xref: /titanic_50/usr/src/uts/sfmmu/vm/hat_sfmmu.h (revision 1c8fe10208a76c134f1a057de8be6ba1bc1fc499)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * VM - Hardware Address Translation management.
28  *
29  * This file describes the contents of the sun-reference-mmu(sfmmu)-
30  * specific hat data structures and the sfmmu-specific hat procedures.
31  * The machine-independent interface is described in <vm/hat.h>.
32  */
33 
34 #ifndef	_VM_HAT_SFMMU_H
35 #define	_VM_HAT_SFMMU_H
36 
37 #ifdef	__cplusplus
38 extern "C" {
39 #endif
40 
41 #ifndef _ASM
42 
43 #include <sys/types.h>
44 
45 #endif /* _ASM */
46 
47 #ifdef	_KERNEL
48 
49 #include <sys/pte.h>
50 #include <vm/mach_sfmmu.h>
51 #include <sys/mmu.h>
52 
53 /*
54  * Don't alter these without considering changes to ism_map_t.
55  */
56 #define	DEFAULT_ISM_PAGESIZE		MMU_PAGESIZE4M
57 #define	DEFAULT_ISM_PAGESZC		TTE4M
58 #define	ISM_PG_SIZE(ism_vbshift)	(1 << ism_vbshift)
59 #define	ISM_SZ_MASK(ism_vbshift)	(ISM_PG_SIZE(ism_vbshift) - 1)
60 #define	ISM_MAP_SLOTS	8	/* Change this carefully. */
61 
62 #ifndef _ASM
63 
64 #include <sys/t_lock.h>
65 #include <vm/hat.h>
66 #include <vm/seg.h>
67 #include <sys/machparam.h>
68 #include <sys/systm.h>
69 #include <sys/x_call.h>
70 #include <vm/page.h>
71 #include <sys/ksynch.h>
72 
73 typedef struct hat sfmmu_t;
74 typedef struct sf_scd sf_scd_t;
75 
76 /*
77  * SFMMU attributes for hat_memload/hat_devload
78  */
79 #define	SFMMU_UNCACHEPTTE	0x01000000	/* unencache in physical $ */
80 #define	SFMMU_UNCACHEVTTE	0x02000000	/* unencache in virtual $ */
81 #define	SFMMU_SIDEFFECT		0x04000000	/* set side effect bit */
82 #define	SFMMU_LOAD_ALLATTR	(HAT_PROT_MASK | HAT_ORDER_MASK |	\
83 		HAT_ENDIAN_MASK | HAT_NOFAULT | HAT_NOSYNC |		\
84 		SFMMU_UNCACHEPTTE | SFMMU_UNCACHEVTTE | SFMMU_SIDEFFECT)
85 
86 
87 /*
88  * sfmmu flags for hat_memload/hat_devload
89  */
90 #define	SFMMU_NO_TSBLOAD	0x08000000	/* do not preload tsb */
91 #define	SFMMU_LOAD_ALLFLAG	(HAT_LOAD | HAT_LOAD_LOCK |		\
92 		HAT_LOAD_ADV | HAT_LOAD_CONTIG | HAT_LOAD_NOCONSIST |	\
93 		HAT_LOAD_SHARE | HAT_LOAD_REMAP | SFMMU_NO_TSBLOAD |	\
94 		HAT_RELOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_TEXT)
95 
96 /*
97  * sfmmu internal flag to hat_pageunload that spares locked mappings
98  */
99 #define	SFMMU_KERNEL_RELOC	0x8000
100 
101 /*
102  * mode for sfmmu_chgattr
103  */
104 #define	SFMMU_SETATTR	0x0
105 #define	SFMMU_CLRATTR	0x1
106 #define	SFMMU_CHGATTR	0x2
107 
108 /*
109  * sfmmu specific flags for page_t
110  */
111 #define	P_PNC	0x8		/* non-caching is permanent bit */
112 #define	P_TNC	0x10		/* non-caching is temporary bit */
113 #define	P_KPMS	0x20		/* kpm mapped small (vac alias prevention) */
114 #define	P_KPMC	0x40		/* kpm conflict page (vac alias prevention) */
115 
116 #define	PP_GENERIC_ATTR(pp)	((pp)->p_nrm & (P_MOD | P_REF | P_RO))
117 #define	PP_ISMOD(pp)		((pp)->p_nrm & P_MOD)
118 #define	PP_ISREF(pp)		((pp)->p_nrm & P_REF)
119 #define	PP_ISRO(pp)		((pp)->p_nrm & P_RO)
120 #define	PP_ISNC(pp)		((pp)->p_nrm & (P_PNC|P_TNC))
121 #define	PP_ISPNC(pp)		((pp)->p_nrm & P_PNC)
122 #ifdef VAC
123 #define	PP_ISTNC(pp)		((pp)->p_nrm & P_TNC)
124 #endif
125 #define	PP_ISKPMS(pp)		((pp)->p_nrm & P_KPMS)
126 #define	PP_ISKPMC(pp)		((pp)->p_nrm & P_KPMC)
127 
128 #define	PP_SETMOD(pp)		((pp)->p_nrm |= P_MOD)
129 #define	PP_SETREF(pp)		((pp)->p_nrm |= P_REF)
130 #define	PP_SETREFMOD(pp)	((pp)->p_nrm |= (P_REF|P_MOD))
131 #define	PP_SETRO(pp)		((pp)->p_nrm |= P_RO)
132 #define	PP_SETREFRO(pp)		((pp)->p_nrm |= (P_REF|P_RO))
133 #define	PP_SETPNC(pp)		((pp)->p_nrm |= P_PNC)
134 #ifdef VAC
135 #define	PP_SETTNC(pp)		((pp)->p_nrm |= P_TNC)
136 #endif
137 #define	PP_SETKPMS(pp)		((pp)->p_nrm |= P_KPMS)
138 #define	PP_SETKPMC(pp)		((pp)->p_nrm |= P_KPMC)
139 
140 #define	PP_CLRMOD(pp)		((pp)->p_nrm &= ~P_MOD)
141 #define	PP_CLRREF(pp)		((pp)->p_nrm &= ~P_REF)
142 #define	PP_CLRREFMOD(pp)	((pp)->p_nrm &= ~(P_REF|P_MOD))
143 #define	PP_CLRRO(pp)		((pp)->p_nrm &= ~P_RO)
144 #define	PP_CLRPNC(pp)		((pp)->p_nrm &= ~P_PNC)
145 #ifdef VAC
146 #define	PP_CLRTNC(pp)		((pp)->p_nrm &= ~P_TNC)
147 #endif
148 #define	PP_CLRKPMS(pp)		((pp)->p_nrm &= ~P_KPMS)
149 #define	PP_CLRKPMC(pp)		((pp)->p_nrm &= ~P_KPMC)
150 
151 /*
152  * All shared memory segments attached with the SHM_SHARE_MMU flag (ISM)
153  * will be constrained to a 4M, 32M or 256M alignment. Also since every newly-
154  * created ISM segment is created out of a new address space at base va
155  * of 0 we don't need to store it.
156  */
157 #define	ISM_ALIGN(shift)	(1 << shift)	/* base va aligned to <n>M  */
158 #define	ISM_ALIGNED(shift, va)	(((uintptr_t)va & (ISM_ALIGN(shift) - 1)) == 0)
159 #define	ISM_SHIFT(shift, x)	((uintptr_t)x >> (shift))
160 
161 /*
162  * Pad locks out to cache sub-block boundaries to prevent
163  * false sharing, so several processes don't contend for
164  * the same line if they aren't using the same lock.  Since
165  * this is a typedef we also have a bit of freedom in
166  * changing lock implementations later if we decide it
167  * is necessary.
168  */
169 typedef struct hat_lock {
170 	kmutex_t hl_mutex;
171 	uchar_t hl_pad[64 - sizeof (kmutex_t)];
172 } hatlock_t;
173 
174 #define	HATLOCK_MUTEXP(hatlockp)	(&((hatlockp)->hl_mutex))
175 
176 /*
177  * All segments mapped with ISM are guaranteed to be 4M, 32M or 256M aligned.
178  * Also size is guaranteed to be in 4M, 32M or 256M chunks.
179  * ism_seg consists of the following members:
180  * [XX..22] base address of ism segment. XX is 63 or 31 depending whether
181  *	caddr_t is 64 bits or 32 bits.
182  * [21..0] size of segment.
183  *
184  * NOTE: Don't alter this structure without changing defines above and
185  * the tsb_miss and protection handlers.
186  */
187 typedef struct ism_map {
188 	uintptr_t	imap_seg;  	/* base va + sz of ISM segment */
189 	uchar_t		imap_vb_shift;	/* mmu_pageshift for ism page size */
190 	uchar_t		imap_rid;	/* region id for ism */
191 	ushort_t	imap_hatflags;	/* primary ism page size */
192 	uint_t		imap_sz_mask;	/* mmu_pagemask for ism page size */
193 	sfmmu_t		*imap_ismhat; 	/* hat id of dummy ISM as */
194 	struct ism_ment	*imap_ment;	/* pointer to mapping list entry */
195 } ism_map_t;
196 
197 #define	ism_start(map)	((caddr_t)((map).imap_seg & \
198 				~ISM_SZ_MASK((map).imap_vb_shift)))
199 #define	ism_size(map)	((map).imap_seg & ISM_SZ_MASK((map).imap_vb_shift))
200 #define	ism_end(map)	((caddr_t)(ism_start(map) + (ism_size(map) * \
201 				ISM_PG_SIZE((map).imap_vb_shift))))
202 /*
203  * ISM mapping entry. Used to link all hat's sharing a ism_hat.
204  * Same function as the p_mapping list for a page.
205  */
206 typedef struct ism_ment {
207 	sfmmu_t		*iment_hat;	/* back pointer to hat_share() hat */
208 	caddr_t		iment_base_va;	/* hat's va base for this ism seg */
209 	struct ism_ment	*iment_next;	/* next ism map entry */
210 	struct ism_ment	*iment_prev;	/* prev ism map entry */
211 } ism_ment_t;
212 
213 /*
214  * ISM segment block. One will be hung off the sfmmu structure if a
215  * a process uses ISM.  More will be linked using ismblk_next if more
216  * than ISM_MAP_SLOTS segments are attached to this proc.
217  *
218  * All modifications to fields in this structure will be protected
219  * by the hat mutex.  In order to avoid grabbing this lock in low level
220  * routines (tsb miss/protection handlers and vatopfn) while not
221  * introducing any race conditions with hat_unshare, we will set
222  * CTX_ISM_BUSY bit in the ctx struct. Any mmu traps that occur
223  * for this ctx while this bit is set will be handled in sfmmu_tsb_excption
224  * where it will synchronize behind the hat mutex.
225  */
226 typedef struct ism_blk {
227 	ism_map_t		iblk_maps[ISM_MAP_SLOTS];
228 	struct ism_blk		*iblk_next;
229 	uint64_t		iblk_nextpa;
230 } ism_blk_t;
231 
232 /*
233  * TSB access information.  All fields are protected by the process's
234  * hat lock.
235  */
236 
237 struct tsb_info {
238 	caddr_t		tsb_va;		/* tsb base virtual address */
239 	uint64_t	tsb_pa;		/* tsb base physical address */
240 	struct tsb_info	*tsb_next;	/* next tsb used by this process */
241 	uint16_t	tsb_szc;	/* tsb size code */
242 	uint16_t	tsb_flags;	/* flags for this tsb; see below */
243 	uint_t		tsb_ttesz_mask;	/* page size masks; see below */
244 
245 	tte_t		tsb_tte;	/* tte to lock into DTLB */
246 	sfmmu_t		*tsb_sfmmu;	/* sfmmu */
247 	kmem_cache_t	*tsb_cache;	/* cache from which mem allocated */
248 	vmem_t		*tsb_vmp;	/* vmem arena from which mem alloc'd */
249 };
250 
251 /*
252  * Values for "tsb_ttesz_mask" bitmask.
253  */
254 #define	TSB8K	(1 << TTE8K)
255 #define	TSB64K  (1 << TTE64K)
256 #define	TSB512K (1 << TTE512K)
257 #define	TSB4M   (1 << TTE4M)
258 #define	TSB32M  (1 << TTE32M)
259 #define	TSB256M (1 << TTE256M)
260 
261 /*
262  * Values for "tsb_flags" field.
263  */
264 #define	TSB_RELOC_FLAG		0x1
265 #define	TSB_FLUSH_NEEDED	0x2
266 #define	TSB_SWAPPED	0x4
267 #define	TSB_SHAREDCTX		0x8
268 
269 #endif	/* !_ASM */
270 
271 /*
272  * Data structures for shared hmeblk support.
273  */
274 
275 /*
276  * Do not increase the maximum number of ism/hme regions without checking first
277  * the impact on ism_map_t, TSB miss area, hblk tag and region id type in
278  * sf_region structure.
279  * Initially, shared hmes will only be used for the main text segment
280  * therefore this value will be set to 64, it will be increased when shared
281  * libraries are included.
282  */
283 
284 #define	SFMMU_MAX_HME_REGIONS		(64)
285 #define	SFMMU_HMERGNMAP_WORDS		BT_BITOUL(SFMMU_MAX_HME_REGIONS)
286 
287 #define	SFMMU_PRIVATE	0
288 #define	SFMMU_SHARED	1
289 
290 #ifndef _ASM
291 
292 #define	SFMMU_MAX_ISM_REGIONS		(64)
293 #define	SFMMU_ISMRGNMAP_WORDS		BT_BITOUL(SFMMU_MAX_ISM_REGIONS)
294 
295 #define	SFMMU_RGNMAP_WORDS	(SFMMU_HMERGNMAP_WORDS + SFMMU_ISMRGNMAP_WORDS)
296 
297 #define	SFMMU_MAX_REGION_BUCKETS	(128)
298 #define	SFMMU_MAX_SRD_BUCKETS		(2048)
299 
300 typedef struct sf_hmeregion_map {
301 	ulong_t	bitmap[SFMMU_HMERGNMAP_WORDS];
302 } sf_hmeregion_map_t;
303 
304 typedef struct sf_ismregion_map {
305 	ulong_t	bitmap[SFMMU_ISMRGNMAP_WORDS];
306 } sf_ismregion_map_t;
307 
308 typedef union sf_region_map_u {
309 	struct _h_rmap_s {
310 		sf_hmeregion_map_t hmeregion_map;
311 		sf_ismregion_map_t ismregion_map;
312 	} h_rmap_s;
313 	ulong_t	bitmap[SFMMU_RGNMAP_WORDS];
314 } sf_region_map_t;
315 
316 #define	SF_RGNMAP_ZERO(map) {				\
317 	int _i;						\
318 	for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) {	\
319 		(map).bitmap[_i] = 0;			\
320 	}						\
321 }
322 
323 /*
324  * Returns 1 if map1 and map2 are equal.
325  */
326 #define	SF_RGNMAP_EQUAL(map1, map2, rval)	{		\
327 	int _i;							\
328 	for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) {		\
329 		if ((map1)->bitmap[_i] != (map2)->bitmap[_i])	\
330 			break;					\
331 	}							\
332 	if (_i < SFMMU_RGNMAP_WORDS)				\
333 		rval = 0;					\
334 	else							\
335 		rval = 1;					\
336 }
337 
338 #define	SF_RGNMAP_ADD(map, r)		BT_SET((map).bitmap, r)
339 #define	SF_RGNMAP_DEL(map, r)		BT_CLEAR((map).bitmap, r)
340 #define	SF_RGNMAP_TEST(map, r)		BT_TEST((map).bitmap, r)
341 
342 /*
343  * Tests whether map2 is a subset of map1, returns 1 if
344  * this assertion is true.
345  */
346 #define	SF_RGNMAP_IS_SUBSET(map1, map2, rval)	{		\
347 	int _i;							\
348 	for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) {		\
349 		if (((map1)->bitmap[_i]	& (map2)->bitmap[_i])	\
350 		    != (map2)->bitmap[_i])  {	 		\
351 			break;					\
352 		}						\
353 	}							\
354 	if (_i < SFMMU_RGNMAP_WORDS)		 		\
355 		rval = 0;					\
356 	else							\
357 		rval = 1;					\
358 }
359 
360 #define	SF_SCD_INCR_REF(scdp) {						\
361 	atomic_add_32((volatile uint32_t *)&(scdp)->scd_refcnt, 1);	\
362 }
363 
364 #define	SF_SCD_DECR_REF(srdp, scdp) {				\
365 	sf_region_map_t _scd_rmap = (scdp)->scd_region_map;	\
366 	if (!atomic_add_32_nv(					\
367 	    (volatile uint32_t *)&(scdp)->scd_refcnt, -1)) {	\
368 		sfmmu_destroy_scd((srdp), (scdp), &_scd_rmap);	\
369 	}							\
370 }
371 
372 /*
373  * A sfmmup link in the link list of sfmmups that share the same region.
374  */
375 typedef struct sf_rgn_link {
376 	sfmmu_t	*next;
377 	sfmmu_t *prev;
378 } sf_rgn_link_t;
379 
380 /*
381  * rgn_flags values.
382  */
383 #define	SFMMU_REGION_HME	0x1
384 #define	SFMMU_REGION_ISM	0x2
385 #define	SFMMU_REGION_FREE	0x8
386 
387 #define	SFMMU_REGION_TYPE_MASK	(0x3)
388 
389 /*
390  * sf_region defines a text or (D)ISM segment which map
391  * the same underlying physical object.
392  */
393 typedef struct sf_region {
394 	caddr_t			rgn_saddr;   /* base addr of attached seg */
395 	size_t			rgn_size;    /* size of attached seg */
396 	void			*rgn_obj;    /* the underlying object id */
397 	u_offset_t		rgn_objoff;  /* offset in the object mapped */
398 	uchar_t			rgn_perm;    /* PROT_READ/WRITE/EXEC */
399 	uchar_t			rgn_pgszc;   /* page size of the region */
400 	uchar_t			rgn_flags;   /* region type, free flag */
401 	uchar_t			rgn_id;
402 	int			rgn_refcnt;  /* # of hats sharing the region */
403 	/* callback function for hat_unload_callback */
404 	hat_rgn_cb_func_t	rgn_cb_function;
405 	struct sf_region	*rgn_hash;   /* hash chain linking the rgns */
406 	kmutex_t		rgn_mutex;   /* protect region sfmmu list */
407 	/* A link list of processes attached to this region */
408 	sfmmu_t			*rgn_sfmmu_head;
409 	ulong_t			rgn_ttecnt[MMU_PAGE_SIZES];
410 	uint16_t		rgn_hmeflags; /* rgn tte size flags */
411 } sf_region_t;
412 
413 #define	rgn_next	rgn_hash
414 
415 /* srd */
416 typedef struct sf_shared_region_domain {
417 	vnode_t			*srd_evp;	/* executable vnode */
418 	/* hme region table */
419 	sf_region_t		*srd_hmergnp[SFMMU_MAX_HME_REGIONS];
420 	/* ism region table */
421 	sf_region_t		*srd_ismrgnp[SFMMU_MAX_ISM_REGIONS];
422 	/* hash chain linking srds */
423 	struct sf_shared_region_domain *srd_hash;
424 	/* pointer to the next free hme region */
425 	sf_region_t		*srd_hmergnfree;
426 	/* pointer to the next free ism region */
427 	sf_region_t		*srd_ismrgnfree;
428 	/* id of next ism region created */
429 	uint16_t		srd_next_ismrid;
430 	/* id of next hme region created */
431 	uint16_t		srd_next_hmerid;
432 	uint16_t		srd_ismbusyrgns; /* # of ism rgns in use */
433 	uint16_t		srd_hmebusyrgns; /* # of hme rgns in use */
434 	int			srd_refcnt;	 /* # of procs in the srd */
435 	kmutex_t		srd_mutex;	 /* sync add/remove rgns */
436 	kmutex_t		srd_scd_mutex;
437 	sf_scd_t		*srd_scdp;	 /* list of scds in srd */
438 	/* hash of regions associated with the same executable */
439 	sf_region_t		*srd_rgnhash[SFMMU_MAX_REGION_BUCKETS];
440 } sf_srd_t;
441 
442 typedef struct sf_srd_bucket {
443 	kmutex_t	srdb_lock;
444 	sf_srd_t	*srdb_srdp;
445 } sf_srd_bucket_t;
446 
447 /*
448  * The value of SFMMU_L1_HMERLINKS and SFMMU_L2_HMERLINKS will be increased
449  * to 16 when the use of shared hmes for shared libraries is enabled.
450  */
451 
452 #define	SFMMU_L1_HMERLINKS		(8)
453 #define	SFMMU_L2_HMERLINKS		(8)
454 #define	SFMMU_L1_HMERLINKS_SHIFT	(3)
455 #define	SFMMU_L1_HMERLINKS_MASK		(SFMMU_L1_HMERLINKS - 1)
456 #define	SFMMU_L2_HMERLINKS_MASK		(SFMMU_L2_HMERLINKS - 1)
457 #define	SFMMU_L1_HMERLINKS_SIZE		\
458 	(SFMMU_L1_HMERLINKS * sizeof (sf_rgn_link_t *))
459 #define	SFMMU_L2_HMERLINKS_SIZE		\
460 	(SFMMU_L2_HMERLINKS * sizeof (sf_rgn_link_t))
461 
462 #if (SFMMU_L1_HMERLINKS * SFMMU_L2_HMERLINKS < SFMMU_MAX_HME_REGIONS)
463 #error Not Enough HMERLINKS
464 #endif
465 
466 /*
467  * This macro grabs hat lock and allocates level 2 hat chain
468  * associated with a shme rgn. In the majority of cases, the macro
469  * is called with alloc = 0, and lock = 0.
470  * A pointer to the level 2 sf_rgn_link_t structure is returned in the lnkp
471  * parameter.
472  */
473 #define	SFMMU_HMERID2RLINKP(sfmmup, rid, lnkp, alloc, lock)		\
474 {									\
475 	int _l1ix = ((rid) >> SFMMU_L1_HMERLINKS_SHIFT) &		\
476 	    SFMMU_L1_HMERLINKS_MASK;					\
477 	int _l2ix = ((rid) & SFMMU_L2_HMERLINKS_MASK);			\
478 	hatlock_t *_hatlockp;						\
479 	lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix];			\
480 	if (lnkp != NULL) {						\
481 		lnkp = &lnkp[_l2ix];					\
482 	} else if (alloc && lock) {					\
483 		lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP);	\
484 		_hatlockp = sfmmu_hat_enter(sfmmup);			\
485 		if ((sfmmup)->sfmmu_hmeregion_links[_l1ix] != NULL) {	\
486 			sfmmu_hat_exit(_hatlockp);			\
487 			kmem_free(lnkp, SFMMU_L2_HMERLINKS_SIZE);	\
488 			lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix];	\
489 			ASSERT(lnkp != NULL);				\
490 		} else {						\
491 			(sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp;	\
492 			sfmmu_hat_exit(_hatlockp);			\
493 		}							\
494 		lnkp = &lnkp[_l2ix];					\
495 	} else if (alloc) {						\
496 		lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP);	\
497 		ASSERT((sfmmup)->sfmmu_hmeregion_links[_l1ix] == NULL);	\
498 		(sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp;		\
499 		lnkp = &lnkp[_l2ix];					\
500 	}								\
501 }
502 
503 /*
504  * Per-MMU context domain kstats.
505  *
506  * TSB Miss Exceptions
507  *	Number of times a TSB miss exception is handled in an MMU. See
508  *	sfmmu_tsbmiss_exception() for more details.
509  * TSB Raise Exception
510  *	Number of times the CPUs within an MMU are cross-called
511  *	to invalidate either a specific process context (when the process
512  *	switches MMU contexts) or the context of any process that is
513  *	running on those CPUs (as part of the MMU context wrap-around).
514  * Wrap Around
515  *	The number of times a wrap-around of MMU context happens.
516  */
517 typedef enum mmu_ctx_stat_types {
518 	MMU_CTX_TSB_EXCEPTIONS,		/* TSB miss exceptions handled */
519 	MMU_CTX_TSB_RAISE_EXCEPTION,	/* ctx invalidation cross calls */
520 	MMU_CTX_WRAP_AROUND,		/* wraparounds */
521 	MMU_CTX_NUM_STATS
522 } mmu_ctx_stat_t;
523 
524 /*
525  * Per-MMU context domain structure. This is instantiated the first time a CPU
526  * belonging to the MMU context domain is configured into the system, at boot
527  * time or at DR time.
528  *
529  * mmu_gnum
530  *	The current generation number for the context IDs on this MMU context
531  *	domain. It is protected by mmu_lock.
532  * mmu_cnum
533  *	The current cnum to be allocated on this MMU context domain. It
534  *	is protected via CAS.
535  * mmu_nctxs
536  *	The max number of context IDs supported on every CPU in this
537  *	MMU context domain. It is 8K except for Rock where it is 64K.
538  *      This is needed here in case the system supports mixed type of
539  *      processors/MMUs. It also helps to make ctx switch code access
540  *      fewer cache lines i.e. no need to retrieve it from some global nctxs.
541  * mmu_lock
542  *	The mutex spin lock used to serialize context ID wrap around
543  * mmu_idx
544  *	The index for this MMU context domain structure in the global array
545  *	mmu_ctxdoms.
546  * mmu_ncpus
547  *	The actual number of CPUs that have been configured in this
548  *	MMU context domain. This also acts as a reference count for the
549  *	structure. When the last CPU in an MMU context domain is unconfigured,
550  *	the structure is freed. It is protected by mmu_lock.
551  * mmu_cpuset
552  *	The CPU set of configured CPUs for this MMU context domain. Used
553  *	to cross-call all the CPUs in the MMU context domain to invalidate
554  *	context IDs during a wraparound operation. It is protected by mmu_lock.
555  */
556 
557 typedef struct mmu_ctx {
558 	uint64_t	mmu_gnum;
559 	uint_t		mmu_cnum;
560 	uint_t		mmu_nctxs;
561 	kmutex_t	mmu_lock;
562 	uint_t		mmu_idx;
563 	uint_t		mmu_ncpus;
564 	cpuset_t	mmu_cpuset;
565 	kstat_t		*mmu_kstat;
566 	kstat_named_t	mmu_kstat_data[MMU_CTX_NUM_STATS];
567 } mmu_ctx_t;
568 
569 #define	mmu_tsb_exceptions	\
570 		mmu_kstat_data[MMU_CTX_TSB_EXCEPTIONS].value.ui64
571 #define	mmu_tsb_raise_exception	\
572 		mmu_kstat_data[MMU_CTX_TSB_RAISE_EXCEPTION].value.ui64
573 #define	mmu_wrap_around		\
574 		mmu_kstat_data[MMU_CTX_WRAP_AROUND].value.ui64
575 
576 extern uint_t		max_mmu_ctxdoms;
577 extern mmu_ctx_t	**mmu_ctxs_tbl;
578 
579 extern void	sfmmu_cpu_init(cpu_t *);
580 extern void	sfmmu_cpu_cleanup(cpu_t *);
581 
582 /*
583  * The following structure is used to get MMU context domain information for
584  * a CPU from the platform.
585  *
586  * mmu_idx
587  *	The MMU context domain index within the global array mmu_ctxs
588  * mmu_nctxs
589  *	The number of context IDs supported in the MMU context domain
590  *	(64K for Rock)
591  */
592 typedef struct mmu_ctx_info {
593 	uint_t		mmu_idx;
594 	uint_t		mmu_nctxs;
595 } mmu_ctx_info_t;
596 
597 #pragma weak plat_cpuid_to_mmu_ctx_info
598 
599 extern void	plat_cpuid_to_mmu_ctx_info(processorid_t, mmu_ctx_info_t *);
600 
601 /*
602  * Each address space has an array of sfmmu_ctx_t structures, one structure
603  * per MMU context domain.
604  *
605  * cnum
606  *	The context ID allocated for an address space on an MMU context domain
607  * gnum
608  *	The generation number for the context ID in the MMU context domain.
609  *
610  * This structure needs to be a power-of-two in size.
611  */
612 typedef struct sfmmu_ctx {
613 	uint64_t	gnum:48;
614 	uint64_t	cnum:16;
615 } sfmmu_ctx_t;
616 
617 
618 /*
619  * The platform dependent hat structure.
620  * tte counts should be protected by cas.
621  * cpuset is protected by cas.
622  *
623  * ttecnt accounting for mappings which do not use shared hme is carried out
624  * during pagefault handling. In the shared hme case, only the first process
625  * to access a mapping generates a pagefault, subsequent processes simply
626  * find the shared hme entry during trap handling and therefore there is no
627  * corresponding event to initiate ttecnt accounting. Currently, as shared
628  * hmes are only used for text segments, when joining a region we assume the
629  * worst case and add the the number of ttes required to map the entire region
630  * to the ttecnt corresponding to the region pagesize. However, if the region
631  * has a 4M pagesize, and memory is low, the allocation of 4M pages may fail
632  * then 8K pages will be allocated instead and the first TSB which stores 8K
633  * mappings will potentially be undersized. To compensate for the potential
634  * underaccounting in this case we always add 1/4 of the region size to the 8K
635  * ttecnt.
636  *
637  * Note that sfmmu_xhat_provider MUST be the first element.
638  */
639 
640 struct hat {
641 	void		*sfmmu_xhat_provider;	/* NULL for CPU hat */
642 	cpuset_t	sfmmu_cpusran;	/* cpu bit mask for efficient xcalls */
643 	struct	as	*sfmmu_as;	/* as this hat provides mapping for */
644 	/* per pgsz private ttecnt + shme rgns ttecnt for rgns not in SCD */
645 	ulong_t		sfmmu_ttecnt[MMU_PAGE_SIZES];
646 	/* shme rgns ttecnt for rgns in SCD */
647 	ulong_t		sfmmu_scdrttecnt[MMU_PAGE_SIZES];
648 	/* est. ism ttes that are NOT in a SCD */
649 	ulong_t		sfmmu_ismttecnt[MMU_PAGE_SIZES];
650 	/* ttecnt for isms that are in a SCD */
651 	ulong_t		sfmmu_scdismttecnt[MMU_PAGE_SIZES];
652 	/* inflate tsb0 to allow for large page alloc failure in region */
653 	ulong_t		sfmmu_tsb0_4minflcnt;
654 	union _h_un {
655 		ism_blk_t	*sfmmu_iblkp;  /* maps to ismhat(s) */
656 		ism_ment_t	*sfmmu_imentp; /* ism hat's mapping list */
657 	} h_un;
658 	uint_t		sfmmu_free:1;	/* hat to be freed - set on as_free */
659 	uint_t		sfmmu_ismhat:1;	/* hat is dummy ism hatid */
660 	uint_t		sfmmu_scdhat:1;	/* hat is dummy scd hatid */
661 	uchar_t		sfmmu_rmstat;	/* refmod stats refcnt */
662 	ushort_t	sfmmu_clrstart;	/* start color bin for page coloring */
663 	ushort_t	sfmmu_clrbin;	/* per as phys page coloring bin */
664 	ushort_t	sfmmu_flags;	/* flags */
665 	uchar_t		sfmmu_tteflags;	/* pgsz flags */
666 	uchar_t		sfmmu_rtteflags; /* pgsz flags for SRD hmes */
667 	struct tsb_info	*sfmmu_tsb;	/* list of per as tsbs */
668 	uint64_t	sfmmu_ismblkpa; /* pa of sfmmu_iblkp, or -1 */
669 	lock_t		sfmmu_ctx_lock;	/* sync ctx alloc and invalidation */
670 	kcondvar_t	sfmmu_tsb_cv;	/* signals TSB swapin or relocation */
671 	uchar_t		sfmmu_cext;	/* context page size encoding */
672 	uint8_t		sfmmu_pgsz[MMU_PAGE_SIZES];  /* ranking for MMU */
673 	sf_srd_t	*sfmmu_srdp;
674 	sf_scd_t	*sfmmu_scdp;	/* scd this address space belongs to */
675 	sf_region_map_t	sfmmu_region_map;
676 	sf_rgn_link_t	*sfmmu_hmeregion_links[SFMMU_L1_HMERLINKS];
677 	sf_rgn_link_t	sfmmu_scd_link;	/* link to scd or pending queue */
678 #ifdef sun4v
679 	struct hv_tsb_block sfmmu_hvblock;
680 #endif
681 	/*
682 	 * sfmmu_ctxs is a variable length array of max_mmu_ctxdoms # of
683 	 * elements. max_mmu_ctxdoms is determined at run-time.
684 	 * sfmmu_ctxs[1] is just the fist element of an array, it always
685 	 * has to be the last field to ensure that the memory allocated
686 	 * for sfmmu_ctxs is consecutive with the memory of the rest of
687 	 * the hat data structure.
688 	 */
689 	sfmmu_ctx_t	sfmmu_ctxs[1];
690 
691 };
692 
693 #define	sfmmu_iblk	h_un.sfmmu_iblkp
694 #define	sfmmu_iment	h_un.sfmmu_imentp
695 
696 #define	sfmmu_hmeregion_map	sfmmu_region_map.h_rmap_s.hmeregion_map
697 #define	sfmmu_ismregion_map	sfmmu_region_map.h_rmap_s.ismregion_map
698 
699 #define	SF_RGNMAP_ISNULL(sfmmup)	\
700 	(sfrgnmap_isnull(&(sfmmup)->sfmmu_region_map))
701 #define	SF_HMERGNMAP_ISNULL(sfmmup)	\
702 	(sfhmergnmap_isnull(&(sfmmup)->sfmmu_hmeregion_map))
703 
704 struct sf_scd {
705 	sfmmu_t		*scd_sfmmup;	/* shared context hat */
706 	/* per pgsz ttecnt for shme rgns in SCD */
707 	ulong_t		scd_rttecnt[MMU_PAGE_SIZES];
708 	uint_t		scd_refcnt;	/* address spaces attached to scd */
709 	sf_region_map_t scd_region_map; /* bit mask of attached segments */
710 	sf_scd_t	*scd_next;	/* link pointers for srd_scd list */
711 	sf_scd_t	*scd_prev;
712 	sfmmu_t 	*scd_sf_list;	/* list of doubly linked hat structs */
713 	kmutex_t 	scd_mutex;
714 	/*
715 	 * Link used to add an scd to the sfmmu_iment list.
716 	 */
717 	ism_ment_t	scd_ism_links[SFMMU_MAX_ISM_REGIONS];
718 };
719 
720 #define	scd_hmeregion_map	scd_region_map.h_rmap_s.hmeregion_map
721 #define	scd_ismregion_map	scd_region_map.h_rmap_s.ismregion_map
722 
723 extern int disable_shctx;
724 extern int shctx_on;
725 
726 /*
727  * bit mask for managing vac conflicts on large pages.
728  * bit 1 is for uncache flag.
729  * bits 2 through min(num of cache colors + 1,31) are
730  * for cache colors that have already been flushed.
731  */
732 #ifdef VAC
733 #define	CACHE_NUM_COLOR		(shm_alignment >> MMU_PAGESHIFT)
734 #else
735 #define	CACHE_NUM_COLOR		1
736 #endif
737 
738 #define	CACHE_VCOLOR_MASK(vcolor)	(2 << (vcolor & (CACHE_NUM_COLOR - 1)))
739 
740 #define	CacheColor_IsFlushed(flag, vcolor) \
741 					((flag) & CACHE_VCOLOR_MASK(vcolor))
742 
743 #define	CacheColor_SetFlushed(flag, vcolor) \
744 					((flag) |= CACHE_VCOLOR_MASK(vcolor))
745 /*
746  * Flags passed to sfmmu_page_cache to flush page from vac or not.
747  */
748 #define	CACHE_FLUSH	0
749 #define	CACHE_NO_FLUSH	1
750 
751 /*
752  * Flags passed to sfmmu_tlbcache_demap
753  */
754 #define	FLUSH_NECESSARY_CPUS	0
755 #define	FLUSH_ALL_CPUS		1
756 
757 #ifdef	DEBUG
758 /*
759  * For debugging purpose only. Maybe removed later.
760  */
761 struct ctx_trace {
762 	sfmmu_t		*sc_sfmmu_stolen;
763 	sfmmu_t		*sc_sfmmu_stealing;
764 	clock_t		sc_time;
765 	ushort_t	sc_type;
766 	ushort_t	sc_cnum;
767 };
768 #define	CTX_TRC_STEAL	0x1
769 #define	CTX_TRC_FREE	0x0
770 #define	TRSIZE	0x400
771 #define	NEXT_CTXTR(ptr)	(((ptr) >= ctx_trace_last) ? \
772 		ctx_trace_first : ((ptr) + 1))
773 #define	TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type) \
774 	mutex_enter(mutex);						\
775 	(ptr)->sc_sfmmu_stolen = (stolen_sfmmu);			\
776 	(ptr)->sc_sfmmu_stealing = (stealing_sfmmu);			\
777 	(ptr)->sc_cnum = (cnum);					\
778 	(ptr)->sc_type = (type);					\
779 	(ptr)->sc_time = lbolt;						\
780 	(ptr) = NEXT_CTXTR(ptr);					\
781 	num_ctx_stolen += (type);					\
782 	mutex_exit(mutex);
783 #else
784 
785 #define	TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type)
786 
787 #endif	/* DEBUG */
788 
789 #endif	/* !_ASM */
790 
791 /*
792  * Macros for sfmmup->sfmmu_flags access.  The macros that change the flags
793  * ASSERT() that we're holding the HAT lock before changing the flags;
794  * however callers that read the flags may do so without acquiring the lock
795  * in a fast path, and then recheck the flag after acquiring the lock in
796  * a slow path.
797  */
798 #define	SFMMU_FLAGS_ISSET(sfmmup, flags) \
799 	(((sfmmup)->sfmmu_flags & (flags)) == (flags))
800 
801 #define	SFMMU_FLAGS_CLEAR(sfmmup, flags) \
802 	(ASSERT(sfmmu_hat_lock_held((sfmmup))), \
803 	(sfmmup)->sfmmu_flags &= ~(flags))
804 
805 #define	SFMMU_FLAGS_SET(sfmmup, flags) \
806 	(ASSERT(sfmmu_hat_lock_held((sfmmup))), \
807 	(sfmmup)->sfmmu_flags |= (flags))
808 
809 #define	SFMMU_TTEFLAGS_ISSET(sfmmup, flags) \
810 	((((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) & (flags)) == \
811 	    (flags))
812 
813 
814 /*
815  * sfmmu tte HAT flags, must fit in 8 bits
816  */
817 #define	HAT_CHKCTX1_FLAG 0x1
818 #define	HAT_64K_FLAG	(0x1 << TTE64K)
819 #define	HAT_512K_FLAG	(0x1 << TTE512K)
820 #define	HAT_4M_FLAG	(0x1 << TTE4M)
821 #define	HAT_32M_FLAG	(0x1 << TTE32M)
822 #define	HAT_256M_FLAG	(0x1 << TTE256M)
823 
824 /*
825  * sfmmu HAT flags, 16 bits at the moment.
826  */
827 #define	HAT_4MTEXT_FLAG		0x01
828 #define	HAT_32M_ISM		0x02
829 #define	HAT_256M_ISM		0x04
830 #define	HAT_SWAPPED		0x08 /* swapped out */
831 #define	HAT_SWAPIN		0x10 /* swapping in */
832 #define	HAT_BUSY		0x20 /* replacing TSB(s) */
833 #define	HAT_ISMBUSY		0x40 /* adding/removing/traversing ISM maps */
834 
835 #define	HAT_CTX1_FLAG   	0x100 /* ISM imap hatflag for ctx1 */
836 #define	HAT_JOIN_SCD		0x200 /* region is joining scd */
837 #define	HAT_ALLCTX_INVALID	0x400 /* all per-MMU ctxs are invalidated */
838 
839 #define	SFMMU_LGPGS_INUSE(sfmmup)					\
840 	(((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) ||	\
841 	    ((sfmmup)->sfmmu_iblk != NULL))
842 
843 /*
844  * Starting with context 0, the first NUM_LOCKED_CTXS contexts
845  * are locked so that sfmmu_getctx can't steal any of these
846  * contexts.  At the time this software was being developed, the
847  * only context that needs to be locked is context 0 (the kernel
848  * context), and context 1 (reserved for stolen context). So this constant
849  * was originally defined to be 2.
850  *
851  * For sun4v only, USER_CONTEXT_TYPE represents any user context.  Many
852  * routines only care whether the context is kernel, invalid or user.
853  */
854 
855 #define	NUM_LOCKED_CTXS 2
856 #define	INVALID_CONTEXT	1
857 
858 #ifdef sun4v
859 #define	USER_CONTEXT_TYPE	NUM_LOCKED_CTXS
860 #endif
861 #if defined(sun4v) || defined(UTSB_PHYS)
862 /*
863  * Get the location in the 4MB base TSB of the tsbe for this fault.
864  * Assumes that the second TSB only contains 4M mappings.
865  *
866  * In:
867  *   tagacc = tag access register (not clobbered)
868  *   tsbe = 2nd TSB base register
869  *   tmp1, tmp2 = scratch registers
870  * Out:
871  *   tsbe = pointer to the tsbe in the 2nd TSB
872  */
873 
874 #define	GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)			\
875 	and	tsbe, TSB_SOFTSZ_MASK, tmp2;	/* tmp2=szc */		\
876 	andn	tsbe, TSB_SOFTSZ_MASK, tsbe;	/* tsbbase */		\
877 	mov	TSB_ENTRIES(0), tmp1;	/* nentries in TSB size 0 */	\
878 	sllx	tmp1, tmp2, tmp1;	/* tmp1 = nentries in TSB */	\
879 	sub	tmp1, 1, tmp1;		/* mask = nentries - 1 */	\
880 	srlx	tagacc, MMU_PAGESHIFT4M, tmp2; 				\
881 	and	tmp2, tmp1, tmp1;	/* tsbent = virtpage & mask */	\
882 	sllx	tmp1, TSB_ENTRY_SHIFT, tmp1;	/* entry num --> ptr */	\
883 	add	tsbe, tmp1, tsbe	/* add entry offset to TSB base */
884 
885 #define	GET_2ND_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)			\
886 	GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)
887 
888 /*
889  * Get the location in the 3rd TSB of the tsbe for this fault.
890  * The 3rd TSB corresponds to the shared context, and is used
891  * for 8K - 512k pages.
892  *
893  * In:
894  *   tagacc = tag access register (not clobbered)
895  *   tsbe, tmp1, tmp2 = scratch registers
896  * Out:
897  *   tsbe = pointer to the tsbe in the 3rd TSB
898  */
899 
900 #define	GET_3RD_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)			\
901 	and	tsbe, TSB_SOFTSZ_MASK, tmp2;    /* tmp2=szc */		\
902 	andn	tsbe, TSB_SOFTSZ_MASK, tsbe;    /* tsbbase */		\
903 	mov	TSB_ENTRIES(0), tmp1;	/* nentries in TSB size 0 */	\
904 	sllx	tmp1, tmp2, tmp1;	/* tmp1 = nentries in TSB */	\
905 	sub	tmp1, 1, tmp1;		/* mask = nentries - 1 */	\
906 	srlx	tagacc, MMU_PAGESHIFT, tmp2;				\
907 	and	tmp2, tmp1, tmp1;	/* tsbent = virtpage & mask */	\
908 	sllx	tmp1, TSB_ENTRY_SHIFT, tmp1;    /* entry num --> ptr */	\
909 	add	tsbe, tmp1, tsbe	/* add entry offset to TSB base */
910 
911 #define	GET_4TH_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)                      \
912 	GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)
913 /*
914  * Copy the sfmmu_region_map or scd_region_map to the tsbmiss
915  * shmermap or scd_shmermap, from sfmmu_load_mmustate.
916  */
917 #define	SET_REGION_MAP(rgn_map, tsbmiss_map, cnt, tmp, label)		\
918 	/* BEGIN CSTYLED */						\
919 label:									;\
920         ldx     [rgn_map], tmp						;\
921         dec     cnt							;\
922         add     rgn_map, CLONGSIZE, rgn_map                             ;\
923         stx     tmp, [tsbmiss_map]                                      ;\
924         brnz,pt cnt, label                                              ;\
925 	    add   tsbmiss_map, CLONGSIZE, tsbmiss_map                    \
926 	/* END CSTYLED */
927 
928 /*
929  * If there is no scd, then zero the tsbmiss scd_shmermap,
930  * from sfmmu_load_mmustate.
931  */
932 #define	ZERO_REGION_MAP(tsbmiss_map, cnt, label)                        \
933 	/* BEGIN CSTYLED */                                             \
934 label:                                                                  ;\
935         dec     cnt                                                     ;\
936         stx     %g0, [tsbmiss_map]                                      ;\
937         brnz,pt cnt, label                                              ;\
938 	    add   tsbmiss_map, CLONGSIZE, tsbmiss_map
939 	/* END CSTYLED */
940 
941 /*
942  * Set hmemisc to 1 if the shared hme is also part of an scd.
943  * In:
944  *   tsbarea = tsbmiss area (not clobbered)
945  *   hmeblkpa  = hmeblkpa +  hmentoff + SFHME_TTE (not clobbered)
946  *   hmentoff = hmentoff + SFHME_TTE = tte offset(clobbered)
947  * Out:
948  *   use_shctx = 1 if shme is in scd and 0 otherwise
949  */
950 #define	GET_SCDSHMERMAP(tsbarea, hmeblkpa, hmentoff, use_shctx)               \
951 	/* BEGIN CSTYLED */   	                                              \
952         sub     hmeblkpa, hmentoff, hmentoff    /* hmentofff = hmeblkpa */   ;\
953         add     hmentoff, HMEBLK_TAG, hmentoff                               ;\
954         ldxa    [hmentoff]ASI_MEM, hmentoff     /* read 1st part of tag */   ;\
955         and     hmentoff, HTAG_RID_MASK, hmentoff       /* mask off rid */   ;\
956         and     hmentoff, BT_ULMASK, use_shctx  /* mask bit index */         ;\
957         srlx    hmentoff, BT_ULSHIFT, hmentoff  /* extract word */           ;\
958         sllx    hmentoff, CLONGSHIFT, hmentoff  /* index */                  ;\
959         add     tsbarea, hmentoff, hmentoff             /* add to tsbarea */ ;\
960         ldx     [hmentoff + TSBMISS_SCDSHMERMAP], hmentoff      /* scdrgn */ ;\
961         srlx    hmentoff, use_shctx, use_shctx                               ;\
962         and     use_shctx, 0x1, use_shctx                                     \
963 	/* END CSTYLED */
964 
965 /*
966  * Synthesize a TSB base register contents for a process.
967  *
968  * In:
969  *   tsbinfo = TSB info pointer (ro)
970  *   tsbreg, tmp1 = scratch registers
971  * Out:
972  *   tsbreg = value to program into TSB base register
973  */
974 
975 #define	MAKE_UTSBREG(tsbinfo, tsbreg, tmp1)			\
976 	ldx	[tsbinfo + TSBINFO_PADDR], tsbreg;		\
977 	lduh	[tsbinfo + TSBINFO_SZCODE], tmp1;		\
978 	and	tmp1, TSB_SOFTSZ_MASK, tmp1;			\
979 	or	tsbreg, tmp1, tsbreg;
980 
981 
982 /*
983  * Load TSB base register to TSBMISS area for privte contexts.
984  * This register contains utsb_pabase in bits 63:13, and TSB size
985  * code in bits 2:0.
986  *
987  * For private context
988  * In:
989  *   tsbreg = value to load (ro)
990  *   regnum = constant or register
991  *   tmp1 = scratch register
992  * Out:
993  *   Specified scratchpad register updated
994  *
995  */
996 #define	SET_UTSBREG(regnum, tsbreg, tmp1)				\
997 	mov	regnum, tmp1;						\
998 	stxa	tsbreg, [tmp1]ASI_SCRATCHPAD	/* save tsbreg */
999 /*
1000  * Get TSB base register from the scratchpad for private contexts
1001  *
1002  * In:
1003  *   regnum = constant or register
1004  *   tsbreg = scratch
1005  * Out:
1006  *   tsbreg = tsbreg from the specified scratchpad register
1007  */
1008 #define	GET_UTSBREG(regnum, tsbreg)					\
1009 	mov	regnum, tsbreg;						\
1010 	ldxa	[tsbreg]ASI_SCRATCHPAD, tsbreg
1011 
1012 /*
1013  * Load TSB base register to TSBMISS area for shared contexts.
1014  * This register contains utsb_pabase in bits 63:13, and TSB size
1015  * code in bits 2:0.
1016  *
1017  * In:
1018  *   tsbmiss = pointer to tsbmiss area
1019  *   tsbmissoffset = offset to right tsb pointer
1020  *   tsbreg = value to load (ro)
1021  * Out:
1022  *   Specified tsbmiss area updated
1023  *
1024  */
1025 #define	SET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg)		\
1026 	stx	tsbreg, [tsbmiss + tsbmissoffset]	/* save tsbreg */
1027 
1028 /*
1029  * Get TSB base register from the scratchpad for
1030  * shared contexts
1031  *
1032  * In:
1033  *   tsbmiss = pointer to tsbmiss area
1034  *   tsbmissoffset = offset to right tsb pointer
1035  *   tsbreg = scratch
1036  * Out:
1037  *   tsbreg = tsbreg from the specified scratchpad register
1038  */
1039 #define	GET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg)		\
1040 	ldx	[tsbmiss + tsbmissoffset], tsbreg
1041 
1042 #endif /* defined(sun4v) || defined(UTSB_PHYS) */
1043 
1044 #ifndef	_ASM
1045 
1046 /*
1047  * Kernel page relocation stuff.
1048  */
1049 struct sfmmu_callback {
1050 	int key;
1051 	int (*prehandler)(caddr_t, uint_t, uint_t, void *);
1052 	int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t);
1053 	int (*errhandler)(caddr_t, uint_t, uint_t, void *);
1054 	int capture_cpus;
1055 };
1056 
1057 extern int sfmmu_max_cb_id;
1058 extern struct sfmmu_callback *sfmmu_cb_table;
1059 
1060 extern int hat_kpr_enabled;
1061 
1062 struct pa_hment;
1063 
1064 /*
1065  * RFE: With multihat gone we gain back an int.  We could use this to
1066  * keep ref bits on a per cpu basis to eliminate xcalls.
1067  */
1068 struct sf_hment {
1069 	tte_t hme_tte;			/* tte for this hment */
1070 
1071 	union {
1072 		struct page *page;	/* what page this maps */
1073 		struct pa_hment *data;	/* pa_hment */
1074 	} sf_hment_un;
1075 
1076 	struct	sf_hment *hme_next;	/* next hment */
1077 	struct	sf_hment *hme_prev;	/* prev hment */
1078 };
1079 
1080 struct pa_hment {
1081 	caddr_t		addr;		/* va */
1082 	uint_t		len;		/* bytes */
1083 	ushort_t	flags;		/* internal flags */
1084 	ushort_t	refcnt;		/* reference count */
1085 	id_t		cb_id;		/* callback id, table index */
1086 	void		*pvt;		/* handler's private data */
1087 	struct sf_hment	sfment;		/* corresponding dummy sf_hment */
1088 };
1089 
1090 #define	hme_page		sf_hment_un.page
1091 #define	hme_data		sf_hment_un.data
1092 #define	hme_size(sfhmep)	((int)(TTE_CSZ(&(sfhmep)->hme_tte)))
1093 #define	PAHME_SZ		(sizeof (struct pa_hment))
1094 #define	SFHME_SZ		(sizeof (struct sf_hment))
1095 
1096 #define	IS_PAHME(hme)	((hme)->hme_tte.ll == 0)
1097 
1098 /*
1099  * hmeblk_tag structure
1100  * structure used to obtain a match on a hme_blk.  Currently consists of
1101  * the address of the sfmmu struct (or hatid), the base page address of the
1102  * hme_blk, and the rehash count.  The rehash count is actually only 2 bits
1103  * and has the following meaning:
1104  * 1 = 8k or 64k hash sequence.
1105  * 2 = 512k hash sequence.
1106  * 3 = 4M hash sequence.
1107  * We require this count because we don't want to get a false hit on a 512K or
1108  * 4M rehash with a base address corresponding to a 8k or 64k hmeblk.
1109  * Note:  The ordering and size of the hmeblk_tag members are implictly known
1110  * by the tsb miss handlers written in assembly.  Do not change this structure
1111  * without checking those routines.  See HTAG_SFMMUPSZ define.
1112  */
1113 
1114 /*
1115  * In private hmeblks hblk_rid field must be SFMMU_INVALID_RID.
1116  */
1117 typedef union {
1118 	struct {
1119 		uint64_t	hblk_basepg: 51,	/* hme_blk base pg # */
1120 				hblk_rehash: 3,		/* rehash number */
1121 				hblk_rid: 10;		/* hme_blk region id */
1122 		void		*hblk_id;
1123 	} hblk_tag_un;
1124 	uint64_t		htag_tag[2];
1125 } hmeblk_tag;
1126 
1127 #define	htag_id		hblk_tag_un.hblk_id
1128 #define	htag_bspage	hblk_tag_un.hblk_basepg
1129 #define	htag_rehash	hblk_tag_un.hblk_rehash
1130 #define	htag_rid	hblk_tag_un.hblk_rid
1131 
1132 #endif /* !_ASM */
1133 
1134 #define	HTAG_REHASH_SHIFT	10
1135 #define	HTAG_MAX_RID	(((0x1 << HTAG_REHASH_SHIFT) - 1))
1136 #define	HTAG_RID_MASK	HTAG_MAX_RID
1137 
1138 /* used for tagging all per sfmmu (i.e. non SRD) private hmeblks */
1139 #define	SFMMU_INVALID_SHMERID	HTAG_MAX_RID
1140 
1141 #if SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS
1142 #error SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS
1143 #endif
1144 
1145 #define	SFMMU_IS_SHMERID_VALID(rid)	((rid) != SFMMU_INVALID_SHMERID)
1146 
1147 /* ISM regions */
1148 #define	SFMMU_INVALID_ISMRID	0xff
1149 
1150 #if SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS
1151 #error SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS
1152 #endif
1153 
1154 #define	SFMMU_IS_ISMRID_VALID(rid)	((rid) != SFMMU_INVALID_ISMRID)
1155 
1156 
1157 #define	HTAGS_EQ(tag1, tag2)	(((tag1.htag_tag[0] ^ tag2.htag_tag[0]) | \
1158 				(tag1.htag_tag[1] ^ tag2.htag_tag[1])) == 0)
1159 
1160 /*
1161  * this macro must only be used for comparing tags in shared hmeblks.
1162  */
1163 #define	HTAGS_EQ_SHME(hmetag, tag, hrmap)				\
1164 	(((hmetag).htag_rid != SFMMU_INVALID_SHMERID) &&	        \
1165 	(((((hmetag).htag_tag[0] ^ (tag).htag_tag[0]) &			\
1166 		~HTAG_RID_MASK) |	        			\
1167 	    ((hmetag).htag_tag[1] ^ (tag).htag_tag[1])) == 0) &&	\
1168 	SF_RGNMAP_TEST(hrmap, hmetag.htag_rid))
1169 
1170 #define	HME_REHASH(sfmmup)						\
1171 	((sfmmup)->sfmmu_ttecnt[TTE512K] != 0 ||			\
1172 	(sfmmup)->sfmmu_ttecnt[TTE4M] != 0 ||				\
1173 	(sfmmup)->sfmmu_ttecnt[TTE32M] != 0 ||				\
1174 	(sfmmup)->sfmmu_ttecnt[TTE256M] != 0)
1175 
1176 #define	NHMENTS		8		/* # of hments in an 8k hme_blk */
1177 					/* needs to be multiple of 2 */
1178 
1179 #ifndef	_ASM
1180 
1181 #ifdef	HBLK_TRACE
1182 
1183 #define	HBLK_LOCK		1
1184 #define	HBLK_UNLOCK		0
1185 #define	HBLK_STACK_DEPTH	6
1186 #define	HBLK_AUDIT_CACHE_SIZE	16
1187 #define	HBLK_LOCK_PATTERN	0xaaaaaaaa
1188 #define	HBLK_UNLOCK_PATTERN	0xbbbbbbbb
1189 
1190 struct hblk_lockcnt_audit {
1191 	int		flag;		/* lock or unlock */
1192 	kthread_id_t	thread;
1193 	int		depth;
1194 	pc_t		stack[HBLK_STACK_DEPTH];
1195 };
1196 
1197 #endif	/* HBLK_TRACE */
1198 
1199 
1200 /*
1201  * Hment block structure.
1202  * The hme_blk is the node data structure which the hash structure
1203  * mantains. An hme_blk can have 2 different sizes depending on the
1204  * number of hments it implicitly contains.  When dealing with 64K, 512K,
1205  * or 4M hments there is one hment per hme_blk.  When dealing with
1206  * 8k hments we allocate an hme_blk plus an additional 7 hments to
1207  * give us a total of 8 (NHMENTS) hments that can be referenced through a
1208  * hme_blk.
1209  *
1210  * The hmeblk structure contains 2 tte reference counters used to determine if
1211  * it is ok to free up the hmeblk.  Both counters have to be zero in order
1212  * to be able to free up hmeblk.  They are protected by cas.
1213  * hblk_hmecnt is the number of hments present on pp mapping lists.
1214  * hblk_vcnt reflects number of valid ttes in hmeblk.
1215  *
1216  * The hmeblk now also has per tte lock cnts.  This is required because
1217  * the counts can be high and there are not enough bits in the tte. When
1218  * physio is fixed to not lock the translations we should be able to move
1219  * the lock cnt back to the tte.  See bug id 1198554.
1220  *
1221  * Note that xhat_hme_blk's layout follows this structure: hme_blk_misc
1222  * and sf_hment are at the same offsets in both structures. Whenever
1223  * hme_blk is changed, xhat_hme_blk may need to be updated as well.
1224  */
1225 
1226 struct hme_blk_misc {
1227 	uint_t	notused:25;
1228 	uint_t	shared_bit:1;	/* set for SRD shared hmeblk */
1229 	uint_t	xhat_bit:1;	/* set for an xhat hme_blk */
1230 	uint_t	shadow_bit:1;	/* set for a shadow hme_blk */
1231 	uint_t	nucleus_bit:1;	/* set for a nucleus hme_blk */
1232 	uint_t	ttesize:3;	/* contains ttesz of hmeblk */
1233 };
1234 
1235 struct hme_blk {
1236 	uint64_t	hblk_nextpa;	/* physical address for hash list */
1237 
1238 	hmeblk_tag	hblk_tag;	/* tag used to obtain an hmeblk match */
1239 
1240 	struct hme_blk	*hblk_next;	/* on free list or on hash list */
1241 					/* protected by hash lock */
1242 
1243 	struct hme_blk	*hblk_shadow;	/* pts to shadow hblk */
1244 					/* protected by hash lock */
1245 	uint_t		hblk_span;	/* span of memory hmeblk maps */
1246 
1247 	struct hme_blk_misc	hblk_misc;
1248 
1249 	union {
1250 		struct {
1251 			ushort_t hblk_hmecount;	/* hment on mlists counter */
1252 			ushort_t hblk_validcnt;	/* valid tte reference count */
1253 		} hblk_counts;
1254 		uint_t		hblk_shadow_mask;
1255 	} hblk_un;
1256 
1257 	uint_t		hblk_lckcnt;
1258 
1259 #ifdef	HBLK_TRACE
1260 	kmutex_t	hblk_audit_lock;	/* lock to protect index */
1261 	uint_t		hblk_audit_index;	/* index into audit_cache */
1262 	struct	hblk_lockcnt_audit hblk_audit_cache[HBLK_AUDIT_CACHE_SIZE];
1263 #endif	/* HBLK_AUDIT */
1264 
1265 	struct sf_hment hblk_hme[1];	/* hment array */
1266 };
1267 
1268 #define	hblk_shared	hblk_misc.shared_bit
1269 #define	hblk_xhat_bit   hblk_misc.xhat_bit
1270 #define	hblk_shw_bit	hblk_misc.shadow_bit
1271 #define	hblk_nuc_bit	hblk_misc.nucleus_bit
1272 #define	hblk_ttesz	hblk_misc.ttesize
1273 #define	hblk_hmecnt	hblk_un.hblk_counts.hblk_hmecount
1274 #define	hblk_vcnt	hblk_un.hblk_counts.hblk_validcnt
1275 #define	hblk_shw_mask	hblk_un.hblk_shadow_mask
1276 
1277 #define	MAX_HBLK_LCKCNT	0xFFFFFFFF
1278 #define	HMEBLK_ALIGN	0x8		/* hmeblk has to be double aligned */
1279 
1280 #ifdef	HBLK_TRACE
1281 
1282 #define	HBLK_STACK_TRACE(hmeblkp, lock)					\
1283 {									\
1284 	int flag = lock;	/* to pacify lint */			\
1285 	int audit_index;						\
1286 									\
1287 	mutex_enter(&hmeblkp->hblk_audit_lock);				\
1288 	audit_index = hmeblkp->hblk_audit_index;			\
1289 	hmeblkp->hblk_audit_index = ((hmeblkp->hblk_audit_index + 1) &	\
1290 	    (HBLK_AUDIT_CACHE_SIZE - 1));				\
1291 	mutex_exit(&hmeblkp->hblk_audit_lock);				\
1292 									\
1293 	if (flag)							\
1294 		hmeblkp->hblk_audit_cache[audit_index].flag =		\
1295 		    HBLK_LOCK_PATTERN;					\
1296 	else								\
1297 		hmeblkp->hblk_audit_cache[audit_index].flag =		\
1298 		    HBLK_UNLOCK_PATTERN;				\
1299 									\
1300 	hmeblkp->hblk_audit_cache[audit_index].thread = curthread;	\
1301 	hmeblkp->hblk_audit_cache[audit_index].depth =			\
1302 	    getpcstack(hmeblkp->hblk_audit_cache[audit_index].stack,	\
1303 	    HBLK_STACK_DEPTH);						\
1304 }
1305 
1306 #else
1307 
1308 #define	HBLK_STACK_TRACE(hmeblkp, lock)
1309 
1310 #endif	/* HBLK_TRACE */
1311 
1312 #define	HMEHASH_FACTOR	16	/* used to calc # of buckets in hme hash */
1313 
1314 /*
1315  * A maximum number of user hmeblks is defined in order to place an upper
1316  * limit on how much nucleus memory is required and to avoid overflowing the
1317  * tsbmiss uhashsz and khashsz data areas. The number below corresponds to
1318  * the number of buckets required, for an average hash chain length of 4 on
1319  * a 16TB machine.
1320  */
1321 
1322 #define	MAX_UHME_BUCKETS	(0x1 << 30)
1323 #define	MAX_KHME_BUCKETS	(0x1 << 30)
1324 
1325 /*
1326  * The minimum number of kernel hash buckets.
1327  */
1328 #define	MIN_KHME_BUCKETS	0x800
1329 
1330 /*
1331  * The number of hash buckets must be a power of 2. If the initial calculated
1332  * value is less than USER_BUCKETS_THRESHOLD we round up to the next greater
1333  * power of 2, otherwise we round down to avoid huge over allocations.
1334  */
1335 #define	USER_BUCKETS_THRESHOLD	(1<<22)
1336 
1337 #define	MAX_NUCUHME_BUCKETS	0x4000
1338 #define	MAX_NUCKHME_BUCKETS	0x2000
1339 
1340 /*
1341  * There are 2 locks in the hmehash bucket.  The hmehash_mutex is
1342  * a regular mutex used to make sure operations on a hash link are only
1343  * done by one thread.  Any operation which comes into the hat with
1344  * a <vaddr, as> will grab the hmehash_mutex.  Normally one would expect
1345  * the tsb miss handlers to grab the hash lock to make sure the hash list
1346  * is consistent while we traverse it.  Unfortunately this can lead to
1347  * deadlocks or recursive mutex enters since it is possible for
1348  * someone holding the lock to take a tlb/tsb miss.
1349  * To solve this problem we have added the hmehash_listlock.  This lock
1350  * is only grabbed by the tsb miss handlers, vatopfn, and while
1351  * adding/removing a hmeblk from the hash list. The code is written to
1352  * guarantee we won't take a tlb miss while holding this lock.
1353  */
1354 struct hmehash_bucket {
1355 	kmutex_t	hmehash_mutex;
1356 	uint64_t	hmeh_nextpa;	/* physical address for hash list */
1357 	struct hme_blk *hmeblkp;
1358 	uint_t		hmeh_listlock;
1359 };
1360 
1361 #endif /* !_ASM */
1362 
1363 #define	SFMMU_PGCNT_MASK	0x3f
1364 #define	SFMMU_PGCNT_SHIFT	6
1365 #define	INVALID_MMU_ID		-1
1366 #define	SFMMU_MMU_GNUM_RSHIFT	16
1367 #define	SFMMU_MMU_CNUM_LSHIFT	(64 - SFMMU_MMU_GNUM_RSHIFT)
1368 #define	MAX_SFMMU_CTX_VAL	((1 << 16) - 1) /* for sanity check */
1369 #define	MAX_SFMMU_GNUM_VAL	((0x1UL << 48) - 1)
1370 
1371 /*
1372  * The tsb miss handlers written in assembly know that sfmmup
1373  * is a 64 bit ptr.
1374  *
1375  * The bspage and re-hash part is 64 bits, with the sfmmup being another 64
1376  * bits.
1377  */
1378 #define	HTAG_SFMMUPSZ		0	/* Not really used for LP64 */
1379 #define	HTAG_BSPAGE_SHIFT	13
1380 
1381 /*
1382  * Assembly routines need to be able to get to ttesz
1383  */
1384 #define	HBLK_SZMASK		0x7
1385 
1386 #ifndef _ASM
1387 
1388 /*
1389  * Returns the number of bytes that an hmeblk spans given its tte size
1390  */
1391 #define	get_hblk_span(hmeblkp) ((hmeblkp)->hblk_span)
1392 #define	get_hblk_ttesz(hmeblkp)	((hmeblkp)->hblk_ttesz)
1393 #define	get_hblk_cache(hmeblkp)	(((hmeblkp)->hblk_ttesz == TTE8K) ? \
1394 	sfmmu8_cache : sfmmu1_cache)
1395 #define	HMEBLK_SPAN(ttesz)						\
1396 	((ttesz == TTE8K)? (TTEBYTES(ttesz) * NHMENTS) : TTEBYTES(ttesz))
1397 
1398 #define	set_hblk_sz(hmeblkp, ttesz)				\
1399 	(hmeblkp)->hblk_ttesz = (ttesz);			\
1400 	(hmeblkp)->hblk_span = HMEBLK_SPAN(ttesz)
1401 
1402 #define	get_hblk_base(hmeblkp)					\
1403 	((uintptr_t)(hmeblkp)->hblk_tag.htag_bspage << MMU_PAGESHIFT)
1404 
1405 #define	get_hblk_endaddr(hmeblkp)				\
1406 	((caddr_t)(get_hblk_base(hmeblkp) + get_hblk_span(hmeblkp)))
1407 
1408 #define	in_hblk_range(hmeblkp, vaddr)					\
1409 	(((uintptr_t)(vaddr) >= get_hblk_base(hmeblkp)) &&		\
1410 	((uintptr_t)(vaddr) < (get_hblk_base(hmeblkp) +			\
1411 	get_hblk_span(hmeblkp))))
1412 
1413 #define	tte_to_vaddr(hmeblkp, tte)	((caddr_t)(get_hblk_base(hmeblkp) \
1414 	+ (TTEBYTES(TTE_CSZ(&tte)) * (tte).tte_hmenum)))
1415 
1416 #define	tte_to_evaddr(hmeblkp, ttep)	((caddr_t)(get_hblk_base(hmeblkp) \
1417 	+ (TTEBYTES(TTE_CSZ(ttep)) * ((ttep)->tte_hmenum + 1))))
1418 
1419 #define	vaddr_to_vshift(hblktag, vaddr, shwsz)				\
1420 	((((uintptr_t)(vaddr) >> MMU_PAGESHIFT) - (hblktag.htag_bspage)) >>\
1421 	TTE_BSZS_SHIFT((shwsz) - 1))
1422 
1423 #define	HME8BLK_SZ	(sizeof (struct hme_blk) + \
1424 			(NHMENTS - 1) * sizeof (struct sf_hment))
1425 #define	HME1BLK_SZ	(sizeof (struct hme_blk))
1426 #define	H1MIN		(2 + MAX_BIGKTSB_TTES)	/* nucleus text+data, ktsb */
1427 
1428 /*
1429  * Hme_blk hash structure
1430  * Active mappings are kept in a hash structure of hme_blks.  The hash
1431  * function is based on (ctx, vaddr) The size of the hash table size is a
1432  * power of 2 such that the average hash chain lenth is HMENT_HASHAVELEN.
1433  * The hash actually consists of 2 separate hashes.  One hash is for the user
1434  * address space and the other hash is for the kernel address space.
1435  * The number of buckets are calculated at boot time and stored in the global
1436  * variables "uhmehash_num" and "khmehash_num".  By making the hash table size
1437  * a power of 2 we can use a simply & function to derive an index instead of
1438  * a divide.
1439  *
1440  * HME_HASH_FUNCTION(hatid, vaddr, shift) returns a pointer to a hme_hash
1441  * bucket.
1442  * An hme hash bucket contains a pointer to an hme_blk and the mutex that
1443  * protects the link list.
1444  * Spitfire supports 4 page sizes.  8k and 64K pages only need one hash.
1445  * 512K pages need 2 hashes and 4M pages need 3 hashes.
1446  * The 'shift' parameter controls how many bits the vaddr will be shifted in
1447  * the hash function. It is calculated in the HME_HASH_SHIFT(ttesz) function
1448  * and it varies depending on the page size as follows:
1449  *	8k pages:  	HBLK_RANGE_SHIFT
1450  *	64k pages:	MMU_PAGESHIFT64K
1451  *	512K pages:	MMU_PAGESHIFT512K
1452  *	4M pages:	MMU_PAGESHIFT4M
1453  * An assembly version of the hash function exists in sfmmu_ktsb_miss(). All
1454  * changes should be reflected in both versions.  This function and the TSB
1455  * miss handlers are the only places which know about the two hashes.
1456  *
1457  * HBLK_RANGE_SHIFT controls range of virtual addresses that will fall
1458  * into the same bucket for a particular process.  It is currently set to
1459  * be equivalent to 64K range or one hme_blk.
1460  *
1461  * The hme_blks in the hash are protected by a per hash bucket mutex
1462  * known as SFMMU_HASH_LOCK.
1463  * You need to acquire this lock before traversing the hash bucket link
1464  * list, while adding/removing a hme_blk to the list, and while
1465  * modifying an hme_blk.  A possible optimization is to replace these
1466  * mutexes by readers/writer lock but right now it is not clear whether
1467  * this is a win or not.
1468  *
1469  * The HME_HASH_TABLE_SEARCH will search the hash table for the
1470  * hme_blk that contains the hment that corresponds to the passed
1471  * ctx and vaddr.  It assumed the SFMMU_HASH_LOCK is held.
1472  */
1473 
1474 #endif /* ! _ASM */
1475 
1476 #define	KHATID			ksfmmup
1477 #define	UHMEHASH_SZ		uhmehash_num
1478 #define	KHMEHASH_SZ		khmehash_num
1479 #define	HMENT_HASHAVELEN	4
1480 #define	HBLK_RANGE_SHIFT	MMU_PAGESHIFT64K /* shift for HBLK_BS_MASK */
1481 #define	HBLK_MIN_TTESZ		1
1482 #define	HBLK_MIN_BYTES		MMU_PAGESIZE64K
1483 #define	HBLK_MIN_SHIFT		MMU_PAGESHIFT64K
1484 #define	MAX_HASHCNT		5
1485 #define	DEFAULT_MAX_HASHCNT	3
1486 
1487 #ifndef _ASM
1488 
1489 #define	HASHADDR_MASK(hashno)	TTE_PAGEMASK(hashno)
1490 
1491 #define	HME_HASH_SHIFT(ttesz)						\
1492 	((ttesz == TTE8K)? HBLK_RANGE_SHIFT : TTE_PAGE_SHIFT(ttesz))
1493 
1494 #define	HME_HASH_ADDR(vaddr, hmeshift)					\
1495 	((caddr_t)(((uintptr_t)(vaddr) >> (hmeshift)) << (hmeshift)))
1496 
1497 #define	HME_HASH_BSPAGE(vaddr, hmeshift)				\
1498 	(((uintptr_t)(vaddr) >> (hmeshift)) << ((hmeshift) - MMU_PAGESHIFT))
1499 
1500 #define	HME_HASH_REHASH(ttesz)						\
1501 	(((ttesz) < TTE512K)? 1 : (ttesz))
1502 
1503 #define	HME_HASH_FUNCTION(hatid, vaddr, shift)				     \
1504 	((((void *)hatid) != ((void *)KHATID)) ?			     \
1505 	(&uhme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \
1506 	    UHMEHASH_SZ) ]):						     \
1507 	(&khme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \
1508 	    KHMEHASH_SZ) ]))
1509 
1510 /*
1511  * This macro will traverse a hmeblk hash link list looking for an hme_blk
1512  * that owns the specified vaddr and hatid.  If if doesn't find one , hmeblkp
1513  * will be set to NULL, otherwise it will point to the correct hme_blk.
1514  * This macro also cleans empty hblks.
1515  */
1516 #define	HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, hblkpa,		\
1517 	pr_hblk, prevpa, listp)						\
1518 {									\
1519 	struct hme_blk *nx_hblk;					\
1520 	uint64_t 	nx_pa;						\
1521 									\
1522 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));				\
1523 	hblkp = hmebp->hmeblkp;						\
1524 	hblkpa = hmebp->hmeh_nextpa;					\
1525 	prevpa = 0;							\
1526 	pr_hblk = NULL;							\
1527 	while (hblkp) {							\
1528 		if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) {		\
1529 			/* found hme_blk */				\
1530 			break;						\
1531 		}							\
1532 		nx_hblk = hblkp->hblk_next;				\
1533 		nx_pa = hblkp->hblk_nextpa;				\
1534 		if (!hblkp->hblk_vcnt && !hblkp->hblk_hmecnt) {		\
1535 			sfmmu_hblk_hash_rm(hmebp, hblkp, prevpa, pr_hblk); \
1536 			sfmmu_hblk_free(hmebp, hblkp, hblkpa, listp);   \
1537 		} else {						\
1538 			pr_hblk = hblkp;				\
1539 			prevpa = hblkpa;				\
1540 		}							\
1541 		hblkp = nx_hblk;					\
1542 		hblkpa = nx_pa;						\
1543 	}								\
1544 }
1545 
1546 #define	HME_HASH_SEARCH(hmebp, hblktag, hblkp, listp)			\
1547 {									\
1548 	struct hme_blk *pr_hblk;					\
1549 	uint64_t hblkpa, prevpa;					\
1550 									\
1551 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, hblkpa, pr_hblk,	\
1552 		prevpa, listp);						\
1553 }
1554 
1555 /*
1556  * This macro will traverse a hmeblk hash link list looking for an hme_blk
1557  * that owns the specified vaddr and hatid.  If if doesn't find one , hmeblkp
1558  * will be set to NULL, otherwise it will point to the correct hme_blk.
1559  * It doesn't remove empty hblks.
1560  */
1561 #define	HME_HASH_FAST_SEARCH(hmebp, hblktag, hblkp)			\
1562 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));				\
1563 	for (hblkp = hmebp->hmeblkp; hblkp;				\
1564 	    hblkp = hblkp->hblk_next) {					\
1565 		if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) {		\
1566 			/* found hme_blk */				\
1567 			break;						\
1568 		}							\
1569 	}
1570 
1571 #define	SFMMU_HASH_LOCK(hmebp)						\
1572 		(mutex_enter(&hmebp->hmehash_mutex))
1573 
1574 #define	SFMMU_HASH_UNLOCK(hmebp)					\
1575 		(mutex_exit(&hmebp->hmehash_mutex))
1576 
1577 #define	SFMMU_HASH_LOCK_TRYENTER(hmebp)					\
1578 		(mutex_tryenter(&hmebp->hmehash_mutex))
1579 
1580 #define	SFMMU_HASH_LOCK_ISHELD(hmebp)					\
1581 		(mutex_owned(&hmebp->hmehash_mutex))
1582 
1583 #define	SFMMU_XCALL_STATS(sfmmup)					\
1584 {									\
1585 	if (sfmmup == ksfmmup) {					\
1586 		SFMMU_STAT(sf_kernel_xcalls);				\
1587 	} else {							\
1588 		SFMMU_STAT(sf_user_xcalls);				\
1589 	}								\
1590 }
1591 
1592 #define	astosfmmu(as)		((as)->a_hat)
1593 #define	hblktosfmmu(hmeblkp)	((sfmmu_t *)(hmeblkp)->hblk_tag.htag_id)
1594 #define	hblktosrd(hmeblkp)	((sf_srd_t *)(hmeblkp)->hblk_tag.htag_id)
1595 #define	sfmmutoas(sfmmup)	((sfmmup)->sfmmu_as)
1596 
1597 #define	sfmmutohtagid(sfmmup, rid)			   \
1598 	(((rid) == SFMMU_INVALID_SHMERID) ? (void *)(sfmmup) : \
1599 	(void *)((sfmmup)->sfmmu_srdp))
1600 
1601 /*
1602  * We use the sfmmu data structure to keep the per as page coloring info.
1603  */
1604 #define	as_color_bin(as)	(astosfmmu(as)->sfmmu_clrbin)
1605 #define	as_color_start(as)	(astosfmmu(as)->sfmmu_clrstart)
1606 
1607 typedef struct {
1608 	char	h8[HME8BLK_SZ];
1609 } hblk8_t;
1610 
1611 typedef struct {
1612 	char	h1[HME1BLK_SZ];
1613 } hblk1_t;
1614 
1615 typedef struct {
1616 	ulong_t  	index;
1617 	ulong_t  	len;
1618 	hblk8_t		*list;
1619 } nucleus_hblk8_info_t;
1620 
1621 typedef struct {
1622 	ulong_t		index;
1623 	ulong_t		len;
1624 	hblk1_t		*list;
1625 } nucleus_hblk1_info_t;
1626 
1627 /*
1628  * This struct is used for accumlating information about a range
1629  * of pages that are unloading so that a single xcall can flush
1630  * the entire range from remote tlbs. A function that must demap
1631  * a range of virtual addresses declares one of these structures
1632  * and initializes using DEMP_RANGE_INIT(). It then passes a pointer to this
1633  * struct to the appropriate sfmmu_hblk_* level function which does
1634  * all the bookkeeping using the other macros. When the function has
1635  * finished the virtual address range, it needs to call DEMAP_RANGE_FLUSH()
1636  * macro to take care of any remaining unflushed mappings.
1637  *
1638  * The maximum range this struct can represent is the number of bits
1639  * in the dmr_bitvec field times the pagesize in dmr_pgsz. Currently, only
1640  * MMU_PAGESIZE pages are supported.
1641  *
1642  * Since there are now cases where it's no longer necessary to do
1643  * flushes (e.g. when the process isn't runnable because it's swapping
1644  * out or exiting) we allow these macros to take a NULL dmr input and do
1645  * nothing in that case.
1646  */
1647 typedef struct {
1648 	sfmmu_t		*dmr_sfmmup;	/* relevant hat */
1649 	caddr_t		dmr_addr;	/* beginning address */
1650 	caddr_t		dmr_endaddr;	/* ending  address */
1651 	ulong_t		dmr_bitvec;	/* valid pages found */
1652 	ulong_t		dmr_bit;	/* next page to examine */
1653 	ulong_t		dmr_maxbit;	/* highest page in range */
1654 	ulong_t		dmr_pgsz;	/* page size in range */
1655 } demap_range_t;
1656 
1657 #define	DMR_MAXBIT ((ulong_t)1<<63) /* dmr_bit high bit */
1658 
1659 #define	DEMAP_RANGE_INIT(sfmmup, dmrp) \
1660 	if ((dmrp) != NULL) { \
1661 	(dmrp)->dmr_sfmmup = (sfmmup); \
1662 	(dmrp)->dmr_bitvec = 0; \
1663 	(dmrp)->dmr_maxbit = sfmmu_dmr_maxbit; \
1664 	(dmrp)->dmr_pgsz = MMU_PAGESIZE; \
1665 	}
1666 
1667 #define	DEMAP_RANGE_PGSZ(dmrp) ((dmrp)? (dmrp)->dmr_pgsz : MMU_PAGESIZE)
1668 
1669 #define	DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr) \
1670 	if ((dmrp) != NULL) { \
1671 	if ((dmrp)->dmr_bitvec != 0 && (dmrp)->dmr_endaddr != (addr)) \
1672 		sfmmu_tlb_range_demap(dmrp); \
1673 	(dmrp)->dmr_endaddr = (endaddr); \
1674 	}
1675 
1676 #define	DEMAP_RANGE_FLUSH(dmrp) \
1677 	if ((dmrp) != NULL) { \
1678 		if ((dmrp)->dmr_bitvec != 0) \
1679 			sfmmu_tlb_range_demap(dmrp); \
1680 	}
1681 
1682 #define	DEMAP_RANGE_MARKPG(dmrp, addr) \
1683 	if ((dmrp) != NULL) { \
1684 		if ((dmrp)->dmr_bitvec == 0) { \
1685 			(dmrp)->dmr_addr = (addr); \
1686 			(dmrp)->dmr_bit = 1; \
1687 		} \
1688 		(dmrp)->dmr_bitvec |= (dmrp)->dmr_bit; \
1689 	}
1690 
1691 #define	DEMAP_RANGE_NEXTPG(dmrp) \
1692 	if ((dmrp) != NULL && (dmrp)->dmr_bitvec != 0) { \
1693 		if ((dmrp)->dmr_bit & (dmrp)->dmr_maxbit) { \
1694 			sfmmu_tlb_range_demap(dmrp); \
1695 		} else { \
1696 			(dmrp)->dmr_bit <<= 1; \
1697 		} \
1698 	}
1699 
1700 /*
1701  * TSB related structures
1702  *
1703  * The TSB is made up of tte entries.  Both the tag and data are present
1704  * in the TSB.  The TSB locking is managed as follows:
1705  * A software bit in the tsb tag is used to indicate that entry is locked.
1706  * If a cpu servicing a tsb miss reads a locked entry the tag compare will
1707  * fail forcing the cpu to go to the hat hash for the translation.
1708  * The cpu who holds the lock can then modify the data side, and the tag side.
1709  * The last write should be to the word containing the lock bit which will
1710  * clear the lock and allow the tsb entry to be read.  It is assumed that all
1711  * cpus reading the tsb will do so with atomic 128-bit loads.  An atomic 128
1712  * bit load is required to prevent the following from happening:
1713  *
1714  * cpu 0			cpu 1			comments
1715  *
1716  * ldx tag						tag unlocked
1717  *				ldstub lock		set lock
1718  *				stx data
1719  *				stx tag			unlock
1720  * ldx tag						incorrect tte!!!
1721  *
1722  * The software also maintains a bit in the tag to indicate an invalid
1723  * tsb entry.  The purpose of this bit is to allow the tsb invalidate code
1724  * to invalidate a tsb entry with a single cas.  See code for details.
1725  */
1726 
1727 union tsb_tag {
1728 	struct {
1729 		uint32_t	tag_res0:16;	/* reserved - context area */
1730 		uint32_t	tag_inv:1;	/* sw - invalid tsb entry */
1731 		uint32_t	tag_lock:1;	/* sw - locked tsb entry */
1732 		uint32_t	tag_res1:4;	/* reserved */
1733 		uint32_t	tag_va_hi:10;	/* va[63:54] */
1734 		uint32_t	tag_va_lo;	/* va[53:22] */
1735 	} tagbits;
1736 	struct tsb_tagints {
1737 		uint32_t	inthi;
1738 		uint32_t	intlo;
1739 	} tagints;
1740 };
1741 #define	tag_invalid		tagbits.tag_inv
1742 #define	tag_locked		tagbits.tag_lock
1743 #define	tag_vahi		tagbits.tag_va_hi
1744 #define	tag_valo		tagbits.tag_va_lo
1745 #define	tag_inthi		tagints.inthi
1746 #define	tag_intlo		tagints.intlo
1747 
1748 struct tsbe {
1749 	union tsb_tag	tte_tag;
1750 	tte_t		tte_data;
1751 };
1752 
1753 /*
1754  * A per cpu struct is kept that duplicates some info
1755  * used by the tl>0 tsb miss handlers plus it provides
1756  * a scratch area.  Its purpose is to minimize cache misses
1757  * in the tsb miss handler and is 128 bytes (2 e$ lines).
1758  *
1759  * There should be one allocated per cpu in nucleus memory
1760  * and should be aligned on an ecache line boundary.
1761  */
1762 struct tsbmiss {
1763 	sfmmu_t			*ksfmmup;	/* kernel hat id */
1764 	sfmmu_t			*usfmmup;	/* user hat id */
1765 	sf_srd_t		*usrdp;		/* user's SRD hat id */
1766 	struct tsbe		*tsbptr;	/* hardware computed ptr */
1767 	struct tsbe		*tsbptr4m;	/* hardware computed ptr */
1768 	struct tsbe		*tsbscdptr;	/* hardware computed ptr */
1769 	struct tsbe		*tsbscdptr4m;	/* hardware computed ptr */
1770 	uint64_t		ismblkpa;
1771 	struct hmehash_bucket	*khashstart;
1772 	struct hmehash_bucket	*uhashstart;
1773 	uint_t			khashsz;
1774 	uint_t			uhashsz;
1775 	uint16_t 		dcache_line_mask; /* used to flush dcache */
1776 	uchar_t			uhat_tteflags;	/* private page sizes */
1777 	uchar_t			uhat_rtteflags;	/* SHME pagesizes */
1778 	uint32_t		utsb_misses;
1779 	uint32_t		ktsb_misses;
1780 	uint16_t		uprot_traps;
1781 	uint16_t		kprot_traps;
1782 	/*
1783 	 * scratch[0] -> TSB_TAGACC
1784 	 * scratch[1] -> TSBMISS_HMEBP
1785 	 * scratch[2] -> TSBMISS_HATID
1786 	 */
1787 	uintptr_t		scratch[3];
1788 	ulong_t		shmermap[SFMMU_HMERGNMAP_WORDS];	/* 8 bytes */
1789 	ulong_t		scd_shmermap[SFMMU_HMERGNMAP_WORDS];	/* 8 bytes */
1790 	uint8_t		pad[48];			/* pad to 64 bytes */
1791 };
1792 
1793 /*
1794  * A per cpu struct is kept for the use within the tl>0 kpm tsb
1795  * miss handler. Some members are duplicates of common data or
1796  * the physical addresses of common data. A few members are also
1797  * written by the tl>0 kpm tsb miss handler. Its purpose is to
1798  * minimize cache misses in the kpm tsb miss handler and occupies
1799  * one ecache line. There should be one allocated per cpu in
1800  * nucleus memory and it should be aligned on an ecache line
1801  * boundary. It is not merged w/ struct tsbmiss since there is
1802  * not much to share and the tsbmiss pathes are different, so
1803  * a kpm tlbmiss/tsbmiss only touches one cacheline, except for
1804  * (DEBUG || SFMMU_STAT_GATHER) where the dtlb_misses counter
1805  * of struct tsbmiss is used on every dtlb miss.
1806  */
1807 struct kpmtsbm {
1808 	caddr_t		vbase;		/* start of address kpm range */
1809 	caddr_t		vend;		/* end of address kpm range */
1810 	uchar_t		flags;		/* flags needed in TL tsbmiss handler */
1811 	uchar_t		sz_shift;	/* for single kpm window */
1812 	uchar_t		kpmp_shift;	/* hash lock shift */
1813 	uchar_t		kpmp2pshft;	/* kpm page to page shift */
1814 	uint_t		kpmp_table_sz;	/* size of kpmp_table or kpmp_stable */
1815 	uint64_t	kpmp_tablepa;	/* paddr of kpmp_table or kpmp_stable */
1816 	uint64_t	msegphashpa;	/* paddr of memseg_phash */
1817 	struct tsbe	*tsbptr;	/* saved ktsb pointer */
1818 	uint_t		kpm_dtlb_misses; /* kpm tlbmiss counter */
1819 	uint_t		kpm_tsb_misses;	/* kpm tsbmiss counter */
1820 	uintptr_t	pad[1];
1821 };
1822 
1823 extern size_t	tsb_slab_size;
1824 extern uint_t	tsb_slab_shift;
1825 extern size_t	tsb_slab_mask;
1826 
1827 #endif /* !_ASM */
1828 
1829 /*
1830  * Flags for TL kpm tsbmiss handler
1831  */
1832 #define	KPMTSBM_ENABLE_FLAG	0x01	/* bit copy of kpm_enable */
1833 #define	KPMTSBM_TLTSBM_FLAG	0x02	/* use TL tsbmiss handler */
1834 #define	KPMTSBM_TSBPHYS_FLAG	0x04	/* use ASI_MEM for TSB update */
1835 
1836 /*
1837  * The TSB
1838  * All TSB sizes supported by the hardware are now supported (8K - 1M).
1839  * For kernel TSBs we may go beyond the hardware supported sizes and support
1840  * larger TSBs via software.
1841  * All TTE sizes are supported in the TSB; the manner in which this is
1842  * done is cpu dependent.
1843  */
1844 #define	TSB_MIN_SZCODE		TSB_8K_SZCODE	/* min. supported TSB size */
1845 #define	TSB_MIN_OFFSET_MASK	(TSB_OFFSET_MASK(TSB_MIN_SZCODE))
1846 
1847 #ifdef sun4v
1848 #define	UTSB_MAX_SZCODE		TSB_256M_SZCODE /* max. supported TSB size */
1849 #else /* sun4u */
1850 #define	UTSB_MAX_SZCODE		TSB_1M_SZCODE	/* max. supported TSB size */
1851 #endif /* sun4v */
1852 
1853 #define	UTSB_MAX_OFFSET_MASK	(TSB_OFFSET_MASK(UTSB_MAX_SZCODE))
1854 
1855 #define	TSB_FREEMEM_MIN		0x1000		/* 32 mb */
1856 #define	TSB_FREEMEM_LARGE	0x10000		/* 512 mb */
1857 #define	TSB_8K_SZCODE		0		/* 512 entries */
1858 #define	TSB_16K_SZCODE		1		/* 1k entries */
1859 #define	TSB_32K_SZCODE		2		/* 2k entries */
1860 #define	TSB_64K_SZCODE		3		/* 4k entries */
1861 #define	TSB_128K_SZCODE		4		/* 8k entries */
1862 #define	TSB_256K_SZCODE		5		/* 16k entries */
1863 #define	TSB_512K_SZCODE		6		/* 32k entries */
1864 #define	TSB_1M_SZCODE		7		/* 64k entries */
1865 #define	TSB_2M_SZCODE		8		/* 128k entries */
1866 #define	TSB_4M_SZCODE		9		/* 256k entries */
1867 #define	TSB_8M_SZCODE		10		/* 512k entries */
1868 #define	TSB_16M_SZCODE		11		/* 1M entries */
1869 #define	TSB_32M_SZCODE		12		/* 2M entries */
1870 #define	TSB_64M_SZCODE		13		/* 4M entries */
1871 #define	TSB_128M_SZCODE		14		/* 8M entries */
1872 #define	TSB_256M_SZCODE		15		/* 16M entries */
1873 #define	TSB_ENTRY_SHIFT		4	/* each entry = 128 bits = 16 bytes */
1874 #define	TSB_ENTRY_SIZE		(1 << 4)
1875 #define	TSB_START_SIZE		9
1876 #define	TSB_ENTRIES(tsbsz)	(1 << (TSB_START_SIZE + tsbsz))
1877 #define	TSB_BYTES(tsbsz)	(TSB_ENTRIES(tsbsz) << TSB_ENTRY_SHIFT)
1878 #define	TSB_OFFSET_MASK(tsbsz)	(TSB_ENTRIES(tsbsz) - 1)
1879 #define	TSB_BASEADDR_MASK	((1 << 12) - 1)
1880 
1881 /*
1882  * sun4u platforms
1883  * ---------------
1884  * We now support two user TSBs with one TSB base register.
1885  * Hence the TSB base register is split up as follows:
1886  *
1887  * When only one TSB present:
1888  *   [63  62..42  41..13  12..4  3..0]
1889  *     ^   ^       ^       ^     ^
1890  *     |   |       |       |     |
1891  *     |   |       |       |     |_ TSB size code
1892  *     |   |       |       |
1893  *     |   |       |       |_ Reserved 0
1894  *     |   |       |
1895  *     |   |       |_ TSB VA[41..13]
1896  *     |   |
1897  *     |   |_ VA hole (Spitfire), zeros (Cheetah and beyond)
1898  *     |
1899  *     |_ 0
1900  *
1901  * When second TSB present:
1902  *   [63  62..42  41..33  32..29  28..22  21..13  12..4  3..0]
1903  *     ^   ^       ^       ^       ^       ^       ^     ^
1904  *     |   |       |       |       |       |       |     |
1905  *     |   |       |       |       |       |       |     |_ First TSB size code
1906  *     |   |       |       |       |       |       |
1907  *     |   |       |       |       |       |       |_ Reserved 0
1908  *     |   |       |       |       |       |
1909  *     |   |       |       |       |       |_ First TSB's VA[21..13]
1910  *     |   |       |       |       |
1911  *     |   |       |       |       |_ Reserved for future use
1912  *     |   |       |       |
1913  *     |   |       |       |_ Second TSB's size code
1914  *     |   |       |
1915  *     |   |       |_ Second TSB's VA[21..13]
1916  *     |   |
1917  *     |   |_ VA hole (Spitfire) / ones (Cheetah and beyond)
1918  *     |
1919  *     |_ 1
1920  *
1921  * Note that since we store 21..13 of each TSB's VA, TSBs and their slabs
1922  * may be up to 4M in size.  For now, only hardware supported TSB sizes
1923  * are supported, though the slabs are usually 4M in size.
1924  *
1925  * sun4u platforms that define UTSB_PHYS use physical addressing to access
1926  * the user TSBs at TL>0.  The first user TSB base is in the MMU I/D TSB Base
1927  * registers.  The second TSB base uses a dedicated scratchpad register which
1928  * requires a definition of SCRATCHPAD_UTSBREG2 in mach_sfmmu.h.  The layout for
1929  * both registers is equivalent to sun4v below, except the TSB PA range is
1930  * [46..13] for sun4u.
1931  *
1932  * sun4v platforms
1933  * ---------------
1934  * On sun4v platforms, we use two dedicated scratchpad registers as pseudo
1935  * hardware TSB base registers to hold up to two different user TSBs.
1936  *
1937  * Each register contains TSB's physical base and size code information
1938  * as follows:
1939  *
1940  *   [63..56  55..13  12..4  3..0]
1941  *      ^       ^       ^     ^
1942  *      |       |       |     |
1943  *      |       |       |     |_ TSB size code
1944  *      |       |       |
1945  *      |       |       |_ Reserved 0
1946  *      |       |
1947  *      |       |_ TSB PA[55..13]
1948  *      |
1949  *      |
1950  *      |
1951  *      |_ 0 for valid TSB
1952  *
1953  * Absence of a user TSB (primarily the second user TSB) is indicated by
1954  * storing a negative value in the TSB base register. This allows us to
1955  * check for presence of a user TSB by simply checking bit# 63.
1956  */
1957 #define	TSBREG_MSB_SHIFT	32		/* set upper bits */
1958 #define	TSBREG_MSB_CONST	0xfffff800	/* set bits 63..43 */
1959 #define	TSBREG_FIRTSB_SHIFT	42		/* to clear bits 63:22 */
1960 #define	TSBREG_SECTSB_MKSHIFT	20		/* 21:13 --> 41:33 */
1961 #define	TSBREG_SECTSB_LSHIFT	22		/* to clear bits 63:42 */
1962 #define	TSBREG_SECTSB_RSHIFT	(TSBREG_SECTSB_MKSHIFT + TSBREG_SECTSB_LSHIFT)
1963 						/* sectsb va -> bits 21:13 */
1964 						/* after clearing upper bits */
1965 #define	TSBREG_SECSZ_SHIFT	29		/* to get sectsb szc to 3:0 */
1966 #define	TSBREG_VAMASK_SHIFT	13		/* set up VA mask */
1967 
1968 #define	BIGKTSB_SZ_MASK		0xf
1969 #define	TSB_SOFTSZ_MASK		BIGKTSB_SZ_MASK
1970 #define	MIN_BIGKTSB_SZCODE	9	/* 256k entries */
1971 #define	MAX_BIGKTSB_SZCODE	11	/* 1024k entries */
1972 #define	MAX_BIGKTSB_TTES	(TSB_BYTES(MAX_BIGKTSB_SZCODE) / MMU_PAGESIZE4M)
1973 
1974 #define	TAG_VALO_SHIFT		22		/* tag's va are bits 63-22 */
1975 /*
1976  * sw bits used on tsb_tag - bit masks used only in assembly
1977  * use only a sethi for these fields.
1978  */
1979 #define	TSBTAG_INVALID	0x00008000		/* tsb_tag.tag_invalid */
1980 #define	TSBTAG_LOCKED	0x00004000		/* tsb_tag.tag_locked */
1981 
1982 #ifdef	_ASM
1983 
1984 /*
1985  * Marker to indicate that this instruction will be hot patched at runtime
1986  * to some other value.
1987  * This value must be zero since it fills in the imm bits of the target
1988  * instructions to be patched
1989  */
1990 #define	RUNTIME_PATCH	(0)
1991 
1992 /*
1993  * V9 defines nop instruction as the following, which we use
1994  * at runtime to nullify some instructions we don't want to
1995  * execute in the trap handlers on certain platforms.
1996  */
1997 #define	MAKE_NOP_INSTR(reg)	\
1998 	sethi	%hi(0x1000000), reg
1999 
2000 /*
2001  * This macro constructs a SPARC V9 "jmpl <source reg>, %g0"
2002  * instruction, with the source register specified by the jump_reg_number.
2003  * The jmp opcode [24:19] = 11 1000 and source register is bits [18:14].
2004  * The instruction is returned in reg. The macro is used to patch in a jmpl
2005  * instruction at runtime.
2006  */
2007 #define	MAKE_JMP_INSTR(jump_reg_number, reg, tmp)	\
2008 	sethi	%hi(0x81c00000), reg;			\
2009 	mov	jump_reg_number, tmp;			\
2010 	sll	tmp, 14, tmp;				\
2011 	or	reg, tmp, reg
2012 
2013 /*
2014  * Macro to get hat per-MMU cnum on this CPU.
2015  * sfmmu - In, pass in "sfmmup" from the caller.
2016  * cnum	- Out, return 'cnum' to the caller
2017  * scr	- scratch
2018  */
2019 #define	SFMMU_CPU_CNUM(sfmmu, cnum, scr)				      \
2020 	CPU_ADDR(scr, cnum);	/* scr = load CPU struct addr */	      \
2021 	ld	[scr + CPU_MMU_IDX], cnum;	/* cnum = mmuid */	      \
2022 	add	sfmmu, SFMMU_CTXS, scr;	/* scr = sfmmup->sfmmu_ctxs[] */      \
2023 	sllx    cnum, SFMMU_MMU_CTX_SHIFT, cnum;			      \
2024 	add	scr, cnum, scr;		/* scr = sfmmup->sfmmu_ctxs[id] */    \
2025 	ldx	[scr + SFMMU_MMU_GC_NUM], scr;	/* sfmmu_ctxs[id].gcnum */    \
2026 	sllx    scr, SFMMU_MMU_CNUM_LSHIFT, scr;			      \
2027 	srlx    scr, SFMMU_MMU_CNUM_LSHIFT, cnum;	/* cnum = sfmmu cnum */
2028 
2029 /*
2030  * Macro to get hat gnum & cnum assocaited with sfmmu_ctx[mmuid] entry
2031  * entry - In,  pass in (&sfmmu_ctxs[mmuid] - SFMMU_CTXS) from the caller.
2032  * gnum - Out, return sfmmu gnum
2033  * cnum - Out, return sfmmu cnum
2034  * reg	- scratch
2035  */
2036 #define	SFMMU_MMUID_GNUM_CNUM(entry, gnum, cnum, reg)			     \
2037 	ldx	[entry + SFMMU_CTXS], reg;  /* reg = sfmmu (gnum | cnum) */  \
2038 	srlx	reg, SFMMU_MMU_GNUM_RSHIFT, gnum;    /* gnum = sfmmu gnum */ \
2039 	sllx	reg, SFMMU_MMU_CNUM_LSHIFT, cnum;			     \
2040 	srlx	cnum, SFMMU_MMU_CNUM_LSHIFT, cnum;   /* cnum = sfmmu cnum */
2041 
2042 /*
2043  * Macro to get this CPU's tsbmiss area.
2044  */
2045 #define	CPU_TSBMISS_AREA(tsbmiss, tmp1)					\
2046 	CPU_INDEX(tmp1, tsbmiss);		/* tmp1 = cpu idx */	\
2047 	sethi	%hi(tsbmiss_area), tsbmiss;	/* tsbmiss base ptr */	\
2048 	mulx    tmp1, TSBMISS_SIZE, tmp1;	/* byte offset */	\
2049 	or	tsbmiss, %lo(tsbmiss_area), tsbmiss;			\
2050 	add	tsbmiss, tmp1, tsbmiss		/* tsbmiss area of CPU */
2051 
2052 
2053 /*
2054  * Macro to set kernel context + page size codes in DMMU primary context
2055  * register. It is only necessary for sun4u because sun4v does not need
2056  * page size codes
2057  */
2058 #ifdef sun4v
2059 
2060 #define	SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3)
2061 
2062 #else
2063 
2064 #define	SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3) \
2065 	sethi	%hi(kcontextreg), reg0;					\
2066 	ldx	[reg0 + %lo(kcontextreg)], reg0;			\
2067 	mov	MMU_PCONTEXT, reg1;					\
2068 	ldxa	[reg1]ASI_MMU_CTX, reg2;				\
2069 	xor	reg0, reg2, reg2;					\
2070 	brz	reg2, label3;						\
2071 	srlx	reg2, CTXREG_NEXT_SHIFT, reg2;				\
2072 	rdpr	%pstate, reg3;		/* disable interrupts */	\
2073 	btst	PSTATE_IE, reg3;					\
2074 /*CSTYLED*/								\
2075 	bnz,a,pt %icc, label1;						\
2076 	wrpr	reg3, PSTATE_IE, %pstate;				\
2077 /*CSTYLED*/								\
2078 label1:;								\
2079 	brz	reg2, label2;	   /* need demap if N_pgsz0/1 change */	\
2080 	sethi	%hi(FLUSH_ADDR), reg4;					\
2081 	mov	DEMAP_ALL_TYPE, reg2;					\
2082 	stxa	%g0, [reg2]ASI_DTLB_DEMAP;				\
2083 	stxa	%g0, [reg2]ASI_ITLB_DEMAP;				\
2084 /*CSTYLED*/								\
2085 label2:;								\
2086 	stxa	reg0, [reg1]ASI_MMU_CTX;				\
2087 	flush	reg4;							\
2088 	btst	PSTATE_IE, reg3;					\
2089 /*CSTYLED*/								\
2090 	bnz,a,pt %icc, label3;						\
2091 	wrpr	%g0, reg3, %pstate;	/* restore interrupt state */	\
2092 label3:;
2093 
2094 #endif
2095 
2096 /*
2097  * Macro to setup arguments with kernel sfmmup context + page size before
2098  * calling sfmmu_setctx_sec()
2099  */
2100 #ifdef sun4v
2101 #define	SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1)			\
2102 	set	KCONTEXT, arg0;					\
2103 	set	0, arg1;
2104 #else
2105 #define	SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1)			\
2106 	ldub	[sfmmup + SFMMU_CEXT], arg1;			\
2107 	set	KCONTEXT, arg0;					\
2108 	sll	arg1, CTXREG_EXT_SHIFT, arg1;
2109 #endif
2110 
2111 #define	PANIC_IF_INTR_DISABLED_PSTR(pstatereg, label, scr)	       	\
2112 	andcc	pstatereg, PSTATE_IE, %g0;	/* panic if intrs */	\
2113 /*CSTYLED*/								\
2114 	bnz,pt	%icc, label;			/* already disabled */	\
2115 	nop;								\
2116 									\
2117 	sethi	%hi(panicstr), scr;					\
2118 	ldx	[scr + %lo(panicstr)], scr;				\
2119 	tst	scr;							\
2120 /*CSTYLED*/								\
2121 	bnz,pt	%xcc, label;						\
2122 	nop;								\
2123 									\
2124 	save	%sp, -SA(MINFRAME), %sp;				\
2125 	sethi	%hi(sfmmu_panic1), %o0;					\
2126 	call	panic;							\
2127 	or	%o0, %lo(sfmmu_panic1), %o0;				\
2128 /*CSTYLED*/								\
2129 label:
2130 
2131 #define	PANIC_IF_INTR_ENABLED_PSTR(label, scr)				\
2132 	/*								\
2133 	 * The caller must have disabled interrupts.			\
2134 	 * If interrupts are not disabled, panic			\
2135 	 */								\
2136 	rdpr	%pstate, scr;						\
2137 	andcc	scr, PSTATE_IE, %g0;					\
2138 /*CSTYLED*/								\
2139 	bz,pt	%icc, label;						\
2140 	nop;								\
2141 									\
2142 	sethi	%hi(panicstr), scr;					\
2143 	ldx	[scr + %lo(panicstr)], scr;				\
2144 	tst	scr;							\
2145 /*CSTYLED*/								\
2146 	bnz,pt	%xcc, label;						\
2147 	nop;								\
2148 									\
2149 	sethi	%hi(sfmmu_panic6), %o0;					\
2150 	call	panic;							\
2151 	or	%o0, %lo(sfmmu_panic6), %o0;				\
2152 /*CSTYLED*/								\
2153 label:
2154 
2155 #endif	/* _ASM */
2156 
2157 #ifndef _ASM
2158 
2159 #ifdef VAC
2160 /*
2161  * Page coloring
2162  * The p_vcolor field of the page struct (1 byte) is used to store the
2163  * virtual page color.  This provides for 255 colors.  The value zero is
2164  * used to mean the page has no color - never been mapped or somehow
2165  * purified.
2166  */
2167 
2168 #define	PP_GET_VCOLOR(pp)	(((pp)->p_vcolor) - 1)
2169 #define	PP_NEWPAGE(pp)		(!(pp)->p_vcolor)
2170 #define	PP_SET_VCOLOR(pp, color)                                          \
2171 	((pp)->p_vcolor = ((color) + 1))
2172 
2173 /*
2174  * As mentioned p_vcolor == 0 means there is no color for this page.
2175  * But PP_SET_VCOLOR(pp, color) expects 'color' to be real color minus
2176  * one so we define this constant.
2177  */
2178 #define	NO_VCOLOR	(-1)
2179 
2180 #define	addr_to_vcolor(addr) \
2181 	(((uint_t)(uintptr_t)(addr) >> MMU_PAGESHIFT) & vac_colors_mask)
2182 #else	/* VAC */
2183 #define	addr_to_vcolor(addr)	(0)
2184 #endif	/* VAC */
2185 
2186 /*
2187  * The field p_index in the psm page structure is for large pages support.
2188  * P_index is a bit-vector of the different mapping sizes that a given page
2189  * is part of. An hme structure for a large mapping is only added in the
2190  * group leader page (first page). All pages covered by a given large mapping
2191  * have the corrosponding mapping bit set in their p_index field. This allows
2192  * us to only store an explicit hme structure in the leading page which
2193  * simplifies the mapping link list management. Furthermore, it provides us
2194  * a fast mechanism for determining the largest mapping a page is part of. For
2195  * exmaple, a page with a 64K and a 4M mappings has a p_index value of 0x0A.
2196  *
2197  * Implementation note: even though the first bit in p_index is reserved
2198  * for 8K mappings, it is NOT USED by the code and SHOULD NOT be set.
2199  * In addition, the upper four bits of the p_index field are used by the
2200  * code as temporaries
2201  */
2202 
2203 /*
2204  * Defines for psm page struct fields and large page support
2205  */
2206 #define	SFMMU_INDEX_SHIFT		6
2207 #define	SFMMU_INDEX_MASK		((1 << SFMMU_INDEX_SHIFT) - 1)
2208 
2209 /* Return the mapping index */
2210 #define	PP_MAPINDEX(pp)	((pp)->p_index & SFMMU_INDEX_MASK)
2211 
2212 /*
2213  * These macros rely on the following property:
2214  * All pages constituting a large page are covered by a virtually
2215  * contiguous set of page_t's.
2216  */
2217 
2218 /* Return the leader for this mapping size */
2219 #define	PP_GROUPLEADER(pp, sz) \
2220 	(&(pp)[-(int)(pp->p_pagenum & (TTEPAGES(sz)-1))])
2221 
2222 /* Return the root page for this page based on p_szc */
2223 #define	PP_PAGEROOT(pp)	((pp)->p_szc == 0 ? (pp) : \
2224 	PP_GROUPLEADER((pp), (pp)->p_szc))
2225 
2226 #define	PP_PAGENEXT_N(pp, n)	((pp) + (n))
2227 #define	PP_PAGENEXT(pp)		PP_PAGENEXT_N((pp), 1)
2228 
2229 #define	PP_PAGEPREV_N(pp, n)	((pp) - (n))
2230 #define	PP_PAGEPREV(pp)		PP_PAGEPREV_N((pp), 1)
2231 
2232 #define	PP_ISMAPPED_LARGE(pp)	(PP_MAPINDEX(pp) != 0)
2233 
2234 /* Need function to test the page mappping which takes p_index into account */
2235 #define	PP_ISMAPPED(pp)	((pp)->p_mapping || PP_ISMAPPED_LARGE(pp))
2236 
2237 /*
2238  * Don't call this macro with sz equal to zero. 8K mappings SHOULD NOT
2239  * set p_index field.
2240  */
2241 #define	PAGESZ_TO_INDEX(sz)	(1 << (sz))
2242 
2243 
2244 /*
2245  * prototypes for hat assembly routines.  Some of these are
2246  * known to machine dependent VM code.
2247  */
2248 extern uint64_t sfmmu_make_tsbtag(caddr_t);
2249 extern struct tsbe *
2250 		sfmmu_get_tsbe(uint64_t, caddr_t, int, int);
2251 extern void	sfmmu_load_tsbe(struct tsbe *, uint64_t, tte_t *, int);
2252 extern void	sfmmu_unload_tsbe(struct tsbe *, uint64_t, int);
2253 extern void	sfmmu_load_mmustate(sfmmu_t *);
2254 extern void	sfmmu_raise_tsb_exception(uint64_t, uint64_t);
2255 #ifndef sun4v
2256 extern void	sfmmu_itlb_ld_kva(caddr_t, tte_t *);
2257 extern void	sfmmu_dtlb_ld_kva(caddr_t, tte_t *);
2258 #endif /* sun4v */
2259 extern void	sfmmu_copytte(tte_t *, tte_t *);
2260 extern int	sfmmu_modifytte(tte_t *, tte_t *, tte_t *);
2261 extern int	sfmmu_modifytte_try(tte_t *, tte_t *, tte_t *);
2262 extern pfn_t	sfmmu_ttetopfn(tte_t *, caddr_t);
2263 extern void	sfmmu_hblk_hash_rm(struct hmehash_bucket *,
2264 			struct hme_blk *, uint64_t, struct hme_blk *);
2265 extern void	sfmmu_hblk_hash_add(struct hmehash_bucket *, struct hme_blk *,
2266 			uint64_t);
2267 extern uint_t	sfmmu_disable_intrs(void);
2268 extern void	sfmmu_enable_intrs(uint_t);
2269 /*
2270  * functions exported to machine dependent VM code
2271  */
2272 extern void	sfmmu_patch_ktsb(void);
2273 #ifndef UTSB_PHYS
2274 extern void	sfmmu_patch_utsb(void);
2275 #endif /* UTSB_PHYS */
2276 extern pfn_t	sfmmu_vatopfn(caddr_t, sfmmu_t *, tte_t *);
2277 extern void	sfmmu_vatopfn_suspended(caddr_t, sfmmu_t *, tte_t *);
2278 extern pfn_t	sfmmu_kvaszc2pfn(caddr_t, int);
2279 #ifdef	DEBUG
2280 extern void	sfmmu_check_kpfn(pfn_t);
2281 #else
2282 #define		sfmmu_check_kpfn(pfn)	/* disabled */
2283 #endif	/* DEBUG */
2284 extern void	sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
2285 extern void	sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,	uint_t);
2286 extern void	sfmmu_tsbmiss_exception(struct regs *, uintptr_t, uint_t);
2287 extern void	sfmmu_init_tsbs(void);
2288 extern caddr_t  sfmmu_ktsb_alloc(caddr_t);
2289 extern int	sfmmu_getctx_pri(void);
2290 extern int	sfmmu_getctx_sec(void);
2291 extern void	sfmmu_setctx_sec(uint_t);
2292 extern void	sfmmu_inv_tsb(caddr_t, uint_t);
2293 extern void	sfmmu_init_ktsbinfo(void);
2294 extern int	sfmmu_setup_4lp(void);
2295 extern void	sfmmu_patch_mmu_asi(int);
2296 extern void	sfmmu_init_nucleus_hblks(caddr_t, size_t, int, int);
2297 extern void	sfmmu_cache_flushall(void);
2298 extern pgcnt_t  sfmmu_tte_cnt(sfmmu_t *, uint_t);
2299 extern void	*sfmmu_tsb_segkmem_alloc(vmem_t *, size_t, int);
2300 extern void	sfmmu_tsb_segkmem_free(vmem_t *, void *, size_t);
2301 extern void	sfmmu_reprog_pgsz_arr(sfmmu_t *, uint8_t *);
2302 
2303 extern void	hat_kern_setup(void);
2304 extern int	hat_page_relocate(page_t **, page_t **, spgcnt_t *);
2305 extern int	sfmmu_get_ppvcolor(struct page *);
2306 extern int	sfmmu_get_addrvcolor(caddr_t);
2307 extern int	sfmmu_hat_lock_held(sfmmu_t *);
2308 extern int	sfmmu_alloc_ctx(sfmmu_t *, int, struct cpu *, int);
2309 
2310 /*
2311  * Functions exported to xhat_sfmmu.c
2312  */
2313 extern kmutex_t *sfmmu_mlist_enter(page_t *);
2314 extern void	sfmmu_mlist_exit(kmutex_t *);
2315 extern int	sfmmu_mlist_held(struct page *);
2316 extern struct hme_blk *sfmmu_hmetohblk(struct sf_hment *);
2317 
2318 /*
2319  * MMU-specific functions optionally imported from the CPU module
2320  */
2321 #pragma weak mmu_large_pages_disabled
2322 #pragma weak mmu_set_ctx_page_sizes
2323 #pragma weak mmu_check_page_sizes
2324 
2325 extern uint_t mmu_large_pages_disabled(uint_t);
2326 extern void mmu_set_ctx_page_sizes(sfmmu_t *);
2327 extern void mmu_check_page_sizes(sfmmu_t *, uint64_t *);
2328 
2329 extern sfmmu_t 		*ksfmmup;
2330 extern caddr_t		ktsb_base;
2331 extern uint64_t		ktsb_pbase;
2332 extern int		ktsb_sz;
2333 extern int		ktsb_szcode;
2334 extern caddr_t		ktsb4m_base;
2335 extern uint64_t		ktsb4m_pbase;
2336 extern int		ktsb4m_sz;
2337 extern int		ktsb4m_szcode;
2338 extern uint64_t		kpm_tsbbase;
2339 extern int		kpm_tsbsz;
2340 extern int		ktsb_phys;
2341 extern int		enable_bigktsb;
2342 #ifndef sun4v
2343 extern int		utsb_dtlb_ttenum;
2344 extern int		utsb4m_dtlb_ttenum;
2345 #endif /* sun4v */
2346 extern int		uhmehash_num;
2347 extern int		khmehash_num;
2348 extern struct hmehash_bucket *uhme_hash;
2349 extern struct hmehash_bucket *khme_hash;
2350 extern kmutex_t		*mml_table;
2351 extern uint_t		mml_table_sz;
2352 extern uint_t		mml_shift;
2353 extern uint_t		hblk_alloc_dynamic;
2354 extern struct tsbmiss	tsbmiss_area[NCPU];
2355 extern struct kpmtsbm	kpmtsbm_area[NCPU];
2356 
2357 #ifndef sun4v
2358 extern int		dtlb_resv_ttenum;
2359 extern caddr_t		utsb_vabase;
2360 extern caddr_t		utsb4m_vabase;
2361 #endif /* sun4v */
2362 extern vmem_t		*kmem_tsb_default_arena[];
2363 extern int		tsb_lgrp_affinity;
2364 
2365 extern uint_t		disable_large_pages;
2366 extern uint_t		disable_ism_large_pages;
2367 extern uint_t		disable_auto_data_large_pages;
2368 extern uint_t		disable_auto_text_large_pages;
2369 
2370 /* kpm externals */
2371 extern pfn_t		sfmmu_kpm_vatopfn(caddr_t);
2372 extern void		sfmmu_kpm_patch_tlbm(void);
2373 extern void		sfmmu_kpm_patch_tsbm(void);
2374 extern void		sfmmu_patch_shctx(void);
2375 extern void		sfmmu_kpm_load_tsb(caddr_t, tte_t *, int);
2376 extern void		sfmmu_kpm_unload_tsb(caddr_t, int);
2377 extern void		sfmmu_kpm_tsbmtl(short *, uint_t *, int);
2378 extern int		sfmmu_kpm_stsbmtl(uchar_t *, uint_t *, int);
2379 extern caddr_t		kpm_vbase;
2380 extern size_t		kpm_size;
2381 extern struct memseg	*memseg_hash[];
2382 extern uint64_t		memseg_phash[];
2383 extern kpm_hlk_t	*kpmp_table;
2384 extern kpm_shlk_t	*kpmp_stable;
2385 extern uint_t		kpmp_table_sz;
2386 extern uint_t		kpmp_stable_sz;
2387 extern uchar_t		kpmp_shift;
2388 
2389 #define	PP_ISMAPPED_KPM(pp)	((pp)->p_kpmref > 0)
2390 
2391 #define	IS_KPM_ALIAS_RANGE(vaddr)					\
2392 	(((vaddr) - kpm_vbase) >> (uintptr_t)kpm_size_shift > 0)
2393 
2394 #endif /* !_ASM */
2395 
2396 /* sfmmu_kpm_tsbmtl flags */
2397 #define	KPMTSBM_STOP		0
2398 #define	KPMTSBM_START		1
2399 
2400 /*
2401  * For kpm_smallpages, the state about how a kpm page is mapped and whether
2402  * it is ready to go is indicated by the two 4-bit fields defined in the
2403  * kpm_spage structure as follows:
2404  * kp_mapped_flag bit[0:3] - the page is mapped cacheable or not
2405  * kp_mapped_flag bit[4:7] - the mapping is ready to go or not
2406  * If the bit KPM_MAPPED_GO is on, it indicates that the assembly tsb miss
2407  * handler can drop the mapping in regardless of the caching state of the
2408  * mapping. Otherwise, we will have C handler resolve the VAC conflict no
2409  * matter the page is currently mapped cacheable or non-cacheable.
2410  */
2411 #define	KPM_MAPPEDS		0x1	/* small mapping valid, no conflict */
2412 #define	KPM_MAPPEDSC		0x2	/* small mapping valid, conflict */
2413 #define	KPM_MAPPED_GO		0x10	/* the mapping is ready to go */
2414 #define	KPM_MAPPED_MASK		0xf
2415 
2416 /* Physical memseg address NULL marker */
2417 #define	MSEG_NULLPTR_PA		-1
2418 
2419 /*
2420  * Memseg hash defines for kpm trap level tsbmiss handler.
2421  * Must be in sync w/ page.h .
2422  */
2423 #define	SFMMU_MEM_HASH_SHIFT		0x9
2424 #define	SFMMU_N_MEM_SLOTS		0x200
2425 #define	SFMMU_MEM_HASH_ENTRY_SHIFT	3
2426 
2427 #ifndef	_ASM
2428 #if (SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT)
2429 #error SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT
2430 #endif
2431 #if (SFMMU_N_MEM_SLOTS != N_MEM_SLOTS)
2432 #error SFMMU_N_MEM_SLOTS != N_MEM_SLOTS
2433 #endif
2434 
2435 /* Physical memseg address NULL marker */
2436 #define	SFMMU_MEMSEG_NULLPTR_PA		-1
2437 
2438 /*
2439  * Check KCONTEXT to be zero, asm parts depend on that assumption.
2440  */
2441 #if (KCONTEXT != 0)
2442 #error KCONTEXT != 0
2443 #endif
2444 #endif	/* !_ASM */
2445 
2446 
2447 #endif /* _KERNEL */
2448 
2449 #ifndef _ASM
2450 /*
2451  * ctx, hmeblk, mlistlock and other stats for sfmmu
2452  */
2453 struct sfmmu_global_stat {
2454 	int		sf_tsb_exceptions;	/* # of tsb exceptions */
2455 	int		sf_tsb_raise_exception;	/* # tsb exc. w/o TLB flush */
2456 
2457 	int		sf_pagefaults;		/* # of pagefaults */
2458 
2459 	int		sf_uhash_searches;	/* # of user hash searches */
2460 	int		sf_uhash_links;		/* # of user hash links */
2461 	int		sf_khash_searches;	/* # of kernel hash searches */
2462 	int		sf_khash_links;		/* # of kernel hash links */
2463 
2464 	int		sf_swapout;		/* # times hat swapped out */
2465 
2466 	int		sf_tsb_alloc;		/* # TSB allocations */
2467 	int		sf_tsb_allocfail;	/* # times TSB alloc fail */
2468 	int		sf_tsb_sectsb_create;	/* # times second TSB added */
2469 
2470 	int		sf_scd_1sttsb_alloc;	/* # SCD 1st TSB allocations */
2471 	int		sf_scd_2ndtsb_alloc;	/* # SCD 2nd TSB allocations */
2472 	int		sf_scd_1sttsb_allocfail; /* # SCD 1st TSB alloc fail */
2473 	int		sf_scd_2ndtsb_allocfail; /* # SCD 2nd TSB alloc fail */
2474 
2475 
2476 	int		sf_tteload8k;		/* calls to sfmmu_tteload */
2477 	int		sf_tteload64k;		/* calls to sfmmu_tteload */
2478 	int		sf_tteload512k;		/* calls to sfmmu_tteload */
2479 	int		sf_tteload4m;		/* calls to sfmmu_tteload */
2480 	int		sf_tteload32m;		/* calls to sfmmu_tteload */
2481 	int		sf_tteload256m;		/* calls to sfmmu_tteload */
2482 
2483 	int		sf_tsb_load8k;		/* # times loaded 8K tsbent */
2484 	int		sf_tsb_load4m;		/* # times loaded 4M tsbent */
2485 
2486 	int		sf_hblk_hit;		/* found hblk during tteload */
2487 	int		sf_hblk8_ncreate;	/* static hblk8's created */
2488 	int		sf_hblk8_nalloc;	/* static hblk8's allocated */
2489 	int		sf_hblk1_ncreate;	/* static hblk1's created */
2490 	int		sf_hblk1_nalloc;	/* static hblk1's allocated */
2491 	int		sf_hblk_slab_cnt;	/* sfmmu8_cache slab creates */
2492 	int		sf_hblk_reserve_cnt;	/* hblk_reserve usage */
2493 	int		sf_hblk_recurse_cnt;	/* hblk_reserve	owner reqs */
2494 	int		sf_hblk_reserve_hit;	/* hblk_reserve hash hits */
2495 	int		sf_get_free_success;	/* reserve list allocs */
2496 	int		sf_get_free_throttle;	/* fails due to throttling */
2497 	int		sf_get_free_fail;	/* fails due to empty list */
2498 	int		sf_put_free_success;	/* reserve list frees */
2499 	int		sf_put_free_fail;	/* fails due to full list */
2500 
2501 	int		sf_pgcolor_conflict;	/* VAC conflict resolution */
2502 	int		sf_uncache_conflict;	/* VAC conflict resolution */
2503 	int		sf_unload_conflict;	/* VAC unload resolution */
2504 	int		sf_ism_uncache;		/* VAC conflict resolution */
2505 	int		sf_ism_recache;		/* VAC conflict resolution */
2506 	int		sf_recache;		/* VAC conflict resolution */
2507 
2508 	int		sf_steal_count;		/* # of hblks stolen */
2509 
2510 	int		sf_pagesync;		/* # of pagesyncs */
2511 	int		sf_clrwrt;		/* # of clear write perms */
2512 	int		sf_pagesync_invalid;	/* pagesync with inv tte */
2513 
2514 	int		sf_kernel_xcalls;	/* # of kernel cross calls */
2515 	int		sf_user_xcalls;		/* # of user cross calls */
2516 
2517 	int		sf_tsb_grow;		/* # of user tsb grows */
2518 	int		sf_tsb_shrink;		/* # of user tsb shrinks */
2519 	int		sf_tsb_resize_failures;	/* # of user tsb resize */
2520 	int		sf_tsb_reloc;		/* # of user tsb relocations */
2521 
2522 	int		sf_user_vtop;		/* # of user vatopfn calls */
2523 
2524 	int		sf_ctx_inv;		/* #times invalidate MMU ctx */
2525 
2526 	int		sf_tlb_reprog_pgsz;	/* # times switch TLB pgsz */
2527 
2528 	int		sf_region_remap_demap;	/* # times shme remap demap */
2529 
2530 	int		sf_create_scd;		/* # times SCD is created */
2531 	int		sf_join_scd;		/* # process joined scd */
2532 	int		sf_leave_scd;		/* # process left scd */
2533 	int		sf_destroy_scd;		/* # times SCD is destroyed */
2534 };
2535 
2536 struct sfmmu_tsbsize_stat {
2537 	int		sf_tsbsz_8k;
2538 	int		sf_tsbsz_16k;
2539 	int		sf_tsbsz_32k;
2540 	int		sf_tsbsz_64k;
2541 	int		sf_tsbsz_128k;
2542 	int		sf_tsbsz_256k;
2543 	int		sf_tsbsz_512k;
2544 	int		sf_tsbsz_1m;
2545 	int		sf_tsbsz_2m;
2546 	int		sf_tsbsz_4m;
2547 	int		sf_tsbsz_8m;
2548 	int		sf_tsbsz_16m;
2549 	int		sf_tsbsz_32m;
2550 	int		sf_tsbsz_64m;
2551 	int		sf_tsbsz_128m;
2552 	int		sf_tsbsz_256m;
2553 };
2554 
2555 struct sfmmu_percpu_stat {
2556 	int	sf_itlb_misses;		/* # of itlb misses */
2557 	int	sf_dtlb_misses;		/* # of dtlb misses */
2558 	int	sf_utsb_misses;		/* # of user tsb misses */
2559 	int	sf_ktsb_misses;		/* # of kernel tsb misses */
2560 	int	sf_tsb_hits;		/* # of tsb hits */
2561 	int	sf_umod_faults;		/* # of mod (prot viol) flts */
2562 	int	sf_kmod_faults;		/* # of mod (prot viol) flts */
2563 };
2564 
2565 #define	SFMMU_STAT(stat)		sfmmu_global_stat.stat++
2566 #define	SFMMU_STAT_ADD(stat, amount)	sfmmu_global_stat.stat += (amount)
2567 #define	SFMMU_STAT_SET(stat, count)	sfmmu_global_stat.stat = (count)
2568 
2569 #define	SFMMU_MMU_STAT(stat)		CPU->cpu_m.cpu_mmu_ctxp->stat++
2570 
2571 #endif /* !_ASM */
2572 
2573 #ifdef	__cplusplus
2574 }
2575 #endif
2576 
2577 #endif	/* _VM_HAT_SFMMU_H */
2578