	or	%o0, %lo(sfmmu_panic1), %o0;				\
1580 /*CSTYLED*/								\
1581 label:
1582 
1583 #define	PANIC_IF_INTR_ENABLED_PSTR(label, scr)				\
1584 	/*								\
1585 	 * The caller must have disabled interrupts.			\
1586 	 * If interrupts are not disabled, panic			\
1587 	 */								\
1588 	rdpr	%pstate, scr;						\
1589 	andcc	scr, PSTATE_IE, %g0;					\
1590 /*CSTYLED*/								\
1591 	bz,pt	%icc, label;						\
1592 	nop;								\
1593 									\
1594 	sethi	%hi(panicstr), scr;					\
1595 	ldx	[scr + %lo(panicstr)], scr;				\
1596 	tst	scr;							\
1597 /*CSTYLED*/								\
1598 	bnz,pt	%xcc, label;						\
1599 	nop;								\
1600 									\
1601 	sethi	%hi(sfmmu_panic6), %o0;					\
1602 	call	panic;							\
1603 	or	%o0, %lo(sfmmu_panic6), %o0;				\
1604 /*CSTYLED*/								\
1605 label:
1606 
1607 #endif	/* _ASM */
1608 
1609 #ifndef _ASM
1610 
1611 /*
1612  * Page coloring
1613  * The p_vcolor field of the page struct (1 byte) is used to store the
1614  * virtual page color.  This provides for 255 colors.  The value zero is
1615  * used to mean the page has no color - never been mapped or somehow
1616  * purified.
1617  */
1618 
1619 #define	PP_GET_VCOLOR(pp)	(((pp)->p_vcolor) - 1)
1620 #define	PP_NEWPAGE(pp)		(!(pp)->p_vcolor)
1621 #define	PP_SET_VCOLOR(pp, color)                                          \
1622 	((pp)->p_vcolor = ((color) + 1))
1623 
1624 /*
1625  * As mentioned p_vcolor == 0 means there is no color for this page.
1626  * But PP_SET_VCOLOR(pp, color) expects 'color' to be real color minus
1627  * one so we define this constant.
1628  */
1629 #define	NO_VCOLOR	(-1)
1630 
1631 #define	addr_to_vcolor(addr) \
1632 	(((uint_t)(uintptr_t)(addr) >> MMU_PAGESHIFT) & vac_colors_mask)
1633 
1634 /*
1635  * The field p_index in the psm page structure is for large pages support.
1636  * P_index is a bit-vector of the different mapping sizes that a given page
1637  * is part of. An hme structure for a large mapping is only added in the
1638  * group leader page (first page). All pages covered by a given large mapping
1639  * have the corrosponding mapping bit set in their p_index field. This allows
1640  * us to only store an explicit hme structure in the leading page which
1641  * simplifies the mapping link list management. Furthermore, it provides us
1642  * a fast mechanism for determining the largest mapping a page is part of. For
1643  * exmaple, a page with a 64K and a 4M mappings has a p_index value of 0x0A.
1644  *
1645  * Implementation note: even though the first bit in p_index is reserved
1646  * for 8K mappings, it is NOT USED by the code and SHOULD NOT be set.
1647  * In addition, the upper four bits of the p_index field are used by the
1648  * code as temporaries
1649  */
1650 
1651 /*
1652  * Defines for psm page struct fields and large page support
1653  */
1654 #define	SFMMU_INDEX_SHIFT		6
1655 #define	SFMMU_INDEX_MASK		((1 << SFMMU_INDEX_SHIFT) - 1)
1656 
1657 /* Return the mapping index */
1658 #define	PP_MAPINDEX(pp)	((pp)->p_index & SFMMU_INDEX_MASK)
1659 
1660 /*
1661  * These macros rely on the following property:
1662  * All pages constituting a large page are covered by a virtually
1663  * contiguous set of page_t's.
1664  */
1665 
1666 /* Return the leader for this mapping size */
1667 #define	PP_GROUPLEADER(pp, sz) \
1668 	(&(pp)[-(int)(pp->p_pagenum & (TTEPAGES(sz)-1))])
1669 
1670 /* Return the root page for this page based on p_szc */
1671 #define	PP_PAGEROOT(pp)	((pp)->p_szc == 0 ? (pp) : \
1672 	PP_GROUPLEADER((pp), (pp)->p_szc))
1673 
1674 #define	PP_PAGENEXT_N(pp, n)	((pp) + (n))
1675 #define	PP_PAGENEXT(pp)		PP_PAGENEXT_N((pp), 1)
1676 
1677 #define	PP_PAGEPREV_N(pp, n)	((pp) - (n))
1678 #define	PP_PAGEPREV(pp)		PP_PAGEPREV_N((pp), 1)
1679 
1680 #define	PP_ISMAPPED_LARGE(pp)	(PP_MAPINDEX(pp) != 0)
1681 
1682 /* Need function to test the page mappping which takes p_index into account */
1683 #define	PP_ISMAPPED(pp)	((pp)->p_mapping || PP_ISMAPPED_LARGE(pp))
1684 
1685 /*
1686  * Don't call this macro with sz equal to zero. 8K mappings SHOULD NOT
1687  * set p_index field.
1688  */
1689 #define	PAGESZ_TO_INDEX(sz)	(1 << (sz))
1690 
1691 
1692 /*
1693  * prototypes for hat assembly routines.  Some of these are
1694  * known to machine dependent VM code.
1695  */
1696 extern uint64_t sfmmu_make_tsbtag(caddr_t);
1697 extern struct tsbe *
1698 		sfmmu_get_tsbe(uint64_t, caddr_t, int, int);
1699 extern void	sfmmu_load_tsbe(struct tsbe *, uint64_t, tte_t *, int);
1700 extern void	sfmmu_unload_tsbe(struct tsbe *, uint64_t, int);
1701 extern void	sfmmu_load_mmustate(sfmmu_t *);
1702 extern void	sfmmu_raise_tsb_exception(uint64_t, uint64_t);
1703 #ifndef sun4v
1704 extern void	sfmmu_itlb_ld_kva(caddr_t, tte_t *);
1705 extern void	sfmmu_dtlb_ld_kva(caddr_t, tte_t *);
1706 #endif /* sun4v */
1707 extern void	sfmmu_copytte(tte_t *, tte_t *);
1708 extern int	sfmmu_modifytte(tte_t *, tte_t *, tte_t *);
1709 extern int	sfmmu_modifytte_try(tte_t *, tte_t *, tte_t *);
1710 extern pfn_t	sfmmu_ttetopfn(tte_t *, caddr_t);
1711 extern void	sfmmu_hblk_hash_rm(struct hmehash_bucket *,
1712 			struct hme_blk *, uint64_t, struct hme_blk *);
1713 extern void	sfmmu_hblk_hash_add(struct hmehash_bucket *, struct hme_blk *,
1714 			uint64_t);
1715 extern uint_t	sfmmu_disable_intrs(void);
1716 extern void	sfmmu_enable_intrs(uint_t);
1717 /*
1718  * functions exported to machine dependent VM code
1719  */
1720 extern void	sfmmu_patch_ktsb(void);
1721 #ifndef UTSB_PHYS
1722 extern void	sfmmu_patch_utsb(void);
1723 #endif /* UTSB_PHYS */
1724 extern pfn_t	sfmmu_vatopfn(caddr_t, sfmmu_t *, tte_t *);
1725 extern void	sfmmu_vatopfn_suspended(caddr_t, sfmmu_t *, tte_t *);
1726 #ifdef	DEBUG
1727 extern void	sfmmu_check_kpfn(pfn_t);
1728 #else
1729 #define		sfmmu_check_kpfn(pfn)	/* disabled */
1730 #endif	/* DEBUG */
1731 extern void	sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
1732 extern void	sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,	uint_t);
1733 extern void	sfmmu_tsbmiss_exception(struct regs *, uintptr_t, uint_t);
1734 extern void	sfmmu_init_tsbs(void);
1735 extern caddr_t  sfmmu_ktsb_alloc(caddr_t);
1736 extern int	sfmmu_getctx_pri(void);
1737 extern int	sfmmu_getctx_sec(void);
1738 extern void	sfmmu_setctx_sec(int);
1739 extern void	sfmmu_inv_tsb(caddr_t, uint_t);
1740 extern void	sfmmu_init_ktsbinfo(void);
1741 extern int	sfmmu_setup_4lp(void);
1742 extern void	sfmmu_patch_mmu_asi(int);
1743 extern void	sfmmu_init_nucleus_hblks(caddr_t, size_t, int, int);
1744 extern void	sfmmu_cache_flushall(void);
1745 extern pgcnt_t  sfmmu_tte_cnt(sfmmu_t *, uint_t);
1746 extern void	*sfmmu_tsb_segkmem_alloc(vmem_t *, size_t, int);
1747 extern void	sfmmu_tsb_segkmem_free(vmem_t *, void *, size_t);
1748 extern void	sfmmu_reprog_pgsz_arr(sfmmu_t *, uint8_t *);
1749 
1750 extern void	hat_kern_setup(void);
1751 extern int	hat_page_relocate(page_t **, page_t **, spgcnt_t *);
1752 extern uint_t	hat_preferred_pgsz(struct hat *, caddr_t, size_t, int);
1753 extern int	sfmmu_get_ppvcolor(struct page *);
1754 extern int	sfmmu_get_addrvcolor(caddr_t);
1755 extern int	sfmmu_hat_lock_held(sfmmu_t *);
1756 extern void	sfmmu_alloc_ctx(sfmmu_t *, int, struct cpu *);
1757 
1758 /*
1759  * Functions exported to xhat_sfmmu.c
1760  */
1761 extern kmutex_t *sfmmu_mlist_enter(page_t *);
1762 extern void	sfmmu_mlist_exit(kmutex_t *);
1763 extern int	sfmmu_mlist_held(struct page *);
1764 extern struct hme_blk *sfmmu_hmetohblk(struct sf_hment *);
1765 
1766 /*
1767  * MMU-specific functions optionally imported from the CPU module
1768  */
1769 #pragma weak mmu_large_pages_disabled
1770 #pragma weak mmu_set_ctx_page_sizes
1771 #pragma weak mmu_preferred_pgsz
1772 #pragma weak mmu_check_page_sizes
1773 
1774 extern int mmu_large_pages_disabled(uint_t);
1775 extern void mmu_set_ctx_page_sizes(sfmmu_t *);
1776 extern uint_t mmu_preferred_pgsz(sfmmu_t *, caddr_t, size_t);
1777 extern void mmu_check_page_sizes(sfmmu_t *, uint64_t *);
1778 
1779 extern sfmmu_t 		*ksfmmup;
1780 extern caddr_t		ktsb_base;
1781 extern uint64_t		ktsb_pbase;
1782 extern int		ktsb_sz;
1783 extern int		ktsb_szcode;
1784 extern caddr_t		ktsb4m_base;
1785 extern uint64_t		ktsb4m_pbase;
1786 extern int		ktsb4m_sz;
1787 extern int		ktsb4m_szcode;
1788 extern uint64_t		kpm_tsbbase;
1789 extern int		kpm_tsbsz;
1790 extern int		ktsb_phys;
1791 extern int		enable_bigktsb;
1792 #ifndef sun4v
1793 extern int		utsb_dtlb_ttenum;
1794 extern int		utsb4m_dtlb_ttenum;
1795 #endif /* sun4v */
1796 extern int		uhmehash_num;
1797 extern int		khmehash_num;
1798 extern struct hmehash_bucket *uhme_hash;
1799 extern struct hmehash_bucket *khme_hash;
1800 extern kmutex_t		*mml_table;
1801 extern uint_t		mml_table_sz;
1802 extern uint_t		mml_shift;
1803 extern uint_t		hblk_alloc_dynamic;
1804 extern struct tsbmiss	tsbmiss_area[NCPU];
1805 extern struct kpmtsbm	kpmtsbm_area[NCPU];
1806 extern int		tsb_max_growsize;
1807 #ifndef sun4v
1808 extern int		dtlb_resv_ttenum;
1809 extern caddr_t		utsb_vabase;
1810 extern caddr_t		utsb4m_vabase;
1811 #endif /* sun4v */
1812 extern vmem_t		*kmem_tsb_default_arena[];
1813 extern int		tsb_lgrp_affinity;
1814 
1815 /* kpm externals */
1816 extern pfn_t		sfmmu_kpm_vatopfn(caddr_t);
1817 extern void		sfmmu_kpm_patch_tlbm(void);
1818 extern void		sfmmu_kpm_patch_tsbm(void);
1819 extern void		sfmmu_kpm_load_tsb(caddr_t, tte_t *, int);
1820 extern void		sfmmu_kpm_unload_tsb(caddr_t, int);
1821 extern void		sfmmu_kpm_tsbmtl(short *, uint_t *, int);
1822 extern int		sfmmu_kpm_stsbmtl(char *, uint_t *, int);
1823 extern caddr_t		kpm_vbase;
1824 extern size_t		kpm_size;
1825 extern struct memseg	*memseg_hash[];
1826 extern uint64_t		memseg_phash[];
1827 extern kpm_hlk_t	*kpmp_table;
1828 extern kpm_shlk_t	*kpmp_stable;
1829 extern uint_t		kpmp_table_sz;
1830 extern uint_t		kpmp_stable_sz;
1831 extern uchar_t		kpmp_shift;
1832 
1833 #define	PP_ISMAPPED_KPM(pp)	((pp)->p_kpmref > 0)
1834 
1835 #define	IS_KPM_ALIAS_RANGE(vaddr)					\
1836 	(((vaddr) - kpm_vbase) >> (uintptr_t)kpm_size_shift > 0)
1837 
1838 #endif /* !_ASM */
1839 
1840 /* sfmmu_kpm_tsbmtl flags */
1841 #define	KPMTSBM_STOP		0
1842 #define	KPMTSBM_START		1
1843 
1844 /* kpm_smallpages kp_mapped values */
1845 #define	KPM_MAPPEDS		-1	/* small mapping valid, no conflict */
1846 #define	KPM_MAPPEDSC		1	/* small mapping valid, conflict */
1847 
1848 /* Physical memseg address NULL marker */
1849 #define	MSEG_NULLPTR_PA		-1
1850 
1851 /*
1852  * Memseg hash defines for kpm trap level tsbmiss handler.
1853  * Must be in sync w/ page.h .
1854  */
1855 #define	SFMMU_MEM_HASH_SHIFT		0x9
1856 #define	SFMMU_N_MEM_SLOTS		0x200
1857 #define	SFMMU_MEM_HASH_ENTRY_SHIFT	3
1858 
1859 #ifndef	_ASM
1860 #if (SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT)
1861 #error SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT
1862 #endif
1863 #if (SFMMU_N_MEM_SLOTS != N_MEM_SLOTS)
1864 #error SFMMU_N_MEM_SLOTS != N_MEM_SLOTS
1865 #endif
1866 
1867 /* Physical memseg address NULL marker */
1868 #define	SFMMU_MEMSEG_NULLPTR_PA		-1
1869 
1870 /*
1871  * Check KCONTEXT to be zero, asm parts depend on that assumption.
1872  */
1873 #if (KCONTEXT != 0)
1874 #error KCONTEXT != 0
1875 #endif
1876 #endif	/* !_ASM */
1877 
1878 
1879 #endif /* _KERNEL */
1880 
1881 #ifndef _ASM
1882 /*
1883  * ctx, hmeblk, mlistlock and other stats for sfmmu
1884  */
1885 struct sfmmu_global_stat {
1886 	int		sf_tsb_exceptions;	/* # of tsb exceptions */
1887 	int		sf_tsb_raise_exception;	/* # tsb exc. w/o TLB flush */
1888 
1889 	int		sf_pagefaults;		/* # of pagefaults */
1890 
1891 	int		sf_uhash_searches;	/* # of user hash searches */
1892 	int		sf_uhash_links;		/* # of user hash links */
1893 	int		sf_khash_searches;	/* # of kernel hash searches */
1894 	int		sf_khash_links;		/* # of kernel hash links */
1895 
1896 	int		sf_swapout;		/* # times hat swapped out */
1897 
1898 	int		sf_tsb_alloc;		/* # TSB allocations */
1899 	int		sf_tsb_allocfail;	/* # times TSB alloc fail */
1900 	int		sf_tsb_sectsb_create;	/* # times second TSB added */
1901 
1902 	int		sf_tteload8k;		/* calls to sfmmu_tteload */
1903 	int		sf_tteload64k;		/* calls to sfmmu_tteload */
1904 	int		sf_tteload512k;		/* calls to sfmmu_tteload */
1905 	int		sf_tteload4m;		/* calls to sfmmu_tteload */
1906 	int		sf_tteload32m;		/* calls to sfmmu_tteload */
1907 	int		sf_tteload256m;		/* calls to sfmmu_tteload */
1908 
1909 	int		sf_tsb_load8k;		/* # times loaded 8K tsbent */
1910 	int		sf_tsb_load4m;		/* # times loaded 4M tsbent */
1911 
1912 	int		sf_hblk_hit;		/* found hblk during tteload */
1913 	int		sf_hblk8_ncreate;	/* static hblk8's created */
1914 	int		sf_hblk8_nalloc;	/* static hblk8's allocated */
1915 	int		sf_hblk1_ncreate;	/* static hblk1's created */
1916 	int		sf_hblk1_nalloc;	/* static hblk1's allocated */
1917 	int		sf_hblk_slab_cnt;	/* sfmmu8_cache slab creates */
1918 	int		sf_hblk_reserve_cnt;	/* hblk_reserve usage */
1919 	int		sf_hblk_recurse_cnt;	/* hblk_reserve	owner reqs */
1920 	int		sf_hblk_reserve_hit;	/* hblk_reserve hash hits */
1921 	int		sf_get_free_success;	/* reserve list allocs */
1922 	int		sf_get_free_throttle;	/* fails due to throttling */
1923 	int		sf_get_free_fail;	/* fails due to empty list */
1924 	int		sf_put_free_success;	/* reserve list frees */
1925 	int		sf_put_free_fail;	/* fails due to full list */
1926 
1927 	int		sf_pgcolor_conflict;	/* VAC conflict resolution */
1928 	int		sf_uncache_conflict;	/* VAC conflict resolution */
1929 	int		sf_unload_conflict;	/* VAC unload resolution */
1930 	int		sf_ism_uncache;		/* VAC conflict resolution */
1931 	int		sf_ism_recache;		/* VAC conflict resolution */
1932 	int		sf_recache;		/* VAC conflict resolution */
1933 
1934 	int		sf_steal_count;		/* # of hblks stolen */
1935 
1936 	int		sf_pagesync;		/* # of pagesyncs */
1937 	int		sf_clrwrt;		/* # of clear write perms */
1938 	int		sf_pagesync_invalid;	/* pagesync with inv tte */
1939 
1940 	int		sf_kernel_xcalls;	/* # of kernel cross calls */
1941 	int		sf_user_xcalls;		/* # of user cross calls */
1942 
1943 	int		sf_tsb_grow;		/* # of user tsb grows */
1944 	int		sf_tsb_shrink;		/* # of user tsb shrinks */
1945 	int		sf_tsb_resize_failures;	/* # of user tsb resize */
1946 	int		sf_tsb_reloc;		/* # of user tsb relocations */
1947 
1948 	int		sf_user_vtop;		/* # of user vatopfn calls */
1949 
1950 	int		sf_ctx_inv;		/* #times invalidate MMU ctx */
1951 
1952 	int		sf_tlb_reprog_pgsz;	/* # times switch TLB pgsz */
1953 };
1954 
1955 struct sfmmu_tsbsize_stat {
1956 	int		sf_tsbsz_8k;
1957 	int		sf_tsbsz_16k;
1958 	int		sf_tsbsz_32k;
1959 	int		sf_tsbsz_64k;
1960 	int		sf_tsbsz_128k;
1961 	int		sf_tsbsz_256k;
1962 	int		sf_tsbsz_512k;
1963 	int		sf_tsbsz_1m;
1964 	int		sf_tsbsz_2m;
1965 	int		sf_tsbsz_4m;
1966 };
1967 
1968 struct sfmmu_percpu_stat {
1969 	int	sf_itlb_misses;		/* # of itlb misses */
1970 	int	sf_dtlb_misses;		/* # of dtlb misses */
1971 	int	sf_utsb_misses;		/* # of user tsb misses */
1972 	int	sf_ktsb_misses;		/* # of kernel tsb misses */
1973 	int	sf_tsb_hits;		/* # of tsb hits */
1974 	int	sf_umod_faults;		/* # of mod (prot viol) flts */
1975 	int	sf_kmod_faults;		/* # of mod (prot viol) flts */
1976 };
1977 
1978 #define	SFMMU_STAT(stat)		sfmmu_global_stat.stat++
1979 #define	SFMMU_STAT_ADD(stat, amount)	sfmmu_global_stat.stat += (amount)
1980 #define	SFMMU_STAT_SET(stat, count)	sfmmu_global_stat.stat = (count)
1981 
1982 #define	SFMMU_MMU_STAT(stat)		CPU->cpu_m.cpu_mmu_ctxp->stat++
1983 
1984 #endif /* !_ASM */
1985 
1986 #ifdef	__cplusplus
1987 }
1988 #endif
1989 
1990 #endif	/* _VM_HAT_SFMMU_H */
1991