xref: /titanic_50/usr/src/uts/sfmmu/vm/hat_sfmmu.c (revision d00756ccb34596a328f8a15d1965da5412d366d0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * VM - Hardware Address Translation management for Spitfire MMU.
30  *
31  * This file implements the machine specific hardware translation
32  * needed by the VM system.  The machine independent interface is
33  * described in <vm/hat.h> while the machine dependent interface
34  * and data structures are described in <vm/hat_sfmmu.h>.
35  *
36  * The hat layer manages the address translation hardware as a cache
37  * driven by calls from the higher levels in the VM system.
38  */
39 
40 #include <sys/types.h>
41 #include <sys/kstat.h>
42 #include <vm/hat.h>
43 #include <vm/hat_sfmmu.h>
44 #include <vm/page.h>
45 #include <sys/pte.h>
46 #include <sys/systm.h>
47 #include <sys/mman.h>
48 #include <sys/sysmacros.h>
49 #include <sys/machparam.h>
50 #include <sys/vtrace.h>
51 #include <sys/kmem.h>
52 #include <sys/mmu.h>
53 #include <sys/cmn_err.h>
54 #include <sys/cpu.h>
55 #include <sys/cpuvar.h>
56 #include <sys/debug.h>
57 #include <sys/lgrp.h>
58 #include <sys/archsystm.h>
59 #include <sys/machsystm.h>
60 #include <sys/vmsystm.h>
61 #include <vm/as.h>
62 #include <vm/seg.h>
63 #include <vm/seg_kp.h>
64 #include <vm/seg_kmem.h>
65 #include <vm/seg_kpm.h>
66 #include <vm/rm.h>
67 #include <sys/t_lock.h>
68 #include <sys/obpdefs.h>
69 #include <sys/vm_machparam.h>
70 #include <sys/var.h>
71 #include <sys/trap.h>
72 #include <sys/machtrap.h>
73 #include <sys/scb.h>
74 #include <sys/bitmap.h>
75 #include <sys/machlock.h>
76 #include <sys/membar.h>
77 #include <sys/atomic.h>
78 #include <sys/cpu_module.h>
79 #include <sys/prom_debug.h>
80 #include <sys/ksynch.h>
81 #include <sys/mem_config.h>
82 #include <sys/mem_cage.h>
83 #include <vm/vm_dep.h>
84 #include <vm/xhat_sfmmu.h>
85 #include <sys/fpu/fpusystm.h>
86 #include <vm/mach_kpm.h>
87 #include <sys/callb.h>
88 
89 #ifdef	DEBUG
90 #define	SFMMU_VALIDATE_HMERID(hat, rid, saddr, len)			\
91 	if (SFMMU_IS_SHMERID_VALID(rid)) {				\
92 		caddr_t _eaddr = (saddr) + (len);			\
93 		sf_srd_t *_srdp;					\
94 		sf_region_t *_rgnp;					\
95 		ASSERT((rid) < SFMMU_MAX_HME_REGIONS);			\
96 		ASSERT(SF_RGNMAP_TEST(hat->sfmmu_hmeregion_map, rid));	\
97 		ASSERT((hat) != ksfmmup);				\
98 		_srdp = (hat)->sfmmu_srdp;				\
99 		ASSERT(_srdp != NULL);					\
100 		ASSERT(_srdp->srd_refcnt != 0);				\
101 		_rgnp = _srdp->srd_hmergnp[(rid)];			\
102 		ASSERT(_rgnp != NULL && _rgnp->rgn_id == rid);		\
103 		ASSERT(_rgnp->rgn_refcnt != 0);				\
104 		ASSERT(!(_rgnp->rgn_flags & SFMMU_REGION_FREE));	\
105 		ASSERT((_rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) ==	\
106 		    SFMMU_REGION_HME);					\
107 		ASSERT((saddr) >= _rgnp->rgn_saddr);			\
108 		ASSERT((saddr) < _rgnp->rgn_saddr + _rgnp->rgn_size);	\
109 		ASSERT(_eaddr > _rgnp->rgn_saddr);			\
110 		ASSERT(_eaddr <= _rgnp->rgn_saddr + _rgnp->rgn_size);	\
111 	}
112 
113 #define	SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid) 	 	 \
114 {						 			 \
115 		caddr_t _hsva;						 \
116 		caddr_t _heva;						 \
117 		caddr_t _rsva;					 	 \
118 		caddr_t _reva;					 	 \
119 		int	_ttesz = get_hblk_ttesz(hmeblkp);		 \
120 		int	_flagtte;					 \
121 		ASSERT((srdp)->srd_refcnt != 0);			 \
122 		ASSERT((rid) < SFMMU_MAX_HME_REGIONS);			 \
123 		ASSERT((rgnp)->rgn_id == rid);				 \
124 		ASSERT(!((rgnp)->rgn_flags & SFMMU_REGION_FREE));	 \
125 		ASSERT(((rgnp)->rgn_flags & SFMMU_REGION_TYPE_MASK) ==	 \
126 		    SFMMU_REGION_HME);					 \
127 		ASSERT(_ttesz <= (rgnp)->rgn_pgszc);			 \
128 		_hsva = (caddr_t)get_hblk_base(hmeblkp);		 \
129 		_heva = get_hblk_endaddr(hmeblkp);			 \
130 		_rsva = (caddr_t)P2ALIGN(				 \
131 		    (uintptr_t)(rgnp)->rgn_saddr, HBLK_MIN_BYTES);	 \
132 		_reva = (caddr_t)P2ROUNDUP(				 \
133 		    (uintptr_t)((rgnp)->rgn_saddr + (rgnp)->rgn_size),	 \
134 		    HBLK_MIN_BYTES);					 \
135 		ASSERT(_hsva >= _rsva);				 	 \
136 		ASSERT(_hsva < _reva);				 	 \
137 		ASSERT(_heva > _rsva);				 	 \
138 		ASSERT(_heva <= _reva);				 	 \
139 		_flagtte = (_ttesz < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ :  \
140 			_ttesz;						 \
141 		ASSERT(rgnp->rgn_hmeflags & (0x1 << _flagtte));		 \
142 }
143 
144 #else /* DEBUG */
145 #define	SFMMU_VALIDATE_HMERID(hat, rid, addr, len)
146 #define	SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid)
147 #endif /* DEBUG */
148 
149 #if defined(SF_ERRATA_57)
150 extern caddr_t errata57_limit;
151 #endif
152 
153 #define	HME8BLK_SZ_RND		((roundup(HME8BLK_SZ, sizeof (int64_t))) /  \
154 				(sizeof (int64_t)))
155 #define	HBLK_RESERVE		((struct hme_blk *)hblk_reserve)
156 
157 #define	HBLK_RESERVE_CNT	128
158 #define	HBLK_RESERVE_MIN	20
159 
160 static struct hme_blk		*freehblkp;
161 static kmutex_t			freehblkp_lock;
162 static int			freehblkcnt;
163 
164 static int64_t			hblk_reserve[HME8BLK_SZ_RND];
165 static kmutex_t			hblk_reserve_lock;
166 static kthread_t		*hblk_reserve_thread;
167 
168 static nucleus_hblk8_info_t	nucleus_hblk8;
169 static nucleus_hblk1_info_t	nucleus_hblk1;
170 
171 /*
172  * SFMMU specific hat functions
173  */
174 void	hat_pagecachectl(struct page *, int);
175 
176 /* flags for hat_pagecachectl */
177 #define	HAT_CACHE	0x1
178 #define	HAT_UNCACHE	0x2
179 #define	HAT_TMPNC	0x4
180 
181 /*
182  * Flag to allow the creation of non-cacheable translations
183  * to system memory. It is off by default. At the moment this
184  * flag is used by the ecache error injector. The error injector
185  * will turn it on when creating such a translation then shut it
186  * off when it's finished.
187  */
188 
189 int	sfmmu_allow_nc_trans = 0;
190 
191 /*
192  * Flag to disable large page support.
193  * 	value of 1 => disable all large pages.
194  *	bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
195  *
196  * For example, use the value 0x4 to disable 512K pages.
197  *
198  */
199 #define	LARGE_PAGES_OFF		0x1
200 
201 /*
202  * The disable_large_pages and disable_ism_large_pages variables control
203  * hat_memload_array and the page sizes to be used by ISM and the kernel.
204  *
205  * The disable_auto_data_large_pages and disable_auto_text_large_pages variables
206  * are only used to control which OOB pages to use at upper VM segment creation
207  * time, and are set in hat_init_pagesizes and used in the map_pgsz* routines.
208  * Their values may come from platform or CPU specific code to disable page
209  * sizes that should not be used.
210  *
211  * WARNING: 512K pages are currently not supported for ISM/DISM.
212  */
213 uint_t	disable_large_pages = 0;
214 uint_t	disable_ism_large_pages = (1 << TTE512K);
215 uint_t	disable_auto_data_large_pages = 0;
216 uint_t	disable_auto_text_large_pages = 0;
217 
218 /*
219  * Private sfmmu data structures for hat management
220  */
221 static struct kmem_cache *sfmmuid_cache;
222 static struct kmem_cache *mmuctxdom_cache;
223 
224 /*
225  * Private sfmmu data structures for tsb management
226  */
227 static struct kmem_cache *sfmmu_tsbinfo_cache;
228 static struct kmem_cache *sfmmu_tsb8k_cache;
229 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
230 static vmem_t *kmem_bigtsb_arena;
231 static vmem_t *kmem_tsb_arena;
232 
233 /*
234  * sfmmu static variables for hmeblk resource management.
235  */
236 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
237 static struct kmem_cache *sfmmu8_cache;
238 static struct kmem_cache *sfmmu1_cache;
239 static struct kmem_cache *pa_hment_cache;
240 
241 static kmutex_t 	ism_mlist_lock;	/* mutex for ism mapping list */
242 /*
243  * private data for ism
244  */
245 static struct kmem_cache *ism_blk_cache;
246 static struct kmem_cache *ism_ment_cache;
247 #define	ISMID_STARTADDR	NULL
248 
249 /*
250  * Region management data structures and function declarations.
251  */
252 
253 static void	sfmmu_leave_srd(sfmmu_t *);
254 static int	sfmmu_srdcache_constructor(void *, void *, int);
255 static void	sfmmu_srdcache_destructor(void *, void *);
256 static int	sfmmu_rgncache_constructor(void *, void *, int);
257 static void	sfmmu_rgncache_destructor(void *, void *);
258 static int	sfrgnmap_isnull(sf_region_map_t *);
259 static int	sfhmergnmap_isnull(sf_hmeregion_map_t *);
260 static int	sfmmu_scdcache_constructor(void *, void *, int);
261 static void	sfmmu_scdcache_destructor(void *, void *);
262 static void	sfmmu_rgn_cb_noop(caddr_t, caddr_t, caddr_t,
263     size_t, void *, u_offset_t);
264 
265 static uint_t srd_hashmask = SFMMU_MAX_SRD_BUCKETS - 1;
266 static sf_srd_bucket_t *srd_buckets;
267 static struct kmem_cache *srd_cache;
268 static uint_t srd_rgn_hashmask = SFMMU_MAX_REGION_BUCKETS - 1;
269 static struct kmem_cache *region_cache;
270 static struct kmem_cache *scd_cache;
271 
272 #ifdef sun4v
273 int use_bigtsb_arena = 1;
274 #else
275 int use_bigtsb_arena = 0;
276 #endif
277 
278 /* External /etc/system tunable, for turning on&off the shctx support */
279 int disable_shctx = 0;
280 /* Internal variable, set by MD if the HW supports shctx feature */
281 int shctx_on = 0;
282 
283 #ifdef DEBUG
284 static void check_scd_sfmmu_list(sfmmu_t **, sfmmu_t *, int);
285 #endif
286 static void sfmmu_to_scd_list(sfmmu_t **, sfmmu_t *);
287 static void sfmmu_from_scd_list(sfmmu_t **, sfmmu_t *);
288 
289 static sf_scd_t *sfmmu_alloc_scd(sf_srd_t *, sf_region_map_t *);
290 static void sfmmu_find_scd(sfmmu_t *);
291 static void sfmmu_join_scd(sf_scd_t *, sfmmu_t *);
292 static void sfmmu_finish_join_scd(sfmmu_t *);
293 static void sfmmu_leave_scd(sfmmu_t *, uchar_t);
294 static void sfmmu_destroy_scd(sf_srd_t *, sf_scd_t *, sf_region_map_t *);
295 static int sfmmu_alloc_scd_tsbs(sf_srd_t *, sf_scd_t *);
296 static void sfmmu_free_scd_tsbs(sfmmu_t *);
297 static void sfmmu_tsb_inv_ctx(sfmmu_t *);
298 static int find_ism_rid(sfmmu_t *, sfmmu_t *, caddr_t, uint_t *);
299 static void sfmmu_ism_hatflags(sfmmu_t *, int);
300 static int sfmmu_srd_lock_held(sf_srd_t *);
301 static void sfmmu_remove_scd(sf_scd_t **, sf_scd_t *);
302 static void sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *);
303 static void sfmmu_link_scd_to_regions(sf_srd_t *, sf_scd_t *);
304 static void sfmmu_unlink_scd_from_regions(sf_srd_t *, sf_scd_t *);
305 static void sfmmu_link_to_hmeregion(sfmmu_t *, sf_region_t *);
306 static void sfmmu_unlink_from_hmeregion(sfmmu_t *, sf_region_t *);
307 
308 /*
309  * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
310  * HAT flags, synchronizing TLB/TSB coherency, and context management.
311  * The lock is hashed on the sfmmup since the case where we need to lock
312  * all processes is rare but does occur (e.g. we need to unload a shared
313  * mapping from all processes using the mapping).  We have a lot of buckets,
314  * and each slab of sfmmu_t's can use about a quarter of them, giving us
315  * a fairly good distribution without wasting too much space and overhead
316  * when we have to grab them all.
317  */
318 #define	SFMMU_NUM_LOCK	128		/* must be power of two */
319 hatlock_t	hat_lock[SFMMU_NUM_LOCK];
320 
321 /*
322  * Hash algorithm optimized for a small number of slabs.
323  *  7 is (highbit((sizeof sfmmu_t)) - 1)
324  * This hash algorithm is based upon the knowledge that sfmmu_t's come from a
325  * kmem_cache, and thus they will be sequential within that cache.  In
326  * addition, each new slab will have a different "color" up to cache_maxcolor
327  * which will skew the hashing for each successive slab which is allocated.
328  * If the size of sfmmu_t changed to a larger size, this algorithm may need
329  * to be revisited.
330  */
331 #define	TSB_HASH_SHIFT_BITS (7)
332 #define	PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
333 
334 #ifdef DEBUG
335 int tsb_hash_debug = 0;
336 #define	TSB_HASH(sfmmup)	\
337 	(tsb_hash_debug ? &hat_lock[0] : \
338 	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
339 #else	/* DEBUG */
340 #define	TSB_HASH(sfmmup)	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
341 #endif	/* DEBUG */
342 
343 
344 /* sfmmu_replace_tsb() return codes. */
345 typedef enum tsb_replace_rc {
346 	TSB_SUCCESS,
347 	TSB_ALLOCFAIL,
348 	TSB_LOSTRACE,
349 	TSB_ALREADY_SWAPPED,
350 	TSB_CANTGROW
351 } tsb_replace_rc_t;
352 
353 /*
354  * Flags for TSB allocation routines.
355  */
356 #define	TSB_ALLOC	0x01
357 #define	TSB_FORCEALLOC	0x02
358 #define	TSB_GROW	0x04
359 #define	TSB_SHRINK	0x08
360 #define	TSB_SWAPIN	0x10
361 
362 /*
363  * Support for HAT callbacks.
364  */
365 #define	SFMMU_MAX_RELOC_CALLBACKS	10
366 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
367 static id_t sfmmu_cb_nextid = 0;
368 static id_t sfmmu_tsb_cb_id;
369 struct sfmmu_callback *sfmmu_cb_table;
370 
371 /*
372  * Kernel page relocation is enabled by default for non-caged
373  * kernel pages.  This has little effect unless segkmem_reloc is
374  * set, since by default kernel memory comes from inside the
375  * kernel cage.
376  */
377 int hat_kpr_enabled = 1;
378 
379 kmutex_t	kpr_mutex;
380 kmutex_t	kpr_suspendlock;
381 kthread_t	*kreloc_thread;
382 
383 /*
384  * Enable VA->PA translation sanity checking on DEBUG kernels.
385  * Disabled by default.  This is incompatible with some
386  * drivers (error injector, RSM) so if it breaks you get
387  * to keep both pieces.
388  */
389 int hat_check_vtop = 0;
390 
391 /*
392  * Private sfmmu routines (prototypes)
393  */
394 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
395 static struct 	hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
396 			struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t,
397 			uint_t);
398 static caddr_t	sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
399 			caddr_t, demap_range_t *, uint_t);
400 static caddr_t	sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
401 			caddr_t, int);
402 static void	sfmmu_hblk_free(struct hmehash_bucket *, struct hme_blk *,
403 			uint64_t, struct hme_blk **);
404 static void	sfmmu_hblks_list_purge(struct hme_blk **);
405 static uint_t	sfmmu_get_free_hblk(struct hme_blk **, uint_t);
406 static uint_t	sfmmu_put_free_hblk(struct hme_blk *, uint_t);
407 static struct hme_blk *sfmmu_hblk_steal(int);
408 static int	sfmmu_steal_this_hblk(struct hmehash_bucket *,
409 			struct hme_blk *, uint64_t, uint64_t,
410 			struct hme_blk *);
411 static caddr_t	sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
412 
413 static void	hat_do_memload_array(struct hat *, caddr_t, size_t,
414 		    struct page **, uint_t, uint_t, uint_t);
415 static void	hat_do_memload(struct hat *, caddr_t, struct page *,
416 		    uint_t, uint_t, uint_t);
417 static void	sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
418 		    uint_t, uint_t, pgcnt_t, uint_t);
419 void		sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
420 			uint_t);
421 static int	sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
422 			uint_t, uint_t);
423 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
424 					caddr_t, int, uint_t);
425 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
426 			struct hmehash_bucket *, caddr_t, uint_t, uint_t,
427 			uint_t);
428 static int	sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
429 			caddr_t, page_t **, uint_t, uint_t);
430 static void	sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
431 
432 static int	sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
433 static pfn_t	sfmmu_uvatopfn(caddr_t, sfmmu_t *, tte_t *);
434 void		sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
435 #ifdef VAC
436 static void	sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
437 static int	sfmmu_vacconflict_array(caddr_t, page_t *, int *);
438 int	tst_tnc(page_t *pp, pgcnt_t);
439 void	conv_tnc(page_t *pp, int);
440 #endif
441 
442 static void	sfmmu_get_ctx(sfmmu_t *);
443 static void	sfmmu_free_sfmmu(sfmmu_t *);
444 
445 static void	sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
446 static void	sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
447 
448 cpuset_t	sfmmu_pageunload(page_t *, struct sf_hment *, int);
449 static void	hat_pagereload(struct page *, struct page *);
450 static cpuset_t	sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
451 #ifdef VAC
452 void	sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
453 static void	sfmmu_page_cache(page_t *, int, int, int);
454 #endif
455 
456 cpuset_t	sfmmu_rgntlb_demap(caddr_t, sf_region_t *,
457     struct hme_blk *, int);
458 static void	sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
459 			pfn_t, int, int, int, int);
460 static void	sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
461 			pfn_t, int);
462 static void	sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
463 static void	sfmmu_tlb_range_demap(demap_range_t *);
464 static void	sfmmu_invalidate_ctx(sfmmu_t *);
465 static void	sfmmu_sync_mmustate(sfmmu_t *);
466 
467 static void 	sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
468 static int	sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
469 			sfmmu_t *);
470 static void	sfmmu_tsb_free(struct tsb_info *);
471 static void	sfmmu_tsbinfo_free(struct tsb_info *);
472 static int	sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
473 			sfmmu_t *);
474 static void	sfmmu_tsb_chk_reloc(sfmmu_t *, hatlock_t *);
475 static void	sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
476 static int	sfmmu_select_tsb_szc(pgcnt_t);
477 static void	sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
478 #define		sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
479 	sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
480 #define		sfmmu_unload_tsb(sfmmup, vaddr, szc)    \
481 	sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
482 static void	sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
483 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
484     hatlock_t *, uint_t);
485 static void	sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
486 
487 #ifdef VAC
488 void	sfmmu_cache_flush(pfn_t, int);
489 void	sfmmu_cache_flushcolor(int, pfn_t);
490 #endif
491 static caddr_t	sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
492 			caddr_t, demap_range_t *, uint_t, int);
493 
494 static uint64_t	sfmmu_vtop_attr(uint_t, int mode, tte_t *);
495 static uint_t	sfmmu_ptov_attr(tte_t *);
496 static caddr_t	sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
497 			caddr_t, demap_range_t *, uint_t);
498 static uint_t	sfmmu_vtop_prot(uint_t, uint_t *);
499 static int	sfmmu_idcache_constructor(void *, void *, int);
500 static void	sfmmu_idcache_destructor(void *, void *);
501 static int	sfmmu_hblkcache_constructor(void *, void *, int);
502 static void	sfmmu_hblkcache_destructor(void *, void *);
503 static void	sfmmu_hblkcache_reclaim(void *);
504 static void	sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
505 			struct hmehash_bucket *);
506 static void	sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
507 static void	sfmmu_cleanup_rhblk(sf_srd_t *, caddr_t, uint_t, int);
508 static void	sfmmu_unload_hmeregion_va(sf_srd_t *, uint_t, caddr_t, caddr_t,
509 			int, caddr_t *);
510 static void	sfmmu_unload_hmeregion(sf_srd_t *, sf_region_t *);
511 
512 static void	sfmmu_rm_large_mappings(page_t *, int);
513 
514 static void	hat_lock_init(void);
515 static void	hat_kstat_init(void);
516 static int	sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
517 static void	sfmmu_set_scd_rttecnt(sf_srd_t *, sf_scd_t *);
518 static	int	sfmmu_is_rgnva(sf_srd_t *, caddr_t, ulong_t, ulong_t);
519 static void	sfmmu_check_page_sizes(sfmmu_t *, int);
520 int	fnd_mapping_sz(page_t *);
521 static void	iment_add(struct ism_ment *,  struct hat *);
522 static void	iment_sub(struct ism_ment *, struct hat *);
523 static pgcnt_t	ism_tsb_entries(sfmmu_t *, int szc);
524 extern void	sfmmu_setup_tsbinfo(sfmmu_t *);
525 extern void	sfmmu_clear_utsbinfo(void);
526 
527 static void	sfmmu_ctx_wrap_around(mmu_ctx_t *);
528 
529 /* kpm globals */
530 #ifdef	DEBUG
531 /*
532  * Enable trap level tsbmiss handling
533  */
534 int	kpm_tsbmtl = 1;
535 
536 /*
537  * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
538  * required TLB shootdowns in this case, so handle w/ care. Off by default.
539  */
540 int	kpm_tlb_flush;
541 #endif	/* DEBUG */
542 
543 static void	*sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
544 
545 #ifdef DEBUG
546 static void	sfmmu_check_hblk_flist();
547 #endif
548 
549 /*
550  * Semi-private sfmmu data structures.  Some of them are initialize in
551  * startup or in hat_init. Some of them are private but accessed by
552  * assembly code or mach_sfmmu.c
553  */
554 struct hmehash_bucket *uhme_hash;	/* user hmeblk hash table */
555 struct hmehash_bucket *khme_hash;	/* kernel hmeblk hash table */
556 uint64_t	uhme_hash_pa;		/* PA of uhme_hash */
557 uint64_t	khme_hash_pa;		/* PA of khme_hash */
558 int 		uhmehash_num;		/* # of buckets in user hash table */
559 int 		khmehash_num;		/* # of buckets in kernel hash table */
560 
561 uint_t		max_mmu_ctxdoms = 0;	/* max context domains in the system */
562 mmu_ctx_t	**mmu_ctxs_tbl;		/* global array of context domains */
563 uint64_t	mmu_saved_gnum = 0;	/* to init incoming MMUs' gnums */
564 
565 #define	DEFAULT_NUM_CTXS_PER_MMU 8192
566 static uint_t	nctxs = DEFAULT_NUM_CTXS_PER_MMU;
567 
568 int		cache;			/* describes system cache */
569 
570 caddr_t		ktsb_base;		/* kernel 8k-indexed tsb base address */
571 uint64_t	ktsb_pbase;		/* kernel 8k-indexed tsb phys address */
572 int		ktsb_szcode;		/* kernel 8k-indexed tsb size code */
573 int		ktsb_sz;		/* kernel 8k-indexed tsb size */
574 
575 caddr_t		ktsb4m_base;		/* kernel 4m-indexed tsb base address */
576 uint64_t	ktsb4m_pbase;		/* kernel 4m-indexed tsb phys address */
577 int		ktsb4m_szcode;		/* kernel 4m-indexed tsb size code */
578 int		ktsb4m_sz;		/* kernel 4m-indexed tsb size */
579 
580 uint64_t	kpm_tsbbase;		/* kernel seg_kpm 4M TSB base address */
581 int		kpm_tsbsz;		/* kernel seg_kpm 4M TSB size code */
582 uint64_t	kpmsm_tsbbase;		/* kernel seg_kpm 8K TSB base address */
583 int		kpmsm_tsbsz;		/* kernel seg_kpm 8K TSB size code */
584 
585 #ifndef sun4v
586 int		utsb_dtlb_ttenum = -1;	/* index in TLB for utsb locked TTE */
587 int		utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
588 int		dtlb_resv_ttenum;	/* index in TLB of first reserved TTE */
589 caddr_t		utsb_vabase;		/* reserved kernel virtual memory */
590 caddr_t		utsb4m_vabase;		/* for trap handler TSB accesses */
591 #endif /* sun4v */
592 uint64_t	tsb_alloc_bytes = 0;	/* bytes allocated to TSBs */
593 vmem_t		*kmem_tsb_default_arena[NLGRPS_MAX];	/* For dynamic TSBs */
594 vmem_t		*kmem_bigtsb_default_arena[NLGRPS_MAX]; /* dynamic 256M TSBs */
595 
596 /*
597  * Size to use for TSB slabs.  Future platforms that support page sizes
598  * larger than 4M may wish to change these values, and provide their own
599  * assembly macros for building and decoding the TSB base register contents.
600  * Note disable_large_pages will override the value set here.
601  */
602 static	uint_t tsb_slab_ttesz = TTE4M;
603 size_t	tsb_slab_size = MMU_PAGESIZE4M;
604 uint_t	tsb_slab_shift = MMU_PAGESHIFT4M;
605 /* PFN mask for TTE */
606 size_t	tsb_slab_mask = MMU_PAGEOFFSET4M >> MMU_PAGESHIFT;
607 
608 /*
609  * Size to use for TSB slabs.  These are used only when 256M tsb arenas
610  * exist.
611  */
612 static uint_t	bigtsb_slab_ttesz = TTE256M;
613 static size_t	bigtsb_slab_size = MMU_PAGESIZE256M;
614 static uint_t	bigtsb_slab_shift = MMU_PAGESHIFT256M;
615 /* 256M page alignment for 8K pfn */
616 static size_t	bigtsb_slab_mask = MMU_PAGEOFFSET256M >> MMU_PAGESHIFT;
617 
618 /* largest TSB size to grow to, will be smaller on smaller memory systems */
619 static int	tsb_max_growsize = 0;
620 
621 /*
622  * Tunable parameters dealing with TSB policies.
623  */
624 
625 /*
626  * This undocumented tunable forces all 8K TSBs to be allocated from
627  * the kernel heap rather than from the kmem_tsb_default_arena arenas.
628  */
629 #ifdef	DEBUG
630 int	tsb_forceheap = 0;
631 #endif	/* DEBUG */
632 
633 /*
634  * Decide whether to use per-lgroup arenas, or one global set of
635  * TSB arenas.  The default is not to break up per-lgroup, since
636  * most platforms don't recognize any tangible benefit from it.
637  */
638 int	tsb_lgrp_affinity = 0;
639 
640 /*
641  * Used for growing the TSB based on the process RSS.
642  * tsb_rss_factor is based on the smallest TSB, and is
643  * shifted by the TSB size to determine if we need to grow.
644  * The default will grow the TSB if the number of TTEs for
645  * this page size exceeds 75% of the number of TSB entries,
646  * which should _almost_ eliminate all conflict misses
647  * (at the expense of using up lots and lots of memory).
648  */
649 #define	TSB_RSS_FACTOR		(TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
650 #define	SFMMU_RSS_TSBSIZE(tsbszc)	(tsb_rss_factor << tsbszc)
651 #define	SELECT_TSB_SIZECODE(pgcnt) ( \
652 	(enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
653 	default_tsb_size)
654 #define	TSB_OK_SHRINK()	\
655 	(tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
656 #define	TSB_OK_GROW()	\
657 	(tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
658 
659 int	enable_tsb_rss_sizing = 1;
660 int	tsb_rss_factor	= (int)TSB_RSS_FACTOR;
661 
662 /* which TSB size code to use for new address spaces or if rss sizing off */
663 int default_tsb_size = TSB_8K_SZCODE;
664 
665 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
666 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */
667 #define	TSB_ALLOC_HIWATER_FACTOR_DEFAULT	32
668 
669 #ifdef DEBUG
670 static int tsb_random_size = 0;	/* set to 1 to test random tsb sizes on alloc */
671 static int tsb_grow_stress = 0;	/* if set to 1, keep replacing TSB w/ random */
672 static int tsb_alloc_mtbf = 0;	/* fail allocation every n attempts */
673 static int tsb_alloc_fail_mtbf = 0;
674 static int tsb_alloc_count = 0;
675 #endif /* DEBUG */
676 
677 /* if set to 1, will remap valid TTEs when growing TSB. */
678 int tsb_remap_ttes = 1;
679 
680 /*
681  * If we have more than this many mappings, allocate a second TSB.
682  * This default is chosen because the I/D fully associative TLBs are
683  * assumed to have at least 8 available entries. Platforms with a
684  * larger fully-associative TLB could probably override the default.
685  */
686 
687 #ifdef sun4v
688 int tsb_sectsb_threshold = 0;
689 #else
690 int tsb_sectsb_threshold = 8;
691 #endif
692 
693 /*
694  * kstat data
695  */
696 struct sfmmu_global_stat sfmmu_global_stat;
697 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
698 
699 /*
700  * Global data
701  */
702 sfmmu_t 	*ksfmmup;		/* kernel's hat id */
703 
704 #ifdef DEBUG
705 static void	chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
706 #endif
707 
708 /* sfmmu locking operations */
709 static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
710 static int	sfmmu_mlspl_held(struct page *, int);
711 
712 kmutex_t *sfmmu_page_enter(page_t *);
713 void	sfmmu_page_exit(kmutex_t *);
714 int	sfmmu_page_spl_held(struct page *);
715 
716 /* sfmmu internal locking operations - accessed directly */
717 static void	sfmmu_mlist_reloc_enter(page_t *, page_t *,
718 				kmutex_t **, kmutex_t **);
719 static void	sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
720 static hatlock_t *
721 		sfmmu_hat_enter(sfmmu_t *);
722 static hatlock_t *
723 		sfmmu_hat_tryenter(sfmmu_t *);
724 static void	sfmmu_hat_exit(hatlock_t *);
725 static void	sfmmu_hat_lock_all(void);
726 static void	sfmmu_hat_unlock_all(void);
727 static void	sfmmu_ismhat_enter(sfmmu_t *, int);
728 static void	sfmmu_ismhat_exit(sfmmu_t *, int);
729 
730 /*
731  * Array of mutexes protecting a page's mapping list and p_nrm field.
732  *
733  * The hash function looks complicated, but is made up so that:
734  *
735  * "pp" not shifted, so adjacent pp values will hash to different cache lines
736  *  (8 byte alignment * 8 bytes/mutes == 64 byte coherency subblock)
737  *
738  * "pp" >> mml_shift, incorporates more source bits into the hash result
739  *
740  *  "& (mml_table_size - 1), should be faster than using remainder "%"
741  *
742  * Hopefully, mml_table, mml_table_size and mml_shift are all in the same
743  * cacheline, since they get declared next to each other below. We'll trust
744  * ld not to do something random.
745  */
746 #ifdef	DEBUG
747 int mlist_hash_debug = 0;
748 #define	MLIST_HASH(pp)	(mlist_hash_debug ? &mml_table[0] : \
749 	&mml_table[((uintptr_t)(pp) + \
750 	((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)])
751 #else	/* !DEBUG */
752 #define	MLIST_HASH(pp)   &mml_table[ \
753 	((uintptr_t)(pp) + ((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)]
754 #endif	/* !DEBUG */
755 
756 kmutex_t		*mml_table;
757 uint_t			mml_table_sz;	/* must be a power of 2 */
758 uint_t			mml_shift;	/* log2(mml_table_sz) + 3 for align */
759 
760 kpm_hlk_t	*kpmp_table;
761 uint_t		kpmp_table_sz;	/* must be a power of 2 */
762 uchar_t		kpmp_shift;
763 
764 kpm_shlk_t	*kpmp_stable;
765 uint_t		kpmp_stable_sz;	/* must be a power of 2 */
766 
767 /*
768  * SPL_HASH was improved to avoid false cache line sharing
769  */
770 #define	SPL_TABLE_SIZE	128
771 #define	SPL_MASK	(SPL_TABLE_SIZE - 1)
772 #define	SPL_SHIFT	7		/* log2(SPL_TABLE_SIZE) */
773 
774 #define	SPL_INDEX(pp) \
775 	((((uintptr_t)(pp) >> SPL_SHIFT) ^ \
776 	((uintptr_t)(pp) >> (SPL_SHIFT << 1))) & \
777 	(SPL_TABLE_SIZE - 1))
778 
779 #define	SPL_HASH(pp)    \
780 	(&sfmmu_page_lock[SPL_INDEX(pp) & SPL_MASK].pad_mutex)
781 
782 static	pad_mutex_t	sfmmu_page_lock[SPL_TABLE_SIZE];
783 
784 
785 /*
786  * hat_unload_callback() will group together callbacks in order
787  * to avoid xt_sync() calls.  This is the maximum size of the group.
788  */
789 #define	MAX_CB_ADDR	32
790 
791 tte_t	hw_tte;
792 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
793 
794 static char	*mmu_ctx_kstat_names[] = {
795 	"mmu_ctx_tsb_exceptions",
796 	"mmu_ctx_tsb_raise_exception",
797 	"mmu_ctx_wrap_around",
798 };
799 
800 /*
801  * Wrapper for vmem_xalloc since vmem_create only allows limited
802  * parameters for vm_source_alloc functions.  This function allows us
803  * to specify alignment consistent with the size of the object being
804  * allocated.
805  */
806 static void *
807 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
808 {
809 	return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
810 }
811 
812 /* Common code for setting tsb_alloc_hiwater. */
813 #define	SFMMU_SET_TSB_ALLOC_HIWATER(pages)	tsb_alloc_hiwater = \
814 		ptob(pages) / tsb_alloc_hiwater_factor
815 
816 /*
817  * Set tsb_max_growsize to allow at most all of physical memory to be mapped by
818  * a single TSB.  physmem is the number of physical pages so we need physmem 8K
819  * TTEs to represent all those physical pages.  We round this up by using
820  * 1<<highbit().  To figure out which size code to use, remember that the size
821  * code is just an amount to shift the smallest TSB size to get the size of
822  * this TSB.  So we subtract that size, TSB_START_SIZE, from highbit() (or
823  * highbit() - 1) to get the size code for the smallest TSB that can represent
824  * all of physical memory, while erring on the side of too much.
825  *
826  * Restrict tsb_max_growsize to make sure that:
827  *	1) TSBs can't grow larger than the TSB slab size
828  *	2) TSBs can't grow larger than UTSB_MAX_SZCODE.
829  */
830 #define	SFMMU_SET_TSB_MAX_GROWSIZE(pages) {				\
831 	int	_i, _szc, _slabszc, _tsbszc;				\
832 									\
833 	_i = highbit(pages);						\
834 	if ((1 << (_i - 1)) == (pages))					\
835 		_i--;		/* 2^n case, round down */              \
836 	_szc = _i - TSB_START_SIZE;					\
837 	_slabszc = bigtsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT); \
838 	_tsbszc = MIN(_szc, _slabszc);                                  \
839 	tsb_max_growsize = MIN(_tsbszc, UTSB_MAX_SZCODE);               \
840 }
841 
842 /*
843  * Given a pointer to an sfmmu and a TTE size code, return a pointer to the
844  * tsb_info which handles that TTE size.
845  */
846 #define	SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc) {			\
847 	(tsbinfop) = (sfmmup)->sfmmu_tsb;				\
848 	ASSERT(((tsbinfop)->tsb_flags & TSB_SHAREDCTX) ||		\
849 	    sfmmu_hat_lock_held(sfmmup));				\
850 	if ((tte_szc) >= TTE4M)	{					\
851 		ASSERT((tsbinfop) != NULL);				\
852 		(tsbinfop) = (tsbinfop)->tsb_next;			\
853 	}								\
854 }
855 
856 /*
857  * Macro to use to unload entries from the TSB.
858  * It has knowledge of which page sizes get replicated in the TSB
859  * and will call the appropriate unload routine for the appropriate size.
860  */
861 #define	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, ismhat)		\
862 {									\
863 	int ttesz = get_hblk_ttesz(hmeblkp);				\
864 	if (ttesz == TTE8K || ttesz == TTE4M) {				\
865 		sfmmu_unload_tsb(sfmmup, addr, ttesz);			\
866 	} else {							\
867 		caddr_t sva = ismhat ? addr : 				\
868 		    (caddr_t)get_hblk_base(hmeblkp);			\
869 		caddr_t eva = sva + get_hblk_span(hmeblkp);		\
870 		ASSERT(addr >= sva && addr < eva);			\
871 		sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);	\
872 	}								\
873 }
874 
875 
876 /* Update tsb_alloc_hiwater after memory is configured. */
877 /*ARGSUSED*/
878 static void
879 sfmmu_update_post_add(void *arg, pgcnt_t delta_pages)
880 {
881 	/* Assumes physmem has already been updated. */
882 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
883 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
884 }
885 
886 /*
887  * Update tsb_alloc_hiwater before memory is deleted.  We'll do nothing here
888  * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
889  * deleted.
890  */
891 /*ARGSUSED*/
892 static int
893 sfmmu_update_pre_del(void *arg, pgcnt_t delta_pages)
894 {
895 	return (0);
896 }
897 
898 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
899 /*ARGSUSED*/
900 static void
901 sfmmu_update_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
902 {
903 	/*
904 	 * Whether the delete was cancelled or not, just go ahead and update
905 	 * tsb_alloc_hiwater and tsb_max_growsize.
906 	 */
907 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
908 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
909 }
910 
911 static kphysm_setup_vector_t sfmmu_update_vec = {
912 	KPHYSM_SETUP_VECTOR_VERSION,	/* version */
913 	sfmmu_update_post_add,		/* post_add */
914 	sfmmu_update_pre_del,		/* pre_del */
915 	sfmmu_update_post_del		/* post_del */
916 };
917 
918 
919 /*
920  * HME_BLK HASH PRIMITIVES
921  */
922 
923 /*
924  * Enter a hme on the mapping list for page pp.
925  * When large pages are more prevalent in the system we might want to
926  * keep the mapping list in ascending order by the hment size. For now,
927  * small pages are more frequent, so don't slow it down.
928  */
929 #define	HME_ADD(hme, pp)					\
930 {								\
931 	ASSERT(sfmmu_mlist_held(pp));				\
932 								\
933 	hme->hme_prev = NULL;					\
934 	hme->hme_next = pp->p_mapping;				\
935 	hme->hme_page = pp;					\
936 	if (pp->p_mapping) {					\
937 		((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
938 		ASSERT(pp->p_share > 0);			\
939 	} else  {						\
940 		/* EMPTY */					\
941 		ASSERT(pp->p_share == 0);			\
942 	}							\
943 	pp->p_mapping = hme;					\
944 	pp->p_share++;						\
945 }
946 
947 /*
948  * Enter a hme on the mapping list for page pp.
949  * If we are unmapping a large translation, we need to make sure that the
950  * change is reflect in the corresponding bit of the p_index field.
951  */
952 #define	HME_SUB(hme, pp)					\
953 {								\
954 	ASSERT(sfmmu_mlist_held(pp));				\
955 	ASSERT(hme->hme_page == pp || IS_PAHME(hme));		\
956 								\
957 	if (pp->p_mapping == NULL) {				\
958 		panic("hme_remove - no mappings");		\
959 	}							\
960 								\
961 	membar_stst();	/* ensure previous stores finish */	\
962 								\
963 	ASSERT(pp->p_share > 0);				\
964 	pp->p_share--;						\
965 								\
966 	if (hme->hme_prev) {					\
967 		ASSERT(pp->p_mapping != hme);			\
968 		ASSERT(hme->hme_prev->hme_page == pp ||		\
969 			IS_PAHME(hme->hme_prev));		\
970 		hme->hme_prev->hme_next = hme->hme_next;	\
971 	} else {						\
972 		ASSERT(pp->p_mapping == hme);			\
973 		pp->p_mapping = hme->hme_next;			\
974 		ASSERT((pp->p_mapping == NULL) ?		\
975 			(pp->p_share == 0) : 1);		\
976 	}							\
977 								\
978 	if (hme->hme_next) {					\
979 		ASSERT(hme->hme_next->hme_page == pp ||		\
980 			IS_PAHME(hme->hme_next));		\
981 		hme->hme_next->hme_prev = hme->hme_prev;	\
982 	}							\
983 								\
984 	/* zero out the entry */				\
985 	hme->hme_next = NULL;					\
986 	hme->hme_prev = NULL;					\
987 	hme->hme_page = NULL;					\
988 								\
989 	if (hme_size(hme) > TTE8K) {				\
990 		/* remove mappings for remainder of large pg */	\
991 		sfmmu_rm_large_mappings(pp, hme_size(hme));	\
992 	}							\
993 }
994 
995 /*
996  * This function returns the hment given the hme_blk and a vaddr.
997  * It assumes addr has already been checked to belong to hme_blk's
998  * range.
999  */
1000 #define	HBLKTOHME(hment, hmeblkp, addr)					\
1001 {									\
1002 	int index;							\
1003 	HBLKTOHME_IDX(hment, hmeblkp, addr, index)			\
1004 }
1005 
1006 /*
1007  * Version of HBLKTOHME that also returns the index in hmeblkp
1008  * of the hment.
1009  */
1010 #define	HBLKTOHME_IDX(hment, hmeblkp, addr, idx)			\
1011 {									\
1012 	ASSERT(in_hblk_range((hmeblkp), (addr)));			\
1013 									\
1014 	if (get_hblk_ttesz(hmeblkp) == TTE8K) {				\
1015 		idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
1016 	} else								\
1017 		idx = 0;						\
1018 									\
1019 	(hment) = &(hmeblkp)->hblk_hme[idx];				\
1020 }
1021 
1022 /*
1023  * Disable any page sizes not supported by the CPU
1024  */
1025 void
1026 hat_init_pagesizes()
1027 {
1028 	int 		i;
1029 
1030 	mmu_exported_page_sizes = 0;
1031 	for (i = TTE8K; i < max_mmu_page_sizes; i++) {
1032 
1033 		szc_2_userszc[i] = (uint_t)-1;
1034 		userszc_2_szc[i] = (uint_t)-1;
1035 
1036 		if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
1037 			disable_large_pages |= (1 << i);
1038 		} else {
1039 			szc_2_userszc[i] = mmu_exported_page_sizes;
1040 			userszc_2_szc[mmu_exported_page_sizes] = i;
1041 			mmu_exported_page_sizes++;
1042 		}
1043 	}
1044 
1045 	disable_ism_large_pages |= disable_large_pages;
1046 	disable_auto_data_large_pages = disable_large_pages;
1047 	disable_auto_text_large_pages = disable_large_pages;
1048 
1049 	/*
1050 	 * Initialize mmu-specific large page sizes.
1051 	 */
1052 	if (&mmu_large_pages_disabled) {
1053 		disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
1054 		disable_ism_large_pages |=
1055 		    mmu_large_pages_disabled(HAT_LOAD_SHARE);
1056 		disable_auto_data_large_pages |=
1057 		    mmu_large_pages_disabled(HAT_AUTO_DATA);
1058 		disable_auto_text_large_pages |=
1059 		    mmu_large_pages_disabled(HAT_AUTO_TEXT);
1060 	}
1061 }
1062 
1063 /*
1064  * Initialize the hardware address translation structures.
1065  */
1066 void
1067 hat_init(void)
1068 {
1069 	int 		i;
1070 	uint_t		sz;
1071 	size_t		size;
1072 
1073 	hat_lock_init();
1074 	hat_kstat_init();
1075 
1076 	/*
1077 	 * Hardware-only bits in a TTE
1078 	 */
1079 	MAKE_TTE_MASK(&hw_tte);
1080 
1081 	hat_init_pagesizes();
1082 
1083 	/* Initialize the hash locks */
1084 	for (i = 0; i < khmehash_num; i++) {
1085 		mutex_init(&khme_hash[i].hmehash_mutex, NULL,
1086 		    MUTEX_DEFAULT, NULL);
1087 	}
1088 	for (i = 0; i < uhmehash_num; i++) {
1089 		mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
1090 		    MUTEX_DEFAULT, NULL);
1091 	}
1092 	khmehash_num--;		/* make sure counter starts from 0 */
1093 	uhmehash_num--;		/* make sure counter starts from 0 */
1094 
1095 	/*
1096 	 * Allocate context domain structures.
1097 	 *
1098 	 * A platform may choose to modify max_mmu_ctxdoms in
1099 	 * set_platform_defaults(). If a platform does not define
1100 	 * a set_platform_defaults() or does not choose to modify
1101 	 * max_mmu_ctxdoms, it gets one MMU context domain for every CPU.
1102 	 *
1103 	 * For sun4v, there will be one global context domain, this is to
1104 	 * avoid the ldom cpu substitution problem.
1105 	 *
1106 	 * For all platforms that have CPUs sharing MMUs, this
1107 	 * value must be defined.
1108 	 */
1109 	if (max_mmu_ctxdoms == 0) {
1110 #ifndef sun4v
1111 		max_mmu_ctxdoms = max_ncpus;
1112 #else /* sun4v */
1113 		max_mmu_ctxdoms = 1;
1114 #endif /* sun4v */
1115 	}
1116 
1117 	size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *);
1118 	mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP);
1119 
1120 	/* mmu_ctx_t is 64 bytes aligned */
1121 	mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache",
1122 	    sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
1123 	/*
1124 	 * MMU context domain initialization for the Boot CPU.
1125 	 * This needs the context domains array allocated above.
1126 	 */
1127 	mutex_enter(&cpu_lock);
1128 	sfmmu_cpu_init(CPU);
1129 	mutex_exit(&cpu_lock);
1130 
1131 	/*
1132 	 * Intialize ism mapping list lock.
1133 	 */
1134 
1135 	mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
1136 
1137 	/*
1138 	 * Each sfmmu structure carries an array of MMU context info
1139 	 * structures, one per context domain. The size of this array depends
1140 	 * on the maximum number of context domains. So, the size of the
1141 	 * sfmmu structure varies per platform.
1142 	 *
1143 	 * sfmmu is allocated from static arena, because trap
1144 	 * handler at TL > 0 is not allowed to touch kernel relocatable
1145 	 * memory. sfmmu's alignment is changed to 64 bytes from
1146 	 * default 8 bytes, as the lower 6 bits will be used to pass
1147 	 * pgcnt to vtag_flush_pgcnt_tl1.
1148 	 */
1149 	size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1);
1150 
1151 	sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size,
1152 	    64, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
1153 	    NULL, NULL, static_arena, 0);
1154 
1155 	sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
1156 	    sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
1157 
1158 	/*
1159 	 * Since we only use the tsb8k cache to "borrow" pages for TSBs
1160 	 * from the heap when low on memory or when TSB_FORCEALLOC is
1161 	 * specified, don't use magazines to cache them--we want to return
1162 	 * them to the system as quickly as possible.
1163 	 */
1164 	sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
1165 	    MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
1166 	    static_arena, KMC_NOMAGAZINE);
1167 
1168 	/*
1169 	 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
1170 	 * memory, which corresponds to the old static reserve for TSBs.
1171 	 * tsb_alloc_hiwater_factor defaults to 32.  This caps the amount of
1172 	 * memory we'll allocate for TSB slabs; beyond this point TSB
1173 	 * allocations will be taken from the kernel heap (via
1174 	 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem
1175 	 * consumer.
1176 	 */
1177 	if (tsb_alloc_hiwater_factor == 0) {
1178 		tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
1179 	}
1180 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
1181 
1182 	for (sz = tsb_slab_ttesz; sz > 0; sz--) {
1183 		if (!(disable_large_pages & (1 << sz)))
1184 			break;
1185 	}
1186 
1187 	if (sz < tsb_slab_ttesz) {
1188 		tsb_slab_ttesz = sz;
1189 		tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz;
1190 		tsb_slab_size = 1 << tsb_slab_shift;
1191 		tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1;
1192 		use_bigtsb_arena = 0;
1193 	} else if (use_bigtsb_arena &&
1194 	    (disable_large_pages & (1 << bigtsb_slab_ttesz))) {
1195 		use_bigtsb_arena = 0;
1196 	}
1197 
1198 	if (!use_bigtsb_arena) {
1199 		bigtsb_slab_shift = tsb_slab_shift;
1200 	}
1201 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
1202 
1203 	/*
1204 	 * On smaller memory systems, allocate TSB memory in smaller chunks
1205 	 * than the default 4M slab size. We also honor disable_large_pages
1206 	 * here.
1207 	 *
1208 	 * The trap handlers need to be patched with the final slab shift,
1209 	 * since they need to be able to construct the TSB pointer at runtime.
1210 	 */
1211 	if ((tsb_max_growsize <= TSB_512K_SZCODE) &&
1212 	    !(disable_large_pages & (1 << TTE512K))) {
1213 		tsb_slab_ttesz = TTE512K;
1214 		tsb_slab_shift = MMU_PAGESHIFT512K;
1215 		tsb_slab_size = MMU_PAGESIZE512K;
1216 		tsb_slab_mask = MMU_PAGEOFFSET512K >> MMU_PAGESHIFT;
1217 		use_bigtsb_arena = 0;
1218 	}
1219 
1220 	if (!use_bigtsb_arena) {
1221 		bigtsb_slab_ttesz = tsb_slab_ttesz;
1222 		bigtsb_slab_shift = tsb_slab_shift;
1223 		bigtsb_slab_size = tsb_slab_size;
1224 		bigtsb_slab_mask = tsb_slab_mask;
1225 	}
1226 
1227 
1228 	/*
1229 	 * Set up memory callback to update tsb_alloc_hiwater and
1230 	 * tsb_max_growsize.
1231 	 */
1232 	i = kphysm_setup_func_register(&sfmmu_update_vec, (void *) 0);
1233 	ASSERT(i == 0);
1234 
1235 	/*
1236 	 * kmem_tsb_arena is the source from which large TSB slabs are
1237 	 * drawn.  The quantum of this arena corresponds to the largest
1238 	 * TSB size we can dynamically allocate for user processes.
1239 	 * Currently it must also be a supported page size since we
1240 	 * use exactly one translation entry to map each slab page.
1241 	 *
1242 	 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from
1243 	 * which most TSBs are allocated.  Since most TSB allocations are
1244 	 * typically 8K we have a kmem cache we stack on top of each
1245 	 * kmem_tsb_default_arena to speed up those allocations.
1246 	 *
1247 	 * Note the two-level scheme of arenas is required only
1248 	 * because vmem_create doesn't allow us to specify alignment
1249 	 * requirements.  If this ever changes the code could be
1250 	 * simplified to use only one level of arenas.
1251 	 *
1252 	 * If 256M page support exists on sun4v, 256MB kmem_bigtsb_arena
1253 	 * will be provided in addition to the 4M kmem_tsb_arena.
1254 	 */
1255 	if (use_bigtsb_arena) {
1256 		kmem_bigtsb_arena = vmem_create("kmem_bigtsb", NULL, 0,
1257 		    bigtsb_slab_size, sfmmu_vmem_xalloc_aligned_wrapper,
1258 		    vmem_xfree, heap_arena, 0, VM_SLEEP);
1259 	}
1260 
1261 	kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
1262 	    sfmmu_vmem_xalloc_aligned_wrapper,
1263 	    vmem_xfree, heap_arena, 0, VM_SLEEP);
1264 
1265 	if (tsb_lgrp_affinity) {
1266 		char s[50];
1267 		for (i = 0; i < NLGRPS_MAX; i++) {
1268 			if (use_bigtsb_arena) {
1269 				(void) sprintf(s, "kmem_bigtsb_lgrp%d", i);
1270 				kmem_bigtsb_default_arena[i] = vmem_create(s,
1271 				    NULL, 0, 2 * tsb_slab_size,
1272 				    sfmmu_tsb_segkmem_alloc,
1273 				    sfmmu_tsb_segkmem_free, kmem_bigtsb_arena,
1274 				    0, VM_SLEEP | VM_BESTFIT);
1275 			}
1276 
1277 			(void) sprintf(s, "kmem_tsb_lgrp%d", i);
1278 			kmem_tsb_default_arena[i] = vmem_create(s,
1279 			    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1280 			    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1281 			    VM_SLEEP | VM_BESTFIT);
1282 
1283 			(void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
1284 			sfmmu_tsb_cache[i] = kmem_cache_create(s,
1285 			    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1286 			    kmem_tsb_default_arena[i], 0);
1287 		}
1288 	} else {
1289 		if (use_bigtsb_arena) {
1290 			kmem_bigtsb_default_arena[0] =
1291 			    vmem_create("kmem_bigtsb_default", NULL, 0,
1292 			    2 * tsb_slab_size, sfmmu_tsb_segkmem_alloc,
1293 			    sfmmu_tsb_segkmem_free, kmem_bigtsb_arena, 0,
1294 			    VM_SLEEP | VM_BESTFIT);
1295 		}
1296 
1297 		kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
1298 		    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1299 		    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1300 		    VM_SLEEP | VM_BESTFIT);
1301 		sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
1302 		    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1303 		    kmem_tsb_default_arena[0], 0);
1304 	}
1305 
1306 	sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
1307 	    HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1308 	    sfmmu_hblkcache_destructor,
1309 	    sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
1310 	    hat_memload_arena, KMC_NOHASH);
1311 
1312 	hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
1313 	    segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP);
1314 
1315 	sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
1316 	    HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1317 	    sfmmu_hblkcache_destructor,
1318 	    NULL, (void *)HME1BLK_SZ,
1319 	    hat_memload1_arena, KMC_NOHASH);
1320 
1321 	pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
1322 	    0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
1323 
1324 	ism_blk_cache = kmem_cache_create("ism_blk_cache",
1325 	    sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
1326 	    NULL, NULL, static_arena, KMC_NOHASH);
1327 
1328 	ism_ment_cache = kmem_cache_create("ism_ment_cache",
1329 	    sizeof (ism_ment_t), 0, NULL, NULL,
1330 	    NULL, NULL, NULL, 0);
1331 
1332 	/*
1333 	 * We grab the first hat for the kernel,
1334 	 */
1335 	AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
1336 	kas.a_hat = hat_alloc(&kas);
1337 	AS_LOCK_EXIT(&kas, &kas.a_lock);
1338 
1339 	/*
1340 	 * Initialize hblk_reserve.
1341 	 */
1342 	((struct hme_blk *)hblk_reserve)->hblk_nextpa =
1343 	    va_to_pa((caddr_t)hblk_reserve);
1344 
1345 #ifndef UTSB_PHYS
1346 	/*
1347 	 * Reserve some kernel virtual address space for the locked TTEs
1348 	 * that allow us to probe the TSB from TL>0.
1349 	 */
1350 	utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1351 	    0, 0, NULL, NULL, VM_SLEEP);
1352 	utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1353 	    0, 0, NULL, NULL, VM_SLEEP);
1354 #endif
1355 
1356 #ifdef VAC
1357 	/*
1358 	 * The big page VAC handling code assumes VAC
1359 	 * will not be bigger than the smallest big
1360 	 * page- which is 64K.
1361 	 */
1362 	if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
1363 		cmn_err(CE_PANIC, "VAC too big!");
1364 	}
1365 #endif
1366 
1367 	(void) xhat_init();
1368 
1369 	uhme_hash_pa = va_to_pa(uhme_hash);
1370 	khme_hash_pa = va_to_pa(khme_hash);
1371 
1372 	/*
1373 	 * Initialize relocation locks. kpr_suspendlock is held
1374 	 * at PIL_MAX to prevent interrupts from pinning the holder
1375 	 * of a suspended TTE which may access it leading to a
1376 	 * deadlock condition.
1377 	 */
1378 	mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
1379 	mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
1380 
1381 	/*
1382 	 * If Shared context support is disabled via /etc/system
1383 	 * set shctx_on to 0 here if it was set to 1 earlier in boot
1384 	 * sequence by cpu module initialization code.
1385 	 */
1386 	if (shctx_on && disable_shctx) {
1387 		shctx_on = 0;
1388 	}
1389 
1390 	if (shctx_on) {
1391 		srd_buckets = kmem_zalloc(SFMMU_MAX_SRD_BUCKETS *
1392 		    sizeof (srd_buckets[0]), KM_SLEEP);
1393 		for (i = 0; i < SFMMU_MAX_SRD_BUCKETS; i++) {
1394 			mutex_init(&srd_buckets[i].srdb_lock, NULL,
1395 			    MUTEX_DEFAULT, NULL);
1396 		}
1397 
1398 		srd_cache = kmem_cache_create("srd_cache", sizeof (sf_srd_t),
1399 		    0, sfmmu_srdcache_constructor, sfmmu_srdcache_destructor,
1400 		    NULL, NULL, NULL, 0);
1401 		region_cache = kmem_cache_create("region_cache",
1402 		    sizeof (sf_region_t), 0, sfmmu_rgncache_constructor,
1403 		    sfmmu_rgncache_destructor, NULL, NULL, NULL, 0);
1404 		scd_cache = kmem_cache_create("scd_cache", sizeof (sf_scd_t),
1405 		    0, sfmmu_scdcache_constructor,  sfmmu_scdcache_destructor,
1406 		    NULL, NULL, NULL, 0);
1407 	}
1408 
1409 	/*
1410 	 * Pre-allocate hrm_hashtab before enabling the collection of
1411 	 * refmod statistics.  Allocating on the fly would mean us
1412 	 * running the risk of suffering recursive mutex enters or
1413 	 * deadlocks.
1414 	 */
1415 	hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
1416 	    KM_SLEEP);
1417 }
1418 
1419 /*
1420  * Initialize locking for the hat layer, called early during boot.
1421  */
1422 static void
1423 hat_lock_init()
1424 {
1425 	int i;
1426 
1427 	/*
1428 	 * initialize the array of mutexes protecting a page's mapping
1429 	 * list and p_nrm field.
1430 	 */
1431 	for (i = 0; i < mml_table_sz; i++)
1432 		mutex_init(&mml_table[i], NULL, MUTEX_DEFAULT, NULL);
1433 
1434 	if (kpm_enable) {
1435 		for (i = 0; i < kpmp_table_sz; i++) {
1436 			mutex_init(&kpmp_table[i].khl_mutex, NULL,
1437 			    MUTEX_DEFAULT, NULL);
1438 		}
1439 	}
1440 
1441 	/*
1442 	 * Initialize array of mutex locks that protects sfmmu fields and
1443 	 * TSB lists.
1444 	 */
1445 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
1446 		mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
1447 		    NULL);
1448 }
1449 
1450 #define	SFMMU_KERNEL_MAXVA \
1451 	(kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
1452 
1453 /*
1454  * Allocate a hat structure.
1455  * Called when an address space first uses a hat.
1456  */
1457 struct hat *
1458 hat_alloc(struct as *as)
1459 {
1460 	sfmmu_t *sfmmup;
1461 	int i;
1462 	uint64_t cnum;
1463 	extern uint_t get_color_start(struct as *);
1464 
1465 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1466 	sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
1467 	sfmmup->sfmmu_as = as;
1468 	sfmmup->sfmmu_flags = 0;
1469 	sfmmup->sfmmu_tteflags = 0;
1470 	sfmmup->sfmmu_rtteflags = 0;
1471 	LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock);
1472 
1473 	if (as == &kas) {
1474 		ksfmmup = sfmmup;
1475 		sfmmup->sfmmu_cext = 0;
1476 		cnum = KCONTEXT;
1477 
1478 		sfmmup->sfmmu_clrstart = 0;
1479 		sfmmup->sfmmu_tsb = NULL;
1480 		/*
1481 		 * hat_kern_setup() will call sfmmu_init_ktsbinfo()
1482 		 * to setup tsb_info for ksfmmup.
1483 		 */
1484 	} else {
1485 
1486 		/*
1487 		 * Just set to invalid ctx. When it faults, it will
1488 		 * get a valid ctx. This would avoid the situation
1489 		 * where we get a ctx, but it gets stolen and then
1490 		 * we fault when we try to run and so have to get
1491 		 * another ctx.
1492 		 */
1493 		sfmmup->sfmmu_cext = 0;
1494 		cnum = INVALID_CONTEXT;
1495 
1496 		/* initialize original physical page coloring bin */
1497 		sfmmup->sfmmu_clrstart = get_color_start(as);
1498 #ifdef DEBUG
1499 		if (tsb_random_size) {
1500 			uint32_t randval = (uint32_t)gettick() >> 4;
1501 			int size = randval % (tsb_max_growsize + 1);
1502 
1503 			/* chose a random tsb size for stress testing */
1504 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
1505 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1506 		} else
1507 #endif /* DEBUG */
1508 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
1509 			    default_tsb_size,
1510 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1511 		sfmmup->sfmmu_flags = HAT_SWAPPED | HAT_ALLCTX_INVALID;
1512 		ASSERT(sfmmup->sfmmu_tsb != NULL);
1513 	}
1514 
1515 	ASSERT(max_mmu_ctxdoms > 0);
1516 	for (i = 0; i < max_mmu_ctxdoms; i++) {
1517 		sfmmup->sfmmu_ctxs[i].cnum = cnum;
1518 		sfmmup->sfmmu_ctxs[i].gnum = 0;
1519 	}
1520 
1521 	for (i = 0; i < max_mmu_page_sizes; i++) {
1522 		sfmmup->sfmmu_ttecnt[i] = 0;
1523 		sfmmup->sfmmu_scdrttecnt[i] = 0;
1524 		sfmmup->sfmmu_ismttecnt[i] = 0;
1525 		sfmmup->sfmmu_scdismttecnt[i] = 0;
1526 		sfmmup->sfmmu_pgsz[i] = TTE8K;
1527 	}
1528 	sfmmup->sfmmu_tsb0_4minflcnt = 0;
1529 	sfmmup->sfmmu_iblk = NULL;
1530 	sfmmup->sfmmu_ismhat = 0;
1531 	sfmmup->sfmmu_scdhat = 0;
1532 	sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
1533 	if (sfmmup == ksfmmup) {
1534 		CPUSET_ALL(sfmmup->sfmmu_cpusran);
1535 	} else {
1536 		CPUSET_ZERO(sfmmup->sfmmu_cpusran);
1537 	}
1538 	sfmmup->sfmmu_free = 0;
1539 	sfmmup->sfmmu_rmstat = 0;
1540 	sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
1541 	sfmmup->sfmmu_xhat_provider = NULL;
1542 	cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
1543 	sfmmup->sfmmu_srdp = NULL;
1544 	SF_RGNMAP_ZERO(sfmmup->sfmmu_region_map);
1545 	bzero(sfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
1546 	sfmmup->sfmmu_scdp = NULL;
1547 	sfmmup->sfmmu_scd_link.next = NULL;
1548 	sfmmup->sfmmu_scd_link.prev = NULL;
1549 	return (sfmmup);
1550 }
1551 
1552 /*
1553  * Create per-MMU context domain kstats for a given MMU ctx.
1554  */
1555 static void
1556 sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp)
1557 {
1558 	mmu_ctx_stat_t	stat;
1559 	kstat_t		*mmu_kstat;
1560 
1561 	ASSERT(MUTEX_HELD(&cpu_lock));
1562 	ASSERT(mmu_ctxp->mmu_kstat == NULL);
1563 
1564 	mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx",
1565 	    "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL);
1566 
1567 	if (mmu_kstat == NULL) {
1568 		cmn_err(CE_WARN, "kstat_create for MMU %d failed",
1569 		    mmu_ctxp->mmu_idx);
1570 	} else {
1571 		mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data;
1572 		for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++)
1573 			kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat],
1574 			    mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64);
1575 		mmu_ctxp->mmu_kstat = mmu_kstat;
1576 		kstat_install(mmu_kstat);
1577 	}
1578 }
1579 
1580 /*
1581  * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU
1582  * context domain information for a given CPU. If a platform does not
1583  * specify that interface, then the function below is used instead to return
1584  * default information. The defaults are as follows:
1585  *
1586  *	- For sun4u systems there's one MMU context domain per CPU.
1587  *	  This default is used by all sun4u systems except OPL. OPL systems
1588  *	  provide platform specific interface to map CPU ids to MMU ids
1589  *	  because on OPL more than 1 CPU shares a single MMU.
1590  *        Note that on sun4v, there is one global context domain for
1591  *	  the entire system. This is to avoid running into potential problem
1592  *	  with ldom physical cpu substitution feature.
1593  *	- The number of MMU context IDs supported on any CPU in the
1594  *	  system is 8K.
1595  */
1596 /*ARGSUSED*/
1597 static void
1598 sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop)
1599 {
1600 	infop->mmu_nctxs = nctxs;
1601 #ifndef sun4v
1602 	infop->mmu_idx = cpu[cpuid]->cpu_seqid;
1603 #else /* sun4v */
1604 	infop->mmu_idx = 0;
1605 #endif /* sun4v */
1606 }
1607 
1608 /*
1609  * Called during CPU initialization to set the MMU context-related information
1610  * for a CPU.
1611  *
1612  * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum.
1613  */
1614 void
1615 sfmmu_cpu_init(cpu_t *cp)
1616 {
1617 	mmu_ctx_info_t	info;
1618 	mmu_ctx_t	*mmu_ctxp;
1619 
1620 	ASSERT(MUTEX_HELD(&cpu_lock));
1621 
1622 	if (&plat_cpuid_to_mmu_ctx_info == NULL)
1623 		sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1624 	else
1625 		plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1626 
1627 	ASSERT(info.mmu_idx < max_mmu_ctxdoms);
1628 
1629 	if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) {
1630 		/* Each mmu_ctx is cacheline aligned. */
1631 		mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP);
1632 		bzero(mmu_ctxp, sizeof (mmu_ctx_t));
1633 
1634 		mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN,
1635 		    (void *)ipltospl(DISP_LEVEL));
1636 		mmu_ctxp->mmu_idx = info.mmu_idx;
1637 		mmu_ctxp->mmu_nctxs = info.mmu_nctxs;
1638 		/*
1639 		 * Globally for lifetime of a system,
1640 		 * gnum must always increase.
1641 		 * mmu_saved_gnum is protected by the cpu_lock.
1642 		 */
1643 		mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1;
1644 		mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
1645 
1646 		sfmmu_mmu_kstat_create(mmu_ctxp);
1647 
1648 		mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp;
1649 	} else {
1650 		ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx);
1651 	}
1652 
1653 	/*
1654 	 * The mmu_lock is acquired here to prevent races with
1655 	 * the wrap-around code.
1656 	 */
1657 	mutex_enter(&mmu_ctxp->mmu_lock);
1658 
1659 
1660 	mmu_ctxp->mmu_ncpus++;
1661 	CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1662 	CPU_MMU_IDX(cp) = info.mmu_idx;
1663 	CPU_MMU_CTXP(cp) = mmu_ctxp;
1664 
1665 	mutex_exit(&mmu_ctxp->mmu_lock);
1666 }
1667 
1668 /*
1669  * Called to perform MMU context-related cleanup for a CPU.
1670  */
1671 void
1672 sfmmu_cpu_cleanup(cpu_t *cp)
1673 {
1674 	mmu_ctx_t	*mmu_ctxp;
1675 
1676 	ASSERT(MUTEX_HELD(&cpu_lock));
1677 
1678 	mmu_ctxp = CPU_MMU_CTXP(cp);
1679 	ASSERT(mmu_ctxp != NULL);
1680 
1681 	/*
1682 	 * The mmu_lock is acquired here to prevent races with
1683 	 * the wrap-around code.
1684 	 */
1685 	mutex_enter(&mmu_ctxp->mmu_lock);
1686 
1687 	CPU_MMU_CTXP(cp) = NULL;
1688 
1689 	CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1690 	if (--mmu_ctxp->mmu_ncpus == 0) {
1691 		mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL;
1692 		mutex_exit(&mmu_ctxp->mmu_lock);
1693 		mutex_destroy(&mmu_ctxp->mmu_lock);
1694 
1695 		if (mmu_ctxp->mmu_kstat)
1696 			kstat_delete(mmu_ctxp->mmu_kstat);
1697 
1698 		/* mmu_saved_gnum is protected by the cpu_lock. */
1699 		if (mmu_saved_gnum < mmu_ctxp->mmu_gnum)
1700 			mmu_saved_gnum = mmu_ctxp->mmu_gnum;
1701 
1702 		kmem_cache_free(mmuctxdom_cache, mmu_ctxp);
1703 
1704 		return;
1705 	}
1706 
1707 	mutex_exit(&mmu_ctxp->mmu_lock);
1708 }
1709 
1710 /*
1711  * Hat_setup, makes an address space context the current active one.
1712  * In sfmmu this translates to setting the secondary context with the
1713  * corresponding context.
1714  */
1715 void
1716 hat_setup(struct hat *sfmmup, int allocflag)
1717 {
1718 	hatlock_t *hatlockp;
1719 
1720 	/* Init needs some special treatment. */
1721 	if (allocflag == HAT_INIT) {
1722 		/*
1723 		 * Make sure that we have
1724 		 * 1. a TSB
1725 		 * 2. a valid ctx that doesn't get stolen after this point.
1726 		 */
1727 		hatlockp = sfmmu_hat_enter(sfmmup);
1728 
1729 		/*
1730 		 * Swap in the TSB.  hat_init() allocates tsbinfos without
1731 		 * TSBs, but we need one for init, since the kernel does some
1732 		 * special things to set up its stack and needs the TSB to
1733 		 * resolve page faults.
1734 		 */
1735 		sfmmu_tsb_swapin(sfmmup, hatlockp);
1736 
1737 		sfmmu_get_ctx(sfmmup);
1738 
1739 		sfmmu_hat_exit(hatlockp);
1740 	} else {
1741 		ASSERT(allocflag == HAT_ALLOC);
1742 
1743 		hatlockp = sfmmu_hat_enter(sfmmup);
1744 		kpreempt_disable();
1745 
1746 		CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1747 		/*
1748 		 * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter,
1749 		 * pagesize bits don't matter in this case since we are passing
1750 		 * INVALID_CONTEXT to it.
1751 		 * Compatibility Note: hw takes care of MMU_SCONTEXT1
1752 		 */
1753 		sfmmu_setctx_sec(INVALID_CONTEXT);
1754 		sfmmu_clear_utsbinfo();
1755 
1756 		kpreempt_enable();
1757 		sfmmu_hat_exit(hatlockp);
1758 	}
1759 }
1760 
1761 /*
1762  * Free all the translation resources for the specified address space.
1763  * Called from as_free when an address space is being destroyed.
1764  */
1765 void
1766 hat_free_start(struct hat *sfmmup)
1767 {
1768 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
1769 	ASSERT(sfmmup != ksfmmup);
1770 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1771 
1772 	sfmmup->sfmmu_free = 1;
1773 	if (sfmmup->sfmmu_scdp != NULL) {
1774 		sfmmu_leave_scd(sfmmup, 0);
1775 	}
1776 
1777 	ASSERT(sfmmup->sfmmu_scdp == NULL);
1778 }
1779 
1780 void
1781 hat_free_end(struct hat *sfmmup)
1782 {
1783 	int i;
1784 
1785 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1786 	ASSERT(sfmmup->sfmmu_free == 1);
1787 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
1788 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
1789 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
1790 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
1791 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
1792 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
1793 
1794 	if (sfmmup->sfmmu_rmstat) {
1795 		hat_freestat(sfmmup->sfmmu_as, NULL);
1796 	}
1797 
1798 	while (sfmmup->sfmmu_tsb != NULL) {
1799 		struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
1800 		sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
1801 		sfmmup->sfmmu_tsb = next;
1802 	}
1803 
1804 	if (sfmmup->sfmmu_srdp != NULL) {
1805 		sfmmu_leave_srd(sfmmup);
1806 		ASSERT(sfmmup->sfmmu_srdp == NULL);
1807 		for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1808 			if (sfmmup->sfmmu_hmeregion_links[i] != NULL) {
1809 				kmem_free(sfmmup->sfmmu_hmeregion_links[i],
1810 				    SFMMU_L2_HMERLINKS_SIZE);
1811 				sfmmup->sfmmu_hmeregion_links[i] = NULL;
1812 			}
1813 		}
1814 	}
1815 	sfmmu_free_sfmmu(sfmmup);
1816 
1817 #ifdef DEBUG
1818 	for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1819 		ASSERT(sfmmup->sfmmu_hmeregion_links[i] == NULL);
1820 	}
1821 #endif
1822 
1823 	kmem_cache_free(sfmmuid_cache, sfmmup);
1824 }
1825 
1826 /*
1827  * Set up any translation structures, for the specified address space,
1828  * that are needed or preferred when the process is being swapped in.
1829  */
1830 /* ARGSUSED */
1831 void
1832 hat_swapin(struct hat *hat)
1833 {
1834 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1835 }
1836 
1837 /*
1838  * Free all of the translation resources, for the specified address space,
1839  * that can be freed while the process is swapped out. Called from as_swapout.
1840  * Also, free up the ctx that this process was using.
1841  */
1842 void
1843 hat_swapout(struct hat *sfmmup)
1844 {
1845 	struct hmehash_bucket *hmebp;
1846 	struct hme_blk *hmeblkp;
1847 	struct hme_blk *pr_hblk = NULL;
1848 	struct hme_blk *nx_hblk;
1849 	int i;
1850 	uint64_t hblkpa, prevpa, nx_pa;
1851 	struct hme_blk *list = NULL;
1852 	hatlock_t *hatlockp;
1853 	struct tsb_info *tsbinfop;
1854 	struct free_tsb {
1855 		struct free_tsb *next;
1856 		struct tsb_info *tsbinfop;
1857 	};			/* free list of TSBs */
1858 	struct free_tsb *freelist, *last, *next;
1859 
1860 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1861 	SFMMU_STAT(sf_swapout);
1862 
1863 	/*
1864 	 * There is no way to go from an as to all its translations in sfmmu.
1865 	 * Here is one of the times when we take the big hit and traverse
1866 	 * the hash looking for hme_blks to free up.  Not only do we free up
1867 	 * this as hme_blks but all those that are free.  We are obviously
1868 	 * swapping because we need memory so let's free up as much
1869 	 * as we can.
1870 	 *
1871 	 * Note that we don't flush TLB/TSB here -- it's not necessary
1872 	 * because:
1873 	 *  1) we free the ctx we're using and throw away the TSB(s);
1874 	 *  2) processes aren't runnable while being swapped out.
1875 	 */
1876 	ASSERT(sfmmup != KHATID);
1877 	for (i = 0; i <= UHMEHASH_SZ; i++) {
1878 		hmebp = &uhme_hash[i];
1879 		SFMMU_HASH_LOCK(hmebp);
1880 		hmeblkp = hmebp->hmeblkp;
1881 		hblkpa = hmebp->hmeh_nextpa;
1882 		prevpa = 0;
1883 		pr_hblk = NULL;
1884 		while (hmeblkp) {
1885 
1886 			ASSERT(!hmeblkp->hblk_xhat_bit);
1887 
1888 			if ((hmeblkp->hblk_tag.htag_id == sfmmup) &&
1889 			    !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) {
1890 				ASSERT(!hmeblkp->hblk_shared);
1891 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
1892 				    (caddr_t)get_hblk_base(hmeblkp),
1893 				    get_hblk_endaddr(hmeblkp),
1894 				    NULL, HAT_UNLOAD);
1895 			}
1896 			nx_hblk = hmeblkp->hblk_next;
1897 			nx_pa = hmeblkp->hblk_nextpa;
1898 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
1899 				ASSERT(!hmeblkp->hblk_lckcnt);
1900 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
1901 				    prevpa, pr_hblk);
1902 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
1903 			} else {
1904 				pr_hblk = hmeblkp;
1905 				prevpa = hblkpa;
1906 			}
1907 			hmeblkp = nx_hblk;
1908 			hblkpa = nx_pa;
1909 		}
1910 		SFMMU_HASH_UNLOCK(hmebp);
1911 	}
1912 
1913 	sfmmu_hblks_list_purge(&list);
1914 
1915 	/*
1916 	 * Now free up the ctx so that others can reuse it.
1917 	 */
1918 	hatlockp = sfmmu_hat_enter(sfmmup);
1919 
1920 	sfmmu_invalidate_ctx(sfmmup);
1921 
1922 	/*
1923 	 * Free TSBs, but not tsbinfos, and set SWAPPED flag.
1924 	 * If TSBs were never swapped in, just return.
1925 	 * This implies that we don't support partial swapping
1926 	 * of TSBs -- either all are swapped out, or none are.
1927 	 *
1928 	 * We must hold the HAT lock here to prevent racing with another
1929 	 * thread trying to unmap TTEs from the TSB or running the post-
1930 	 * relocator after relocating the TSB's memory.  Unfortunately, we
1931 	 * can't free memory while holding the HAT lock or we could
1932 	 * deadlock, so we build a list of TSBs to be freed after marking
1933 	 * the tsbinfos as swapped out and free them after dropping the
1934 	 * lock.
1935 	 */
1936 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
1937 		sfmmu_hat_exit(hatlockp);
1938 		return;
1939 	}
1940 
1941 	SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED);
1942 	last = freelist = NULL;
1943 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
1944 	    tsbinfop = tsbinfop->tsb_next) {
1945 		ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0);
1946 
1947 		/*
1948 		 * Cast the TSB into a struct free_tsb and put it on the free
1949 		 * list.
1950 		 */
1951 		if (freelist == NULL) {
1952 			last = freelist = (struct free_tsb *)tsbinfop->tsb_va;
1953 		} else {
1954 			last->next = (struct free_tsb *)tsbinfop->tsb_va;
1955 			last = last->next;
1956 		}
1957 		last->next = NULL;
1958 		last->tsbinfop = tsbinfop;
1959 		tsbinfop->tsb_flags |= TSB_SWAPPED;
1960 		/*
1961 		 * Zero out the TTE to clear the valid bit.
1962 		 * Note we can't use a value like 0xbad because we want to
1963 		 * ensure diagnostic bits are NEVER set on TTEs that might
1964 		 * be loaded.  The intent is to catch any invalid access
1965 		 * to the swapped TSB, such as a thread running with a valid
1966 		 * context without first calling sfmmu_tsb_swapin() to
1967 		 * allocate TSB memory.
1968 		 */
1969 		tsbinfop->tsb_tte.ll = 0;
1970 	}
1971 
1972 	/* Now we can drop the lock and free the TSB memory. */
1973 	sfmmu_hat_exit(hatlockp);
1974 	for (; freelist != NULL; freelist = next) {
1975 		next = freelist->next;
1976 		sfmmu_tsb_free(freelist->tsbinfop);
1977 	}
1978 }
1979 
1980 /*
1981  * Duplicate the translations of an as into another newas
1982  */
1983 /* ARGSUSED */
1984 int
1985 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
1986 	uint_t flag)
1987 {
1988 	sf_srd_t *srdp;
1989 	sf_scd_t *scdp;
1990 	int i;
1991 	extern uint_t get_color_start(struct as *);
1992 
1993 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1994 	ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW) ||
1995 	    (flag == HAT_DUP_SRD));
1996 	ASSERT(hat != ksfmmup);
1997 	ASSERT(newhat != ksfmmup);
1998 	ASSERT(flag != HAT_DUP_ALL || hat->sfmmu_srdp == newhat->sfmmu_srdp);
1999 
2000 	if (flag == HAT_DUP_COW) {
2001 		panic("hat_dup: HAT_DUP_COW not supported");
2002 	}
2003 
2004 	if (flag == HAT_DUP_SRD && ((srdp = hat->sfmmu_srdp) != NULL)) {
2005 		ASSERT(srdp->srd_evp != NULL);
2006 		VN_HOLD(srdp->srd_evp);
2007 		ASSERT(srdp->srd_refcnt > 0);
2008 		newhat->sfmmu_srdp = srdp;
2009 		atomic_add_32((volatile uint_t *)&srdp->srd_refcnt, 1);
2010 	}
2011 
2012 	/*
2013 	 * HAT_DUP_ALL flag is used after as duplication is done.
2014 	 */
2015 	if (flag == HAT_DUP_ALL && ((srdp = newhat->sfmmu_srdp) != NULL)) {
2016 		ASSERT(newhat->sfmmu_srdp->srd_refcnt >= 2);
2017 		newhat->sfmmu_rtteflags = hat->sfmmu_rtteflags;
2018 		if (hat->sfmmu_flags & HAT_4MTEXT_FLAG) {
2019 			newhat->sfmmu_flags |= HAT_4MTEXT_FLAG;
2020 		}
2021 
2022 		/* check if need to join scd */
2023 		if ((scdp = hat->sfmmu_scdp) != NULL &&
2024 		    newhat->sfmmu_scdp != scdp) {
2025 			int ret;
2026 			SF_RGNMAP_IS_SUBSET(&newhat->sfmmu_region_map,
2027 			    &scdp->scd_region_map, ret);
2028 			ASSERT(ret);
2029 			sfmmu_join_scd(scdp, newhat);
2030 			ASSERT(newhat->sfmmu_scdp == scdp &&
2031 			    scdp->scd_refcnt >= 2);
2032 			for (i = 0; i < max_mmu_page_sizes; i++) {
2033 				newhat->sfmmu_ismttecnt[i] =
2034 				    hat->sfmmu_ismttecnt[i];
2035 				newhat->sfmmu_scdismttecnt[i] =
2036 				    hat->sfmmu_scdismttecnt[i];
2037 			}
2038 		}
2039 
2040 		sfmmu_check_page_sizes(newhat, 1);
2041 	}
2042 
2043 	if (flag == HAT_DUP_ALL && consistent_coloring == 0 &&
2044 	    update_proc_pgcolorbase_after_fork != 0) {
2045 		hat->sfmmu_clrbin = get_color_start(hat->sfmmu_as);
2046 	}
2047 	return (0);
2048 }
2049 
2050 void
2051 hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
2052 	uint_t attr, uint_t flags)
2053 {
2054 	hat_do_memload(hat, addr, pp, attr, flags,
2055 	    SFMMU_INVALID_SHMERID);
2056 }
2057 
2058 void
2059 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp,
2060 	uint_t attr, uint_t flags, hat_region_cookie_t rcookie)
2061 {
2062 	uint_t rid;
2063 	if (rcookie == HAT_INVALID_REGION_COOKIE ||
2064 	    hat->sfmmu_xhat_provider != NULL) {
2065 		hat_do_memload(hat, addr, pp, attr, flags,
2066 		    SFMMU_INVALID_SHMERID);
2067 		return;
2068 	}
2069 	rid = (uint_t)((uint64_t)rcookie);
2070 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2071 	hat_do_memload(hat, addr, pp, attr, flags, rid);
2072 }
2073 
2074 /*
2075  * Set up addr to map to page pp with protection prot.
2076  * As an optimization we also load the TSB with the
2077  * corresponding tte but it is no big deal if  the tte gets kicked out.
2078  */
2079 static void
2080 hat_do_memload(struct hat *hat, caddr_t addr, struct page *pp,
2081 	uint_t attr, uint_t flags, uint_t rid)
2082 {
2083 	tte_t tte;
2084 
2085 
2086 	ASSERT(hat != NULL);
2087 	ASSERT(PAGE_LOCKED(pp));
2088 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2089 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2090 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2091 	SFMMU_VALIDATE_HMERID(hat, rid, addr, MMU_PAGESIZE);
2092 
2093 	if (PP_ISFREE(pp)) {
2094 		panic("hat_memload: loading a mapping to free page %p",
2095 		    (void *)pp);
2096 	}
2097 
2098 	if (hat->sfmmu_xhat_provider) {
2099 		/* no regions for xhats */
2100 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
2101 		XHAT_MEMLOAD(hat, addr, pp, attr, flags);
2102 		return;
2103 	}
2104 
2105 	ASSERT((hat == ksfmmup) ||
2106 	    AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
2107 
2108 	if (flags & ~SFMMU_LOAD_ALLFLAG)
2109 		cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
2110 		    flags & ~SFMMU_LOAD_ALLFLAG);
2111 
2112 	if (hat->sfmmu_rmstat)
2113 		hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
2114 
2115 #if defined(SF_ERRATA_57)
2116 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2117 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2118 	    !(flags & HAT_LOAD_SHARE)) {
2119 		cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
2120 		    " page executable");
2121 		attr &= ~PROT_EXEC;
2122 	}
2123 #endif
2124 
2125 	sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2126 	(void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags, rid);
2127 
2128 	/*
2129 	 * Check TSB and TLB page sizes.
2130 	 */
2131 	if ((flags & HAT_LOAD_SHARE) == 0) {
2132 		sfmmu_check_page_sizes(hat, 1);
2133 	}
2134 }
2135 
2136 /*
2137  * hat_devload can be called to map real memory (e.g.
2138  * /dev/kmem) and even though hat_devload will determine pf is
2139  * for memory, it will be unable to get a shared lock on the
2140  * page (because someone else has it exclusively) and will
2141  * pass dp = NULL.  If tteload doesn't get a non-NULL
2142  * page pointer it can't cache memory.
2143  */
2144 void
2145 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
2146 	uint_t attr, int flags)
2147 {
2148 	tte_t tte;
2149 	struct page *pp = NULL;
2150 	int use_lgpg = 0;
2151 
2152 	ASSERT(hat != NULL);
2153 
2154 	if (hat->sfmmu_xhat_provider) {
2155 		XHAT_DEVLOAD(hat, addr, len, pfn, attr, flags);
2156 		return;
2157 	}
2158 
2159 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2160 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2161 	ASSERT((hat == ksfmmup) ||
2162 	    AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
2163 	if (len == 0)
2164 		panic("hat_devload: zero len");
2165 	if (flags & ~SFMMU_LOAD_ALLFLAG)
2166 		cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
2167 		    flags & ~SFMMU_LOAD_ALLFLAG);
2168 
2169 #if defined(SF_ERRATA_57)
2170 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2171 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2172 	    !(flags & HAT_LOAD_SHARE)) {
2173 		cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
2174 		    " page executable");
2175 		attr &= ~PROT_EXEC;
2176 	}
2177 #endif
2178 
2179 	/*
2180 	 * If it's a memory page find its pp
2181 	 */
2182 	if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
2183 		pp = page_numtopp_nolock(pfn);
2184 		if (pp == NULL) {
2185 			flags |= HAT_LOAD_NOCONSIST;
2186 		} else {
2187 			if (PP_ISFREE(pp)) {
2188 				panic("hat_memload: loading "
2189 				    "a mapping to free page %p",
2190 				    (void *)pp);
2191 			}
2192 			if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
2193 				panic("hat_memload: loading a mapping "
2194 				    "to unlocked relocatable page %p",
2195 				    (void *)pp);
2196 			}
2197 			ASSERT(len == MMU_PAGESIZE);
2198 		}
2199 	}
2200 
2201 	if (hat->sfmmu_rmstat)
2202 		hat_resvstat(len, hat->sfmmu_as, addr);
2203 
2204 	if (flags & HAT_LOAD_NOCONSIST) {
2205 		attr |= SFMMU_UNCACHEVTTE;
2206 		use_lgpg = 1;
2207 	}
2208 	if (!pf_is_memory(pfn)) {
2209 		attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
2210 		use_lgpg = 1;
2211 		switch (attr & HAT_ORDER_MASK) {
2212 			case HAT_STRICTORDER:
2213 			case HAT_UNORDERED_OK:
2214 				/*
2215 				 * we set the side effect bit for all non
2216 				 * memory mappings unless merging is ok
2217 				 */
2218 				attr |= SFMMU_SIDEFFECT;
2219 				break;
2220 			case HAT_MERGING_OK:
2221 			case HAT_LOADCACHING_OK:
2222 			case HAT_STORECACHING_OK:
2223 				break;
2224 			default:
2225 				panic("hat_devload: bad attr");
2226 				break;
2227 		}
2228 	}
2229 	while (len) {
2230 		if (!use_lgpg) {
2231 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
2232 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2233 			    flags, SFMMU_INVALID_SHMERID);
2234 			len -= MMU_PAGESIZE;
2235 			addr += MMU_PAGESIZE;
2236 			pfn++;
2237 			continue;
2238 		}
2239 		/*
2240 		 *  try to use large pages, check va/pa alignments
2241 		 *  Note that 32M/256M page sizes are not (yet) supported.
2242 		 */
2243 		if ((len >= MMU_PAGESIZE4M) &&
2244 		    !((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
2245 		    !(disable_large_pages & (1 << TTE4M)) &&
2246 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
2247 			sfmmu_memtte(&tte, pfn, attr, TTE4M);
2248 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2249 			    flags, SFMMU_INVALID_SHMERID);
2250 			len -= MMU_PAGESIZE4M;
2251 			addr += MMU_PAGESIZE4M;
2252 			pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
2253 		} else if ((len >= MMU_PAGESIZE512K) &&
2254 		    !((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
2255 		    !(disable_large_pages & (1 << TTE512K)) &&
2256 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
2257 			sfmmu_memtte(&tte, pfn, attr, TTE512K);
2258 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2259 			    flags, SFMMU_INVALID_SHMERID);
2260 			len -= MMU_PAGESIZE512K;
2261 			addr += MMU_PAGESIZE512K;
2262 			pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
2263 		} else if ((len >= MMU_PAGESIZE64K) &&
2264 		    !((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
2265 		    !(disable_large_pages & (1 << TTE64K)) &&
2266 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
2267 			sfmmu_memtte(&tte, pfn, attr, TTE64K);
2268 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2269 			    flags, SFMMU_INVALID_SHMERID);
2270 			len -= MMU_PAGESIZE64K;
2271 			addr += MMU_PAGESIZE64K;
2272 			pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
2273 		} else {
2274 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
2275 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2276 			    flags, SFMMU_INVALID_SHMERID);
2277 			len -= MMU_PAGESIZE;
2278 			addr += MMU_PAGESIZE;
2279 			pfn++;
2280 		}
2281 	}
2282 
2283 	/*
2284 	 * Check TSB and TLB page sizes.
2285 	 */
2286 	if ((flags & HAT_LOAD_SHARE) == 0) {
2287 		sfmmu_check_page_sizes(hat, 1);
2288 	}
2289 }
2290 
2291 void
2292 hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
2293 	struct page **pps, uint_t attr, uint_t flags)
2294 {
2295 	hat_do_memload_array(hat, addr, len, pps, attr, flags,
2296 	    SFMMU_INVALID_SHMERID);
2297 }
2298 
2299 void
2300 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len,
2301 	struct page **pps, uint_t attr, uint_t flags,
2302 	hat_region_cookie_t rcookie)
2303 {
2304 	uint_t rid;
2305 	if (rcookie == HAT_INVALID_REGION_COOKIE ||
2306 	    hat->sfmmu_xhat_provider != NULL) {
2307 		hat_do_memload_array(hat, addr, len, pps, attr, flags,
2308 		    SFMMU_INVALID_SHMERID);
2309 		return;
2310 	}
2311 	rid = (uint_t)((uint64_t)rcookie);
2312 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2313 	hat_do_memload_array(hat, addr, len, pps, attr, flags, rid);
2314 }
2315 
2316 /*
2317  * Map the largest extend possible out of the page array. The array may NOT
2318  * be in order.  The largest possible mapping a page can have
2319  * is specified in the p_szc field.  The p_szc field
2320  * cannot change as long as there any mappings (large or small)
2321  * to any of the pages that make up the large page. (ie. any
2322  * promotion/demotion of page size is not up to the hat but up to
2323  * the page free list manager).  The array
2324  * should consist of properly aligned contigous pages that are
2325  * part of a big page for a large mapping to be created.
2326  */
2327 static void
2328 hat_do_memload_array(struct hat *hat, caddr_t addr, size_t len,
2329 	struct page **pps, uint_t attr, uint_t flags, uint_t rid)
2330 {
2331 	int  ttesz;
2332 	size_t mapsz;
2333 	pgcnt_t	numpg, npgs;
2334 	tte_t tte;
2335 	page_t *pp;
2336 	uint_t large_pages_disable;
2337 
2338 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2339 	SFMMU_VALIDATE_HMERID(hat, rid, addr, len);
2340 
2341 	if (hat->sfmmu_xhat_provider) {
2342 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
2343 		XHAT_MEMLOAD_ARRAY(hat, addr, len, pps, attr, flags);
2344 		return;
2345 	}
2346 
2347 	if (hat->sfmmu_rmstat)
2348 		hat_resvstat(len, hat->sfmmu_as, addr);
2349 
2350 #if defined(SF_ERRATA_57)
2351 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2352 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2353 	    !(flags & HAT_LOAD_SHARE)) {
2354 		cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
2355 		    "user page executable");
2356 		attr &= ~PROT_EXEC;
2357 	}
2358 #endif
2359 
2360 	/* Get number of pages */
2361 	npgs = len >> MMU_PAGESHIFT;
2362 
2363 	if (flags & HAT_LOAD_SHARE) {
2364 		large_pages_disable = disable_ism_large_pages;
2365 	} else {
2366 		large_pages_disable = disable_large_pages;
2367 	}
2368 
2369 	if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
2370 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2371 		    rid);
2372 		return;
2373 	}
2374 
2375 	while (npgs >= NHMENTS) {
2376 		pp = *pps;
2377 		for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
2378 			/*
2379 			 * Check if this page size is disabled.
2380 			 */
2381 			if (large_pages_disable & (1 << ttesz))
2382 				continue;
2383 
2384 			numpg = TTEPAGES(ttesz);
2385 			mapsz = numpg << MMU_PAGESHIFT;
2386 			if ((npgs >= numpg) &&
2387 			    IS_P2ALIGNED(addr, mapsz) &&
2388 			    IS_P2ALIGNED(pp->p_pagenum, numpg)) {
2389 				/*
2390 				 * At this point we have enough pages and
2391 				 * we know the virtual address and the pfn
2392 				 * are properly aligned.  We still need
2393 				 * to check for physical contiguity but since
2394 				 * it is very likely that this is the case
2395 				 * we will assume they are so and undo
2396 				 * the request if necessary.  It would
2397 				 * be great if we could get a hint flag
2398 				 * like HAT_CONTIG which would tell us
2399 				 * the pages are contigous for sure.
2400 				 */
2401 				sfmmu_memtte(&tte, (*pps)->p_pagenum,
2402 				    attr, ttesz);
2403 				if (!sfmmu_tteload_array(hat, &tte, addr,
2404 				    pps, flags, rid)) {
2405 					break;
2406 				}
2407 			}
2408 		}
2409 		if (ttesz == TTE8K) {
2410 			/*
2411 			 * We were not able to map array using a large page
2412 			 * batch a hmeblk or fraction at a time.
2413 			 */
2414 			numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
2415 			    & (NHMENTS-1);
2416 			numpg = NHMENTS - numpg;
2417 			ASSERT(numpg <= npgs);
2418 			mapsz = numpg * MMU_PAGESIZE;
2419 			sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
2420 			    numpg, rid);
2421 		}
2422 		addr += mapsz;
2423 		npgs -= numpg;
2424 		pps += numpg;
2425 	}
2426 
2427 	if (npgs) {
2428 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2429 		    rid);
2430 	}
2431 
2432 	/*
2433 	 * Check TSB and TLB page sizes.
2434 	 */
2435 	if ((flags & HAT_LOAD_SHARE) == 0) {
2436 		sfmmu_check_page_sizes(hat, 1);
2437 	}
2438 }
2439 
2440 /*
2441  * Function tries to batch 8K pages into the same hme blk.
2442  */
2443 static void
2444 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
2445 		    uint_t attr, uint_t flags, pgcnt_t npgs, uint_t rid)
2446 {
2447 	tte_t	tte;
2448 	page_t *pp;
2449 	struct hmehash_bucket *hmebp;
2450 	struct hme_blk *hmeblkp;
2451 	int	index;
2452 
2453 	while (npgs) {
2454 		/*
2455 		 * Acquire the hash bucket.
2456 		 */
2457 		hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K,
2458 		    rid);
2459 		ASSERT(hmebp);
2460 
2461 		/*
2462 		 * Find the hment block.
2463 		 */
2464 		hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
2465 		    TTE8K, flags, rid);
2466 		ASSERT(hmeblkp);
2467 
2468 		do {
2469 			/*
2470 			 * Make the tte.
2471 			 */
2472 			pp = *pps;
2473 			sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2474 
2475 			/*
2476 			 * Add the translation.
2477 			 */
2478 			(void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
2479 			    vaddr, pps, flags, rid);
2480 
2481 			/*
2482 			 * Goto next page.
2483 			 */
2484 			pps++;
2485 			npgs--;
2486 
2487 			/*
2488 			 * Goto next address.
2489 			 */
2490 			vaddr += MMU_PAGESIZE;
2491 
2492 			/*
2493 			 * Don't crossover into a different hmentblk.
2494 			 */
2495 			index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
2496 			    (NHMENTS-1));
2497 
2498 		} while (index != 0 && npgs != 0);
2499 
2500 		/*
2501 		 * Release the hash bucket.
2502 		 */
2503 
2504 		sfmmu_tteload_release_hashbucket(hmebp);
2505 	}
2506 }
2507 
2508 /*
2509  * Construct a tte for a page:
2510  *
2511  * tte_valid = 1
2512  * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only)
2513  * tte_size = size
2514  * tte_nfo = attr & HAT_NOFAULT
2515  * tte_ie = attr & HAT_STRUCTURE_LE
2516  * tte_hmenum = hmenum
2517  * tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
2518  * tte_palo = pp->p_pagenum & TTE_PALOMASK;
2519  * tte_ref = 1 (optimization)
2520  * tte_wr_perm = attr & PROT_WRITE;
2521  * tte_no_sync = attr & HAT_NOSYNC
2522  * tte_lock = attr & SFMMU_LOCKTTE
2523  * tte_cp = !(attr & SFMMU_UNCACHEPTTE)
2524  * tte_cv = !(attr & SFMMU_UNCACHEVTTE)
2525  * tte_e = attr & SFMMU_SIDEFFECT
2526  * tte_priv = !(attr & PROT_USER)
2527  * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
2528  * tte_glb = 0
2529  */
2530 void
2531 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
2532 {
2533 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2534 
2535 	ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
2536 	ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
2537 
2538 	if (TTE_IS_NOSYNC(ttep)) {
2539 		TTE_SET_REF(ttep);
2540 		if (TTE_IS_WRITABLE(ttep)) {
2541 			TTE_SET_MOD(ttep);
2542 		}
2543 	}
2544 	if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
2545 		panic("sfmmu_memtte: can't set both NFO and EXEC bits");
2546 	}
2547 }
2548 
2549 /*
2550  * This function will add a translation to the hme_blk and allocate the
2551  * hme_blk if one does not exist.
2552  * If a page structure is specified then it will add the
2553  * corresponding hment to the mapping list.
2554  * It will also update the hmenum field for the tte.
2555  *
2556  * Currently this function is only used for kernel mappings.
2557  * So pass invalid region to sfmmu_tteload_array().
2558  */
2559 void
2560 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
2561 	uint_t flags)
2562 {
2563 	ASSERT(sfmmup == ksfmmup);
2564 	(void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags,
2565 	    SFMMU_INVALID_SHMERID);
2566 }
2567 
2568 /*
2569  * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
2570  * Assumes that a particular page size may only be resident in one TSB.
2571  */
2572 static void
2573 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
2574 {
2575 	struct tsb_info *tsbinfop = NULL;
2576 	uint64_t tag;
2577 	struct tsbe *tsbe_addr;
2578 	uint64_t tsb_base;
2579 	uint_t tsb_size;
2580 	int vpshift = MMU_PAGESHIFT;
2581 	int phys = 0;
2582 
2583 	if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
2584 		phys = ktsb_phys;
2585 		if (ttesz >= TTE4M) {
2586 #ifndef sun4v
2587 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2588 #endif
2589 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2590 			tsb_size = ktsb4m_szcode;
2591 		} else {
2592 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2593 			tsb_size = ktsb_szcode;
2594 		}
2595 	} else {
2596 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2597 
2598 		/*
2599 		 * If there isn't a TSB for this page size, or the TSB is
2600 		 * swapped out, there is nothing to do.  Note that the latter
2601 		 * case seems impossible but can occur if hat_pageunload()
2602 		 * is called on an ISM mapping while the process is swapped
2603 		 * out.
2604 		 */
2605 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2606 			return;
2607 
2608 		/*
2609 		 * If another thread is in the middle of relocating a TSB
2610 		 * we can't unload the entry so set a flag so that the
2611 		 * TSB will be flushed before it can be accessed by the
2612 		 * process.
2613 		 */
2614 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2615 			if (ttep == NULL)
2616 				tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2617 			return;
2618 		}
2619 #if defined(UTSB_PHYS)
2620 		phys = 1;
2621 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2622 #else
2623 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2624 #endif
2625 		tsb_size = tsbinfop->tsb_szc;
2626 	}
2627 	if (ttesz >= TTE4M)
2628 		vpshift = MMU_PAGESHIFT4M;
2629 
2630 	tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2631 	tag = sfmmu_make_tsbtag(vaddr);
2632 
2633 	if (ttep == NULL) {
2634 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2635 	} else {
2636 		if (ttesz >= TTE4M) {
2637 			SFMMU_STAT(sf_tsb_load4m);
2638 		} else {
2639 			SFMMU_STAT(sf_tsb_load8k);
2640 		}
2641 
2642 		sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
2643 	}
2644 }
2645 
2646 /*
2647  * Unmap all entries from [start, end) matching the given page size.
2648  *
2649  * This function is used primarily to unmap replicated 64K or 512K entries
2650  * from the TSB that are inserted using the base page size TSB pointer, but
2651  * it may also be called to unmap a range of addresses from the TSB.
2652  */
2653 void
2654 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
2655 {
2656 	struct tsb_info *tsbinfop;
2657 	uint64_t tag;
2658 	struct tsbe *tsbe_addr;
2659 	caddr_t vaddr;
2660 	uint64_t tsb_base;
2661 	int vpshift, vpgsz;
2662 	uint_t tsb_size;
2663 	int phys = 0;
2664 
2665 	/*
2666 	 * Assumptions:
2667 	 *  If ttesz == 8K, 64K or 512K, we walk through the range 8K
2668 	 *  at a time shooting down any valid entries we encounter.
2669 	 *
2670 	 *  If ttesz >= 4M we walk the range 4M at a time shooting
2671 	 *  down any valid mappings we find.
2672 	 */
2673 	if (sfmmup == ksfmmup) {
2674 		phys = ktsb_phys;
2675 		if (ttesz >= TTE4M) {
2676 #ifndef sun4v
2677 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2678 #endif
2679 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2680 			tsb_size = ktsb4m_szcode;
2681 		} else {
2682 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2683 			tsb_size = ktsb_szcode;
2684 		}
2685 	} else {
2686 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2687 
2688 		/*
2689 		 * If there isn't a TSB for this page size, or the TSB is
2690 		 * swapped out, there is nothing to do.  Note that the latter
2691 		 * case seems impossible but can occur if hat_pageunload()
2692 		 * is called on an ISM mapping while the process is swapped
2693 		 * out.
2694 		 */
2695 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2696 			return;
2697 
2698 		/*
2699 		 * If another thread is in the middle of relocating a TSB
2700 		 * we can't unload the entry so set a flag so that the
2701 		 * TSB will be flushed before it can be accessed by the
2702 		 * process.
2703 		 */
2704 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2705 			tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2706 			return;
2707 		}
2708 #if defined(UTSB_PHYS)
2709 		phys = 1;
2710 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2711 #else
2712 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2713 #endif
2714 		tsb_size = tsbinfop->tsb_szc;
2715 	}
2716 	if (ttesz >= TTE4M) {
2717 		vpshift = MMU_PAGESHIFT4M;
2718 		vpgsz = MMU_PAGESIZE4M;
2719 	} else {
2720 		vpshift = MMU_PAGESHIFT;
2721 		vpgsz = MMU_PAGESIZE;
2722 	}
2723 
2724 	for (vaddr = start; vaddr < end; vaddr += vpgsz) {
2725 		tag = sfmmu_make_tsbtag(vaddr);
2726 		tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2727 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2728 	}
2729 }
2730 
2731 /*
2732  * Select the optimum TSB size given the number of mappings
2733  * that need to be cached.
2734  */
2735 static int
2736 sfmmu_select_tsb_szc(pgcnt_t pgcnt)
2737 {
2738 	int szc = 0;
2739 
2740 #ifdef DEBUG
2741 	if (tsb_grow_stress) {
2742 		uint32_t randval = (uint32_t)gettick() >> 4;
2743 		return (randval % (tsb_max_growsize + 1));
2744 	}
2745 #endif	/* DEBUG */
2746 
2747 	while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
2748 		szc++;
2749 	return (szc);
2750 }
2751 
2752 /*
2753  * This function will add a translation to the hme_blk and allocate the
2754  * hme_blk if one does not exist.
2755  * If a page structure is specified then it will add the
2756  * corresponding hment to the mapping list.
2757  * It will also update the hmenum field for the tte.
2758  * Furthermore, it attempts to create a large page translation
2759  * for <addr,hat> at page array pps.  It assumes addr and first
2760  * pp is correctly aligned.  It returns 0 if successful and 1 otherwise.
2761  */
2762 static int
2763 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
2764 	page_t **pps, uint_t flags, uint_t rid)
2765 {
2766 	struct hmehash_bucket *hmebp;
2767 	struct hme_blk *hmeblkp;
2768 	int 	ret;
2769 	uint_t	size;
2770 
2771 	/*
2772 	 * Get mapping size.
2773 	 */
2774 	size = TTE_CSZ(ttep);
2775 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2776 
2777 	/*
2778 	 * Acquire the hash bucket.
2779 	 */
2780 	hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size, rid);
2781 	ASSERT(hmebp);
2782 
2783 	/*
2784 	 * Find the hment block.
2785 	 */
2786 	hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags,
2787 	    rid);
2788 	ASSERT(hmeblkp);
2789 
2790 	/*
2791 	 * Add the translation.
2792 	 */
2793 	ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags,
2794 	    rid);
2795 
2796 	/*
2797 	 * Release the hash bucket.
2798 	 */
2799 	sfmmu_tteload_release_hashbucket(hmebp);
2800 
2801 	return (ret);
2802 }
2803 
2804 /*
2805  * Function locks and returns a pointer to the hash bucket for vaddr and size.
2806  */
2807 static struct hmehash_bucket *
2808 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size,
2809     uint_t rid)
2810 {
2811 	struct hmehash_bucket *hmebp;
2812 	int hmeshift;
2813 	void *htagid = sfmmutohtagid(sfmmup, rid);
2814 
2815 	ASSERT(htagid != NULL);
2816 
2817 	hmeshift = HME_HASH_SHIFT(size);
2818 
2819 	hmebp = HME_HASH_FUNCTION(htagid, vaddr, hmeshift);
2820 
2821 	SFMMU_HASH_LOCK(hmebp);
2822 
2823 	return (hmebp);
2824 }
2825 
2826 /*
2827  * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
2828  * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
2829  * allocated.
2830  */
2831 static struct hme_blk *
2832 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
2833 	caddr_t vaddr, uint_t size, uint_t flags, uint_t rid)
2834 {
2835 	hmeblk_tag hblktag;
2836 	int hmeshift;
2837 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
2838 	uint64_t hblkpa, prevpa;
2839 	struct kmem_cache *sfmmu_cache;
2840 	uint_t forcefree;
2841 
2842 	SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
2843 
2844 	hblktag.htag_id = sfmmutohtagid(sfmmup, rid);
2845 	ASSERT(hblktag.htag_id != NULL);
2846 	hmeshift = HME_HASH_SHIFT(size);
2847 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2848 	hblktag.htag_rehash = HME_HASH_REHASH(size);
2849 	hblktag.htag_rid = rid;
2850 
2851 ttearray_realloc:
2852 
2853 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa,
2854 	    pr_hblk, prevpa, &list);
2855 
2856 	/*
2857 	 * We block until hblk_reserve_lock is released; it's held by
2858 	 * the thread, temporarily using hblk_reserve, until hblk_reserve is
2859 	 * replaced by a hblk from sfmmu8_cache.
2860 	 */
2861 	if (hmeblkp == (struct hme_blk *)hblk_reserve &&
2862 	    hblk_reserve_thread != curthread) {
2863 		SFMMU_HASH_UNLOCK(hmebp);
2864 		mutex_enter(&hblk_reserve_lock);
2865 		mutex_exit(&hblk_reserve_lock);
2866 		SFMMU_STAT(sf_hblk_reserve_hit);
2867 		SFMMU_HASH_LOCK(hmebp);
2868 		goto ttearray_realloc;
2869 	}
2870 
2871 	if (hmeblkp == NULL) {
2872 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
2873 		    hblktag, flags, rid);
2874 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
2875 		ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
2876 	} else {
2877 		/*
2878 		 * It is possible for 8k and 64k hblks to collide since they
2879 		 * have the same rehash value. This is because we
2880 		 * lazily free hblks and 8K/64K blks could be lingering.
2881 		 * If we find size mismatch we free the block and & try again.
2882 		 */
2883 		if (get_hblk_ttesz(hmeblkp) != size) {
2884 			ASSERT(!hmeblkp->hblk_vcnt);
2885 			ASSERT(!hmeblkp->hblk_hmecnt);
2886 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
2887 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
2888 			goto ttearray_realloc;
2889 		}
2890 		if (hmeblkp->hblk_shw_bit) {
2891 			/*
2892 			 * if the hblk was previously used as a shadow hblk then
2893 			 * we will change it to a normal hblk
2894 			 */
2895 			ASSERT(!hmeblkp->hblk_shared);
2896 			if (hmeblkp->hblk_shw_mask) {
2897 				sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
2898 				ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2899 				goto ttearray_realloc;
2900 			} else {
2901 				hmeblkp->hblk_shw_bit = 0;
2902 			}
2903 		}
2904 		SFMMU_STAT(sf_hblk_hit);
2905 	}
2906 
2907 	/*
2908 	 * hat_memload() should never call kmem_cache_free(); see block
2909 	 * comment showing the stacktrace in sfmmu_hblk_alloc();
2910 	 * enqueue each hblk in the list to reserve list if it's created
2911 	 * from sfmmu8_cache *and* sfmmup == KHATID.
2912 	 */
2913 	forcefree = (sfmmup == KHATID) ? 1 : 0;
2914 	while ((pr_hblk = list) != NULL) {
2915 		list = pr_hblk->hblk_next;
2916 		sfmmu_cache = get_hblk_cache(pr_hblk);
2917 		if ((sfmmu_cache == sfmmu8_cache) &&
2918 		    sfmmu_put_free_hblk(pr_hblk, forcefree))
2919 			continue;
2920 
2921 		ASSERT(sfmmup != KHATID);
2922 		kmem_cache_free(sfmmu_cache, pr_hblk);
2923 	}
2924 
2925 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
2926 	ASSERT(!hmeblkp->hblk_shw_bit);
2927 	ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
2928 	ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
2929 	ASSERT(hmeblkp->hblk_tag.htag_rid == rid);
2930 
2931 	return (hmeblkp);
2932 }
2933 
2934 /*
2935  * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
2936  * otherwise.
2937  */
2938 static int
2939 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
2940 	caddr_t vaddr, page_t **pps, uint_t flags, uint_t rid)
2941 {
2942 	page_t *pp = *pps;
2943 	int hmenum, size, remap;
2944 	tte_t tteold, flush_tte;
2945 #ifdef DEBUG
2946 	tte_t orig_old;
2947 #endif /* DEBUG */
2948 	struct sf_hment *sfhme;
2949 	kmutex_t *pml, *pmtx;
2950 	hatlock_t *hatlockp;
2951 	int myflt;
2952 
2953 	/*
2954 	 * remove this panic when we decide to let user virtual address
2955 	 * space be >= USERLIMIT.
2956 	 */
2957 	if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
2958 		panic("user addr %p in kernel space", vaddr);
2959 #if defined(TTE_IS_GLOBAL)
2960 	if (TTE_IS_GLOBAL(ttep))
2961 		panic("sfmmu_tteload: creating global tte");
2962 #endif
2963 
2964 #ifdef DEBUG
2965 	if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
2966 	    !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
2967 		panic("sfmmu_tteload: non cacheable memory tte");
2968 #endif /* DEBUG */
2969 
2970 	if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
2971 	    !TTE_IS_MOD(ttep)) {
2972 		/*
2973 		 * Don't load TSB for dummy as in ISM.  Also don't preload
2974 		 * the TSB if the TTE isn't writable since we're likely to
2975 		 * fault on it again -- preloading can be fairly expensive.
2976 		 */
2977 		flags |= SFMMU_NO_TSBLOAD;
2978 	}
2979 
2980 	size = TTE_CSZ(ttep);
2981 	switch (size) {
2982 	case TTE8K:
2983 		SFMMU_STAT(sf_tteload8k);
2984 		break;
2985 	case TTE64K:
2986 		SFMMU_STAT(sf_tteload64k);
2987 		break;
2988 	case TTE512K:
2989 		SFMMU_STAT(sf_tteload512k);
2990 		break;
2991 	case TTE4M:
2992 		SFMMU_STAT(sf_tteload4m);
2993 		break;
2994 	case (TTE32M):
2995 		SFMMU_STAT(sf_tteload32m);
2996 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2997 		break;
2998 	case (TTE256M):
2999 		SFMMU_STAT(sf_tteload256m);
3000 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
3001 		break;
3002 	}
3003 
3004 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
3005 	SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
3006 	ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
3007 	ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
3008 
3009 	HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
3010 
3011 	/*
3012 	 * Need to grab mlist lock here so that pageunload
3013 	 * will not change tte behind us.
3014 	 */
3015 	if (pp) {
3016 		pml = sfmmu_mlist_enter(pp);
3017 	}
3018 
3019 	sfmmu_copytte(&sfhme->hme_tte, &tteold);
3020 	/*
3021 	 * Look for corresponding hment and if valid verify
3022 	 * pfns are equal.
3023 	 */
3024 	remap = TTE_IS_VALID(&tteold);
3025 	if (remap) {
3026 		pfn_t	new_pfn, old_pfn;
3027 
3028 		old_pfn = TTE_TO_PFN(vaddr, &tteold);
3029 		new_pfn = TTE_TO_PFN(vaddr, ttep);
3030 
3031 		if (flags & HAT_LOAD_REMAP) {
3032 			/* make sure we are remapping same type of pages */
3033 			if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
3034 				panic("sfmmu_tteload - tte remap io<->memory");
3035 			}
3036 			if (old_pfn != new_pfn &&
3037 			    (pp != NULL || sfhme->hme_page != NULL)) {
3038 				panic("sfmmu_tteload - tte remap pp != NULL");
3039 			}
3040 		} else if (old_pfn != new_pfn) {
3041 			panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
3042 			    (void *)hmeblkp);
3043 		}
3044 		ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
3045 	}
3046 
3047 	if (pp) {
3048 		if (size == TTE8K) {
3049 #ifdef VAC
3050 			/*
3051 			 * Handle VAC consistency
3052 			 */
3053 			if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
3054 				sfmmu_vac_conflict(sfmmup, vaddr, pp);
3055 			}
3056 #endif
3057 
3058 			if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3059 				pmtx = sfmmu_page_enter(pp);
3060 				PP_CLRRO(pp);
3061 				sfmmu_page_exit(pmtx);
3062 			} else if (!PP_ISMAPPED(pp) &&
3063 			    (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
3064 				pmtx = sfmmu_page_enter(pp);
3065 				if (!(PP_ISMOD(pp))) {
3066 					PP_SETRO(pp);
3067 				}
3068 				sfmmu_page_exit(pmtx);
3069 			}
3070 
3071 		} else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
3072 			/*
3073 			 * sfmmu_pagearray_setup failed so return
3074 			 */
3075 			sfmmu_mlist_exit(pml);
3076 			return (1);
3077 		}
3078 	}
3079 
3080 	/*
3081 	 * Make sure hment is not on a mapping list.
3082 	 */
3083 	ASSERT(remap || (sfhme->hme_page == NULL));
3084 
3085 	/* if it is not a remap then hme->next better be NULL */
3086 	ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
3087 
3088 	if (flags & HAT_LOAD_LOCK) {
3089 		if ((hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
3090 			panic("too high lckcnt-hmeblk %p",
3091 			    (void *)hmeblkp);
3092 		}
3093 		atomic_add_32(&hmeblkp->hblk_lckcnt, 1);
3094 
3095 		HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
3096 	}
3097 
3098 #ifdef VAC
3099 	if (pp && PP_ISNC(pp)) {
3100 		/*
3101 		 * If the physical page is marked to be uncacheable, like
3102 		 * by a vac conflict, make sure the new mapping is also
3103 		 * uncacheable.
3104 		 */
3105 		TTE_CLR_VCACHEABLE(ttep);
3106 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
3107 	}
3108 #endif
3109 	ttep->tte_hmenum = hmenum;
3110 
3111 #ifdef DEBUG
3112 	orig_old = tteold;
3113 #endif /* DEBUG */
3114 
3115 	while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
3116 		if ((sfmmup == KHATID) &&
3117 		    (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
3118 			sfmmu_copytte(&sfhme->hme_tte, &tteold);
3119 		}
3120 #ifdef DEBUG
3121 		chk_tte(&orig_old, &tteold, ttep, hmeblkp);
3122 #endif /* DEBUG */
3123 	}
3124 	ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
3125 
3126 	if (!TTE_IS_VALID(&tteold)) {
3127 
3128 		atomic_add_16(&hmeblkp->hblk_vcnt, 1);
3129 		if (rid == SFMMU_INVALID_SHMERID) {
3130 			atomic_add_long(&sfmmup->sfmmu_ttecnt[size], 1);
3131 		} else {
3132 			sf_srd_t *srdp = sfmmup->sfmmu_srdp;
3133 			sf_region_t *rgnp = srdp->srd_hmergnp[rid];
3134 			/*
3135 			 * We already accounted for region ttecnt's in sfmmu
3136 			 * during hat_join_region() processing. Here we
3137 			 * only update ttecnt's in region struture.
3138 			 */
3139 			atomic_add_long(&rgnp->rgn_ttecnt[size], 1);
3140 		}
3141 	}
3142 
3143 	myflt = (astosfmmu(curthread->t_procp->p_as) == sfmmup);
3144 	if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
3145 	    sfmmup != ksfmmup) {
3146 		uchar_t tteflag = 1 << size;
3147 		if (rid == SFMMU_INVALID_SHMERID) {
3148 			if (!(sfmmup->sfmmu_tteflags & tteflag)) {
3149 				hatlockp = sfmmu_hat_enter(sfmmup);
3150 				sfmmup->sfmmu_tteflags |= tteflag;
3151 				sfmmu_hat_exit(hatlockp);
3152 			}
3153 		} else if (!(sfmmup->sfmmu_rtteflags & tteflag)) {
3154 			hatlockp = sfmmu_hat_enter(sfmmup);
3155 			sfmmup->sfmmu_rtteflags |= tteflag;
3156 			sfmmu_hat_exit(hatlockp);
3157 		}
3158 		/*
3159 		 * Update the current CPU tsbmiss area, so the current thread
3160 		 * won't need to take the tsbmiss for the new pagesize.
3161 		 * The other threads in the process will update their tsb
3162 		 * miss area lazily in sfmmu_tsbmiss_exception() when they
3163 		 * fail to find the translation for a newly added pagesize.
3164 		 */
3165 		if (size > TTE64K && myflt) {
3166 			struct tsbmiss *tsbmp;
3167 			kpreempt_disable();
3168 			tsbmp = &tsbmiss_area[CPU->cpu_id];
3169 			if (rid == SFMMU_INVALID_SHMERID) {
3170 				if (!(tsbmp->uhat_tteflags & tteflag)) {
3171 					tsbmp->uhat_tteflags |= tteflag;
3172 				}
3173 			} else {
3174 				if (!(tsbmp->uhat_rtteflags & tteflag)) {
3175 					tsbmp->uhat_rtteflags |= tteflag;
3176 				}
3177 			}
3178 			kpreempt_enable();
3179 		}
3180 	}
3181 
3182 	if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
3183 	    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
3184 		hatlockp = sfmmu_hat_enter(sfmmup);
3185 		SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
3186 		sfmmu_hat_exit(hatlockp);
3187 	}
3188 
3189 	flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
3190 	    hw_tte.tte_intlo;
3191 	flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
3192 	    hw_tte.tte_inthi;
3193 
3194 	if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
3195 		/*
3196 		 * If remap and new tte differs from old tte we need
3197 		 * to sync the mod bit and flush TLB/TSB.  We don't
3198 		 * need to sync ref bit because we currently always set
3199 		 * ref bit in tteload.
3200 		 */
3201 		ASSERT(TTE_IS_REF(ttep));
3202 		if (TTE_IS_MOD(&tteold)) {
3203 			sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
3204 		}
3205 		/*
3206 		 * hwtte bits shouldn't change for SRD hmeblks as long as SRD
3207 		 * hmes are only used for read only text. Adding this code for
3208 		 * completeness and future use of shared hmeblks with writable
3209 		 * mappings of VMODSORT vnodes.
3210 		 */
3211 		if (hmeblkp->hblk_shared) {
3212 			cpuset_t cpuset = sfmmu_rgntlb_demap(vaddr,
3213 			    sfmmup->sfmmu_srdp->srd_hmergnp[rid], hmeblkp, 1);
3214 			xt_sync(cpuset);
3215 			SFMMU_STAT_ADD(sf_region_remap_demap, 1);
3216 		} else {
3217 			sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
3218 			xt_sync(sfmmup->sfmmu_cpusran);
3219 		}
3220 	}
3221 
3222 	if ((flags & SFMMU_NO_TSBLOAD) == 0) {
3223 		/*
3224 		 * We only preload 8K and 4M mappings into the TSB, since
3225 		 * 64K and 512K mappings are replicated and hence don't
3226 		 * have a single, unique TSB entry. Ditto for 32M/256M.
3227 		 */
3228 		if (size == TTE8K || size == TTE4M) {
3229 			sf_scd_t *scdp;
3230 			hatlockp = sfmmu_hat_enter(sfmmup);
3231 			/*
3232 			 * Don't preload private TSB if the mapping is used
3233 			 * by the shctx in the SCD.
3234 			 */
3235 			scdp = sfmmup->sfmmu_scdp;
3236 			if (rid == SFMMU_INVALID_SHMERID || scdp == NULL ||
3237 			    !SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
3238 				sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte,
3239 				    size);
3240 			}
3241 			sfmmu_hat_exit(hatlockp);
3242 		}
3243 	}
3244 	if (pp) {
3245 		if (!remap) {
3246 			HME_ADD(sfhme, pp);
3247 			atomic_add_16(&hmeblkp->hblk_hmecnt, 1);
3248 			ASSERT(hmeblkp->hblk_hmecnt > 0);
3249 
3250 			/*
3251 			 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
3252 			 * see pageunload() for comment.
3253 			 */
3254 		}
3255 		sfmmu_mlist_exit(pml);
3256 	}
3257 
3258 	return (0);
3259 }
3260 /*
3261  * Function unlocks hash bucket.
3262  */
3263 static void
3264 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
3265 {
3266 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3267 	SFMMU_HASH_UNLOCK(hmebp);
3268 }
3269 
3270 /*
3271  * function which checks and sets up page array for a large
3272  * translation.  Will set p_vcolor, p_index, p_ro fields.
3273  * Assumes addr and pfnum of first page are properly aligned.
3274  * Will check for physical contiguity. If check fails it return
3275  * non null.
3276  */
3277 static int
3278 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
3279 {
3280 	int 	i, index, ttesz;
3281 	pfn_t	pfnum;
3282 	pgcnt_t	npgs;
3283 	page_t *pp, *pp1;
3284 	kmutex_t *pmtx;
3285 #ifdef VAC
3286 	int osz;
3287 	int cflags = 0;
3288 	int vac_err = 0;
3289 #endif
3290 	int newidx = 0;
3291 
3292 	ttesz = TTE_CSZ(ttep);
3293 
3294 	ASSERT(ttesz > TTE8K);
3295 
3296 	npgs = TTEPAGES(ttesz);
3297 	index = PAGESZ_TO_INDEX(ttesz);
3298 
3299 	pfnum = (*pps)->p_pagenum;
3300 	ASSERT(IS_P2ALIGNED(pfnum, npgs));
3301 
3302 	/*
3303 	 * Save the first pp so we can do HAT_TMPNC at the end.
3304 	 */
3305 	pp1 = *pps;
3306 #ifdef VAC
3307 	osz = fnd_mapping_sz(pp1);
3308 #endif
3309 
3310 	for (i = 0; i < npgs; i++, pps++) {
3311 		pp = *pps;
3312 		ASSERT(PAGE_LOCKED(pp));
3313 		ASSERT(pp->p_szc >= ttesz);
3314 		ASSERT(pp->p_szc == pp1->p_szc);
3315 		ASSERT(sfmmu_mlist_held(pp));
3316 
3317 		/*
3318 		 * XXX is it possible to maintain P_RO on the root only?
3319 		 */
3320 		if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3321 			pmtx = sfmmu_page_enter(pp);
3322 			PP_CLRRO(pp);
3323 			sfmmu_page_exit(pmtx);
3324 		} else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
3325 		    !PP_ISMOD(pp)) {
3326 			pmtx = sfmmu_page_enter(pp);
3327 			if (!(PP_ISMOD(pp))) {
3328 				PP_SETRO(pp);
3329 			}
3330 			sfmmu_page_exit(pmtx);
3331 		}
3332 
3333 		/*
3334 		 * If this is a remap we skip vac & contiguity checks.
3335 		 */
3336 		if (remap)
3337 			continue;
3338 
3339 		/*
3340 		 * set p_vcolor and detect any vac conflicts.
3341 		 */
3342 #ifdef VAC
3343 		if (vac_err == 0) {
3344 			vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
3345 
3346 		}
3347 #endif
3348 
3349 		/*
3350 		 * Save current index in case we need to undo it.
3351 		 * Note: "PAGESZ_TO_INDEX(sz)	(1 << (sz))"
3352 		 *	"SFMMU_INDEX_SHIFT	6"
3353 		 *	 "SFMMU_INDEX_MASK	((1 << SFMMU_INDEX_SHIFT) - 1)"
3354 		 *	 "PP_MAPINDEX(p_index)	(p_index & SFMMU_INDEX_MASK)"
3355 		 *
3356 		 * So:	index = PAGESZ_TO_INDEX(ttesz);
3357 		 *	if ttesz == 1 then index = 0x2
3358 		 *		    2 then index = 0x4
3359 		 *		    3 then index = 0x8
3360 		 *		    4 then index = 0x10
3361 		 *		    5 then index = 0x20
3362 		 * The code below checks if it's a new pagesize (ie, newidx)
3363 		 * in case we need to take it back out of p_index,
3364 		 * and then or's the new index into the existing index.
3365 		 */
3366 		if ((PP_MAPINDEX(pp) & index) == 0)
3367 			newidx = 1;
3368 		pp->p_index = (PP_MAPINDEX(pp) | index);
3369 
3370 		/*
3371 		 * contiguity check
3372 		 */
3373 		if (pp->p_pagenum != pfnum) {
3374 			/*
3375 			 * If we fail the contiguity test then
3376 			 * the only thing we need to fix is the p_index field.
3377 			 * We might get a few extra flushes but since this
3378 			 * path is rare that is ok.  The p_ro field will
3379 			 * get automatically fixed on the next tteload to
3380 			 * the page.  NO TNC bit is set yet.
3381 			 */
3382 			while (i >= 0) {
3383 				pp = *pps;
3384 				if (newidx)
3385 					pp->p_index = (PP_MAPINDEX(pp) &
3386 					    ~index);
3387 				pps--;
3388 				i--;
3389 			}
3390 			return (1);
3391 		}
3392 		pfnum++;
3393 		addr += MMU_PAGESIZE;
3394 	}
3395 
3396 #ifdef VAC
3397 	if (vac_err) {
3398 		if (ttesz > osz) {
3399 			/*
3400 			 * There are some smaller mappings that causes vac
3401 			 * conflicts. Convert all existing small mappings to
3402 			 * TNC.
3403 			 */
3404 			SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
3405 			sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
3406 			    npgs);
3407 		} else {
3408 			/* EMPTY */
3409 			/*
3410 			 * If there exists an big page mapping,
3411 			 * that means the whole existing big page
3412 			 * has TNC setting already. No need to covert to
3413 			 * TNC again.
3414 			 */
3415 			ASSERT(PP_ISTNC(pp1));
3416 		}
3417 	}
3418 #endif	/* VAC */
3419 
3420 	return (0);
3421 }
3422 
3423 #ifdef VAC
3424 /*
3425  * Routine that detects vac consistency for a large page. It also
3426  * sets virtual color for all pp's for this big mapping.
3427  */
3428 static int
3429 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
3430 {
3431 	int vcolor, ocolor;
3432 
3433 	ASSERT(sfmmu_mlist_held(pp));
3434 
3435 	if (PP_ISNC(pp)) {
3436 		return (HAT_TMPNC);
3437 	}
3438 
3439 	vcolor = addr_to_vcolor(addr);
3440 	if (PP_NEWPAGE(pp)) {
3441 		PP_SET_VCOLOR(pp, vcolor);
3442 		return (0);
3443 	}
3444 
3445 	ocolor = PP_GET_VCOLOR(pp);
3446 	if (ocolor == vcolor) {
3447 		return (0);
3448 	}
3449 
3450 	if (!PP_ISMAPPED(pp)) {
3451 		/*
3452 		 * Previous user of page had a differnet color
3453 		 * but since there are no current users
3454 		 * we just flush the cache and change the color.
3455 		 * As an optimization for large pages we flush the
3456 		 * entire cache of that color and set a flag.
3457 		 */
3458 		SFMMU_STAT(sf_pgcolor_conflict);
3459 		if (!CacheColor_IsFlushed(*cflags, ocolor)) {
3460 			CacheColor_SetFlushed(*cflags, ocolor);
3461 			sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
3462 		}
3463 		PP_SET_VCOLOR(pp, vcolor);
3464 		return (0);
3465 	}
3466 
3467 	/*
3468 	 * We got a real conflict with a current mapping.
3469 	 * set flags to start unencaching all mappings
3470 	 * and return failure so we restart looping
3471 	 * the pp array from the beginning.
3472 	 */
3473 	return (HAT_TMPNC);
3474 }
3475 #endif	/* VAC */
3476 
3477 /*
3478  * creates a large page shadow hmeblk for a tte.
3479  * The purpose of this routine is to allow us to do quick unloads because
3480  * the vm layer can easily pass a very large but sparsely populated range.
3481  */
3482 static struct hme_blk *
3483 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
3484 {
3485 	struct hmehash_bucket *hmebp;
3486 	hmeblk_tag hblktag;
3487 	int hmeshift, size, vshift;
3488 	uint_t shw_mask, newshw_mask;
3489 	struct hme_blk *hmeblkp;
3490 
3491 	ASSERT(sfmmup != KHATID);
3492 	if (mmu_page_sizes == max_mmu_page_sizes) {
3493 		ASSERT(ttesz < TTE256M);
3494 	} else {
3495 		ASSERT(ttesz < TTE4M);
3496 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
3497 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
3498 	}
3499 
3500 	if (ttesz == TTE8K) {
3501 		size = TTE512K;
3502 	} else {
3503 		size = ++ttesz;
3504 	}
3505 
3506 	hblktag.htag_id = sfmmup;
3507 	hmeshift = HME_HASH_SHIFT(size);
3508 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
3509 	hblktag.htag_rehash = HME_HASH_REHASH(size);
3510 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3511 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
3512 
3513 	SFMMU_HASH_LOCK(hmebp);
3514 
3515 	HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3516 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
3517 	if (hmeblkp == NULL) {
3518 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3519 		    hblktag, flags, SFMMU_INVALID_SHMERID);
3520 	}
3521 	ASSERT(hmeblkp);
3522 	if (!hmeblkp->hblk_shw_mask) {
3523 		/*
3524 		 * if this is a unused hblk it was just allocated or could
3525 		 * potentially be a previous large page hblk so we need to
3526 		 * set the shadow bit.
3527 		 */
3528 		ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3529 		hmeblkp->hblk_shw_bit = 1;
3530 	} else if (hmeblkp->hblk_shw_bit == 0) {
3531 		panic("sfmmu_shadow_hcreate: shw bit not set in hmeblkp 0x%p",
3532 		    (void *)hmeblkp);
3533 	}
3534 	ASSERT(hmeblkp->hblk_shw_bit == 1);
3535 	ASSERT(!hmeblkp->hblk_shared);
3536 	vshift = vaddr_to_vshift(hblktag, vaddr, size);
3537 	ASSERT(vshift < 8);
3538 	/*
3539 	 * Atomically set shw mask bit
3540 	 */
3541 	do {
3542 		shw_mask = hmeblkp->hblk_shw_mask;
3543 		newshw_mask = shw_mask | (1 << vshift);
3544 		newshw_mask = cas32(&hmeblkp->hblk_shw_mask, shw_mask,
3545 		    newshw_mask);
3546 	} while (newshw_mask != shw_mask);
3547 
3548 	SFMMU_HASH_UNLOCK(hmebp);
3549 
3550 	return (hmeblkp);
3551 }
3552 
3553 /*
3554  * This routine cleanup a previous shadow hmeblk and changes it to
3555  * a regular hblk.  This happens rarely but it is possible
3556  * when a process wants to use large pages and there are hblks still
3557  * lying around from the previous as that used these hmeblks.
3558  * The alternative was to cleanup the shadow hblks at unload time
3559  * but since so few user processes actually use large pages, it is
3560  * better to be lazy and cleanup at this time.
3561  */
3562 static void
3563 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
3564 	struct hmehash_bucket *hmebp)
3565 {
3566 	caddr_t addr, endaddr;
3567 	int hashno, size;
3568 
3569 	ASSERT(hmeblkp->hblk_shw_bit);
3570 	ASSERT(!hmeblkp->hblk_shared);
3571 
3572 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3573 
3574 	if (!hmeblkp->hblk_shw_mask) {
3575 		hmeblkp->hblk_shw_bit = 0;
3576 		return;
3577 	}
3578 	addr = (caddr_t)get_hblk_base(hmeblkp);
3579 	endaddr = get_hblk_endaddr(hmeblkp);
3580 	size = get_hblk_ttesz(hmeblkp);
3581 	hashno = size - 1;
3582 	ASSERT(hashno > 0);
3583 	SFMMU_HASH_UNLOCK(hmebp);
3584 
3585 	sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
3586 
3587 	SFMMU_HASH_LOCK(hmebp);
3588 }
3589 
3590 static void
3591 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
3592 	int hashno)
3593 {
3594 	int hmeshift, shadow = 0;
3595 	hmeblk_tag hblktag;
3596 	struct hmehash_bucket *hmebp;
3597 	struct hme_blk *hmeblkp;
3598 	struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
3599 	uint64_t hblkpa, prevpa, nx_pa;
3600 
3601 	ASSERT(hashno > 0);
3602 	hblktag.htag_id = sfmmup;
3603 	hblktag.htag_rehash = hashno;
3604 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3605 
3606 	hmeshift = HME_HASH_SHIFT(hashno);
3607 
3608 	while (addr < endaddr) {
3609 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3610 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3611 		SFMMU_HASH_LOCK(hmebp);
3612 		/* inline HME_HASH_SEARCH */
3613 		hmeblkp = hmebp->hmeblkp;
3614 		hblkpa = hmebp->hmeh_nextpa;
3615 		prevpa = 0;
3616 		pr_hblk = NULL;
3617 		while (hmeblkp) {
3618 			ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
3619 			if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
3620 				/* found hme_blk */
3621 				ASSERT(!hmeblkp->hblk_shared);
3622 				if (hmeblkp->hblk_shw_bit) {
3623 					if (hmeblkp->hblk_shw_mask) {
3624 						shadow = 1;
3625 						sfmmu_shadow_hcleanup(sfmmup,
3626 						    hmeblkp, hmebp);
3627 						break;
3628 					} else {
3629 						hmeblkp->hblk_shw_bit = 0;
3630 					}
3631 				}
3632 
3633 				/*
3634 				 * Hblk_hmecnt and hblk_vcnt could be non zero
3635 				 * since hblk_unload() does not gurantee that.
3636 				 *
3637 				 * XXX - this could cause tteload() to spin
3638 				 * where sfmmu_shadow_hcleanup() is called.
3639 				 */
3640 			}
3641 
3642 			nx_hblk = hmeblkp->hblk_next;
3643 			nx_pa = hmeblkp->hblk_nextpa;
3644 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
3645 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
3646 				    pr_hblk);
3647 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
3648 			} else {
3649 				pr_hblk = hmeblkp;
3650 				prevpa = hblkpa;
3651 			}
3652 			hmeblkp = nx_hblk;
3653 			hblkpa = nx_pa;
3654 		}
3655 
3656 		SFMMU_HASH_UNLOCK(hmebp);
3657 
3658 		if (shadow) {
3659 			/*
3660 			 * We found another shadow hblk so cleaned its
3661 			 * children.  We need to go back and cleanup
3662 			 * the original hblk so we don't change the
3663 			 * addr.
3664 			 */
3665 			shadow = 0;
3666 		} else {
3667 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
3668 			    (1 << hmeshift));
3669 		}
3670 	}
3671 	sfmmu_hblks_list_purge(&list);
3672 }
3673 
3674 /*
3675  * This routine's job is to delete stale invalid shared hmeregions hmeblks that
3676  * may still linger on after pageunload.
3677  */
3678 static void
3679 sfmmu_cleanup_rhblk(sf_srd_t *srdp, caddr_t addr, uint_t rid, int ttesz)
3680 {
3681 	int hmeshift;
3682 	hmeblk_tag hblktag;
3683 	struct hmehash_bucket *hmebp;
3684 	struct hme_blk *hmeblkp;
3685 	struct hme_blk *pr_hblk;
3686 	struct hme_blk *list = NULL;
3687 	uint64_t hblkpa, prevpa;
3688 
3689 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3690 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3691 
3692 	hmeshift = HME_HASH_SHIFT(ttesz);
3693 	hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3694 	hblktag.htag_rehash = ttesz;
3695 	hblktag.htag_rid = rid;
3696 	hblktag.htag_id = srdp;
3697 	hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3698 
3699 	SFMMU_HASH_LOCK(hmebp);
3700 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, pr_hblk,
3701 	    prevpa, &list);
3702 	if (hmeblkp != NULL) {
3703 		ASSERT(hmeblkp->hblk_shared);
3704 		ASSERT(!hmeblkp->hblk_shw_bit);
3705 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3706 			panic("sfmmu_cleanup_rhblk: valid hmeblk");
3707 		}
3708 		ASSERT(!hmeblkp->hblk_lckcnt);
3709 		sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
3710 		sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
3711 	}
3712 	SFMMU_HASH_UNLOCK(hmebp);
3713 	sfmmu_hblks_list_purge(&list);
3714 }
3715 
3716 /* ARGSUSED */
3717 static void
3718 sfmmu_rgn_cb_noop(caddr_t saddr, caddr_t eaddr, caddr_t r_saddr,
3719     size_t r_size, void *r_obj, u_offset_t r_objoff)
3720 {
3721 }
3722 
3723 /*
3724  * Searches for an hmeblk which maps addr, then unloads this mapping
3725  * and updates *eaddrp, if the hmeblk is found.
3726  */
3727 static void
3728 sfmmu_unload_hmeregion_va(sf_srd_t *srdp, uint_t rid, caddr_t addr,
3729     caddr_t eaddr, int ttesz, caddr_t *eaddrp)
3730 {
3731 	int hmeshift;
3732 	hmeblk_tag hblktag;
3733 	struct hmehash_bucket *hmebp;
3734 	struct hme_blk *hmeblkp;
3735 	struct hme_blk *pr_hblk;
3736 	struct hme_blk *list = NULL;
3737 	uint64_t hblkpa, prevpa;
3738 
3739 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3740 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3741 	ASSERT(ttesz >= HBLK_MIN_TTESZ);
3742 
3743 	hmeshift = HME_HASH_SHIFT(ttesz);
3744 	hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3745 	hblktag.htag_rehash = ttesz;
3746 	hblktag.htag_rid = rid;
3747 	hblktag.htag_id = srdp;
3748 	hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3749 
3750 	SFMMU_HASH_LOCK(hmebp);
3751 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, pr_hblk,
3752 	    prevpa, &list);
3753 	if (hmeblkp != NULL) {
3754 		ASSERT(hmeblkp->hblk_shared);
3755 		ASSERT(!hmeblkp->hblk_lckcnt);
3756 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3757 			*eaddrp = sfmmu_hblk_unload(NULL, hmeblkp, addr,
3758 			    eaddr, NULL, HAT_UNLOAD);
3759 			ASSERT(*eaddrp > addr);
3760 		}
3761 		ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3762 		sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
3763 		sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
3764 	}
3765 	SFMMU_HASH_UNLOCK(hmebp);
3766 	sfmmu_hblks_list_purge(&list);
3767 }
3768 
3769 static void
3770 sfmmu_unload_hmeregion(sf_srd_t *srdp, sf_region_t *rgnp)
3771 {
3772 	int ttesz = rgnp->rgn_pgszc;
3773 	size_t rsz = rgnp->rgn_size;
3774 	caddr_t rsaddr = rgnp->rgn_saddr;
3775 	caddr_t readdr = rsaddr + rsz;
3776 	caddr_t rhsaddr;
3777 	caddr_t va;
3778 	uint_t rid = rgnp->rgn_id;
3779 	caddr_t cbsaddr;
3780 	caddr_t cbeaddr;
3781 	hat_rgn_cb_func_t rcbfunc;
3782 	ulong_t cnt;
3783 
3784 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3785 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3786 
3787 	ASSERT(IS_P2ALIGNED(rsaddr, TTEBYTES(ttesz)));
3788 	ASSERT(IS_P2ALIGNED(rsz, TTEBYTES(ttesz)));
3789 	if (ttesz < HBLK_MIN_TTESZ) {
3790 		ttesz = HBLK_MIN_TTESZ;
3791 		rhsaddr = (caddr_t)P2ALIGN((uintptr_t)rsaddr, HBLK_MIN_BYTES);
3792 	} else {
3793 		rhsaddr = rsaddr;
3794 	}
3795 
3796 	if ((rcbfunc = rgnp->rgn_cb_function) == NULL) {
3797 		rcbfunc = sfmmu_rgn_cb_noop;
3798 	}
3799 
3800 	while (ttesz >= HBLK_MIN_TTESZ) {
3801 		cbsaddr = rsaddr;
3802 		cbeaddr = rsaddr;
3803 		if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
3804 			ttesz--;
3805 			continue;
3806 		}
3807 		cnt = 0;
3808 		va = rsaddr;
3809 		while (va < readdr) {
3810 			ASSERT(va >= rhsaddr);
3811 			if (va != cbeaddr) {
3812 				if (cbeaddr != cbsaddr) {
3813 					ASSERT(cbeaddr > cbsaddr);
3814 					(*rcbfunc)(cbsaddr, cbeaddr,
3815 					    rsaddr, rsz, rgnp->rgn_obj,
3816 					    rgnp->rgn_objoff);
3817 				}
3818 				cbsaddr = va;
3819 				cbeaddr = va;
3820 			}
3821 			sfmmu_unload_hmeregion_va(srdp, rid, va, readdr,
3822 			    ttesz, &cbeaddr);
3823 			cnt++;
3824 			va = rhsaddr + (cnt << TTE_PAGE_SHIFT(ttesz));
3825 		}
3826 		if (cbeaddr != cbsaddr) {
3827 			ASSERT(cbeaddr > cbsaddr);
3828 			(*rcbfunc)(cbsaddr, cbeaddr, rsaddr,
3829 			    rsz, rgnp->rgn_obj,
3830 			    rgnp->rgn_objoff);
3831 		}
3832 		ttesz--;
3833 	}
3834 }
3835 
3836 /*
3837  * Release one hardware address translation lock on the given address range.
3838  */
3839 void
3840 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
3841 {
3842 	struct hmehash_bucket *hmebp;
3843 	hmeblk_tag hblktag;
3844 	int hmeshift, hashno = 1;
3845 	struct hme_blk *hmeblkp, *list = NULL;
3846 	caddr_t endaddr;
3847 
3848 	ASSERT(sfmmup != NULL);
3849 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3850 
3851 	ASSERT((sfmmup == ksfmmup) ||
3852 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3853 	ASSERT((len & MMU_PAGEOFFSET) == 0);
3854 	endaddr = addr + len;
3855 	hblktag.htag_id = sfmmup;
3856 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3857 
3858 	/*
3859 	 * Spitfire supports 4 page sizes.
3860 	 * Most pages are expected to be of the smallest page size (8K) and
3861 	 * these will not need to be rehashed. 64K pages also don't need to be
3862 	 * rehashed because an hmeblk spans 64K of address space. 512K pages
3863 	 * might need 1 rehash and and 4M pages might need 2 rehashes.
3864 	 */
3865 	while (addr < endaddr) {
3866 		hmeshift = HME_HASH_SHIFT(hashno);
3867 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3868 		hblktag.htag_rehash = hashno;
3869 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3870 
3871 		SFMMU_HASH_LOCK(hmebp);
3872 
3873 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3874 		if (hmeblkp != NULL) {
3875 			ASSERT(!hmeblkp->hblk_shared);
3876 			/*
3877 			 * If we encounter a shadow hmeblk then
3878 			 * we know there are no valid hmeblks mapping
3879 			 * this address at this size or larger.
3880 			 * Just increment address by the smallest
3881 			 * page size.
3882 			 */
3883 			if (hmeblkp->hblk_shw_bit) {
3884 				addr += MMU_PAGESIZE;
3885 			} else {
3886 				addr = sfmmu_hblk_unlock(hmeblkp, addr,
3887 				    endaddr);
3888 			}
3889 			SFMMU_HASH_UNLOCK(hmebp);
3890 			hashno = 1;
3891 			continue;
3892 		}
3893 		SFMMU_HASH_UNLOCK(hmebp);
3894 
3895 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
3896 			/*
3897 			 * We have traversed the whole list and rehashed
3898 			 * if necessary without finding the address to unlock
3899 			 * which should never happen.
3900 			 */
3901 			panic("sfmmu_unlock: addr not found. "
3902 			    "addr %p hat %p", (void *)addr, (void *)sfmmup);
3903 		} else {
3904 			hashno++;
3905 		}
3906 	}
3907 
3908 	sfmmu_hblks_list_purge(&list);
3909 }
3910 
3911 void
3912 hat_unlock_region(struct hat *sfmmup, caddr_t addr, size_t len,
3913     hat_region_cookie_t rcookie)
3914 {
3915 	sf_srd_t *srdp;
3916 	sf_region_t *rgnp;
3917 	int ttesz;
3918 	uint_t rid;
3919 	caddr_t eaddr;
3920 	caddr_t va;
3921 	int hmeshift;
3922 	hmeblk_tag hblktag;
3923 	struct hmehash_bucket *hmebp;
3924 	struct hme_blk *hmeblkp;
3925 	struct hme_blk *pr_hblk;
3926 	struct hme_blk *list;
3927 	uint64_t hblkpa, prevpa;
3928 
3929 	if (rcookie == HAT_INVALID_REGION_COOKIE) {
3930 		hat_unlock(sfmmup, addr, len);
3931 		return;
3932 	}
3933 
3934 	ASSERT(sfmmup != NULL);
3935 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3936 	ASSERT(sfmmup != ksfmmup);
3937 
3938 	srdp = sfmmup->sfmmu_srdp;
3939 	rid = (uint_t)((uint64_t)rcookie);
3940 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3941 	eaddr = addr + len;
3942 	va = addr;
3943 	list = NULL;
3944 	rgnp = srdp->srd_hmergnp[rid];
3945 	SFMMU_VALIDATE_HMERID(sfmmup, rid, addr, len);
3946 
3947 	ASSERT(IS_P2ALIGNED(addr, TTEBYTES(rgnp->rgn_pgszc)));
3948 	ASSERT(IS_P2ALIGNED(len, TTEBYTES(rgnp->rgn_pgszc)));
3949 	if (rgnp->rgn_pgszc < HBLK_MIN_TTESZ) {
3950 		ttesz = HBLK_MIN_TTESZ;
3951 	} else {
3952 		ttesz = rgnp->rgn_pgszc;
3953 	}
3954 	while (va < eaddr) {
3955 		while (ttesz < rgnp->rgn_pgszc &&
3956 		    IS_P2ALIGNED(va, TTEBYTES(ttesz + 1))) {
3957 			ttesz++;
3958 		}
3959 		while (ttesz >= HBLK_MIN_TTESZ) {
3960 			if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
3961 				ttesz--;
3962 				continue;
3963 			}
3964 			hmeshift = HME_HASH_SHIFT(ttesz);
3965 			hblktag.htag_bspage = HME_HASH_BSPAGE(va, hmeshift);
3966 			hblktag.htag_rehash = ttesz;
3967 			hblktag.htag_rid = rid;
3968 			hblktag.htag_id = srdp;
3969 			hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3970 			SFMMU_HASH_LOCK(hmebp);
3971 			HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa,
3972 			    pr_hblk, prevpa, &list);
3973 			if (hmeblkp == NULL) {
3974 				SFMMU_HASH_UNLOCK(hmebp);
3975 				ttesz--;
3976 				continue;
3977 			}
3978 			ASSERT(hmeblkp->hblk_shared);
3979 			va = sfmmu_hblk_unlock(hmeblkp, va, eaddr);
3980 			ASSERT(va >= eaddr ||
3981 			    IS_P2ALIGNED((uintptr_t)va, TTEBYTES(ttesz)));
3982 			SFMMU_HASH_UNLOCK(hmebp);
3983 			break;
3984 		}
3985 		if (ttesz < HBLK_MIN_TTESZ) {
3986 			panic("hat_unlock_region: addr not found "
3987 			    "addr %p hat %p", va, sfmmup);
3988 		}
3989 	}
3990 	sfmmu_hblks_list_purge(&list);
3991 }
3992 
3993 /*
3994  * Function to unlock a range of addresses in an hmeblk.  It returns the
3995  * next address that needs to be unlocked.
3996  * Should be called with the hash lock held.
3997  */
3998 static caddr_t
3999 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
4000 {
4001 	struct sf_hment *sfhme;
4002 	tte_t tteold, ttemod;
4003 	int ttesz, ret;
4004 
4005 	ASSERT(in_hblk_range(hmeblkp, addr));
4006 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4007 
4008 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4009 	ttesz = get_hblk_ttesz(hmeblkp);
4010 
4011 	HBLKTOHME(sfhme, hmeblkp, addr);
4012 	while (addr < endaddr) {
4013 readtte:
4014 		sfmmu_copytte(&sfhme->hme_tte, &tteold);
4015 		if (TTE_IS_VALID(&tteold)) {
4016 
4017 			ttemod = tteold;
4018 
4019 			ret = sfmmu_modifytte_try(&tteold, &ttemod,
4020 			    &sfhme->hme_tte);
4021 
4022 			if (ret < 0)
4023 				goto readtte;
4024 
4025 			if (hmeblkp->hblk_lckcnt == 0)
4026 				panic("zero hblk lckcnt");
4027 
4028 			if (((uintptr_t)addr + TTEBYTES(ttesz)) >
4029 			    (uintptr_t)endaddr)
4030 				panic("can't unlock large tte");
4031 
4032 			ASSERT(hmeblkp->hblk_lckcnt > 0);
4033 			atomic_add_32(&hmeblkp->hblk_lckcnt, -1);
4034 			HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
4035 		} else {
4036 			panic("sfmmu_hblk_unlock: invalid tte");
4037 		}
4038 		addr += TTEBYTES(ttesz);
4039 		sfhme++;
4040 	}
4041 	return (addr);
4042 }
4043 
4044 /*
4045  * Physical Address Mapping Framework
4046  *
4047  * General rules:
4048  *
4049  * (1) Applies only to seg_kmem memory pages. To make things easier,
4050  *     seg_kpm addresses are also accepted by the routines, but nothing
4051  *     is done with them since by definition their PA mappings are static.
4052  * (2) hat_add_callback() may only be called while holding the page lock
4053  *     SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()),
4054  *     or passing HAC_PAGELOCK flag.
4055  * (3) prehandler() and posthandler() may not call hat_add_callback() or
4056  *     hat_delete_callback(), nor should they allocate memory. Post quiesce
4057  *     callbacks may not sleep or acquire adaptive mutex locks.
4058  * (4) Either prehandler() or posthandler() (but not both) may be specified
4059  *     as being NULL.  Specifying an errhandler() is optional.
4060  *
4061  * Details of using the framework:
4062  *
4063  * registering a callback (hat_register_callback())
4064  *
4065  *	Pass prehandler, posthandler, errhandler addresses
4066  *	as described below. If capture_cpus argument is nonzero,
4067  *	suspend callback to the prehandler will occur with CPUs
4068  *	captured and executing xc_loop() and CPUs will remain
4069  *	captured until after the posthandler suspend callback
4070  *	occurs.
4071  *
4072  * adding a callback (hat_add_callback())
4073  *
4074  *      as_pagelock();
4075  *	hat_add_callback();
4076  *      save returned pfn in private data structures or program registers;
4077  *      as_pageunlock();
4078  *
4079  * prehandler()
4080  *
4081  *	Stop all accesses by physical address to this memory page.
4082  *	Called twice: the first, PRESUSPEND, is a context safe to acquire
4083  *	adaptive locks. The second, SUSPEND, is called at high PIL with
4084  *	CPUs captured so adaptive locks may NOT be acquired (and all spin
4085  *	locks must be XCALL_PIL or higher locks).
4086  *
4087  *	May return the following errors:
4088  *		EIO:	A fatal error has occurred. This will result in panic.
4089  *		EAGAIN:	The page cannot be suspended. This will fail the
4090  *			relocation.
4091  *		0:	Success.
4092  *
4093  * posthandler()
4094  *
4095  *      Save new pfn in private data structures or program registers;
4096  *	not allowed to fail (non-zero return values will result in panic).
4097  *
4098  * errhandler()
4099  *
4100  *	called when an error occurs related to the callback.  Currently
4101  *	the only such error is HAT_CB_ERR_LEAKED which indicates that
4102  *	a page is being freed, but there are still outstanding callback(s)
4103  *	registered on the page.
4104  *
4105  * removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
4106  *
4107  *	stop using physical address
4108  *	hat_delete_callback();
4109  *
4110  */
4111 
4112 /*
4113  * Register a callback class.  Each subsystem should do this once and
4114  * cache the id_t returned for use in setting up and tearing down callbacks.
4115  *
4116  * There is no facility for removing callback IDs once they are created;
4117  * the "key" should be unique for each module, so in case a module is unloaded
4118  * and subsequently re-loaded, we can recycle the module's previous entry.
4119  */
4120 id_t
4121 hat_register_callback(int key,
4122 	int (*prehandler)(caddr_t, uint_t, uint_t, void *),
4123 	int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
4124 	int (*errhandler)(caddr_t, uint_t, uint_t, void *),
4125 	int capture_cpus)
4126 {
4127 	id_t id;
4128 
4129 	/*
4130 	 * Search the table for a pre-existing callback associated with
4131 	 * the identifier "key".  If one exists, we re-use that entry in
4132 	 * the table for this instance, otherwise we assign the next
4133 	 * available table slot.
4134 	 */
4135 	for (id = 0; id < sfmmu_max_cb_id; id++) {
4136 		if (sfmmu_cb_table[id].key == key)
4137 			break;
4138 	}
4139 
4140 	if (id == sfmmu_max_cb_id) {
4141 		id = sfmmu_cb_nextid++;
4142 		if (id >= sfmmu_max_cb_id)
4143 			panic("hat_register_callback: out of callback IDs");
4144 	}
4145 
4146 	ASSERT(prehandler != NULL || posthandler != NULL);
4147 
4148 	sfmmu_cb_table[id].key = key;
4149 	sfmmu_cb_table[id].prehandler = prehandler;
4150 	sfmmu_cb_table[id].posthandler = posthandler;
4151 	sfmmu_cb_table[id].errhandler = errhandler;
4152 	sfmmu_cb_table[id].capture_cpus = capture_cpus;
4153 
4154 	return (id);
4155 }
4156 
4157 #define	HAC_COOKIE_NONE	(void *)-1
4158 
4159 /*
4160  * Add relocation callbacks to the specified addr/len which will be called
4161  * when relocating the associated page. See the description of pre and
4162  * posthandler above for more details.
4163  *
4164  * If HAC_PAGELOCK is included in flags, the underlying memory page is
4165  * locked internally so the caller must be able to deal with the callback
4166  * running even before this function has returned.  If HAC_PAGELOCK is not
4167  * set, it is assumed that the underlying memory pages are locked.
4168  *
4169  * Since the caller must track the individual page boundaries anyway,
4170  * we only allow a callback to be added to a single page (large
4171  * or small).  Thus [addr, addr + len) MUST be contained within a single
4172  * page.
4173  *
4174  * Registering multiple callbacks on the same [addr, addr+len) is supported,
4175  * _provided_that_ a unique parameter is specified for each callback.
4176  * If multiple callbacks are registered on the same range the callback will
4177  * be invoked with each unique parameter. Registering the same callback with
4178  * the same argument more than once will result in corrupted kernel state.
4179  *
4180  * Returns the pfn of the underlying kernel page in *rpfn
4181  * on success, or PFN_INVALID on failure.
4182  *
4183  * cookiep (if passed) provides storage space for an opaque cookie
4184  * to return later to hat_delete_callback(). This cookie makes the callback
4185  * deletion significantly quicker by avoiding a potentially lengthy hash
4186  * search.
4187  *
4188  * Returns values:
4189  *    0:      success
4190  *    ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
4191  *    EINVAL: callback ID is not valid
4192  *    ENXIO:  ["vaddr", "vaddr" + len) is not mapped in the kernel's address
4193  *            space
4194  *    ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary
4195  */
4196 int
4197 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
4198 	void *pvt, pfn_t *rpfn, void **cookiep)
4199 {
4200 	struct 		hmehash_bucket *hmebp;
4201 	hmeblk_tag 	hblktag;
4202 	struct hme_blk	*hmeblkp;
4203 	int 		hmeshift, hashno;
4204 	caddr_t 	saddr, eaddr, baseaddr;
4205 	struct pa_hment *pahmep;
4206 	struct sf_hment *sfhmep, *osfhmep;
4207 	kmutex_t	*pml;
4208 	tte_t   	tte;
4209 	page_t		*pp;
4210 	vnode_t		*vp;
4211 	u_offset_t	off;
4212 	pfn_t		pfn;
4213 	int		kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
4214 	int		locked = 0;
4215 
4216 	/*
4217 	 * For KPM mappings, just return the physical address since we
4218 	 * don't need to register any callbacks.
4219 	 */
4220 	if (IS_KPM_ADDR(vaddr)) {
4221 		uint64_t paddr;
4222 		SFMMU_KPM_VTOP(vaddr, paddr);
4223 		*rpfn = btop(paddr);
4224 		if (cookiep != NULL)
4225 			*cookiep = HAC_COOKIE_NONE;
4226 		return (0);
4227 	}
4228 
4229 	if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
4230 		*rpfn = PFN_INVALID;
4231 		return (EINVAL);
4232 	}
4233 
4234 	if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
4235 		*rpfn = PFN_INVALID;
4236 		return (ENOMEM);
4237 	}
4238 
4239 	sfhmep = &pahmep->sfment;
4240 
4241 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4242 	eaddr = saddr + len;
4243 
4244 rehash:
4245 	/* Find the mapping(s) for this page */
4246 	for (hashno = TTE64K, hmeblkp = NULL;
4247 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
4248 	    hashno++) {
4249 		hmeshift = HME_HASH_SHIFT(hashno);
4250 		hblktag.htag_id = ksfmmup;
4251 		hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4252 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4253 		hblktag.htag_rehash = hashno;
4254 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4255 
4256 		SFMMU_HASH_LOCK(hmebp);
4257 
4258 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4259 
4260 		if (hmeblkp == NULL)
4261 			SFMMU_HASH_UNLOCK(hmebp);
4262 	}
4263 
4264 	if (hmeblkp == NULL) {
4265 		kmem_cache_free(pa_hment_cache, pahmep);
4266 		*rpfn = PFN_INVALID;
4267 		return (ENXIO);
4268 	}
4269 
4270 	ASSERT(!hmeblkp->hblk_shared);
4271 
4272 	HBLKTOHME(osfhmep, hmeblkp, saddr);
4273 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
4274 
4275 	if (!TTE_IS_VALID(&tte)) {
4276 		SFMMU_HASH_UNLOCK(hmebp);
4277 		kmem_cache_free(pa_hment_cache, pahmep);
4278 		*rpfn = PFN_INVALID;
4279 		return (ENXIO);
4280 	}
4281 
4282 	/*
4283 	 * Make sure the boundaries for the callback fall within this
4284 	 * single mapping.
4285 	 */
4286 	baseaddr = (caddr_t)get_hblk_base(hmeblkp);
4287 	ASSERT(saddr >= baseaddr);
4288 	if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) {
4289 		SFMMU_HASH_UNLOCK(hmebp);
4290 		kmem_cache_free(pa_hment_cache, pahmep);
4291 		*rpfn = PFN_INVALID;
4292 		return (ERANGE);
4293 	}
4294 
4295 	pfn = sfmmu_ttetopfn(&tte, vaddr);
4296 
4297 	/*
4298 	 * The pfn may not have a page_t underneath in which case we
4299 	 * just return it. This can happen if we are doing I/O to a
4300 	 * static portion of the kernel's address space, for instance.
4301 	 */
4302 	pp = osfhmep->hme_page;
4303 	if (pp == NULL) {
4304 		SFMMU_HASH_UNLOCK(hmebp);
4305 		kmem_cache_free(pa_hment_cache, pahmep);
4306 		*rpfn = pfn;
4307 		if (cookiep)
4308 			*cookiep = HAC_COOKIE_NONE;
4309 		return (0);
4310 	}
4311 	ASSERT(pp == PP_PAGEROOT(pp));
4312 
4313 	vp = pp->p_vnode;
4314 	off = pp->p_offset;
4315 
4316 	pml = sfmmu_mlist_enter(pp);
4317 
4318 	if (flags & HAC_PAGELOCK) {
4319 		if (!page_trylock(pp, SE_SHARED)) {
4320 			/*
4321 			 * Somebody is holding SE_EXCL lock. Might
4322 			 * even be hat_page_relocate(). Drop all
4323 			 * our locks, lookup the page in &kvp, and
4324 			 * retry. If it doesn't exist in &kvp and &zvp,
4325 			 * then we must be dealing with a kernel mapped
4326 			 * page which doesn't actually belong to
4327 			 * segkmem so we punt.
4328 			 */
4329 			sfmmu_mlist_exit(pml);
4330 			SFMMU_HASH_UNLOCK(hmebp);
4331 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4332 
4333 			/* check zvp before giving up */
4334 			if (pp == NULL)
4335 				pp = page_lookup(&zvp, (u_offset_t)saddr,
4336 				    SE_SHARED);
4337 
4338 			/* Okay, we didn't find it, give up */
4339 			if (pp == NULL) {
4340 				kmem_cache_free(pa_hment_cache, pahmep);
4341 				*rpfn = pfn;
4342 				if (cookiep)
4343 					*cookiep = HAC_COOKIE_NONE;
4344 				return (0);
4345 			}
4346 			page_unlock(pp);
4347 			goto rehash;
4348 		}
4349 		locked = 1;
4350 	}
4351 
4352 	if (!PAGE_LOCKED(pp) && !panicstr)
4353 		panic("hat_add_callback: page 0x%p not locked", pp);
4354 
4355 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4356 	    pp->p_offset != off) {
4357 		/*
4358 		 * The page moved before we got our hands on it.  Drop
4359 		 * all the locks and try again.
4360 		 */
4361 		ASSERT((flags & HAC_PAGELOCK) != 0);
4362 		sfmmu_mlist_exit(pml);
4363 		SFMMU_HASH_UNLOCK(hmebp);
4364 		page_unlock(pp);
4365 		locked = 0;
4366 		goto rehash;
4367 	}
4368 
4369 	if (!VN_ISKAS(vp)) {
4370 		/*
4371 		 * This is not a segkmem page but another page which
4372 		 * has been kernel mapped. It had better have at least
4373 		 * a share lock on it. Return the pfn.
4374 		 */
4375 		sfmmu_mlist_exit(pml);
4376 		SFMMU_HASH_UNLOCK(hmebp);
4377 		if (locked)
4378 			page_unlock(pp);
4379 		kmem_cache_free(pa_hment_cache, pahmep);
4380 		ASSERT(PAGE_LOCKED(pp));
4381 		*rpfn = pfn;
4382 		if (cookiep)
4383 			*cookiep = HAC_COOKIE_NONE;
4384 		return (0);
4385 	}
4386 
4387 	/*
4388 	 * Setup this pa_hment and link its embedded dummy sf_hment into
4389 	 * the mapping list.
4390 	 */
4391 	pp->p_share++;
4392 	pahmep->cb_id = callback_id;
4393 	pahmep->addr = vaddr;
4394 	pahmep->len = len;
4395 	pahmep->refcnt = 1;
4396 	pahmep->flags = 0;
4397 	pahmep->pvt = pvt;
4398 
4399 	sfhmep->hme_tte.ll = 0;
4400 	sfhmep->hme_data = pahmep;
4401 	sfhmep->hme_prev = osfhmep;
4402 	sfhmep->hme_next = osfhmep->hme_next;
4403 
4404 	if (osfhmep->hme_next)
4405 		osfhmep->hme_next->hme_prev = sfhmep;
4406 
4407 	osfhmep->hme_next = sfhmep;
4408 
4409 	sfmmu_mlist_exit(pml);
4410 	SFMMU_HASH_UNLOCK(hmebp);
4411 
4412 	if (locked)
4413 		page_unlock(pp);
4414 
4415 	*rpfn = pfn;
4416 	if (cookiep)
4417 		*cookiep = (void *)pahmep;
4418 
4419 	return (0);
4420 }
4421 
4422 /*
4423  * Remove the relocation callbacks from the specified addr/len.
4424  */
4425 void
4426 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags,
4427 	void *cookie)
4428 {
4429 	struct		hmehash_bucket *hmebp;
4430 	hmeblk_tag	hblktag;
4431 	struct hme_blk	*hmeblkp;
4432 	int		hmeshift, hashno;
4433 	caddr_t		saddr;
4434 	struct pa_hment	*pahmep;
4435 	struct sf_hment	*sfhmep, *osfhmep;
4436 	kmutex_t	*pml;
4437 	tte_t		tte;
4438 	page_t		*pp;
4439 	vnode_t		*vp;
4440 	u_offset_t	off;
4441 	int		locked = 0;
4442 
4443 	/*
4444 	 * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to
4445 	 * remove so just return.
4446 	 */
4447 	if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr))
4448 		return;
4449 
4450 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4451 
4452 rehash:
4453 	/* Find the mapping(s) for this page */
4454 	for (hashno = TTE64K, hmeblkp = NULL;
4455 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
4456 	    hashno++) {
4457 		hmeshift = HME_HASH_SHIFT(hashno);
4458 		hblktag.htag_id = ksfmmup;
4459 		hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4460 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4461 		hblktag.htag_rehash = hashno;
4462 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4463 
4464 		SFMMU_HASH_LOCK(hmebp);
4465 
4466 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4467 
4468 		if (hmeblkp == NULL)
4469 			SFMMU_HASH_UNLOCK(hmebp);
4470 	}
4471 
4472 	if (hmeblkp == NULL)
4473 		return;
4474 
4475 	ASSERT(!hmeblkp->hblk_shared);
4476 
4477 	HBLKTOHME(osfhmep, hmeblkp, saddr);
4478 
4479 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
4480 	if (!TTE_IS_VALID(&tte)) {
4481 		SFMMU_HASH_UNLOCK(hmebp);
4482 		return;
4483 	}
4484 
4485 	pp = osfhmep->hme_page;
4486 	if (pp == NULL) {
4487 		SFMMU_HASH_UNLOCK(hmebp);
4488 		ASSERT(cookie == NULL);
4489 		return;
4490 	}
4491 
4492 	vp = pp->p_vnode;
4493 	off = pp->p_offset;
4494 
4495 	pml = sfmmu_mlist_enter(pp);
4496 
4497 	if (flags & HAC_PAGELOCK) {
4498 		if (!page_trylock(pp, SE_SHARED)) {
4499 			/*
4500 			 * Somebody is holding SE_EXCL lock. Might
4501 			 * even be hat_page_relocate(). Drop all
4502 			 * our locks, lookup the page in &kvp, and
4503 			 * retry. If it doesn't exist in &kvp and &zvp,
4504 			 * then we must be dealing with a kernel mapped
4505 			 * page which doesn't actually belong to
4506 			 * segkmem so we punt.
4507 			 */
4508 			sfmmu_mlist_exit(pml);
4509 			SFMMU_HASH_UNLOCK(hmebp);
4510 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4511 			/* check zvp before giving up */
4512 			if (pp == NULL)
4513 				pp = page_lookup(&zvp, (u_offset_t)saddr,
4514 				    SE_SHARED);
4515 
4516 			if (pp == NULL) {
4517 				ASSERT(cookie == NULL);
4518 				return;
4519 			}
4520 			page_unlock(pp);
4521 			goto rehash;
4522 		}
4523 		locked = 1;
4524 	}
4525 
4526 	ASSERT(PAGE_LOCKED(pp));
4527 
4528 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4529 	    pp->p_offset != off) {
4530 		/*
4531 		 * The page moved before we got our hands on it.  Drop
4532 		 * all the locks and try again.
4533 		 */
4534 		ASSERT((flags & HAC_PAGELOCK) != 0);
4535 		sfmmu_mlist_exit(pml);
4536 		SFMMU_HASH_UNLOCK(hmebp);
4537 		page_unlock(pp);
4538 		locked = 0;
4539 		goto rehash;
4540 	}
4541 
4542 	if (!VN_ISKAS(vp)) {
4543 		/*
4544 		 * This is not a segkmem page but another page which
4545 		 * has been kernel mapped.
4546 		 */
4547 		sfmmu_mlist_exit(pml);
4548 		SFMMU_HASH_UNLOCK(hmebp);
4549 		if (locked)
4550 			page_unlock(pp);
4551 		ASSERT(cookie == NULL);
4552 		return;
4553 	}
4554 
4555 	if (cookie != NULL) {
4556 		pahmep = (struct pa_hment *)cookie;
4557 		sfhmep = &pahmep->sfment;
4558 	} else {
4559 		for (sfhmep = pp->p_mapping; sfhmep != NULL;
4560 		    sfhmep = sfhmep->hme_next) {
4561 
4562 			/*
4563 			 * skip va<->pa mappings
4564 			 */
4565 			if (!IS_PAHME(sfhmep))
4566 				continue;
4567 
4568 			pahmep = sfhmep->hme_data;
4569 			ASSERT(pahmep != NULL);
4570 
4571 			/*
4572 			 * if pa_hment matches, remove it
4573 			 */
4574 			if ((pahmep->pvt == pvt) &&
4575 			    (pahmep->addr == vaddr) &&
4576 			    (pahmep->len == len)) {
4577 				break;
4578 			}
4579 		}
4580 	}
4581 
4582 	if (sfhmep == NULL) {
4583 		if (!panicstr) {
4584 			panic("hat_delete_callback: pa_hment not found, pp %p",
4585 			    (void *)pp);
4586 		}
4587 		return;
4588 	}
4589 
4590 	/*
4591 	 * Note: at this point a valid kernel mapping must still be
4592 	 * present on this page.
4593 	 */
4594 	pp->p_share--;
4595 	if (pp->p_share <= 0)
4596 		panic("hat_delete_callback: zero p_share");
4597 
4598 	if (--pahmep->refcnt == 0) {
4599 		if (pahmep->flags != 0)
4600 			panic("hat_delete_callback: pa_hment is busy");
4601 
4602 		/*
4603 		 * Remove sfhmep from the mapping list for the page.
4604 		 */
4605 		if (sfhmep->hme_prev) {
4606 			sfhmep->hme_prev->hme_next = sfhmep->hme_next;
4607 		} else {
4608 			pp->p_mapping = sfhmep->hme_next;
4609 		}
4610 
4611 		if (sfhmep->hme_next)
4612 			sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
4613 
4614 		sfmmu_mlist_exit(pml);
4615 		SFMMU_HASH_UNLOCK(hmebp);
4616 
4617 		if (locked)
4618 			page_unlock(pp);
4619 
4620 		kmem_cache_free(pa_hment_cache, pahmep);
4621 		return;
4622 	}
4623 
4624 	sfmmu_mlist_exit(pml);
4625 	SFMMU_HASH_UNLOCK(hmebp);
4626 	if (locked)
4627 		page_unlock(pp);
4628 }
4629 
4630 /*
4631  * hat_probe returns 1 if the translation for the address 'addr' is
4632  * loaded, zero otherwise.
4633  *
4634  * hat_probe should be used only for advisorary purposes because it may
4635  * occasionally return the wrong value. The implementation must guarantee that
4636  * returning the wrong value is a very rare event. hat_probe is used
4637  * to implement optimizations in the segment drivers.
4638  *
4639  */
4640 int
4641 hat_probe(struct hat *sfmmup, caddr_t addr)
4642 {
4643 	pfn_t pfn;
4644 	tte_t tte;
4645 
4646 	ASSERT(sfmmup != NULL);
4647 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4648 
4649 	ASSERT((sfmmup == ksfmmup) ||
4650 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4651 
4652 	if (sfmmup == ksfmmup) {
4653 		while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
4654 		    == PFN_SUSPENDED) {
4655 			sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
4656 		}
4657 	} else {
4658 		pfn = sfmmu_uvatopfn(addr, sfmmup, NULL);
4659 	}
4660 
4661 	if (pfn != PFN_INVALID)
4662 		return (1);
4663 	else
4664 		return (0);
4665 }
4666 
4667 ssize_t
4668 hat_getpagesize(struct hat *sfmmup, caddr_t addr)
4669 {
4670 	tte_t tte;
4671 
4672 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4673 
4674 	if (sfmmup == ksfmmup) {
4675 		if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4676 			return (-1);
4677 		}
4678 	} else {
4679 		if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4680 			return (-1);
4681 		}
4682 	}
4683 
4684 	ASSERT(TTE_IS_VALID(&tte));
4685 	return (TTEBYTES(TTE_CSZ(&tte)));
4686 }
4687 
4688 uint_t
4689 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
4690 {
4691 	tte_t tte;
4692 
4693 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4694 
4695 	if (sfmmup == ksfmmup) {
4696 		if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4697 			tte.ll = 0;
4698 		}
4699 	} else {
4700 		if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4701 			tte.ll = 0;
4702 		}
4703 	}
4704 	if (TTE_IS_VALID(&tte)) {
4705 		*attr = sfmmu_ptov_attr(&tte);
4706 		return (0);
4707 	}
4708 	*attr = 0;
4709 	return ((uint_t)0xffffffff);
4710 }
4711 
4712 /*
4713  * Enables more attributes on specified address range (ie. logical OR)
4714  */
4715 void
4716 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4717 {
4718 	if (hat->sfmmu_xhat_provider) {
4719 		XHAT_SETATTR(hat, addr, len, attr);
4720 		return;
4721 	} else {
4722 		/*
4723 		 * This must be a CPU HAT. If the address space has
4724 		 * XHATs attached, change attributes for all of them,
4725 		 * just in case
4726 		 */
4727 		ASSERT(hat->sfmmu_as != NULL);
4728 		if (hat->sfmmu_as->a_xhat != NULL)
4729 			xhat_setattr_all(hat->sfmmu_as, addr, len, attr);
4730 	}
4731 
4732 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
4733 }
4734 
4735 /*
4736  * Assigns attributes to the specified address range.  All the attributes
4737  * are specified.
4738  */
4739 void
4740 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4741 {
4742 	if (hat->sfmmu_xhat_provider) {
4743 		XHAT_CHGATTR(hat, addr, len, attr);
4744 		return;
4745 	} else {
4746 		/*
4747 		 * This must be a CPU HAT. If the address space has
4748 		 * XHATs attached, change attributes for all of them,
4749 		 * just in case
4750 		 */
4751 		ASSERT(hat->sfmmu_as != NULL);
4752 		if (hat->sfmmu_as->a_xhat != NULL)
4753 			xhat_chgattr_all(hat->sfmmu_as, addr, len, attr);
4754 	}
4755 
4756 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
4757 }
4758 
4759 /*
4760  * Remove attributes on the specified address range (ie. loginal NAND)
4761  */
4762 void
4763 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4764 {
4765 	if (hat->sfmmu_xhat_provider) {
4766 		XHAT_CLRATTR(hat, addr, len, attr);
4767 		return;
4768 	} else {
4769 		/*
4770 		 * This must be a CPU HAT. If the address space has
4771 		 * XHATs attached, change attributes for all of them,
4772 		 * just in case
4773 		 */
4774 		ASSERT(hat->sfmmu_as != NULL);
4775 		if (hat->sfmmu_as->a_xhat != NULL)
4776 			xhat_clrattr_all(hat->sfmmu_as, addr, len, attr);
4777 	}
4778 
4779 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
4780 }
4781 
4782 /*
4783  * Change attributes on an address range to that specified by attr and mode.
4784  */
4785 static void
4786 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
4787 	int mode)
4788 {
4789 	struct hmehash_bucket *hmebp;
4790 	hmeblk_tag hblktag;
4791 	int hmeshift, hashno = 1;
4792 	struct hme_blk *hmeblkp, *list = NULL;
4793 	caddr_t endaddr;
4794 	cpuset_t cpuset;
4795 	demap_range_t dmr;
4796 
4797 	CPUSET_ZERO(cpuset);
4798 
4799 	ASSERT((sfmmup == ksfmmup) ||
4800 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4801 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4802 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4803 
4804 	if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
4805 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4806 		panic("user addr %p in kernel space",
4807 		    (void *)addr);
4808 	}
4809 
4810 	endaddr = addr + len;
4811 	hblktag.htag_id = sfmmup;
4812 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4813 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4814 
4815 	while (addr < endaddr) {
4816 		hmeshift = HME_HASH_SHIFT(hashno);
4817 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4818 		hblktag.htag_rehash = hashno;
4819 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4820 
4821 		SFMMU_HASH_LOCK(hmebp);
4822 
4823 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4824 		if (hmeblkp != NULL) {
4825 			ASSERT(!hmeblkp->hblk_shared);
4826 			/*
4827 			 * We've encountered a shadow hmeblk so skip the range
4828 			 * of the next smaller mapping size.
4829 			 */
4830 			if (hmeblkp->hblk_shw_bit) {
4831 				ASSERT(sfmmup != ksfmmup);
4832 				ASSERT(hashno > 1);
4833 				addr = (caddr_t)P2END((uintptr_t)addr,
4834 				    TTEBYTES(hashno - 1));
4835 			} else {
4836 				addr = sfmmu_hblk_chgattr(sfmmup,
4837 				    hmeblkp, addr, endaddr, &dmr, attr, mode);
4838 			}
4839 			SFMMU_HASH_UNLOCK(hmebp);
4840 			hashno = 1;
4841 			continue;
4842 		}
4843 		SFMMU_HASH_UNLOCK(hmebp);
4844 
4845 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4846 			/*
4847 			 * We have traversed the whole list and rehashed
4848 			 * if necessary without finding the address to chgattr.
4849 			 * This is ok, so we increment the address by the
4850 			 * smallest hmeblk range for kernel mappings or for
4851 			 * user mappings with no large pages, and the largest
4852 			 * hmeblk range, to account for shadow hmeblks, for
4853 			 * user mappings with large pages and continue.
4854 			 */
4855 			if (sfmmup == ksfmmup)
4856 				addr = (caddr_t)P2END((uintptr_t)addr,
4857 				    TTEBYTES(1));
4858 			else
4859 				addr = (caddr_t)P2END((uintptr_t)addr,
4860 				    TTEBYTES(hashno));
4861 			hashno = 1;
4862 		} else {
4863 			hashno++;
4864 		}
4865 	}
4866 
4867 	sfmmu_hblks_list_purge(&list);
4868 	DEMAP_RANGE_FLUSH(&dmr);
4869 	cpuset = sfmmup->sfmmu_cpusran;
4870 	xt_sync(cpuset);
4871 }
4872 
4873 /*
4874  * This function chgattr on a range of addresses in an hmeblk.  It returns the
4875  * next addres that needs to be chgattr.
4876  * It should be called with the hash lock held.
4877  * XXX It should be possible to optimize chgattr by not flushing every time but
4878  * on the other hand:
4879  * 1. do one flush crosscall.
4880  * 2. only flush if we are increasing permissions (make sure this will work)
4881  */
4882 static caddr_t
4883 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4884 	caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
4885 {
4886 	tte_t tte, tteattr, tteflags, ttemod;
4887 	struct sf_hment *sfhmep;
4888 	int ttesz;
4889 	struct page *pp = NULL;
4890 	kmutex_t *pml, *pmtx;
4891 	int ret;
4892 	int use_demap_range;
4893 #if defined(SF_ERRATA_57)
4894 	int check_exec;
4895 #endif
4896 
4897 	ASSERT(in_hblk_range(hmeblkp, addr));
4898 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4899 	ASSERT(!hmeblkp->hblk_shared);
4900 
4901 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4902 	ttesz = get_hblk_ttesz(hmeblkp);
4903 
4904 	/*
4905 	 * Flush the current demap region if addresses have been
4906 	 * skipped or the page size doesn't match.
4907 	 */
4908 	use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
4909 	if (use_demap_range) {
4910 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4911 	} else {
4912 		DEMAP_RANGE_FLUSH(dmrp);
4913 	}
4914 
4915 	tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
4916 #if defined(SF_ERRATA_57)
4917 	check_exec = (sfmmup != ksfmmup) &&
4918 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4919 	    TTE_IS_EXECUTABLE(&tteattr);
4920 #endif
4921 	HBLKTOHME(sfhmep, hmeblkp, addr);
4922 	while (addr < endaddr) {
4923 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4924 		if (TTE_IS_VALID(&tte)) {
4925 			if ((tte.ll & tteflags.ll) == tteattr.ll) {
4926 				/*
4927 				 * if the new attr is the same as old
4928 				 * continue
4929 				 */
4930 				goto next_addr;
4931 			}
4932 			if (!TTE_IS_WRITABLE(&tteattr)) {
4933 				/*
4934 				 * make sure we clear hw modify bit if we
4935 				 * removing write protections
4936 				 */
4937 				tteflags.tte_intlo |= TTE_HWWR_INT;
4938 			}
4939 
4940 			pml = NULL;
4941 			pp = sfhmep->hme_page;
4942 			if (pp) {
4943 				pml = sfmmu_mlist_enter(pp);
4944 			}
4945 
4946 			if (pp != sfhmep->hme_page) {
4947 				/*
4948 				 * tte must have been unloaded.
4949 				 */
4950 				ASSERT(pml);
4951 				sfmmu_mlist_exit(pml);
4952 				continue;
4953 			}
4954 
4955 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4956 
4957 			ttemod = tte;
4958 			ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
4959 			ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
4960 
4961 #if defined(SF_ERRATA_57)
4962 			if (check_exec && addr < errata57_limit)
4963 				ttemod.tte_exec_perm = 0;
4964 #endif
4965 			ret = sfmmu_modifytte_try(&tte, &ttemod,
4966 			    &sfhmep->hme_tte);
4967 
4968 			if (ret < 0) {
4969 				/* tte changed underneath us */
4970 				if (pml) {
4971 					sfmmu_mlist_exit(pml);
4972 				}
4973 				continue;
4974 			}
4975 
4976 			if (tteflags.tte_intlo & TTE_HWWR_INT) {
4977 				/*
4978 				 * need to sync if we are clearing modify bit.
4979 				 */
4980 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4981 			}
4982 
4983 			if (pp && PP_ISRO(pp)) {
4984 				if (tteattr.tte_intlo & TTE_WRPRM_INT) {
4985 					pmtx = sfmmu_page_enter(pp);
4986 					PP_CLRRO(pp);
4987 					sfmmu_page_exit(pmtx);
4988 				}
4989 			}
4990 
4991 			if (ret > 0 && use_demap_range) {
4992 				DEMAP_RANGE_MARKPG(dmrp, addr);
4993 			} else if (ret > 0) {
4994 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4995 			}
4996 
4997 			if (pml) {
4998 				sfmmu_mlist_exit(pml);
4999 			}
5000 		}
5001 next_addr:
5002 		addr += TTEBYTES(ttesz);
5003 		sfhmep++;
5004 		DEMAP_RANGE_NEXTPG(dmrp);
5005 	}
5006 	return (addr);
5007 }
5008 
5009 /*
5010  * This routine converts virtual attributes to physical ones.  It will
5011  * update the tteflags field with the tte mask corresponding to the attributes
5012  * affected and it returns the new attributes.  It will also clear the modify
5013  * bit if we are taking away write permission.  This is necessary since the
5014  * modify bit is the hardware permission bit and we need to clear it in order
5015  * to detect write faults.
5016  */
5017 static uint64_t
5018 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
5019 {
5020 	tte_t ttevalue;
5021 
5022 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
5023 
5024 	switch (mode) {
5025 	case SFMMU_CHGATTR:
5026 		/* all attributes specified */
5027 		ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
5028 		ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
5029 		ttemaskp->tte_inthi = TTEINTHI_ATTR;
5030 		ttemaskp->tte_intlo = TTEINTLO_ATTR;
5031 		break;
5032 	case SFMMU_SETATTR:
5033 		ASSERT(!(attr & ~HAT_PROT_MASK));
5034 		ttemaskp->ll = 0;
5035 		ttevalue.ll = 0;
5036 		/*
5037 		 * a valid tte implies exec and read for sfmmu
5038 		 * so no need to do anything about them.
5039 		 * since priviledged access implies user access
5040 		 * PROT_USER doesn't make sense either.
5041 		 */
5042 		if (attr & PROT_WRITE) {
5043 			ttemaskp->tte_intlo |= TTE_WRPRM_INT;
5044 			ttevalue.tte_intlo |= TTE_WRPRM_INT;
5045 		}
5046 		break;
5047 	case SFMMU_CLRATTR:
5048 		/* attributes will be nand with current ones */
5049 		if (attr & ~(PROT_WRITE | PROT_USER)) {
5050 			panic("sfmmu: attr %x not supported", attr);
5051 		}
5052 		ttemaskp->ll = 0;
5053 		ttevalue.ll = 0;
5054 		if (attr & PROT_WRITE) {
5055 			/* clear both writable and modify bit */
5056 			ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
5057 		}
5058 		if (attr & PROT_USER) {
5059 			ttemaskp->tte_intlo |= TTE_PRIV_INT;
5060 			ttevalue.tte_intlo |= TTE_PRIV_INT;
5061 		}
5062 		break;
5063 	default:
5064 		panic("sfmmu_vtop_attr: bad mode %x", mode);
5065 	}
5066 	ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
5067 	return (ttevalue.ll);
5068 }
5069 
5070 static uint_t
5071 sfmmu_ptov_attr(tte_t *ttep)
5072 {
5073 	uint_t attr;
5074 
5075 	ASSERT(TTE_IS_VALID(ttep));
5076 
5077 	attr = PROT_READ;
5078 
5079 	if (TTE_IS_WRITABLE(ttep)) {
5080 		attr |= PROT_WRITE;
5081 	}
5082 	if (TTE_IS_EXECUTABLE(ttep)) {
5083 		attr |= PROT_EXEC;
5084 	}
5085 	if (!TTE_IS_PRIVILEGED(ttep)) {
5086 		attr |= PROT_USER;
5087 	}
5088 	if (TTE_IS_NFO(ttep)) {
5089 		attr |= HAT_NOFAULT;
5090 	}
5091 	if (TTE_IS_NOSYNC(ttep)) {
5092 		attr |= HAT_NOSYNC;
5093 	}
5094 	if (TTE_IS_SIDEFFECT(ttep)) {
5095 		attr |= SFMMU_SIDEFFECT;
5096 	}
5097 	if (!TTE_IS_VCACHEABLE(ttep)) {
5098 		attr |= SFMMU_UNCACHEVTTE;
5099 	}
5100 	if (!TTE_IS_PCACHEABLE(ttep)) {
5101 		attr |= SFMMU_UNCACHEPTTE;
5102 	}
5103 	return (attr);
5104 }
5105 
5106 /*
5107  * hat_chgprot is a deprecated hat call.  New segment drivers
5108  * should store all attributes and use hat_*attr calls.
5109  *
5110  * Change the protections in the virtual address range
5111  * given to the specified virtual protection.  If vprot is ~PROT_WRITE,
5112  * then remove write permission, leaving the other
5113  * permissions unchanged.  If vprot is ~PROT_USER, remove user permissions.
5114  *
5115  */
5116 void
5117 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
5118 {
5119 	struct hmehash_bucket *hmebp;
5120 	hmeblk_tag hblktag;
5121 	int hmeshift, hashno = 1;
5122 	struct hme_blk *hmeblkp, *list = NULL;
5123 	caddr_t endaddr;
5124 	cpuset_t cpuset;
5125 	demap_range_t dmr;
5126 
5127 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5128 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
5129 
5130 	if (sfmmup->sfmmu_xhat_provider) {
5131 		XHAT_CHGPROT(sfmmup, addr, len, vprot);
5132 		return;
5133 	} else {
5134 		/*
5135 		 * This must be a CPU HAT. If the address space has
5136 		 * XHATs attached, change attributes for all of them,
5137 		 * just in case
5138 		 */
5139 		ASSERT(sfmmup->sfmmu_as != NULL);
5140 		if (sfmmup->sfmmu_as->a_xhat != NULL)
5141 			xhat_chgprot_all(sfmmup->sfmmu_as, addr, len, vprot);
5142 	}
5143 
5144 	CPUSET_ZERO(cpuset);
5145 
5146 	if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
5147 	    ((addr + len) > (caddr_t)USERLIMIT)) {
5148 		panic("user addr %p vprot %x in kernel space",
5149 		    (void *)addr, vprot);
5150 	}
5151 	endaddr = addr + len;
5152 	hblktag.htag_id = sfmmup;
5153 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5154 	DEMAP_RANGE_INIT(sfmmup, &dmr);
5155 
5156 	while (addr < endaddr) {
5157 		hmeshift = HME_HASH_SHIFT(hashno);
5158 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5159 		hblktag.htag_rehash = hashno;
5160 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5161 
5162 		SFMMU_HASH_LOCK(hmebp);
5163 
5164 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
5165 		if (hmeblkp != NULL) {
5166 			ASSERT(!hmeblkp->hblk_shared);
5167 			/*
5168 			 * We've encountered a shadow hmeblk so skip the range
5169 			 * of the next smaller mapping size.
5170 			 */
5171 			if (hmeblkp->hblk_shw_bit) {
5172 				ASSERT(sfmmup != ksfmmup);
5173 				ASSERT(hashno > 1);
5174 				addr = (caddr_t)P2END((uintptr_t)addr,
5175 				    TTEBYTES(hashno - 1));
5176 			} else {
5177 				addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
5178 				    addr, endaddr, &dmr, vprot);
5179 			}
5180 			SFMMU_HASH_UNLOCK(hmebp);
5181 			hashno = 1;
5182 			continue;
5183 		}
5184 		SFMMU_HASH_UNLOCK(hmebp);
5185 
5186 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
5187 			/*
5188 			 * We have traversed the whole list and rehashed
5189 			 * if necessary without finding the address to chgprot.
5190 			 * This is ok so we increment the address by the
5191 			 * smallest hmeblk range for kernel mappings and the
5192 			 * largest hmeblk range, to account for shadow hmeblks,
5193 			 * for user mappings and continue.
5194 			 */
5195 			if (sfmmup == ksfmmup)
5196 				addr = (caddr_t)P2END((uintptr_t)addr,
5197 				    TTEBYTES(1));
5198 			else
5199 				addr = (caddr_t)P2END((uintptr_t)addr,
5200 				    TTEBYTES(hashno));
5201 			hashno = 1;
5202 		} else {
5203 			hashno++;
5204 		}
5205 	}
5206 
5207 	sfmmu_hblks_list_purge(&list);
5208 	DEMAP_RANGE_FLUSH(&dmr);
5209 	cpuset = sfmmup->sfmmu_cpusran;
5210 	xt_sync(cpuset);
5211 }
5212 
5213 /*
5214  * This function chgprots a range of addresses in an hmeblk.  It returns the
5215  * next addres that needs to be chgprot.
5216  * It should be called with the hash lock held.
5217  * XXX It shold be possible to optimize chgprot by not flushing every time but
5218  * on the other hand:
5219  * 1. do one flush crosscall.
5220  * 2. only flush if we are increasing permissions (make sure this will work)
5221  */
5222 static caddr_t
5223 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5224 	caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
5225 {
5226 	uint_t pprot;
5227 	tte_t tte, ttemod;
5228 	struct sf_hment *sfhmep;
5229 	uint_t tteflags;
5230 	int ttesz;
5231 	struct page *pp = NULL;
5232 	kmutex_t *pml, *pmtx;
5233 	int ret;
5234 	int use_demap_range;
5235 #if defined(SF_ERRATA_57)
5236 	int check_exec;
5237 #endif
5238 
5239 	ASSERT(in_hblk_range(hmeblkp, addr));
5240 	ASSERT(hmeblkp->hblk_shw_bit == 0);
5241 	ASSERT(!hmeblkp->hblk_shared);
5242 
5243 #ifdef DEBUG
5244 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5245 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
5246 		panic("sfmmu_hblk_chgprot: partial chgprot of large page");
5247 	}
5248 #endif /* DEBUG */
5249 
5250 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5251 	ttesz = get_hblk_ttesz(hmeblkp);
5252 
5253 	pprot = sfmmu_vtop_prot(vprot, &tteflags);
5254 #if defined(SF_ERRATA_57)
5255 	check_exec = (sfmmup != ksfmmup) &&
5256 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
5257 	    ((vprot & PROT_EXEC) == PROT_EXEC);
5258 #endif
5259 	HBLKTOHME(sfhmep, hmeblkp, addr);
5260 
5261 	/*
5262 	 * Flush the current demap region if addresses have been
5263 	 * skipped or the page size doesn't match.
5264 	 */
5265 	use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
5266 	if (use_demap_range) {
5267 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5268 	} else {
5269 		DEMAP_RANGE_FLUSH(dmrp);
5270 	}
5271 
5272 	while (addr < endaddr) {
5273 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5274 		if (TTE_IS_VALID(&tte)) {
5275 			if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
5276 				/*
5277 				 * if the new protection is the same as old
5278 				 * continue
5279 				 */
5280 				goto next_addr;
5281 			}
5282 			pml = NULL;
5283 			pp = sfhmep->hme_page;
5284 			if (pp) {
5285 				pml = sfmmu_mlist_enter(pp);
5286 			}
5287 			if (pp != sfhmep->hme_page) {
5288 				/*
5289 				 * tte most have been unloaded
5290 				 * underneath us.  Recheck
5291 				 */
5292 				ASSERT(pml);
5293 				sfmmu_mlist_exit(pml);
5294 				continue;
5295 			}
5296 
5297 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5298 
5299 			ttemod = tte;
5300 			TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
5301 #if defined(SF_ERRATA_57)
5302 			if (check_exec && addr < errata57_limit)
5303 				ttemod.tte_exec_perm = 0;
5304 #endif
5305 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5306 			    &sfhmep->hme_tte);
5307 
5308 			if (ret < 0) {
5309 				/* tte changed underneath us */
5310 				if (pml) {
5311 					sfmmu_mlist_exit(pml);
5312 				}
5313 				continue;
5314 			}
5315 
5316 			if (tteflags & TTE_HWWR_INT) {
5317 				/*
5318 				 * need to sync if we are clearing modify bit.
5319 				 */
5320 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
5321 			}
5322 
5323 			if (pp && PP_ISRO(pp)) {
5324 				if (pprot & TTE_WRPRM_INT) {
5325 					pmtx = sfmmu_page_enter(pp);
5326 					PP_CLRRO(pp);
5327 					sfmmu_page_exit(pmtx);
5328 				}
5329 			}
5330 
5331 			if (ret > 0 && use_demap_range) {
5332 				DEMAP_RANGE_MARKPG(dmrp, addr);
5333 			} else if (ret > 0) {
5334 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
5335 			}
5336 
5337 			if (pml) {
5338 				sfmmu_mlist_exit(pml);
5339 			}
5340 		}
5341 next_addr:
5342 		addr += TTEBYTES(ttesz);
5343 		sfhmep++;
5344 		DEMAP_RANGE_NEXTPG(dmrp);
5345 	}
5346 	return (addr);
5347 }
5348 
5349 /*
5350  * This routine is deprecated and should only be used by hat_chgprot.
5351  * The correct routine is sfmmu_vtop_attr.
5352  * This routine converts virtual page protections to physical ones.  It will
5353  * update the tteflags field with the tte mask corresponding to the protections
5354  * affected and it returns the new protections.  It will also clear the modify
5355  * bit if we are taking away write permission.  This is necessary since the
5356  * modify bit is the hardware permission bit and we need to clear it in order
5357  * to detect write faults.
5358  * It accepts the following special protections:
5359  * ~PROT_WRITE = remove write permissions.
5360  * ~PROT_USER = remove user permissions.
5361  */
5362 static uint_t
5363 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
5364 {
5365 	if (vprot == (uint_t)~PROT_WRITE) {
5366 		*tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
5367 		return (0);		/* will cause wrprm to be cleared */
5368 	}
5369 	if (vprot == (uint_t)~PROT_USER) {
5370 		*tteflagsp = TTE_PRIV_INT;
5371 		return (0);		/* will cause privprm to be cleared */
5372 	}
5373 	if ((vprot == 0) || (vprot == PROT_USER) ||
5374 	    ((vprot & PROT_ALL) != vprot)) {
5375 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5376 	}
5377 
5378 	switch (vprot) {
5379 	case (PROT_READ):
5380 	case (PROT_EXEC):
5381 	case (PROT_EXEC | PROT_READ):
5382 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5383 		return (TTE_PRIV_INT); 		/* set prv and clr wrt */
5384 	case (PROT_WRITE):
5385 	case (PROT_WRITE | PROT_READ):
5386 	case (PROT_EXEC | PROT_WRITE):
5387 	case (PROT_EXEC | PROT_WRITE | PROT_READ):
5388 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5389 		return (TTE_PRIV_INT | TTE_WRPRM_INT); 	/* set prv and wrt */
5390 	case (PROT_USER | PROT_READ):
5391 	case (PROT_USER | PROT_EXEC):
5392 	case (PROT_USER | PROT_EXEC | PROT_READ):
5393 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5394 		return (0); 			/* clr prv and wrt */
5395 	case (PROT_USER | PROT_WRITE):
5396 	case (PROT_USER | PROT_WRITE | PROT_READ):
5397 	case (PROT_USER | PROT_EXEC | PROT_WRITE):
5398 	case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
5399 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5400 		return (TTE_WRPRM_INT); 	/* clr prv and set wrt */
5401 	default:
5402 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5403 	}
5404 	return (0);
5405 }
5406 
5407 /*
5408  * Alternate unload for very large virtual ranges. With a true 64 bit VA,
5409  * the normal algorithm would take too long for a very large VA range with
5410  * few real mappings. This routine just walks thru all HMEs in the global
5411  * hash table to find and remove mappings.
5412  */
5413 static void
5414 hat_unload_large_virtual(
5415 	struct hat		*sfmmup,
5416 	caddr_t			startaddr,
5417 	size_t			len,
5418 	uint_t			flags,
5419 	hat_callback_t		*callback)
5420 {
5421 	struct hmehash_bucket *hmebp;
5422 	struct hme_blk *hmeblkp;
5423 	struct hme_blk *pr_hblk = NULL;
5424 	struct hme_blk *nx_hblk;
5425 	struct hme_blk *list = NULL;
5426 	int i;
5427 	uint64_t hblkpa, prevpa, nx_pa;
5428 	demap_range_t dmr, *dmrp;
5429 	cpuset_t cpuset;
5430 	caddr_t	endaddr = startaddr + len;
5431 	caddr_t	sa;
5432 	caddr_t	ea;
5433 	caddr_t	cb_sa[MAX_CB_ADDR];
5434 	caddr_t	cb_ea[MAX_CB_ADDR];
5435 	int	addr_cnt = 0;
5436 	int	a = 0;
5437 
5438 	if (sfmmup->sfmmu_free) {
5439 		dmrp = NULL;
5440 	} else {
5441 		dmrp = &dmr;
5442 		DEMAP_RANGE_INIT(sfmmup, dmrp);
5443 	}
5444 
5445 	/*
5446 	 * Loop through all the hash buckets of HME blocks looking for matches.
5447 	 */
5448 	for (i = 0; i <= UHMEHASH_SZ; i++) {
5449 		hmebp = &uhme_hash[i];
5450 		SFMMU_HASH_LOCK(hmebp);
5451 		hmeblkp = hmebp->hmeblkp;
5452 		hblkpa = hmebp->hmeh_nextpa;
5453 		prevpa = 0;
5454 		pr_hblk = NULL;
5455 		while (hmeblkp) {
5456 			nx_hblk = hmeblkp->hblk_next;
5457 			nx_pa = hmeblkp->hblk_nextpa;
5458 
5459 			/*
5460 			 * skip if not this context, if a shadow block or
5461 			 * if the mapping is not in the requested range
5462 			 */
5463 			if (hmeblkp->hblk_tag.htag_id != sfmmup ||
5464 			    hmeblkp->hblk_shw_bit ||
5465 			    (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
5466 			    (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
5467 				pr_hblk = hmeblkp;
5468 				prevpa = hblkpa;
5469 				goto next_block;
5470 			}
5471 
5472 			ASSERT(!hmeblkp->hblk_shared);
5473 			/*
5474 			 * unload if there are any current valid mappings
5475 			 */
5476 			if (hmeblkp->hblk_vcnt != 0 ||
5477 			    hmeblkp->hblk_hmecnt != 0)
5478 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
5479 				    sa, ea, dmrp, flags);
5480 
5481 			/*
5482 			 * on unmap we also release the HME block itself, once
5483 			 * all mappings are gone.
5484 			 */
5485 			if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
5486 			    !hmeblkp->hblk_vcnt &&
5487 			    !hmeblkp->hblk_hmecnt) {
5488 				ASSERT(!hmeblkp->hblk_lckcnt);
5489 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
5490 				    prevpa, pr_hblk);
5491 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5492 			} else {
5493 				pr_hblk = hmeblkp;
5494 				prevpa = hblkpa;
5495 			}
5496 
5497 			if (callback == NULL)
5498 				goto next_block;
5499 
5500 			/*
5501 			 * HME blocks may span more than one page, but we may be
5502 			 * unmapping only one page, so check for a smaller range
5503 			 * for the callback
5504 			 */
5505 			if (sa < startaddr)
5506 				sa = startaddr;
5507 			if (--ea > endaddr)
5508 				ea = endaddr - 1;
5509 
5510 			cb_sa[addr_cnt] = sa;
5511 			cb_ea[addr_cnt] = ea;
5512 			if (++addr_cnt == MAX_CB_ADDR) {
5513 				if (dmrp != NULL) {
5514 					DEMAP_RANGE_FLUSH(dmrp);
5515 					cpuset = sfmmup->sfmmu_cpusran;
5516 					xt_sync(cpuset);
5517 				}
5518 
5519 				for (a = 0; a < MAX_CB_ADDR; ++a) {
5520 					callback->hcb_start_addr = cb_sa[a];
5521 					callback->hcb_end_addr = cb_ea[a];
5522 					callback->hcb_function(callback);
5523 				}
5524 				addr_cnt = 0;
5525 			}
5526 
5527 next_block:
5528 			hmeblkp = nx_hblk;
5529 			hblkpa = nx_pa;
5530 		}
5531 		SFMMU_HASH_UNLOCK(hmebp);
5532 	}
5533 
5534 	sfmmu_hblks_list_purge(&list);
5535 	if (dmrp != NULL) {
5536 		DEMAP_RANGE_FLUSH(dmrp);
5537 		cpuset = sfmmup->sfmmu_cpusran;
5538 		xt_sync(cpuset);
5539 	}
5540 
5541 	for (a = 0; a < addr_cnt; ++a) {
5542 		callback->hcb_start_addr = cb_sa[a];
5543 		callback->hcb_end_addr = cb_ea[a];
5544 		callback->hcb_function(callback);
5545 	}
5546 
5547 	/*
5548 	 * Check TSB and TLB page sizes if the process isn't exiting.
5549 	 */
5550 	if (!sfmmup->sfmmu_free)
5551 		sfmmu_check_page_sizes(sfmmup, 0);
5552 }
5553 
5554 /*
5555  * Unload all the mappings in the range [addr..addr+len). addr and len must
5556  * be MMU_PAGESIZE aligned.
5557  */
5558 
5559 extern struct seg *segkmap;
5560 #define	ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
5561 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
5562 
5563 
5564 void
5565 hat_unload_callback(
5566 	struct hat *sfmmup,
5567 	caddr_t addr,
5568 	size_t len,
5569 	uint_t flags,
5570 	hat_callback_t *callback)
5571 {
5572 	struct hmehash_bucket *hmebp;
5573 	hmeblk_tag hblktag;
5574 	int hmeshift, hashno, iskernel;
5575 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
5576 	caddr_t endaddr;
5577 	cpuset_t cpuset;
5578 	uint64_t hblkpa, prevpa;
5579 	int addr_count = 0;
5580 	int a;
5581 	caddr_t cb_start_addr[MAX_CB_ADDR];
5582 	caddr_t cb_end_addr[MAX_CB_ADDR];
5583 	int issegkmap = ISSEGKMAP(sfmmup, addr);
5584 	demap_range_t dmr, *dmrp;
5585 
5586 	if (sfmmup->sfmmu_xhat_provider) {
5587 		XHAT_UNLOAD_CALLBACK(sfmmup, addr, len, flags, callback);
5588 		return;
5589 	} else {
5590 		/*
5591 		 * This must be a CPU HAT. If the address space has
5592 		 * XHATs attached, unload the mappings for all of them,
5593 		 * just in case
5594 		 */
5595 		ASSERT(sfmmup->sfmmu_as != NULL);
5596 		if (sfmmup->sfmmu_as->a_xhat != NULL)
5597 			xhat_unload_callback_all(sfmmup->sfmmu_as, addr,
5598 			    len, flags, callback);
5599 	}
5600 
5601 	ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
5602 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
5603 
5604 	ASSERT(sfmmup != NULL);
5605 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5606 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
5607 
5608 	/*
5609 	 * Probing through a large VA range (say 63 bits) will be slow, even
5610 	 * at 4 Meg steps between the probes. So, when the virtual address range
5611 	 * is very large, search the HME entries for what to unload.
5612 	 *
5613 	 *	len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
5614 	 *
5615 	 *	UHMEHASH_SZ is number of hash buckets to examine
5616 	 *
5617 	 */
5618 	if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
5619 		hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
5620 		return;
5621 	}
5622 
5623 	CPUSET_ZERO(cpuset);
5624 
5625 	/*
5626 	 * If the process is exiting, we can save a lot of fuss since
5627 	 * we'll flush the TLB when we free the ctx anyway.
5628 	 */
5629 	if (sfmmup->sfmmu_free)
5630 		dmrp = NULL;
5631 	else
5632 		dmrp = &dmr;
5633 
5634 	DEMAP_RANGE_INIT(sfmmup, dmrp);
5635 	endaddr = addr + len;
5636 	hblktag.htag_id = sfmmup;
5637 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5638 
5639 	/*
5640 	 * It is likely for the vm to call unload over a wide range of
5641 	 * addresses that are actually very sparsely populated by
5642 	 * translations.  In order to speed this up the sfmmu hat supports
5643 	 * the concept of shadow hmeblks. Dummy large page hmeblks that
5644 	 * correspond to actual small translations are allocated at tteload
5645 	 * time and are referred to as shadow hmeblks.  Now, during unload
5646 	 * time, we first check if we have a shadow hmeblk for that
5647 	 * translation.  The absence of one means the corresponding address
5648 	 * range is empty and can be skipped.
5649 	 *
5650 	 * The kernel is an exception to above statement and that is why
5651 	 * we don't use shadow hmeblks and hash starting from the smallest
5652 	 * page size.
5653 	 */
5654 	if (sfmmup == KHATID) {
5655 		iskernel = 1;
5656 		hashno = TTE64K;
5657 	} else {
5658 		iskernel = 0;
5659 		if (mmu_page_sizes == max_mmu_page_sizes) {
5660 			hashno = TTE256M;
5661 		} else {
5662 			hashno = TTE4M;
5663 		}
5664 	}
5665 	while (addr < endaddr) {
5666 		hmeshift = HME_HASH_SHIFT(hashno);
5667 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5668 		hblktag.htag_rehash = hashno;
5669 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5670 
5671 		SFMMU_HASH_LOCK(hmebp);
5672 
5673 		HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, pr_hblk,
5674 		    prevpa, &list);
5675 		if (hmeblkp == NULL) {
5676 			/*
5677 			 * didn't find an hmeblk. skip the appropiate
5678 			 * address range.
5679 			 */
5680 			SFMMU_HASH_UNLOCK(hmebp);
5681 			if (iskernel) {
5682 				if (hashno < mmu_hashcnt) {
5683 					hashno++;
5684 					continue;
5685 				} else {
5686 					hashno = TTE64K;
5687 					addr = (caddr_t)roundup((uintptr_t)addr
5688 					    + 1, MMU_PAGESIZE64K);
5689 					continue;
5690 				}
5691 			}
5692 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5693 			    (1 << hmeshift));
5694 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5695 				ASSERT(hashno == TTE64K);
5696 				continue;
5697 			}
5698 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5699 				hashno = TTE512K;
5700 				continue;
5701 			}
5702 			if (mmu_page_sizes == max_mmu_page_sizes) {
5703 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5704 					hashno = TTE4M;
5705 					continue;
5706 				}
5707 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5708 					hashno = TTE32M;
5709 					continue;
5710 				}
5711 				hashno = TTE256M;
5712 				continue;
5713 			} else {
5714 				hashno = TTE4M;
5715 				continue;
5716 			}
5717 		}
5718 		ASSERT(hmeblkp);
5719 		ASSERT(!hmeblkp->hblk_shared);
5720 		if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5721 			/*
5722 			 * If the valid count is zero we can skip the range
5723 			 * mapped by this hmeblk.
5724 			 * We free hblks in the case of HAT_UNMAP.  HAT_UNMAP
5725 			 * is used by segment drivers as a hint
5726 			 * that the mapping resource won't be used any longer.
5727 			 * The best example of this is during exit().
5728 			 */
5729 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5730 			    get_hblk_span(hmeblkp));
5731 			if ((flags & HAT_UNLOAD_UNMAP) ||
5732 			    (iskernel && !issegkmap)) {
5733 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5734 				    pr_hblk);
5735 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5736 			}
5737 			SFMMU_HASH_UNLOCK(hmebp);
5738 
5739 			if (iskernel) {
5740 				hashno = TTE64K;
5741 				continue;
5742 			}
5743 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5744 				ASSERT(hashno == TTE64K);
5745 				continue;
5746 			}
5747 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5748 				hashno = TTE512K;
5749 				continue;
5750 			}
5751 			if (mmu_page_sizes == max_mmu_page_sizes) {
5752 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5753 					hashno = TTE4M;
5754 					continue;
5755 				}
5756 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5757 					hashno = TTE32M;
5758 					continue;
5759 				}
5760 				hashno = TTE256M;
5761 				continue;
5762 			} else {
5763 				hashno = TTE4M;
5764 				continue;
5765 			}
5766 		}
5767 		if (hmeblkp->hblk_shw_bit) {
5768 			/*
5769 			 * If we encounter a shadow hmeblk we know there is
5770 			 * smaller sized hmeblks mapping the same address space.
5771 			 * Decrement the hash size and rehash.
5772 			 */
5773 			ASSERT(sfmmup != KHATID);
5774 			hashno--;
5775 			SFMMU_HASH_UNLOCK(hmebp);
5776 			continue;
5777 		}
5778 
5779 		/*
5780 		 * track callback address ranges.
5781 		 * only start a new range when it's not contiguous
5782 		 */
5783 		if (callback != NULL) {
5784 			if (addr_count > 0 &&
5785 			    addr == cb_end_addr[addr_count - 1])
5786 				--addr_count;
5787 			else
5788 				cb_start_addr[addr_count] = addr;
5789 		}
5790 
5791 		addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
5792 		    dmrp, flags);
5793 
5794 		if (callback != NULL)
5795 			cb_end_addr[addr_count++] = addr;
5796 
5797 		if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
5798 		    !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5799 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5800 			    pr_hblk);
5801 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5802 		}
5803 		SFMMU_HASH_UNLOCK(hmebp);
5804 
5805 		/*
5806 		 * Notify our caller as to exactly which pages
5807 		 * have been unloaded. We do these in clumps,
5808 		 * to minimize the number of xt_sync()s that need to occur.
5809 		 */
5810 		if (callback != NULL && addr_count == MAX_CB_ADDR) {
5811 			DEMAP_RANGE_FLUSH(dmrp);
5812 			if (dmrp != NULL) {
5813 				cpuset = sfmmup->sfmmu_cpusran;
5814 				xt_sync(cpuset);
5815 			}
5816 
5817 			for (a = 0; a < MAX_CB_ADDR; ++a) {
5818 				callback->hcb_start_addr = cb_start_addr[a];
5819 				callback->hcb_end_addr = cb_end_addr[a];
5820 				callback->hcb_function(callback);
5821 			}
5822 			addr_count = 0;
5823 		}
5824 		if (iskernel) {
5825 			hashno = TTE64K;
5826 			continue;
5827 		}
5828 		if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5829 			ASSERT(hashno == TTE64K);
5830 			continue;
5831 		}
5832 		if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5833 			hashno = TTE512K;
5834 			continue;
5835 		}
5836 		if (mmu_page_sizes == max_mmu_page_sizes) {
5837 			if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5838 				hashno = TTE4M;
5839 				continue;
5840 			}
5841 			if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5842 				hashno = TTE32M;
5843 				continue;
5844 			}
5845 			hashno = TTE256M;
5846 		} else {
5847 			hashno = TTE4M;
5848 		}
5849 	}
5850 
5851 	sfmmu_hblks_list_purge(&list);
5852 	DEMAP_RANGE_FLUSH(dmrp);
5853 	if (dmrp != NULL) {
5854 		cpuset = sfmmup->sfmmu_cpusran;
5855 		xt_sync(cpuset);
5856 	}
5857 	if (callback && addr_count != 0) {
5858 		for (a = 0; a < addr_count; ++a) {
5859 			callback->hcb_start_addr = cb_start_addr[a];
5860 			callback->hcb_end_addr = cb_end_addr[a];
5861 			callback->hcb_function(callback);
5862 		}
5863 	}
5864 
5865 	/*
5866 	 * Check TSB and TLB page sizes if the process isn't exiting.
5867 	 */
5868 	if (!sfmmup->sfmmu_free)
5869 		sfmmu_check_page_sizes(sfmmup, 0);
5870 }
5871 
5872 /*
5873  * Unload all the mappings in the range [addr..addr+len). addr and len must
5874  * be MMU_PAGESIZE aligned.
5875  */
5876 void
5877 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
5878 {
5879 	if (sfmmup->sfmmu_xhat_provider) {
5880 		XHAT_UNLOAD(sfmmup, addr, len, flags);
5881 		return;
5882 	}
5883 	hat_unload_callback(sfmmup, addr, len, flags, NULL);
5884 }
5885 
5886 
5887 /*
5888  * Find the largest mapping size for this page.
5889  */
5890 int
5891 fnd_mapping_sz(page_t *pp)
5892 {
5893 	int sz;
5894 	int p_index;
5895 
5896 	p_index = PP_MAPINDEX(pp);
5897 
5898 	sz = 0;
5899 	p_index >>= 1;	/* don't care about 8K bit */
5900 	for (; p_index; p_index >>= 1) {
5901 		sz++;
5902 	}
5903 
5904 	return (sz);
5905 }
5906 
5907 /*
5908  * This function unloads a range of addresses for an hmeblk.
5909  * It returns the next address to be unloaded.
5910  * It should be called with the hash lock held.
5911  */
5912 static caddr_t
5913 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5914 	caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
5915 {
5916 	tte_t	tte, ttemod;
5917 	struct	sf_hment *sfhmep;
5918 	int	ttesz;
5919 	long	ttecnt;
5920 	page_t *pp;
5921 	kmutex_t *pml;
5922 	int ret;
5923 	int use_demap_range;
5924 
5925 	ASSERT(in_hblk_range(hmeblkp, addr));
5926 	ASSERT(!hmeblkp->hblk_shw_bit);
5927 	ASSERT(sfmmup != NULL || hmeblkp->hblk_shared);
5928 	ASSERT(sfmmup == NULL || !hmeblkp->hblk_shared);
5929 	ASSERT(dmrp == NULL || !hmeblkp->hblk_shared);
5930 
5931 #ifdef DEBUG
5932 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5933 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
5934 		panic("sfmmu_hblk_unload: partial unload of large page");
5935 	}
5936 #endif /* DEBUG */
5937 
5938 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5939 	ttesz = get_hblk_ttesz(hmeblkp);
5940 
5941 	use_demap_range = ((dmrp == NULL) ||
5942 	    (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)));
5943 
5944 	if (use_demap_range) {
5945 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5946 	} else {
5947 		DEMAP_RANGE_FLUSH(dmrp);
5948 	}
5949 	ttecnt = 0;
5950 	HBLKTOHME(sfhmep, hmeblkp, addr);
5951 
5952 	while (addr < endaddr) {
5953 		pml = NULL;
5954 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5955 		if (TTE_IS_VALID(&tte)) {
5956 			pp = sfhmep->hme_page;
5957 			if (pp != NULL) {
5958 				pml = sfmmu_mlist_enter(pp);
5959 			}
5960 
5961 			/*
5962 			 * Verify if hme still points to 'pp' now that
5963 			 * we have p_mapping lock.
5964 			 */
5965 			if (sfhmep->hme_page != pp) {
5966 				if (pp != NULL && sfhmep->hme_page != NULL) {
5967 					ASSERT(pml != NULL);
5968 					sfmmu_mlist_exit(pml);
5969 					/* Re-start this iteration. */
5970 					continue;
5971 				}
5972 				ASSERT((pp != NULL) &&
5973 				    (sfhmep->hme_page == NULL));
5974 				goto tte_unloaded;
5975 			}
5976 
5977 			/*
5978 			 * This point on we have both HASH and p_mapping
5979 			 * lock.
5980 			 */
5981 			ASSERT(pp == sfhmep->hme_page);
5982 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5983 
5984 			/*
5985 			 * We need to loop on modify tte because it is
5986 			 * possible for pagesync to come along and
5987 			 * change the software bits beneath us.
5988 			 *
5989 			 * Page_unload can also invalidate the tte after
5990 			 * we read tte outside of p_mapping lock.
5991 			 */
5992 again:
5993 			ttemod = tte;
5994 
5995 			TTE_SET_INVALID(&ttemod);
5996 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5997 			    &sfhmep->hme_tte);
5998 
5999 			if (ret <= 0) {
6000 				if (TTE_IS_VALID(&tte)) {
6001 					ASSERT(ret < 0);
6002 					goto again;
6003 				}
6004 				if (pp != NULL) {
6005 					panic("sfmmu_hblk_unload: pp = 0x%p "
6006 					    "tte became invalid under mlist"
6007 					    " lock = 0x%p", pp, pml);
6008 				}
6009 				continue;
6010 			}
6011 
6012 			if (!(flags & HAT_UNLOAD_NOSYNC)) {
6013 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
6014 			}
6015 
6016 			/*
6017 			 * Ok- we invalidated the tte. Do the rest of the job.
6018 			 */
6019 			ttecnt++;
6020 
6021 			if (flags & HAT_UNLOAD_UNLOCK) {
6022 				ASSERT(hmeblkp->hblk_lckcnt > 0);
6023 				atomic_add_32(&hmeblkp->hblk_lckcnt, -1);
6024 				HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
6025 			}
6026 
6027 			/*
6028 			 * Normally we would need to flush the page
6029 			 * from the virtual cache at this point in
6030 			 * order to prevent a potential cache alias
6031 			 * inconsistency.
6032 			 * The particular scenario we need to worry
6033 			 * about is:
6034 			 * Given:  va1 and va2 are two virtual address
6035 			 * that alias and map the same physical
6036 			 * address.
6037 			 * 1.   mapping exists from va1 to pa and data
6038 			 * has been read into the cache.
6039 			 * 2.   unload va1.
6040 			 * 3.   load va2 and modify data using va2.
6041 			 * 4    unload va2.
6042 			 * 5.   load va1 and reference data.  Unless we
6043 			 * flush the data cache when we unload we will
6044 			 * get stale data.
6045 			 * Fortunately, page coloring eliminates the
6046 			 * above scenario by remembering the color a
6047 			 * physical page was last or is currently
6048 			 * mapped to.  Now, we delay the flush until
6049 			 * the loading of translations.  Only when the
6050 			 * new translation is of a different color
6051 			 * are we forced to flush.
6052 			 */
6053 			if (use_demap_range) {
6054 				/*
6055 				 * Mark this page as needing a demap.
6056 				 */
6057 				DEMAP_RANGE_MARKPG(dmrp, addr);
6058 			} else {
6059 				ASSERT(sfmmup != NULL);
6060 				ASSERT(!hmeblkp->hblk_shared);
6061 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
6062 				    sfmmup->sfmmu_free, 0);
6063 			}
6064 
6065 			if (pp) {
6066 				/*
6067 				 * Remove the hment from the mapping list
6068 				 */
6069 				ASSERT(hmeblkp->hblk_hmecnt > 0);
6070 
6071 				/*
6072 				 * Again, we cannot
6073 				 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
6074 				 */
6075 				HME_SUB(sfhmep, pp);
6076 				membar_stst();
6077 				atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
6078 			}
6079 
6080 			ASSERT(hmeblkp->hblk_vcnt > 0);
6081 			atomic_add_16(&hmeblkp->hblk_vcnt, -1);
6082 
6083 			ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
6084 			    !hmeblkp->hblk_lckcnt);
6085 
6086 #ifdef VAC
6087 			if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
6088 				if (PP_ISTNC(pp)) {
6089 					/*
6090 					 * If page was temporary
6091 					 * uncached, try to recache
6092 					 * it. Note that HME_SUB() was
6093 					 * called above so p_index and
6094 					 * mlist had been updated.
6095 					 */
6096 					conv_tnc(pp, ttesz);
6097 				} else if (pp->p_mapping == NULL) {
6098 					ASSERT(kpm_enable);
6099 					/*
6100 					 * Page is marked to be in VAC conflict
6101 					 * to an existing kpm mapping and/or is
6102 					 * kpm mapped using only the regular
6103 					 * pagesize.
6104 					 */
6105 					sfmmu_kpm_hme_unload(pp);
6106 				}
6107 			}
6108 #endif	/* VAC */
6109 		} else if ((pp = sfhmep->hme_page) != NULL) {
6110 				/*
6111 				 * TTE is invalid but the hme
6112 				 * still exists. let pageunload
6113 				 * complete its job.
6114 				 */
6115 				ASSERT(pml == NULL);
6116 				pml = sfmmu_mlist_enter(pp);
6117 				if (sfhmep->hme_page != NULL) {
6118 					sfmmu_mlist_exit(pml);
6119 					continue;
6120 				}
6121 				ASSERT(sfhmep->hme_page == NULL);
6122 		} else if (hmeblkp->hblk_hmecnt != 0) {
6123 			/*
6124 			 * pageunload may have not finished decrementing
6125 			 * hblk_vcnt and hblk_hmecnt. Find page_t if any and
6126 			 * wait for pageunload to finish. Rely on pageunload
6127 			 * to decrement hblk_hmecnt after hblk_vcnt.
6128 			 */
6129 			pfn_t pfn = TTE_TO_TTEPFN(&tte);
6130 			ASSERT(pml == NULL);
6131 			if (pf_is_memory(pfn)) {
6132 				pp = page_numtopp_nolock(pfn);
6133 				if (pp != NULL) {
6134 					pml = sfmmu_mlist_enter(pp);
6135 					sfmmu_mlist_exit(pml);
6136 					pml = NULL;
6137 				}
6138 			}
6139 		}
6140 
6141 tte_unloaded:
6142 		/*
6143 		 * At this point, the tte we are looking at
6144 		 * should be unloaded, and hme has been unlinked
6145 		 * from page too. This is important because in
6146 		 * pageunload, it does ttesync() then HME_SUB.
6147 		 * We need to make sure HME_SUB has been completed
6148 		 * so we know ttesync() has been completed. Otherwise,
6149 		 * at exit time, after return from hat layer, VM will
6150 		 * release as structure which hat_setstat() (called
6151 		 * by ttesync()) needs.
6152 		 */
6153 #ifdef DEBUG
6154 		{
6155 			tte_t	dtte;
6156 
6157 			ASSERT(sfhmep->hme_page == NULL);
6158 
6159 			sfmmu_copytte(&sfhmep->hme_tte, &dtte);
6160 			ASSERT(!TTE_IS_VALID(&dtte));
6161 		}
6162 #endif
6163 
6164 		if (pml) {
6165 			sfmmu_mlist_exit(pml);
6166 		}
6167 
6168 		addr += TTEBYTES(ttesz);
6169 		sfhmep++;
6170 		DEMAP_RANGE_NEXTPG(dmrp);
6171 	}
6172 	/*
6173 	 * For shared hmeblks this routine is only called when region is freed
6174 	 * and no longer referenced.  So no need to decrement ttecnt
6175 	 * in the region structure here.
6176 	 */
6177 	if (ttecnt > 0 && sfmmup != NULL) {
6178 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
6179 	}
6180 	return (addr);
6181 }
6182 
6183 /*
6184  * Synchronize all the mappings in the range [addr..addr+len).
6185  * Can be called with clearflag having two states:
6186  * HAT_SYNC_DONTZERO means just return the rm stats
6187  * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
6188  */
6189 void
6190 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
6191 {
6192 	struct hmehash_bucket *hmebp;
6193 	hmeblk_tag hblktag;
6194 	int hmeshift, hashno = 1;
6195 	struct hme_blk *hmeblkp, *list = NULL;
6196 	caddr_t endaddr;
6197 	cpuset_t cpuset;
6198 
6199 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
6200 	ASSERT((sfmmup == ksfmmup) ||
6201 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
6202 	ASSERT((len & MMU_PAGEOFFSET) == 0);
6203 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
6204 	    (clearflag == HAT_SYNC_ZERORM));
6205 
6206 	CPUSET_ZERO(cpuset);
6207 
6208 	endaddr = addr + len;
6209 	hblktag.htag_id = sfmmup;
6210 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
6211 
6212 	/*
6213 	 * Spitfire supports 4 page sizes.
6214 	 * Most pages are expected to be of the smallest page
6215 	 * size (8K) and these will not need to be rehashed. 64K
6216 	 * pages also don't need to be rehashed because the an hmeblk
6217 	 * spans 64K of address space. 512K pages might need 1 rehash and
6218 	 * and 4M pages 2 rehashes.
6219 	 */
6220 	while (addr < endaddr) {
6221 		hmeshift = HME_HASH_SHIFT(hashno);
6222 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
6223 		hblktag.htag_rehash = hashno;
6224 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
6225 
6226 		SFMMU_HASH_LOCK(hmebp);
6227 
6228 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
6229 		if (hmeblkp != NULL) {
6230 			ASSERT(!hmeblkp->hblk_shared);
6231 			/*
6232 			 * We've encountered a shadow hmeblk so skip the range
6233 			 * of the next smaller mapping size.
6234 			 */
6235 			if (hmeblkp->hblk_shw_bit) {
6236 				ASSERT(sfmmup != ksfmmup);
6237 				ASSERT(hashno > 1);
6238 				addr = (caddr_t)P2END((uintptr_t)addr,
6239 				    TTEBYTES(hashno - 1));
6240 			} else {
6241 				addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
6242 				    addr, endaddr, clearflag);
6243 			}
6244 			SFMMU_HASH_UNLOCK(hmebp);
6245 			hashno = 1;
6246 			continue;
6247 		}
6248 		SFMMU_HASH_UNLOCK(hmebp);
6249 
6250 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
6251 			/*
6252 			 * We have traversed the whole list and rehashed
6253 			 * if necessary without finding the address to sync.
6254 			 * This is ok so we increment the address by the
6255 			 * smallest hmeblk range for kernel mappings and the
6256 			 * largest hmeblk range, to account for shadow hmeblks,
6257 			 * for user mappings and continue.
6258 			 */
6259 			if (sfmmup == ksfmmup)
6260 				addr = (caddr_t)P2END((uintptr_t)addr,
6261 				    TTEBYTES(1));
6262 			else
6263 				addr = (caddr_t)P2END((uintptr_t)addr,
6264 				    TTEBYTES(hashno));
6265 			hashno = 1;
6266 		} else {
6267 			hashno++;
6268 		}
6269 	}
6270 	sfmmu_hblks_list_purge(&list);
6271 	cpuset = sfmmup->sfmmu_cpusran;
6272 	xt_sync(cpuset);
6273 }
6274 
6275 static caddr_t
6276 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
6277 	caddr_t endaddr, int clearflag)
6278 {
6279 	tte_t	tte, ttemod;
6280 	struct sf_hment *sfhmep;
6281 	int ttesz;
6282 	struct page *pp;
6283 	kmutex_t *pml;
6284 	int ret;
6285 
6286 	ASSERT(hmeblkp->hblk_shw_bit == 0);
6287 	ASSERT(!hmeblkp->hblk_shared);
6288 
6289 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
6290 
6291 	ttesz = get_hblk_ttesz(hmeblkp);
6292 	HBLKTOHME(sfhmep, hmeblkp, addr);
6293 
6294 	while (addr < endaddr) {
6295 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
6296 		if (TTE_IS_VALID(&tte)) {
6297 			pml = NULL;
6298 			pp = sfhmep->hme_page;
6299 			if (pp) {
6300 				pml = sfmmu_mlist_enter(pp);
6301 			}
6302 			if (pp != sfhmep->hme_page) {
6303 				/*
6304 				 * tte most have been unloaded
6305 				 * underneath us.  Recheck
6306 				 */
6307 				ASSERT(pml);
6308 				sfmmu_mlist_exit(pml);
6309 				continue;
6310 			}
6311 
6312 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
6313 
6314 			if (clearflag == HAT_SYNC_ZERORM) {
6315 				ttemod = tte;
6316 				TTE_CLR_RM(&ttemod);
6317 				ret = sfmmu_modifytte_try(&tte, &ttemod,
6318 				    &sfhmep->hme_tte);
6319 				if (ret < 0) {
6320 					if (pml) {
6321 						sfmmu_mlist_exit(pml);
6322 					}
6323 					continue;
6324 				}
6325 
6326 				if (ret > 0) {
6327 					sfmmu_tlb_demap(addr, sfmmup,
6328 					    hmeblkp, 0, 0);
6329 				}
6330 			}
6331 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
6332 			if (pml) {
6333 				sfmmu_mlist_exit(pml);
6334 			}
6335 		}
6336 		addr += TTEBYTES(ttesz);
6337 		sfhmep++;
6338 	}
6339 	return (addr);
6340 }
6341 
6342 /*
6343  * This function will sync a tte to the page struct and it will
6344  * update the hat stats. Currently it allows us to pass a NULL pp
6345  * and we will simply update the stats.  We may want to change this
6346  * so we only keep stats for pages backed by pp's.
6347  */
6348 static void
6349 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
6350 {
6351 	uint_t rm = 0;
6352 	int   	sz;
6353 	pgcnt_t	npgs;
6354 
6355 	ASSERT(TTE_IS_VALID(ttep));
6356 
6357 	if (TTE_IS_NOSYNC(ttep)) {
6358 		return;
6359 	}
6360 
6361 	if (TTE_IS_REF(ttep))  {
6362 		rm = P_REF;
6363 	}
6364 	if (TTE_IS_MOD(ttep))  {
6365 		rm |= P_MOD;
6366 	}
6367 
6368 	if (rm == 0) {
6369 		return;
6370 	}
6371 
6372 	sz = TTE_CSZ(ttep);
6373 	if (sfmmup != NULL && sfmmup->sfmmu_rmstat) {
6374 		int i;
6375 		caddr_t	vaddr = addr;
6376 
6377 		for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) {
6378 			hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm);
6379 		}
6380 
6381 	}
6382 
6383 	/*
6384 	 * XXX I want to use cas to update nrm bits but they
6385 	 * currently belong in common/vm and not in hat where
6386 	 * they should be.
6387 	 * The nrm bits are protected by the same mutex as
6388 	 * the one that protects the page's mapping list.
6389 	 */
6390 	if (!pp)
6391 		return;
6392 	ASSERT(sfmmu_mlist_held(pp));
6393 	/*
6394 	 * If the tte is for a large page, we need to sync all the
6395 	 * pages covered by the tte.
6396 	 */
6397 	if (sz != TTE8K) {
6398 		ASSERT(pp->p_szc != 0);
6399 		pp = PP_GROUPLEADER(pp, sz);
6400 		ASSERT(sfmmu_mlist_held(pp));
6401 	}
6402 
6403 	/* Get number of pages from tte size. */
6404 	npgs = TTEPAGES(sz);
6405 
6406 	do {
6407 		ASSERT(pp);
6408 		ASSERT(sfmmu_mlist_held(pp));
6409 		if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
6410 		    ((rm & P_MOD) != 0 && !PP_ISMOD(pp)))
6411 			hat_page_setattr(pp, rm);
6412 
6413 		/*
6414 		 * Are we done? If not, we must have a large mapping.
6415 		 * For large mappings we need to sync the rest of the pages
6416 		 * covered by this tte; goto the next page.
6417 		 */
6418 	} while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
6419 }
6420 
6421 /*
6422  * Execute pre-callback handler of each pa_hment linked to pp
6423  *
6424  * Inputs:
6425  *   flag: either HAT_PRESUSPEND or HAT_SUSPEND.
6426  *   capture_cpus: pointer to return value (below)
6427  *
6428  * Returns:
6429  *   Propagates the subsystem callback return values back to the caller;
6430  *   returns 0 on success.  If capture_cpus is non-NULL, the value returned
6431  *   is zero if all of the pa_hments are of a type that do not require
6432  *   capturing CPUs prior to suspending the mapping, else it is 1.
6433  */
6434 static int
6435 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
6436 {
6437 	struct sf_hment	*sfhmep;
6438 	struct pa_hment *pahmep;
6439 	int (*f)(caddr_t, uint_t, uint_t, void *);
6440 	int		ret;
6441 	id_t		id;
6442 	int		locked = 0;
6443 	kmutex_t	*pml;
6444 
6445 	ASSERT(PAGE_EXCL(pp));
6446 	if (!sfmmu_mlist_held(pp)) {
6447 		pml = sfmmu_mlist_enter(pp);
6448 		locked = 1;
6449 	}
6450 
6451 	if (capture_cpus)
6452 		*capture_cpus = 0;
6453 
6454 top:
6455 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6456 		/*
6457 		 * skip sf_hments corresponding to VA<->PA mappings;
6458 		 * for pa_hment's, hme_tte.ll is zero
6459 		 */
6460 		if (!IS_PAHME(sfhmep))
6461 			continue;
6462 
6463 		pahmep = sfhmep->hme_data;
6464 		ASSERT(pahmep != NULL);
6465 
6466 		/*
6467 		 * skip if pre-handler has been called earlier in this loop
6468 		 */
6469 		if (pahmep->flags & flag)
6470 			continue;
6471 
6472 		id = pahmep->cb_id;
6473 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6474 		if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
6475 			*capture_cpus = 1;
6476 		if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
6477 			pahmep->flags |= flag;
6478 			continue;
6479 		}
6480 
6481 		/*
6482 		 * Drop the mapping list lock to avoid locking order issues.
6483 		 */
6484 		if (locked)
6485 			sfmmu_mlist_exit(pml);
6486 
6487 		ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
6488 		if (ret != 0)
6489 			return (ret);	/* caller must do the cleanup */
6490 
6491 		if (locked) {
6492 			pml = sfmmu_mlist_enter(pp);
6493 			pahmep->flags |= flag;
6494 			goto top;
6495 		}
6496 
6497 		pahmep->flags |= flag;
6498 	}
6499 
6500 	if (locked)
6501 		sfmmu_mlist_exit(pml);
6502 
6503 	return (0);
6504 }
6505 
6506 /*
6507  * Execute post-callback handler of each pa_hment linked to pp
6508  *
6509  * Same overall assumptions and restrictions apply as for
6510  * hat_pageprocess_precallbacks().
6511  */
6512 static void
6513 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
6514 {
6515 	pfn_t pgpfn = pp->p_pagenum;
6516 	pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
6517 	pfn_t newpfn;
6518 	struct sf_hment *sfhmep;
6519 	struct pa_hment *pahmep;
6520 	int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
6521 	id_t	id;
6522 	int	locked = 0;
6523 	kmutex_t *pml;
6524 
6525 	ASSERT(PAGE_EXCL(pp));
6526 	if (!sfmmu_mlist_held(pp)) {
6527 		pml = sfmmu_mlist_enter(pp);
6528 		locked = 1;
6529 	}
6530 
6531 top:
6532 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6533 		/*
6534 		 * skip sf_hments corresponding to VA<->PA mappings;
6535 		 * for pa_hment's, hme_tte.ll is zero
6536 		 */
6537 		if (!IS_PAHME(sfhmep))
6538 			continue;
6539 
6540 		pahmep = sfhmep->hme_data;
6541 		ASSERT(pahmep != NULL);
6542 
6543 		if ((pahmep->flags & flag) == 0)
6544 			continue;
6545 
6546 		pahmep->flags &= ~flag;
6547 
6548 		id = pahmep->cb_id;
6549 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6550 		if ((f = sfmmu_cb_table[id].posthandler) == NULL)
6551 			continue;
6552 
6553 		/*
6554 		 * Convert the base page PFN into the constituent PFN
6555 		 * which is needed by the callback handler.
6556 		 */
6557 		newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
6558 
6559 		/*
6560 		 * Drop the mapping list lock to avoid locking order issues.
6561 		 */
6562 		if (locked)
6563 			sfmmu_mlist_exit(pml);
6564 
6565 		if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
6566 		    != 0)
6567 			panic("sfmmu: posthandler failed");
6568 
6569 		if (locked) {
6570 			pml = sfmmu_mlist_enter(pp);
6571 			goto top;
6572 		}
6573 	}
6574 
6575 	if (locked)
6576 		sfmmu_mlist_exit(pml);
6577 }
6578 
6579 /*
6580  * Suspend locked kernel mapping
6581  */
6582 void
6583 hat_pagesuspend(struct page *pp)
6584 {
6585 	struct sf_hment *sfhmep;
6586 	sfmmu_t *sfmmup;
6587 	tte_t tte, ttemod;
6588 	struct hme_blk *hmeblkp;
6589 	caddr_t addr;
6590 	int index, cons;
6591 	cpuset_t cpuset;
6592 
6593 	ASSERT(PAGE_EXCL(pp));
6594 	ASSERT(sfmmu_mlist_held(pp));
6595 
6596 	mutex_enter(&kpr_suspendlock);
6597 
6598 	/*
6599 	 * We're about to suspend a kernel mapping so mark this thread as
6600 	 * non-traceable by DTrace. This prevents us from running into issues
6601 	 * with probe context trying to touch a suspended page
6602 	 * in the relocation codepath itself.
6603 	 */
6604 	curthread->t_flag |= T_DONTDTRACE;
6605 
6606 	index = PP_MAPINDEX(pp);
6607 	cons = TTE8K;
6608 
6609 retry:
6610 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6611 
6612 		if (IS_PAHME(sfhmep))
6613 			continue;
6614 
6615 		if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
6616 			continue;
6617 
6618 		/*
6619 		 * Loop until we successfully set the suspend bit in
6620 		 * the TTE.
6621 		 */
6622 again:
6623 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
6624 		ASSERT(TTE_IS_VALID(&tte));
6625 
6626 		ttemod = tte;
6627 		TTE_SET_SUSPEND(&ttemod);
6628 		if (sfmmu_modifytte_try(&tte, &ttemod,
6629 		    &sfhmep->hme_tte) < 0)
6630 			goto again;
6631 
6632 		/*
6633 		 * Invalidate TSB entry
6634 		 */
6635 		hmeblkp = sfmmu_hmetohblk(sfhmep);
6636 
6637 		sfmmup = hblktosfmmu(hmeblkp);
6638 		ASSERT(sfmmup == ksfmmup);
6639 		ASSERT(!hmeblkp->hblk_shared);
6640 
6641 		addr = tte_to_vaddr(hmeblkp, tte);
6642 
6643 		/*
6644 		 * No need to make sure that the TSB for this sfmmu is
6645 		 * not being relocated since it is ksfmmup and thus it
6646 		 * will never be relocated.
6647 		 */
6648 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
6649 
6650 		/*
6651 		 * Update xcall stats
6652 		 */
6653 		cpuset = cpu_ready_set;
6654 		CPUSET_DEL(cpuset, CPU->cpu_id);
6655 
6656 		/* LINTED: constant in conditional context */
6657 		SFMMU_XCALL_STATS(ksfmmup);
6658 
6659 		/*
6660 		 * Flush TLB entry on remote CPU's
6661 		 */
6662 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
6663 		    (uint64_t)ksfmmup);
6664 		xt_sync(cpuset);
6665 
6666 		/*
6667 		 * Flush TLB entry on local CPU
6668 		 */
6669 		vtag_flushpage(addr, (uint64_t)ksfmmup);
6670 	}
6671 
6672 	while (index != 0) {
6673 		index = index >> 1;
6674 		if (index != 0)
6675 			cons++;
6676 		if (index & 0x1) {
6677 			pp = PP_GROUPLEADER(pp, cons);
6678 			goto retry;
6679 		}
6680 	}
6681 }
6682 
6683 #ifdef	DEBUG
6684 
6685 #define	N_PRLE	1024
6686 struct prle {
6687 	page_t *targ;
6688 	page_t *repl;
6689 	int status;
6690 	int pausecpus;
6691 	hrtime_t whence;
6692 };
6693 
6694 static struct prle page_relocate_log[N_PRLE];
6695 static int prl_entry;
6696 static kmutex_t prl_mutex;
6697 
6698 #define	PAGE_RELOCATE_LOG(t, r, s, p)					\
6699 	mutex_enter(&prl_mutex);					\
6700 	page_relocate_log[prl_entry].targ = *(t);			\
6701 	page_relocate_log[prl_entry].repl = *(r);			\
6702 	page_relocate_log[prl_entry].status = (s);			\
6703 	page_relocate_log[prl_entry].pausecpus = (p);			\
6704 	page_relocate_log[prl_entry].whence = gethrtime();		\
6705 	prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1;	\
6706 	mutex_exit(&prl_mutex);
6707 
6708 #else	/* !DEBUG */
6709 #define	PAGE_RELOCATE_LOG(t, r, s, p)
6710 #endif
6711 
6712 /*
6713  * Core Kernel Page Relocation Algorithm
6714  *
6715  * Input:
6716  *
6717  * target : 	constituent pages are SE_EXCL locked.
6718  * replacement:	constituent pages are SE_EXCL locked.
6719  *
6720  * Output:
6721  *
6722  * nrelocp:	number of pages relocated
6723  */
6724 int
6725 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
6726 {
6727 	page_t		*targ, *repl;
6728 	page_t		*tpp, *rpp;
6729 	kmutex_t	*low, *high;
6730 	spgcnt_t	npages, i;
6731 	page_t		*pl = NULL;
6732 	int		old_pil;
6733 	cpuset_t	cpuset;
6734 	int		cap_cpus;
6735 	int		ret;
6736 
6737 	if (hat_kpr_enabled == 0 || !kcage_on || PP_ISNORELOC(*target)) {
6738 		PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
6739 		return (EAGAIN);
6740 	}
6741 
6742 	mutex_enter(&kpr_mutex);
6743 	kreloc_thread = curthread;
6744 
6745 	targ = *target;
6746 	repl = *replacement;
6747 	ASSERT(repl != NULL);
6748 	ASSERT(targ->p_szc == repl->p_szc);
6749 
6750 	npages = page_get_pagecnt(targ->p_szc);
6751 
6752 	/*
6753 	 * unload VA<->PA mappings that are not locked
6754 	 */
6755 	tpp = targ;
6756 	for (i = 0; i < npages; i++) {
6757 		(void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
6758 		tpp++;
6759 	}
6760 
6761 	/*
6762 	 * Do "presuspend" callbacks, in a context from which we can still
6763 	 * block as needed. Note that we don't hold the mapping list lock
6764 	 * of "targ" at this point due to potential locking order issues;
6765 	 * we assume that between the hat_pageunload() above and holding
6766 	 * the SE_EXCL lock that the mapping list *cannot* change at this
6767 	 * point.
6768 	 */
6769 	ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
6770 	if (ret != 0) {
6771 		/*
6772 		 * EIO translates to fatal error, for all others cleanup
6773 		 * and return EAGAIN.
6774 		 */
6775 		ASSERT(ret != EIO);
6776 		hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
6777 		PAGE_RELOCATE_LOG(target, replacement, ret, -1);
6778 		kreloc_thread = NULL;
6779 		mutex_exit(&kpr_mutex);
6780 		return (EAGAIN);
6781 	}
6782 
6783 	/*
6784 	 * acquire p_mapping list lock for both the target and replacement
6785 	 * root pages.
6786 	 *
6787 	 * low and high refer to the need to grab the mlist locks in a
6788 	 * specific order in order to prevent race conditions.  Thus the
6789 	 * lower lock must be grabbed before the higher lock.
6790 	 *
6791 	 * This will block hat_unload's accessing p_mapping list.  Since
6792 	 * we have SE_EXCL lock, hat_memload and hat_pageunload will be
6793 	 * blocked.  Thus, no one else will be accessing the p_mapping list
6794 	 * while we suspend and reload the locked mapping below.
6795 	 */
6796 	tpp = targ;
6797 	rpp = repl;
6798 	sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
6799 
6800 	kpreempt_disable();
6801 
6802 #ifdef VAC
6803 	/*
6804 	 * If the replacement page is of a different virtual color
6805 	 * than the page it is replacing, we need to handle the VAC
6806 	 * consistency for it just as we would if we were setting up
6807 	 * a new mapping to a page.
6808 	 */
6809 	if ((tpp->p_szc == 0) && (PP_GET_VCOLOR(rpp) != NO_VCOLOR)) {
6810 		if (tpp->p_vcolor != rpp->p_vcolor) {
6811 			sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
6812 			    rpp->p_pagenum);
6813 		}
6814 	}
6815 #endif
6816 
6817 	/*
6818 	 * We raise our PIL to 13 so that we don't get captured by
6819 	 * another CPU or pinned by an interrupt thread.  We can't go to
6820 	 * PIL 14 since the nexus driver(s) may need to interrupt at
6821 	 * that level in the case of IOMMU pseudo mappings.
6822 	 */
6823 	cpuset = cpu_ready_set;
6824 	CPUSET_DEL(cpuset, CPU->cpu_id);
6825 	if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
6826 		old_pil = splr(XCALL_PIL);
6827 	} else {
6828 		old_pil = -1;
6829 		xc_attention(cpuset);
6830 	}
6831 	ASSERT(getpil() == XCALL_PIL);
6832 
6833 	/*
6834 	 * Now do suspend callbacks. In the case of an IOMMU mapping
6835 	 * this will suspend all DMA activity to the page while it is
6836 	 * being relocated. Since we are well above LOCK_LEVEL and CPUs
6837 	 * may be captured at this point we should have acquired any needed
6838 	 * locks in the presuspend callback.
6839 	 */
6840 	ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
6841 	if (ret != 0) {
6842 		repl = targ;
6843 		goto suspend_fail;
6844 	}
6845 
6846 	/*
6847 	 * Raise the PIL yet again, this time to block all high-level
6848 	 * interrupts on this CPU. This is necessary to prevent an
6849 	 * interrupt routine from pinning the thread which holds the
6850 	 * mapping suspended and then touching the suspended page.
6851 	 *
6852 	 * Once the page is suspended we also need to be careful to
6853 	 * avoid calling any functions which touch any seg_kmem memory
6854 	 * since that memory may be backed by the very page we are
6855 	 * relocating in here!
6856 	 */
6857 	hat_pagesuspend(targ);
6858 
6859 	/*
6860 	 * Now that we are confident everybody has stopped using this page,
6861 	 * copy the page contents.  Note we use a physical copy to prevent
6862 	 * locking issues and to avoid fpRAS because we can't handle it in
6863 	 * this context.
6864 	 */
6865 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6866 		/*
6867 		 * Copy the contents of the page.
6868 		 */
6869 		ppcopy_kernel(tpp, rpp);
6870 	}
6871 
6872 	tpp = targ;
6873 	rpp = repl;
6874 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6875 		/*
6876 		 * Copy attributes.  VAC consistency was handled above,
6877 		 * if required.
6878 		 */
6879 		rpp->p_nrm = tpp->p_nrm;
6880 		tpp->p_nrm = 0;
6881 		rpp->p_index = tpp->p_index;
6882 		tpp->p_index = 0;
6883 #ifdef VAC
6884 		rpp->p_vcolor = tpp->p_vcolor;
6885 #endif
6886 	}
6887 
6888 	/*
6889 	 * First, unsuspend the page, if we set the suspend bit, and transfer
6890 	 * the mapping list from the target page to the replacement page.
6891 	 * Next process postcallbacks; since pa_hment's are linked only to the
6892 	 * p_mapping list of root page, we don't iterate over the constituent
6893 	 * pages.
6894 	 */
6895 	hat_pagereload(targ, repl);
6896 
6897 suspend_fail:
6898 	hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
6899 
6900 	/*
6901 	 * Now lower our PIL and release any captured CPUs since we
6902 	 * are out of the "danger zone".  After this it will again be
6903 	 * safe to acquire adaptive mutex locks, or to drop them...
6904 	 */
6905 	if (old_pil != -1) {
6906 		splx(old_pil);
6907 	} else {
6908 		xc_dismissed(cpuset);
6909 	}
6910 
6911 	kpreempt_enable();
6912 
6913 	sfmmu_mlist_reloc_exit(low, high);
6914 
6915 	/*
6916 	 * Postsuspend callbacks should drop any locks held across
6917 	 * the suspend callbacks.  As before, we don't hold the mapping
6918 	 * list lock at this point.. our assumption is that the mapping
6919 	 * list still can't change due to our holding SE_EXCL lock and
6920 	 * there being no unlocked mappings left. Hence the restriction
6921 	 * on calling context to hat_delete_callback()
6922 	 */
6923 	hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
6924 	if (ret != 0) {
6925 		/*
6926 		 * The second presuspend call failed: we got here through
6927 		 * the suspend_fail label above.
6928 		 */
6929 		ASSERT(ret != EIO);
6930 		PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
6931 		kreloc_thread = NULL;
6932 		mutex_exit(&kpr_mutex);
6933 		return (EAGAIN);
6934 	}
6935 
6936 	/*
6937 	 * Now that we're out of the performance critical section we can
6938 	 * take care of updating the hash table, since we still
6939 	 * hold all the pages locked SE_EXCL at this point we
6940 	 * needn't worry about things changing out from under us.
6941 	 */
6942 	tpp = targ;
6943 	rpp = repl;
6944 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6945 
6946 		/*
6947 		 * replace targ with replacement in page_hash table
6948 		 */
6949 		targ = tpp;
6950 		page_relocate_hash(rpp, targ);
6951 
6952 		/*
6953 		 * concatenate target; caller of platform_page_relocate()
6954 		 * expects target to be concatenated after returning.
6955 		 */
6956 		ASSERT(targ->p_next == targ);
6957 		ASSERT(targ->p_prev == targ);
6958 		page_list_concat(&pl, &targ);
6959 	}
6960 
6961 	ASSERT(*target == pl);
6962 	*nrelocp = npages;
6963 	PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
6964 	kreloc_thread = NULL;
6965 	mutex_exit(&kpr_mutex);
6966 	return (0);
6967 }
6968 
6969 /*
6970  * Called when stray pa_hments are found attached to a page which is
6971  * being freed.  Notify the subsystem which attached the pa_hment of
6972  * the error if it registered a suitable handler, else panic.
6973  */
6974 static void
6975 sfmmu_pahment_leaked(struct pa_hment *pahmep)
6976 {
6977 	id_t cb_id = pahmep->cb_id;
6978 
6979 	ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
6980 	if (sfmmu_cb_table[cb_id].errhandler != NULL) {
6981 		if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
6982 		    HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
6983 			return;		/* non-fatal */
6984 	}
6985 	panic("pa_hment leaked: 0x%p", pahmep);
6986 }
6987 
6988 /*
6989  * Remove all mappings to page 'pp'.
6990  */
6991 int
6992 hat_pageunload(struct page *pp, uint_t forceflag)
6993 {
6994 	struct page *origpp = pp;
6995 	struct sf_hment *sfhme, *tmphme;
6996 	struct hme_blk *hmeblkp;
6997 	kmutex_t *pml;
6998 #ifdef VAC
6999 	kmutex_t *pmtx;
7000 #endif
7001 	cpuset_t cpuset, tset;
7002 	int index, cons;
7003 	int xhme_blks;
7004 	int pa_hments;
7005 
7006 	ASSERT(PAGE_EXCL(pp));
7007 
7008 retry_xhat:
7009 	tmphme = NULL;
7010 	xhme_blks = 0;
7011 	pa_hments = 0;
7012 	CPUSET_ZERO(cpuset);
7013 
7014 	pml = sfmmu_mlist_enter(pp);
7015 
7016 #ifdef VAC
7017 	if (pp->p_kpmref)
7018 		sfmmu_kpm_pageunload(pp);
7019 	ASSERT(!PP_ISMAPPED_KPM(pp));
7020 #endif
7021 
7022 	index = PP_MAPINDEX(pp);
7023 	cons = TTE8K;
7024 retry:
7025 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7026 		tmphme = sfhme->hme_next;
7027 
7028 		if (IS_PAHME(sfhme)) {
7029 			ASSERT(sfhme->hme_data != NULL);
7030 			pa_hments++;
7031 			continue;
7032 		}
7033 
7034 		hmeblkp = sfmmu_hmetohblk(sfhme);
7035 		if (hmeblkp->hblk_xhat_bit) {
7036 			struct xhat_hme_blk *xblk =
7037 			    (struct xhat_hme_blk *)hmeblkp;
7038 
7039 			(void) XHAT_PAGEUNLOAD(xblk->xhat_hme_blk_hat,
7040 			    pp, forceflag, XBLK2PROVBLK(xblk));
7041 
7042 			xhme_blks = 1;
7043 			continue;
7044 		}
7045 
7046 		/*
7047 		 * If there are kernel mappings don't unload them, they will
7048 		 * be suspended.
7049 		 */
7050 		if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
7051 		    hmeblkp->hblk_tag.htag_id == ksfmmup)
7052 			continue;
7053 
7054 		tset = sfmmu_pageunload(pp, sfhme, cons);
7055 		CPUSET_OR(cpuset, tset);
7056 	}
7057 
7058 	while (index != 0) {
7059 		index = index >> 1;
7060 		if (index != 0)
7061 			cons++;
7062 		if (index & 0x1) {
7063 			/* Go to leading page */
7064 			pp = PP_GROUPLEADER(pp, cons);
7065 			ASSERT(sfmmu_mlist_held(pp));
7066 			goto retry;
7067 		}
7068 	}
7069 
7070 	/*
7071 	 * cpuset may be empty if the page was only mapped by segkpm,
7072 	 * in which case we won't actually cross-trap.
7073 	 */
7074 	xt_sync(cpuset);
7075 
7076 	/*
7077 	 * The page should have no mappings at this point, unless
7078 	 * we were called from hat_page_relocate() in which case we
7079 	 * leave the locked mappings which will be suspended later.
7080 	 */
7081 	ASSERT(!PP_ISMAPPED(origpp) || xhme_blks || pa_hments ||
7082 	    (forceflag == SFMMU_KERNEL_RELOC));
7083 
7084 #ifdef VAC
7085 	if (PP_ISTNC(pp)) {
7086 		if (cons == TTE8K) {
7087 			pmtx = sfmmu_page_enter(pp);
7088 			PP_CLRTNC(pp);
7089 			sfmmu_page_exit(pmtx);
7090 		} else {
7091 			conv_tnc(pp, cons);
7092 		}
7093 	}
7094 #endif	/* VAC */
7095 
7096 	if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
7097 		/*
7098 		 * Unlink any pa_hments and free them, calling back
7099 		 * the responsible subsystem to notify it of the error.
7100 		 * This can occur in situations such as drivers leaking
7101 		 * DMA handles: naughty, but common enough that we'd like
7102 		 * to keep the system running rather than bringing it
7103 		 * down with an obscure error like "pa_hment leaked"
7104 		 * which doesn't aid the user in debugging their driver.
7105 		 */
7106 		for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7107 			tmphme = sfhme->hme_next;
7108 			if (IS_PAHME(sfhme)) {
7109 				struct pa_hment *pahmep = sfhme->hme_data;
7110 				sfmmu_pahment_leaked(pahmep);
7111 				HME_SUB(sfhme, pp);
7112 				kmem_cache_free(pa_hment_cache, pahmep);
7113 			}
7114 		}
7115 
7116 		ASSERT(!PP_ISMAPPED(origpp) || xhme_blks);
7117 	}
7118 
7119 	sfmmu_mlist_exit(pml);
7120 
7121 	/*
7122 	 * XHAT may not have finished unloading pages
7123 	 * because some other thread was waiting for
7124 	 * mlist lock and XHAT_PAGEUNLOAD let it do
7125 	 * the job.
7126 	 */
7127 	if (xhme_blks) {
7128 		pp = origpp;
7129 		goto retry_xhat;
7130 	}
7131 
7132 	return (0);
7133 }
7134 
7135 cpuset_t
7136 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
7137 {
7138 	struct hme_blk *hmeblkp;
7139 	sfmmu_t *sfmmup;
7140 	tte_t tte, ttemod;
7141 #ifdef DEBUG
7142 	tte_t orig_old;
7143 #endif /* DEBUG */
7144 	caddr_t addr;
7145 	int ttesz;
7146 	int ret;
7147 	cpuset_t cpuset;
7148 
7149 	ASSERT(pp != NULL);
7150 	ASSERT(sfmmu_mlist_held(pp));
7151 	ASSERT(!PP_ISKAS(pp));
7152 
7153 	CPUSET_ZERO(cpuset);
7154 
7155 	hmeblkp = sfmmu_hmetohblk(sfhme);
7156 
7157 readtte:
7158 	sfmmu_copytte(&sfhme->hme_tte, &tte);
7159 	if (TTE_IS_VALID(&tte)) {
7160 		sfmmup = hblktosfmmu(hmeblkp);
7161 		ttesz = get_hblk_ttesz(hmeblkp);
7162 		/*
7163 		 * Only unload mappings of 'cons' size.
7164 		 */
7165 		if (ttesz != cons)
7166 			return (cpuset);
7167 
7168 		/*
7169 		 * Note that we have p_mapping lock, but no hash lock here.
7170 		 * hblk_unload() has to have both hash lock AND p_mapping
7171 		 * lock before it tries to modify tte. So, the tte could
7172 		 * not become invalid in the sfmmu_modifytte_try() below.
7173 		 */
7174 		ttemod = tte;
7175 #ifdef DEBUG
7176 		orig_old = tte;
7177 #endif /* DEBUG */
7178 
7179 		TTE_SET_INVALID(&ttemod);
7180 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7181 		if (ret < 0) {
7182 #ifdef DEBUG
7183 			/* only R/M bits can change. */
7184 			chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
7185 #endif /* DEBUG */
7186 			goto readtte;
7187 		}
7188 
7189 		if (ret == 0) {
7190 			panic("pageunload: cas failed?");
7191 		}
7192 
7193 		addr = tte_to_vaddr(hmeblkp, tte);
7194 
7195 		if (hmeblkp->hblk_shared) {
7196 			sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7197 			uint_t rid = hmeblkp->hblk_tag.htag_rid;
7198 			sf_region_t *rgnp;
7199 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7200 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7201 			ASSERT(srdp != NULL);
7202 			rgnp = srdp->srd_hmergnp[rid];
7203 			SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
7204 			cpuset = sfmmu_rgntlb_demap(addr, rgnp, hmeblkp, 1);
7205 			sfmmu_ttesync(NULL, addr, &tte, pp);
7206 			ASSERT(rgnp->rgn_ttecnt[ttesz] > 0);
7207 			atomic_add_long(&rgnp->rgn_ttecnt[ttesz], -1);
7208 		} else {
7209 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
7210 			atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -1);
7211 
7212 			/*
7213 			 * We need to flush the page from the virtual cache
7214 			 * in order to prevent a virtual cache alias
7215 			 * inconsistency. The particular scenario we need
7216 			 * to worry about is:
7217 			 * Given:  va1 and va2 are two virtual address that
7218 			 * alias and will map the same physical address.
7219 			 * 1.   mapping exists from va1 to pa and data has
7220 			 *	been read into the cache.
7221 			 * 2.   unload va1.
7222 			 * 3.   load va2 and modify data using va2.
7223 			 * 4    unload va2.
7224 			 * 5.   load va1 and reference data.  Unless we flush
7225 			 *	the data cache when we unload we will get
7226 			 *	stale data.
7227 			 * This scenario is taken care of by using virtual
7228 			 * page coloring.
7229 			 */
7230 			if (sfmmup->sfmmu_ismhat) {
7231 				/*
7232 				 * Flush TSBs, TLBs and caches
7233 				 * of every process
7234 				 * sharing this ism segment.
7235 				 */
7236 				sfmmu_hat_lock_all();
7237 				mutex_enter(&ism_mlist_lock);
7238 				kpreempt_disable();
7239 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
7240 				    pp->p_pagenum, CACHE_NO_FLUSH);
7241 				kpreempt_enable();
7242 				mutex_exit(&ism_mlist_lock);
7243 				sfmmu_hat_unlock_all();
7244 				cpuset = cpu_ready_set;
7245 			} else {
7246 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7247 				cpuset = sfmmup->sfmmu_cpusran;
7248 			}
7249 		}
7250 
7251 		/*
7252 		 * Hme_sub has to run after ttesync() and a_rss update.
7253 		 * See hblk_unload().
7254 		 */
7255 		HME_SUB(sfhme, pp);
7256 		membar_stst();
7257 
7258 		/*
7259 		 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
7260 		 * since pteload may have done a HME_ADD() right after
7261 		 * we did the HME_SUB() above. Hmecnt is now maintained
7262 		 * by cas only. no lock guranteed its value. The only
7263 		 * gurantee we have is the hmecnt should not be less than
7264 		 * what it should be so the hblk will not be taken away.
7265 		 * It's also important that we decremented the hmecnt after
7266 		 * we are done with hmeblkp so that this hmeblk won't be
7267 		 * stolen.
7268 		 */
7269 		ASSERT(hmeblkp->hblk_hmecnt > 0);
7270 		ASSERT(hmeblkp->hblk_vcnt > 0);
7271 		atomic_add_16(&hmeblkp->hblk_vcnt, -1);
7272 		atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
7273 		/*
7274 		 * This is bug 4063182.
7275 		 * XXX: fixme
7276 		 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
7277 		 *	!hmeblkp->hblk_lckcnt);
7278 		 */
7279 	} else {
7280 		panic("invalid tte? pp %p &tte %p",
7281 		    (void *)pp, (void *)&tte);
7282 	}
7283 
7284 	return (cpuset);
7285 }
7286 
7287 /*
7288  * While relocating a kernel page, this function will move the mappings
7289  * from tpp to dpp and modify any associated data with these mappings.
7290  * It also unsuspends the suspended kernel mapping.
7291  */
7292 static void
7293 hat_pagereload(struct page *tpp, struct page *dpp)
7294 {
7295 	struct sf_hment *sfhme;
7296 	tte_t tte, ttemod;
7297 	int index, cons;
7298 
7299 	ASSERT(getpil() == PIL_MAX);
7300 	ASSERT(sfmmu_mlist_held(tpp));
7301 	ASSERT(sfmmu_mlist_held(dpp));
7302 
7303 	index = PP_MAPINDEX(tpp);
7304 	cons = TTE8K;
7305 
7306 	/* Update real mappings to the page */
7307 retry:
7308 	for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
7309 		if (IS_PAHME(sfhme))
7310 			continue;
7311 		sfmmu_copytte(&sfhme->hme_tte, &tte);
7312 		ttemod = tte;
7313 
7314 		/*
7315 		 * replace old pfn with new pfn in TTE
7316 		 */
7317 		PFN_TO_TTE(ttemod, dpp->p_pagenum);
7318 
7319 		/*
7320 		 * clear suspend bit
7321 		 */
7322 		ASSERT(TTE_IS_SUSPEND(&ttemod));
7323 		TTE_CLR_SUSPEND(&ttemod);
7324 
7325 		if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
7326 			panic("hat_pagereload(): sfmmu_modifytte_try() failed");
7327 
7328 		/*
7329 		 * set hme_page point to new page
7330 		 */
7331 		sfhme->hme_page = dpp;
7332 	}
7333 
7334 	/*
7335 	 * move p_mapping list from old page to new page
7336 	 */
7337 	dpp->p_mapping = tpp->p_mapping;
7338 	tpp->p_mapping = NULL;
7339 	dpp->p_share = tpp->p_share;
7340 	tpp->p_share = 0;
7341 
7342 	while (index != 0) {
7343 		index = index >> 1;
7344 		if (index != 0)
7345 			cons++;
7346 		if (index & 0x1) {
7347 			tpp = PP_GROUPLEADER(tpp, cons);
7348 			dpp = PP_GROUPLEADER(dpp, cons);
7349 			goto retry;
7350 		}
7351 	}
7352 
7353 	curthread->t_flag &= ~T_DONTDTRACE;
7354 	mutex_exit(&kpr_suspendlock);
7355 }
7356 
7357 uint_t
7358 hat_pagesync(struct page *pp, uint_t clearflag)
7359 {
7360 	struct sf_hment *sfhme, *tmphme = NULL;
7361 	struct hme_blk *hmeblkp;
7362 	kmutex_t *pml;
7363 	cpuset_t cpuset, tset;
7364 	int	index, cons;
7365 	extern	ulong_t po_share;
7366 	page_t	*save_pp = pp;
7367 	int	stop_on_sh = 0;
7368 	uint_t	shcnt;
7369 
7370 	CPUSET_ZERO(cpuset);
7371 
7372 	if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
7373 		return (PP_GENERIC_ATTR(pp));
7374 	}
7375 
7376 	if ((clearflag == (HAT_SYNC_STOPON_REF | HAT_SYNC_DONTZERO)) &&
7377 	    PP_ISREF(pp)) {
7378 		return (PP_GENERIC_ATTR(pp));
7379 	}
7380 
7381 	if ((clearflag == (HAT_SYNC_STOPON_MOD | HAT_SYNC_DONTZERO)) &&
7382 	    PP_ISMOD(pp)) {
7383 		return (PP_GENERIC_ATTR(pp));
7384 	}
7385 
7386 	if ((clearflag & HAT_SYNC_STOPON_SHARED) != 0 &&
7387 	    (pp->p_share > po_share) &&
7388 	    !(clearflag & HAT_SYNC_ZERORM)) {
7389 		hat_page_setattr(pp, P_REF);
7390 		return (PP_GENERIC_ATTR(pp));
7391 	}
7392 
7393 	if ((clearflag & HAT_SYNC_STOPON_SHARED) &&
7394 	    !(clearflag & HAT_SYNC_ZERORM)) {
7395 		stop_on_sh = 1;
7396 		shcnt = 0;
7397 	}
7398 	clearflag &= ~HAT_SYNC_STOPON_SHARED;
7399 	pml = sfmmu_mlist_enter(pp);
7400 	index = PP_MAPINDEX(pp);
7401 	cons = TTE8K;
7402 retry:
7403 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7404 		/*
7405 		 * We need to save the next hment on the list since
7406 		 * it is possible for pagesync to remove an invalid hment
7407 		 * from the list.
7408 		 */
7409 		tmphme = sfhme->hme_next;
7410 		if (IS_PAHME(sfhme))
7411 			continue;
7412 		/*
7413 		 * If we are looking for large mappings and this hme doesn't
7414 		 * reach the range we are seeking, just ignore it.
7415 		 */
7416 		hmeblkp = sfmmu_hmetohblk(sfhme);
7417 		if (hmeblkp->hblk_xhat_bit)
7418 			continue;
7419 
7420 		if (hme_size(sfhme) < cons)
7421 			continue;
7422 
7423 		if (stop_on_sh) {
7424 			if (hmeblkp->hblk_shared) {
7425 				sf_srd_t *srdp = hblktosrd(hmeblkp);
7426 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
7427 				sf_region_t *rgnp;
7428 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7429 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7430 				ASSERT(srdp != NULL);
7431 				rgnp = srdp->srd_hmergnp[rid];
7432 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
7433 				    rgnp, rid);
7434 				shcnt += rgnp->rgn_refcnt;
7435 			} else {
7436 				shcnt++;
7437 			}
7438 			if (shcnt > po_share) {
7439 				/*
7440 				 * tell the pager to spare the page this time
7441 				 * around.
7442 				 */
7443 				hat_page_setattr(save_pp, P_REF);
7444 				index = 0;
7445 				break;
7446 			}
7447 		}
7448 		tset = sfmmu_pagesync(pp, sfhme,
7449 		    clearflag & ~HAT_SYNC_STOPON_RM);
7450 		CPUSET_OR(cpuset, tset);
7451 
7452 		/*
7453 		 * If clearflag is HAT_SYNC_DONTZERO, break out as soon
7454 		 * as the "ref" or "mod" is set or share cnt exceeds po_share.
7455 		 */
7456 		if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
7457 		    (((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
7458 		    ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)))) {
7459 			index = 0;
7460 			break;
7461 		}
7462 	}
7463 
7464 	while (index) {
7465 		index = index >> 1;
7466 		cons++;
7467 		if (index & 0x1) {
7468 			/* Go to leading page */
7469 			pp = PP_GROUPLEADER(pp, cons);
7470 			goto retry;
7471 		}
7472 	}
7473 
7474 	xt_sync(cpuset);
7475 	sfmmu_mlist_exit(pml);
7476 	return (PP_GENERIC_ATTR(save_pp));
7477 }
7478 
7479 /*
7480  * Get all the hardware dependent attributes for a page struct
7481  */
7482 static cpuset_t
7483 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
7484 	uint_t clearflag)
7485 {
7486 	caddr_t addr;
7487 	tte_t tte, ttemod;
7488 	struct hme_blk *hmeblkp;
7489 	int ret;
7490 	sfmmu_t *sfmmup;
7491 	cpuset_t cpuset;
7492 
7493 	ASSERT(pp != NULL);
7494 	ASSERT(sfmmu_mlist_held(pp));
7495 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
7496 	    (clearflag == HAT_SYNC_ZERORM));
7497 
7498 	SFMMU_STAT(sf_pagesync);
7499 
7500 	CPUSET_ZERO(cpuset);
7501 
7502 sfmmu_pagesync_retry:
7503 
7504 	sfmmu_copytte(&sfhme->hme_tte, &tte);
7505 	if (TTE_IS_VALID(&tte)) {
7506 		hmeblkp = sfmmu_hmetohblk(sfhme);
7507 		sfmmup = hblktosfmmu(hmeblkp);
7508 		addr = tte_to_vaddr(hmeblkp, tte);
7509 		if (clearflag == HAT_SYNC_ZERORM) {
7510 			ttemod = tte;
7511 			TTE_CLR_RM(&ttemod);
7512 			ret = sfmmu_modifytte_try(&tte, &ttemod,
7513 			    &sfhme->hme_tte);
7514 			if (ret < 0) {
7515 				/*
7516 				 * cas failed and the new value is not what
7517 				 * we want.
7518 				 */
7519 				goto sfmmu_pagesync_retry;
7520 			}
7521 
7522 			if (ret > 0) {
7523 				/* we win the cas */
7524 				if (hmeblkp->hblk_shared) {
7525 					sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7526 					uint_t rid =
7527 					    hmeblkp->hblk_tag.htag_rid;
7528 					sf_region_t *rgnp;
7529 					ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7530 					ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7531 					ASSERT(srdp != NULL);
7532 					rgnp = srdp->srd_hmergnp[rid];
7533 					SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7534 					    srdp, rgnp, rid);
7535 					cpuset = sfmmu_rgntlb_demap(addr,
7536 					    rgnp, hmeblkp, 1);
7537 				} else {
7538 					sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
7539 					    0, 0);
7540 					cpuset = sfmmup->sfmmu_cpusran;
7541 				}
7542 			}
7543 		}
7544 		sfmmu_ttesync(hmeblkp->hblk_shared ? NULL : sfmmup, addr,
7545 		    &tte, pp);
7546 	}
7547 	return (cpuset);
7548 }
7549 
7550 /*
7551  * Remove write permission from a mappings to a page, so that
7552  * we can detect the next modification of it. This requires modifying
7553  * the TTE then invalidating (demap) any TLB entry using that TTE.
7554  * This code is similar to sfmmu_pagesync().
7555  */
7556 static cpuset_t
7557 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
7558 {
7559 	caddr_t addr;
7560 	tte_t tte;
7561 	tte_t ttemod;
7562 	struct hme_blk *hmeblkp;
7563 	int ret;
7564 	sfmmu_t *sfmmup;
7565 	cpuset_t cpuset;
7566 
7567 	ASSERT(pp != NULL);
7568 	ASSERT(sfmmu_mlist_held(pp));
7569 
7570 	CPUSET_ZERO(cpuset);
7571 	SFMMU_STAT(sf_clrwrt);
7572 
7573 retry:
7574 
7575 	sfmmu_copytte(&sfhme->hme_tte, &tte);
7576 	if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
7577 		hmeblkp = sfmmu_hmetohblk(sfhme);
7578 
7579 		/*
7580 		 * xhat mappings should never be to a VMODSORT page.
7581 		 */
7582 		ASSERT(hmeblkp->hblk_xhat_bit == 0);
7583 
7584 		sfmmup = hblktosfmmu(hmeblkp);
7585 		addr = tte_to_vaddr(hmeblkp, tte);
7586 
7587 		ttemod = tte;
7588 		TTE_CLR_WRT(&ttemod);
7589 		TTE_CLR_MOD(&ttemod);
7590 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7591 
7592 		/*
7593 		 * if cas failed and the new value is not what
7594 		 * we want retry
7595 		 */
7596 		if (ret < 0)
7597 			goto retry;
7598 
7599 		/* we win the cas */
7600 		if (ret > 0) {
7601 			if (hmeblkp->hblk_shared) {
7602 				sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7603 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
7604 				sf_region_t *rgnp;
7605 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7606 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7607 				ASSERT(srdp != NULL);
7608 				rgnp = srdp->srd_hmergnp[rid];
7609 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7610 				    srdp, rgnp, rid);
7611 				cpuset = sfmmu_rgntlb_demap(addr,
7612 				    rgnp, hmeblkp, 1);
7613 			} else {
7614 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7615 				cpuset = sfmmup->sfmmu_cpusran;
7616 			}
7617 		}
7618 	}
7619 
7620 	return (cpuset);
7621 }
7622 
7623 /*
7624  * Walk all mappings of a page, removing write permission and clearing the
7625  * ref/mod bits. This code is similar to hat_pagesync()
7626  */
7627 static void
7628 hat_page_clrwrt(page_t *pp)
7629 {
7630 	struct sf_hment *sfhme;
7631 	struct sf_hment *tmphme = NULL;
7632 	kmutex_t *pml;
7633 	cpuset_t cpuset;
7634 	cpuset_t tset;
7635 	int	index;
7636 	int	 cons;
7637 
7638 	CPUSET_ZERO(cpuset);
7639 
7640 	pml = sfmmu_mlist_enter(pp);
7641 	index = PP_MAPINDEX(pp);
7642 	cons = TTE8K;
7643 retry:
7644 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7645 		tmphme = sfhme->hme_next;
7646 
7647 		/*
7648 		 * If we are looking for large mappings and this hme doesn't
7649 		 * reach the range we are seeking, just ignore its.
7650 		 */
7651 
7652 		if (hme_size(sfhme) < cons)
7653 			continue;
7654 
7655 		tset = sfmmu_pageclrwrt(pp, sfhme);
7656 		CPUSET_OR(cpuset, tset);
7657 	}
7658 
7659 	while (index) {
7660 		index = index >> 1;
7661 		cons++;
7662 		if (index & 0x1) {
7663 			/* Go to leading page */
7664 			pp = PP_GROUPLEADER(pp, cons);
7665 			goto retry;
7666 		}
7667 	}
7668 
7669 	xt_sync(cpuset);
7670 	sfmmu_mlist_exit(pml);
7671 }
7672 
7673 /*
7674  * Set the given REF/MOD/RO bits for the given page.
7675  * For a vnode with a sorted v_pages list, we need to change
7676  * the attributes and the v_pages list together under page_vnode_mutex.
7677  */
7678 void
7679 hat_page_setattr(page_t *pp, uint_t flag)
7680 {
7681 	vnode_t		*vp = pp->p_vnode;
7682 	page_t		**listp;
7683 	kmutex_t	*pmtx;
7684 	kmutex_t	*vphm = NULL;
7685 	int		noshuffle;
7686 
7687 	noshuffle = flag & P_NSH;
7688 	flag &= ~P_NSH;
7689 
7690 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7691 
7692 	/*
7693 	 * nothing to do if attribute already set
7694 	 */
7695 	if ((pp->p_nrm & flag) == flag)
7696 		return;
7697 
7698 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
7699 	    !noshuffle) {
7700 		vphm = page_vnode_mutex(vp);
7701 		mutex_enter(vphm);
7702 	}
7703 
7704 	pmtx = sfmmu_page_enter(pp);
7705 	pp->p_nrm |= flag;
7706 	sfmmu_page_exit(pmtx);
7707 
7708 	if (vphm != NULL) {
7709 		/*
7710 		 * Some File Systems examine v_pages for NULL w/o
7711 		 * grabbing the vphm mutex. Must not let it become NULL when
7712 		 * pp is the only page on the list.
7713 		 */
7714 		if (pp->p_vpnext != pp) {
7715 			page_vpsub(&vp->v_pages, pp);
7716 			if (vp->v_pages != NULL)
7717 				listp = &vp->v_pages->p_vpprev->p_vpnext;
7718 			else
7719 				listp = &vp->v_pages;
7720 			page_vpadd(listp, pp);
7721 		}
7722 		mutex_exit(vphm);
7723 	}
7724 }
7725 
7726 void
7727 hat_page_clrattr(page_t *pp, uint_t flag)
7728 {
7729 	vnode_t		*vp = pp->p_vnode;
7730 	kmutex_t	*pmtx;
7731 
7732 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7733 
7734 	pmtx = sfmmu_page_enter(pp);
7735 
7736 	/*
7737 	 * Caller is expected to hold page's io lock for VMODSORT to work
7738 	 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
7739 	 * bit is cleared.
7740 	 * We don't have assert to avoid tripping some existing third party
7741 	 * code. The dirty page is moved back to top of the v_page list
7742 	 * after IO is done in pvn_write_done().
7743 	 */
7744 	pp->p_nrm &= ~flag;
7745 	sfmmu_page_exit(pmtx);
7746 
7747 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
7748 
7749 		/*
7750 		 * VMODSORT works by removing write permissions and getting
7751 		 * a fault when a page is made dirty. At this point
7752 		 * we need to remove write permission from all mappings
7753 		 * to this page.
7754 		 */
7755 		hat_page_clrwrt(pp);
7756 	}
7757 }
7758 
7759 uint_t
7760 hat_page_getattr(page_t *pp, uint_t flag)
7761 {
7762 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7763 	return ((uint_t)(pp->p_nrm & flag));
7764 }
7765 
7766 /*
7767  * DEBUG kernels: verify that a kernel va<->pa translation
7768  * is safe by checking the underlying page_t is in a page
7769  * relocation-safe state.
7770  */
7771 #ifdef	DEBUG
7772 void
7773 sfmmu_check_kpfn(pfn_t pfn)
7774 {
7775 	page_t *pp;
7776 	int index, cons;
7777 
7778 	if (hat_check_vtop == 0)
7779 		return;
7780 
7781 	if (hat_kpr_enabled == 0 || kvseg.s_base == NULL || panicstr)
7782 		return;
7783 
7784 	pp = page_numtopp_nolock(pfn);
7785 	if (!pp)
7786 		return;
7787 
7788 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7789 		return;
7790 
7791 	/*
7792 	 * Handed a large kernel page, we dig up the root page since we
7793 	 * know the root page might have the lock also.
7794 	 */
7795 	if (pp->p_szc != 0) {
7796 		index = PP_MAPINDEX(pp);
7797 		cons = TTE8K;
7798 again:
7799 		while (index != 0) {
7800 			index >>= 1;
7801 			if (index != 0)
7802 				cons++;
7803 			if (index & 0x1) {
7804 				pp = PP_GROUPLEADER(pp, cons);
7805 				goto again;
7806 			}
7807 		}
7808 	}
7809 
7810 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7811 		return;
7812 
7813 	/*
7814 	 * Pages need to be locked or allocated "permanent" (either from
7815 	 * static_arena arena or explicitly setting PG_NORELOC when calling
7816 	 * page_create_va()) for VA->PA translations to be valid.
7817 	 */
7818 	if (!PP_ISNORELOC(pp))
7819 		panic("Illegal VA->PA translation, pp 0x%p not permanent", pp);
7820 	else
7821 		panic("Illegal VA->PA translation, pp 0x%p not locked", pp);
7822 }
7823 #endif	/* DEBUG */
7824 
7825 /*
7826  * Returns a page frame number for a given virtual address.
7827  * Returns PFN_INVALID to indicate an invalid mapping
7828  */
7829 pfn_t
7830 hat_getpfnum(struct hat *hat, caddr_t addr)
7831 {
7832 	pfn_t pfn;
7833 	tte_t tte;
7834 
7835 	/*
7836 	 * We would like to
7837 	 * ASSERT(AS_LOCK_HELD(as, &as->a_lock));
7838 	 * but we can't because the iommu driver will call this
7839 	 * routine at interrupt time and it can't grab the as lock
7840 	 * or it will deadlock: A thread could have the as lock
7841 	 * and be waiting for io.  The io can't complete
7842 	 * because the interrupt thread is blocked trying to grab
7843 	 * the as lock.
7844 	 */
7845 
7846 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7847 
7848 	if (hat == ksfmmup) {
7849 		if (IS_KMEM_VA_LARGEPAGE(addr)) {
7850 			ASSERT(segkmem_lpszc > 0);
7851 			pfn = sfmmu_kvaszc2pfn(addr, segkmem_lpszc);
7852 			if (pfn != PFN_INVALID) {
7853 				sfmmu_check_kpfn(pfn);
7854 				return (pfn);
7855 			}
7856 		} else if (segkpm && IS_KPM_ADDR(addr)) {
7857 			return (sfmmu_kpm_vatopfn(addr));
7858 		}
7859 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7860 		    == PFN_SUSPENDED) {
7861 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7862 		}
7863 		sfmmu_check_kpfn(pfn);
7864 		return (pfn);
7865 	} else {
7866 		return (sfmmu_uvatopfn(addr, hat, NULL));
7867 	}
7868 }
7869 
7870 /*
7871  * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
7872  * Use hat_getpfnum(kas.a_hat, ...) instead.
7873  *
7874  * We'd like to return PFN_INVALID if the mappings have underlying page_t's
7875  * but can't right now due to the fact that some software has grown to use
7876  * this interface incorrectly. So for now when the interface is misused,
7877  * return a warning to the user that in the future it won't work in the
7878  * way they're abusing it, and carry on (after disabling page relocation).
7879  */
7880 pfn_t
7881 hat_getkpfnum(caddr_t addr)
7882 {
7883 	pfn_t pfn;
7884 	tte_t tte;
7885 	int badcaller = 0;
7886 	extern int segkmem_reloc;
7887 
7888 	if (segkpm && IS_KPM_ADDR(addr)) {
7889 		badcaller = 1;
7890 		pfn = sfmmu_kpm_vatopfn(addr);
7891 	} else {
7892 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7893 		    == PFN_SUSPENDED) {
7894 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7895 		}
7896 		badcaller = pf_is_memory(pfn);
7897 	}
7898 
7899 	if (badcaller) {
7900 		/*
7901 		 * We can't return PFN_INVALID or the caller may panic
7902 		 * or corrupt the system.  The only alternative is to
7903 		 * disable page relocation at this point for all kernel
7904 		 * memory.  This will impact any callers of page_relocate()
7905 		 * such as FMA or DR.
7906 		 *
7907 		 * RFE: Add junk here to spit out an ereport so the sysadmin
7908 		 * can be advised that he should upgrade his device driver
7909 		 * so that this doesn't happen.
7910 		 */
7911 		hat_getkpfnum_badcall(caller());
7912 		if (hat_kpr_enabled && segkmem_reloc) {
7913 			hat_kpr_enabled = 0;
7914 			segkmem_reloc = 0;
7915 			cmn_err(CE_WARN, "Kernel Page Relocation is DISABLED");
7916 		}
7917 	}
7918 	return (pfn);
7919 }
7920 
7921 /*
7922  * This routine will return both pfn and tte for the vaddr.
7923  */
7924 static pfn_t
7925 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup, tte_t *ttep)
7926 {
7927 	struct hmehash_bucket *hmebp;
7928 	hmeblk_tag hblktag;
7929 	int hmeshift, hashno = 1;
7930 	struct hme_blk *hmeblkp = NULL;
7931 	tte_t tte;
7932 
7933 	struct sf_hment *sfhmep;
7934 	pfn_t pfn;
7935 
7936 	/* support for ISM */
7937 	ism_map_t	*ism_map;
7938 	ism_blk_t	*ism_blkp;
7939 	int		i;
7940 	sfmmu_t *ism_hatid = NULL;
7941 	sfmmu_t *locked_hatid = NULL;
7942 	sfmmu_t	*sv_sfmmup = sfmmup;
7943 	caddr_t	sv_vaddr = vaddr;
7944 	sf_srd_t *srdp;
7945 
7946 	if (ttep == NULL) {
7947 		ttep = &tte;
7948 	} else {
7949 		ttep->ll = 0;
7950 	}
7951 
7952 	ASSERT(sfmmup != ksfmmup);
7953 	SFMMU_STAT(sf_user_vtop);
7954 	/*
7955 	 * Set ism_hatid if vaddr falls in a ISM segment.
7956 	 */
7957 	ism_blkp = sfmmup->sfmmu_iblk;
7958 	if (ism_blkp != NULL) {
7959 		sfmmu_ismhat_enter(sfmmup, 0);
7960 		locked_hatid = sfmmup;
7961 	}
7962 	while (ism_blkp != NULL && ism_hatid == NULL) {
7963 		ism_map = ism_blkp->iblk_maps;
7964 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
7965 			if (vaddr >= ism_start(ism_map[i]) &&
7966 			    vaddr < ism_end(ism_map[i])) {
7967 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
7968 				vaddr = (caddr_t)(vaddr -
7969 				    ism_start(ism_map[i]));
7970 				break;
7971 			}
7972 		}
7973 		ism_blkp = ism_blkp->iblk_next;
7974 	}
7975 	if (locked_hatid) {
7976 		sfmmu_ismhat_exit(locked_hatid, 0);
7977 	}
7978 
7979 	hblktag.htag_id = sfmmup;
7980 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
7981 	do {
7982 		hmeshift = HME_HASH_SHIFT(hashno);
7983 		hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
7984 		hblktag.htag_rehash = hashno;
7985 		hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
7986 
7987 		SFMMU_HASH_LOCK(hmebp);
7988 
7989 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
7990 		if (hmeblkp != NULL) {
7991 			ASSERT(!hmeblkp->hblk_shared);
7992 			HBLKTOHME(sfhmep, hmeblkp, vaddr);
7993 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
7994 			SFMMU_HASH_UNLOCK(hmebp);
7995 			if (TTE_IS_VALID(ttep)) {
7996 				pfn = TTE_TO_PFN(vaddr, ttep);
7997 				return (pfn);
7998 			}
7999 			break;
8000 		}
8001 		SFMMU_HASH_UNLOCK(hmebp);
8002 		hashno++;
8003 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
8004 
8005 	if (SF_HMERGNMAP_ISNULL(sv_sfmmup)) {
8006 		return (PFN_INVALID);
8007 	}
8008 	srdp = sv_sfmmup->sfmmu_srdp;
8009 	ASSERT(srdp != NULL);
8010 	ASSERT(srdp->srd_refcnt != 0);
8011 	hblktag.htag_id = srdp;
8012 	hashno = 1;
8013 	do {
8014 		hmeshift = HME_HASH_SHIFT(hashno);
8015 		hblktag.htag_bspage = HME_HASH_BSPAGE(sv_vaddr, hmeshift);
8016 		hblktag.htag_rehash = hashno;
8017 		hmebp = HME_HASH_FUNCTION(srdp, sv_vaddr, hmeshift);
8018 
8019 		SFMMU_HASH_LOCK(hmebp);
8020 		for (hmeblkp = hmebp->hmeblkp; hmeblkp != NULL;
8021 		    hmeblkp = hmeblkp->hblk_next) {
8022 			uint_t rid;
8023 			sf_region_t *rgnp;
8024 			caddr_t rsaddr;
8025 			caddr_t readdr;
8026 
8027 			if (!HTAGS_EQ_SHME(hmeblkp->hblk_tag, hblktag,
8028 			    sv_sfmmup->sfmmu_hmeregion_map)) {
8029 				continue;
8030 			}
8031 			ASSERT(hmeblkp->hblk_shared);
8032 			rid = hmeblkp->hblk_tag.htag_rid;
8033 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
8034 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
8035 			rgnp = srdp->srd_hmergnp[rid];
8036 			SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
8037 			HBLKTOHME(sfhmep, hmeblkp, sv_vaddr);
8038 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
8039 			rsaddr = rgnp->rgn_saddr;
8040 			readdr = rsaddr + rgnp->rgn_size;
8041 #ifdef DEBUG
8042 			if (TTE_IS_VALID(ttep) ||
8043 			    get_hblk_ttesz(hmeblkp) > TTE8K) {
8044 				caddr_t eva = tte_to_evaddr(hmeblkp, ttep);
8045 				ASSERT(eva > sv_vaddr);
8046 				ASSERT(sv_vaddr >= rsaddr);
8047 				ASSERT(sv_vaddr < readdr);
8048 				ASSERT(eva <= readdr);
8049 			}
8050 #endif /* DEBUG */
8051 			/*
8052 			 * Continue the search if we
8053 			 * found an invalid 8K tte outside of the area
8054 			 * covered by this hmeblk's region.
8055 			 */
8056 			if (TTE_IS_VALID(ttep)) {
8057 				SFMMU_HASH_UNLOCK(hmebp);
8058 				pfn = TTE_TO_PFN(sv_vaddr, ttep);
8059 				return (pfn);
8060 			} else if (get_hblk_ttesz(hmeblkp) > TTE8K ||
8061 			    (sv_vaddr >= rsaddr && sv_vaddr < readdr)) {
8062 				SFMMU_HASH_UNLOCK(hmebp);
8063 				pfn = PFN_INVALID;
8064 				return (pfn);
8065 			}
8066 		}
8067 		SFMMU_HASH_UNLOCK(hmebp);
8068 		hashno++;
8069 	} while (hashno <= mmu_hashcnt);
8070 	return (PFN_INVALID);
8071 }
8072 
8073 
8074 /*
8075  * For compatability with AT&T and later optimizations
8076  */
8077 /* ARGSUSED */
8078 void
8079 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
8080 {
8081 	ASSERT(hat != NULL);
8082 	ASSERT(hat->sfmmu_xhat_provider == NULL);
8083 }
8084 
8085 /*
8086  * Return the number of mappings to a particular page.  This number is an
8087  * approximation of the number of people sharing the page.
8088  *
8089  * shared hmeblks or ism hmeblks are counted as 1 mapping here.
8090  * hat_page_checkshare() can be used to compare threshold to share
8091  * count that reflects the number of region sharers albeit at higher cost.
8092  */
8093 ulong_t
8094 hat_page_getshare(page_t *pp)
8095 {
8096 	page_t *spp = pp;	/* start page */
8097 	kmutex_t *pml;
8098 	ulong_t	cnt;
8099 	int index, sz = TTE64K;
8100 
8101 	/*
8102 	 * We need to grab the mlist lock to make sure any outstanding
8103 	 * load/unloads complete.  Otherwise we could return zero
8104 	 * even though the unload(s) hasn't finished yet.
8105 	 */
8106 	pml = sfmmu_mlist_enter(spp);
8107 	cnt = spp->p_share;
8108 
8109 #ifdef VAC
8110 	if (kpm_enable)
8111 		cnt += spp->p_kpmref;
8112 #endif
8113 
8114 	/*
8115 	 * If we have any large mappings, we count the number of
8116 	 * mappings that this large page is part of.
8117 	 */
8118 	index = PP_MAPINDEX(spp);
8119 	index >>= 1;
8120 	while (index) {
8121 		pp = PP_GROUPLEADER(spp, sz);
8122 		if ((index & 0x1) && pp != spp) {
8123 			cnt += pp->p_share;
8124 			spp = pp;
8125 		}
8126 		index >>= 1;
8127 		sz++;
8128 	}
8129 	sfmmu_mlist_exit(pml);
8130 	return (cnt);
8131 }
8132 
8133 /*
8134  * Return 1 if the number of mappings exceeds sh_thresh. Return 0
8135  * otherwise. Count shared hmeblks by region's refcnt.
8136  */
8137 int
8138 hat_page_checkshare(page_t *pp, ulong_t sh_thresh)
8139 {
8140 	kmutex_t *pml;
8141 	ulong_t	cnt = 0;
8142 	int index, sz = TTE8K;
8143 	struct sf_hment *sfhme, *tmphme = NULL;
8144 	struct hme_blk *hmeblkp;
8145 
8146 	pml = sfmmu_mlist_enter(pp);
8147 
8148 	if (kpm_enable)
8149 		cnt = pp->p_kpmref;
8150 
8151 	if (pp->p_share + cnt > sh_thresh) {
8152 		sfmmu_mlist_exit(pml);
8153 		return (1);
8154 	}
8155 
8156 	index = PP_MAPINDEX(pp);
8157 
8158 again:
8159 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
8160 		tmphme = sfhme->hme_next;
8161 		if (IS_PAHME(sfhme)) {
8162 			continue;
8163 		}
8164 
8165 		hmeblkp = sfmmu_hmetohblk(sfhme);
8166 		if (hmeblkp->hblk_xhat_bit) {
8167 			cnt++;
8168 			if (cnt > sh_thresh) {
8169 				sfmmu_mlist_exit(pml);
8170 				return (1);
8171 			}
8172 			continue;
8173 		}
8174 		if (hme_size(sfhme) != sz) {
8175 			continue;
8176 		}
8177 
8178 		if (hmeblkp->hblk_shared) {
8179 			sf_srd_t *srdp = hblktosrd(hmeblkp);
8180 			uint_t rid = hmeblkp->hblk_tag.htag_rid;
8181 			sf_region_t *rgnp;
8182 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
8183 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
8184 			ASSERT(srdp != NULL);
8185 			rgnp = srdp->srd_hmergnp[rid];
8186 			SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
8187 			    rgnp, rid);
8188 			cnt += rgnp->rgn_refcnt;
8189 		} else {
8190 			cnt++;
8191 		}
8192 		if (cnt > sh_thresh) {
8193 			sfmmu_mlist_exit(pml);
8194 			return (1);
8195 		}
8196 	}
8197 
8198 	index >>= 1;
8199 	sz++;
8200 	while (index) {
8201 		pp = PP_GROUPLEADER(pp, sz);
8202 		ASSERT(sfmmu_mlist_held(pp));
8203 		if (index & 0x1) {
8204 			goto again;
8205 		}
8206 		index >>= 1;
8207 		sz++;
8208 	}
8209 	sfmmu_mlist_exit(pml);
8210 	return (0);
8211 }
8212 
8213 /*
8214  * Unload all large mappings to the pp and reset the p_szc field of every
8215  * constituent page according to the remaining mappings.
8216  *
8217  * pp must be locked SE_EXCL. Even though no other constituent pages are
8218  * locked it's legal to unload the large mappings to the pp because all
8219  * constituent pages of large locked mappings have to be locked SE_SHARED.
8220  * This means if we have SE_EXCL lock on one of constituent pages none of the
8221  * large mappings to pp are locked.
8222  *
8223  * Decrease p_szc field starting from the last constituent page and ending
8224  * with the root page. This method is used because other threads rely on the
8225  * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
8226  * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
8227  * ensures that p_szc changes of the constituent pages appears atomic for all
8228  * threads that use sfmmu_mlspl_enter() to examine p_szc field.
8229  *
8230  * This mechanism is only used for file system pages where it's not always
8231  * possible to get SE_EXCL locks on all constituent pages to demote the size
8232  * code (as is done for anonymous or kernel large pages).
8233  *
8234  * See more comments in front of sfmmu_mlspl_enter().
8235  */
8236 void
8237 hat_page_demote(page_t *pp)
8238 {
8239 	int index;
8240 	int sz;
8241 	cpuset_t cpuset;
8242 	int sync = 0;
8243 	page_t *rootpp;
8244 	struct sf_hment *sfhme;
8245 	struct sf_hment *tmphme = NULL;
8246 	struct hme_blk *hmeblkp;
8247 	uint_t pszc;
8248 	page_t *lastpp;
8249 	cpuset_t tset;
8250 	pgcnt_t npgs;
8251 	kmutex_t *pml;
8252 	kmutex_t *pmtx = NULL;
8253 
8254 	ASSERT(PAGE_EXCL(pp));
8255 	ASSERT(!PP_ISFREE(pp));
8256 	ASSERT(!PP_ISKAS(pp));
8257 	ASSERT(page_szc_lock_assert(pp));
8258 	pml = sfmmu_mlist_enter(pp);
8259 
8260 	pszc = pp->p_szc;
8261 	if (pszc == 0) {
8262 		goto out;
8263 	}
8264 
8265 	index = PP_MAPINDEX(pp) >> 1;
8266 
8267 	if (index) {
8268 		CPUSET_ZERO(cpuset);
8269 		sz = TTE64K;
8270 		sync = 1;
8271 	}
8272 
8273 	while (index) {
8274 		if (!(index & 0x1)) {
8275 			index >>= 1;
8276 			sz++;
8277 			continue;
8278 		}
8279 		ASSERT(sz <= pszc);
8280 		rootpp = PP_GROUPLEADER(pp, sz);
8281 		for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
8282 			tmphme = sfhme->hme_next;
8283 			ASSERT(!IS_PAHME(sfhme));
8284 			hmeblkp = sfmmu_hmetohblk(sfhme);
8285 			if (hme_size(sfhme) != sz) {
8286 				continue;
8287 			}
8288 			if (hmeblkp->hblk_xhat_bit) {
8289 				cmn_err(CE_PANIC,
8290 				    "hat_page_demote: xhat hmeblk");
8291 			}
8292 			tset = sfmmu_pageunload(rootpp, sfhme, sz);
8293 			CPUSET_OR(cpuset, tset);
8294 		}
8295 		if (index >>= 1) {
8296 			sz++;
8297 		}
8298 	}
8299 
8300 	ASSERT(!PP_ISMAPPED_LARGE(pp));
8301 
8302 	if (sync) {
8303 		xt_sync(cpuset);
8304 #ifdef VAC
8305 		if (PP_ISTNC(pp)) {
8306 			conv_tnc(rootpp, sz);
8307 		}
8308 #endif	/* VAC */
8309 	}
8310 
8311 	pmtx = sfmmu_page_enter(pp);
8312 
8313 	ASSERT(pp->p_szc == pszc);
8314 	rootpp = PP_PAGEROOT(pp);
8315 	ASSERT(rootpp->p_szc == pszc);
8316 	lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
8317 
8318 	while (lastpp != rootpp) {
8319 		sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
8320 		ASSERT(sz < pszc);
8321 		npgs = (sz == 0) ? 1 : TTEPAGES(sz);
8322 		ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
8323 		while (--npgs > 0) {
8324 			lastpp->p_szc = (uchar_t)sz;
8325 			lastpp = PP_PAGEPREV(lastpp);
8326 		}
8327 		if (sz) {
8328 			/*
8329 			 * make sure before current root's pszc
8330 			 * is updated all updates to constituent pages pszc
8331 			 * fields are globally visible.
8332 			 */
8333 			membar_producer();
8334 		}
8335 		lastpp->p_szc = sz;
8336 		ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
8337 		if (lastpp != rootpp) {
8338 			lastpp = PP_PAGEPREV(lastpp);
8339 		}
8340 	}
8341 	if (sz == 0) {
8342 		/* the loop above doesn't cover this case */
8343 		rootpp->p_szc = 0;
8344 	}
8345 out:
8346 	ASSERT(pp->p_szc == 0);
8347 	if (pmtx != NULL) {
8348 		sfmmu_page_exit(pmtx);
8349 	}
8350 	sfmmu_mlist_exit(pml);
8351 }
8352 
8353 /*
8354  * Refresh the HAT ismttecnt[] element for size szc.
8355  * Caller must have set ISM busy flag to prevent mapping
8356  * lists from changing while we're traversing them.
8357  */
8358 pgcnt_t
8359 ism_tsb_entries(sfmmu_t *sfmmup, int szc)
8360 {
8361 	ism_blk_t	*ism_blkp = sfmmup->sfmmu_iblk;
8362 	ism_map_t	*ism_map;
8363 	pgcnt_t		npgs = 0;
8364 	pgcnt_t		npgs_scd = 0;
8365 	int		j;
8366 	sf_scd_t	*scdp;
8367 	uchar_t		rid;
8368 
8369 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
8370 	scdp = sfmmup->sfmmu_scdp;
8371 
8372 	for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
8373 		ism_map = ism_blkp->iblk_maps;
8374 		for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++) {
8375 			rid = ism_map[j].imap_rid;
8376 			ASSERT(rid == SFMMU_INVALID_ISMRID ||
8377 			    rid < sfmmup->sfmmu_srdp->srd_next_ismrid);
8378 
8379 			if (scdp != NULL && rid != SFMMU_INVALID_ISMRID &&
8380 			    SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
8381 				/* ISM is in sfmmup's SCD */
8382 				npgs_scd +=
8383 				    ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8384 			} else {
8385 				/* ISMs is not in SCD */
8386 				npgs +=
8387 				    ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8388 			}
8389 		}
8390 	}
8391 	sfmmup->sfmmu_ismttecnt[szc] = npgs;
8392 	sfmmup->sfmmu_scdismttecnt[szc] = npgs_scd;
8393 	return (npgs);
8394 }
8395 
8396 /*
8397  * Yield the memory claim requirement for an address space.
8398  *
8399  * This is currently implemented as the number of bytes that have active
8400  * hardware translations that have page structures.  Therefore, it can
8401  * underestimate the traditional resident set size, eg, if the
8402  * physical page is present and the hardware translation is missing;
8403  * and it can overestimate the rss, eg, if there are active
8404  * translations to a frame buffer with page structs.
8405  * Also, it does not take sharing into account.
8406  *
8407  * Note that we don't acquire locks here since this function is most often
8408  * called from the clock thread.
8409  */
8410 size_t
8411 hat_get_mapped_size(struct hat *hat)
8412 {
8413 	size_t		assize = 0;
8414 	int 		i;
8415 
8416 	if (hat == NULL)
8417 		return (0);
8418 
8419 	ASSERT(hat->sfmmu_xhat_provider == NULL);
8420 
8421 	for (i = 0; i < mmu_page_sizes; i++)
8422 		assize += ((pgcnt_t)hat->sfmmu_ttecnt[i] +
8423 		    (pgcnt_t)hat->sfmmu_scdrttecnt[i]) * TTEBYTES(i);
8424 
8425 	if (hat->sfmmu_iblk == NULL)
8426 		return (assize);
8427 
8428 	for (i = 0; i < mmu_page_sizes; i++)
8429 		assize += ((pgcnt_t)hat->sfmmu_ismttecnt[i] +
8430 		    (pgcnt_t)hat->sfmmu_scdismttecnt[i]) * TTEBYTES(i);
8431 
8432 	return (assize);
8433 }
8434 
8435 int
8436 hat_stats_enable(struct hat *hat)
8437 {
8438 	hatlock_t	*hatlockp;
8439 
8440 	ASSERT(hat->sfmmu_xhat_provider == NULL);
8441 
8442 	hatlockp = sfmmu_hat_enter(hat);
8443 	hat->sfmmu_rmstat++;
8444 	sfmmu_hat_exit(hatlockp);
8445 	return (1);
8446 }
8447 
8448 void
8449 hat_stats_disable(struct hat *hat)
8450 {
8451 	hatlock_t	*hatlockp;
8452 
8453 	ASSERT(hat->sfmmu_xhat_provider == NULL);
8454 
8455 	hatlockp = sfmmu_hat_enter(hat);
8456 	hat->sfmmu_rmstat--;
8457 	sfmmu_hat_exit(hatlockp);
8458 }
8459 
8460 /*
8461  * Routines for entering or removing  ourselves from the
8462  * ism_hat's mapping list. This is used for both private and
8463  * SCD hats.
8464  */
8465 static void
8466 iment_add(struct ism_ment *iment,  struct hat *ism_hat)
8467 {
8468 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
8469 
8470 	iment->iment_prev = NULL;
8471 	iment->iment_next = ism_hat->sfmmu_iment;
8472 	if (ism_hat->sfmmu_iment) {
8473 		ism_hat->sfmmu_iment->iment_prev = iment;
8474 	}
8475 	ism_hat->sfmmu_iment = iment;
8476 }
8477 
8478 static void
8479 iment_sub(struct ism_ment *iment, struct hat *ism_hat)
8480 {
8481 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
8482 
8483 	if (ism_hat->sfmmu_iment == NULL) {
8484 		panic("ism map entry remove - no entries");
8485 	}
8486 
8487 	if (iment->iment_prev) {
8488 		ASSERT(ism_hat->sfmmu_iment != iment);
8489 		iment->iment_prev->iment_next = iment->iment_next;
8490 	} else {
8491 		ASSERT(ism_hat->sfmmu_iment == iment);
8492 		ism_hat->sfmmu_iment = iment->iment_next;
8493 	}
8494 
8495 	if (iment->iment_next) {
8496 		iment->iment_next->iment_prev = iment->iment_prev;
8497 	}
8498 
8499 	/*
8500 	 * zero out the entry
8501 	 */
8502 	iment->iment_next = NULL;
8503 	iment->iment_prev = NULL;
8504 	iment->iment_hat =  NULL;
8505 }
8506 
8507 /*
8508  * Hat_share()/unshare() return an (non-zero) error
8509  * when saddr and daddr are not properly aligned.
8510  *
8511  * The top level mapping element determines the alignment
8512  * requirement for saddr and daddr, depending on different
8513  * architectures.
8514  *
8515  * When hat_share()/unshare() are not supported,
8516  * HATOP_SHARE()/UNSHARE() return 0
8517  */
8518 int
8519 hat_share(struct hat *sfmmup, caddr_t addr,
8520 	struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc)
8521 {
8522 	ism_blk_t	*ism_blkp;
8523 	ism_blk_t	*new_iblk;
8524 	ism_map_t 	*ism_map;
8525 	ism_ment_t	*ism_ment;
8526 	int		i, added;
8527 	hatlock_t	*hatlockp;
8528 	int		reload_mmu = 0;
8529 	uint_t		ismshift = page_get_shift(ismszc);
8530 	size_t		ismpgsz = page_get_pagesize(ismszc);
8531 	uint_t		ismmask = (uint_t)ismpgsz - 1;
8532 	size_t		sh_size = ISM_SHIFT(ismshift, len);
8533 	ushort_t	ismhatflag;
8534 	hat_region_cookie_t rcookie;
8535 	sf_scd_t	*old_scdp;
8536 
8537 #ifdef DEBUG
8538 	caddr_t		eaddr = addr + len;
8539 #endif /* DEBUG */
8540 
8541 	ASSERT(ism_hatid != NULL && sfmmup != NULL);
8542 	ASSERT(sptaddr == ISMID_STARTADDR);
8543 	/*
8544 	 * Check the alignment.
8545 	 */
8546 	if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
8547 		return (EINVAL);
8548 
8549 	/*
8550 	 * Check size alignment.
8551 	 */
8552 	if (!ISM_ALIGNED(ismshift, len))
8553 		return (EINVAL);
8554 
8555 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
8556 
8557 	/*
8558 	 * Allocate ism_ment for the ism_hat's mapping list, and an
8559 	 * ism map blk in case we need one.  We must do our
8560 	 * allocations before acquiring locks to prevent a deadlock
8561 	 * in the kmem allocator on the mapping list lock.
8562 	 */
8563 	new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
8564 	ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
8565 
8566 	/*
8567 	 * Serialize ISM mappings with the ISM busy flag, and also the
8568 	 * trap handlers.
8569 	 */
8570 	sfmmu_ismhat_enter(sfmmup, 0);
8571 
8572 	/*
8573 	 * Allocate an ism map blk if necessary.
8574 	 */
8575 	if (sfmmup->sfmmu_iblk == NULL) {
8576 		sfmmup->sfmmu_iblk = new_iblk;
8577 		bzero(new_iblk, sizeof (*new_iblk));
8578 		new_iblk->iblk_nextpa = (uint64_t)-1;
8579 		membar_stst();	/* make sure next ptr visible to all CPUs */
8580 		sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
8581 		reload_mmu = 1;
8582 		new_iblk = NULL;
8583 	}
8584 
8585 #ifdef DEBUG
8586 	/*
8587 	 * Make sure mapping does not already exist.
8588 	 */
8589 	ism_blkp = sfmmup->sfmmu_iblk;
8590 	while (ism_blkp != NULL) {
8591 		ism_map = ism_blkp->iblk_maps;
8592 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
8593 			if ((addr >= ism_start(ism_map[i]) &&
8594 			    addr < ism_end(ism_map[i])) ||
8595 			    eaddr > ism_start(ism_map[i]) &&
8596 			    eaddr <= ism_end(ism_map[i])) {
8597 				panic("sfmmu_share: Already mapped!");
8598 			}
8599 		}
8600 		ism_blkp = ism_blkp->iblk_next;
8601 	}
8602 #endif /* DEBUG */
8603 
8604 	ASSERT(ismszc >= TTE4M);
8605 	if (ismszc == TTE4M) {
8606 		ismhatflag = HAT_4M_FLAG;
8607 	} else if (ismszc == TTE32M) {
8608 		ismhatflag = HAT_32M_FLAG;
8609 	} else if (ismszc == TTE256M) {
8610 		ismhatflag = HAT_256M_FLAG;
8611 	}
8612 	/*
8613 	 * Add mapping to first available mapping slot.
8614 	 */
8615 	ism_blkp = sfmmup->sfmmu_iblk;
8616 	added = 0;
8617 	while (!added) {
8618 		ism_map = ism_blkp->iblk_maps;
8619 		for (i = 0; i < ISM_MAP_SLOTS; i++)  {
8620 			if (ism_map[i].imap_ismhat == NULL) {
8621 
8622 				ism_map[i].imap_ismhat = ism_hatid;
8623 				ism_map[i].imap_vb_shift = (uchar_t)ismshift;
8624 				ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
8625 				ism_map[i].imap_hatflags = ismhatflag;
8626 				ism_map[i].imap_sz_mask = ismmask;
8627 				/*
8628 				 * imap_seg is checked in ISM_CHECK to see if
8629 				 * non-NULL, then other info assumed valid.
8630 				 */
8631 				membar_stst();
8632 				ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
8633 				ism_map[i].imap_ment = ism_ment;
8634 
8635 				/*
8636 				 * Now add ourselves to the ism_hat's
8637 				 * mapping list.
8638 				 */
8639 				ism_ment->iment_hat = sfmmup;
8640 				ism_ment->iment_base_va = addr;
8641 				ism_hatid->sfmmu_ismhat = 1;
8642 				mutex_enter(&ism_mlist_lock);
8643 				iment_add(ism_ment, ism_hatid);
8644 				mutex_exit(&ism_mlist_lock);
8645 				added = 1;
8646 				break;
8647 			}
8648 		}
8649 		if (!added && ism_blkp->iblk_next == NULL) {
8650 			ism_blkp->iblk_next = new_iblk;
8651 			new_iblk = NULL;
8652 			bzero(ism_blkp->iblk_next,
8653 			    sizeof (*ism_blkp->iblk_next));
8654 			ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
8655 			membar_stst();
8656 			ism_blkp->iblk_nextpa =
8657 			    va_to_pa((caddr_t)ism_blkp->iblk_next);
8658 		}
8659 		ism_blkp = ism_blkp->iblk_next;
8660 	}
8661 
8662 	/*
8663 	 * After calling hat_join_region, sfmmup may join a new SCD or
8664 	 * move from the old scd to a new scd, in which case, we want to
8665 	 * shrink the sfmmup's private tsb size, i.e., pass shrink to
8666 	 * sfmmu_check_page_sizes at the end of this routine.
8667 	 */
8668 	old_scdp = sfmmup->sfmmu_scdp;
8669 
8670 	rcookie = hat_join_region(sfmmup, addr, len, (void *)ism_hatid, 0,
8671 	    PROT_ALL, ismszc, NULL, HAT_REGION_ISM);
8672 	if (rcookie != HAT_INVALID_REGION_COOKIE) {
8673 		ism_map[i].imap_rid = (uchar_t)((uint64_t)rcookie);
8674 	}
8675 	/*
8676 	 * Update our counters for this sfmmup's ism mappings.
8677 	 */
8678 	for (i = 0; i <= ismszc; i++) {
8679 		if (!(disable_ism_large_pages & (1 << i)))
8680 			(void) ism_tsb_entries(sfmmup, i);
8681 	}
8682 
8683 	/*
8684 	 * For ISM and DISM we do not support 512K pages, so we only only
8685 	 * search the 4M and 8K/64K hashes for 4 pagesize cpus, and search the
8686 	 * 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
8687 	 *
8688 	 * Need to set 32M/256M ISM flags to make sure
8689 	 * sfmmu_check_page_sizes() enables them on Panther.
8690 	 */
8691 	ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
8692 
8693 	switch (ismszc) {
8694 	case TTE256M:
8695 		if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_ISM)) {
8696 			hatlockp = sfmmu_hat_enter(sfmmup);
8697 			SFMMU_FLAGS_SET(sfmmup, HAT_256M_ISM);
8698 			sfmmu_hat_exit(hatlockp);
8699 		}
8700 		break;
8701 	case TTE32M:
8702 		if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_ISM)) {
8703 			hatlockp = sfmmu_hat_enter(sfmmup);
8704 			SFMMU_FLAGS_SET(sfmmup, HAT_32M_ISM);
8705 			sfmmu_hat_exit(hatlockp);
8706 		}
8707 		break;
8708 	default:
8709 		break;
8710 	}
8711 
8712 	/*
8713 	 * If we updated the ismblkpa for this HAT we must make
8714 	 * sure all CPUs running this process reload their tsbmiss area.
8715 	 * Otherwise they will fail to load the mappings in the tsbmiss
8716 	 * handler and will loop calling pagefault().
8717 	 */
8718 	if (reload_mmu) {
8719 		hatlockp = sfmmu_hat_enter(sfmmup);
8720 		sfmmu_sync_mmustate(sfmmup);
8721 		sfmmu_hat_exit(hatlockp);
8722 	}
8723 
8724 	sfmmu_ismhat_exit(sfmmup, 0);
8725 
8726 	/*
8727 	 * Free up ismblk if we didn't use it.
8728 	 */
8729 	if (new_iblk != NULL)
8730 		kmem_cache_free(ism_blk_cache, new_iblk);
8731 
8732 	/*
8733 	 * Check TSB and TLB page sizes.
8734 	 */
8735 	if (sfmmup->sfmmu_scdp != NULL && old_scdp != sfmmup->sfmmu_scdp) {
8736 		sfmmu_check_page_sizes(sfmmup, 0);
8737 	} else {
8738 		sfmmu_check_page_sizes(sfmmup, 1);
8739 	}
8740 	return (0);
8741 }
8742 
8743 /*
8744  * hat_unshare removes exactly one ism_map from
8745  * this process's as.  It expects multiple calls
8746  * to hat_unshare for multiple shm segments.
8747  */
8748 void
8749 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
8750 {
8751 	ism_map_t 	*ism_map;
8752 	ism_ment_t	*free_ment = NULL;
8753 	ism_blk_t	*ism_blkp;
8754 	struct hat	*ism_hatid;
8755 	int 		found, i;
8756 	hatlock_t	*hatlockp;
8757 	struct tsb_info	*tsbinfo;
8758 	uint_t		ismshift = page_get_shift(ismszc);
8759 	size_t		sh_size = ISM_SHIFT(ismshift, len);
8760 	uchar_t		ism_rid;
8761 	sf_scd_t	*old_scdp;
8762 
8763 	ASSERT(ISM_ALIGNED(ismshift, addr));
8764 	ASSERT(ISM_ALIGNED(ismshift, len));
8765 	ASSERT(sfmmup != NULL);
8766 	ASSERT(sfmmup != ksfmmup);
8767 
8768 	if (sfmmup->sfmmu_xhat_provider) {
8769 		XHAT_UNSHARE(sfmmup, addr, len);
8770 		return;
8771 	} else {
8772 		/*
8773 		 * This must be a CPU HAT. If the address space has
8774 		 * XHATs attached, inform all XHATs that ISM segment
8775 		 * is going away
8776 		 */
8777 		ASSERT(sfmmup->sfmmu_as != NULL);
8778 		if (sfmmup->sfmmu_as->a_xhat != NULL)
8779 			xhat_unshare_all(sfmmup->sfmmu_as, addr, len);
8780 	}
8781 
8782 	/*
8783 	 * Make sure that during the entire time ISM mappings are removed,
8784 	 * the trap handlers serialize behind us, and that no one else
8785 	 * can be mucking with ISM mappings.  This also lets us get away
8786 	 * with not doing expensive cross calls to flush the TLB -- we
8787 	 * just discard the context, flush the entire TSB, and call it
8788 	 * a day.
8789 	 */
8790 	sfmmu_ismhat_enter(sfmmup, 0);
8791 
8792 	/*
8793 	 * Remove the mapping.
8794 	 *
8795 	 * We can't have any holes in the ism map.
8796 	 * The tsb miss code while searching the ism map will
8797 	 * stop on an empty map slot.  So we must move
8798 	 * everyone past the hole up 1 if any.
8799 	 *
8800 	 * Also empty ism map blks are not freed until the
8801 	 * process exits. This is to prevent a MT race condition
8802 	 * between sfmmu_unshare() and sfmmu_tsbmiss_exception().
8803 	 */
8804 	found = 0;
8805 	ism_blkp = sfmmup->sfmmu_iblk;
8806 	while (!found && ism_blkp != NULL) {
8807 		ism_map = ism_blkp->iblk_maps;
8808 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
8809 			if (addr == ism_start(ism_map[i]) &&
8810 			    sh_size == (size_t)(ism_size(ism_map[i]))) {
8811 				found = 1;
8812 				break;
8813 			}
8814 		}
8815 		if (!found)
8816 			ism_blkp = ism_blkp->iblk_next;
8817 	}
8818 
8819 	if (found) {
8820 		ism_hatid = ism_map[i].imap_ismhat;
8821 		ism_rid = ism_map[i].imap_rid;
8822 		ASSERT(ism_hatid != NULL);
8823 		ASSERT(ism_hatid->sfmmu_ismhat == 1);
8824 
8825 		/*
8826 		 * After hat_leave_region, the sfmmup may leave SCD,
8827 		 * in which case, we want to grow the private tsb size when
8828 		 * calling sfmmu_check_page_sizes at the end of the routine.
8829 		 */
8830 		old_scdp = sfmmup->sfmmu_scdp;
8831 		/*
8832 		 * Then remove ourselves from the region.
8833 		 */
8834 		if (ism_rid != SFMMU_INVALID_ISMRID) {
8835 			hat_leave_region(sfmmup, (void *)((uint64_t)ism_rid),
8836 			    HAT_REGION_ISM);
8837 		}
8838 
8839 		/*
8840 		 * And now guarantee that any other cpu
8841 		 * that tries to process an ISM miss
8842 		 * will go to tl=0.
8843 		 */
8844 		hatlockp = sfmmu_hat_enter(sfmmup);
8845 		sfmmu_invalidate_ctx(sfmmup);
8846 		sfmmu_hat_exit(hatlockp);
8847 
8848 		/*
8849 		 * Remove ourselves from the ism mapping list.
8850 		 */
8851 		mutex_enter(&ism_mlist_lock);
8852 		iment_sub(ism_map[i].imap_ment, ism_hatid);
8853 		mutex_exit(&ism_mlist_lock);
8854 		free_ment = ism_map[i].imap_ment;
8855 
8856 		/*
8857 		 * We delete the ism map by copying
8858 		 * the next map over the current one.
8859 		 * We will take the next one in the maps
8860 		 * array or from the next ism_blk.
8861 		 */
8862 		while (ism_blkp != NULL) {
8863 			ism_map = ism_blkp->iblk_maps;
8864 			while (i < (ISM_MAP_SLOTS - 1)) {
8865 				ism_map[i] = ism_map[i + 1];
8866 				i++;
8867 			}
8868 			/* i == (ISM_MAP_SLOTS - 1) */
8869 			ism_blkp = ism_blkp->iblk_next;
8870 			if (ism_blkp != NULL) {
8871 				ism_map[i] = ism_blkp->iblk_maps[0];
8872 				i = 0;
8873 			} else {
8874 				ism_map[i].imap_seg = 0;
8875 				ism_map[i].imap_vb_shift = 0;
8876 				ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
8877 				ism_map[i].imap_hatflags = 0;
8878 				ism_map[i].imap_sz_mask = 0;
8879 				ism_map[i].imap_ismhat = NULL;
8880 				ism_map[i].imap_ment = NULL;
8881 			}
8882 		}
8883 
8884 		/*
8885 		 * Now flush entire TSB for the process, since
8886 		 * demapping page by page can be too expensive.
8887 		 * We don't have to flush the TLB here anymore
8888 		 * since we switch to a new TLB ctx instead.
8889 		 * Also, there is no need to flush if the process
8890 		 * is exiting since the TSB will be freed later.
8891 		 */
8892 		if (!sfmmup->sfmmu_free) {
8893 			hatlockp = sfmmu_hat_enter(sfmmup);
8894 			for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
8895 			    tsbinfo = tsbinfo->tsb_next) {
8896 				if (tsbinfo->tsb_flags & TSB_SWAPPED)
8897 					continue;
8898 				if (tsbinfo->tsb_flags & TSB_RELOC_FLAG) {
8899 					tsbinfo->tsb_flags |=
8900 					    TSB_FLUSH_NEEDED;
8901 					continue;
8902 				}
8903 
8904 				sfmmu_inv_tsb(tsbinfo->tsb_va,
8905 				    TSB_BYTES(tsbinfo->tsb_szc));
8906 			}
8907 			sfmmu_hat_exit(hatlockp);
8908 		}
8909 	}
8910 
8911 	/*
8912 	 * Update our counters for this sfmmup's ism mappings.
8913 	 */
8914 	for (i = 0; i <= ismszc; i++) {
8915 		if (!(disable_ism_large_pages & (1 << i)))
8916 			(void) ism_tsb_entries(sfmmup, i);
8917 	}
8918 
8919 	sfmmu_ismhat_exit(sfmmup, 0);
8920 
8921 	/*
8922 	 * We must do our freeing here after dropping locks
8923 	 * to prevent a deadlock in the kmem allocator on the
8924 	 * mapping list lock.
8925 	 */
8926 	if (free_ment != NULL)
8927 		kmem_cache_free(ism_ment_cache, free_ment);
8928 
8929 	/*
8930 	 * Check TSB and TLB page sizes if the process isn't exiting.
8931 	 */
8932 	if (!sfmmup->sfmmu_free) {
8933 		if (found && old_scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
8934 			sfmmu_check_page_sizes(sfmmup, 1);
8935 		} else {
8936 			sfmmu_check_page_sizes(sfmmup, 0);
8937 		}
8938 	}
8939 }
8940 
8941 /* ARGSUSED */
8942 static int
8943 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
8944 {
8945 	/* void *buf is sfmmu_t pointer */
8946 	bzero(buf, sizeof (sfmmu_t));
8947 
8948 	return (0);
8949 }
8950 
8951 /* ARGSUSED */
8952 static void
8953 sfmmu_idcache_destructor(void *buf, void *cdrarg)
8954 {
8955 	/* void *buf is sfmmu_t pointer */
8956 }
8957 
8958 /*
8959  * setup kmem hmeblks by bzeroing all members and initializing the nextpa
8960  * field to be the pa of this hmeblk
8961  */
8962 /* ARGSUSED */
8963 static int
8964 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
8965 {
8966 	struct hme_blk *hmeblkp;
8967 
8968 	bzero(buf, (size_t)cdrarg);
8969 	hmeblkp = (struct hme_blk *)buf;
8970 	hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
8971 
8972 #ifdef	HBLK_TRACE
8973 	mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
8974 #endif	/* HBLK_TRACE */
8975 
8976 	return (0);
8977 }
8978 
8979 /* ARGSUSED */
8980 static void
8981 sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
8982 {
8983 
8984 #ifdef	HBLK_TRACE
8985 
8986 	struct hme_blk *hmeblkp;
8987 
8988 	hmeblkp = (struct hme_blk *)buf;
8989 	mutex_destroy(&hmeblkp->hblk_audit_lock);
8990 
8991 #endif	/* HBLK_TRACE */
8992 }
8993 
8994 #define	SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
8995 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
8996 /*
8997  * The kmem allocator will callback into our reclaim routine when the system
8998  * is running low in memory.  We traverse the hash and free up all unused but
8999  * still cached hme_blks.  We also traverse the free list and free them up
9000  * as well.
9001  */
9002 /*ARGSUSED*/
9003 static void
9004 sfmmu_hblkcache_reclaim(void *cdrarg)
9005 {
9006 	int i;
9007 	uint64_t hblkpa, prevpa, nx_pa;
9008 	struct hmehash_bucket *hmebp;
9009 	struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
9010 	static struct hmehash_bucket *uhmehash_reclaim_hand;
9011 	static struct hmehash_bucket *khmehash_reclaim_hand;
9012 	struct hme_blk *list = NULL;
9013 
9014 	hmebp = uhmehash_reclaim_hand;
9015 	if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
9016 		uhmehash_reclaim_hand = hmebp = uhme_hash;
9017 	uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
9018 
9019 	for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
9020 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
9021 			hmeblkp = hmebp->hmeblkp;
9022 			hblkpa = hmebp->hmeh_nextpa;
9023 			prevpa = 0;
9024 			pr_hblk = NULL;
9025 			while (hmeblkp) {
9026 				nx_hblk = hmeblkp->hblk_next;
9027 				nx_pa = hmeblkp->hblk_nextpa;
9028 				if (!hmeblkp->hblk_vcnt &&
9029 				    !hmeblkp->hblk_hmecnt) {
9030 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
9031 					    prevpa, pr_hblk);
9032 					sfmmu_hblk_free(hmebp, hmeblkp,
9033 					    hblkpa, &list);
9034 				} else {
9035 					pr_hblk = hmeblkp;
9036 					prevpa = hblkpa;
9037 				}
9038 				hmeblkp = nx_hblk;
9039 				hblkpa = nx_pa;
9040 			}
9041 			SFMMU_HASH_UNLOCK(hmebp);
9042 		}
9043 		if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
9044 			hmebp = uhme_hash;
9045 	}
9046 
9047 	hmebp = khmehash_reclaim_hand;
9048 	if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
9049 		khmehash_reclaim_hand = hmebp = khme_hash;
9050 	khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
9051 
9052 	for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
9053 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
9054 			hmeblkp = hmebp->hmeblkp;
9055 			hblkpa = hmebp->hmeh_nextpa;
9056 			prevpa = 0;
9057 			pr_hblk = NULL;
9058 			while (hmeblkp) {
9059 				nx_hblk = hmeblkp->hblk_next;
9060 				nx_pa = hmeblkp->hblk_nextpa;
9061 				if (!hmeblkp->hblk_vcnt &&
9062 				    !hmeblkp->hblk_hmecnt) {
9063 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
9064 					    prevpa, pr_hblk);
9065 					sfmmu_hblk_free(hmebp, hmeblkp,
9066 					    hblkpa, &list);
9067 				} else {
9068 					pr_hblk = hmeblkp;
9069 					prevpa = hblkpa;
9070 				}
9071 				hmeblkp = nx_hblk;
9072 				hblkpa = nx_pa;
9073 			}
9074 			SFMMU_HASH_UNLOCK(hmebp);
9075 		}
9076 		if (hmebp++ == &khme_hash[KHMEHASH_SZ])
9077 			hmebp = khme_hash;
9078 	}
9079 	sfmmu_hblks_list_purge(&list);
9080 }
9081 
9082 /*
9083  * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
9084  * same goes for sfmmu_get_addrvcolor().
9085  *
9086  * This function will return the virtual color for the specified page. The
9087  * virtual color corresponds to this page current mapping or its last mapping.
9088  * It is used by memory allocators to choose addresses with the correct
9089  * alignment so vac consistency is automatically maintained.  If the page
9090  * has no color it returns -1.
9091  */
9092 /*ARGSUSED*/
9093 int
9094 sfmmu_get_ppvcolor(struct page *pp)
9095 {
9096 #ifdef VAC
9097 	int color;
9098 
9099 	if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
9100 		return (-1);
9101 	}
9102 	color = PP_GET_VCOLOR(pp);
9103 	ASSERT(color < mmu_btop(shm_alignment));
9104 	return (color);
9105 #else
9106 	return (-1);
9107 #endif	/* VAC */
9108 }
9109 
9110 /*
9111  * This function will return the desired alignment for vac consistency
9112  * (vac color) given a virtual address.  If no vac is present it returns -1.
9113  */
9114 /*ARGSUSED*/
9115 int
9116 sfmmu_get_addrvcolor(caddr_t vaddr)
9117 {
9118 #ifdef VAC
9119 	if (cache & CACHE_VAC) {
9120 		return (addr_to_vcolor(vaddr));
9121 	} else {
9122 		return (-1);
9123 	}
9124 #else
9125 	return (-1);
9126 #endif	/* VAC */
9127 }
9128 
9129 #ifdef VAC
9130 /*
9131  * Check for conflicts.
9132  * A conflict exists if the new and existent mappings do not match in
9133  * their "shm_alignment fields. If conflicts exist, the existant mappings
9134  * are flushed unless one of them is locked. If one of them is locked, then
9135  * the mappings are flushed and converted to non-cacheable mappings.
9136  */
9137 static void
9138 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
9139 {
9140 	struct hat *tmphat;
9141 	struct sf_hment *sfhmep, *tmphme = NULL;
9142 	struct hme_blk *hmeblkp;
9143 	int vcolor;
9144 	tte_t tte;
9145 
9146 	ASSERT(sfmmu_mlist_held(pp));
9147 	ASSERT(!PP_ISNC(pp));		/* page better be cacheable */
9148 
9149 	vcolor = addr_to_vcolor(addr);
9150 	if (PP_NEWPAGE(pp)) {
9151 		PP_SET_VCOLOR(pp, vcolor);
9152 		return;
9153 	}
9154 
9155 	if (PP_GET_VCOLOR(pp) == vcolor) {
9156 		return;
9157 	}
9158 
9159 	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
9160 		/*
9161 		 * Previous user of page had a different color
9162 		 * but since there are no current users
9163 		 * we just flush the cache and change the color.
9164 		 */
9165 		SFMMU_STAT(sf_pgcolor_conflict);
9166 		sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9167 		PP_SET_VCOLOR(pp, vcolor);
9168 		return;
9169 	}
9170 
9171 	/*
9172 	 * If we get here we have a vac conflict with a current
9173 	 * mapping.  VAC conflict policy is as follows.
9174 	 * - The default is to unload the other mappings unless:
9175 	 * - If we have a large mapping we uncache the page.
9176 	 * We need to uncache the rest of the large page too.
9177 	 * - If any of the mappings are locked we uncache the page.
9178 	 * - If the requested mapping is inconsistent
9179 	 * with another mapping and that mapping
9180 	 * is in the same address space we have to
9181 	 * make it non-cached.  The default thing
9182 	 * to do is unload the inconsistent mapping
9183 	 * but if they are in the same address space
9184 	 * we run the risk of unmapping the pc or the
9185 	 * stack which we will use as we return to the user,
9186 	 * in which case we can then fault on the thing
9187 	 * we just unloaded and get into an infinite loop.
9188 	 */
9189 	if (PP_ISMAPPED_LARGE(pp)) {
9190 		int sz;
9191 
9192 		/*
9193 		 * Existing mapping is for big pages. We don't unload
9194 		 * existing big mappings to satisfy new mappings.
9195 		 * Always convert all mappings to TNC.
9196 		 */
9197 		sz = fnd_mapping_sz(pp);
9198 		pp = PP_GROUPLEADER(pp, sz);
9199 		SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
9200 		sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
9201 		    TTEPAGES(sz));
9202 
9203 		return;
9204 	}
9205 
9206 	/*
9207 	 * check if any mapping is in same as or if it is locked
9208 	 * since in that case we need to uncache.
9209 	 */
9210 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9211 		tmphme = sfhmep->hme_next;
9212 		if (IS_PAHME(sfhmep))
9213 			continue;
9214 		hmeblkp = sfmmu_hmetohblk(sfhmep);
9215 		if (hmeblkp->hblk_xhat_bit)
9216 			continue;
9217 		tmphat = hblktosfmmu(hmeblkp);
9218 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
9219 		ASSERT(TTE_IS_VALID(&tte));
9220 		if (hmeblkp->hblk_shared || tmphat == hat ||
9221 		    hmeblkp->hblk_lckcnt) {
9222 			/*
9223 			 * We have an uncache conflict
9224 			 */
9225 			SFMMU_STAT(sf_uncache_conflict);
9226 			sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
9227 			return;
9228 		}
9229 	}
9230 
9231 	/*
9232 	 * We have an unload conflict
9233 	 * We have already checked for LARGE mappings, therefore
9234 	 * the remaining mapping(s) must be TTE8K.
9235 	 */
9236 	SFMMU_STAT(sf_unload_conflict);
9237 
9238 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9239 		tmphme = sfhmep->hme_next;
9240 		if (IS_PAHME(sfhmep))
9241 			continue;
9242 		hmeblkp = sfmmu_hmetohblk(sfhmep);
9243 		if (hmeblkp->hblk_xhat_bit)
9244 			continue;
9245 		ASSERT(!hmeblkp->hblk_shared);
9246 		(void) sfmmu_pageunload(pp, sfhmep, TTE8K);
9247 	}
9248 
9249 	if (PP_ISMAPPED_KPM(pp))
9250 		sfmmu_kpm_vac_unload(pp, addr);
9251 
9252 	/*
9253 	 * Unloads only do TLB flushes so we need to flush the
9254 	 * cache here.
9255 	 */
9256 	sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9257 	PP_SET_VCOLOR(pp, vcolor);
9258 }
9259 
9260 /*
9261  * Whenever a mapping is unloaded and the page is in TNC state,
9262  * we see if the page can be made cacheable again. 'pp' is
9263  * the page that we just unloaded a mapping from, the size
9264  * of mapping that was unloaded is 'ottesz'.
9265  * Remark:
9266  * The recache policy for mpss pages can leave a performance problem
9267  * under the following circumstances:
9268  * . A large page in uncached mode has just been unmapped.
9269  * . All constituent pages are TNC due to a conflicting small mapping.
9270  * . There are many other, non conflicting, small mappings around for
9271  *   a lot of the constituent pages.
9272  * . We're called w/ the "old" groupleader page and the old ottesz,
9273  *   but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
9274  *   we end up w/ TTE8K or npages == 1.
9275  * . We call tst_tnc w/ the old groupleader only, and if there is no
9276  *   conflict, we re-cache only this page.
9277  * . All other small mappings are not checked and will be left in TNC mode.
9278  * The problem is not very serious because:
9279  * . mpss is actually only defined for heap and stack, so the probability
9280  *   is not very high that a large page mapping exists in parallel to a small
9281  *   one (this is possible, but seems to be bad programming style in the
9282  *   appl).
9283  * . The problem gets a little bit more serious, when those TNC pages
9284  *   have to be mapped into kernel space, e.g. for networking.
9285  * . When VAC alias conflicts occur in applications, this is regarded
9286  *   as an application bug. So if kstat's show them, the appl should
9287  *   be changed anyway.
9288  */
9289 void
9290 conv_tnc(page_t *pp, int ottesz)
9291 {
9292 	int cursz, dosz;
9293 	pgcnt_t curnpgs, dopgs;
9294 	pgcnt_t pg64k;
9295 	page_t *pp2;
9296 
9297 	/*
9298 	 * Determine how big a range we check for TNC and find
9299 	 * leader page. cursz is the size of the biggest
9300 	 * mapping that still exist on 'pp'.
9301 	 */
9302 	if (PP_ISMAPPED_LARGE(pp)) {
9303 		cursz = fnd_mapping_sz(pp);
9304 	} else {
9305 		cursz = TTE8K;
9306 	}
9307 
9308 	if (ottesz >= cursz) {
9309 		dosz = ottesz;
9310 		pp2 = pp;
9311 	} else {
9312 		dosz = cursz;
9313 		pp2 = PP_GROUPLEADER(pp, dosz);
9314 	}
9315 
9316 	pg64k = TTEPAGES(TTE64K);
9317 	dopgs = TTEPAGES(dosz);
9318 
9319 	ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
9320 
9321 	while (dopgs != 0) {
9322 		curnpgs = TTEPAGES(cursz);
9323 		if (tst_tnc(pp2, curnpgs)) {
9324 			SFMMU_STAT_ADD(sf_recache, curnpgs);
9325 			sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
9326 			    curnpgs);
9327 		}
9328 
9329 		ASSERT(dopgs >= curnpgs);
9330 		dopgs -= curnpgs;
9331 
9332 		if (dopgs == 0) {
9333 			break;
9334 		}
9335 
9336 		pp2 = PP_PAGENEXT_N(pp2, curnpgs);
9337 		if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
9338 			cursz = fnd_mapping_sz(pp2);
9339 		} else {
9340 			cursz = TTE8K;
9341 		}
9342 	}
9343 }
9344 
9345 /*
9346  * Returns 1 if page(s) can be converted from TNC to cacheable setting,
9347  * returns 0 otherwise. Note that oaddr argument is valid for only
9348  * 8k pages.
9349  */
9350 int
9351 tst_tnc(page_t *pp, pgcnt_t npages)
9352 {
9353 	struct	sf_hment *sfhme;
9354 	struct	hme_blk *hmeblkp;
9355 	tte_t	tte;
9356 	caddr_t	vaddr;
9357 	int	clr_valid = 0;
9358 	int 	color, color1, bcolor;
9359 	int	i, ncolors;
9360 
9361 	ASSERT(pp != NULL);
9362 	ASSERT(!(cache & CACHE_WRITEBACK));
9363 
9364 	if (npages > 1) {
9365 		ncolors = CACHE_NUM_COLOR;
9366 	}
9367 
9368 	for (i = 0; i < npages; i++) {
9369 		ASSERT(sfmmu_mlist_held(pp));
9370 		ASSERT(PP_ISTNC(pp));
9371 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
9372 
9373 		if (PP_ISPNC(pp)) {
9374 			return (0);
9375 		}
9376 
9377 		clr_valid = 0;
9378 		if (PP_ISMAPPED_KPM(pp)) {
9379 			caddr_t kpmvaddr;
9380 
9381 			ASSERT(kpm_enable);
9382 			kpmvaddr = hat_kpm_page2va(pp, 1);
9383 			ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
9384 			color1 = addr_to_vcolor(kpmvaddr);
9385 			clr_valid = 1;
9386 		}
9387 
9388 		for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9389 			if (IS_PAHME(sfhme))
9390 				continue;
9391 			hmeblkp = sfmmu_hmetohblk(sfhme);
9392 			if (hmeblkp->hblk_xhat_bit)
9393 				continue;
9394 
9395 			sfmmu_copytte(&sfhme->hme_tte, &tte);
9396 			ASSERT(TTE_IS_VALID(&tte));
9397 
9398 			vaddr = tte_to_vaddr(hmeblkp, tte);
9399 			color = addr_to_vcolor(vaddr);
9400 
9401 			if (npages > 1) {
9402 				/*
9403 				 * If there is a big mapping, make sure
9404 				 * 8K mapping is consistent with the big
9405 				 * mapping.
9406 				 */
9407 				bcolor = i % ncolors;
9408 				if (color != bcolor) {
9409 					return (0);
9410 				}
9411 			}
9412 			if (!clr_valid) {
9413 				clr_valid = 1;
9414 				color1 = color;
9415 			}
9416 
9417 			if (color1 != color) {
9418 				return (0);
9419 			}
9420 		}
9421 
9422 		pp = PP_PAGENEXT(pp);
9423 	}
9424 
9425 	return (1);
9426 }
9427 
9428 void
9429 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
9430 	pgcnt_t npages)
9431 {
9432 	kmutex_t *pmtx;
9433 	int i, ncolors, bcolor;
9434 	kpm_hlk_t *kpmp;
9435 	cpuset_t cpuset;
9436 
9437 	ASSERT(pp != NULL);
9438 	ASSERT(!(cache & CACHE_WRITEBACK));
9439 
9440 	kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
9441 	pmtx = sfmmu_page_enter(pp);
9442 
9443 	/*
9444 	 * Fast path caching single unmapped page
9445 	 */
9446 	if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
9447 	    flags == HAT_CACHE) {
9448 		PP_CLRTNC(pp);
9449 		PP_CLRPNC(pp);
9450 		sfmmu_page_exit(pmtx);
9451 		sfmmu_kpm_kpmp_exit(kpmp);
9452 		return;
9453 	}
9454 
9455 	/*
9456 	 * We need to capture all cpus in order to change cacheability
9457 	 * because we can't allow one cpu to access the same physical
9458 	 * page using a cacheable and a non-cachebale mapping at the same
9459 	 * time. Since we may end up walking the ism mapping list
9460 	 * have to grab it's lock now since we can't after all the
9461 	 * cpus have been captured.
9462 	 */
9463 	sfmmu_hat_lock_all();
9464 	mutex_enter(&ism_mlist_lock);
9465 	kpreempt_disable();
9466 	cpuset = cpu_ready_set;
9467 	xc_attention(cpuset);
9468 
9469 	if (npages > 1) {
9470 		/*
9471 		 * Make sure all colors are flushed since the
9472 		 * sfmmu_page_cache() only flushes one color-
9473 		 * it does not know big pages.
9474 		 */
9475 		ncolors = CACHE_NUM_COLOR;
9476 		if (flags & HAT_TMPNC) {
9477 			for (i = 0; i < ncolors; i++) {
9478 				sfmmu_cache_flushcolor(i, pp->p_pagenum);
9479 			}
9480 			cache_flush_flag = CACHE_NO_FLUSH;
9481 		}
9482 	}
9483 
9484 	for (i = 0; i < npages; i++) {
9485 
9486 		ASSERT(sfmmu_mlist_held(pp));
9487 
9488 		if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
9489 
9490 			if (npages > 1) {
9491 				bcolor = i % ncolors;
9492 			} else {
9493 				bcolor = NO_VCOLOR;
9494 			}
9495 
9496 			sfmmu_page_cache(pp, flags, cache_flush_flag,
9497 			    bcolor);
9498 		}
9499 
9500 		pp = PP_PAGENEXT(pp);
9501 	}
9502 
9503 	xt_sync(cpuset);
9504 	xc_dismissed(cpuset);
9505 	mutex_exit(&ism_mlist_lock);
9506 	sfmmu_hat_unlock_all();
9507 	sfmmu_page_exit(pmtx);
9508 	sfmmu_kpm_kpmp_exit(kpmp);
9509 	kpreempt_enable();
9510 }
9511 
9512 /*
9513  * This function changes the virtual cacheability of all mappings to a
9514  * particular page.  When changing from uncache to cacheable the mappings will
9515  * only be changed if all of them have the same virtual color.
9516  * We need to flush the cache in all cpus.  It is possible that
9517  * a process referenced a page as cacheable but has sinced exited
9518  * and cleared the mapping list.  We still to flush it but have no
9519  * state so all cpus is the only alternative.
9520  */
9521 static void
9522 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
9523 {
9524 	struct	sf_hment *sfhme;
9525 	struct	hme_blk *hmeblkp;
9526 	sfmmu_t *sfmmup;
9527 	tte_t	tte, ttemod;
9528 	caddr_t	vaddr;
9529 	int	ret, color;
9530 	pfn_t	pfn;
9531 
9532 	color = bcolor;
9533 	pfn = pp->p_pagenum;
9534 
9535 	for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9536 
9537 		if (IS_PAHME(sfhme))
9538 			continue;
9539 		hmeblkp = sfmmu_hmetohblk(sfhme);
9540 
9541 		if (hmeblkp->hblk_xhat_bit)
9542 			continue;
9543 
9544 		sfmmu_copytte(&sfhme->hme_tte, &tte);
9545 		ASSERT(TTE_IS_VALID(&tte));
9546 		vaddr = tte_to_vaddr(hmeblkp, tte);
9547 		color = addr_to_vcolor(vaddr);
9548 
9549 #ifdef DEBUG
9550 		if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
9551 			ASSERT(color == bcolor);
9552 		}
9553 #endif
9554 
9555 		ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
9556 
9557 		ttemod = tte;
9558 		if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
9559 			TTE_CLR_VCACHEABLE(&ttemod);
9560 		} else {	/* flags & HAT_CACHE */
9561 			TTE_SET_VCACHEABLE(&ttemod);
9562 		}
9563 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
9564 		if (ret < 0) {
9565 			/*
9566 			 * Since all cpus are captured modifytte should not
9567 			 * fail.
9568 			 */
9569 			panic("sfmmu_page_cache: write to tte failed");
9570 		}
9571 
9572 		sfmmup = hblktosfmmu(hmeblkp);
9573 		if (cache_flush_flag == CACHE_FLUSH) {
9574 			/*
9575 			 * Flush TSBs, TLBs and caches
9576 			 */
9577 			if (hmeblkp->hblk_shared) {
9578 				sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9579 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
9580 				sf_region_t *rgnp;
9581 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9582 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9583 				ASSERT(srdp != NULL);
9584 				rgnp = srdp->srd_hmergnp[rid];
9585 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9586 				    srdp, rgnp, rid);
9587 				(void) sfmmu_rgntlb_demap(vaddr, rgnp,
9588 				    hmeblkp, 0);
9589 				sfmmu_cache_flush(pfn, addr_to_vcolor(vaddr));
9590 			} else if (sfmmup->sfmmu_ismhat) {
9591 				if (flags & HAT_CACHE) {
9592 					SFMMU_STAT(sf_ism_recache);
9593 				} else {
9594 					SFMMU_STAT(sf_ism_uncache);
9595 				}
9596 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9597 				    pfn, CACHE_FLUSH);
9598 			} else {
9599 				sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
9600 				    pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
9601 			}
9602 
9603 			/*
9604 			 * all cache entries belonging to this pfn are
9605 			 * now flushed.
9606 			 */
9607 			cache_flush_flag = CACHE_NO_FLUSH;
9608 		} else {
9609 			/*
9610 			 * Flush only TSBs and TLBs.
9611 			 */
9612 			if (hmeblkp->hblk_shared) {
9613 				sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9614 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
9615 				sf_region_t *rgnp;
9616 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9617 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9618 				ASSERT(srdp != NULL);
9619 				rgnp = srdp->srd_hmergnp[rid];
9620 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9621 				    srdp, rgnp, rid);
9622 				(void) sfmmu_rgntlb_demap(vaddr, rgnp,
9623 				    hmeblkp, 0);
9624 			} else if (sfmmup->sfmmu_ismhat) {
9625 				if (flags & HAT_CACHE) {
9626 					SFMMU_STAT(sf_ism_recache);
9627 				} else {
9628 					SFMMU_STAT(sf_ism_uncache);
9629 				}
9630 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9631 				    pfn, CACHE_NO_FLUSH);
9632 			} else {
9633 				sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
9634 			}
9635 		}
9636 	}
9637 
9638 	if (PP_ISMAPPED_KPM(pp))
9639 		sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
9640 
9641 	switch (flags) {
9642 
9643 		default:
9644 			panic("sfmmu_pagecache: unknown flags");
9645 			break;
9646 
9647 		case HAT_CACHE:
9648 			PP_CLRTNC(pp);
9649 			PP_CLRPNC(pp);
9650 			PP_SET_VCOLOR(pp, color);
9651 			break;
9652 
9653 		case HAT_TMPNC:
9654 			PP_SETTNC(pp);
9655 			PP_SET_VCOLOR(pp, NO_VCOLOR);
9656 			break;
9657 
9658 		case HAT_UNCACHE:
9659 			PP_SETPNC(pp);
9660 			PP_CLRTNC(pp);
9661 			PP_SET_VCOLOR(pp, NO_VCOLOR);
9662 			break;
9663 	}
9664 }
9665 #endif	/* VAC */
9666 
9667 
9668 /*
9669  * Wrapper routine used to return a context.
9670  *
9671  * It's the responsibility of the caller to guarantee that the
9672  * process serializes on calls here by taking the HAT lock for
9673  * the hat.
9674  *
9675  */
9676 static void
9677 sfmmu_get_ctx(sfmmu_t *sfmmup)
9678 {
9679 	mmu_ctx_t *mmu_ctxp;
9680 	uint_t pstate_save;
9681 #ifdef sun4v
9682 	int ret;
9683 #endif
9684 
9685 	ASSERT(sfmmu_hat_lock_held(sfmmup));
9686 	ASSERT(sfmmup != ksfmmup);
9687 
9688 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID)) {
9689 		sfmmu_setup_tsbinfo(sfmmup);
9690 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_ALLCTX_INVALID);
9691 	}
9692 
9693 	kpreempt_disable();
9694 
9695 	mmu_ctxp = CPU_MMU_CTXP(CPU);
9696 	ASSERT(mmu_ctxp);
9697 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
9698 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
9699 
9700 	/*
9701 	 * Do a wrap-around if cnum reaches the max # cnum supported by a MMU.
9702 	 */
9703 	if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs)
9704 		sfmmu_ctx_wrap_around(mmu_ctxp);
9705 
9706 	/*
9707 	 * Let the MMU set up the page sizes to use for
9708 	 * this context in the TLB. Don't program 2nd dtlb for ism hat.
9709 	 */
9710 	if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) {
9711 		mmu_set_ctx_page_sizes(sfmmup);
9712 	}
9713 
9714 	/*
9715 	 * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with
9716 	 * interrupts disabled to prevent race condition with wrap-around
9717 	 * ctx invalidatation. In sun4v, ctx invalidation also involves
9718 	 * a HV call to set the number of TSBs to 0. If interrupts are not
9719 	 * disabled until after sfmmu_load_mmustate is complete TSBs may
9720 	 * become assigned to INVALID_CONTEXT. This is not allowed.
9721 	 */
9722 	pstate_save = sfmmu_disable_intrs();
9723 
9724 #ifdef sun4u
9725 	(void) sfmmu_alloc_ctx(sfmmup, 1, CPU, SFMMU_PRIVATE);
9726 #else
9727 	if (sfmmu_alloc_ctx(sfmmup, 1, CPU, SFMMU_PRIVATE) &&
9728 	    sfmmup->sfmmu_scdp != NULL) {
9729 		sf_scd_t *scdp = sfmmup->sfmmu_scdp;
9730 		sfmmu_t *scsfmmup = scdp->scd_sfmmup;
9731 		ret = sfmmu_alloc_ctx(scsfmmup, 1, CPU, SFMMU_SHARED);
9732 		/* debug purpose only */
9733 		ASSERT(!ret || scsfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
9734 		    != INVALID_CONTEXT);
9735 	}
9736 #endif
9737 	sfmmu_load_mmustate(sfmmup);
9738 
9739 	sfmmu_enable_intrs(pstate_save);
9740 
9741 	kpreempt_enable();
9742 }
9743 
9744 /*
9745  * When all cnums are used up in a MMU, cnum will wrap around to the
9746  * next generation and start from 2.
9747  */
9748 static void
9749 sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp)
9750 {
9751 
9752 	/* caller must have disabled the preemption */
9753 	ASSERT(curthread->t_preempt >= 1);
9754 	ASSERT(mmu_ctxp != NULL);
9755 
9756 	/* acquire Per-MMU (PM) spin lock */
9757 	mutex_enter(&mmu_ctxp->mmu_lock);
9758 
9759 	/* re-check to see if wrap-around is needed */
9760 	if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs)
9761 		goto done;
9762 
9763 	SFMMU_MMU_STAT(mmu_wrap_around);
9764 
9765 	/* update gnum */
9766 	ASSERT(mmu_ctxp->mmu_gnum != 0);
9767 	mmu_ctxp->mmu_gnum++;
9768 	if (mmu_ctxp->mmu_gnum == 0 ||
9769 	    mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) {
9770 		cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.",
9771 		    (void *)mmu_ctxp);
9772 	}
9773 
9774 	if (mmu_ctxp->mmu_ncpus > 1) {
9775 		cpuset_t cpuset;
9776 
9777 		membar_enter(); /* make sure updated gnum visible */
9778 
9779 		SFMMU_XCALL_STATS(NULL);
9780 
9781 		/* xcall to others on the same MMU to invalidate ctx */
9782 		cpuset = mmu_ctxp->mmu_cpuset;
9783 		ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id));
9784 		CPUSET_DEL(cpuset, CPU->cpu_id);
9785 		CPUSET_AND(cpuset, cpu_ready_set);
9786 
9787 		/*
9788 		 * Pass in INVALID_CONTEXT as the first parameter to
9789 		 * sfmmu_raise_tsb_exception, which invalidates the context
9790 		 * of any process running on the CPUs in the MMU.
9791 		 */
9792 		xt_some(cpuset, sfmmu_raise_tsb_exception,
9793 		    INVALID_CONTEXT, INVALID_CONTEXT);
9794 		xt_sync(cpuset);
9795 
9796 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
9797 	}
9798 
9799 	if (sfmmu_getctx_sec() != INVALID_CONTEXT) {
9800 		sfmmu_setctx_sec(INVALID_CONTEXT);
9801 		sfmmu_clear_utsbinfo();
9802 	}
9803 
9804 	/*
9805 	 * No xcall is needed here. For sun4u systems all CPUs in context
9806 	 * domain share a single physical MMU therefore it's enough to flush
9807 	 * TLB on local CPU. On sun4v systems we use 1 global context
9808 	 * domain and flush all remote TLBs in sfmmu_raise_tsb_exception
9809 	 * handler. Note that vtag_flushall_uctxs() is called
9810 	 * for Ultra II machine, where the equivalent flushall functionality
9811 	 * is implemented in SW, and only user ctx TLB entries are flushed.
9812 	 */
9813 	if (&vtag_flushall_uctxs != NULL) {
9814 		vtag_flushall_uctxs();
9815 	} else {
9816 		vtag_flushall();
9817 	}
9818 
9819 	/* reset mmu cnum, skips cnum 0 and 1 */
9820 	mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
9821 
9822 done:
9823 	mutex_exit(&mmu_ctxp->mmu_lock);
9824 }
9825 
9826 
9827 /*
9828  * For multi-threaded process, set the process context to INVALID_CONTEXT
9829  * so that it faults and reloads the MMU state from TL=0. For single-threaded
9830  * process, we can just load the MMU state directly without having to
9831  * set context invalid. Caller must hold the hat lock since we don't
9832  * acquire it here.
9833  */
9834 static void
9835 sfmmu_sync_mmustate(sfmmu_t *sfmmup)
9836 {
9837 	uint_t cnum;
9838 	uint_t pstate_save;
9839 
9840 	ASSERT(sfmmup != ksfmmup);
9841 	ASSERT(sfmmu_hat_lock_held(sfmmup));
9842 
9843 	kpreempt_disable();
9844 
9845 	/*
9846 	 * We check whether the pass'ed-in sfmmup is the same as the
9847 	 * current running proc. This is to makes sure the current proc
9848 	 * stays single-threaded if it already is.
9849 	 */
9850 	if ((sfmmup == curthread->t_procp->p_as->a_hat) &&
9851 	    (curthread->t_procp->p_lwpcnt == 1)) {
9852 		/* single-thread */
9853 		cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum;
9854 		if (cnum != INVALID_CONTEXT) {
9855 			uint_t curcnum;
9856 			/*
9857 			 * Disable interrupts to prevent race condition
9858 			 * with sfmmu_ctx_wrap_around ctx invalidation.
9859 			 * In sun4v, ctx invalidation involves setting
9860 			 * TSB to NULL, hence, interrupts should be disabled
9861 			 * untill after sfmmu_load_mmustate is completed.
9862 			 */
9863 			pstate_save = sfmmu_disable_intrs();
9864 			curcnum = sfmmu_getctx_sec();
9865 			if (curcnum == cnum)
9866 				sfmmu_load_mmustate(sfmmup);
9867 			sfmmu_enable_intrs(pstate_save);
9868 			ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT);
9869 		}
9870 	} else {
9871 		/*
9872 		 * multi-thread
9873 		 * or when sfmmup is not the same as the curproc.
9874 		 */
9875 		sfmmu_invalidate_ctx(sfmmup);
9876 	}
9877 
9878 	kpreempt_enable();
9879 }
9880 
9881 
9882 /*
9883  * Replace the specified TSB with a new TSB.  This function gets called when
9884  * we grow, shrink or swapin a TSB.  When swapping in a TSB (TSB_SWAPIN), the
9885  * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
9886  * (8K).
9887  *
9888  * Caller must hold the HAT lock, but should assume any tsb_info
9889  * pointers it has are no longer valid after calling this function.
9890  *
9891  * Return values:
9892  *	TSB_ALLOCFAIL	Failed to allocate a TSB, due to memory constraints
9893  *	TSB_LOSTRACE	HAT is busy, i.e. another thread is already doing
9894  *			something to this tsbinfo/TSB
9895  *	TSB_SUCCESS	Operation succeeded
9896  */
9897 static tsb_replace_rc_t
9898 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
9899     hatlock_t *hatlockp, uint_t flags)
9900 {
9901 	struct tsb_info *new_tsbinfo = NULL;
9902 	struct tsb_info *curtsb, *prevtsb;
9903 	uint_t tte_sz_mask;
9904 	int i;
9905 
9906 	ASSERT(sfmmup != ksfmmup);
9907 	ASSERT(sfmmup->sfmmu_ismhat == 0);
9908 	ASSERT(sfmmu_hat_lock_held(sfmmup));
9909 	ASSERT(szc <= tsb_max_growsize);
9910 
9911 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
9912 		return (TSB_LOSTRACE);
9913 
9914 	/*
9915 	 * Find the tsb_info ahead of this one in the list, and
9916 	 * also make sure that the tsb_info passed in really
9917 	 * exists!
9918 	 */
9919 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
9920 	    curtsb != old_tsbinfo && curtsb != NULL;
9921 	    prevtsb = curtsb, curtsb = curtsb->tsb_next)
9922 		;
9923 	ASSERT(curtsb != NULL);
9924 
9925 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
9926 		/*
9927 		 * The process is swapped out, so just set the new size
9928 		 * code.  When it swaps back in, we'll allocate a new one
9929 		 * of the new chosen size.
9930 		 */
9931 		curtsb->tsb_szc = szc;
9932 		return (TSB_SUCCESS);
9933 	}
9934 	SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
9935 
9936 	tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
9937 
9938 	/*
9939 	 * All initialization is done inside of sfmmu_tsbinfo_alloc().
9940 	 * If we fail to allocate a TSB, exit.
9941 	 *
9942 	 * If tsb grows with new tsb size > 4M and old tsb size < 4M,
9943 	 * then try 4M slab after the initial alloc fails.
9944 	 *
9945 	 * If tsb swapin with tsb size > 4M, then try 4M after the
9946 	 * initial alloc fails.
9947 	 */
9948 	sfmmu_hat_exit(hatlockp);
9949 	if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc,
9950 	    tte_sz_mask, flags, sfmmup) &&
9951 	    (!(flags & (TSB_GROW | TSB_SWAPIN)) || (szc <= TSB_4M_SZCODE) ||
9952 	    (!(flags & TSB_SWAPIN) &&
9953 	    (old_tsbinfo->tsb_szc >= TSB_4M_SZCODE)) ||
9954 	    sfmmu_tsbinfo_alloc(&new_tsbinfo, TSB_4M_SZCODE,
9955 	    tte_sz_mask, flags, sfmmup))) {
9956 		(void) sfmmu_hat_enter(sfmmup);
9957 		if (!(flags & TSB_SWAPIN))
9958 			SFMMU_STAT(sf_tsb_resize_failures);
9959 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9960 		return (TSB_ALLOCFAIL);
9961 	}
9962 	(void) sfmmu_hat_enter(sfmmup);
9963 
9964 	/*
9965 	 * Re-check to make sure somebody else didn't muck with us while we
9966 	 * didn't hold the HAT lock.  If the process swapped out, fine, just
9967 	 * exit; this can happen if we try to shrink the TSB from the context
9968 	 * of another process (such as on an ISM unmap), though it is rare.
9969 	 */
9970 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
9971 		SFMMU_STAT(sf_tsb_resize_failures);
9972 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9973 		sfmmu_hat_exit(hatlockp);
9974 		sfmmu_tsbinfo_free(new_tsbinfo);
9975 		(void) sfmmu_hat_enter(sfmmup);
9976 		return (TSB_LOSTRACE);
9977 	}
9978 
9979 #ifdef	DEBUG
9980 	/* Reverify that the tsb_info still exists.. for debugging only */
9981 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
9982 	    curtsb != old_tsbinfo && curtsb != NULL;
9983 	    prevtsb = curtsb, curtsb = curtsb->tsb_next)
9984 		;
9985 	ASSERT(curtsb != NULL);
9986 #endif	/* DEBUG */
9987 
9988 	/*
9989 	 * Quiesce any CPUs running this process on their next TLB miss
9990 	 * so they atomically see the new tsb_info.  We temporarily set the
9991 	 * context to invalid context so new threads that come on processor
9992 	 * after we do the xcall to cpusran will also serialize behind the
9993 	 * HAT lock on TLB miss and will see the new TSB.  Since this short
9994 	 * race with a new thread coming on processor is relatively rare,
9995 	 * this synchronization mechanism should be cheaper than always
9996 	 * pausing all CPUs for the duration of the setup, which is what
9997 	 * the old implementation did.  This is particuarly true if we are
9998 	 * copying a huge chunk of memory around during that window.
9999 	 *
10000 	 * The memory barriers are to make sure things stay consistent
10001 	 * with resume() since it does not hold the HAT lock while
10002 	 * walking the list of tsb_info structures.
10003 	 */
10004 	if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
10005 		/* The TSB is either growing or shrinking. */
10006 		sfmmu_invalidate_ctx(sfmmup);
10007 	} else {
10008 		/*
10009 		 * It is illegal to swap in TSBs from a process other
10010 		 * than a process being swapped in.  This in turn
10011 		 * implies we do not have a valid MMU context here
10012 		 * since a process needs one to resolve translation
10013 		 * misses.
10014 		 */
10015 		ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
10016 	}
10017 
10018 #ifdef DEBUG
10019 	ASSERT(max_mmu_ctxdoms > 0);
10020 
10021 	/*
10022 	 * Process should have INVALID_CONTEXT on all MMUs
10023 	 */
10024 	for (i = 0; i < max_mmu_ctxdoms; i++) {
10025 
10026 		ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
10027 	}
10028 #endif
10029 
10030 	new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
10031 	membar_stst();	/* strict ordering required */
10032 	if (prevtsb)
10033 		prevtsb->tsb_next = new_tsbinfo;
10034 	else
10035 		sfmmup->sfmmu_tsb = new_tsbinfo;
10036 	membar_enter();	/* make sure new TSB globally visible */
10037 
10038 	/*
10039 	 * We need to migrate TSB entries from the old TSB to the new TSB
10040 	 * if tsb_remap_ttes is set and the TSB is growing.
10041 	 */
10042 	if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
10043 		sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
10044 
10045 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
10046 
10047 	/*
10048 	 * Drop the HAT lock to free our old tsb_info.
10049 	 */
10050 	sfmmu_hat_exit(hatlockp);
10051 
10052 	if ((flags & TSB_GROW) == TSB_GROW) {
10053 		SFMMU_STAT(sf_tsb_grow);
10054 	} else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
10055 		SFMMU_STAT(sf_tsb_shrink);
10056 	}
10057 
10058 	sfmmu_tsbinfo_free(old_tsbinfo);
10059 
10060 	(void) sfmmu_hat_enter(sfmmup);
10061 	return (TSB_SUCCESS);
10062 }
10063 
10064 /*
10065  * This function will re-program hat pgsz array, and invalidate the
10066  * process' context, forcing the process to switch to another
10067  * context on the next TLB miss, and therefore start using the
10068  * TLB that is reprogrammed for the new page sizes.
10069  */
10070 void
10071 sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
10072 {
10073 	int i;
10074 	hatlock_t *hatlockp = NULL;
10075 
10076 	hatlockp = sfmmu_hat_enter(sfmmup);
10077 	/* USIII+-IV+ optimization, requires hat lock */
10078 	if (tmp_pgsz) {
10079 		for (i = 0; i < mmu_page_sizes; i++)
10080 			sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
10081 	}
10082 	SFMMU_STAT(sf_tlb_reprog_pgsz);
10083 
10084 	sfmmu_invalidate_ctx(sfmmup);
10085 
10086 	sfmmu_hat_exit(hatlockp);
10087 }
10088 
10089 /*
10090  * The scd_rttecnt field in the SCD must be updated to take account of the
10091  * regions which it contains.
10092  */
10093 static void
10094 sfmmu_set_scd_rttecnt(sf_srd_t *srdp, sf_scd_t *scdp)
10095 {
10096 	uint_t rid;
10097 	uint_t i, j;
10098 	ulong_t w;
10099 	sf_region_t *rgnp;
10100 
10101 	ASSERT(srdp != NULL);
10102 
10103 	for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
10104 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
10105 			continue;
10106 		}
10107 
10108 		j = 0;
10109 		while (w) {
10110 			if (!(w & 0x1)) {
10111 				j++;
10112 				w >>= 1;
10113 				continue;
10114 			}
10115 			rid = (i << BT_ULSHIFT) | j;
10116 			j++;
10117 			w >>= 1;
10118 
10119 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
10120 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
10121 			rgnp = srdp->srd_hmergnp[rid];
10122 			ASSERT(rgnp->rgn_refcnt > 0);
10123 			ASSERT(rgnp->rgn_id == rid);
10124 
10125 			scdp->scd_rttecnt[rgnp->rgn_pgszc] +=
10126 			    rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
10127 
10128 			/*
10129 			 * Maintain the tsb0 inflation cnt for the regions
10130 			 * in the SCD.
10131 			 */
10132 			if (rgnp->rgn_pgszc >= TTE4M) {
10133 				scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt +=
10134 				    rgnp->rgn_size >>
10135 				    (TTE_PAGE_SHIFT(TTE8K) + 2);
10136 			}
10137 		}
10138 	}
10139 }
10140 
10141 /*
10142  * This function assumes that there are either four or six supported page
10143  * sizes and at most two programmable TLBs, so we need to decide which
10144  * page sizes are most important and then tell the MMU layer so it
10145  * can adjust the TLB page sizes accordingly (if supported).
10146  *
10147  * If these assumptions change, this function will need to be
10148  * updated to support whatever the new limits are.
10149  *
10150  * The growing flag is nonzero if we are growing the address space,
10151  * and zero if it is shrinking.  This allows us to decide whether
10152  * to grow or shrink our TSB, depending upon available memory
10153  * conditions.
10154  */
10155 static void
10156 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
10157 {
10158 	uint64_t ttecnt[MMU_PAGE_SIZES];
10159 	uint64_t tte8k_cnt, tte4m_cnt;
10160 	uint8_t i;
10161 	int sectsb_thresh;
10162 
10163 	/*
10164 	 * Kernel threads, processes with small address spaces not using
10165 	 * large pages, and dummy ISM HATs need not apply.
10166 	 */
10167 	if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL)
10168 		return;
10169 
10170 	if (!SFMMU_LGPGS_INUSE(sfmmup) &&
10171 	    sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
10172 		return;
10173 
10174 	for (i = 0; i < mmu_page_sizes; i++) {
10175 		ttecnt[i] = sfmmup->sfmmu_ttecnt[i] +
10176 		    sfmmup->sfmmu_ismttecnt[i];
10177 	}
10178 
10179 	/* Check pagesizes in use, and possibly reprogram DTLB. */
10180 	if (&mmu_check_page_sizes)
10181 		mmu_check_page_sizes(sfmmup, ttecnt);
10182 
10183 	/*
10184 	 * Calculate the number of 8k ttes to represent the span of these
10185 	 * pages.
10186 	 */
10187 	tte8k_cnt = ttecnt[TTE8K] +
10188 	    (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
10189 	    (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
10190 	if (mmu_page_sizes == max_mmu_page_sizes) {
10191 		tte4m_cnt = ttecnt[TTE4M] +
10192 		    (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
10193 		    (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
10194 	} else {
10195 		tte4m_cnt = ttecnt[TTE4M];
10196 	}
10197 
10198 	/*
10199 	 * Inflate tte8k_cnt to allow for region large page allocation failure.
10200 	 */
10201 	tte8k_cnt += sfmmup->sfmmu_tsb0_4minflcnt;
10202 
10203 	/*
10204 	 * Inflate TSB sizes by a factor of 2 if this process
10205 	 * uses 4M text pages to minimize extra conflict misses
10206 	 * in the first TSB since without counting text pages
10207 	 * 8K TSB may become too small.
10208 	 *
10209 	 * Also double the size of the second TSB to minimize
10210 	 * extra conflict misses due to competition between 4M text pages
10211 	 * and data pages.
10212 	 *
10213 	 * We need to adjust the second TSB allocation threshold by the
10214 	 * inflation factor, since there is no point in creating a second
10215 	 * TSB when we know all the mappings can fit in the I/D TLBs.
10216 	 */
10217 	sectsb_thresh = tsb_sectsb_threshold;
10218 	if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
10219 		tte8k_cnt <<= 1;
10220 		tte4m_cnt <<= 1;
10221 		sectsb_thresh <<= 1;
10222 	}
10223 
10224 	/*
10225 	 * Check to see if our TSB is the right size; we may need to
10226 	 * grow or shrink it.  If the process is small, our work is
10227 	 * finished at this point.
10228 	 */
10229 	if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
10230 		return;
10231 	}
10232 	sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
10233 }
10234 
10235 static void
10236 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
10237 	uint64_t tte4m_cnt, int sectsb_thresh)
10238 {
10239 	int tsb_bits;
10240 	uint_t tsb_szc;
10241 	struct tsb_info *tsbinfop;
10242 	hatlock_t *hatlockp = NULL;
10243 
10244 	hatlockp = sfmmu_hat_enter(sfmmup);
10245 	ASSERT(hatlockp != NULL);
10246 	tsbinfop = sfmmup->sfmmu_tsb;
10247 	ASSERT(tsbinfop != NULL);
10248 
10249 	/*
10250 	 * If we're growing, select the size based on RSS.  If we're
10251 	 * shrinking, leave some room so we don't have to turn around and
10252 	 * grow again immediately.
10253 	 */
10254 	if (growing)
10255 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
10256 	else
10257 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
10258 
10259 	if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10260 	    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10261 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10262 		    hatlockp, TSB_SHRINK);
10263 	} else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
10264 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10265 		    hatlockp, TSB_GROW);
10266 	}
10267 	tsbinfop = sfmmup->sfmmu_tsb;
10268 
10269 	/*
10270 	 * With the TLB and first TSB out of the way, we need to see if
10271 	 * we need a second TSB for 4M pages.  If we managed to reprogram
10272 	 * the TLB page sizes above, the process will start using this new
10273 	 * TSB right away; otherwise, it will start using it on the next
10274 	 * context switch.  Either way, it's no big deal so there's no
10275 	 * synchronization with the trap handlers here unless we grow the
10276 	 * TSB (in which case it's required to prevent using the old one
10277 	 * after it's freed). Note: second tsb is required for 32M/256M
10278 	 * page sizes.
10279 	 */
10280 	if (tte4m_cnt > sectsb_thresh) {
10281 		/*
10282 		 * If we're growing, select the size based on RSS.  If we're
10283 		 * shrinking, leave some room so we don't have to turn
10284 		 * around and grow again immediately.
10285 		 */
10286 		if (growing)
10287 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
10288 		else
10289 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
10290 		if (tsbinfop->tsb_next == NULL) {
10291 			struct tsb_info *newtsb;
10292 			int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
10293 			    0 : TSB_ALLOC;
10294 
10295 			sfmmu_hat_exit(hatlockp);
10296 
10297 			/*
10298 			 * Try to allocate a TSB for 4[32|256]M pages.  If we
10299 			 * can't get the size we want, retry w/a minimum sized
10300 			 * TSB.  If that still didn't work, give up; we can
10301 			 * still run without one.
10302 			 */
10303 			tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
10304 			    TSB4M|TSB32M|TSB256M:TSB4M;
10305 			if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
10306 			    allocflags, sfmmup)) &&
10307 			    (tsb_szc <= TSB_4M_SZCODE ||
10308 			    sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
10309 			    tsb_bits, allocflags, sfmmup)) &&
10310 			    sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
10311 			    tsb_bits, allocflags, sfmmup)) {
10312 				return;
10313 			}
10314 
10315 			hatlockp = sfmmu_hat_enter(sfmmup);
10316 
10317 			sfmmu_invalidate_ctx(sfmmup);
10318 
10319 			if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
10320 				sfmmup->sfmmu_tsb->tsb_next = newtsb;
10321 				SFMMU_STAT(sf_tsb_sectsb_create);
10322 				sfmmu_hat_exit(hatlockp);
10323 				return;
10324 			} else {
10325 				/*
10326 				 * It's annoying, but possible for us
10327 				 * to get here.. we dropped the HAT lock
10328 				 * because of locking order in the kmem
10329 				 * allocator, and while we were off getting
10330 				 * our memory, some other thread decided to
10331 				 * do us a favor and won the race to get a
10332 				 * second TSB for this process.  Sigh.
10333 				 */
10334 				sfmmu_hat_exit(hatlockp);
10335 				sfmmu_tsbinfo_free(newtsb);
10336 				return;
10337 			}
10338 		}
10339 
10340 		/*
10341 		 * We have a second TSB, see if it's big enough.
10342 		 */
10343 		tsbinfop = tsbinfop->tsb_next;
10344 
10345 		/*
10346 		 * Check to see if our second TSB is the right size;
10347 		 * we may need to grow or shrink it.
10348 		 * To prevent thrashing (e.g. growing the TSB on a
10349 		 * subsequent map operation), only try to shrink if
10350 		 * the TSB reach exceeds twice the virtual address
10351 		 * space size.
10352 		 */
10353 		if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10354 		    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10355 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10356 			    tsb_szc, hatlockp, TSB_SHRINK);
10357 		} else if (growing && tsb_szc > tsbinfop->tsb_szc &&
10358 		    TSB_OK_GROW()) {
10359 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10360 			    tsb_szc, hatlockp, TSB_GROW);
10361 		}
10362 	}
10363 
10364 	sfmmu_hat_exit(hatlockp);
10365 }
10366 
10367 /*
10368  * Free up a sfmmu
10369  * Since the sfmmu is currently embedded in the hat struct we simply zero
10370  * out our fields and free up the ism map blk list if any.
10371  */
10372 static void
10373 sfmmu_free_sfmmu(sfmmu_t *sfmmup)
10374 {
10375 	ism_blk_t	*blkp, *nx_blkp;
10376 #ifdef	DEBUG
10377 	ism_map_t	*map;
10378 	int 		i;
10379 #endif
10380 
10381 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
10382 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
10383 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
10384 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
10385 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
10386 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
10387 	ASSERT(SF_RGNMAP_ISNULL(sfmmup));
10388 
10389 	sfmmup->sfmmu_free = 0;
10390 	sfmmup->sfmmu_ismhat = 0;
10391 
10392 	blkp = sfmmup->sfmmu_iblk;
10393 	sfmmup->sfmmu_iblk = NULL;
10394 
10395 	while (blkp) {
10396 #ifdef	DEBUG
10397 		map = blkp->iblk_maps;
10398 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
10399 			ASSERT(map[i].imap_seg == 0);
10400 			ASSERT(map[i].imap_ismhat == NULL);
10401 			ASSERT(map[i].imap_ment == NULL);
10402 		}
10403 #endif
10404 		nx_blkp = blkp->iblk_next;
10405 		blkp->iblk_next = NULL;
10406 		blkp->iblk_nextpa = (uint64_t)-1;
10407 		kmem_cache_free(ism_blk_cache, blkp);
10408 		blkp = nx_blkp;
10409 	}
10410 }
10411 
10412 /*
10413  * Locking primitves accessed by HATLOCK macros
10414  */
10415 
10416 #define	SFMMU_SPL_MTX	(0x0)
10417 #define	SFMMU_ML_MTX	(0x1)
10418 
10419 #define	SFMMU_MLSPL_MTX(type, pg)	(((type) == SFMMU_SPL_MTX) ? \
10420 					    SPL_HASH(pg) : MLIST_HASH(pg))
10421 
10422 kmutex_t *
10423 sfmmu_page_enter(struct page *pp)
10424 {
10425 	return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
10426 }
10427 
10428 void
10429 sfmmu_page_exit(kmutex_t *spl)
10430 {
10431 	mutex_exit(spl);
10432 }
10433 
10434 int
10435 sfmmu_page_spl_held(struct page *pp)
10436 {
10437 	return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
10438 }
10439 
10440 kmutex_t *
10441 sfmmu_mlist_enter(struct page *pp)
10442 {
10443 	return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
10444 }
10445 
10446 void
10447 sfmmu_mlist_exit(kmutex_t *mml)
10448 {
10449 	mutex_exit(mml);
10450 }
10451 
10452 int
10453 sfmmu_mlist_held(struct page *pp)
10454 {
10455 
10456 	return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
10457 }
10458 
10459 /*
10460  * Common code for sfmmu_mlist_enter() and sfmmu_page_enter().  For
10461  * sfmmu_mlist_enter() case mml_table lock array is used and for
10462  * sfmmu_page_enter() sfmmu_page_lock lock array is used.
10463  *
10464  * The lock is taken on a root page so that it protects an operation on all
10465  * constituent pages of a large page pp belongs to.
10466  *
10467  * The routine takes a lock from the appropriate array. The lock is determined
10468  * by hashing the root page. After taking the lock this routine checks if the
10469  * root page has the same size code that was used to determine the root (i.e
10470  * that root hasn't changed).  If root page has the expected p_szc field we
10471  * have the right lock and it's returned to the caller. If root's p_szc
10472  * decreased we release the lock and retry from the beginning.  This case can
10473  * happen due to hat_page_demote() decreasing p_szc between our load of p_szc
10474  * value and taking the lock. The number of retries due to p_szc decrease is
10475  * limited by the maximum p_szc value. If p_szc is 0 we return the lock
10476  * determined by hashing pp itself.
10477  *
10478  * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
10479  * possible that p_szc can increase. To increase p_szc a thread has to lock
10480  * all constituent pages EXCL and do hat_pageunload() on all of them. All the
10481  * callers that don't hold a page locked recheck if hmeblk through which pp
10482  * was found still maps this pp.  If it doesn't map it anymore returned lock
10483  * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
10484  * p_szc increase after taking the lock it returns this lock without further
10485  * retries because in this case the caller doesn't care about which lock was
10486  * taken. The caller will drop it right away.
10487  *
10488  * After the routine returns it's guaranteed that hat_page_demote() can't
10489  * change p_szc field of any of constituent pages of a large page pp belongs
10490  * to as long as pp was either locked at least SHARED prior to this call or
10491  * the caller finds that hment that pointed to this pp still references this
10492  * pp (this also assumes that the caller holds hme hash bucket lock so that
10493  * the same pp can't be remapped into the same hmeblk after it was unmapped by
10494  * hat_pageunload()).
10495  */
10496 static kmutex_t *
10497 sfmmu_mlspl_enter(struct page *pp, int type)
10498 {
10499 	kmutex_t	*mtx;
10500 	uint_t		prev_rszc = UINT_MAX;
10501 	page_t		*rootpp;
10502 	uint_t		szc;
10503 	uint_t		rszc;
10504 	uint_t		pszc = pp->p_szc;
10505 
10506 	ASSERT(pp != NULL);
10507 
10508 again:
10509 	if (pszc == 0) {
10510 		mtx = SFMMU_MLSPL_MTX(type, pp);
10511 		mutex_enter(mtx);
10512 		return (mtx);
10513 	}
10514 
10515 	/* The lock lives in the root page */
10516 	rootpp = PP_GROUPLEADER(pp, pszc);
10517 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
10518 	mutex_enter(mtx);
10519 
10520 	/*
10521 	 * Return mml in the following 3 cases:
10522 	 *
10523 	 * 1) If pp itself is root since if its p_szc decreased before we took
10524 	 * the lock pp is still the root of smaller szc page. And if its p_szc
10525 	 * increased it doesn't matter what lock we return (see comment in
10526 	 * front of this routine).
10527 	 *
10528 	 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
10529 	 * large page we have the right lock since any previous potential
10530 	 * hat_page_demote() is done demoting from greater than current root's
10531 	 * p_szc because hat_page_demote() changes root's p_szc last. No
10532 	 * further hat_page_demote() can start or be in progress since it
10533 	 * would need the same lock we currently hold.
10534 	 *
10535 	 * 3) If rootpp's p_szc increased since previous iteration it doesn't
10536 	 * matter what lock we return (see comment in front of this routine).
10537 	 */
10538 	if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
10539 	    rszc >= prev_rszc) {
10540 		return (mtx);
10541 	}
10542 
10543 	/*
10544 	 * hat_page_demote() could have decreased root's p_szc.
10545 	 * In this case pp's p_szc must also be smaller than pszc.
10546 	 * Retry.
10547 	 */
10548 	if (rszc < pszc) {
10549 		szc = pp->p_szc;
10550 		if (szc < pszc) {
10551 			mutex_exit(mtx);
10552 			pszc = szc;
10553 			goto again;
10554 		}
10555 		/*
10556 		 * pp's p_szc increased after it was decreased.
10557 		 * page cannot be mapped. Return current lock. The caller
10558 		 * will drop it right away.
10559 		 */
10560 		return (mtx);
10561 	}
10562 
10563 	/*
10564 	 * root's p_szc is greater than pp's p_szc.
10565 	 * hat_page_demote() is not done with all pages
10566 	 * yet. Wait for it to complete.
10567 	 */
10568 	mutex_exit(mtx);
10569 	rootpp = PP_GROUPLEADER(rootpp, rszc);
10570 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
10571 	mutex_enter(mtx);
10572 	mutex_exit(mtx);
10573 	prev_rszc = rszc;
10574 	goto again;
10575 }
10576 
10577 static int
10578 sfmmu_mlspl_held(struct page *pp, int type)
10579 {
10580 	kmutex_t	*mtx;
10581 
10582 	ASSERT(pp != NULL);
10583 	/* The lock lives in the root page */
10584 	pp = PP_PAGEROOT(pp);
10585 	ASSERT(pp != NULL);
10586 
10587 	mtx = SFMMU_MLSPL_MTX(type, pp);
10588 	return (MUTEX_HELD(mtx));
10589 }
10590 
10591 static uint_t
10592 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
10593 {
10594 	struct  hme_blk *hblkp;
10595 
10596 	if (freehblkp != NULL) {
10597 		mutex_enter(&freehblkp_lock);
10598 		if (freehblkp != NULL) {
10599 			/*
10600 			 * If the current thread is owning hblk_reserve OR
10601 			 * critical request from sfmmu_hblk_steal()
10602 			 * let it succeed even if freehblkcnt is really low.
10603 			 */
10604 			if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
10605 				SFMMU_STAT(sf_get_free_throttle);
10606 				mutex_exit(&freehblkp_lock);
10607 				return (0);
10608 			}
10609 			freehblkcnt--;
10610 			*hmeblkpp = freehblkp;
10611 			hblkp = *hmeblkpp;
10612 			freehblkp = hblkp->hblk_next;
10613 			mutex_exit(&freehblkp_lock);
10614 			hblkp->hblk_next = NULL;
10615 			SFMMU_STAT(sf_get_free_success);
10616 			return (1);
10617 		}
10618 		mutex_exit(&freehblkp_lock);
10619 	}
10620 	SFMMU_STAT(sf_get_free_fail);
10621 	return (0);
10622 }
10623 
10624 static uint_t
10625 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
10626 {
10627 	struct  hme_blk *hblkp;
10628 
10629 	/*
10630 	 * If the current thread is mapping into kernel space,
10631 	 * let it succede even if freehblkcnt is max
10632 	 * so that it will avoid freeing it to kmem.
10633 	 * This will prevent stack overflow due to
10634 	 * possible recursion since kmem_cache_free()
10635 	 * might require creation of a slab which
10636 	 * in turn needs an hmeblk to map that slab;
10637 	 * let's break this vicious chain at the first
10638 	 * opportunity.
10639 	 */
10640 	if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10641 		mutex_enter(&freehblkp_lock);
10642 		if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10643 			SFMMU_STAT(sf_put_free_success);
10644 			freehblkcnt++;
10645 			hmeblkp->hblk_next = freehblkp;
10646 			freehblkp = hmeblkp;
10647 			mutex_exit(&freehblkp_lock);
10648 			return (1);
10649 		}
10650 		mutex_exit(&freehblkp_lock);
10651 	}
10652 
10653 	/*
10654 	 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
10655 	 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
10656 	 * we are not in the process of mapping into kernel space.
10657 	 */
10658 	ASSERT(!critical);
10659 	while (freehblkcnt > HBLK_RESERVE_CNT) {
10660 		mutex_enter(&freehblkp_lock);
10661 		if (freehblkcnt > HBLK_RESERVE_CNT) {
10662 			freehblkcnt--;
10663 			hblkp = freehblkp;
10664 			freehblkp = hblkp->hblk_next;
10665 			mutex_exit(&freehblkp_lock);
10666 			ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
10667 			kmem_cache_free(sfmmu8_cache, hblkp);
10668 			continue;
10669 		}
10670 		mutex_exit(&freehblkp_lock);
10671 	}
10672 	SFMMU_STAT(sf_put_free_fail);
10673 	return (0);
10674 }
10675 
10676 static void
10677 sfmmu_hblk_swap(struct hme_blk *new)
10678 {
10679 	struct hme_blk *old, *hblkp, *prev;
10680 	uint64_t hblkpa, prevpa, newpa;
10681 	caddr_t	base, vaddr, endaddr;
10682 	struct hmehash_bucket *hmebp;
10683 	struct sf_hment *osfhme, *nsfhme;
10684 	page_t *pp;
10685 	kmutex_t *pml;
10686 	tte_t tte;
10687 
10688 #ifdef	DEBUG
10689 	hmeblk_tag		hblktag;
10690 	struct hme_blk		*found;
10691 #endif
10692 	old = HBLK_RESERVE;
10693 	ASSERT(!old->hblk_shared);
10694 
10695 	/*
10696 	 * save pa before bcopy clobbers it
10697 	 */
10698 	newpa = new->hblk_nextpa;
10699 
10700 	base = (caddr_t)get_hblk_base(old);
10701 	endaddr = base + get_hblk_span(old);
10702 
10703 	/*
10704 	 * acquire hash bucket lock.
10705 	 */
10706 	hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K,
10707 	    SFMMU_INVALID_SHMERID);
10708 
10709 	/*
10710 	 * copy contents from old to new
10711 	 */
10712 	bcopy((void *)old, (void *)new, HME8BLK_SZ);
10713 
10714 	/*
10715 	 * add new to hash chain
10716 	 */
10717 	sfmmu_hblk_hash_add(hmebp, new, newpa);
10718 
10719 	/*
10720 	 * search hash chain for hblk_reserve; this needs to be performed
10721 	 * after adding new, otherwise prevpa and prev won't correspond
10722 	 * to the hblk which is prior to old in hash chain when we call
10723 	 * sfmmu_hblk_hash_rm to remove old later.
10724 	 */
10725 	for (prevpa = 0, prev = NULL,
10726 	    hblkpa = hmebp->hmeh_nextpa, hblkp = hmebp->hmeblkp;
10727 	    hblkp != NULL && hblkp != old;
10728 	    prevpa = hblkpa, prev = hblkp,
10729 	    hblkpa = hblkp->hblk_nextpa, hblkp = hblkp->hblk_next)
10730 		;
10731 
10732 	if (hblkp != old)
10733 		panic("sfmmu_hblk_swap: hblk_reserve not found");
10734 
10735 	/*
10736 	 * p_mapping list is still pointing to hments in hblk_reserve;
10737 	 * fix up p_mapping list so that they point to hments in new.
10738 	 *
10739 	 * Since all these mappings are created by hblk_reserve_thread
10740 	 * on the way and it's using at least one of the buffers from each of
10741 	 * the newly minted slabs, there is no danger of any of these
10742 	 * mappings getting unloaded by another thread.
10743 	 *
10744 	 * tsbmiss could only modify ref/mod bits of hments in old/new.
10745 	 * Since all of these hments hold mappings established by segkmem
10746 	 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
10747 	 * have no meaning for the mappings in hblk_reserve.  hments in
10748 	 * old and new are identical except for ref/mod bits.
10749 	 */
10750 	for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
10751 
10752 		HBLKTOHME(osfhme, old, vaddr);
10753 		sfmmu_copytte(&osfhme->hme_tte, &tte);
10754 
10755 		if (TTE_IS_VALID(&tte)) {
10756 			if ((pp = osfhme->hme_page) == NULL)
10757 				panic("sfmmu_hblk_swap: page not mapped");
10758 
10759 			pml = sfmmu_mlist_enter(pp);
10760 
10761 			if (pp != osfhme->hme_page)
10762 				panic("sfmmu_hblk_swap: mapping changed");
10763 
10764 			HBLKTOHME(nsfhme, new, vaddr);
10765 
10766 			HME_ADD(nsfhme, pp);
10767 			HME_SUB(osfhme, pp);
10768 
10769 			sfmmu_mlist_exit(pml);
10770 		}
10771 	}
10772 
10773 	/*
10774 	 * remove old from hash chain
10775 	 */
10776 	sfmmu_hblk_hash_rm(hmebp, old, prevpa, prev);
10777 
10778 #ifdef	DEBUG
10779 
10780 	hblktag.htag_id = ksfmmup;
10781 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
10782 	hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
10783 	hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
10784 	HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
10785 
10786 	if (found != new)
10787 		panic("sfmmu_hblk_swap: new hblk not found");
10788 #endif
10789 
10790 	SFMMU_HASH_UNLOCK(hmebp);
10791 
10792 	/*
10793 	 * Reset hblk_reserve
10794 	 */
10795 	bzero((void *)old, HME8BLK_SZ);
10796 	old->hblk_nextpa = va_to_pa((caddr_t)old);
10797 }
10798 
10799 /*
10800  * Grab the mlist mutex for both pages passed in.
10801  *
10802  * low and high will be returned as pointers to the mutexes for these pages.
10803  * low refers to the mutex residing in the lower bin of the mlist hash, while
10804  * high refers to the mutex residing in the higher bin of the mlist hash.  This
10805  * is due to the locking order restrictions on the same thread grabbing
10806  * multiple mlist mutexes.  The low lock must be acquired before the high lock.
10807  *
10808  * If both pages hash to the same mutex, only grab that single mutex, and
10809  * high will be returned as NULL
10810  * If the pages hash to different bins in the hash, grab the lower addressed
10811  * lock first and then the higher addressed lock in order to follow the locking
10812  * rules involved with the same thread grabbing multiple mlist mutexes.
10813  * low and high will both have non-NULL values.
10814  */
10815 static void
10816 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
10817     kmutex_t **low, kmutex_t **high)
10818 {
10819 	kmutex_t	*mml_targ, *mml_repl;
10820 
10821 	/*
10822 	 * no need to do the dance around szc as in sfmmu_mlist_enter()
10823 	 * because this routine is only called by hat_page_relocate() and all
10824 	 * targ and repl pages are already locked EXCL so szc can't change.
10825 	 */
10826 
10827 	mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
10828 	mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
10829 
10830 	if (mml_targ == mml_repl) {
10831 		*low = mml_targ;
10832 		*high = NULL;
10833 	} else {
10834 		if (mml_targ < mml_repl) {
10835 			*low = mml_targ;
10836 			*high = mml_repl;
10837 		} else {
10838 			*low = mml_repl;
10839 			*high = mml_targ;
10840 		}
10841 	}
10842 
10843 	mutex_enter(*low);
10844 	if (*high)
10845 		mutex_enter(*high);
10846 }
10847 
10848 static void
10849 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
10850 {
10851 	if (high)
10852 		mutex_exit(high);
10853 	mutex_exit(low);
10854 }
10855 
10856 static hatlock_t *
10857 sfmmu_hat_enter(sfmmu_t *sfmmup)
10858 {
10859 	hatlock_t	*hatlockp;
10860 
10861 	if (sfmmup != ksfmmup) {
10862 		hatlockp = TSB_HASH(sfmmup);
10863 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
10864 		return (hatlockp);
10865 	}
10866 	return (NULL);
10867 }
10868 
10869 static hatlock_t *
10870 sfmmu_hat_tryenter(sfmmu_t *sfmmup)
10871 {
10872 	hatlock_t	*hatlockp;
10873 
10874 	if (sfmmup != ksfmmup) {
10875 		hatlockp = TSB_HASH(sfmmup);
10876 		if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
10877 			return (NULL);
10878 		return (hatlockp);
10879 	}
10880 	return (NULL);
10881 }
10882 
10883 static void
10884 sfmmu_hat_exit(hatlock_t *hatlockp)
10885 {
10886 	if (hatlockp != NULL)
10887 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
10888 }
10889 
10890 static void
10891 sfmmu_hat_lock_all(void)
10892 {
10893 	int i;
10894 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
10895 		mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
10896 }
10897 
10898 static void
10899 sfmmu_hat_unlock_all(void)
10900 {
10901 	int i;
10902 	for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
10903 		mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
10904 }
10905 
10906 int
10907 sfmmu_hat_lock_held(sfmmu_t *sfmmup)
10908 {
10909 	ASSERT(sfmmup != ksfmmup);
10910 	return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
10911 }
10912 
10913 /*
10914  * Locking primitives to provide consistency between ISM unmap
10915  * and other operations.  Since ISM unmap can take a long time, we
10916  * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
10917  * contention on the hatlock buckets while ISM segments are being
10918  * unmapped.  The tradeoff is that the flags don't prevent priority
10919  * inversion from occurring, so we must request kernel priority in
10920  * case we have to sleep to keep from getting buried while holding
10921  * the HAT_ISMBUSY flag set, which in turn could block other kernel
10922  * threads from running (for example, in sfmmu_uvatopfn()).
10923  */
10924 static void
10925 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
10926 {
10927 	hatlock_t *hatlockp;
10928 
10929 	THREAD_KPRI_REQUEST();
10930 	if (!hatlock_held)
10931 		hatlockp = sfmmu_hat_enter(sfmmup);
10932 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
10933 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
10934 	SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
10935 	if (!hatlock_held)
10936 		sfmmu_hat_exit(hatlockp);
10937 }
10938 
10939 static void
10940 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
10941 {
10942 	hatlock_t *hatlockp;
10943 
10944 	if (!hatlock_held)
10945 		hatlockp = sfmmu_hat_enter(sfmmup);
10946 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
10947 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
10948 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10949 	if (!hatlock_held)
10950 		sfmmu_hat_exit(hatlockp);
10951 	THREAD_KPRI_RELEASE();
10952 }
10953 
10954 /*
10955  *
10956  * Algorithm:
10957  *
10958  * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
10959  *	hblks.
10960  *
10961  * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
10962  *
10963  * 		(a) try to return an hblk from reserve pool of free hblks;
10964  *		(b) if the reserve pool is empty, acquire hblk_reserve_lock
10965  *		    and return hblk_reserve.
10966  *
10967  * (3) call kmem_cache_alloc() to allocate hblk;
10968  *
10969  *		(a) if hblk_reserve_lock is held by the current thread,
10970  *		    atomically replace hblk_reserve by the hblk that is
10971  *		    returned by kmem_cache_alloc; release hblk_reserve_lock
10972  *		    and call kmem_cache_alloc() again.
10973  *		(b) if reserve pool is not full, add the hblk that is
10974  *		    returned by kmem_cache_alloc to reserve pool and
10975  *		    call kmem_cache_alloc again.
10976  *
10977  */
10978 static struct hme_blk *
10979 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
10980 	struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
10981 	uint_t flags, uint_t rid)
10982 {
10983 	struct hme_blk *hmeblkp = NULL;
10984 	struct hme_blk *newhblkp;
10985 	struct hme_blk *shw_hblkp = NULL;
10986 	struct kmem_cache *sfmmu_cache = NULL;
10987 	uint64_t hblkpa;
10988 	ulong_t index;
10989 	uint_t owner;		/* set to 1 if using hblk_reserve */
10990 	uint_t forcefree;
10991 	int sleep;
10992 	sf_srd_t *srdp;
10993 	sf_region_t *rgnp;
10994 
10995 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10996 	ASSERT(hblktag.htag_rid == rid);
10997 	SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
10998 	ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
10999 	    IS_P2ALIGNED(vaddr, TTEBYTES(size)));
11000 
11001 	/*
11002 	 * If segkmem is not created yet, allocate from static hmeblks
11003 	 * created at the end of startup_modules().  See the block comment
11004 	 * in startup_modules() describing how we estimate the number of
11005 	 * static hmeblks that will be needed during re-map.
11006 	 */
11007 	if (!hblk_alloc_dynamic) {
11008 
11009 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
11010 
11011 		if (size == TTE8K) {
11012 			index = nucleus_hblk8.index;
11013 			if (index >= nucleus_hblk8.len) {
11014 				/*
11015 				 * If we panic here, see startup_modules() to
11016 				 * make sure that we are calculating the
11017 				 * number of hblk8's that we need correctly.
11018 				 */
11019 				prom_panic("no nucleus hblk8 to allocate");
11020 			}
11021 			hmeblkp =
11022 			    (struct hme_blk *)&nucleus_hblk8.list[index];
11023 			nucleus_hblk8.index++;
11024 			SFMMU_STAT(sf_hblk8_nalloc);
11025 		} else {
11026 			index = nucleus_hblk1.index;
11027 			if (nucleus_hblk1.index >= nucleus_hblk1.len) {
11028 				/*
11029 				 * If we panic here, see startup_modules().
11030 				 * Most likely you need to update the
11031 				 * calculation of the number of hblk1 elements
11032 				 * that the kernel needs to boot.
11033 				 */
11034 				prom_panic("no nucleus hblk1 to allocate");
11035 			}
11036 			hmeblkp =
11037 			    (struct hme_blk *)&nucleus_hblk1.list[index];
11038 			nucleus_hblk1.index++;
11039 			SFMMU_STAT(sf_hblk1_nalloc);
11040 		}
11041 
11042 		goto hblk_init;
11043 	}
11044 
11045 	SFMMU_HASH_UNLOCK(hmebp);
11046 
11047 	if (sfmmup != KHATID && !SFMMU_IS_SHMERID_VALID(rid)) {
11048 		if (mmu_page_sizes == max_mmu_page_sizes) {
11049 			if (size < TTE256M)
11050 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
11051 				    size, flags);
11052 		} else {
11053 			if (size < TTE4M)
11054 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
11055 				    size, flags);
11056 		}
11057 	} else if (SFMMU_IS_SHMERID_VALID(rid)) {
11058 		/*
11059 		 * Shared hmes use per region bitmaps in rgn_hmeflag
11060 		 * rather than shadow hmeblks to keep track of the
11061 		 * mapping sizes which have been allocated for the region.
11062 		 * Here we cleanup old invalid hmeblks with this rid,
11063 		 * which may be left around by pageunload().
11064 		 */
11065 		int ttesz;
11066 		caddr_t va;
11067 		caddr_t	eva = vaddr + TTEBYTES(size);
11068 
11069 		ASSERT(sfmmup != KHATID);
11070 
11071 		srdp = sfmmup->sfmmu_srdp;
11072 		ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11073 		rgnp = srdp->srd_hmergnp[rid];
11074 		ASSERT(rgnp != NULL && rgnp->rgn_id == rid);
11075 		ASSERT(rgnp->rgn_refcnt != 0);
11076 		ASSERT(size <= rgnp->rgn_pgszc);
11077 
11078 		ttesz = HBLK_MIN_TTESZ;
11079 		do {
11080 			if (!(rgnp->rgn_hmeflags & (0x1 << ttesz))) {
11081 				continue;
11082 			}
11083 
11084 			if (ttesz > size && ttesz != HBLK_MIN_TTESZ) {
11085 				sfmmu_cleanup_rhblk(srdp, vaddr, rid, ttesz);
11086 			} else if (ttesz < size) {
11087 				for (va = vaddr; va < eva;
11088 				    va += TTEBYTES(ttesz)) {
11089 					sfmmu_cleanup_rhblk(srdp, va, rid,
11090 					    ttesz);
11091 				}
11092 			}
11093 		} while (++ttesz <= rgnp->rgn_pgszc);
11094 	}
11095 
11096 fill_hblk:
11097 	owner = (hblk_reserve_thread == curthread) ? 1 : 0;
11098 
11099 	if (owner && size == TTE8K) {
11100 
11101 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
11102 		/*
11103 		 * We are really in a tight spot. We already own
11104 		 * hblk_reserve and we need another hblk.  In anticipation
11105 		 * of this kind of scenario, we specifically set aside
11106 		 * HBLK_RESERVE_MIN number of hblks to be used exclusively
11107 		 * by owner of hblk_reserve.
11108 		 */
11109 		SFMMU_STAT(sf_hblk_recurse_cnt);
11110 
11111 		if (!sfmmu_get_free_hblk(&hmeblkp, 1))
11112 			panic("sfmmu_hblk_alloc: reserve list is empty");
11113 
11114 		goto hblk_verify;
11115 	}
11116 
11117 	ASSERT(!owner);
11118 
11119 	if ((flags & HAT_NO_KALLOC) == 0) {
11120 
11121 		sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
11122 		sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
11123 
11124 		if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
11125 			hmeblkp = sfmmu_hblk_steal(size);
11126 		} else {
11127 			/*
11128 			 * if we are the owner of hblk_reserve,
11129 			 * swap hblk_reserve with hmeblkp and
11130 			 * start a fresh life.  Hope things go
11131 			 * better this time.
11132 			 */
11133 			if (hblk_reserve_thread == curthread) {
11134 				ASSERT(sfmmu_cache == sfmmu8_cache);
11135 				sfmmu_hblk_swap(hmeblkp);
11136 				hblk_reserve_thread = NULL;
11137 				mutex_exit(&hblk_reserve_lock);
11138 				goto fill_hblk;
11139 			}
11140 			/*
11141 			 * let's donate this hblk to our reserve list if
11142 			 * we are not mapping kernel range
11143 			 */
11144 			if (size == TTE8K && sfmmup != KHATID)
11145 				if (sfmmu_put_free_hblk(hmeblkp, 0))
11146 					goto fill_hblk;
11147 		}
11148 	} else {
11149 		/*
11150 		 * We are here to map the slab in sfmmu8_cache; let's
11151 		 * check if we could tap our reserve list; if successful,
11152 		 * this will avoid the pain of going thru sfmmu_hblk_swap
11153 		 */
11154 		SFMMU_STAT(sf_hblk_slab_cnt);
11155 		if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
11156 			/*
11157 			 * let's start hblk_reserve dance
11158 			 */
11159 			SFMMU_STAT(sf_hblk_reserve_cnt);
11160 			owner = 1;
11161 			mutex_enter(&hblk_reserve_lock);
11162 			hmeblkp = HBLK_RESERVE;
11163 			hblk_reserve_thread = curthread;
11164 		}
11165 	}
11166 
11167 hblk_verify:
11168 	ASSERT(hmeblkp != NULL);
11169 	set_hblk_sz(hmeblkp, size);
11170 	ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
11171 	SFMMU_HASH_LOCK(hmebp);
11172 	HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11173 	if (newhblkp != NULL) {
11174 		SFMMU_HASH_UNLOCK(hmebp);
11175 		if (hmeblkp != HBLK_RESERVE) {
11176 			/*
11177 			 * This is really tricky!
11178 			 *
11179 			 * vmem_alloc(vmem_seg_arena)
11180 			 *  vmem_alloc(vmem_internal_arena)
11181 			 *   segkmem_alloc(heap_arena)
11182 			 *    vmem_alloc(heap_arena)
11183 			 *    page_create()
11184 			 *    hat_memload()
11185 			 *	kmem_cache_free()
11186 			 *	 kmem_cache_alloc()
11187 			 *	  kmem_slab_create()
11188 			 *	   vmem_alloc(kmem_internal_arena)
11189 			 *	    segkmem_alloc(heap_arena)
11190 			 *		vmem_alloc(heap_arena)
11191 			 *		page_create()
11192 			 *		hat_memload()
11193 			 *		  kmem_cache_free()
11194 			 *		...
11195 			 *
11196 			 * Thus, hat_memload() could call kmem_cache_free
11197 			 * for enough number of times that we could easily
11198 			 * hit the bottom of the stack or run out of reserve
11199 			 * list of vmem_seg structs.  So, we must donate
11200 			 * this hblk to reserve list if it's allocated
11201 			 * from sfmmu8_cache *and* mapping kernel range.
11202 			 * We don't need to worry about freeing hmeblk1's
11203 			 * to kmem since they don't map any kmem slabs.
11204 			 *
11205 			 * Note: When segkmem supports largepages, we must
11206 			 * free hmeblk1's to reserve list as well.
11207 			 */
11208 			forcefree = (sfmmup == KHATID) ? 1 : 0;
11209 			if (size == TTE8K &&
11210 			    sfmmu_put_free_hblk(hmeblkp, forcefree)) {
11211 				goto re_verify;
11212 			}
11213 			ASSERT(sfmmup != KHATID);
11214 			kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
11215 		} else {
11216 			/*
11217 			 * Hey! we don't need hblk_reserve any more.
11218 			 */
11219 			ASSERT(owner);
11220 			hblk_reserve_thread = NULL;
11221 			mutex_exit(&hblk_reserve_lock);
11222 			owner = 0;
11223 		}
11224 re_verify:
11225 		/*
11226 		 * let's check if the goodies are still present
11227 		 */
11228 		SFMMU_HASH_LOCK(hmebp);
11229 		HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11230 		if (newhblkp != NULL) {
11231 			/*
11232 			 * return newhblkp if it's not hblk_reserve;
11233 			 * if newhblkp is hblk_reserve, return it
11234 			 * _only if_ we are the owner of hblk_reserve.
11235 			 */
11236 			if (newhblkp != HBLK_RESERVE || owner) {
11237 				ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
11238 				    newhblkp->hblk_shared);
11239 				ASSERT(SFMMU_IS_SHMERID_VALID(rid) ||
11240 				    !newhblkp->hblk_shared);
11241 				return (newhblkp);
11242 			} else {
11243 				/*
11244 				 * we just hit hblk_reserve in the hash and
11245 				 * we are not the owner of that;
11246 				 *
11247 				 * block until hblk_reserve_thread completes
11248 				 * swapping hblk_reserve and try the dance
11249 				 * once again.
11250 				 */
11251 				SFMMU_HASH_UNLOCK(hmebp);
11252 				mutex_enter(&hblk_reserve_lock);
11253 				mutex_exit(&hblk_reserve_lock);
11254 				SFMMU_STAT(sf_hblk_reserve_hit);
11255 				goto fill_hblk;
11256 			}
11257 		} else {
11258 			/*
11259 			 * it's no more! try the dance once again.
11260 			 */
11261 			SFMMU_HASH_UNLOCK(hmebp);
11262 			goto fill_hblk;
11263 		}
11264 	}
11265 
11266 hblk_init:
11267 	if (SFMMU_IS_SHMERID_VALID(rid)) {
11268 		uint16_t tteflag = 0x1 <<
11269 		    ((size < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ : size);
11270 
11271 		if (!(rgnp->rgn_hmeflags & tteflag)) {
11272 			atomic_or_16(&rgnp->rgn_hmeflags, tteflag);
11273 		}
11274 		hmeblkp->hblk_shared = 1;
11275 	} else {
11276 		hmeblkp->hblk_shared = 0;
11277 	}
11278 	set_hblk_sz(hmeblkp, size);
11279 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11280 	hmeblkp->hblk_next = (struct hme_blk *)NULL;
11281 	hmeblkp->hblk_tag = hblktag;
11282 	hmeblkp->hblk_shadow = shw_hblkp;
11283 	hblkpa = hmeblkp->hblk_nextpa;
11284 	hmeblkp->hblk_nextpa = 0;
11285 
11286 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
11287 	ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
11288 	ASSERT(hmeblkp->hblk_hmecnt == 0);
11289 	ASSERT(hmeblkp->hblk_vcnt == 0);
11290 	ASSERT(hmeblkp->hblk_lckcnt == 0);
11291 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
11292 	sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
11293 	return (hmeblkp);
11294 }
11295 
11296 /*
11297  * This function performs any cleanup required on the hme_blk
11298  * and returns it to the free list.
11299  */
11300 /* ARGSUSED */
11301 static void
11302 sfmmu_hblk_free(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
11303 	uint64_t hblkpa, struct hme_blk **listp)
11304 {
11305 	int shw_size, vshift;
11306 	struct hme_blk *shw_hblkp;
11307 	uint_t		shw_mask, newshw_mask;
11308 	caddr_t		vaddr;
11309 	int		size;
11310 	uint_t		critical;
11311 
11312 	ASSERT(hmeblkp);
11313 	ASSERT(!hmeblkp->hblk_hmecnt);
11314 	ASSERT(!hmeblkp->hblk_vcnt);
11315 	ASSERT(!hmeblkp->hblk_lckcnt);
11316 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
11317 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
11318 
11319 	critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
11320 
11321 	size = get_hblk_ttesz(hmeblkp);
11322 	shw_hblkp = hmeblkp->hblk_shadow;
11323 	if (shw_hblkp) {
11324 		ASSERT(hblktosfmmu(hmeblkp) != KHATID);
11325 		ASSERT(!hmeblkp->hblk_shared);
11326 		if (mmu_page_sizes == max_mmu_page_sizes) {
11327 			ASSERT(size < TTE256M);
11328 		} else {
11329 			ASSERT(size < TTE4M);
11330 		}
11331 
11332 		shw_size = get_hblk_ttesz(shw_hblkp);
11333 		vaddr = (caddr_t)get_hblk_base(hmeblkp);
11334 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
11335 		ASSERT(vshift < 8);
11336 		/*
11337 		 * Atomically clear shadow mask bit
11338 		 */
11339 		do {
11340 			shw_mask = shw_hblkp->hblk_shw_mask;
11341 			ASSERT(shw_mask & (1 << vshift));
11342 			newshw_mask = shw_mask & ~(1 << vshift);
11343 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
11344 			    shw_mask, newshw_mask);
11345 		} while (newshw_mask != shw_mask);
11346 		hmeblkp->hblk_shadow = NULL;
11347 	}
11348 	hmeblkp->hblk_next = NULL;
11349 	hmeblkp->hblk_nextpa = hblkpa;
11350 	hmeblkp->hblk_shw_bit = 0;
11351 
11352 	if (hmeblkp->hblk_shared) {
11353 		sf_srd_t	*srdp;
11354 		sf_region_t	*rgnp;
11355 		uint_t		rid;
11356 
11357 		srdp = hblktosrd(hmeblkp);
11358 		ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11359 		rid = hmeblkp->hblk_tag.htag_rid;
11360 		ASSERT(SFMMU_IS_SHMERID_VALID(rid));
11361 		ASSERT(rid < SFMMU_MAX_HME_REGIONS);
11362 		rgnp = srdp->srd_hmergnp[rid];
11363 		ASSERT(rgnp != NULL);
11364 		SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
11365 		hmeblkp->hblk_shared = 0;
11366 	}
11367 
11368 	if (hmeblkp->hblk_nuc_bit == 0) {
11369 
11370 		if (size == TTE8K && sfmmu_put_free_hblk(hmeblkp, critical))
11371 			return;
11372 
11373 		hmeblkp->hblk_next = *listp;
11374 		*listp = hmeblkp;
11375 	}
11376 }
11377 
11378 static void
11379 sfmmu_hblks_list_purge(struct hme_blk **listp)
11380 {
11381 	struct hme_blk	*hmeblkp;
11382 
11383 	while ((hmeblkp = *listp) != NULL) {
11384 		*listp = hmeblkp->hblk_next;
11385 		kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
11386 	}
11387 }
11388 
11389 #define	BUCKETS_TO_SEARCH_BEFORE_UNLOAD	30
11390 #define	SFMMU_HBLK_STEAL_THRESHOLD 5
11391 
11392 static uint_t sfmmu_hblk_steal_twice;
11393 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
11394 
11395 /*
11396  * Steal a hmeblk from user or kernel hme hash lists.
11397  * For 8K tte grab one from reserve pool (freehblkp) before proceeding to
11398  * steal and if we fail to steal after SFMMU_HBLK_STEAL_THRESHOLD attempts
11399  * tap into critical reserve of freehblkp.
11400  * Note: We remain looping in this routine until we find one.
11401  */
11402 static struct hme_blk *
11403 sfmmu_hblk_steal(int size)
11404 {
11405 	static struct hmehash_bucket *uhmehash_steal_hand = NULL;
11406 	struct hmehash_bucket *hmebp;
11407 	struct hme_blk *hmeblkp = NULL, *pr_hblk;
11408 	uint64_t hblkpa, prevpa;
11409 	int i;
11410 	uint_t loop_cnt = 0, critical;
11411 
11412 	for (;;) {
11413 		if (size == TTE8K) {
11414 			critical =
11415 			    (++loop_cnt > SFMMU_HBLK_STEAL_THRESHOLD) ? 1 : 0;
11416 			if (sfmmu_get_free_hblk(&hmeblkp, critical))
11417 				return (hmeblkp);
11418 		}
11419 
11420 		hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
11421 		    uhmehash_steal_hand;
11422 		ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
11423 
11424 		for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
11425 		    BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
11426 			SFMMU_HASH_LOCK(hmebp);
11427 			hmeblkp = hmebp->hmeblkp;
11428 			hblkpa = hmebp->hmeh_nextpa;
11429 			prevpa = 0;
11430 			pr_hblk = NULL;
11431 			while (hmeblkp) {
11432 				/*
11433 				 * check if it is a hmeblk that is not locked
11434 				 * and not shared. skip shadow hmeblks with
11435 				 * shadow_mask set i.e valid count non zero.
11436 				 */
11437 				if ((get_hblk_ttesz(hmeblkp) == size) &&
11438 				    (hmeblkp->hblk_shw_bit == 0 ||
11439 				    hmeblkp->hblk_vcnt == 0) &&
11440 				    (hmeblkp->hblk_lckcnt == 0)) {
11441 					/*
11442 					 * there is a high probability that we
11443 					 * will find a free one. search some
11444 					 * buckets for a free hmeblk initially
11445 					 * before unloading a valid hmeblk.
11446 					 */
11447 					if ((hmeblkp->hblk_vcnt == 0 &&
11448 					    hmeblkp->hblk_hmecnt == 0) || (i >=
11449 					    BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
11450 						if (sfmmu_steal_this_hblk(hmebp,
11451 						    hmeblkp, hblkpa, prevpa,
11452 						    pr_hblk)) {
11453 							/*
11454 							 * Hblk is unloaded
11455 							 * successfully
11456 							 */
11457 							break;
11458 						}
11459 					}
11460 				}
11461 				pr_hblk = hmeblkp;
11462 				prevpa = hblkpa;
11463 				hblkpa = hmeblkp->hblk_nextpa;
11464 				hmeblkp = hmeblkp->hblk_next;
11465 			}
11466 
11467 			SFMMU_HASH_UNLOCK(hmebp);
11468 			if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
11469 				hmebp = uhme_hash;
11470 		}
11471 		uhmehash_steal_hand = hmebp;
11472 
11473 		if (hmeblkp != NULL)
11474 			break;
11475 
11476 		/*
11477 		 * in the worst case, look for a free one in the kernel
11478 		 * hash table.
11479 		 */
11480 		for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
11481 			SFMMU_HASH_LOCK(hmebp);
11482 			hmeblkp = hmebp->hmeblkp;
11483 			hblkpa = hmebp->hmeh_nextpa;
11484 			prevpa = 0;
11485 			pr_hblk = NULL;
11486 			while (hmeblkp) {
11487 				/*
11488 				 * check if it is free hmeblk
11489 				 */
11490 				if ((get_hblk_ttesz(hmeblkp) == size) &&
11491 				    (hmeblkp->hblk_lckcnt == 0) &&
11492 				    (hmeblkp->hblk_vcnt == 0) &&
11493 				    (hmeblkp->hblk_hmecnt == 0)) {
11494 					if (sfmmu_steal_this_hblk(hmebp,
11495 					    hmeblkp, hblkpa, prevpa, pr_hblk)) {
11496 						break;
11497 					} else {
11498 						/*
11499 						 * Cannot fail since we have
11500 						 * hash lock.
11501 						 */
11502 						panic("fail to steal?");
11503 					}
11504 				}
11505 
11506 				pr_hblk = hmeblkp;
11507 				prevpa = hblkpa;
11508 				hblkpa = hmeblkp->hblk_nextpa;
11509 				hmeblkp = hmeblkp->hblk_next;
11510 			}
11511 
11512 			SFMMU_HASH_UNLOCK(hmebp);
11513 			if (hmebp++ == &khme_hash[KHMEHASH_SZ])
11514 				hmebp = khme_hash;
11515 		}
11516 
11517 		if (hmeblkp != NULL)
11518 			break;
11519 		sfmmu_hblk_steal_twice++;
11520 	}
11521 	return (hmeblkp);
11522 }
11523 
11524 /*
11525  * This routine does real work to prepare a hblk to be "stolen" by
11526  * unloading the mappings, updating shadow counts ....
11527  * It returns 1 if the block is ready to be reused (stolen), or 0
11528  * means the block cannot be stolen yet- pageunload is still working
11529  * on this hblk.
11530  */
11531 static int
11532 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
11533 	uint64_t hblkpa, uint64_t prevpa, struct hme_blk *pr_hblk)
11534 {
11535 	int shw_size, vshift;
11536 	struct hme_blk *shw_hblkp;
11537 	caddr_t vaddr;
11538 	uint_t shw_mask, newshw_mask;
11539 
11540 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11541 
11542 	/*
11543 	 * check if the hmeblk is free, unload if necessary
11544 	 */
11545 	if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11546 		sfmmu_t *sfmmup;
11547 		demap_range_t dmr;
11548 
11549 		sfmmup = hblktosfmmu(hmeblkp);
11550 		if (hmeblkp->hblk_shared || sfmmup->sfmmu_ismhat) {
11551 			return (0);
11552 		}
11553 		DEMAP_RANGE_INIT(sfmmup, &dmr);
11554 		(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
11555 		    (caddr_t)get_hblk_base(hmeblkp),
11556 		    get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
11557 		DEMAP_RANGE_FLUSH(&dmr);
11558 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11559 			/*
11560 			 * Pageunload is working on the same hblk.
11561 			 */
11562 			return (0);
11563 		}
11564 
11565 		sfmmu_hblk_steal_unload_count++;
11566 	}
11567 
11568 	ASSERT(hmeblkp->hblk_lckcnt == 0);
11569 	ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
11570 
11571 	sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
11572 	hmeblkp->hblk_nextpa = hblkpa;
11573 
11574 	shw_hblkp = hmeblkp->hblk_shadow;
11575 	if (shw_hblkp) {
11576 		ASSERT(!hmeblkp->hblk_shared);
11577 		shw_size = get_hblk_ttesz(shw_hblkp);
11578 		vaddr = (caddr_t)get_hblk_base(hmeblkp);
11579 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
11580 		ASSERT(vshift < 8);
11581 		/*
11582 		 * Atomically clear shadow mask bit
11583 		 */
11584 		do {
11585 			shw_mask = shw_hblkp->hblk_shw_mask;
11586 			ASSERT(shw_mask & (1 << vshift));
11587 			newshw_mask = shw_mask & ~(1 << vshift);
11588 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
11589 			    shw_mask, newshw_mask);
11590 		} while (newshw_mask != shw_mask);
11591 		hmeblkp->hblk_shadow = NULL;
11592 	}
11593 
11594 	/*
11595 	 * remove shadow bit if we are stealing an unused shadow hmeblk.
11596 	 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if
11597 	 * we are indeed allocating a shadow hmeblk.
11598 	 */
11599 	hmeblkp->hblk_shw_bit = 0;
11600 
11601 	if (hmeblkp->hblk_shared) {
11602 		sf_srd_t	*srdp;
11603 		sf_region_t	*rgnp;
11604 		uint_t		rid;
11605 
11606 		srdp = hblktosrd(hmeblkp);
11607 		ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11608 		rid = hmeblkp->hblk_tag.htag_rid;
11609 		ASSERT(SFMMU_IS_SHMERID_VALID(rid));
11610 		ASSERT(rid < SFMMU_MAX_HME_REGIONS);
11611 		rgnp = srdp->srd_hmergnp[rid];
11612 		ASSERT(rgnp != NULL);
11613 		SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
11614 		hmeblkp->hblk_shared = 0;
11615 	}
11616 
11617 	sfmmu_hblk_steal_count++;
11618 	SFMMU_STAT(sf_steal_count);
11619 
11620 	return (1);
11621 }
11622 
11623 struct hme_blk *
11624 sfmmu_hmetohblk(struct sf_hment *sfhme)
11625 {
11626 	struct hme_blk *hmeblkp;
11627 	struct sf_hment *sfhme0;
11628 	struct hme_blk *hblk_dummy = 0;
11629 
11630 	/*
11631 	 * No dummy sf_hments, please.
11632 	 */
11633 	ASSERT(sfhme->hme_tte.ll != 0);
11634 
11635 	sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
11636 	hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
11637 	    (uintptr_t)&hblk_dummy->hblk_hme[0]);
11638 
11639 	return (hmeblkp);
11640 }
11641 
11642 /*
11643  * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
11644  * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
11645  * KM_SLEEP allocation.
11646  *
11647  * Return 0 on success, -1 otherwise.
11648  */
11649 static void
11650 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
11651 {
11652 	struct tsb_info *tsbinfop, *next;
11653 	tsb_replace_rc_t rc;
11654 	boolean_t gotfirst = B_FALSE;
11655 
11656 	ASSERT(sfmmup != ksfmmup);
11657 	ASSERT(sfmmu_hat_lock_held(sfmmup));
11658 
11659 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
11660 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
11661 	}
11662 
11663 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
11664 		SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
11665 	} else {
11666 		return;
11667 	}
11668 
11669 	ASSERT(sfmmup->sfmmu_tsb != NULL);
11670 
11671 	/*
11672 	 * Loop over all tsbinfo's replacing them with ones that actually have
11673 	 * a TSB.  If any of the replacements ever fail, bail out of the loop.
11674 	 */
11675 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
11676 		ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
11677 		next = tsbinfop->tsb_next;
11678 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
11679 		    hatlockp, TSB_SWAPIN);
11680 		if (rc != TSB_SUCCESS) {
11681 			break;
11682 		}
11683 		gotfirst = B_TRUE;
11684 	}
11685 
11686 	switch (rc) {
11687 	case TSB_SUCCESS:
11688 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11689 		cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11690 		return;
11691 	case TSB_LOSTRACE:
11692 		break;
11693 	case TSB_ALLOCFAIL:
11694 		break;
11695 	default:
11696 		panic("sfmmu_replace_tsb returned unrecognized failure code "
11697 		    "%d", rc);
11698 	}
11699 
11700 	/*
11701 	 * In this case, we failed to get one of our TSBs.  If we failed to
11702 	 * get the first TSB, get one of minimum size (8KB).  Walk the list
11703 	 * and throw away the tsbinfos, starting where the allocation failed;
11704 	 * we can get by with just one TSB as long as we don't leave the
11705 	 * SWAPPED tsbinfo structures lying around.
11706 	 */
11707 	tsbinfop = sfmmup->sfmmu_tsb;
11708 	next = tsbinfop->tsb_next;
11709 	tsbinfop->tsb_next = NULL;
11710 
11711 	sfmmu_hat_exit(hatlockp);
11712 	for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
11713 		next = tsbinfop->tsb_next;
11714 		sfmmu_tsbinfo_free(tsbinfop);
11715 	}
11716 	hatlockp = sfmmu_hat_enter(sfmmup);
11717 
11718 	/*
11719 	 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
11720 	 * pages.
11721 	 */
11722 	if (!gotfirst) {
11723 		tsbinfop = sfmmup->sfmmu_tsb;
11724 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
11725 		    hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
11726 		ASSERT(rc == TSB_SUCCESS);
11727 	}
11728 
11729 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11730 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11731 }
11732 
11733 static int
11734 sfmmu_is_rgnva(sf_srd_t *srdp, caddr_t addr, ulong_t w, ulong_t bmw)
11735 {
11736 	ulong_t bix = 0;
11737 	uint_t rid;
11738 	sf_region_t *rgnp;
11739 
11740 	ASSERT(srdp != NULL);
11741 	ASSERT(srdp->srd_refcnt != 0);
11742 
11743 	w <<= BT_ULSHIFT;
11744 	while (bmw) {
11745 		if (!(bmw & 0x1)) {
11746 			bix++;
11747 			bmw >>= 1;
11748 			continue;
11749 		}
11750 		rid = w | bix;
11751 		rgnp = srdp->srd_hmergnp[rid];
11752 		ASSERT(rgnp->rgn_refcnt > 0);
11753 		ASSERT(rgnp->rgn_id == rid);
11754 		if (addr < rgnp->rgn_saddr ||
11755 		    addr >= (rgnp->rgn_saddr + rgnp->rgn_size)) {
11756 			bix++;
11757 			bmw >>= 1;
11758 		} else {
11759 			return (1);
11760 		}
11761 	}
11762 	return (0);
11763 }
11764 
11765 /*
11766  * Handle exceptions for low level tsb_handler.
11767  *
11768  * There are many scenarios that could land us here:
11769  *
11770  * If the context is invalid we land here. The context can be invalid
11771  * for 3 reasons: 1) we couldn't allocate a new context and now need to
11772  * perform a wrap around operation in order to allocate a new context.
11773  * 2) Context was invalidated to change pagesize programming 3) ISMs or
11774  * TSBs configuration is changeing for this process and we are forced into
11775  * here to do a syncronization operation. If the context is valid we can
11776  * be here from window trap hanlder. In this case just call trap to handle
11777  * the fault.
11778  *
11779  * Note that the process will run in INVALID_CONTEXT before
11780  * faulting into here and subsequently loading the MMU registers
11781  * (including the TSB base register) associated with this process.
11782  * For this reason, the trap handlers must all test for
11783  * INVALID_CONTEXT before attempting to access any registers other
11784  * than the context registers.
11785  */
11786 void
11787 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
11788 {
11789 	sfmmu_t *sfmmup, *shsfmmup;
11790 	uint_t ctxtype;
11791 	klwp_id_t lwp;
11792 	char lwp_save_state;
11793 	hatlock_t *hatlockp, *shatlockp;
11794 	struct tsb_info *tsbinfop;
11795 	struct tsbmiss *tsbmp;
11796 	sf_scd_t *scdp;
11797 
11798 	SFMMU_STAT(sf_tsb_exceptions);
11799 	SFMMU_MMU_STAT(mmu_tsb_exceptions);
11800 	sfmmup = astosfmmu(curthread->t_procp->p_as);
11801 	/*
11802 	 * note that in sun4u, tagacces register contains ctxnum
11803 	 * while sun4v passes ctxtype in the tagaccess register.
11804 	 */
11805 	ctxtype = tagaccess & TAGACC_CTX_MASK;
11806 
11807 	ASSERT(sfmmup != ksfmmup && ctxtype != KCONTEXT);
11808 	ASSERT(sfmmup->sfmmu_ismhat == 0);
11809 	ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) ||
11810 	    ctxtype == INVALID_CONTEXT);
11811 
11812 	if (ctxtype != INVALID_CONTEXT && traptype != T_DATA_PROT) {
11813 		/*
11814 		 * We may land here because shme bitmap and pagesize
11815 		 * flags are updated lazily in tsbmiss area on other cpus.
11816 		 * If we detect here that tsbmiss area is out of sync with
11817 		 * sfmmu update it and retry the trapped instruction.
11818 		 * Otherwise call trap().
11819 		 */
11820 		int ret = 0;
11821 		uchar_t tteflag_mask = (1 << TTE64K) | (1 << TTE8K);
11822 		caddr_t addr = (caddr_t)(tagaccess & TAGACC_VADDR_MASK);
11823 
11824 		/*
11825 		 * Must set lwp state to LWP_SYS before
11826 		 * trying to acquire any adaptive lock
11827 		 */
11828 		lwp = ttolwp(curthread);
11829 		ASSERT(lwp);
11830 		lwp_save_state = lwp->lwp_state;
11831 		lwp->lwp_state = LWP_SYS;
11832 
11833 		hatlockp = sfmmu_hat_enter(sfmmup);
11834 		kpreempt_disable();
11835 		tsbmp = &tsbmiss_area[CPU->cpu_id];
11836 		ASSERT(sfmmup == tsbmp->usfmmup);
11837 		if (((tsbmp->uhat_tteflags ^ sfmmup->sfmmu_tteflags) &
11838 		    ~tteflag_mask) ||
11839 		    ((tsbmp->uhat_rtteflags ^  sfmmup->sfmmu_rtteflags) &
11840 		    ~tteflag_mask)) {
11841 			tsbmp->uhat_tteflags = sfmmup->sfmmu_tteflags;
11842 			tsbmp->uhat_rtteflags = sfmmup->sfmmu_rtteflags;
11843 			ret = 1;
11844 		}
11845 		if (sfmmup->sfmmu_srdp != NULL) {
11846 			ulong_t *sm = sfmmup->sfmmu_hmeregion_map.bitmap;
11847 			ulong_t *tm = tsbmp->shmermap;
11848 			ulong_t i;
11849 			for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
11850 				ulong_t d = tm[i] ^ sm[i];
11851 				if (d) {
11852 					if (d & sm[i]) {
11853 						if (!ret && sfmmu_is_rgnva(
11854 						    sfmmup->sfmmu_srdp,
11855 						    addr, i, d & sm[i])) {
11856 							ret = 1;
11857 						}
11858 					}
11859 					tm[i] = sm[i];
11860 				}
11861 			}
11862 		}
11863 		kpreempt_enable();
11864 		sfmmu_hat_exit(hatlockp);
11865 		lwp->lwp_state = lwp_save_state;
11866 		if (ret) {
11867 			return;
11868 		}
11869 	} else if (ctxtype == INVALID_CONTEXT) {
11870 		/*
11871 		 * First, make sure we come out of here with a valid ctx,
11872 		 * since if we don't get one we'll simply loop on the
11873 		 * faulting instruction.
11874 		 *
11875 		 * If the ISM mappings are changing, the TSB is relocated,
11876 		 * the process is swapped, the process is joining SCD or
11877 		 * leaving SCD or shared regions we serialize behind the
11878 		 * controlling thread with hat lock, sfmmu_flags and
11879 		 * sfmmu_tsb_cv condition variable.
11880 		 */
11881 
11882 		/*
11883 		 * Must set lwp state to LWP_SYS before
11884 		 * trying to acquire any adaptive lock
11885 		 */
11886 		lwp = ttolwp(curthread);
11887 		ASSERT(lwp);
11888 		lwp_save_state = lwp->lwp_state;
11889 		lwp->lwp_state = LWP_SYS;
11890 
11891 		hatlockp = sfmmu_hat_enter(sfmmup);
11892 retry:
11893 		if ((scdp = sfmmup->sfmmu_scdp) != NULL) {
11894 			shsfmmup = scdp->scd_sfmmup;
11895 			ASSERT(shsfmmup != NULL);
11896 
11897 			for (tsbinfop = shsfmmup->sfmmu_tsb; tsbinfop != NULL;
11898 			    tsbinfop = tsbinfop->tsb_next) {
11899 				if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
11900 					/* drop the private hat lock */
11901 					sfmmu_hat_exit(hatlockp);
11902 					/* acquire the shared hat lock */
11903 					shatlockp = sfmmu_hat_enter(shsfmmup);
11904 					/*
11905 					 * recheck to see if anything changed
11906 					 * after we drop the private hat lock.
11907 					 */
11908 					if (sfmmup->sfmmu_scdp == scdp &&
11909 					    shsfmmup == scdp->scd_sfmmup) {
11910 						sfmmu_tsb_chk_reloc(shsfmmup,
11911 						    shatlockp);
11912 					}
11913 					sfmmu_hat_exit(shatlockp);
11914 					hatlockp = sfmmu_hat_enter(sfmmup);
11915 					goto retry;
11916 				}
11917 			}
11918 		}
11919 
11920 		for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
11921 		    tsbinfop = tsbinfop->tsb_next) {
11922 			if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
11923 				cv_wait(&sfmmup->sfmmu_tsb_cv,
11924 				    HATLOCK_MUTEXP(hatlockp));
11925 				goto retry;
11926 			}
11927 		}
11928 
11929 		/*
11930 		 * Wait for ISM maps to be updated.
11931 		 */
11932 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
11933 			cv_wait(&sfmmup->sfmmu_tsb_cv,
11934 			    HATLOCK_MUTEXP(hatlockp));
11935 			goto retry;
11936 		}
11937 
11938 		/* Is this process joining an SCD? */
11939 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
11940 			/*
11941 			 * Flush private TSB and setup shared TSB.
11942 			 * sfmmu_finish_join_scd() does not drop the
11943 			 * hat lock.
11944 			 */
11945 			sfmmu_finish_join_scd(sfmmup);
11946 			SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
11947 		}
11948 
11949 		/*
11950 		 * If we're swapping in, get TSB(s).  Note that we must do
11951 		 * this before we get a ctx or load the MMU state.  Once
11952 		 * we swap in we have to recheck to make sure the TSB(s) and
11953 		 * ISM mappings didn't change while we slept.
11954 		 */
11955 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
11956 			sfmmu_tsb_swapin(sfmmup, hatlockp);
11957 			goto retry;
11958 		}
11959 
11960 		sfmmu_get_ctx(sfmmup);
11961 
11962 		sfmmu_hat_exit(hatlockp);
11963 		/*
11964 		 * Must restore lwp_state if not calling
11965 		 * trap() for further processing. Restore
11966 		 * it anyway.
11967 		 */
11968 		lwp->lwp_state = lwp_save_state;
11969 		return;
11970 	}
11971 	trap(rp, (caddr_t)tagaccess, traptype, 0);
11972 }
11973 
11974 static void
11975 sfmmu_tsb_chk_reloc(sfmmu_t *sfmmup, hatlock_t *hatlockp)
11976 {
11977 	struct tsb_info *tp;
11978 
11979 	ASSERT(sfmmu_hat_lock_held(sfmmup));
11980 
11981 	for (tp = sfmmup->sfmmu_tsb; tp != NULL; tp = tp->tsb_next) {
11982 		if (tp->tsb_flags & TSB_RELOC_FLAG) {
11983 			cv_wait(&sfmmup->sfmmu_tsb_cv,
11984 			    HATLOCK_MUTEXP(hatlockp));
11985 			break;
11986 		}
11987 	}
11988 }
11989 
11990 /*
11991  * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
11992  * TTE_SUSPENDED bit set in tte we block on aquiring a page lock
11993  * rather than spinning to avoid send mondo timeouts with
11994  * interrupts enabled. When the lock is acquired it is immediately
11995  * released and we return back to sfmmu_vatopfn just after
11996  * the GET_TTE call.
11997  */
11998 void
11999 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
12000 {
12001 	struct page	**pp;
12002 
12003 	(void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
12004 	as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
12005 }
12006 
12007 /*
12008  * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
12009  * TTE_SUSPENDED bit set in tte. We do this so that we can handle
12010  * cross traps which cannot be handled while spinning in the
12011  * trap handlers. Simply enter and exit the kpr_suspendlock spin
12012  * mutex, which is held by the holder of the suspend bit, and then
12013  * retry the trapped instruction after unwinding.
12014  */
12015 /*ARGSUSED*/
12016 void
12017 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
12018 {
12019 	ASSERT(curthread != kreloc_thread);
12020 	mutex_enter(&kpr_suspendlock);
12021 	mutex_exit(&kpr_suspendlock);
12022 }
12023 
12024 /*
12025  * This routine could be optimized to reduce the number of xcalls by flushing
12026  * the entire TLBs if region reference count is above some threshold but the
12027  * tradeoff will depend on the size of the TLB. So for now flush the specific
12028  * page a context at a time.
12029  *
12030  * If uselocks is 0 then it's called after all cpus were captured and all the
12031  * hat locks were taken. In this case don't take the region lock by relying on
12032  * the order of list region update operations in hat_join_region(),
12033  * hat_leave_region() and hat_dup_region(). The ordering in those routines
12034  * guarantees that list is always forward walkable and reaches active sfmmus
12035  * regardless of where xc_attention() captures a cpu.
12036  */
12037 cpuset_t
12038 sfmmu_rgntlb_demap(caddr_t addr, sf_region_t *rgnp,
12039     struct hme_blk *hmeblkp, int uselocks)
12040 {
12041 	sfmmu_t	*sfmmup;
12042 	cpuset_t cpuset;
12043 	cpuset_t rcpuset;
12044 	hatlock_t *hatlockp;
12045 	uint_t rid = rgnp->rgn_id;
12046 	sf_rgn_link_t *rlink;
12047 	sf_scd_t *scdp;
12048 
12049 	ASSERT(hmeblkp->hblk_shared);
12050 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
12051 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
12052 
12053 	CPUSET_ZERO(rcpuset);
12054 	if (uselocks) {
12055 		mutex_enter(&rgnp->rgn_mutex);
12056 	}
12057 	sfmmup = rgnp->rgn_sfmmu_head;
12058 	while (sfmmup != NULL) {
12059 		if (uselocks) {
12060 			hatlockp = sfmmu_hat_enter(sfmmup);
12061 		}
12062 
12063 		/*
12064 		 * When an SCD is created the SCD hat is linked on the sfmmu
12065 		 * region lists for each hme region which is part of the
12066 		 * SCD. If we find an SCD hat, when walking these lists,
12067 		 * then we flush the shared TSBs, if we find a private hat,
12068 		 * which is part of an SCD, but where the region
12069 		 * is not part of the SCD then we flush the private TSBs.
12070 		 */
12071 		if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
12072 		    !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
12073 			scdp = sfmmup->sfmmu_scdp;
12074 			if (SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
12075 				if (uselocks) {
12076 					sfmmu_hat_exit(hatlockp);
12077 				}
12078 				goto next;
12079 			}
12080 		}
12081 
12082 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12083 
12084 		kpreempt_disable();
12085 		cpuset = sfmmup->sfmmu_cpusran;
12086 		CPUSET_AND(cpuset, cpu_ready_set);
12087 		CPUSET_DEL(cpuset, CPU->cpu_id);
12088 		SFMMU_XCALL_STATS(sfmmup);
12089 		xt_some(cpuset, vtag_flushpage_tl1,
12090 		    (uint64_t)addr, (uint64_t)sfmmup);
12091 		vtag_flushpage(addr, (uint64_t)sfmmup);
12092 		if (uselocks) {
12093 			sfmmu_hat_exit(hatlockp);
12094 		}
12095 		kpreempt_enable();
12096 		CPUSET_OR(rcpuset, cpuset);
12097 
12098 next:
12099 		/* LINTED: constant in conditional context */
12100 		SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
12101 		ASSERT(rlink != NULL);
12102 		sfmmup = rlink->next;
12103 	}
12104 	if (uselocks) {
12105 		mutex_exit(&rgnp->rgn_mutex);
12106 	}
12107 	return (rcpuset);
12108 }
12109 
12110 /*
12111  * This routine takes an sfmmu pointer and the va for an adddress in an
12112  * ISM region as input and returns the corresponding region id in ism_rid.
12113  * The return value of 1 indicates that a region has been found and ism_rid
12114  * is valid, otherwise 0 is returned.
12115  */
12116 static int
12117 find_ism_rid(sfmmu_t *sfmmup, sfmmu_t *ism_sfmmup, caddr_t va, uint_t *ism_rid)
12118 {
12119 	ism_blk_t	*ism_blkp;
12120 	int		i;
12121 	ism_map_t	*ism_map;
12122 #ifdef DEBUG
12123 	struct hat	*ism_hatid;
12124 #endif
12125 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12126 
12127 	ism_blkp = sfmmup->sfmmu_iblk;
12128 	while (ism_blkp != NULL) {
12129 		ism_map = ism_blkp->iblk_maps;
12130 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
12131 			if ((va >= ism_start(ism_map[i])) &&
12132 			    (va < ism_end(ism_map[i]))) {
12133 
12134 				*ism_rid = ism_map[i].imap_rid;
12135 #ifdef DEBUG
12136 				ism_hatid = ism_map[i].imap_ismhat;
12137 				ASSERT(ism_hatid == ism_sfmmup);
12138 				ASSERT(ism_hatid->sfmmu_ismhat);
12139 #endif
12140 				return (1);
12141 			}
12142 		}
12143 		ism_blkp = ism_blkp->iblk_next;
12144 	}
12145 	return (0);
12146 }
12147 
12148 /*
12149  * Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
12150  * This routine may be called with all cpu's captured. Therefore, the
12151  * caller is responsible for holding all locks and disabling kernel
12152  * preemption.
12153  */
12154 /* ARGSUSED */
12155 static void
12156 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
12157 	struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
12158 {
12159 	cpuset_t 	cpuset;
12160 	caddr_t 	va;
12161 	ism_ment_t	*ment;
12162 	sfmmu_t		*sfmmup;
12163 #ifdef VAC
12164 	int 		vcolor;
12165 #endif
12166 
12167 	sf_scd_t	*scdp;
12168 	uint_t		ism_rid;
12169 
12170 	ASSERT(!hmeblkp->hblk_shared);
12171 	/*
12172 	 * Walk the ism_hat's mapping list and flush the page
12173 	 * from every hat sharing this ism_hat. This routine
12174 	 * may be called while all cpu's have been captured.
12175 	 * Therefore we can't attempt to grab any locks. For now
12176 	 * this means we will protect the ism mapping list under
12177 	 * a single lock which will be grabbed by the caller.
12178 	 * If hat_share/unshare scalibility becomes a performance
12179 	 * problem then we may need to re-think ism mapping list locking.
12180 	 */
12181 	ASSERT(ism_sfmmup->sfmmu_ismhat);
12182 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
12183 	addr = addr - ISMID_STARTADDR;
12184 
12185 	for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
12186 
12187 		sfmmup = ment->iment_hat;
12188 
12189 		va = ment->iment_base_va;
12190 		va = (caddr_t)((uintptr_t)va  + (uintptr_t)addr);
12191 
12192 		/*
12193 		 * When an SCD is created the SCD hat is linked on the ism
12194 		 * mapping lists for each ISM segment which is part of the
12195 		 * SCD. If we find an SCD hat, when walking these lists,
12196 		 * then we flush the shared TSBs, if we find a private hat,
12197 		 * which is part of an SCD, but where the region
12198 		 * corresponding to this va is not part of the SCD then we
12199 		 * flush the private TSBs.
12200 		 */
12201 		if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
12202 		    !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD) &&
12203 		    !SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
12204 			if (!find_ism_rid(sfmmup, ism_sfmmup, va,
12205 			    &ism_rid)) {
12206 				cmn_err(CE_PANIC,
12207 				    "can't find matching ISM rid!");
12208 			}
12209 
12210 			scdp = sfmmup->sfmmu_scdp;
12211 			if (SFMMU_IS_ISMRID_VALID(ism_rid) &&
12212 			    SF_RGNMAP_TEST(scdp->scd_ismregion_map,
12213 			    ism_rid)) {
12214 				continue;
12215 			}
12216 		}
12217 		SFMMU_UNLOAD_TSB(va, sfmmup, hmeblkp, 1);
12218 
12219 		cpuset = sfmmup->sfmmu_cpusran;
12220 		CPUSET_AND(cpuset, cpu_ready_set);
12221 		CPUSET_DEL(cpuset, CPU->cpu_id);
12222 		SFMMU_XCALL_STATS(sfmmup);
12223 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
12224 		    (uint64_t)sfmmup);
12225 		vtag_flushpage(va, (uint64_t)sfmmup);
12226 
12227 #ifdef VAC
12228 		/*
12229 		 * Flush D$
12230 		 * When flushing D$ we must flush all
12231 		 * cpu's. See sfmmu_cache_flush().
12232 		 */
12233 		if (cache_flush_flag == CACHE_FLUSH) {
12234 			cpuset = cpu_ready_set;
12235 			CPUSET_DEL(cpuset, CPU->cpu_id);
12236 
12237 			SFMMU_XCALL_STATS(sfmmup);
12238 			vcolor = addr_to_vcolor(va);
12239 			xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12240 			vac_flushpage(pfnum, vcolor);
12241 		}
12242 #endif	/* VAC */
12243 	}
12244 }
12245 
12246 /*
12247  * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
12248  * a particular virtual address and ctx.  If noflush is set we do not
12249  * flush the TLB/TSB.  This function may or may not be called with the
12250  * HAT lock held.
12251  */
12252 static void
12253 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12254 	pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
12255 	int hat_lock_held)
12256 {
12257 #ifdef VAC
12258 	int vcolor;
12259 #endif
12260 	cpuset_t cpuset;
12261 	hatlock_t *hatlockp;
12262 
12263 	ASSERT(!hmeblkp->hblk_shared);
12264 
12265 #if defined(lint) && !defined(VAC)
12266 	pfnum = pfnum;
12267 	cpu_flag = cpu_flag;
12268 	cache_flush_flag = cache_flush_flag;
12269 #endif
12270 
12271 	/*
12272 	 * There is no longer a need to protect against ctx being
12273 	 * stolen here since we don't store the ctx in the TSB anymore.
12274 	 */
12275 #ifdef VAC
12276 	vcolor = addr_to_vcolor(addr);
12277 #endif
12278 
12279 	/*
12280 	 * We must hold the hat lock during the flush of TLB,
12281 	 * to avoid a race with sfmmu_invalidate_ctx(), where
12282 	 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12283 	 * causing TLB demap routine to skip flush on that MMU.
12284 	 * If the context on a MMU has already been set to
12285 	 * INVALID_CONTEXT, we just get an extra flush on
12286 	 * that MMU.
12287 	 */
12288 	if (!hat_lock_held && !tlb_noflush)
12289 		hatlockp = sfmmu_hat_enter(sfmmup);
12290 
12291 	kpreempt_disable();
12292 	if (!tlb_noflush) {
12293 		/*
12294 		 * Flush the TSB and TLB.
12295 		 */
12296 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12297 
12298 		cpuset = sfmmup->sfmmu_cpusran;
12299 		CPUSET_AND(cpuset, cpu_ready_set);
12300 		CPUSET_DEL(cpuset, CPU->cpu_id);
12301 
12302 		SFMMU_XCALL_STATS(sfmmup);
12303 
12304 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
12305 		    (uint64_t)sfmmup);
12306 
12307 		vtag_flushpage(addr, (uint64_t)sfmmup);
12308 	}
12309 
12310 	if (!hat_lock_held && !tlb_noflush)
12311 		sfmmu_hat_exit(hatlockp);
12312 
12313 #ifdef VAC
12314 	/*
12315 	 * Flush the D$
12316 	 *
12317 	 * Even if the ctx is stolen, we need to flush the
12318 	 * cache. Our ctx stealer only flushes the TLBs.
12319 	 */
12320 	if (cache_flush_flag == CACHE_FLUSH) {
12321 		if (cpu_flag & FLUSH_ALL_CPUS) {
12322 			cpuset = cpu_ready_set;
12323 		} else {
12324 			cpuset = sfmmup->sfmmu_cpusran;
12325 			CPUSET_AND(cpuset, cpu_ready_set);
12326 		}
12327 		CPUSET_DEL(cpuset, CPU->cpu_id);
12328 		SFMMU_XCALL_STATS(sfmmup);
12329 		xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12330 		vac_flushpage(pfnum, vcolor);
12331 	}
12332 #endif	/* VAC */
12333 	kpreempt_enable();
12334 }
12335 
12336 /*
12337  * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
12338  * address and ctx.  If noflush is set we do not currently do anything.
12339  * This function may or may not be called with the HAT lock held.
12340  */
12341 static void
12342 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12343 	int tlb_noflush, int hat_lock_held)
12344 {
12345 	cpuset_t cpuset;
12346 	hatlock_t *hatlockp;
12347 
12348 	ASSERT(!hmeblkp->hblk_shared);
12349 
12350 	/*
12351 	 * If the process is exiting we have nothing to do.
12352 	 */
12353 	if (tlb_noflush)
12354 		return;
12355 
12356 	/*
12357 	 * Flush TSB.
12358 	 */
12359 	if (!hat_lock_held)
12360 		hatlockp = sfmmu_hat_enter(sfmmup);
12361 	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12362 
12363 	kpreempt_disable();
12364 
12365 	cpuset = sfmmup->sfmmu_cpusran;
12366 	CPUSET_AND(cpuset, cpu_ready_set);
12367 	CPUSET_DEL(cpuset, CPU->cpu_id);
12368 
12369 	SFMMU_XCALL_STATS(sfmmup);
12370 	xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup);
12371 
12372 	vtag_flushpage(addr, (uint64_t)sfmmup);
12373 
12374 	if (!hat_lock_held)
12375 		sfmmu_hat_exit(hatlockp);
12376 
12377 	kpreempt_enable();
12378 
12379 }
12380 
12381 /*
12382  * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
12383  * call handler that can flush a range of pages to save on xcalls.
12384  */
12385 static int sfmmu_xcall_save;
12386 
12387 /*
12388  * this routine is never used for demaping addresses backed by SRD hmeblks.
12389  */
12390 static void
12391 sfmmu_tlb_range_demap(demap_range_t *dmrp)
12392 {
12393 	sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
12394 	hatlock_t *hatlockp;
12395 	cpuset_t cpuset;
12396 	uint64_t sfmmu_pgcnt;
12397 	pgcnt_t pgcnt = 0;
12398 	int pgunload = 0;
12399 	int dirtypg = 0;
12400 	caddr_t addr = dmrp->dmr_addr;
12401 	caddr_t eaddr;
12402 	uint64_t bitvec = dmrp->dmr_bitvec;
12403 
12404 	ASSERT(bitvec & 1);
12405 
12406 	/*
12407 	 * Flush TSB and calculate number of pages to flush.
12408 	 */
12409 	while (bitvec != 0) {
12410 		dirtypg = 0;
12411 		/*
12412 		 * Find the first page to flush and then count how many
12413 		 * pages there are after it that also need to be flushed.
12414 		 * This way the number of TSB flushes is minimized.
12415 		 */
12416 		while ((bitvec & 1) == 0) {
12417 			pgcnt++;
12418 			addr += MMU_PAGESIZE;
12419 			bitvec >>= 1;
12420 		}
12421 		while (bitvec & 1) {
12422 			dirtypg++;
12423 			bitvec >>= 1;
12424 		}
12425 		eaddr = addr + ptob(dirtypg);
12426 		hatlockp = sfmmu_hat_enter(sfmmup);
12427 		sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
12428 		sfmmu_hat_exit(hatlockp);
12429 		pgunload += dirtypg;
12430 		addr = eaddr;
12431 		pgcnt += dirtypg;
12432 	}
12433 
12434 	ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
12435 	if (sfmmup->sfmmu_free == 0) {
12436 		addr = dmrp->dmr_addr;
12437 		bitvec = dmrp->dmr_bitvec;
12438 
12439 		/*
12440 		 * make sure it has SFMMU_PGCNT_SHIFT bits only,
12441 		 * as it will be used to pack argument for xt_some
12442 		 */
12443 		ASSERT((pgcnt > 0) &&
12444 		    (pgcnt <= (1 << SFMMU_PGCNT_SHIFT)));
12445 
12446 		/*
12447 		 * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in
12448 		 * the low 6 bits of sfmmup. This is doable since pgcnt
12449 		 * always >= 1.
12450 		 */
12451 		ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK));
12452 		sfmmu_pgcnt = (uint64_t)sfmmup |
12453 		    ((pgcnt - 1) & SFMMU_PGCNT_MASK);
12454 
12455 		/*
12456 		 * We must hold the hat lock during the flush of TLB,
12457 		 * to avoid a race with sfmmu_invalidate_ctx(), where
12458 		 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12459 		 * causing TLB demap routine to skip flush on that MMU.
12460 		 * If the context on a MMU has already been set to
12461 		 * INVALID_CONTEXT, we just get an extra flush on
12462 		 * that MMU.
12463 		 */
12464 		hatlockp = sfmmu_hat_enter(sfmmup);
12465 		kpreempt_disable();
12466 
12467 		cpuset = sfmmup->sfmmu_cpusran;
12468 		CPUSET_AND(cpuset, cpu_ready_set);
12469 		CPUSET_DEL(cpuset, CPU->cpu_id);
12470 
12471 		SFMMU_XCALL_STATS(sfmmup);
12472 		xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
12473 		    sfmmu_pgcnt);
12474 
12475 		for (; bitvec != 0; bitvec >>= 1) {
12476 			if (bitvec & 1)
12477 				vtag_flushpage(addr, (uint64_t)sfmmup);
12478 			addr += MMU_PAGESIZE;
12479 		}
12480 		kpreempt_enable();
12481 		sfmmu_hat_exit(hatlockp);
12482 
12483 		sfmmu_xcall_save += (pgunload-1);
12484 	}
12485 	dmrp->dmr_bitvec = 0;
12486 }
12487 
12488 /*
12489  * In cases where we need to synchronize with TLB/TSB miss trap
12490  * handlers, _and_ need to flush the TLB, it's a lot easier to
12491  * throw away the context from the process than to do a
12492  * special song and dance to keep things consistent for the
12493  * handlers.
12494  *
12495  * Since the process suddenly ends up without a context and our caller
12496  * holds the hat lock, threads that fault after this function is called
12497  * will pile up on the lock.  We can then do whatever we need to
12498  * atomically from the context of the caller.  The first blocked thread
12499  * to resume executing will get the process a new context, and the
12500  * process will resume executing.
12501  *
12502  * One added advantage of this approach is that on MMUs that
12503  * support a "flush all" operation, we will delay the flush until
12504  * cnum wrap-around, and then flush the TLB one time.  This
12505  * is rather rare, so it's a lot less expensive than making 8000
12506  * x-calls to flush the TLB 8000 times.
12507  *
12508  * A per-process (PP) lock is used to synchronize ctx allocations in
12509  * resume() and ctx invalidations here.
12510  */
12511 static void
12512 sfmmu_invalidate_ctx(sfmmu_t *sfmmup)
12513 {
12514 	cpuset_t cpuset;
12515 	int cnum, currcnum;
12516 	mmu_ctx_t *mmu_ctxp;
12517 	int i;
12518 	uint_t pstate_save;
12519 
12520 	SFMMU_STAT(sf_ctx_inv);
12521 
12522 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12523 	ASSERT(sfmmup != ksfmmup);
12524 
12525 	kpreempt_disable();
12526 
12527 	mmu_ctxp = CPU_MMU_CTXP(CPU);
12528 	ASSERT(mmu_ctxp);
12529 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
12530 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
12531 
12532 	currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum;
12533 
12534 	pstate_save = sfmmu_disable_intrs();
12535 
12536 	lock_set(&sfmmup->sfmmu_ctx_lock);	/* acquire PP lock */
12537 	/* set HAT cnum invalid across all context domains. */
12538 	for (i = 0; i < max_mmu_ctxdoms; i++) {
12539 
12540 		cnum = 	sfmmup->sfmmu_ctxs[i].cnum;
12541 		if (cnum == INVALID_CONTEXT) {
12542 			continue;
12543 		}
12544 
12545 		sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
12546 	}
12547 	membar_enter();	/* make sure globally visible to all CPUs */
12548 	lock_clear(&sfmmup->sfmmu_ctx_lock);	/* release PP lock */
12549 
12550 	sfmmu_enable_intrs(pstate_save);
12551 
12552 	cpuset = sfmmup->sfmmu_cpusran;
12553 	CPUSET_DEL(cpuset, CPU->cpu_id);
12554 	CPUSET_AND(cpuset, cpu_ready_set);
12555 	if (!CPUSET_ISNULL(cpuset)) {
12556 		SFMMU_XCALL_STATS(sfmmup);
12557 		xt_some(cpuset, sfmmu_raise_tsb_exception,
12558 		    (uint64_t)sfmmup, INVALID_CONTEXT);
12559 		xt_sync(cpuset);
12560 		SFMMU_STAT(sf_tsb_raise_exception);
12561 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
12562 	}
12563 
12564 	/*
12565 	 * If the hat to-be-invalidated is the same as the current
12566 	 * process on local CPU we need to invalidate
12567 	 * this CPU context as well.
12568 	 */
12569 	if ((sfmmu_getctx_sec() == currcnum) &&
12570 	    (currcnum != INVALID_CONTEXT)) {
12571 		/* sets shared context to INVALID too */
12572 		sfmmu_setctx_sec(INVALID_CONTEXT);
12573 		sfmmu_clear_utsbinfo();
12574 	}
12575 
12576 	SFMMU_FLAGS_SET(sfmmup, HAT_ALLCTX_INVALID);
12577 
12578 	kpreempt_enable();
12579 
12580 	/*
12581 	 * we hold the hat lock, so nobody should allocate a context
12582 	 * for us yet
12583 	 */
12584 	ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT);
12585 }
12586 
12587 #ifdef VAC
12588 /*
12589  * We need to flush the cache in all cpus.  It is possible that
12590  * a process referenced a page as cacheable but has sinced exited
12591  * and cleared the mapping list.  We still to flush it but have no
12592  * state so all cpus is the only alternative.
12593  */
12594 void
12595 sfmmu_cache_flush(pfn_t pfnum, int vcolor)
12596 {
12597 	cpuset_t cpuset;
12598 
12599 	kpreempt_disable();
12600 	cpuset = cpu_ready_set;
12601 	CPUSET_DEL(cpuset, CPU->cpu_id);
12602 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
12603 	xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12604 	xt_sync(cpuset);
12605 	vac_flushpage(pfnum, vcolor);
12606 	kpreempt_enable();
12607 }
12608 
12609 void
12610 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
12611 {
12612 	cpuset_t cpuset;
12613 
12614 	ASSERT(vcolor >= 0);
12615 
12616 	kpreempt_disable();
12617 	cpuset = cpu_ready_set;
12618 	CPUSET_DEL(cpuset, CPU->cpu_id);
12619 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
12620 	xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
12621 	xt_sync(cpuset);
12622 	vac_flushcolor(vcolor, pfnum);
12623 	kpreempt_enable();
12624 }
12625 #endif	/* VAC */
12626 
12627 /*
12628  * We need to prevent processes from accessing the TSB using a cached physical
12629  * address.  It's alright if they try to access the TSB via virtual address
12630  * since they will just fault on that virtual address once the mapping has
12631  * been suspended.
12632  */
12633 #pragma weak sendmondo_in_recover
12634 
12635 /* ARGSUSED */
12636 static int
12637 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
12638 {
12639 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12640 	sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
12641 	hatlock_t *hatlockp;
12642 	sf_scd_t *scdp;
12643 
12644 	if (flags != HAT_PRESUSPEND)
12645 		return (0);
12646 
12647 	/*
12648 	 * If tsb is a shared TSB with TSB_SHAREDCTX set, sfmmup must
12649 	 * be a shared hat, then set SCD's tsbinfo's flag.
12650 	 * If tsb is not shared, sfmmup is a private hat, then set
12651 	 * its private tsbinfo's flag.
12652 	 */
12653 	hatlockp = sfmmu_hat_enter(sfmmup);
12654 	tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
12655 
12656 	if (!(tsbinfop->tsb_flags & TSB_SHAREDCTX)) {
12657 		sfmmu_tsb_inv_ctx(sfmmup);
12658 		sfmmu_hat_exit(hatlockp);
12659 	} else {
12660 		/* release lock on the shared hat */
12661 		sfmmu_hat_exit(hatlockp);
12662 		/* sfmmup is a shared hat */
12663 		ASSERT(sfmmup->sfmmu_scdhat);
12664 		scdp = sfmmup->sfmmu_scdp;
12665 		ASSERT(scdp != NULL);
12666 		/* get private hat from the scd list */
12667 		mutex_enter(&scdp->scd_mutex);
12668 		sfmmup = scdp->scd_sf_list;
12669 		while (sfmmup != NULL) {
12670 			hatlockp = sfmmu_hat_enter(sfmmup);
12671 			/*
12672 			 * We do not call sfmmu_tsb_inv_ctx here because
12673 			 * sendmondo_in_recover check is only needed for
12674 			 * sun4u.
12675 			 */
12676 			sfmmu_invalidate_ctx(sfmmup);
12677 			sfmmu_hat_exit(hatlockp);
12678 			sfmmup = sfmmup->sfmmu_scd_link.next;
12679 
12680 		}
12681 		mutex_exit(&scdp->scd_mutex);
12682 	}
12683 	return (0);
12684 }
12685 
12686 static void
12687 sfmmu_tsb_inv_ctx(sfmmu_t *sfmmup)
12688 {
12689 	extern uint32_t sendmondo_in_recover;
12690 
12691 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12692 
12693 	/*
12694 	 * For Cheetah+ Erratum 25:
12695 	 * Wait for any active recovery to finish.  We can't risk
12696 	 * relocating the TSB of the thread running mondo_recover_proc()
12697 	 * since, if we did that, we would deadlock.  The scenario we are
12698 	 * trying to avoid is as follows:
12699 	 *
12700 	 * THIS CPU			RECOVER CPU
12701 	 * --------			-----------
12702 	 *				Begins recovery, walking through TSB
12703 	 * hat_pagesuspend() TSB TTE
12704 	 *				TLB miss on TSB TTE, spins at TL1
12705 	 * xt_sync()
12706 	 *	send_mondo_timeout()
12707 	 *	mondo_recover_proc()
12708 	 *	((deadlocked))
12709 	 *
12710 	 * The second half of the workaround is that mondo_recover_proc()
12711 	 * checks to see if the tsb_info has the RELOC flag set, and if it
12712 	 * does, it skips over that TSB without ever touching tsbinfop->tsb_va
12713 	 * and hence avoiding the TLB miss that could result in a deadlock.
12714 	 */
12715 	if (&sendmondo_in_recover) {
12716 		membar_enter();	/* make sure RELOC flag visible */
12717 		while (sendmondo_in_recover) {
12718 			drv_usecwait(1);
12719 			membar_consumer();
12720 		}
12721 	}
12722 
12723 	sfmmu_invalidate_ctx(sfmmup);
12724 }
12725 
12726 /* ARGSUSED */
12727 static int
12728 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
12729 	void *tsbinfo, pfn_t newpfn)
12730 {
12731 	hatlock_t *hatlockp;
12732 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12733 	sfmmu_t	*sfmmup = tsbinfop->tsb_sfmmu;
12734 
12735 	if (flags != HAT_POSTUNSUSPEND)
12736 		return (0);
12737 
12738 	hatlockp = sfmmu_hat_enter(sfmmup);
12739 
12740 	SFMMU_STAT(sf_tsb_reloc);
12741 
12742 	/*
12743 	 * The process may have swapped out while we were relocating one
12744 	 * of its TSBs.  If so, don't bother doing the setup since the
12745 	 * process can't be using the memory anymore.
12746 	 */
12747 	if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
12748 		ASSERT(va == tsbinfop->tsb_va);
12749 		sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
12750 
12751 		if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
12752 			sfmmu_inv_tsb(tsbinfop->tsb_va,
12753 			    TSB_BYTES(tsbinfop->tsb_szc));
12754 			tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
12755 		}
12756 	}
12757 
12758 	membar_exit();
12759 	tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
12760 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
12761 
12762 	sfmmu_hat_exit(hatlockp);
12763 
12764 	return (0);
12765 }
12766 
12767 /*
12768  * Allocate and initialize a tsb_info structure.  Note that we may or may not
12769  * allocate a TSB here, depending on the flags passed in.
12770  */
12771 static int
12772 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
12773 	uint_t flags, sfmmu_t *sfmmup)
12774 {
12775 	int err;
12776 
12777 	*tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
12778 	    sfmmu_tsbinfo_cache, KM_SLEEP);
12779 
12780 	if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
12781 	    tsb_szc, flags, sfmmup)) != 0) {
12782 		kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
12783 		SFMMU_STAT(sf_tsb_allocfail);
12784 		*tsbinfopp = NULL;
12785 		return (err);
12786 	}
12787 	SFMMU_STAT(sf_tsb_alloc);
12788 
12789 	/*
12790 	 * Bump the TSB size counters for this TSB size.
12791 	 */
12792 	(*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
12793 	return (0);
12794 }
12795 
12796 static void
12797 sfmmu_tsb_free(struct tsb_info *tsbinfo)
12798 {
12799 	caddr_t tsbva = tsbinfo->tsb_va;
12800 	uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
12801 	struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
12802 	vmem_t	*vmp = tsbinfo->tsb_vmp;
12803 
12804 	/*
12805 	 * If we allocated this TSB from relocatable kernel memory, then we
12806 	 * need to uninstall the callback handler.
12807 	 */
12808 	if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
12809 		uintptr_t slab_mask;
12810 		caddr_t slab_vaddr;
12811 		page_t **ppl;
12812 		int ret;
12813 
12814 		ASSERT(tsb_size <= MMU_PAGESIZE4M || use_bigtsb_arena);
12815 		if (tsb_size > MMU_PAGESIZE4M)
12816 			slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
12817 		else
12818 			slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
12819 		slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
12820 
12821 		ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
12822 		ASSERT(ret == 0);
12823 		hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
12824 		    0, NULL);
12825 		as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
12826 	}
12827 
12828 	if (kmem_cachep != NULL) {
12829 		kmem_cache_free(kmem_cachep, tsbva);
12830 	} else {
12831 		vmem_xfree(vmp, (void *)tsbva, tsb_size);
12832 	}
12833 	tsbinfo->tsb_va = (caddr_t)0xbad00bad;
12834 	atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
12835 }
12836 
12837 static void
12838 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
12839 {
12840 	if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
12841 		sfmmu_tsb_free(tsbinfo);
12842 	}
12843 	kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
12844 
12845 }
12846 
12847 /*
12848  * Setup all the references to physical memory for this tsbinfo.
12849  * The underlying page(s) must be locked.
12850  */
12851 static void
12852 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
12853 {
12854 	ASSERT(pfn != PFN_INVALID);
12855 	ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
12856 
12857 #ifndef sun4v
12858 	if (tsbinfo->tsb_szc == 0) {
12859 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
12860 		    PROT_WRITE|PROT_READ, TTE8K);
12861 	} else {
12862 		/*
12863 		 * Round down PA and use a large mapping; the handlers will
12864 		 * compute the TSB pointer at the correct offset into the
12865 		 * big virtual page.  NOTE: this assumes all TSBs larger
12866 		 * than 8K must come from physically contiguous slabs of
12867 		 * size tsb_slab_size.
12868 		 */
12869 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
12870 		    PROT_WRITE|PROT_READ, tsb_slab_ttesz);
12871 	}
12872 	tsbinfo->tsb_pa = ptob(pfn);
12873 
12874 	TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
12875 	TTE_SET_MOD(&tsbinfo->tsb_tte);    /* enable writes */
12876 
12877 	ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
12878 	ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
12879 #else /* sun4v */
12880 	tsbinfo->tsb_pa = ptob(pfn);
12881 #endif /* sun4v */
12882 }
12883 
12884 
12885 /*
12886  * Returns zero on success, ENOMEM if over the high water mark,
12887  * or EAGAIN if the caller needs to retry with a smaller TSB
12888  * size (or specify TSB_FORCEALLOC if the allocation can't fail).
12889  *
12890  * This call cannot fail to allocate a TSB if TSB_FORCEALLOC
12891  * is specified and the TSB requested is PAGESIZE, though it
12892  * may sleep waiting for memory if sufficient memory is not
12893  * available.
12894  */
12895 static int
12896 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
12897     int tsbcode, uint_t flags, sfmmu_t *sfmmup)
12898 {
12899 	caddr_t vaddr = NULL;
12900 	caddr_t slab_vaddr;
12901 	uintptr_t slab_mask;
12902 	int tsbbytes = TSB_BYTES(tsbcode);
12903 	int lowmem = 0;
12904 	struct kmem_cache *kmem_cachep = NULL;
12905 	vmem_t *vmp = NULL;
12906 	lgrp_id_t lgrpid = LGRP_NONE;
12907 	pfn_t pfn;
12908 	uint_t cbflags = HAC_SLEEP;
12909 	page_t **pplist;
12910 	int ret;
12911 
12912 	ASSERT(tsbbytes <= MMU_PAGESIZE4M || use_bigtsb_arena);
12913 	if (tsbbytes > MMU_PAGESIZE4M)
12914 		slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
12915 	else
12916 		slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
12917 
12918 	if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
12919 		flags |= TSB_ALLOC;
12920 
12921 	ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
12922 
12923 	tsbinfo->tsb_sfmmu = sfmmup;
12924 
12925 	/*
12926 	 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
12927 	 * return.
12928 	 */
12929 	if ((flags & TSB_ALLOC) == 0) {
12930 		tsbinfo->tsb_szc = tsbcode;
12931 		tsbinfo->tsb_ttesz_mask = tteszmask;
12932 		tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
12933 		tsbinfo->tsb_pa = -1;
12934 		tsbinfo->tsb_tte.ll = 0;
12935 		tsbinfo->tsb_next = NULL;
12936 		tsbinfo->tsb_flags = TSB_SWAPPED;
12937 		tsbinfo->tsb_cache = NULL;
12938 		tsbinfo->tsb_vmp = NULL;
12939 		return (0);
12940 	}
12941 
12942 #ifdef DEBUG
12943 	/*
12944 	 * For debugging:
12945 	 * Randomly force allocation failures every tsb_alloc_mtbf
12946 	 * tries if TSB_FORCEALLOC is not specified.  This will
12947 	 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
12948 	 * it is even, to allow testing of both failure paths...
12949 	 */
12950 	if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
12951 	    (tsb_alloc_count++ == tsb_alloc_mtbf)) {
12952 		tsb_alloc_count = 0;
12953 		tsb_alloc_fail_mtbf++;
12954 		return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
12955 	}
12956 #endif	/* DEBUG */
12957 
12958 	/*
12959 	 * Enforce high water mark if we are not doing a forced allocation
12960 	 * and are not shrinking a process' TSB.
12961 	 */
12962 	if ((flags & TSB_SHRINK) == 0 &&
12963 	    (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
12964 		if ((flags & TSB_FORCEALLOC) == 0)
12965 			return (ENOMEM);
12966 		lowmem = 1;
12967 	}
12968 
12969 	/*
12970 	 * Allocate from the correct location based upon the size of the TSB
12971 	 * compared to the base page size, and what memory conditions dictate.
12972 	 * Note we always do nonblocking allocations from the TSB arena since
12973 	 * we don't want memory fragmentation to cause processes to block
12974 	 * indefinitely waiting for memory; until the kernel algorithms that
12975 	 * coalesce large pages are improved this is our best option.
12976 	 *
12977 	 * Algorithm:
12978 	 *	If allocating a "large" TSB (>8K), allocate from the
12979 	 *		appropriate kmem_tsb_default_arena vmem arena
12980 	 *	else if low on memory or the TSB_FORCEALLOC flag is set or
12981 	 *	tsb_forceheap is set
12982 	 *		Allocate from kernel heap via sfmmu_tsb8k_cache with
12983 	 *		KM_SLEEP (never fails)
12984 	 *	else
12985 	 *		Allocate from appropriate sfmmu_tsb_cache with
12986 	 *		KM_NOSLEEP
12987 	 *	endif
12988 	 */
12989 	if (tsb_lgrp_affinity)
12990 		lgrpid = lgrp_home_id(curthread);
12991 	if (lgrpid == LGRP_NONE)
12992 		lgrpid = 0;	/* use lgrp of boot CPU */
12993 
12994 	if (tsbbytes > MMU_PAGESIZE) {
12995 		if (tsbbytes > MMU_PAGESIZE4M) {
12996 			vmp = kmem_bigtsb_default_arena[lgrpid];
12997 			vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
12998 			    0, 0, NULL, NULL, VM_NOSLEEP);
12999 		} else {
13000 			vmp = kmem_tsb_default_arena[lgrpid];
13001 			vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
13002 			    0, 0, NULL, NULL, VM_NOSLEEP);
13003 		}
13004 #ifdef	DEBUG
13005 	} else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
13006 #else	/* !DEBUG */
13007 	} else if (lowmem || (flags & TSB_FORCEALLOC)) {
13008 #endif	/* DEBUG */
13009 		kmem_cachep = sfmmu_tsb8k_cache;
13010 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
13011 		ASSERT(vaddr != NULL);
13012 	} else {
13013 		kmem_cachep = sfmmu_tsb_cache[lgrpid];
13014 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
13015 	}
13016 
13017 	tsbinfo->tsb_cache = kmem_cachep;
13018 	tsbinfo->tsb_vmp = vmp;
13019 
13020 	if (vaddr == NULL) {
13021 		return (EAGAIN);
13022 	}
13023 
13024 	atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
13025 	kmem_cachep = tsbinfo->tsb_cache;
13026 
13027 	/*
13028 	 * If we are allocating from outside the cage, then we need to
13029 	 * register a relocation callback handler.  Note that for now
13030 	 * since pseudo mappings always hang off of the slab's root page,
13031 	 * we need only lock the first 8K of the TSB slab.  This is a bit
13032 	 * hacky but it is good for performance.
13033 	 */
13034 	if (kmem_cachep != sfmmu_tsb8k_cache) {
13035 		slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
13036 		ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
13037 		ASSERT(ret == 0);
13038 		ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
13039 		    cbflags, (void *)tsbinfo, &pfn, NULL);
13040 
13041 		/*
13042 		 * Need to free up resources if we could not successfully
13043 		 * add the callback function and return an error condition.
13044 		 */
13045 		if (ret != 0) {
13046 			if (kmem_cachep) {
13047 				kmem_cache_free(kmem_cachep, vaddr);
13048 			} else {
13049 				vmem_xfree(vmp, (void *)vaddr, tsbbytes);
13050 			}
13051 			as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
13052 			    S_WRITE);
13053 			return (EAGAIN);
13054 		}
13055 	} else {
13056 		/*
13057 		 * Since allocation of 8K TSBs from heap is rare and occurs
13058 		 * during memory pressure we allocate them from permanent
13059 		 * memory rather than using callbacks to get the PFN.
13060 		 */
13061 		pfn = hat_getpfnum(kas.a_hat, vaddr);
13062 	}
13063 
13064 	tsbinfo->tsb_va = vaddr;
13065 	tsbinfo->tsb_szc = tsbcode;
13066 	tsbinfo->tsb_ttesz_mask = tteszmask;
13067 	tsbinfo->tsb_next = NULL;
13068 	tsbinfo->tsb_flags = 0;
13069 
13070 	sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
13071 
13072 	sfmmu_inv_tsb(vaddr, tsbbytes);
13073 
13074 	if (kmem_cachep != sfmmu_tsb8k_cache) {
13075 		as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
13076 	}
13077 
13078 	return (0);
13079 }
13080 
13081 /*
13082  * Initialize per cpu tsb and per cpu tsbmiss_area
13083  */
13084 void
13085 sfmmu_init_tsbs(void)
13086 {
13087 	int i;
13088 	struct tsbmiss	*tsbmissp;
13089 	struct kpmtsbm	*kpmtsbmp;
13090 #ifndef sun4v
13091 	extern int	dcache_line_mask;
13092 #endif /* sun4v */
13093 	extern uint_t	vac_colors;
13094 
13095 	/*
13096 	 * Init. tsb miss area.
13097 	 */
13098 	tsbmissp = tsbmiss_area;
13099 
13100 	for (i = 0; i < NCPU; tsbmissp++, i++) {
13101 		/*
13102 		 * initialize the tsbmiss area.
13103 		 * Do this for all possible CPUs as some may be added
13104 		 * while the system is running. There is no cost to this.
13105 		 */
13106 		tsbmissp->ksfmmup = ksfmmup;
13107 #ifndef sun4v
13108 		tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
13109 #endif /* sun4v */
13110 		tsbmissp->khashstart =
13111 		    (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
13112 		tsbmissp->uhashstart =
13113 		    (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
13114 		tsbmissp->khashsz = khmehash_num;
13115 		tsbmissp->uhashsz = uhmehash_num;
13116 	}
13117 
13118 	sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
13119 	    sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
13120 
13121 	if (kpm_enable == 0)
13122 		return;
13123 
13124 	/* -- Begin KPM specific init -- */
13125 
13126 	if (kpm_smallpages) {
13127 		/*
13128 		 * If we're using base pagesize pages for seg_kpm
13129 		 * mappings, we use the kernel TSB since we can't afford
13130 		 * to allocate a second huge TSB for these mappings.
13131 		 */
13132 		kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13133 		kpm_tsbsz = ktsb_szcode;
13134 		kpmsm_tsbbase = kpm_tsbbase;
13135 		kpmsm_tsbsz = kpm_tsbsz;
13136 	} else {
13137 		/*
13138 		 * In VAC conflict case, just put the entries in the
13139 		 * kernel 8K indexed TSB for now so we can find them.
13140 		 * This could really be changed in the future if we feel
13141 		 * the need...
13142 		 */
13143 		kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13144 		kpmsm_tsbsz = ktsb_szcode;
13145 		kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
13146 		kpm_tsbsz = ktsb4m_szcode;
13147 	}
13148 
13149 	kpmtsbmp = kpmtsbm_area;
13150 	for (i = 0; i < NCPU; kpmtsbmp++, i++) {
13151 		/*
13152 		 * Initialize the kpmtsbm area.
13153 		 * Do this for all possible CPUs as some may be added
13154 		 * while the system is running. There is no cost to this.
13155 		 */
13156 		kpmtsbmp->vbase = kpm_vbase;
13157 		kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
13158 		kpmtsbmp->sz_shift = kpm_size_shift;
13159 		kpmtsbmp->kpmp_shift = kpmp_shift;
13160 		kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
13161 		if (kpm_smallpages == 0) {
13162 			kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
13163 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
13164 		} else {
13165 			kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
13166 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
13167 		}
13168 		kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
13169 		kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
13170 #ifdef	DEBUG
13171 		kpmtsbmp->flags |= (kpm_tsbmtl) ?  KPMTSBM_TLTSBM_FLAG : 0;
13172 #endif	/* DEBUG */
13173 		if (ktsb_phys)
13174 			kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
13175 	}
13176 
13177 	/* -- End KPM specific init -- */
13178 }
13179 
13180 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
13181 struct tsb_info ktsb_info[2];
13182 
13183 /*
13184  * Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
13185  */
13186 void
13187 sfmmu_init_ktsbinfo()
13188 {
13189 	ASSERT(ksfmmup != NULL);
13190 	ASSERT(ksfmmup->sfmmu_tsb == NULL);
13191 	/*
13192 	 * Allocate tsbinfos for kernel and copy in data
13193 	 * to make debug easier and sun4v setup easier.
13194 	 */
13195 	ktsb_info[0].tsb_sfmmu = ksfmmup;
13196 	ktsb_info[0].tsb_szc = ktsb_szcode;
13197 	ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
13198 	ktsb_info[0].tsb_va = ktsb_base;
13199 	ktsb_info[0].tsb_pa = ktsb_pbase;
13200 	ktsb_info[0].tsb_flags = 0;
13201 	ktsb_info[0].tsb_tte.ll = 0;
13202 	ktsb_info[0].tsb_cache = NULL;
13203 
13204 	ktsb_info[1].tsb_sfmmu = ksfmmup;
13205 	ktsb_info[1].tsb_szc = ktsb4m_szcode;
13206 	ktsb_info[1].tsb_ttesz_mask = TSB4M;
13207 	ktsb_info[1].tsb_va = ktsb4m_base;
13208 	ktsb_info[1].tsb_pa = ktsb4m_pbase;
13209 	ktsb_info[1].tsb_flags = 0;
13210 	ktsb_info[1].tsb_tte.ll = 0;
13211 	ktsb_info[1].tsb_cache = NULL;
13212 
13213 	/* Link them into ksfmmup. */
13214 	ktsb_info[0].tsb_next = &ktsb_info[1];
13215 	ktsb_info[1].tsb_next = NULL;
13216 	ksfmmup->sfmmu_tsb = &ktsb_info[0];
13217 
13218 	sfmmu_setup_tsbinfo(ksfmmup);
13219 }
13220 
13221 /*
13222  * Cache the last value returned from va_to_pa().  If the VA specified
13223  * in the current call to cached_va_to_pa() maps to the same Page (as the
13224  * previous call to cached_va_to_pa()), then compute the PA using
13225  * cached info, else call va_to_pa().
13226  *
13227  * Note: this function is neither MT-safe nor consistent in the presence
13228  * of multiple, interleaved threads.  This function was created to enable
13229  * an optimization used during boot (at a point when there's only one thread
13230  * executing on the "boot CPU", and before startup_vm() has been called).
13231  */
13232 static uint64_t
13233 cached_va_to_pa(void *vaddr)
13234 {
13235 	static uint64_t prev_vaddr_base = 0;
13236 	static uint64_t prev_pfn = 0;
13237 
13238 	if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
13239 		return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
13240 	} else {
13241 		uint64_t pa = va_to_pa(vaddr);
13242 
13243 		if (pa != ((uint64_t)-1)) {
13244 			/*
13245 			 * Computed physical address is valid.  Cache its
13246 			 * related info for the next cached_va_to_pa() call.
13247 			 */
13248 			prev_pfn = pa & MMU_PAGEMASK;
13249 			prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
13250 		}
13251 
13252 		return (pa);
13253 	}
13254 }
13255 
13256 /*
13257  * Carve up our nucleus hblk region.  We may allocate more hblks than
13258  * asked due to rounding errors but we are guaranteed to have at least
13259  * enough space to allocate the requested number of hblk8's and hblk1's.
13260  */
13261 void
13262 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
13263 {
13264 	struct hme_blk *hmeblkp;
13265 	size_t hme8blk_sz, hme1blk_sz;
13266 	size_t i;
13267 	size_t hblk8_bound;
13268 	ulong_t j = 0, k = 0;
13269 
13270 	ASSERT(addr != NULL && size != 0);
13271 
13272 	/* Need to use proper structure alignment */
13273 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
13274 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
13275 
13276 	nucleus_hblk8.list = (void *)addr;
13277 	nucleus_hblk8.index = 0;
13278 
13279 	/*
13280 	 * Use as much memory as possible for hblk8's since we
13281 	 * expect all bop_alloc'ed memory to be allocated in 8k chunks.
13282 	 * We need to hold back enough space for the hblk1's which
13283 	 * we'll allocate next.
13284 	 */
13285 	hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
13286 	for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
13287 		hmeblkp = (struct hme_blk *)addr;
13288 		addr += hme8blk_sz;
13289 		hmeblkp->hblk_nuc_bit = 1;
13290 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13291 	}
13292 	nucleus_hblk8.len = j;
13293 	ASSERT(j >= nhblk8);
13294 	SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
13295 
13296 	nucleus_hblk1.list = (void *)addr;
13297 	nucleus_hblk1.index = 0;
13298 	for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
13299 		hmeblkp = (struct hme_blk *)addr;
13300 		addr += hme1blk_sz;
13301 		hmeblkp->hblk_nuc_bit = 1;
13302 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13303 	}
13304 	ASSERT(k >= nhblk1);
13305 	nucleus_hblk1.len = k;
13306 	SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
13307 }
13308 
13309 /*
13310  * This function is currently not supported on this platform. For what
13311  * it's supposed to do, see hat.c and hat_srmmu.c
13312  */
13313 /* ARGSUSED */
13314 faultcode_t
13315 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
13316     uint_t flags)
13317 {
13318 	ASSERT(hat->sfmmu_xhat_provider == NULL);
13319 	return (FC_NOSUPPORT);
13320 }
13321 
13322 /*
13323  * Searchs the mapping list of the page for a mapping of the same size. If not
13324  * found the corresponding bit is cleared in the p_index field. When large
13325  * pages are more prevalent in the system, we can maintain the mapping list
13326  * in order and we don't have to traverse the list each time. Just check the
13327  * next and prev entries, and if both are of different size, we clear the bit.
13328  */
13329 static void
13330 sfmmu_rm_large_mappings(page_t *pp, int ttesz)
13331 {
13332 	struct sf_hment *sfhmep;
13333 	struct hme_blk *hmeblkp;
13334 	int	index;
13335 	pgcnt_t	npgs;
13336 
13337 	ASSERT(ttesz > TTE8K);
13338 
13339 	ASSERT(sfmmu_mlist_held(pp));
13340 
13341 	ASSERT(PP_ISMAPPED_LARGE(pp));
13342 
13343 	/*
13344 	 * Traverse mapping list looking for another mapping of same size.
13345 	 * since we only want to clear index field if all mappings of
13346 	 * that size are gone.
13347 	 */
13348 
13349 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
13350 		if (IS_PAHME(sfhmep))
13351 			continue;
13352 		hmeblkp = sfmmu_hmetohblk(sfhmep);
13353 		if (hmeblkp->hblk_xhat_bit)
13354 			continue;
13355 		if (hme_size(sfhmep) == ttesz) {
13356 			/*
13357 			 * another mapping of the same size. don't clear index.
13358 			 */
13359 			return;
13360 		}
13361 	}
13362 
13363 	/*
13364 	 * Clear the p_index bit for large page.
13365 	 */
13366 	index = PAGESZ_TO_INDEX(ttesz);
13367 	npgs = TTEPAGES(ttesz);
13368 	while (npgs-- > 0) {
13369 		ASSERT(pp->p_index & index);
13370 		pp->p_index &= ~index;
13371 		pp = PP_PAGENEXT(pp);
13372 	}
13373 }
13374 
13375 /*
13376  * return supported features
13377  */
13378 /* ARGSUSED */
13379 int
13380 hat_supported(enum hat_features feature, void *arg)
13381 {
13382 	switch (feature) {
13383 	case    HAT_SHARED_PT:
13384 	case	HAT_DYNAMIC_ISM_UNMAP:
13385 	case	HAT_VMODSORT:
13386 		return (1);
13387 	case	HAT_SHARED_REGIONS:
13388 		if (shctx_on)
13389 			return (1);
13390 		else
13391 			return (0);
13392 	default:
13393 		return (0);
13394 	}
13395 }
13396 
13397 void
13398 hat_enter(struct hat *hat)
13399 {
13400 	hatlock_t	*hatlockp;
13401 
13402 	if (hat != ksfmmup) {
13403 		hatlockp = TSB_HASH(hat);
13404 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
13405 	}
13406 }
13407 
13408 void
13409 hat_exit(struct hat *hat)
13410 {
13411 	hatlock_t	*hatlockp;
13412 
13413 	if (hat != ksfmmup) {
13414 		hatlockp = TSB_HASH(hat);
13415 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
13416 	}
13417 }
13418 
13419 /*ARGSUSED*/
13420 void
13421 hat_reserve(struct as *as, caddr_t addr, size_t len)
13422 {
13423 }
13424 
13425 static void
13426 hat_kstat_init(void)
13427 {
13428 	kstat_t *ksp;
13429 
13430 	ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
13431 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
13432 	    KSTAT_FLAG_VIRTUAL);
13433 	if (ksp) {
13434 		ksp->ks_data = (void *) &sfmmu_global_stat;
13435 		kstat_install(ksp);
13436 	}
13437 	ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
13438 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
13439 	    KSTAT_FLAG_VIRTUAL);
13440 	if (ksp) {
13441 		ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
13442 		kstat_install(ksp);
13443 	}
13444 	ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
13445 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
13446 	    KSTAT_FLAG_WRITABLE);
13447 	if (ksp) {
13448 		ksp->ks_update = sfmmu_kstat_percpu_update;
13449 		kstat_install(ksp);
13450 	}
13451 }
13452 
13453 /* ARGSUSED */
13454 static int
13455 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
13456 {
13457 	struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
13458 	struct tsbmiss *tsbm = tsbmiss_area;
13459 	struct kpmtsbm *kpmtsbm = kpmtsbm_area;
13460 	int i;
13461 
13462 	ASSERT(cpu_kstat);
13463 	if (rw == KSTAT_READ) {
13464 		for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
13465 			cpu_kstat->sf_itlb_misses = 0;
13466 			cpu_kstat->sf_dtlb_misses = 0;
13467 			cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
13468 			    tsbm->uprot_traps;
13469 			cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
13470 			    kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
13471 			cpu_kstat->sf_tsb_hits = 0;
13472 			cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
13473 			cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
13474 		}
13475 	} else {
13476 		/* KSTAT_WRITE is used to clear stats */
13477 		for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
13478 			tsbm->utsb_misses = 0;
13479 			tsbm->ktsb_misses = 0;
13480 			tsbm->uprot_traps = 0;
13481 			tsbm->kprot_traps = 0;
13482 			kpmtsbm->kpm_dtlb_misses = 0;
13483 			kpmtsbm->kpm_tsb_misses = 0;
13484 		}
13485 	}
13486 	return (0);
13487 }
13488 
13489 #ifdef	DEBUG
13490 
13491 tte_t  *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
13492 
13493 /*
13494  * A tte checker. *orig_old is the value we read before cas.
13495  *	*cur is the value returned by cas.
13496  *	*new is the desired value when we do the cas.
13497  *
13498  *	*hmeblkp is currently unused.
13499  */
13500 
13501 /* ARGSUSED */
13502 void
13503 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
13504 {
13505 	pfn_t i, j, k;
13506 	int cpuid = CPU->cpu_id;
13507 
13508 	gorig[cpuid] = orig_old;
13509 	gcur[cpuid] = cur;
13510 	gnew[cpuid] = new;
13511 
13512 #ifdef lint
13513 	hmeblkp = hmeblkp;
13514 #endif
13515 
13516 	if (TTE_IS_VALID(orig_old)) {
13517 		if (TTE_IS_VALID(cur)) {
13518 			i = TTE_TO_TTEPFN(orig_old);
13519 			j = TTE_TO_TTEPFN(cur);
13520 			k = TTE_TO_TTEPFN(new);
13521 			if (i != j) {
13522 				/* remap error? */
13523 				panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j);
13524 			}
13525 
13526 			if (i != k) {
13527 				/* remap error? */
13528 				panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k);
13529 			}
13530 		} else {
13531 			if (TTE_IS_VALID(new)) {
13532 				panic("chk_tte: invalid cur? ");
13533 			}
13534 
13535 			i = TTE_TO_TTEPFN(orig_old);
13536 			k = TTE_TO_TTEPFN(new);
13537 			if (i != k) {
13538 				panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k);
13539 			}
13540 		}
13541 	} else {
13542 		if (TTE_IS_VALID(cur)) {
13543 			j = TTE_TO_TTEPFN(cur);
13544 			if (TTE_IS_VALID(new)) {
13545 				k = TTE_TO_TTEPFN(new);
13546 				if (j != k) {
13547 					panic("chk_tte: bad pfn4, 0x%lx, 0x%lx",
13548 					    j, k);
13549 				}
13550 			} else {
13551 				panic("chk_tte: why here?");
13552 			}
13553 		} else {
13554 			if (!TTE_IS_VALID(new)) {
13555 				panic("chk_tte: why here2 ?");
13556 			}
13557 		}
13558 	}
13559 }
13560 
13561 #endif /* DEBUG */
13562 
13563 extern void prefetch_tsbe_read(struct tsbe *);
13564 extern void prefetch_tsbe_write(struct tsbe *);
13565 
13566 
13567 /*
13568  * We want to prefetch 7 cache lines ahead for our read prefetch.  This gives
13569  * us optimal performance on Cheetah+.  You can only have 8 outstanding
13570  * prefetches at any one time, so we opted for 7 read prefetches and 1 write
13571  * prefetch to make the most utilization of the prefetch capability.
13572  */
13573 #define	TSBE_PREFETCH_STRIDE (7)
13574 
13575 void
13576 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
13577 {
13578 	int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
13579 	int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
13580 	int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
13581 	int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
13582 	struct tsbe *old;
13583 	struct tsbe *new;
13584 	struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
13585 	uint64_t va;
13586 	int new_offset;
13587 	int i;
13588 	int vpshift;
13589 	int last_prefetch;
13590 
13591 	if (old_bytes == new_bytes) {
13592 		bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
13593 	} else {
13594 
13595 		/*
13596 		 * A TSBE is 16 bytes which means there are four TSBE's per
13597 		 * P$ line (64 bytes), thus every 4 TSBE's we prefetch.
13598 		 */
13599 		old = (struct tsbe *)old_tsbinfo->tsb_va;
13600 		last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
13601 		for (i = 0; i < old_entries; i++, old++) {
13602 			if (((i & (4-1)) == 0) && (i < last_prefetch))
13603 				prefetch_tsbe_read(old);
13604 			if (!old->tte_tag.tag_invalid) {
13605 				/*
13606 				 * We have a valid TTE to remap.  Check the
13607 				 * size.  We won't remap 64K or 512K TTEs
13608 				 * because they span more than one TSB entry
13609 				 * and are indexed using an 8K virt. page.
13610 				 * Ditto for 32M and 256M TTEs.
13611 				 */
13612 				if (TTE_CSZ(&old->tte_data) == TTE64K ||
13613 				    TTE_CSZ(&old->tte_data) == TTE512K)
13614 					continue;
13615 				if (mmu_page_sizes == max_mmu_page_sizes) {
13616 					if (TTE_CSZ(&old->tte_data) == TTE32M ||
13617 					    TTE_CSZ(&old->tte_data) == TTE256M)
13618 						continue;
13619 				}
13620 
13621 				/* clear the lower 22 bits of the va */
13622 				va = *(uint64_t *)old << 22;
13623 				/* turn va into a virtual pfn */
13624 				va >>= 22 - TSB_START_SIZE;
13625 				/*
13626 				 * or in bits from the offset in the tsb
13627 				 * to get the real virtual pfn. These
13628 				 * correspond to bits [21:13] in the va
13629 				 */
13630 				vpshift =
13631 				    TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
13632 				    0x1ff;
13633 				va |= (i << vpshift);
13634 				va >>= vpshift;
13635 				new_offset = va & (new_entries - 1);
13636 				new = new_base + new_offset;
13637 				prefetch_tsbe_write(new);
13638 				*new = *old;
13639 			}
13640 		}
13641 	}
13642 }
13643 
13644 /*
13645  * unused in sfmmu
13646  */
13647 void
13648 hat_dump(void)
13649 {
13650 }
13651 
13652 /*
13653  * Called when a thread is exiting and we have switched to the kernel address
13654  * space.  Perform the same VM initialization resume() uses when switching
13655  * processes.
13656  *
13657  * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
13658  * we call it anyway in case the semantics change in the future.
13659  */
13660 /*ARGSUSED*/
13661 void
13662 hat_thread_exit(kthread_t *thd)
13663 {
13664 	uint_t pgsz_cnum;
13665 	uint_t pstate_save;
13666 
13667 	ASSERT(thd->t_procp->p_as == &kas);
13668 
13669 	pgsz_cnum = KCONTEXT;
13670 #ifdef sun4u
13671 	pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT);
13672 #endif
13673 
13674 	/*
13675 	 * Note that sfmmu_load_mmustate() is currently a no-op for
13676 	 * kernel threads. We need to disable interrupts here,
13677 	 * simply because otherwise sfmmu_load_mmustate() would panic
13678 	 * if the caller does not disable interrupts.
13679 	 */
13680 	pstate_save = sfmmu_disable_intrs();
13681 
13682 	/* Compatibility Note: hw takes care of MMU_SCONTEXT1 */
13683 	sfmmu_setctx_sec(pgsz_cnum);
13684 	sfmmu_load_mmustate(ksfmmup);
13685 	sfmmu_enable_intrs(pstate_save);
13686 }
13687 
13688 
13689 /*
13690  * SRD support
13691  */
13692 #define	SRD_HASH_FUNCTION(vp)	(((((uintptr_t)(vp)) >> 4) ^ \
13693 				    (((uintptr_t)(vp)) >> 11)) & \
13694 				    srd_hashmask)
13695 
13696 /*
13697  * Attach the process to the srd struct associated with the exec vnode
13698  * from which the process is started.
13699  */
13700 void
13701 hat_join_srd(struct hat *sfmmup, vnode_t *evp)
13702 {
13703 	uint_t hash = SRD_HASH_FUNCTION(evp);
13704 	sf_srd_t *srdp;
13705 	sf_srd_t *newsrdp;
13706 
13707 	ASSERT(sfmmup != ksfmmup);
13708 	ASSERT(sfmmup->sfmmu_srdp == NULL);
13709 
13710 	if (!shctx_on) {
13711 		return;
13712 	}
13713 
13714 	VN_HOLD(evp);
13715 
13716 	if (srd_buckets[hash].srdb_srdp != NULL) {
13717 		mutex_enter(&srd_buckets[hash].srdb_lock);
13718 		for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13719 		    srdp = srdp->srd_hash) {
13720 			if (srdp->srd_evp == evp) {
13721 				ASSERT(srdp->srd_refcnt >= 0);
13722 				sfmmup->sfmmu_srdp = srdp;
13723 				atomic_add_32(
13724 				    (volatile uint_t *)&srdp->srd_refcnt, 1);
13725 				mutex_exit(&srd_buckets[hash].srdb_lock);
13726 				return;
13727 			}
13728 		}
13729 		mutex_exit(&srd_buckets[hash].srdb_lock);
13730 	}
13731 	newsrdp = kmem_cache_alloc(srd_cache, KM_SLEEP);
13732 	ASSERT(newsrdp->srd_next_ismrid == 0 && newsrdp->srd_next_hmerid == 0);
13733 
13734 	newsrdp->srd_evp = evp;
13735 	newsrdp->srd_refcnt = 1;
13736 	newsrdp->srd_hmergnfree = NULL;
13737 	newsrdp->srd_ismrgnfree = NULL;
13738 
13739 	mutex_enter(&srd_buckets[hash].srdb_lock);
13740 	for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13741 	    srdp = srdp->srd_hash) {
13742 		if (srdp->srd_evp == evp) {
13743 			ASSERT(srdp->srd_refcnt >= 0);
13744 			sfmmup->sfmmu_srdp = srdp;
13745 			atomic_add_32((volatile uint_t *)&srdp->srd_refcnt, 1);
13746 			mutex_exit(&srd_buckets[hash].srdb_lock);
13747 			kmem_cache_free(srd_cache, newsrdp);
13748 			return;
13749 		}
13750 	}
13751 	newsrdp->srd_hash = srd_buckets[hash].srdb_srdp;
13752 	srd_buckets[hash].srdb_srdp = newsrdp;
13753 	sfmmup->sfmmu_srdp = newsrdp;
13754 
13755 	mutex_exit(&srd_buckets[hash].srdb_lock);
13756 
13757 }
13758 
13759 static void
13760 sfmmu_leave_srd(sfmmu_t *sfmmup)
13761 {
13762 	vnode_t *evp;
13763 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
13764 	uint_t hash;
13765 	sf_srd_t **prev_srdpp;
13766 	sf_region_t *rgnp;
13767 	sf_region_t *nrgnp;
13768 #ifdef DEBUG
13769 	int rgns = 0;
13770 #endif
13771 	int i;
13772 
13773 	ASSERT(sfmmup != ksfmmup);
13774 	ASSERT(srdp != NULL);
13775 	ASSERT(srdp->srd_refcnt > 0);
13776 	ASSERT(sfmmup->sfmmu_scdp == NULL);
13777 	ASSERT(sfmmup->sfmmu_free == 1);
13778 
13779 	sfmmup->sfmmu_srdp = NULL;
13780 	evp = srdp->srd_evp;
13781 	ASSERT(evp != NULL);
13782 	if (atomic_add_32_nv(
13783 	    (volatile uint_t *)&srdp->srd_refcnt, -1)) {
13784 		VN_RELE(evp);
13785 		return;
13786 	}
13787 
13788 	hash = SRD_HASH_FUNCTION(evp);
13789 	mutex_enter(&srd_buckets[hash].srdb_lock);
13790 	for (prev_srdpp = &srd_buckets[hash].srdb_srdp;
13791 	    (srdp = *prev_srdpp) != NULL; prev_srdpp = &srdp->srd_hash) {
13792 		if (srdp->srd_evp == evp) {
13793 			break;
13794 		}
13795 	}
13796 	if (srdp == NULL || srdp->srd_refcnt) {
13797 		mutex_exit(&srd_buckets[hash].srdb_lock);
13798 		VN_RELE(evp);
13799 		return;
13800 	}
13801 	*prev_srdpp = srdp->srd_hash;
13802 	mutex_exit(&srd_buckets[hash].srdb_lock);
13803 
13804 	ASSERT(srdp->srd_refcnt == 0);
13805 	VN_RELE(evp);
13806 
13807 #ifdef DEBUG
13808 	for (i = 0; i < SFMMU_MAX_REGION_BUCKETS; i++) {
13809 		ASSERT(srdp->srd_rgnhash[i] == NULL);
13810 	}
13811 #endif /* DEBUG */
13812 
13813 	/* free each hme regions in the srd */
13814 	for (rgnp = srdp->srd_hmergnfree; rgnp != NULL; rgnp = nrgnp) {
13815 		nrgnp = rgnp->rgn_next;
13816 		ASSERT(rgnp->rgn_id < srdp->srd_next_hmerid);
13817 		ASSERT(rgnp->rgn_refcnt == 0);
13818 		ASSERT(rgnp->rgn_sfmmu_head == NULL);
13819 		ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13820 		ASSERT(rgnp->rgn_hmeflags == 0);
13821 		ASSERT(srdp->srd_hmergnp[rgnp->rgn_id] == rgnp);
13822 #ifdef DEBUG
13823 		for (i = 0; i < MMU_PAGE_SIZES; i++) {
13824 			ASSERT(rgnp->rgn_ttecnt[i] == 0);
13825 		}
13826 		rgns++;
13827 #endif /* DEBUG */
13828 		kmem_cache_free(region_cache, rgnp);
13829 	}
13830 	ASSERT(rgns == srdp->srd_next_hmerid);
13831 
13832 #ifdef DEBUG
13833 	rgns = 0;
13834 #endif
13835 	/* free each ism rgns in the srd */
13836 	for (rgnp = srdp->srd_ismrgnfree; rgnp != NULL; rgnp = nrgnp) {
13837 		nrgnp = rgnp->rgn_next;
13838 		ASSERT(rgnp->rgn_id < srdp->srd_next_ismrid);
13839 		ASSERT(rgnp->rgn_refcnt == 0);
13840 		ASSERT(rgnp->rgn_sfmmu_head == NULL);
13841 		ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13842 		ASSERT(srdp->srd_ismrgnp[rgnp->rgn_id] == rgnp);
13843 #ifdef DEBUG
13844 		for (i = 0; i < MMU_PAGE_SIZES; i++) {
13845 			ASSERT(rgnp->rgn_ttecnt[i] == 0);
13846 		}
13847 		rgns++;
13848 #endif /* DEBUG */
13849 		kmem_cache_free(region_cache, rgnp);
13850 	}
13851 	ASSERT(rgns == srdp->srd_next_ismrid);
13852 	ASSERT(srdp->srd_ismbusyrgns == 0);
13853 	ASSERT(srdp->srd_hmebusyrgns == 0);
13854 
13855 	srdp->srd_next_ismrid = 0;
13856 	srdp->srd_next_hmerid = 0;
13857 
13858 	bzero((void *)srdp->srd_ismrgnp,
13859 	    sizeof (sf_region_t *) * SFMMU_MAX_ISM_REGIONS);
13860 	bzero((void *)srdp->srd_hmergnp,
13861 	    sizeof (sf_region_t *) * SFMMU_MAX_HME_REGIONS);
13862 
13863 	ASSERT(srdp->srd_scdp == NULL);
13864 	kmem_cache_free(srd_cache, srdp);
13865 }
13866 
13867 /* ARGSUSED */
13868 static int
13869 sfmmu_srdcache_constructor(void *buf, void *cdrarg, int kmflags)
13870 {
13871 	sf_srd_t *srdp = (sf_srd_t *)buf;
13872 	bzero(buf, sizeof (*srdp));
13873 
13874 	mutex_init(&srdp->srd_mutex, NULL, MUTEX_DEFAULT, NULL);
13875 	mutex_init(&srdp->srd_scd_mutex, NULL, MUTEX_DEFAULT, NULL);
13876 	return (0);
13877 }
13878 
13879 /* ARGSUSED */
13880 static void
13881 sfmmu_srdcache_destructor(void *buf, void *cdrarg)
13882 {
13883 	sf_srd_t *srdp = (sf_srd_t *)buf;
13884 
13885 	mutex_destroy(&srdp->srd_mutex);
13886 	mutex_destroy(&srdp->srd_scd_mutex);
13887 }
13888 
13889 /*
13890  * The caller makes sure hat_join_region()/hat_leave_region() can't be called
13891  * at the same time for the same process and address range. This is ensured by
13892  * the fact that address space is locked as writer when a process joins the
13893  * regions. Therefore there's no need to hold an srd lock during the entire
13894  * execution of hat_join_region()/hat_leave_region().
13895  */
13896 
13897 #define	RGN_HASH_FUNCTION(obj)	(((((uintptr_t)(obj)) >> 4) ^ \
13898 				    (((uintptr_t)(obj)) >> 11)) & \
13899 					srd_rgn_hashmask)
13900 /*
13901  * This routine implements the shared context functionality required when
13902  * attaching a segment to an address space. It must be called from
13903  * hat_share() for D(ISM) segments and from segvn_create() for segments
13904  * with the MAP_PRIVATE and MAP_TEXT flags set. It returns a region_cookie
13905  * which is saved in the private segment data for hme segments and
13906  * the ism_map structure for ism segments.
13907  */
13908 hat_region_cookie_t
13909 hat_join_region(struct hat *sfmmup,
13910 	caddr_t r_saddr,
13911 	size_t r_size,
13912 	void *r_obj,
13913 	u_offset_t r_objoff,
13914 	uchar_t r_perm,
13915 	uchar_t r_pgszc,
13916 	hat_rgn_cb_func_t r_cb_function,
13917 	uint_t flags)
13918 {
13919 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
13920 	uint_t rhash;
13921 	uint_t rid;
13922 	hatlock_t *hatlockp;
13923 	sf_region_t *rgnp;
13924 	sf_region_t *new_rgnp = NULL;
13925 	int i;
13926 	uint16_t *nextidp;
13927 	sf_region_t **freelistp;
13928 	int maxids;
13929 	sf_region_t **rarrp;
13930 	uint16_t *busyrgnsp;
13931 	ulong_t rttecnt;
13932 	uchar_t tteflag;
13933 	uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
13934 	int text = (r_type == HAT_REGION_TEXT);
13935 
13936 	if (srdp == NULL || r_size == 0) {
13937 		return (HAT_INVALID_REGION_COOKIE);
13938 	}
13939 
13940 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
13941 	ASSERT(sfmmup != ksfmmup);
13942 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
13943 	ASSERT(srdp->srd_refcnt > 0);
13944 	ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
13945 	ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
13946 	ASSERT(r_pgszc < mmu_page_sizes);
13947 	if (!IS_P2ALIGNED(r_saddr, TTEBYTES(r_pgszc)) ||
13948 	    !IS_P2ALIGNED(r_size, TTEBYTES(r_pgszc))) {
13949 		panic("hat_join_region: region addr or size is not aligned\n");
13950 	}
13951 
13952 
13953 	r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
13954 	    SFMMU_REGION_HME;
13955 	/*
13956 	 * Currently only support shared hmes for the main text region.
13957 	 */
13958 	if (r_type == SFMMU_REGION_HME && r_obj != srdp->srd_evp) {
13959 		return (HAT_INVALID_REGION_COOKIE);
13960 	}
13961 
13962 	rhash = RGN_HASH_FUNCTION(r_obj);
13963 
13964 	if (r_type == SFMMU_REGION_ISM) {
13965 		nextidp = &srdp->srd_next_ismrid;
13966 		freelistp = &srdp->srd_ismrgnfree;
13967 		maxids = SFMMU_MAX_ISM_REGIONS;
13968 		rarrp = srdp->srd_ismrgnp;
13969 		busyrgnsp = &srdp->srd_ismbusyrgns;
13970 	} else {
13971 		nextidp = &srdp->srd_next_hmerid;
13972 		freelistp = &srdp->srd_hmergnfree;
13973 		maxids = SFMMU_MAX_HME_REGIONS;
13974 		rarrp = srdp->srd_hmergnp;
13975 		busyrgnsp = &srdp->srd_hmebusyrgns;
13976 	}
13977 
13978 	mutex_enter(&srdp->srd_mutex);
13979 
13980 	for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
13981 	    rgnp = rgnp->rgn_hash) {
13982 		if (rgnp->rgn_saddr == r_saddr && rgnp->rgn_size == r_size &&
13983 		    rgnp->rgn_obj == r_obj && rgnp->rgn_objoff == r_objoff &&
13984 		    rgnp->rgn_perm == r_perm && rgnp->rgn_pgszc == r_pgszc) {
13985 			break;
13986 		}
13987 	}
13988 
13989 rfound:
13990 	if (rgnp != NULL) {
13991 		ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
13992 		ASSERT(rgnp->rgn_cb_function == r_cb_function);
13993 		ASSERT(rgnp->rgn_refcnt >= 0);
13994 		rid = rgnp->rgn_id;
13995 		ASSERT(rid < maxids);
13996 		ASSERT(rarrp[rid] == rgnp);
13997 		ASSERT(rid < *nextidp);
13998 		atomic_add_32((volatile uint_t *)&rgnp->rgn_refcnt, 1);
13999 		mutex_exit(&srdp->srd_mutex);
14000 		if (new_rgnp != NULL) {
14001 			kmem_cache_free(region_cache, new_rgnp);
14002 		}
14003 		if (r_type == SFMMU_REGION_HME) {
14004 			int myjoin =
14005 			    (sfmmup == astosfmmu(curthread->t_procp->p_as));
14006 
14007 			sfmmu_link_to_hmeregion(sfmmup, rgnp);
14008 			/*
14009 			 * bitmap should be updated after linking sfmmu on
14010 			 * region list so that pageunload() doesn't skip
14011 			 * TSB/TLB flush. As soon as bitmap is updated another
14012 			 * thread in this process can already start accessing
14013 			 * this region.
14014 			 */
14015 			/*
14016 			 * Normally ttecnt accounting is done as part of
14017 			 * pagefault handling. But a process may not take any
14018 			 * pagefaults on shared hmeblks created by some other
14019 			 * process. To compensate for this assume that the
14020 			 * entire region will end up faulted in using
14021 			 * the region's pagesize.
14022 			 *
14023 			 */
14024 			if (r_pgszc > TTE8K) {
14025 				tteflag = 1 << r_pgszc;
14026 				if (disable_large_pages & tteflag) {
14027 					tteflag = 0;
14028 				}
14029 			} else {
14030 				tteflag = 0;
14031 			}
14032 			if (tteflag && !(sfmmup->sfmmu_rtteflags & tteflag)) {
14033 				hatlockp = sfmmu_hat_enter(sfmmup);
14034 				sfmmup->sfmmu_rtteflags |= tteflag;
14035 				sfmmu_hat_exit(hatlockp);
14036 			}
14037 			hatlockp = sfmmu_hat_enter(sfmmup);
14038 
14039 			/*
14040 			 * Preallocate 1/4 of ttecnt's in 8K TSB for >= 4M
14041 			 * region to allow for large page allocation failure.
14042 			 */
14043 			if (r_pgszc >= TTE4M) {
14044 				sfmmup->sfmmu_tsb0_4minflcnt +=
14045 				    r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14046 			}
14047 
14048 			/* update sfmmu_ttecnt with the shme rgn ttecnt */
14049 			rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14050 			atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
14051 			    rttecnt);
14052 
14053 			if (text && r_pgszc >= TTE4M &&
14054 			    (tteflag || ((disable_large_pages >> TTE4M) &
14055 			    ((1 << (r_pgszc - TTE4M + 1)) - 1))) &&
14056 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
14057 				SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
14058 			}
14059 
14060 			sfmmu_hat_exit(hatlockp);
14061 			/*
14062 			 * On Panther we need to make sure TLB is programmed
14063 			 * to accept 32M/256M pages.  Call
14064 			 * sfmmu_check_page_sizes() now to make sure TLB is
14065 			 * setup before making hmeregions visible to other
14066 			 * threads.
14067 			 */
14068 			sfmmu_check_page_sizes(sfmmup, 1);
14069 			hatlockp = sfmmu_hat_enter(sfmmup);
14070 			SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
14071 
14072 			/*
14073 			 * if context is invalid tsb miss exception code will
14074 			 * call sfmmu_check_page_sizes() and update tsbmiss
14075 			 * area later.
14076 			 */
14077 			kpreempt_disable();
14078 			if (myjoin &&
14079 			    (sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
14080 			    != INVALID_CONTEXT)) {
14081 				struct tsbmiss *tsbmp;
14082 
14083 				tsbmp = &tsbmiss_area[CPU->cpu_id];
14084 				ASSERT(sfmmup == tsbmp->usfmmup);
14085 				BT_SET(tsbmp->shmermap, rid);
14086 				if (r_pgszc > TTE64K) {
14087 					tsbmp->uhat_rtteflags |= tteflag;
14088 				}
14089 
14090 			}
14091 			kpreempt_enable();
14092 
14093 			sfmmu_hat_exit(hatlockp);
14094 			ASSERT((hat_region_cookie_t)((uint64_t)rid) !=
14095 			    HAT_INVALID_REGION_COOKIE);
14096 		} else {
14097 			hatlockp = sfmmu_hat_enter(sfmmup);
14098 			SF_RGNMAP_ADD(sfmmup->sfmmu_ismregion_map, rid);
14099 			sfmmu_hat_exit(hatlockp);
14100 		}
14101 		ASSERT(rid < maxids);
14102 
14103 		if (r_type == SFMMU_REGION_ISM) {
14104 			sfmmu_find_scd(sfmmup);
14105 		}
14106 		return ((hat_region_cookie_t)((uint64_t)rid));
14107 	}
14108 
14109 	ASSERT(new_rgnp == NULL);
14110 
14111 	if (*busyrgnsp >= maxids) {
14112 		mutex_exit(&srdp->srd_mutex);
14113 		return (HAT_INVALID_REGION_COOKIE);
14114 	}
14115 
14116 	ASSERT(MUTEX_HELD(&srdp->srd_mutex));
14117 	if (*freelistp != NULL) {
14118 		rgnp = *freelistp;
14119 		*freelistp = rgnp->rgn_next;
14120 		ASSERT(rgnp->rgn_id < *nextidp);
14121 		ASSERT(rgnp->rgn_id < maxids);
14122 		ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
14123 		ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK)
14124 		    == r_type);
14125 		ASSERT(rarrp[rgnp->rgn_id] == rgnp);
14126 		ASSERT(rgnp->rgn_hmeflags == 0);
14127 	} else {
14128 		/*
14129 		 * release local locks before memory allocation.
14130 		 */
14131 		mutex_exit(&srdp->srd_mutex);
14132 
14133 		new_rgnp = kmem_cache_alloc(region_cache, KM_SLEEP);
14134 
14135 		mutex_enter(&srdp->srd_mutex);
14136 		for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
14137 		    rgnp = rgnp->rgn_hash) {
14138 			if (rgnp->rgn_saddr == r_saddr &&
14139 			    rgnp->rgn_size == r_size &&
14140 			    rgnp->rgn_obj == r_obj &&
14141 			    rgnp->rgn_objoff == r_objoff &&
14142 			    rgnp->rgn_perm == r_perm &&
14143 			    rgnp->rgn_pgszc == r_pgszc) {
14144 				break;
14145 			}
14146 		}
14147 		if (rgnp != NULL) {
14148 			goto rfound;
14149 		}
14150 
14151 		if (*nextidp >= maxids) {
14152 			mutex_exit(&srdp->srd_mutex);
14153 			goto fail;
14154 		}
14155 		rgnp = new_rgnp;
14156 		new_rgnp = NULL;
14157 		rgnp->rgn_id = (*nextidp)++;
14158 		ASSERT(rgnp->rgn_id < maxids);
14159 		ASSERT(rarrp[rgnp->rgn_id] == NULL);
14160 		rarrp[rgnp->rgn_id] = rgnp;
14161 	}
14162 
14163 	ASSERT(rgnp->rgn_sfmmu_head == NULL);
14164 	ASSERT(rgnp->rgn_hmeflags == 0);
14165 #ifdef DEBUG
14166 	for (i = 0; i < MMU_PAGE_SIZES; i++) {
14167 		ASSERT(rgnp->rgn_ttecnt[i] == 0);
14168 	}
14169 #endif
14170 	rgnp->rgn_saddr = r_saddr;
14171 	rgnp->rgn_size = r_size;
14172 	rgnp->rgn_obj = r_obj;
14173 	rgnp->rgn_objoff = r_objoff;
14174 	rgnp->rgn_perm = r_perm;
14175 	rgnp->rgn_pgszc = r_pgszc;
14176 	rgnp->rgn_flags = r_type;
14177 	rgnp->rgn_refcnt = 0;
14178 	rgnp->rgn_cb_function = r_cb_function;
14179 	rgnp->rgn_hash = srdp->srd_rgnhash[rhash];
14180 	srdp->srd_rgnhash[rhash] = rgnp;
14181 	(*busyrgnsp)++;
14182 	ASSERT(*busyrgnsp <= maxids);
14183 	goto rfound;
14184 
14185 fail:
14186 	ASSERT(new_rgnp != NULL);
14187 	kmem_cache_free(region_cache, new_rgnp);
14188 	return (HAT_INVALID_REGION_COOKIE);
14189 }
14190 
14191 /*
14192  * This function implements the shared context functionality required
14193  * when detaching a segment from an address space. It must be called
14194  * from hat_unshare() for all D(ISM) segments and from segvn_unmap(),
14195  * for segments with a valid region_cookie.
14196  * It will also be called from all seg_vn routines which change a
14197  * segment's attributes such as segvn_setprot(), segvn_setpagesize(),
14198  * segvn_clrszc() & segvn_advise(), as well as in the case of COW fault
14199  * from segvn_fault().
14200  */
14201 void
14202 hat_leave_region(struct hat *sfmmup, hat_region_cookie_t rcookie, uint_t flags)
14203 {
14204 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14205 	sf_scd_t *scdp;
14206 	uint_t rhash;
14207 	uint_t rid = (uint_t)((uint64_t)rcookie);
14208 	hatlock_t *hatlockp = NULL;
14209 	sf_region_t *rgnp;
14210 	sf_region_t **prev_rgnpp;
14211 	sf_region_t *cur_rgnp;
14212 	void *r_obj;
14213 	int i;
14214 	caddr_t	r_saddr;
14215 	caddr_t r_eaddr;
14216 	size_t	r_size;
14217 	uchar_t	r_pgszc;
14218 	uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
14219 
14220 	ASSERT(sfmmup != ksfmmup);
14221 	ASSERT(srdp != NULL);
14222 	ASSERT(srdp->srd_refcnt > 0);
14223 	ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
14224 	ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
14225 	ASSERT(!sfmmup->sfmmu_free || sfmmup->sfmmu_scdp == NULL);
14226 
14227 	r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
14228 	    SFMMU_REGION_HME;
14229 
14230 	if (r_type == SFMMU_REGION_ISM) {
14231 		ASSERT(SFMMU_IS_ISMRID_VALID(rid));
14232 		ASSERT(rid < SFMMU_MAX_ISM_REGIONS);
14233 		rgnp = srdp->srd_ismrgnp[rid];
14234 	} else {
14235 		ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14236 		ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14237 		rgnp = srdp->srd_hmergnp[rid];
14238 	}
14239 	ASSERT(rgnp != NULL);
14240 	ASSERT(rgnp->rgn_id == rid);
14241 	ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14242 	ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14243 	ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
14244 
14245 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
14246 	if (r_type == SFMMU_REGION_HME && sfmmup->sfmmu_as->a_xhat != NULL) {
14247 		xhat_unload_callback_all(sfmmup->sfmmu_as, rgnp->rgn_saddr,
14248 		    rgnp->rgn_size, 0, NULL);
14249 	}
14250 
14251 	if (sfmmup->sfmmu_free) {
14252 		ulong_t rttecnt;
14253 		r_pgszc = rgnp->rgn_pgszc;
14254 		r_size = rgnp->rgn_size;
14255 
14256 		ASSERT(sfmmup->sfmmu_scdp == NULL);
14257 		if (r_type == SFMMU_REGION_ISM) {
14258 			SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14259 		} else {
14260 			/* update shme rgns ttecnt in sfmmu_ttecnt */
14261 			rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14262 			ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14263 
14264 			atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
14265 			    -rttecnt);
14266 
14267 			SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14268 		}
14269 	} else if (r_type == SFMMU_REGION_ISM) {
14270 		hatlockp = sfmmu_hat_enter(sfmmup);
14271 		ASSERT(rid < srdp->srd_next_ismrid);
14272 		SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14273 		scdp = sfmmup->sfmmu_scdp;
14274 		if (scdp != NULL &&
14275 		    SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
14276 			sfmmu_leave_scd(sfmmup, r_type);
14277 			ASSERT(sfmmu_hat_lock_held(sfmmup));
14278 		}
14279 		sfmmu_hat_exit(hatlockp);
14280 	} else {
14281 		ulong_t rttecnt;
14282 		r_pgszc = rgnp->rgn_pgszc;
14283 		r_saddr = rgnp->rgn_saddr;
14284 		r_size = rgnp->rgn_size;
14285 		r_eaddr = r_saddr + r_size;
14286 
14287 		ASSERT(r_type == SFMMU_REGION_HME);
14288 		hatlockp = sfmmu_hat_enter(sfmmup);
14289 		ASSERT(rid < srdp->srd_next_hmerid);
14290 		SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14291 
14292 		/*
14293 		 * If region is part of an SCD call sfmmu_leave_scd().
14294 		 * Otherwise if process is not exiting and has valid context
14295 		 * just drop the context on the floor to lose stale TLB
14296 		 * entries and force the update of tsb miss area to reflect
14297 		 * the new region map. After that clean our TSB entries.
14298 		 */
14299 		scdp = sfmmup->sfmmu_scdp;
14300 		if (scdp != NULL &&
14301 		    SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
14302 			sfmmu_leave_scd(sfmmup, r_type);
14303 			ASSERT(sfmmu_hat_lock_held(sfmmup));
14304 		}
14305 		sfmmu_invalidate_ctx(sfmmup);
14306 
14307 		i = TTE8K;
14308 		while (i < mmu_page_sizes) {
14309 			if (rgnp->rgn_ttecnt[i] != 0) {
14310 				sfmmu_unload_tsb_range(sfmmup, r_saddr,
14311 				    r_eaddr, i);
14312 				if (i < TTE4M) {
14313 					i = TTE4M;
14314 					continue;
14315 				} else {
14316 					break;
14317 				}
14318 			}
14319 			i++;
14320 		}
14321 		/* Remove the preallocated 1/4 8k ttecnt for 4M regions. */
14322 		if (r_pgszc >= TTE4M) {
14323 			rttecnt = r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14324 			ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
14325 			    rttecnt);
14326 			sfmmup->sfmmu_tsb0_4minflcnt -= rttecnt;
14327 		}
14328 
14329 		/* update shme rgns ttecnt in sfmmu_ttecnt */
14330 		rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14331 		ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14332 		atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc], -rttecnt);
14333 
14334 		sfmmu_hat_exit(hatlockp);
14335 		if (scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
14336 			/* sfmmup left the scd, grow private tsb */
14337 			sfmmu_check_page_sizes(sfmmup, 1);
14338 		} else {
14339 			sfmmu_check_page_sizes(sfmmup, 0);
14340 		}
14341 	}
14342 
14343 	if (r_type == SFMMU_REGION_HME) {
14344 		sfmmu_unlink_from_hmeregion(sfmmup, rgnp);
14345 	}
14346 
14347 	r_obj = rgnp->rgn_obj;
14348 	if (atomic_add_32_nv((volatile uint_t *)&rgnp->rgn_refcnt, -1)) {
14349 		return;
14350 	}
14351 
14352 	/*
14353 	 * looks like nobody uses this region anymore. Free it.
14354 	 */
14355 	rhash = RGN_HASH_FUNCTION(r_obj);
14356 	mutex_enter(&srdp->srd_mutex);
14357 	for (prev_rgnpp = &srdp->srd_rgnhash[rhash];
14358 	    (cur_rgnp = *prev_rgnpp) != NULL;
14359 	    prev_rgnpp = &cur_rgnp->rgn_hash) {
14360 		if (cur_rgnp == rgnp && cur_rgnp->rgn_refcnt == 0) {
14361 			break;
14362 		}
14363 	}
14364 
14365 	if (cur_rgnp == NULL) {
14366 		mutex_exit(&srdp->srd_mutex);
14367 		return;
14368 	}
14369 
14370 	ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14371 	*prev_rgnpp = rgnp->rgn_hash;
14372 	if (r_type == SFMMU_REGION_ISM) {
14373 		rgnp->rgn_flags |= SFMMU_REGION_FREE;
14374 		ASSERT(rid < srdp->srd_next_ismrid);
14375 		rgnp->rgn_next = srdp->srd_ismrgnfree;
14376 		srdp->srd_ismrgnfree = rgnp;
14377 		ASSERT(srdp->srd_ismbusyrgns > 0);
14378 		srdp->srd_ismbusyrgns--;
14379 		mutex_exit(&srdp->srd_mutex);
14380 		return;
14381 	}
14382 	mutex_exit(&srdp->srd_mutex);
14383 
14384 	/*
14385 	 * Destroy region's hmeblks.
14386 	 */
14387 	sfmmu_unload_hmeregion(srdp, rgnp);
14388 
14389 	rgnp->rgn_hmeflags = 0;
14390 
14391 	ASSERT(rgnp->rgn_sfmmu_head == NULL);
14392 	ASSERT(rgnp->rgn_id == rid);
14393 	for (i = 0; i < MMU_PAGE_SIZES; i++) {
14394 		rgnp->rgn_ttecnt[i] = 0;
14395 	}
14396 	rgnp->rgn_flags |= SFMMU_REGION_FREE;
14397 	mutex_enter(&srdp->srd_mutex);
14398 	ASSERT(rid < srdp->srd_next_hmerid);
14399 	rgnp->rgn_next = srdp->srd_hmergnfree;
14400 	srdp->srd_hmergnfree = rgnp;
14401 	ASSERT(srdp->srd_hmebusyrgns > 0);
14402 	srdp->srd_hmebusyrgns--;
14403 	mutex_exit(&srdp->srd_mutex);
14404 }
14405 
14406 /*
14407  * For now only called for hmeblk regions and not for ISM regions.
14408  */
14409 void
14410 hat_dup_region(struct hat *sfmmup, hat_region_cookie_t rcookie)
14411 {
14412 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14413 	uint_t rid = (uint_t)((uint64_t)rcookie);
14414 	sf_region_t *rgnp;
14415 	sf_rgn_link_t *rlink;
14416 	sf_rgn_link_t *hrlink;
14417 	ulong_t	rttecnt;
14418 
14419 	ASSERT(sfmmup != ksfmmup);
14420 	ASSERT(srdp != NULL);
14421 	ASSERT(srdp->srd_refcnt > 0);
14422 
14423 	ASSERT(rid < srdp->srd_next_hmerid);
14424 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14425 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14426 
14427 	rgnp = srdp->srd_hmergnp[rid];
14428 	ASSERT(rgnp->rgn_refcnt > 0);
14429 	ASSERT(rgnp->rgn_id == rid);
14430 	ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == SFMMU_REGION_HME);
14431 	ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14432 
14433 	atomic_add_32((volatile uint_t *)&rgnp->rgn_refcnt, 1);
14434 
14435 	/* LINTED: constant in conditional context */
14436 	SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 0);
14437 	ASSERT(rlink != NULL);
14438 	mutex_enter(&rgnp->rgn_mutex);
14439 	ASSERT(rgnp->rgn_sfmmu_head != NULL);
14440 	/* LINTED: constant in conditional context */
14441 	SFMMU_HMERID2RLINKP(rgnp->rgn_sfmmu_head, rid, hrlink, 0, 0);
14442 	ASSERT(hrlink != NULL);
14443 	ASSERT(hrlink->prev == NULL);
14444 	rlink->next = rgnp->rgn_sfmmu_head;
14445 	rlink->prev = NULL;
14446 	hrlink->prev = sfmmup;
14447 	/*
14448 	 * make sure rlink's next field is correct
14449 	 * before making this link visible.
14450 	 */
14451 	membar_stst();
14452 	rgnp->rgn_sfmmu_head = sfmmup;
14453 	mutex_exit(&rgnp->rgn_mutex);
14454 
14455 	/* update sfmmu_ttecnt with the shme rgn ttecnt */
14456 	rttecnt = rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
14457 	atomic_add_long(&sfmmup->sfmmu_ttecnt[rgnp->rgn_pgszc], rttecnt);
14458 	/* update tsb0 inflation count */
14459 	if (rgnp->rgn_pgszc >= TTE4M) {
14460 		sfmmup->sfmmu_tsb0_4minflcnt +=
14461 		    rgnp->rgn_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14462 	}
14463 	/*
14464 	 * Update regionid bitmask without hat lock since no other thread
14465 	 * can update this region bitmask right now.
14466 	 */
14467 	SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
14468 }
14469 
14470 /* ARGSUSED */
14471 static int
14472 sfmmu_rgncache_constructor(void *buf, void *cdrarg, int kmflags)
14473 {
14474 	sf_region_t *rgnp = (sf_region_t *)buf;
14475 	bzero(buf, sizeof (*rgnp));
14476 
14477 	mutex_init(&rgnp->rgn_mutex, NULL, MUTEX_DEFAULT, NULL);
14478 
14479 	return (0);
14480 }
14481 
14482 /* ARGSUSED */
14483 static void
14484 sfmmu_rgncache_destructor(void *buf, void *cdrarg)
14485 {
14486 	sf_region_t *rgnp = (sf_region_t *)buf;
14487 	mutex_destroy(&rgnp->rgn_mutex);
14488 }
14489 
14490 static int
14491 sfrgnmap_isnull(sf_region_map_t *map)
14492 {
14493 	int i;
14494 
14495 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14496 		if (map->bitmap[i] != 0) {
14497 			return (0);
14498 		}
14499 	}
14500 	return (1);
14501 }
14502 
14503 static int
14504 sfhmergnmap_isnull(sf_hmeregion_map_t *map)
14505 {
14506 	int i;
14507 
14508 	for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
14509 		if (map->bitmap[i] != 0) {
14510 			return (0);
14511 		}
14512 	}
14513 	return (1);
14514 }
14515 
14516 #ifdef DEBUG
14517 static void
14518 check_scd_sfmmu_list(sfmmu_t **headp, sfmmu_t *sfmmup, int onlist)
14519 {
14520 	sfmmu_t *sp;
14521 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14522 
14523 	for (sp = *headp; sp != NULL; sp = sp->sfmmu_scd_link.next) {
14524 		ASSERT(srdp == sp->sfmmu_srdp);
14525 		if (sp == sfmmup) {
14526 			if (onlist) {
14527 				return;
14528 			} else {
14529 				panic("shctx: sfmmu 0x%p found on scd"
14530 				    "list 0x%p", sfmmup, *headp);
14531 			}
14532 		}
14533 	}
14534 	if (onlist) {
14535 		panic("shctx: sfmmu 0x%p not found on scd list 0x%p",
14536 		    sfmmup, *headp);
14537 	} else {
14538 		return;
14539 	}
14540 }
14541 #else /* DEBUG */
14542 #define	check_scd_sfmmu_list(headp, sfmmup, onlist)
14543 #endif /* DEBUG */
14544 
14545 /*
14546  * Removes an sfmmu from the SCD sfmmu list.
14547  */
14548 static void
14549 sfmmu_from_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14550 {
14551 	ASSERT(sfmmup->sfmmu_srdp != NULL);
14552 	check_scd_sfmmu_list(headp, sfmmup, 1);
14553 	if (sfmmup->sfmmu_scd_link.prev != NULL) {
14554 		ASSERT(*headp != sfmmup);
14555 		sfmmup->sfmmu_scd_link.prev->sfmmu_scd_link.next =
14556 		    sfmmup->sfmmu_scd_link.next;
14557 	} else {
14558 		ASSERT(*headp == sfmmup);
14559 		*headp = sfmmup->sfmmu_scd_link.next;
14560 	}
14561 	if (sfmmup->sfmmu_scd_link.next != NULL) {
14562 		sfmmup->sfmmu_scd_link.next->sfmmu_scd_link.prev =
14563 		    sfmmup->sfmmu_scd_link.prev;
14564 	}
14565 }
14566 
14567 
14568 /*
14569  * Adds an sfmmu to the start of the queue.
14570  */
14571 static void
14572 sfmmu_to_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14573 {
14574 	check_scd_sfmmu_list(headp, sfmmup, 0);
14575 	sfmmup->sfmmu_scd_link.prev = NULL;
14576 	sfmmup->sfmmu_scd_link.next = *headp;
14577 	if (*headp != NULL)
14578 		(*headp)->sfmmu_scd_link.prev = sfmmup;
14579 	*headp = sfmmup;
14580 }
14581 
14582 /*
14583  * Remove an scd from the start of the queue.
14584  */
14585 static void
14586 sfmmu_remove_scd(sf_scd_t **headp, sf_scd_t *scdp)
14587 {
14588 	if (scdp->scd_prev != NULL) {
14589 		ASSERT(*headp != scdp);
14590 		scdp->scd_prev->scd_next = scdp->scd_next;
14591 	} else {
14592 		ASSERT(*headp == scdp);
14593 		*headp = scdp->scd_next;
14594 	}
14595 
14596 	if (scdp->scd_next != NULL) {
14597 		scdp->scd_next->scd_prev = scdp->scd_prev;
14598 	}
14599 }
14600 
14601 /*
14602  * Add an scd to the start of the queue.
14603  */
14604 static void
14605 sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *scdp)
14606 {
14607 	scdp->scd_prev = NULL;
14608 	scdp->scd_next = *headp;
14609 	if (*headp != NULL) {
14610 		(*headp)->scd_prev = scdp;
14611 	}
14612 	*headp = scdp;
14613 }
14614 
14615 static int
14616 sfmmu_alloc_scd_tsbs(sf_srd_t *srdp, sf_scd_t *scdp)
14617 {
14618 	uint_t rid;
14619 	uint_t i;
14620 	uint_t j;
14621 	ulong_t w;
14622 	sf_region_t *rgnp;
14623 	ulong_t tte8k_cnt = 0;
14624 	ulong_t tte4m_cnt = 0;
14625 	uint_t tsb_szc;
14626 	sfmmu_t *scsfmmup = scdp->scd_sfmmup;
14627 	sfmmu_t	*ism_hatid;
14628 	struct tsb_info *newtsb;
14629 	int szc;
14630 
14631 	ASSERT(srdp != NULL);
14632 
14633 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14634 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14635 			continue;
14636 		}
14637 		j = 0;
14638 		while (w) {
14639 			if (!(w & 0x1)) {
14640 				j++;
14641 				w >>= 1;
14642 				continue;
14643 			}
14644 			rid = (i << BT_ULSHIFT) | j;
14645 			j++;
14646 			w >>= 1;
14647 
14648 			if (rid < SFMMU_MAX_HME_REGIONS) {
14649 				rgnp = srdp->srd_hmergnp[rid];
14650 				ASSERT(rgnp->rgn_id == rid);
14651 				ASSERT(rgnp->rgn_refcnt > 0);
14652 
14653 				if (rgnp->rgn_pgszc < TTE4M) {
14654 					tte8k_cnt += rgnp->rgn_size >>
14655 					    TTE_PAGE_SHIFT(TTE8K);
14656 				} else {
14657 					ASSERT(rgnp->rgn_pgszc >= TTE4M);
14658 					tte4m_cnt += rgnp->rgn_size >>
14659 					    TTE_PAGE_SHIFT(TTE4M);
14660 					/*
14661 					 * Inflate SCD tsb0 by preallocating
14662 					 * 1/4 8k ttecnt for 4M regions to
14663 					 * allow for lgpg alloc failure.
14664 					 */
14665 					tte8k_cnt += rgnp->rgn_size >>
14666 					    (TTE_PAGE_SHIFT(TTE8K) + 2);
14667 				}
14668 			} else {
14669 				rid -= SFMMU_MAX_HME_REGIONS;
14670 				rgnp = srdp->srd_ismrgnp[rid];
14671 				ASSERT(rgnp->rgn_id == rid);
14672 				ASSERT(rgnp->rgn_refcnt > 0);
14673 
14674 				ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14675 				ASSERT(ism_hatid->sfmmu_ismhat);
14676 
14677 				for (szc = 0; szc < TTE4M; szc++) {
14678 					tte8k_cnt +=
14679 					    ism_hatid->sfmmu_ttecnt[szc] <<
14680 					    TTE_BSZS_SHIFT(szc);
14681 				}
14682 
14683 				ASSERT(rgnp->rgn_pgszc >= TTE4M);
14684 				if (rgnp->rgn_pgszc >= TTE4M) {
14685 					tte4m_cnt += rgnp->rgn_size >>
14686 					    TTE_PAGE_SHIFT(TTE4M);
14687 				}
14688 			}
14689 		}
14690 	}
14691 
14692 	tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
14693 
14694 	/* Allocate both the SCD TSBs here. */
14695 	if (sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14696 	    tsb_szc, TSB8K|TSB64K|TSB512K, TSB_ALLOC, scsfmmup) &&
14697 	    (tsb_szc <= TSB_4M_SZCODE ||
14698 	    sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14699 	    TSB_4M_SZCODE, TSB8K|TSB64K|TSB512K,
14700 	    TSB_ALLOC, scsfmmup))) {
14701 
14702 		SFMMU_STAT(sf_scd_1sttsb_allocfail);
14703 		return (TSB_ALLOCFAIL);
14704 	} else {
14705 		scsfmmup->sfmmu_tsb->tsb_flags |= TSB_SHAREDCTX;
14706 
14707 		if (tte4m_cnt) {
14708 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
14709 			if (sfmmu_tsbinfo_alloc(&newtsb, tsb_szc,
14710 			    TSB4M|TSB32M|TSB256M, TSB_ALLOC, scsfmmup) &&
14711 			    (tsb_szc <= TSB_4M_SZCODE ||
14712 			    sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
14713 			    TSB4M|TSB32M|TSB256M,
14714 			    TSB_ALLOC, scsfmmup))) {
14715 				/*
14716 				 * If we fail to allocate the 2nd shared tsb,
14717 				 * just free the 1st tsb, return failure.
14718 				 */
14719 				sfmmu_tsbinfo_free(scsfmmup->sfmmu_tsb);
14720 				SFMMU_STAT(sf_scd_2ndtsb_allocfail);
14721 				return (TSB_ALLOCFAIL);
14722 			} else {
14723 				ASSERT(scsfmmup->sfmmu_tsb->tsb_next == NULL);
14724 				newtsb->tsb_flags |= TSB_SHAREDCTX;
14725 				scsfmmup->sfmmu_tsb->tsb_next = newtsb;
14726 				SFMMU_STAT(sf_scd_2ndtsb_alloc);
14727 			}
14728 		}
14729 		SFMMU_STAT(sf_scd_1sttsb_alloc);
14730 	}
14731 	return (TSB_SUCCESS);
14732 }
14733 
14734 static void
14735 sfmmu_free_scd_tsbs(sfmmu_t *scd_sfmmu)
14736 {
14737 	while (scd_sfmmu->sfmmu_tsb != NULL) {
14738 		struct tsb_info *next = scd_sfmmu->sfmmu_tsb->tsb_next;
14739 		sfmmu_tsbinfo_free(scd_sfmmu->sfmmu_tsb);
14740 		scd_sfmmu->sfmmu_tsb = next;
14741 	}
14742 }
14743 
14744 /*
14745  * Link the sfmmu onto the hme region list.
14746  */
14747 void
14748 sfmmu_link_to_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14749 {
14750 	uint_t rid;
14751 	sf_rgn_link_t *rlink;
14752 	sfmmu_t *head;
14753 	sf_rgn_link_t *hrlink;
14754 
14755 	rid = rgnp->rgn_id;
14756 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14757 
14758 	/* LINTED: constant in conditional context */
14759 	SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 1);
14760 	ASSERT(rlink != NULL);
14761 	mutex_enter(&rgnp->rgn_mutex);
14762 	if ((head = rgnp->rgn_sfmmu_head) == NULL) {
14763 		rlink->next = NULL;
14764 		rlink->prev = NULL;
14765 		/*
14766 		 * make sure rlink's next field is NULL
14767 		 * before making this link visible.
14768 		 */
14769 		membar_stst();
14770 		rgnp->rgn_sfmmu_head = sfmmup;
14771 	} else {
14772 		/* LINTED: constant in conditional context */
14773 		SFMMU_HMERID2RLINKP(head, rid, hrlink, 0, 0);
14774 		ASSERT(hrlink != NULL);
14775 		ASSERT(hrlink->prev == NULL);
14776 		rlink->next = head;
14777 		rlink->prev = NULL;
14778 		hrlink->prev = sfmmup;
14779 		/*
14780 		 * make sure rlink's next field is correct
14781 		 * before making this link visible.
14782 		 */
14783 		membar_stst();
14784 		rgnp->rgn_sfmmu_head = sfmmup;
14785 	}
14786 	mutex_exit(&rgnp->rgn_mutex);
14787 }
14788 
14789 /*
14790  * Unlink the sfmmu from the hme region list.
14791  */
14792 void
14793 sfmmu_unlink_from_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14794 {
14795 	uint_t rid;
14796 	sf_rgn_link_t *rlink;
14797 
14798 	rid = rgnp->rgn_id;
14799 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14800 
14801 	/* LINTED: constant in conditional context */
14802 	SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
14803 	ASSERT(rlink != NULL);
14804 	mutex_enter(&rgnp->rgn_mutex);
14805 	if (rgnp->rgn_sfmmu_head == sfmmup) {
14806 		sfmmu_t *next = rlink->next;
14807 		rgnp->rgn_sfmmu_head = next;
14808 		/*
14809 		 * if we are stopped by xc_attention() after this
14810 		 * point the forward link walking in
14811 		 * sfmmu_rgntlb_demap() will work correctly since the
14812 		 * head correctly points to the next element.
14813 		 */
14814 		membar_stst();
14815 		rlink->next = NULL;
14816 		ASSERT(rlink->prev == NULL);
14817 		if (next != NULL) {
14818 			sf_rgn_link_t *nrlink;
14819 			/* LINTED: constant in conditional context */
14820 			SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
14821 			ASSERT(nrlink != NULL);
14822 			ASSERT(nrlink->prev == sfmmup);
14823 			nrlink->prev = NULL;
14824 		}
14825 	} else {
14826 		sfmmu_t *next = rlink->next;
14827 		sfmmu_t *prev = rlink->prev;
14828 		sf_rgn_link_t *prlink;
14829 
14830 		ASSERT(prev != NULL);
14831 		/* LINTED: constant in conditional context */
14832 		SFMMU_HMERID2RLINKP(prev, rid, prlink, 0, 0);
14833 		ASSERT(prlink != NULL);
14834 		ASSERT(prlink->next == sfmmup);
14835 		prlink->next = next;
14836 		/*
14837 		 * if we are stopped by xc_attention()
14838 		 * after this point the forward link walking
14839 		 * will work correctly since the prev element
14840 		 * correctly points to the next element.
14841 		 */
14842 		membar_stst();
14843 		rlink->next = NULL;
14844 		rlink->prev = NULL;
14845 		if (next != NULL) {
14846 			sf_rgn_link_t *nrlink;
14847 			/* LINTED: constant in conditional context */
14848 			SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
14849 			ASSERT(nrlink != NULL);
14850 			ASSERT(nrlink->prev == sfmmup);
14851 			nrlink->prev = prev;
14852 		}
14853 	}
14854 	mutex_exit(&rgnp->rgn_mutex);
14855 }
14856 
14857 /*
14858  * Link scd sfmmu onto ism or hme region list for each region in the
14859  * scd region map.
14860  */
14861 void
14862 sfmmu_link_scd_to_regions(sf_srd_t *srdp, sf_scd_t *scdp)
14863 {
14864 	uint_t rid;
14865 	uint_t i;
14866 	uint_t j;
14867 	ulong_t w;
14868 	sf_region_t *rgnp;
14869 	sfmmu_t *scsfmmup;
14870 
14871 	scsfmmup = scdp->scd_sfmmup;
14872 	ASSERT(scsfmmup->sfmmu_scdhat);
14873 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14874 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14875 			continue;
14876 		}
14877 		j = 0;
14878 		while (w) {
14879 			if (!(w & 0x1)) {
14880 				j++;
14881 				w >>= 1;
14882 				continue;
14883 			}
14884 			rid = (i << BT_ULSHIFT) | j;
14885 			j++;
14886 			w >>= 1;
14887 
14888 			if (rid < SFMMU_MAX_HME_REGIONS) {
14889 				rgnp = srdp->srd_hmergnp[rid];
14890 				ASSERT(rgnp->rgn_id == rid);
14891 				ASSERT(rgnp->rgn_refcnt > 0);
14892 				sfmmu_link_to_hmeregion(scsfmmup, rgnp);
14893 			} else {
14894 				sfmmu_t *ism_hatid = NULL;
14895 				ism_ment_t *ism_ment;
14896 				rid -= SFMMU_MAX_HME_REGIONS;
14897 				rgnp = srdp->srd_ismrgnp[rid];
14898 				ASSERT(rgnp->rgn_id == rid);
14899 				ASSERT(rgnp->rgn_refcnt > 0);
14900 
14901 				ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14902 				ASSERT(ism_hatid->sfmmu_ismhat);
14903 				ism_ment = &scdp->scd_ism_links[rid];
14904 				ism_ment->iment_hat = scsfmmup;
14905 				ism_ment->iment_base_va = rgnp->rgn_saddr;
14906 				mutex_enter(&ism_mlist_lock);
14907 				iment_add(ism_ment, ism_hatid);
14908 				mutex_exit(&ism_mlist_lock);
14909 
14910 			}
14911 		}
14912 	}
14913 }
14914 /*
14915  * Unlink scd sfmmu from ism or hme region list for each region in the
14916  * scd region map.
14917  */
14918 void
14919 sfmmu_unlink_scd_from_regions(sf_srd_t *srdp, sf_scd_t *scdp)
14920 {
14921 	uint_t rid;
14922 	uint_t i;
14923 	uint_t j;
14924 	ulong_t w;
14925 	sf_region_t *rgnp;
14926 	sfmmu_t *scsfmmup;
14927 
14928 	scsfmmup = scdp->scd_sfmmup;
14929 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14930 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14931 			continue;
14932 		}
14933 		j = 0;
14934 		while (w) {
14935 			if (!(w & 0x1)) {
14936 				j++;
14937 				w >>= 1;
14938 				continue;
14939 			}
14940 			rid = (i << BT_ULSHIFT) | j;
14941 			j++;
14942 			w >>= 1;
14943 
14944 			if (rid < SFMMU_MAX_HME_REGIONS) {
14945 				rgnp = srdp->srd_hmergnp[rid];
14946 				ASSERT(rgnp->rgn_id == rid);
14947 				ASSERT(rgnp->rgn_refcnt > 0);
14948 				sfmmu_unlink_from_hmeregion(scsfmmup,
14949 				    rgnp);
14950 
14951 			} else {
14952 				sfmmu_t *ism_hatid = NULL;
14953 				ism_ment_t *ism_ment;
14954 				rid -= SFMMU_MAX_HME_REGIONS;
14955 				rgnp = srdp->srd_ismrgnp[rid];
14956 				ASSERT(rgnp->rgn_id == rid);
14957 				ASSERT(rgnp->rgn_refcnt > 0);
14958 
14959 				ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14960 				ASSERT(ism_hatid->sfmmu_ismhat);
14961 				ism_ment = &scdp->scd_ism_links[rid];
14962 				ASSERT(ism_ment->iment_hat == scdp->scd_sfmmup);
14963 				ASSERT(ism_ment->iment_base_va ==
14964 				    rgnp->rgn_saddr);
14965 				ism_ment->iment_hat = NULL;
14966 				ism_ment->iment_base_va = 0;
14967 				mutex_enter(&ism_mlist_lock);
14968 				iment_sub(ism_ment, ism_hatid);
14969 				mutex_exit(&ism_mlist_lock);
14970 
14971 			}
14972 		}
14973 	}
14974 }
14975 /*
14976  * Allocates and initialises a new SCD structure, this is called with
14977  * the srd_scd_mutex held and returns with the reference count
14978  * initialised to 1.
14979  */
14980 static sf_scd_t *
14981 sfmmu_alloc_scd(sf_srd_t *srdp, sf_region_map_t *new_map)
14982 {
14983 	sf_scd_t *new_scdp;
14984 	sfmmu_t *scsfmmup;
14985 	int i;
14986 
14987 	ASSERT(MUTEX_HELD(&srdp->srd_scd_mutex));
14988 	new_scdp = kmem_cache_alloc(scd_cache, KM_SLEEP);
14989 
14990 	scsfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
14991 	new_scdp->scd_sfmmup = scsfmmup;
14992 	scsfmmup->sfmmu_srdp = srdp;
14993 	scsfmmup->sfmmu_scdp = new_scdp;
14994 	scsfmmup->sfmmu_tsb0_4minflcnt = 0;
14995 	scsfmmup->sfmmu_scdhat = 1;
14996 	CPUSET_ALL(scsfmmup->sfmmu_cpusran);
14997 	bzero(scsfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
14998 
14999 	ASSERT(max_mmu_ctxdoms > 0);
15000 	for (i = 0; i < max_mmu_ctxdoms; i++) {
15001 		scsfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
15002 		scsfmmup->sfmmu_ctxs[i].gnum = 0;
15003 	}
15004 
15005 	for (i = 0; i < MMU_PAGE_SIZES; i++) {
15006 		new_scdp->scd_rttecnt[i] = 0;
15007 	}
15008 
15009 	new_scdp->scd_region_map = *new_map;
15010 	new_scdp->scd_refcnt = 1;
15011 	if (sfmmu_alloc_scd_tsbs(srdp, new_scdp) != TSB_SUCCESS) {
15012 		kmem_cache_free(scd_cache, new_scdp);
15013 		kmem_cache_free(sfmmuid_cache, scsfmmup);
15014 		return (NULL);
15015 	}
15016 	return (new_scdp);
15017 }
15018 
15019 /*
15020  * The first phase of a process joining an SCD. The hat structure is
15021  * linked to the SCD queue and then the HAT_JOIN_SCD sfmmu flag is set
15022  * and a cross-call with context invalidation is used to cause the
15023  * remaining work to be carried out in the sfmmu_tsbmiss_exception()
15024  * routine.
15025  */
15026 static void
15027 sfmmu_join_scd(sf_scd_t *scdp, sfmmu_t *sfmmup)
15028 {
15029 	hatlock_t *hatlockp;
15030 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
15031 	int i;
15032 	sf_scd_t *old_scdp;
15033 
15034 	ASSERT(srdp != NULL);
15035 	ASSERT(scdp != NULL);
15036 	ASSERT(scdp->scd_refcnt > 0);
15037 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
15038 
15039 	if ((old_scdp = sfmmup->sfmmu_scdp) != NULL) {
15040 		ASSERT(old_scdp != scdp);
15041 
15042 		mutex_enter(&old_scdp->scd_mutex);
15043 		sfmmu_from_scd_list(&old_scdp->scd_sf_list, sfmmup);
15044 		mutex_exit(&old_scdp->scd_mutex);
15045 		/*
15046 		 * sfmmup leaves the old scd. Update sfmmu_ttecnt to
15047 		 * include the shme rgn ttecnt for rgns that
15048 		 * were in the old SCD
15049 		 */
15050 		for (i = 0; i < mmu_page_sizes; i++) {
15051 			ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15052 			    old_scdp->scd_rttecnt[i]);
15053 			atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15054 			    sfmmup->sfmmu_scdrttecnt[i]);
15055 		}
15056 	}
15057 
15058 	/*
15059 	 * Move sfmmu to the scd lists.
15060 	 */
15061 	mutex_enter(&scdp->scd_mutex);
15062 	sfmmu_to_scd_list(&scdp->scd_sf_list, sfmmup);
15063 	mutex_exit(&scdp->scd_mutex);
15064 	SF_SCD_INCR_REF(scdp);
15065 
15066 	hatlockp = sfmmu_hat_enter(sfmmup);
15067 	/*
15068 	 * For a multi-thread process, we must stop
15069 	 * all the other threads before joining the scd.
15070 	 */
15071 
15072 	SFMMU_FLAGS_SET(sfmmup, HAT_JOIN_SCD);
15073 
15074 	sfmmu_invalidate_ctx(sfmmup);
15075 	sfmmup->sfmmu_scdp = scdp;
15076 
15077 	/*
15078 	 * Copy scd_rttecnt into sfmmup's sfmmu_scdrttecnt, and update
15079 	 * sfmmu_ttecnt to not include the rgn ttecnt just joined in SCD.
15080 	 */
15081 	for (i = 0; i < mmu_page_sizes; i++) {
15082 		sfmmup->sfmmu_scdrttecnt[i] = scdp->scd_rttecnt[i];
15083 		ASSERT(sfmmup->sfmmu_ttecnt[i] >= scdp->scd_rttecnt[i]);
15084 		atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15085 		    -sfmmup->sfmmu_scdrttecnt[i]);
15086 	}
15087 	/* update tsb0 inflation count */
15088 	if (old_scdp != NULL) {
15089 		sfmmup->sfmmu_tsb0_4minflcnt +=
15090 		    old_scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15091 	}
15092 	ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
15093 	    scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt);
15094 	sfmmup->sfmmu_tsb0_4minflcnt -= scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15095 
15096 	sfmmu_hat_exit(hatlockp);
15097 
15098 	if (old_scdp != NULL) {
15099 		SF_SCD_DECR_REF(srdp, old_scdp);
15100 	}
15101 
15102 }
15103 
15104 /*
15105  * This routine is called by a process to become part of an SCD. It is called
15106  * from sfmmu_tsbmiss_exception() once most of the initial work has been
15107  * done by sfmmu_join_scd(). This routine must not drop the hat lock.
15108  */
15109 static void
15110 sfmmu_finish_join_scd(sfmmu_t *sfmmup)
15111 {
15112 	struct tsb_info	*tsbinfop;
15113 
15114 	ASSERT(sfmmu_hat_lock_held(sfmmup));
15115 	ASSERT(sfmmup->sfmmu_scdp != NULL);
15116 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD));
15117 	ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15118 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID));
15119 
15120 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
15121 	    tsbinfop = tsbinfop->tsb_next) {
15122 		if (tsbinfop->tsb_flags & TSB_SWAPPED) {
15123 			continue;
15124 		}
15125 		ASSERT(!(tsbinfop->tsb_flags & TSB_RELOC_FLAG));
15126 
15127 		sfmmu_inv_tsb(tsbinfop->tsb_va,
15128 		    TSB_BYTES(tsbinfop->tsb_szc));
15129 	}
15130 
15131 	/* Set HAT_CTX1_FLAG for all SCD ISMs */
15132 	sfmmu_ism_hatflags(sfmmup, 1);
15133 
15134 	SFMMU_STAT(sf_join_scd);
15135 }
15136 
15137 /*
15138  * This routine is called in order to check if there is an SCD which matches
15139  * the process's region map if not then a new SCD may be created.
15140  */
15141 static void
15142 sfmmu_find_scd(sfmmu_t *sfmmup)
15143 {
15144 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
15145 	sf_scd_t *scdp, *new_scdp;
15146 	int ret;
15147 
15148 	ASSERT(srdp != NULL);
15149 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
15150 
15151 	mutex_enter(&srdp->srd_scd_mutex);
15152 	for (scdp = srdp->srd_scdp; scdp != NULL;
15153 	    scdp = scdp->scd_next) {
15154 		SF_RGNMAP_EQUAL(&scdp->scd_region_map,
15155 		    &sfmmup->sfmmu_region_map, ret);
15156 		if (ret == 1) {
15157 			SF_SCD_INCR_REF(scdp);
15158 			mutex_exit(&srdp->srd_scd_mutex);
15159 			sfmmu_join_scd(scdp, sfmmup);
15160 			ASSERT(scdp->scd_refcnt >= 2);
15161 			atomic_add_32((volatile uint32_t *)
15162 			    &scdp->scd_refcnt, -1);
15163 			return;
15164 		} else {
15165 			/*
15166 			 * If the sfmmu region map is a subset of the scd
15167 			 * region map, then the assumption is that this process
15168 			 * will continue attaching to ISM segments until the
15169 			 * region maps are equal.
15170 			 */
15171 			SF_RGNMAP_IS_SUBSET(&scdp->scd_region_map,
15172 			    &sfmmup->sfmmu_region_map, ret);
15173 			if (ret == 1) {
15174 				mutex_exit(&srdp->srd_scd_mutex);
15175 				return;
15176 			}
15177 		}
15178 	}
15179 
15180 	ASSERT(scdp == NULL);
15181 	/*
15182 	 * No matching SCD has been found, create a new one.
15183 	 */
15184 	if ((new_scdp = sfmmu_alloc_scd(srdp, &sfmmup->sfmmu_region_map)) ==
15185 	    NULL) {
15186 		mutex_exit(&srdp->srd_scd_mutex);
15187 		return;
15188 	}
15189 
15190 	/*
15191 	 * sfmmu_alloc_scd() returns with a ref count of 1 on the scd.
15192 	 */
15193 
15194 	/* Set scd_rttecnt for shme rgns in SCD */
15195 	sfmmu_set_scd_rttecnt(srdp, new_scdp);
15196 
15197 	/*
15198 	 * Link scd onto srd_scdp list and scd sfmmu onto region/iment lists.
15199 	 */
15200 	sfmmu_link_scd_to_regions(srdp, new_scdp);
15201 	sfmmu_add_scd(&srdp->srd_scdp, new_scdp);
15202 	SFMMU_STAT_ADD(sf_create_scd, 1);
15203 
15204 	mutex_exit(&srdp->srd_scd_mutex);
15205 	sfmmu_join_scd(new_scdp, sfmmup);
15206 	ASSERT(new_scdp->scd_refcnt >= 2);
15207 	atomic_add_32((volatile uint32_t *)&new_scdp->scd_refcnt, -1);
15208 }
15209 
15210 /*
15211  * This routine is called by a process to remove itself from an SCD. It is
15212  * either called when the processes has detached from a segment or from
15213  * hat_free_start() as a result of calling exit.
15214  */
15215 static void
15216 sfmmu_leave_scd(sfmmu_t *sfmmup, uchar_t r_type)
15217 {
15218 	sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15219 	sf_srd_t *srdp =  sfmmup->sfmmu_srdp;
15220 	hatlock_t *hatlockp = TSB_HASH(sfmmup);
15221 	int i;
15222 
15223 	ASSERT(scdp != NULL);
15224 	ASSERT(srdp != NULL);
15225 
15226 	if (sfmmup->sfmmu_free) {
15227 		/*
15228 		 * If the process is part of an SCD the sfmmu is unlinked
15229 		 * from scd_sf_list.
15230 		 */
15231 		mutex_enter(&scdp->scd_mutex);
15232 		sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15233 		mutex_exit(&scdp->scd_mutex);
15234 		/*
15235 		 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15236 		 * are about to leave the SCD
15237 		 */
15238 		for (i = 0; i < mmu_page_sizes; i++) {
15239 			ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15240 			    scdp->scd_rttecnt[i]);
15241 			atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15242 			    sfmmup->sfmmu_scdrttecnt[i]);
15243 			sfmmup->sfmmu_scdrttecnt[i] = 0;
15244 		}
15245 		sfmmup->sfmmu_scdp = NULL;
15246 
15247 		SF_SCD_DECR_REF(srdp, scdp);
15248 		return;
15249 	}
15250 
15251 	ASSERT(r_type != SFMMU_REGION_ISM ||
15252 	    SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15253 	ASSERT(scdp->scd_refcnt);
15254 	ASSERT(!sfmmup->sfmmu_free);
15255 	ASSERT(sfmmu_hat_lock_held(sfmmup));
15256 	ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
15257 
15258 	/*
15259 	 * Wait for ISM maps to be updated.
15260 	 */
15261 	if (r_type != SFMMU_REGION_ISM) {
15262 		while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY) &&
15263 		    sfmmup->sfmmu_scdp != NULL) {
15264 			cv_wait(&sfmmup->sfmmu_tsb_cv,
15265 			    HATLOCK_MUTEXP(hatlockp));
15266 		}
15267 
15268 		if (sfmmup->sfmmu_scdp == NULL) {
15269 			sfmmu_hat_exit(hatlockp);
15270 			return;
15271 		}
15272 		SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
15273 	}
15274 
15275 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
15276 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
15277 		/*
15278 		 * Since HAT_JOIN_SCD was set our context
15279 		 * is still invalid.
15280 		 */
15281 	} else {
15282 		/*
15283 		 * For a multi-thread process, we must stop
15284 		 * all the other threads before leaving the scd.
15285 		 */
15286 
15287 		sfmmu_invalidate_ctx(sfmmup);
15288 	}
15289 
15290 	/* Clear all the rid's for ISM, delete flags, etc */
15291 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15292 	sfmmu_ism_hatflags(sfmmup, 0);
15293 
15294 	/*
15295 	 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15296 	 * are in SCD before this sfmmup leaves the SCD.
15297 	 */
15298 	for (i = 0; i < mmu_page_sizes; i++) {
15299 		ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15300 		    scdp->scd_rttecnt[i]);
15301 		atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15302 		    sfmmup->sfmmu_scdrttecnt[i]);
15303 		sfmmup->sfmmu_scdrttecnt[i] = 0;
15304 		/* update ismttecnt to include SCD ism before hat leaves SCD */
15305 		sfmmup->sfmmu_ismttecnt[i] += sfmmup->sfmmu_scdismttecnt[i];
15306 		sfmmup->sfmmu_scdismttecnt[i] = 0;
15307 	}
15308 	/* update tsb0 inflation count */
15309 	sfmmup->sfmmu_tsb0_4minflcnt += scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15310 
15311 	if (r_type != SFMMU_REGION_ISM) {
15312 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
15313 	}
15314 	sfmmup->sfmmu_scdp = NULL;
15315 
15316 	sfmmu_hat_exit(hatlockp);
15317 
15318 	/*
15319 	 * Unlink sfmmu from scd_sf_list this can be done without holding
15320 	 * the hat lock as we hold the sfmmu_as lock which prevents
15321 	 * hat_join_region from adding this thread to the scd again. Other
15322 	 * threads check if sfmmu_scdp is NULL under hat lock and if it's NULL
15323 	 * they won't get here, since sfmmu_leave_scd() clears sfmmu_scdp
15324 	 * while holding the hat lock.
15325 	 */
15326 	mutex_enter(&scdp->scd_mutex);
15327 	sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15328 	mutex_exit(&scdp->scd_mutex);
15329 	SFMMU_STAT(sf_leave_scd);
15330 
15331 	SF_SCD_DECR_REF(srdp, scdp);
15332 	hatlockp = sfmmu_hat_enter(sfmmup);
15333 
15334 }
15335 
15336 /*
15337  * Unlink and free up an SCD structure with a reference count of 0.
15338  */
15339 static void
15340 sfmmu_destroy_scd(sf_srd_t *srdp, sf_scd_t *scdp, sf_region_map_t *scd_rmap)
15341 {
15342 	sfmmu_t *scsfmmup;
15343 	sf_scd_t *sp;
15344 	hatlock_t *shatlockp;
15345 	int i, ret;
15346 
15347 	mutex_enter(&srdp->srd_scd_mutex);
15348 	for (sp = srdp->srd_scdp; sp != NULL; sp = sp->scd_next) {
15349 		if (sp == scdp)
15350 			break;
15351 	}
15352 	if (sp == NULL || sp->scd_refcnt) {
15353 		mutex_exit(&srdp->srd_scd_mutex);
15354 		return;
15355 	}
15356 
15357 	/*
15358 	 * It is possible that the scd has been freed and reallocated with a
15359 	 * different region map while we've been waiting for the srd_scd_mutex.
15360 	 */
15361 	SF_RGNMAP_EQUAL(scd_rmap, &sp->scd_region_map, ret);
15362 	if (ret != 1) {
15363 		mutex_exit(&srdp->srd_scd_mutex);
15364 		return;
15365 	}
15366 
15367 	ASSERT(scdp->scd_sf_list == NULL);
15368 	/*
15369 	 * Unlink scd from srd_scdp list.
15370 	 */
15371 	sfmmu_remove_scd(&srdp->srd_scdp, scdp);
15372 	mutex_exit(&srdp->srd_scd_mutex);
15373 
15374 	sfmmu_unlink_scd_from_regions(srdp, scdp);
15375 
15376 	/* Clear shared context tsb and release ctx */
15377 	scsfmmup = scdp->scd_sfmmup;
15378 
15379 	/*
15380 	 * create a barrier so that scd will not be destroyed
15381 	 * if other thread still holds the same shared hat lock.
15382 	 * E.g., sfmmu_tsbmiss_exception() needs to acquire the
15383 	 * shared hat lock before checking the shared tsb reloc flag.
15384 	 */
15385 	shatlockp = sfmmu_hat_enter(scsfmmup);
15386 	sfmmu_hat_exit(shatlockp);
15387 
15388 	sfmmu_free_scd_tsbs(scsfmmup);
15389 
15390 	for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
15391 		if (scsfmmup->sfmmu_hmeregion_links[i] != NULL) {
15392 			kmem_free(scsfmmup->sfmmu_hmeregion_links[i],
15393 			    SFMMU_L2_HMERLINKS_SIZE);
15394 			scsfmmup->sfmmu_hmeregion_links[i] = NULL;
15395 		}
15396 	}
15397 	kmem_cache_free(sfmmuid_cache, scsfmmup);
15398 	kmem_cache_free(scd_cache, scdp);
15399 	SFMMU_STAT(sf_destroy_scd);
15400 }
15401 
15402 /*
15403  * Modifies the HAT_CTX1_FLAG for each of the ISM segments which correspond to
15404  * bits which are set in the ism_region_map parameter. This flag indicates to
15405  * the tsbmiss handler that mapping for these segments should be loaded using
15406  * the shared context.
15407  */
15408 static void
15409 sfmmu_ism_hatflags(sfmmu_t *sfmmup, int addflag)
15410 {
15411 	sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15412 	ism_blk_t *ism_blkp;
15413 	ism_map_t *ism_map;
15414 	int i, rid;
15415 
15416 	ASSERT(sfmmup->sfmmu_iblk != NULL);
15417 	ASSERT(scdp != NULL);
15418 	/*
15419 	 * Note that the caller either set HAT_ISMBUSY flag or checked
15420 	 * under hat lock that HAT_ISMBUSY was not set by another thread.
15421 	 */
15422 	ASSERT(sfmmu_hat_lock_held(sfmmup));
15423 
15424 	ism_blkp = sfmmup->sfmmu_iblk;
15425 	while (ism_blkp != NULL) {
15426 		ism_map = ism_blkp->iblk_maps;
15427 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
15428 			rid = ism_map[i].imap_rid;
15429 			if (rid == SFMMU_INVALID_ISMRID) {
15430 				continue;
15431 			}
15432 			ASSERT(rid >= 0 && rid < SFMMU_MAX_ISM_REGIONS);
15433 			if (SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid) &&
15434 			    addflag) {
15435 				ism_map[i].imap_hatflags |=
15436 				    HAT_CTX1_FLAG;
15437 			} else {
15438 				ism_map[i].imap_hatflags &=
15439 				    ~HAT_CTX1_FLAG;
15440 			}
15441 		}
15442 		ism_blkp = ism_blkp->iblk_next;
15443 	}
15444 }
15445 
15446 static int
15447 sfmmu_srd_lock_held(sf_srd_t *srdp)
15448 {
15449 	return (MUTEX_HELD(&srdp->srd_mutex));
15450 }
15451 
15452 /* ARGSUSED */
15453 static int
15454 sfmmu_scdcache_constructor(void *buf, void *cdrarg, int kmflags)
15455 {
15456 	sf_scd_t *scdp = (sf_scd_t *)buf;
15457 
15458 	bzero(buf, sizeof (sf_scd_t));
15459 	mutex_init(&scdp->scd_mutex, NULL, MUTEX_DEFAULT, NULL);
15460 	return (0);
15461 }
15462 
15463 /* ARGSUSED */
15464 static void
15465 sfmmu_scdcache_destructor(void *buf, void *cdrarg)
15466 {
15467 	sf_scd_t *scdp = (sf_scd_t *)buf;
15468 
15469 	mutex_destroy(&scdp->scd_mutex);
15470 }
15471