xref: /titanic_50/usr/src/uts/sfmmu/vm/hat_sfmmu.c (revision b48b4ad70157f504f1e9b62203d1cc83a5c03104)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * VM - Hardware Address Translation management for Spitfire MMU.
30  *
31  * This file implements the machine specific hardware translation
32  * needed by the VM system.  The machine independent interface is
33  * described in <vm/hat.h> while the machine dependent interface
34  * and data structures are described in <vm/hat_sfmmu.h>.
35  *
36  * The hat layer manages the address translation hardware as a cache
37  * driven by calls from the higher levels in the VM system.
38  */
39 
40 #include <sys/types.h>
41 #include <sys/kstat.h>
42 #include <vm/hat.h>
43 #include <vm/hat_sfmmu.h>
44 #include <vm/page.h>
45 #include <sys/pte.h>
46 #include <sys/systm.h>
47 #include <sys/mman.h>
48 #include <sys/sysmacros.h>
49 #include <sys/machparam.h>
50 #include <sys/vtrace.h>
51 #include <sys/kmem.h>
52 #include <sys/mmu.h>
53 #include <sys/cmn_err.h>
54 #include <sys/cpu.h>
55 #include <sys/cpuvar.h>
56 #include <sys/debug.h>
57 #include <sys/lgrp.h>
58 #include <sys/archsystm.h>
59 #include <sys/machsystm.h>
60 #include <sys/vmsystm.h>
61 #include <vm/as.h>
62 #include <vm/seg.h>
63 #include <vm/seg_kp.h>
64 #include <vm/seg_kmem.h>
65 #include <vm/seg_kpm.h>
66 #include <vm/rm.h>
67 #include <sys/t_lock.h>
68 #include <sys/obpdefs.h>
69 #include <sys/vm_machparam.h>
70 #include <sys/var.h>
71 #include <sys/trap.h>
72 #include <sys/machtrap.h>
73 #include <sys/scb.h>
74 #include <sys/bitmap.h>
75 #include <sys/machlock.h>
76 #include <sys/membar.h>
77 #include <sys/atomic.h>
78 #include <sys/cpu_module.h>
79 #include <sys/prom_debug.h>
80 #include <sys/ksynch.h>
81 #include <sys/mem_config.h>
82 #include <sys/mem_cage.h>
83 #include <vm/vm_dep.h>
84 #include <vm/xhat_sfmmu.h>
85 #include <sys/fpu/fpusystm.h>
86 #include <vm/mach_kpm.h>
87 
88 #if defined(SF_ERRATA_57)
89 extern caddr_t errata57_limit;
90 #endif
91 
92 #define	HME8BLK_SZ_RND		((roundup(HME8BLK_SZ, sizeof (int64_t))) /  \
93 				(sizeof (int64_t)))
94 #define	HBLK_RESERVE		((struct hme_blk *)hblk_reserve)
95 
96 #define	HBLK_RESERVE_CNT	128
97 #define	HBLK_RESERVE_MIN	20
98 
99 static struct hme_blk		*freehblkp;
100 static kmutex_t			freehblkp_lock;
101 static int			freehblkcnt;
102 
103 static int64_t			hblk_reserve[HME8BLK_SZ_RND];
104 static kmutex_t			hblk_reserve_lock;
105 static kthread_t		*hblk_reserve_thread;
106 
107 static nucleus_hblk8_info_t	nucleus_hblk8;
108 static nucleus_hblk1_info_t	nucleus_hblk1;
109 
110 /*
111  * SFMMU specific hat functions
112  */
113 void	hat_pagecachectl(struct page *, int);
114 
115 /* flags for hat_pagecachectl */
116 #define	HAT_CACHE	0x1
117 #define	HAT_UNCACHE	0x2
118 #define	HAT_TMPNC	0x4
119 
120 /*
121  * Flag to allow the creation of non-cacheable translations
122  * to system memory. It is off by default. At the moment this
123  * flag is used by the ecache error injector. The error injector
124  * will turn it on when creating such a translation then shut it
125  * off when it's finished.
126  */
127 
128 int	sfmmu_allow_nc_trans = 0;
129 
130 /*
131  * Flag to disable large page support.
132  * 	value of 1 => disable all large pages.
133  *	bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
134  *
135  * For example, use the value 0x4 to disable 512K pages.
136  *
137  */
138 #define	LARGE_PAGES_OFF		0x1
139 
140 /*
141  * The disable_large_pages and disable_ism_large_pages variables control
142  * hat_memload_array and the page sizes to be used by ISM and the kernel.
143  *
144  * The disable_auto_data_large_pages and disable_auto_text_large_pages variables
145  * are only used to control which OOB pages to use at upper VM segment creation
146  * time, and are set in hat_init_pagesizes and used in the map_pgsz* routines.
147  * Their values may come from platform or CPU specific code to disable page
148  * sizes that should not be used.
149  *
150  * WARNING: 512K pages are currently not supported for ISM/DISM.
151  */
152 uint_t	disable_large_pages = 0;
153 uint_t	disable_ism_large_pages = (1 << TTE512K);
154 uint_t	disable_auto_data_large_pages = 0;
155 uint_t	disable_auto_text_large_pages = 0;
156 
157 /*
158  * Private sfmmu data structures for hat management
159  */
160 static struct kmem_cache *sfmmuid_cache;
161 static struct kmem_cache *mmuctxdom_cache;
162 
163 /*
164  * Private sfmmu data structures for tsb management
165  */
166 static struct kmem_cache *sfmmu_tsbinfo_cache;
167 static struct kmem_cache *sfmmu_tsb8k_cache;
168 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
169 static vmem_t *kmem_tsb_arena;
170 
171 /*
172  * sfmmu static variables for hmeblk resource management.
173  */
174 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
175 static struct kmem_cache *sfmmu8_cache;
176 static struct kmem_cache *sfmmu1_cache;
177 static struct kmem_cache *pa_hment_cache;
178 
179 static kmutex_t 	ism_mlist_lock;	/* mutex for ism mapping list */
180 /*
181  * private data for ism
182  */
183 static struct kmem_cache *ism_blk_cache;
184 static struct kmem_cache *ism_ment_cache;
185 #define	ISMID_STARTADDR	NULL
186 
187 /*
188  * Whether to delay TLB flushes and use Cheetah's flush-all support
189  * when removing contexts from the dirty list.
190  */
191 int delay_tlb_flush;
192 int disable_delay_tlb_flush;
193 
194 /*
195  * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
196  * HAT flags, synchronizing TLB/TSB coherency, and context management.
197  * The lock is hashed on the sfmmup since the case where we need to lock
198  * all processes is rare but does occur (e.g. we need to unload a shared
199  * mapping from all processes using the mapping).  We have a lot of buckets,
200  * and each slab of sfmmu_t's can use about a quarter of them, giving us
201  * a fairly good distribution without wasting too much space and overhead
202  * when we have to grab them all.
203  */
204 #define	SFMMU_NUM_LOCK	128		/* must be power of two */
205 hatlock_t	hat_lock[SFMMU_NUM_LOCK];
206 
207 /*
208  * Hash algorithm optimized for a small number of slabs.
209  *  7 is (highbit((sizeof sfmmu_t)) - 1)
210  * This hash algorithm is based upon the knowledge that sfmmu_t's come from a
211  * kmem_cache, and thus they will be sequential within that cache.  In
212  * addition, each new slab will have a different "color" up to cache_maxcolor
213  * which will skew the hashing for each successive slab which is allocated.
214  * If the size of sfmmu_t changed to a larger size, this algorithm may need
215  * to be revisited.
216  */
217 #define	TSB_HASH_SHIFT_BITS (7)
218 #define	PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
219 
220 #ifdef DEBUG
221 int tsb_hash_debug = 0;
222 #define	TSB_HASH(sfmmup)	\
223 	(tsb_hash_debug ? &hat_lock[0] : \
224 	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
225 #else	/* DEBUG */
226 #define	TSB_HASH(sfmmup)	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
227 #endif	/* DEBUG */
228 
229 
230 /* sfmmu_replace_tsb() return codes. */
231 typedef enum tsb_replace_rc {
232 	TSB_SUCCESS,
233 	TSB_ALLOCFAIL,
234 	TSB_LOSTRACE,
235 	TSB_ALREADY_SWAPPED,
236 	TSB_CANTGROW
237 } tsb_replace_rc_t;
238 
239 /*
240  * Flags for TSB allocation routines.
241  */
242 #define	TSB_ALLOC	0x01
243 #define	TSB_FORCEALLOC	0x02
244 #define	TSB_GROW	0x04
245 #define	TSB_SHRINK	0x08
246 #define	TSB_SWAPIN	0x10
247 
248 /*
249  * Support for HAT callbacks.
250  */
251 #define	SFMMU_MAX_RELOC_CALLBACKS	10
252 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
253 static id_t sfmmu_cb_nextid = 0;
254 static id_t sfmmu_tsb_cb_id;
255 struct sfmmu_callback *sfmmu_cb_table;
256 
257 /*
258  * Kernel page relocation is enabled by default for non-caged
259  * kernel pages.  This has little effect unless segkmem_reloc is
260  * set, since by default kernel memory comes from inside the
261  * kernel cage.
262  */
263 int hat_kpr_enabled = 1;
264 
265 kmutex_t	kpr_mutex;
266 kmutex_t	kpr_suspendlock;
267 kthread_t	*kreloc_thread;
268 
269 /*
270  * Enable VA->PA translation sanity checking on DEBUG kernels.
271  * Disabled by default.  This is incompatible with some
272  * drivers (error injector, RSM) so if it breaks you get
273  * to keep both pieces.
274  */
275 int hat_check_vtop = 0;
276 
277 /*
278  * Private sfmmu routines (prototypes)
279  */
280 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
281 static struct 	hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
282 			struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t);
283 static caddr_t	sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
284 			caddr_t, demap_range_t *, uint_t);
285 static caddr_t	sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
286 			caddr_t, int);
287 static void	sfmmu_hblk_free(struct hmehash_bucket *, struct hme_blk *,
288 			uint64_t, struct hme_blk **);
289 static void	sfmmu_hblks_list_purge(struct hme_blk **);
290 static uint_t	sfmmu_get_free_hblk(struct hme_blk **, uint_t);
291 static uint_t	sfmmu_put_free_hblk(struct hme_blk *, uint_t);
292 static struct hme_blk *sfmmu_hblk_steal(int);
293 static int	sfmmu_steal_this_hblk(struct hmehash_bucket *,
294 			struct hme_blk *, uint64_t, uint64_t,
295 			struct hme_blk *);
296 static caddr_t	sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
297 
298 static void	sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
299 		    uint_t, uint_t, pgcnt_t);
300 void		sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
301 			uint_t);
302 static int	sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
303 			uint_t);
304 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
305 					caddr_t, int);
306 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
307 			struct hmehash_bucket *, caddr_t, uint_t, uint_t);
308 static int	sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
309 			caddr_t, page_t **, uint_t);
310 static void	sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
311 
312 static int	sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
313 pfn_t		sfmmu_uvatopfn(caddr_t, sfmmu_t *);
314 void		sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
315 #ifdef VAC
316 static void	sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
317 static int	sfmmu_vacconflict_array(caddr_t, page_t *, int *);
318 int	tst_tnc(page_t *pp, pgcnt_t);
319 void	conv_tnc(page_t *pp, int);
320 #endif
321 
322 static void	sfmmu_get_ctx(sfmmu_t *);
323 static void	sfmmu_free_sfmmu(sfmmu_t *);
324 
325 static void	sfmmu_gettte(struct hat *, caddr_t, tte_t *);
326 static void	sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
327 static void	sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
328 
329 cpuset_t	sfmmu_pageunload(page_t *, struct sf_hment *, int);
330 static void	hat_pagereload(struct page *, struct page *);
331 static cpuset_t	sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
332 #ifdef VAC
333 void	sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
334 static void	sfmmu_page_cache(page_t *, int, int, int);
335 #endif
336 
337 static void	sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
338 			pfn_t, int, int, int, int);
339 static void	sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
340 			pfn_t, int);
341 static void	sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
342 static void	sfmmu_tlb_range_demap(demap_range_t *);
343 static void	sfmmu_invalidate_ctx(sfmmu_t *);
344 static void	sfmmu_sync_mmustate(sfmmu_t *);
345 
346 static void 	sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
347 static int	sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
348 			sfmmu_t *);
349 static void	sfmmu_tsb_free(struct tsb_info *);
350 static void	sfmmu_tsbinfo_free(struct tsb_info *);
351 static int	sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
352 			sfmmu_t *);
353 
354 static void	sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
355 static int	sfmmu_select_tsb_szc(pgcnt_t);
356 static void	sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
357 #define		sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
358 	sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
359 #define		sfmmu_unload_tsb(sfmmup, vaddr, szc)    \
360 	sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
361 static void	sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
362 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
363     hatlock_t *, uint_t);
364 static void	sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
365 
366 #ifdef VAC
367 void	sfmmu_cache_flush(pfn_t, int);
368 void	sfmmu_cache_flushcolor(int, pfn_t);
369 #endif
370 static caddr_t	sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
371 			caddr_t, demap_range_t *, uint_t, int);
372 
373 static uint64_t	sfmmu_vtop_attr(uint_t, int mode, tte_t *);
374 static uint_t	sfmmu_ptov_attr(tte_t *);
375 static caddr_t	sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
376 			caddr_t, demap_range_t *, uint_t);
377 static uint_t	sfmmu_vtop_prot(uint_t, uint_t *);
378 static int	sfmmu_idcache_constructor(void *, void *, int);
379 static void	sfmmu_idcache_destructor(void *, void *);
380 static int	sfmmu_hblkcache_constructor(void *, void *, int);
381 static void	sfmmu_hblkcache_destructor(void *, void *);
382 static void	sfmmu_hblkcache_reclaim(void *);
383 static void	sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
384 			struct hmehash_bucket *);
385 static void	sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
386 static void	sfmmu_rm_large_mappings(page_t *, int);
387 
388 static void	hat_lock_init(void);
389 static void	hat_kstat_init(void);
390 static int	sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
391 static void	sfmmu_check_page_sizes(sfmmu_t *, int);
392 int	fnd_mapping_sz(page_t *);
393 static void	iment_add(struct ism_ment *,  struct hat *);
394 static void	iment_sub(struct ism_ment *, struct hat *);
395 static pgcnt_t	ism_tsb_entries(sfmmu_t *, int szc);
396 extern void	sfmmu_setup_tsbinfo(sfmmu_t *);
397 #ifdef sun4v
398 extern void	sfmmu_invalidate_tsbinfo(sfmmu_t *);
399 #endif	/* sun4v */
400 extern void	sfmmu_clear_utsbinfo(void);
401 
402 static void	sfmmu_ctx_wrap_around(mmu_ctx_t *);
403 
404 /* kpm globals */
405 #ifdef	DEBUG
406 /*
407  * Enable trap level tsbmiss handling
408  */
409 int	kpm_tsbmtl = 1;
410 
411 /*
412  * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
413  * required TLB shootdowns in this case, so handle w/ care. Off by default.
414  */
415 int	kpm_tlb_flush;
416 #endif	/* DEBUG */
417 
418 static void	*sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
419 
420 #ifdef DEBUG
421 static void	sfmmu_check_hblk_flist();
422 #endif
423 
424 /*
425  * Semi-private sfmmu data structures.  Some of them are initialize in
426  * startup or in hat_init. Some of them are private but accessed by
427  * assembly code or mach_sfmmu.c
428  */
429 struct hmehash_bucket *uhme_hash;	/* user hmeblk hash table */
430 struct hmehash_bucket *khme_hash;	/* kernel hmeblk hash table */
431 uint64_t	uhme_hash_pa;		/* PA of uhme_hash */
432 uint64_t	khme_hash_pa;		/* PA of khme_hash */
433 int 		uhmehash_num;		/* # of buckets in user hash table */
434 int 		khmehash_num;		/* # of buckets in kernel hash table */
435 
436 uint_t		max_mmu_ctxdoms = 0;	/* max context domains in the system */
437 mmu_ctx_t	**mmu_ctxs_tbl;		/* global array of context domains */
438 uint64_t	mmu_saved_gnum = 0;	/* to init incoming MMUs' gnums */
439 
440 #define	DEFAULT_NUM_CTXS_PER_MMU 8192
441 static uint_t	nctxs = DEFAULT_NUM_CTXS_PER_MMU;
442 
443 int		cache;			/* describes system cache */
444 
445 caddr_t		ktsb_base;		/* kernel 8k-indexed tsb base address */
446 uint64_t	ktsb_pbase;		/* kernel 8k-indexed tsb phys address */
447 int		ktsb_szcode;		/* kernel 8k-indexed tsb size code */
448 int		ktsb_sz;		/* kernel 8k-indexed tsb size */
449 
450 caddr_t		ktsb4m_base;		/* kernel 4m-indexed tsb base address */
451 uint64_t	ktsb4m_pbase;		/* kernel 4m-indexed tsb phys address */
452 int		ktsb4m_szcode;		/* kernel 4m-indexed tsb size code */
453 int		ktsb4m_sz;		/* kernel 4m-indexed tsb size */
454 
455 uint64_t	kpm_tsbbase;		/* kernel seg_kpm 4M TSB base address */
456 int		kpm_tsbsz;		/* kernel seg_kpm 4M TSB size code */
457 uint64_t	kpmsm_tsbbase;		/* kernel seg_kpm 8K TSB base address */
458 int		kpmsm_tsbsz;		/* kernel seg_kpm 8K TSB size code */
459 
460 #ifndef sun4v
461 int		utsb_dtlb_ttenum = -1;	/* index in TLB for utsb locked TTE */
462 int		utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
463 int		dtlb_resv_ttenum;	/* index in TLB of first reserved TTE */
464 caddr_t		utsb_vabase;		/* reserved kernel virtual memory */
465 caddr_t		utsb4m_vabase;		/* for trap handler TSB accesses */
466 #endif /* sun4v */
467 uint64_t	tsb_alloc_bytes = 0;	/* bytes allocated to TSBs */
468 vmem_t		*kmem_tsb_default_arena[NLGRPS_MAX];	/* For dynamic TSBs */
469 
470 /*
471  * Size to use for TSB slabs.  Future platforms that support page sizes
472  * larger than 4M may wish to change these values, and provide their own
473  * assembly macros for building and decoding the TSB base register contents.
474  * Note disable_large_pages will override the value set here.
475  */
476 uint_t	tsb_slab_ttesz = TTE4M;
477 uint_t	tsb_slab_size;
478 uint_t	tsb_slab_shift;
479 uint_t	tsb_slab_mask;	/* PFN mask for TTE */
480 
481 /* largest TSB size to grow to, will be smaller on smaller memory systems */
482 int	tsb_max_growsize = UTSB_MAX_SZCODE;
483 
484 /*
485  * Tunable parameters dealing with TSB policies.
486  */
487 
488 /*
489  * This undocumented tunable forces all 8K TSBs to be allocated from
490  * the kernel heap rather than from the kmem_tsb_default_arena arenas.
491  */
492 #ifdef	DEBUG
493 int	tsb_forceheap = 0;
494 #endif	/* DEBUG */
495 
496 /*
497  * Decide whether to use per-lgroup arenas, or one global set of
498  * TSB arenas.  The default is not to break up per-lgroup, since
499  * most platforms don't recognize any tangible benefit from it.
500  */
501 int	tsb_lgrp_affinity = 0;
502 
503 /*
504  * Used for growing the TSB based on the process RSS.
505  * tsb_rss_factor is based on the smallest TSB, and is
506  * shifted by the TSB size to determine if we need to grow.
507  * The default will grow the TSB if the number of TTEs for
508  * this page size exceeds 75% of the number of TSB entries,
509  * which should _almost_ eliminate all conflict misses
510  * (at the expense of using up lots and lots of memory).
511  */
512 #define	TSB_RSS_FACTOR		(TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
513 #define	SFMMU_RSS_TSBSIZE(tsbszc)	(tsb_rss_factor << tsbszc)
514 #define	SELECT_TSB_SIZECODE(pgcnt) ( \
515 	(enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
516 	default_tsb_size)
517 #define	TSB_OK_SHRINK()	\
518 	(tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
519 #define	TSB_OK_GROW()	\
520 	(tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
521 
522 int	enable_tsb_rss_sizing = 1;
523 int	tsb_rss_factor	= (int)TSB_RSS_FACTOR;
524 
525 /* which TSB size code to use for new address spaces or if rss sizing off */
526 int default_tsb_size = TSB_8K_SZCODE;
527 
528 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
529 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */
530 #define	TSB_ALLOC_HIWATER_FACTOR_DEFAULT	32
531 
532 #ifdef DEBUG
533 static int tsb_random_size = 0;	/* set to 1 to test random tsb sizes on alloc */
534 static int tsb_grow_stress = 0;	/* if set to 1, keep replacing TSB w/ random */
535 static int tsb_alloc_mtbf = 0;	/* fail allocation every n attempts */
536 static int tsb_alloc_fail_mtbf = 0;
537 static int tsb_alloc_count = 0;
538 #endif /* DEBUG */
539 
540 /* if set to 1, will remap valid TTEs when growing TSB. */
541 int tsb_remap_ttes = 1;
542 
543 /*
544  * If we have more than this many mappings, allocate a second TSB.
545  * This default is chosen because the I/D fully associative TLBs are
546  * assumed to have at least 8 available entries. Platforms with a
547  * larger fully-associative TLB could probably override the default.
548  */
549 int tsb_sectsb_threshold = 8;
550 
551 /*
552  * kstat data
553  */
554 struct sfmmu_global_stat sfmmu_global_stat;
555 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
556 
557 /*
558  * Global data
559  */
560 sfmmu_t 	*ksfmmup;		/* kernel's hat id */
561 
562 #ifdef DEBUG
563 static void	chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
564 #endif
565 
566 /* sfmmu locking operations */
567 static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
568 static int	sfmmu_mlspl_held(struct page *, int);
569 
570 kmutex_t *sfmmu_page_enter(page_t *);
571 void	sfmmu_page_exit(kmutex_t *);
572 int	sfmmu_page_spl_held(struct page *);
573 
574 /* sfmmu internal locking operations - accessed directly */
575 static void	sfmmu_mlist_reloc_enter(page_t *, page_t *,
576 				kmutex_t **, kmutex_t **);
577 static void	sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
578 static hatlock_t *
579 		sfmmu_hat_enter(sfmmu_t *);
580 static hatlock_t *
581 		sfmmu_hat_tryenter(sfmmu_t *);
582 static void	sfmmu_hat_exit(hatlock_t *);
583 static void	sfmmu_hat_lock_all(void);
584 static void	sfmmu_hat_unlock_all(void);
585 static void	sfmmu_ismhat_enter(sfmmu_t *, int);
586 static void	sfmmu_ismhat_exit(sfmmu_t *, int);
587 
588 /*
589  * Array of mutexes protecting a page's mapping list and p_nrm field.
590  *
591  * The hash function looks complicated, but is made up so that:
592  *
593  * "pp" not shifted, so adjacent pp values will hash to different cache lines
594  *  (8 byte alignment * 8 bytes/mutes == 64 byte coherency subblock)
595  *
596  * "pp" >> mml_shift, incorporates more source bits into the hash result
597  *
598  *  "& (mml_table_size - 1), should be faster than using remainder "%"
599  *
600  * Hopefully, mml_table, mml_table_size and mml_shift are all in the same
601  * cacheline, since they get declared next to each other below. We'll trust
602  * ld not to do something random.
603  */
604 #ifdef	DEBUG
605 int mlist_hash_debug = 0;
606 #define	MLIST_HASH(pp)	(mlist_hash_debug ? &mml_table[0] : \
607 	&mml_table[((uintptr_t)(pp) + \
608 	((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)])
609 #else	/* !DEBUG */
610 #define	MLIST_HASH(pp)   &mml_table[ \
611 	((uintptr_t)(pp) + ((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)]
612 #endif	/* !DEBUG */
613 
614 kmutex_t		*mml_table;
615 uint_t			mml_table_sz;	/* must be a power of 2 */
616 uint_t			mml_shift;	/* log2(mml_table_sz) + 3 for align */
617 
618 kpm_hlk_t	*kpmp_table;
619 uint_t		kpmp_table_sz;	/* must be a power of 2 */
620 uchar_t		kpmp_shift;
621 
622 kpm_shlk_t	*kpmp_stable;
623 uint_t		kpmp_stable_sz;	/* must be a power of 2 */
624 
625 /*
626  * SPL_HASH was improved to avoid false cache line sharing
627  */
628 #define	SPL_TABLE_SIZE	128
629 #define	SPL_MASK	(SPL_TABLE_SIZE - 1)
630 #define	SPL_SHIFT	7		/* log2(SPL_TABLE_SIZE) */
631 
632 #define	SPL_INDEX(pp) \
633 	((((uintptr_t)(pp) >> SPL_SHIFT) ^ \
634 	((uintptr_t)(pp) >> (SPL_SHIFT << 1))) & \
635 	(SPL_TABLE_SIZE - 1))
636 
637 #define	SPL_HASH(pp)    \
638 	(&sfmmu_page_lock[SPL_INDEX(pp) & SPL_MASK].pad_mutex)
639 
640 static	pad_mutex_t	sfmmu_page_lock[SPL_TABLE_SIZE];
641 
642 
643 /*
644  * hat_unload_callback() will group together callbacks in order
645  * to avoid xt_sync() calls.  This is the maximum size of the group.
646  */
647 #define	MAX_CB_ADDR	32
648 
649 tte_t	hw_tte;
650 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
651 
652 static char	*mmu_ctx_kstat_names[] = {
653 	"mmu_ctx_tsb_exceptions",
654 	"mmu_ctx_tsb_raise_exception",
655 	"mmu_ctx_wrap_around",
656 };
657 
658 /*
659  * Wrapper for vmem_xalloc since vmem_create only allows limited
660  * parameters for vm_source_alloc functions.  This function allows us
661  * to specify alignment consistent with the size of the object being
662  * allocated.
663  */
664 static void *
665 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
666 {
667 	return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
668 }
669 
670 /* Common code for setting tsb_alloc_hiwater. */
671 #define	SFMMU_SET_TSB_ALLOC_HIWATER(pages)	tsb_alloc_hiwater = \
672 		ptob(pages) / tsb_alloc_hiwater_factor
673 
674 /*
675  * Set tsb_max_growsize to allow at most all of physical memory to be mapped by
676  * a single TSB.  physmem is the number of physical pages so we need physmem 8K
677  * TTEs to represent all those physical pages.  We round this up by using
678  * 1<<highbit().  To figure out which size code to use, remember that the size
679  * code is just an amount to shift the smallest TSB size to get the size of
680  * this TSB.  So we subtract that size, TSB_START_SIZE, from highbit() (or
681  * highbit() - 1) to get the size code for the smallest TSB that can represent
682  * all of physical memory, while erring on the side of too much.
683  *
684  * If the computed size code is less than the current tsb_max_growsize, we set
685  * tsb_max_growsize to the computed size code.  In the case where the computed
686  * size code is greater than tsb_max_growsize, we have these restrictions that
687  * apply to increasing tsb_max_growsize:
688  *	1) TSBs can't grow larger than the TSB slab size
689  *	2) TSBs can't grow larger than UTSB_MAX_SZCODE.
690  */
691 #define	SFMMU_SET_TSB_MAX_GROWSIZE(pages) {				\
692 	int	i, szc;							\
693 									\
694 	i = highbit(pages);						\
695 	if ((1 << (i - 1)) == (pages))					\
696 		i--;		/* 2^n case, round down */		\
697 	szc = i - TSB_START_SIZE;					\
698 	if (szc < tsb_max_growsize)					\
699 		tsb_max_growsize = szc;					\
700 	else if ((szc > tsb_max_growsize) &&				\
701 	    (szc <= tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT))) \
702 		tsb_max_growsize = MIN(szc, UTSB_MAX_SZCODE);		\
703 }
704 
705 /*
706  * Given a pointer to an sfmmu and a TTE size code, return a pointer to the
707  * tsb_info which handles that TTE size.
708  */
709 #define	SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc)			\
710 	(tsbinfop) = (sfmmup)->sfmmu_tsb;				\
711 	ASSERT(sfmmu_hat_lock_held(sfmmup));				\
712 	if ((tte_szc) >= TTE4M)						\
713 		(tsbinfop) = (tsbinfop)->tsb_next;
714 
715 /*
716  * Return the number of mappings present in the HAT
717  * for a particular process and page size.
718  */
719 #define	SFMMU_TTE_CNT(sfmmup, szc)					\
720 	(sfmmup)->sfmmu_iblk?						\
721 	    (sfmmup)->sfmmu_ismttecnt[(szc)] +				\
722 	    (sfmmup)->sfmmu_ttecnt[(szc)] :				\
723 	    (sfmmup)->sfmmu_ttecnt[(szc)];
724 
725 /*
726  * Macro to use to unload entries from the TSB.
727  * It has knowledge of which page sizes get replicated in the TSB
728  * and will call the appropriate unload routine for the appropriate size.
729  */
730 #define	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp)				\
731 {									\
732 	int ttesz = get_hblk_ttesz(hmeblkp);				\
733 	if (ttesz == TTE8K || ttesz == TTE4M) {				\
734 		sfmmu_unload_tsb(sfmmup, addr, ttesz);			\
735 	} else {							\
736 		caddr_t sva = (caddr_t)get_hblk_base(hmeblkp);		\
737 		caddr_t eva = sva + get_hblk_span(hmeblkp);		\
738 		ASSERT(addr >= sva && addr < eva);			\
739 		sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);	\
740 	}								\
741 }
742 
743 
744 /* Update tsb_alloc_hiwater after memory is configured. */
745 /*ARGSUSED*/
746 static void
747 sfmmu_update_tsb_post_add(void *arg, pgcnt_t delta_pages)
748 {
749 	/* Assumes physmem has already been updated. */
750 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
751 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
752 }
753 
754 /*
755  * Update tsb_alloc_hiwater before memory is deleted.  We'll do nothing here
756  * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
757  * deleted.
758  */
759 /*ARGSUSED*/
760 static int
761 sfmmu_update_tsb_pre_del(void *arg, pgcnt_t delta_pages)
762 {
763 	return (0);
764 }
765 
766 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
767 /*ARGSUSED*/
768 static void
769 sfmmu_update_tsb_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
770 {
771 	/*
772 	 * Whether the delete was cancelled or not, just go ahead and update
773 	 * tsb_alloc_hiwater and tsb_max_growsize.
774 	 */
775 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
776 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
777 }
778 
779 static kphysm_setup_vector_t sfmmu_update_tsb_vec = {
780 	KPHYSM_SETUP_VECTOR_VERSION,	/* version */
781 	sfmmu_update_tsb_post_add,	/* post_add */
782 	sfmmu_update_tsb_pre_del,	/* pre_del */
783 	sfmmu_update_tsb_post_del	/* post_del */
784 };
785 
786 
787 /*
788  * HME_BLK HASH PRIMITIVES
789  */
790 
791 /*
792  * Enter a hme on the mapping list for page pp.
793  * When large pages are more prevalent in the system we might want to
794  * keep the mapping list in ascending order by the hment size. For now,
795  * small pages are more frequent, so don't slow it down.
796  */
797 #define	HME_ADD(hme, pp)					\
798 {								\
799 	ASSERT(sfmmu_mlist_held(pp));				\
800 								\
801 	hme->hme_prev = NULL;					\
802 	hme->hme_next = pp->p_mapping;				\
803 	hme->hme_page = pp;					\
804 	if (pp->p_mapping) {					\
805 		((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
806 		ASSERT(pp->p_share > 0);			\
807 	} else  {						\
808 		/* EMPTY */					\
809 		ASSERT(pp->p_share == 0);			\
810 	}							\
811 	pp->p_mapping = hme;					\
812 	pp->p_share++;						\
813 }
814 
815 /*
816  * Enter a hme on the mapping list for page pp.
817  * If we are unmapping a large translation, we need to make sure that the
818  * change is reflect in the corresponding bit of the p_index field.
819  */
820 #define	HME_SUB(hme, pp)					\
821 {								\
822 	ASSERT(sfmmu_mlist_held(pp));				\
823 	ASSERT(hme->hme_page == pp || IS_PAHME(hme));		\
824 								\
825 	if (pp->p_mapping == NULL) {				\
826 		panic("hme_remove - no mappings");		\
827 	}							\
828 								\
829 	membar_stst();	/* ensure previous stores finish */	\
830 								\
831 	ASSERT(pp->p_share > 0);				\
832 	pp->p_share--;						\
833 								\
834 	if (hme->hme_prev) {					\
835 		ASSERT(pp->p_mapping != hme);			\
836 		ASSERT(hme->hme_prev->hme_page == pp ||		\
837 			IS_PAHME(hme->hme_prev));		\
838 		hme->hme_prev->hme_next = hme->hme_next;	\
839 	} else {						\
840 		ASSERT(pp->p_mapping == hme);			\
841 		pp->p_mapping = hme->hme_next;			\
842 		ASSERT((pp->p_mapping == NULL) ?		\
843 			(pp->p_share == 0) : 1);		\
844 	}							\
845 								\
846 	if (hme->hme_next) {					\
847 		ASSERT(hme->hme_next->hme_page == pp ||		\
848 			IS_PAHME(hme->hme_next));		\
849 		hme->hme_next->hme_prev = hme->hme_prev;	\
850 	}							\
851 								\
852 	/* zero out the entry */				\
853 	hme->hme_next = NULL;					\
854 	hme->hme_prev = NULL;					\
855 	hme->hme_page = NULL;					\
856 								\
857 	if (hme_size(hme) > TTE8K) {				\
858 		/* remove mappings for remainder of large pg */	\
859 		sfmmu_rm_large_mappings(pp, hme_size(hme));	\
860 	}							\
861 }
862 
863 /*
864  * This function returns the hment given the hme_blk and a vaddr.
865  * It assumes addr has already been checked to belong to hme_blk's
866  * range.
867  */
868 #define	HBLKTOHME(hment, hmeblkp, addr)					\
869 {									\
870 	int index;							\
871 	HBLKTOHME_IDX(hment, hmeblkp, addr, index)			\
872 }
873 
874 /*
875  * Version of HBLKTOHME that also returns the index in hmeblkp
876  * of the hment.
877  */
878 #define	HBLKTOHME_IDX(hment, hmeblkp, addr, idx)			\
879 {									\
880 	ASSERT(in_hblk_range((hmeblkp), (addr)));			\
881 									\
882 	if (get_hblk_ttesz(hmeblkp) == TTE8K) {				\
883 		idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
884 	} else								\
885 		idx = 0;						\
886 									\
887 	(hment) = &(hmeblkp)->hblk_hme[idx];				\
888 }
889 
890 /*
891  * Disable any page sizes not supported by the CPU
892  */
893 void
894 hat_init_pagesizes()
895 {
896 	int 		i;
897 
898 	mmu_exported_page_sizes = 0;
899 	for (i = TTE8K; i < max_mmu_page_sizes; i++) {
900 
901 		szc_2_userszc[i] = (uint_t)-1;
902 		userszc_2_szc[i] = (uint_t)-1;
903 
904 		if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
905 			disable_large_pages |= (1 << i);
906 		} else {
907 			szc_2_userszc[i] = mmu_exported_page_sizes;
908 			userszc_2_szc[mmu_exported_page_sizes] = i;
909 			mmu_exported_page_sizes++;
910 		}
911 	}
912 
913 	disable_ism_large_pages |= disable_large_pages;
914 	disable_auto_data_large_pages = disable_large_pages;
915 	disable_auto_text_large_pages = disable_large_pages;
916 
917 	/*
918 	 * Initialize mmu-specific large page sizes.
919 	 */
920 	if (&mmu_large_pages_disabled) {
921 		disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
922 		disable_ism_large_pages |=
923 		    mmu_large_pages_disabled(HAT_LOAD_SHARE);
924 		disable_auto_data_large_pages |=
925 		    mmu_large_pages_disabled(HAT_AUTO_DATA);
926 		disable_auto_text_large_pages |=
927 		    mmu_large_pages_disabled(HAT_AUTO_TEXT);
928 	}
929 }
930 
931 /*
932  * Initialize the hardware address translation structures.
933  */
934 void
935 hat_init(void)
936 {
937 	int 		i;
938 	uint_t		sz;
939 	uint_t		maxtsb;
940 	size_t		size;
941 
942 	hat_lock_init();
943 	hat_kstat_init();
944 
945 	/*
946 	 * Hardware-only bits in a TTE
947 	 */
948 	MAKE_TTE_MASK(&hw_tte);
949 
950 	hat_init_pagesizes();
951 
952 	/* Initialize the hash locks */
953 	for (i = 0; i < khmehash_num; i++) {
954 		mutex_init(&khme_hash[i].hmehash_mutex, NULL,
955 		    MUTEX_DEFAULT, NULL);
956 	}
957 	for (i = 0; i < uhmehash_num; i++) {
958 		mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
959 		    MUTEX_DEFAULT, NULL);
960 	}
961 	khmehash_num--;		/* make sure counter starts from 0 */
962 	uhmehash_num--;		/* make sure counter starts from 0 */
963 
964 	/*
965 	 * Allocate context domain structures.
966 	 *
967 	 * A platform may choose to modify max_mmu_ctxdoms in
968 	 * set_platform_defaults(). If a platform does not define
969 	 * a set_platform_defaults() or does not choose to modify
970 	 * max_mmu_ctxdoms, it gets one MMU context domain for every CPU.
971 	 *
972 	 * For sun4v, there will be one global context domain, this is to
973 	 * avoid the ldom cpu substitution problem.
974 	 *
975 	 * For all platforms that have CPUs sharing MMUs, this
976 	 * value must be defined.
977 	 */
978 	if (max_mmu_ctxdoms == 0) {
979 #ifndef sun4v
980 		max_mmu_ctxdoms = max_ncpus;
981 #else /* sun4v */
982 		max_mmu_ctxdoms = 1;
983 #endif /* sun4v */
984 	}
985 
986 	size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *);
987 	mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP);
988 
989 	/* mmu_ctx_t is 64 bytes aligned */
990 	mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache",
991 	    sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
992 	/*
993 	 * MMU context domain initialization for the Boot CPU.
994 	 * This needs the context domains array allocated above.
995 	 */
996 	mutex_enter(&cpu_lock);
997 	sfmmu_cpu_init(CPU);
998 	mutex_exit(&cpu_lock);
999 
1000 	/*
1001 	 * Intialize ism mapping list lock.
1002 	 */
1003 
1004 	mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
1005 
1006 	/*
1007 	 * Each sfmmu structure carries an array of MMU context info
1008 	 * structures, one per context domain. The size of this array depends
1009 	 * on the maximum number of context domains. So, the size of the
1010 	 * sfmmu structure varies per platform.
1011 	 *
1012 	 * sfmmu is allocated from static arena, because trap
1013 	 * handler at TL > 0 is not allowed to touch kernel relocatable
1014 	 * memory. sfmmu's alignment is changed to 64 bytes from
1015 	 * default 8 bytes, as the lower 6 bits will be used to pass
1016 	 * pgcnt to vtag_flush_pgcnt_tl1.
1017 	 */
1018 	size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1);
1019 
1020 	sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size,
1021 	    64, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
1022 	    NULL, NULL, static_arena, 0);
1023 
1024 	sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
1025 	    sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
1026 
1027 	/*
1028 	 * Since we only use the tsb8k cache to "borrow" pages for TSBs
1029 	 * from the heap when low on memory or when TSB_FORCEALLOC is
1030 	 * specified, don't use magazines to cache them--we want to return
1031 	 * them to the system as quickly as possible.
1032 	 */
1033 	sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
1034 	    MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
1035 	    static_arena, KMC_NOMAGAZINE);
1036 
1037 	/*
1038 	 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
1039 	 * memory, which corresponds to the old static reserve for TSBs.
1040 	 * tsb_alloc_hiwater_factor defaults to 32.  This caps the amount of
1041 	 * memory we'll allocate for TSB slabs; beyond this point TSB
1042 	 * allocations will be taken from the kernel heap (via
1043 	 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem
1044 	 * consumer.
1045 	 */
1046 	if (tsb_alloc_hiwater_factor == 0) {
1047 		tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
1048 	}
1049 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
1050 
1051 	/* Set tsb_max_growsize. */
1052 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
1053 
1054 	/*
1055 	 * On smaller memory systems, allocate TSB memory in smaller chunks
1056 	 * than the default 4M slab size. We also honor disable_large_pages
1057 	 * here.
1058 	 *
1059 	 * The trap handlers need to be patched with the final slab shift,
1060 	 * since they need to be able to construct the TSB pointer at runtime.
1061 	 */
1062 	if (tsb_max_growsize <= TSB_512K_SZCODE)
1063 		tsb_slab_ttesz = TTE512K;
1064 
1065 	for (sz = tsb_slab_ttesz; sz > 0; sz--) {
1066 		if (!(disable_large_pages & (1 << sz)))
1067 			break;
1068 	}
1069 
1070 	tsb_slab_ttesz = sz;
1071 	tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz;
1072 	tsb_slab_size = 1 << tsb_slab_shift;
1073 	tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1;
1074 
1075 	maxtsb = tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT);
1076 	if (tsb_max_growsize > maxtsb)
1077 		tsb_max_growsize = maxtsb;
1078 
1079 	/*
1080 	 * Set up memory callback to update tsb_alloc_hiwater and
1081 	 * tsb_max_growsize.
1082 	 */
1083 	i = kphysm_setup_func_register(&sfmmu_update_tsb_vec, (void *) 0);
1084 	ASSERT(i == 0);
1085 
1086 	/*
1087 	 * kmem_tsb_arena is the source from which large TSB slabs are
1088 	 * drawn.  The quantum of this arena corresponds to the largest
1089 	 * TSB size we can dynamically allocate for user processes.
1090 	 * Currently it must also be a supported page size since we
1091 	 * use exactly one translation entry to map each slab page.
1092 	 *
1093 	 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from
1094 	 * which most TSBs are allocated.  Since most TSB allocations are
1095 	 * typically 8K we have a kmem cache we stack on top of each
1096 	 * kmem_tsb_default_arena to speed up those allocations.
1097 	 *
1098 	 * Note the two-level scheme of arenas is required only
1099 	 * because vmem_create doesn't allow us to specify alignment
1100 	 * requirements.  If this ever changes the code could be
1101 	 * simplified to use only one level of arenas.
1102 	 */
1103 	kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
1104 	    sfmmu_vmem_xalloc_aligned_wrapper, vmem_xfree, heap_arena,
1105 	    0, VM_SLEEP);
1106 
1107 	if (tsb_lgrp_affinity) {
1108 		char s[50];
1109 		for (i = 0; i < NLGRPS_MAX; i++) {
1110 			(void) sprintf(s, "kmem_tsb_lgrp%d", i);
1111 			kmem_tsb_default_arena[i] =
1112 			    vmem_create(s, NULL, 0, PAGESIZE,
1113 			    sfmmu_tsb_segkmem_alloc, sfmmu_tsb_segkmem_free,
1114 			    kmem_tsb_arena, 0, VM_SLEEP | VM_BESTFIT);
1115 			(void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
1116 			sfmmu_tsb_cache[i] = kmem_cache_create(s, PAGESIZE,
1117 			    PAGESIZE, NULL, NULL, NULL, NULL,
1118 			    kmem_tsb_default_arena[i], 0);
1119 		}
1120 	} else {
1121 		kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
1122 		    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1123 		    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1124 		    VM_SLEEP | VM_BESTFIT);
1125 
1126 		sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
1127 		    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1128 		    kmem_tsb_default_arena[0], 0);
1129 	}
1130 
1131 	sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
1132 	    HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1133 	    sfmmu_hblkcache_destructor,
1134 	    sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
1135 	    hat_memload_arena, KMC_NOHASH);
1136 
1137 	hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
1138 	    segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP);
1139 
1140 	sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
1141 	    HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1142 	    sfmmu_hblkcache_destructor,
1143 	    NULL, (void *)HME1BLK_SZ,
1144 	    hat_memload1_arena, KMC_NOHASH);
1145 
1146 	pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
1147 	    0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
1148 
1149 	ism_blk_cache = kmem_cache_create("ism_blk_cache",
1150 	    sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
1151 	    NULL, NULL, static_arena, KMC_NOHASH);
1152 
1153 	ism_ment_cache = kmem_cache_create("ism_ment_cache",
1154 	    sizeof (ism_ment_t), 0, NULL, NULL,
1155 	    NULL, NULL, NULL, 0);
1156 
1157 	/*
1158 	 * We grab the first hat for the kernel,
1159 	 */
1160 	AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
1161 	kas.a_hat = hat_alloc(&kas);
1162 	AS_LOCK_EXIT(&kas, &kas.a_lock);
1163 
1164 	/*
1165 	 * Initialize hblk_reserve.
1166 	 */
1167 	((struct hme_blk *)hblk_reserve)->hblk_nextpa =
1168 	    va_to_pa((caddr_t)hblk_reserve);
1169 
1170 #ifndef UTSB_PHYS
1171 	/*
1172 	 * Reserve some kernel virtual address space for the locked TTEs
1173 	 * that allow us to probe the TSB from TL>0.
1174 	 */
1175 	utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1176 	    0, 0, NULL, NULL, VM_SLEEP);
1177 	utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1178 	    0, 0, NULL, NULL, VM_SLEEP);
1179 #endif
1180 
1181 #ifdef VAC
1182 	/*
1183 	 * The big page VAC handling code assumes VAC
1184 	 * will not be bigger than the smallest big
1185 	 * page- which is 64K.
1186 	 */
1187 	if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
1188 		cmn_err(CE_PANIC, "VAC too big!");
1189 	}
1190 #endif
1191 
1192 	(void) xhat_init();
1193 
1194 	uhme_hash_pa = va_to_pa(uhme_hash);
1195 	khme_hash_pa = va_to_pa(khme_hash);
1196 
1197 	/*
1198 	 * Initialize relocation locks. kpr_suspendlock is held
1199 	 * at PIL_MAX to prevent interrupts from pinning the holder
1200 	 * of a suspended TTE which may access it leading to a
1201 	 * deadlock condition.
1202 	 */
1203 	mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
1204 	mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
1205 
1206 	/*
1207 	 * Pre-allocate hrm_hashtab before enabling the collection of
1208 	 * refmod statistics.  Allocating on the fly would mean us
1209 	 * running the risk of suffering recursive mutex enters or
1210 	 * deadlocks.
1211 	 */
1212 	hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
1213 	    KM_SLEEP);
1214 }
1215 
1216 /*
1217  * Initialize locking for the hat layer, called early during boot.
1218  */
1219 static void
1220 hat_lock_init()
1221 {
1222 	int i;
1223 
1224 	/*
1225 	 * initialize the array of mutexes protecting a page's mapping
1226 	 * list and p_nrm field.
1227 	 */
1228 	for (i = 0; i < mml_table_sz; i++)
1229 		mutex_init(&mml_table[i], NULL, MUTEX_DEFAULT, NULL);
1230 
1231 	if (kpm_enable) {
1232 		for (i = 0; i < kpmp_table_sz; i++) {
1233 			mutex_init(&kpmp_table[i].khl_mutex, NULL,
1234 			    MUTEX_DEFAULT, NULL);
1235 		}
1236 	}
1237 
1238 	/*
1239 	 * Initialize array of mutex locks that protects sfmmu fields and
1240 	 * TSB lists.
1241 	 */
1242 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
1243 		mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
1244 		    NULL);
1245 }
1246 
1247 #define	SFMMU_KERNEL_MAXVA \
1248 	(kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
1249 
1250 /*
1251  * Allocate a hat structure.
1252  * Called when an address space first uses a hat.
1253  */
1254 struct hat *
1255 hat_alloc(struct as *as)
1256 {
1257 	sfmmu_t *sfmmup;
1258 	int i;
1259 	uint64_t cnum;
1260 	extern uint_t get_color_start(struct as *);
1261 
1262 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1263 	sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
1264 	sfmmup->sfmmu_as = as;
1265 	sfmmup->sfmmu_flags = 0;
1266 	LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock);
1267 
1268 	if (as == &kas) {
1269 		ksfmmup = sfmmup;
1270 		sfmmup->sfmmu_cext = 0;
1271 		cnum = KCONTEXT;
1272 
1273 		sfmmup->sfmmu_clrstart = 0;
1274 		sfmmup->sfmmu_tsb = NULL;
1275 		/*
1276 		 * hat_kern_setup() will call sfmmu_init_ktsbinfo()
1277 		 * to setup tsb_info for ksfmmup.
1278 		 */
1279 	} else {
1280 
1281 		/*
1282 		 * Just set to invalid ctx. When it faults, it will
1283 		 * get a valid ctx. This would avoid the situation
1284 		 * where we get a ctx, but it gets stolen and then
1285 		 * we fault when we try to run and so have to get
1286 		 * another ctx.
1287 		 */
1288 		sfmmup->sfmmu_cext = 0;
1289 		cnum = INVALID_CONTEXT;
1290 
1291 		/* initialize original physical page coloring bin */
1292 		sfmmup->sfmmu_clrstart = get_color_start(as);
1293 #ifdef DEBUG
1294 		if (tsb_random_size) {
1295 			uint32_t randval = (uint32_t)gettick() >> 4;
1296 			int size = randval % (tsb_max_growsize + 1);
1297 
1298 			/* chose a random tsb size for stress testing */
1299 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
1300 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1301 		} else
1302 #endif /* DEBUG */
1303 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
1304 			    default_tsb_size,
1305 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1306 		sfmmup->sfmmu_flags = HAT_SWAPPED;
1307 		ASSERT(sfmmup->sfmmu_tsb != NULL);
1308 	}
1309 
1310 	ASSERT(max_mmu_ctxdoms > 0);
1311 	for (i = 0; i < max_mmu_ctxdoms; i++) {
1312 		sfmmup->sfmmu_ctxs[i].cnum = cnum;
1313 		sfmmup->sfmmu_ctxs[i].gnum = 0;
1314 	}
1315 
1316 	sfmmu_setup_tsbinfo(sfmmup);
1317 	for (i = 0; i < max_mmu_page_sizes; i++) {
1318 		sfmmup->sfmmu_ttecnt[i] = 0;
1319 		sfmmup->sfmmu_ismttecnt[i] = 0;
1320 		sfmmup->sfmmu_pgsz[i] = TTE8K;
1321 	}
1322 
1323 	sfmmup->sfmmu_iblk = NULL;
1324 	sfmmup->sfmmu_ismhat = 0;
1325 	sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
1326 	if (sfmmup == ksfmmup) {
1327 		CPUSET_ALL(sfmmup->sfmmu_cpusran);
1328 	} else {
1329 		CPUSET_ZERO(sfmmup->sfmmu_cpusran);
1330 	}
1331 	sfmmup->sfmmu_free = 0;
1332 	sfmmup->sfmmu_rmstat = 0;
1333 	sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
1334 	sfmmup->sfmmu_xhat_provider = NULL;
1335 	cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
1336 	return (sfmmup);
1337 }
1338 
1339 /*
1340  * Create per-MMU context domain kstats for a given MMU ctx.
1341  */
1342 static void
1343 sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp)
1344 {
1345 	mmu_ctx_stat_t	stat;
1346 	kstat_t		*mmu_kstat;
1347 
1348 	ASSERT(MUTEX_HELD(&cpu_lock));
1349 	ASSERT(mmu_ctxp->mmu_kstat == NULL);
1350 
1351 	mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx",
1352 	    "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL);
1353 
1354 	if (mmu_kstat == NULL) {
1355 		cmn_err(CE_WARN, "kstat_create for MMU %d failed",
1356 		    mmu_ctxp->mmu_idx);
1357 	} else {
1358 		mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data;
1359 		for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++)
1360 			kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat],
1361 			    mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64);
1362 		mmu_ctxp->mmu_kstat = mmu_kstat;
1363 		kstat_install(mmu_kstat);
1364 	}
1365 }
1366 
1367 /*
1368  * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU
1369  * context domain information for a given CPU. If a platform does not
1370  * specify that interface, then the function below is used instead to return
1371  * default information. The defaults are as follows:
1372  *
1373  *	- For sun4u systems there's one MMU context domain per CPU.
1374  *	  This default is used by all sun4u systems except OPL. OPL systems
1375  *	  provide platform specific interface to map CPU ids to MMU ids
1376  *	  because on OPL more than 1 CPU shares a single MMU.
1377  *        Note that on sun4v, there is one global context domain for
1378  *	  the entire system. This is to avoid running into potential problem
1379  *	  with ldom physical cpu substitution feature.
1380  *	- The number of MMU context IDs supported on any CPU in the
1381  *	  system is 8K.
1382  */
1383 /*ARGSUSED*/
1384 static void
1385 sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop)
1386 {
1387 	infop->mmu_nctxs = nctxs;
1388 #ifndef sun4v
1389 	infop->mmu_idx = cpu[cpuid]->cpu_seqid;
1390 #else /* sun4v */
1391 	infop->mmu_idx = 0;
1392 #endif /* sun4v */
1393 }
1394 
1395 /*
1396  * Called during CPU initialization to set the MMU context-related information
1397  * for a CPU.
1398  *
1399  * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum.
1400  */
1401 void
1402 sfmmu_cpu_init(cpu_t *cp)
1403 {
1404 	mmu_ctx_info_t	info;
1405 	mmu_ctx_t	*mmu_ctxp;
1406 
1407 	ASSERT(MUTEX_HELD(&cpu_lock));
1408 
1409 	if (&plat_cpuid_to_mmu_ctx_info == NULL)
1410 		sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1411 	else
1412 		plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1413 
1414 	ASSERT(info.mmu_idx < max_mmu_ctxdoms);
1415 
1416 	if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) {
1417 		/* Each mmu_ctx is cacheline aligned. */
1418 		mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP);
1419 		bzero(mmu_ctxp, sizeof (mmu_ctx_t));
1420 
1421 		mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN,
1422 		    (void *)ipltospl(DISP_LEVEL));
1423 		mmu_ctxp->mmu_idx = info.mmu_idx;
1424 		mmu_ctxp->mmu_nctxs = info.mmu_nctxs;
1425 		/*
1426 		 * Globally for lifetime of a system,
1427 		 * gnum must always increase.
1428 		 * mmu_saved_gnum is protected by the cpu_lock.
1429 		 */
1430 		mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1;
1431 		mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
1432 
1433 		sfmmu_mmu_kstat_create(mmu_ctxp);
1434 
1435 		mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp;
1436 	} else {
1437 		ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx);
1438 	}
1439 
1440 	/*
1441 	 * The mmu_lock is acquired here to prevent races with
1442 	 * the wrap-around code.
1443 	 */
1444 	mutex_enter(&mmu_ctxp->mmu_lock);
1445 
1446 
1447 	mmu_ctxp->mmu_ncpus++;
1448 	CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1449 	CPU_MMU_IDX(cp) = info.mmu_idx;
1450 	CPU_MMU_CTXP(cp) = mmu_ctxp;
1451 
1452 	mutex_exit(&mmu_ctxp->mmu_lock);
1453 }
1454 
1455 /*
1456  * Called to perform MMU context-related cleanup for a CPU.
1457  */
1458 void
1459 sfmmu_cpu_cleanup(cpu_t *cp)
1460 {
1461 	mmu_ctx_t	*mmu_ctxp;
1462 
1463 	ASSERT(MUTEX_HELD(&cpu_lock));
1464 
1465 	mmu_ctxp = CPU_MMU_CTXP(cp);
1466 	ASSERT(mmu_ctxp != NULL);
1467 
1468 	/*
1469 	 * The mmu_lock is acquired here to prevent races with
1470 	 * the wrap-around code.
1471 	 */
1472 	mutex_enter(&mmu_ctxp->mmu_lock);
1473 
1474 	CPU_MMU_CTXP(cp) = NULL;
1475 
1476 	CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1477 	if (--mmu_ctxp->mmu_ncpus == 0) {
1478 		mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL;
1479 		mutex_exit(&mmu_ctxp->mmu_lock);
1480 		mutex_destroy(&mmu_ctxp->mmu_lock);
1481 
1482 		if (mmu_ctxp->mmu_kstat)
1483 			kstat_delete(mmu_ctxp->mmu_kstat);
1484 
1485 		/* mmu_saved_gnum is protected by the cpu_lock. */
1486 		if (mmu_saved_gnum < mmu_ctxp->mmu_gnum)
1487 			mmu_saved_gnum = mmu_ctxp->mmu_gnum;
1488 
1489 		kmem_cache_free(mmuctxdom_cache, mmu_ctxp);
1490 
1491 		return;
1492 	}
1493 
1494 	mutex_exit(&mmu_ctxp->mmu_lock);
1495 }
1496 
1497 /*
1498  * Hat_setup, makes an address space context the current active one.
1499  * In sfmmu this translates to setting the secondary context with the
1500  * corresponding context.
1501  */
1502 void
1503 hat_setup(struct hat *sfmmup, int allocflag)
1504 {
1505 	hatlock_t *hatlockp;
1506 
1507 	/* Init needs some special treatment. */
1508 	if (allocflag == HAT_INIT) {
1509 		/*
1510 		 * Make sure that we have
1511 		 * 1. a TSB
1512 		 * 2. a valid ctx that doesn't get stolen after this point.
1513 		 */
1514 		hatlockp = sfmmu_hat_enter(sfmmup);
1515 
1516 		/*
1517 		 * Swap in the TSB.  hat_init() allocates tsbinfos without
1518 		 * TSBs, but we need one for init, since the kernel does some
1519 		 * special things to set up its stack and needs the TSB to
1520 		 * resolve page faults.
1521 		 */
1522 		sfmmu_tsb_swapin(sfmmup, hatlockp);
1523 
1524 		sfmmu_get_ctx(sfmmup);
1525 
1526 		sfmmu_hat_exit(hatlockp);
1527 	} else {
1528 		ASSERT(allocflag == HAT_ALLOC);
1529 
1530 		hatlockp = sfmmu_hat_enter(sfmmup);
1531 		kpreempt_disable();
1532 
1533 		CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1534 
1535 		/*
1536 		 * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter,
1537 		 * pagesize bits don't matter in this case since we are passing
1538 		 * INVALID_CONTEXT to it.
1539 		 */
1540 		sfmmu_setctx_sec(INVALID_CONTEXT);
1541 		sfmmu_clear_utsbinfo();
1542 
1543 		kpreempt_enable();
1544 		sfmmu_hat_exit(hatlockp);
1545 	}
1546 }
1547 
1548 /*
1549  * Free all the translation resources for the specified address space.
1550  * Called from as_free when an address space is being destroyed.
1551  */
1552 void
1553 hat_free_start(struct hat *sfmmup)
1554 {
1555 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
1556 	ASSERT(sfmmup != ksfmmup);
1557 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1558 
1559 	sfmmup->sfmmu_free = 1;
1560 }
1561 
1562 void
1563 hat_free_end(struct hat *sfmmup)
1564 {
1565 	int i;
1566 
1567 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1568 	if (sfmmup->sfmmu_ismhat) {
1569 		for (i = 0; i < mmu_page_sizes; i++) {
1570 			sfmmup->sfmmu_ttecnt[i] = 0;
1571 			sfmmup->sfmmu_ismttecnt[i] = 0;
1572 		}
1573 	} else {
1574 		/* EMPTY */
1575 		ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
1576 		ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
1577 		ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
1578 		ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
1579 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
1580 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
1581 	}
1582 
1583 	if (sfmmup->sfmmu_rmstat) {
1584 		hat_freestat(sfmmup->sfmmu_as, NULL);
1585 	}
1586 
1587 	while (sfmmup->sfmmu_tsb != NULL) {
1588 		struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
1589 		sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
1590 		sfmmup->sfmmu_tsb = next;
1591 	}
1592 	sfmmu_free_sfmmu(sfmmup);
1593 
1594 	kmem_cache_free(sfmmuid_cache, sfmmup);
1595 }
1596 
1597 /*
1598  * Set up any translation structures, for the specified address space,
1599  * that are needed or preferred when the process is being swapped in.
1600  */
1601 /* ARGSUSED */
1602 void
1603 hat_swapin(struct hat *hat)
1604 {
1605 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1606 }
1607 
1608 /*
1609  * Free all of the translation resources, for the specified address space,
1610  * that can be freed while the process is swapped out. Called from as_swapout.
1611  * Also, free up the ctx that this process was using.
1612  */
1613 void
1614 hat_swapout(struct hat *sfmmup)
1615 {
1616 	struct hmehash_bucket *hmebp;
1617 	struct hme_blk *hmeblkp;
1618 	struct hme_blk *pr_hblk = NULL;
1619 	struct hme_blk *nx_hblk;
1620 	int i;
1621 	uint64_t hblkpa, prevpa, nx_pa;
1622 	struct hme_blk *list = NULL;
1623 	hatlock_t *hatlockp;
1624 	struct tsb_info *tsbinfop;
1625 	struct free_tsb {
1626 		struct free_tsb *next;
1627 		struct tsb_info *tsbinfop;
1628 	};			/* free list of TSBs */
1629 	struct free_tsb *freelist, *last, *next;
1630 
1631 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1632 	SFMMU_STAT(sf_swapout);
1633 
1634 	/*
1635 	 * There is no way to go from an as to all its translations in sfmmu.
1636 	 * Here is one of the times when we take the big hit and traverse
1637 	 * the hash looking for hme_blks to free up.  Not only do we free up
1638 	 * this as hme_blks but all those that are free.  We are obviously
1639 	 * swapping because we need memory so let's free up as much
1640 	 * as we can.
1641 	 *
1642 	 * Note that we don't flush TLB/TSB here -- it's not necessary
1643 	 * because:
1644 	 *  1) we free the ctx we're using and throw away the TSB(s);
1645 	 *  2) processes aren't runnable while being swapped out.
1646 	 */
1647 	ASSERT(sfmmup != KHATID);
1648 	for (i = 0; i <= UHMEHASH_SZ; i++) {
1649 		hmebp = &uhme_hash[i];
1650 		SFMMU_HASH_LOCK(hmebp);
1651 		hmeblkp = hmebp->hmeblkp;
1652 		hblkpa = hmebp->hmeh_nextpa;
1653 		prevpa = 0;
1654 		pr_hblk = NULL;
1655 		while (hmeblkp) {
1656 
1657 			ASSERT(!hmeblkp->hblk_xhat_bit);
1658 
1659 			if ((hmeblkp->hblk_tag.htag_id == sfmmup) &&
1660 			    !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) {
1661 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
1662 				    (caddr_t)get_hblk_base(hmeblkp),
1663 				    get_hblk_endaddr(hmeblkp),
1664 				    NULL, HAT_UNLOAD);
1665 			}
1666 			nx_hblk = hmeblkp->hblk_next;
1667 			nx_pa = hmeblkp->hblk_nextpa;
1668 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
1669 				ASSERT(!hmeblkp->hblk_lckcnt);
1670 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
1671 				    prevpa, pr_hblk);
1672 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
1673 			} else {
1674 				pr_hblk = hmeblkp;
1675 				prevpa = hblkpa;
1676 			}
1677 			hmeblkp = nx_hblk;
1678 			hblkpa = nx_pa;
1679 		}
1680 		SFMMU_HASH_UNLOCK(hmebp);
1681 	}
1682 
1683 	sfmmu_hblks_list_purge(&list);
1684 
1685 	/*
1686 	 * Now free up the ctx so that others can reuse it.
1687 	 */
1688 	hatlockp = sfmmu_hat_enter(sfmmup);
1689 
1690 	sfmmu_invalidate_ctx(sfmmup);
1691 
1692 	/*
1693 	 * Free TSBs, but not tsbinfos, and set SWAPPED flag.
1694 	 * If TSBs were never swapped in, just return.
1695 	 * This implies that we don't support partial swapping
1696 	 * of TSBs -- either all are swapped out, or none are.
1697 	 *
1698 	 * We must hold the HAT lock here to prevent racing with another
1699 	 * thread trying to unmap TTEs from the TSB or running the post-
1700 	 * relocator after relocating the TSB's memory.  Unfortunately, we
1701 	 * can't free memory while holding the HAT lock or we could
1702 	 * deadlock, so we build a list of TSBs to be freed after marking
1703 	 * the tsbinfos as swapped out and free them after dropping the
1704 	 * lock.
1705 	 */
1706 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
1707 		sfmmu_hat_exit(hatlockp);
1708 		return;
1709 	}
1710 
1711 	SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED);
1712 	last = freelist = NULL;
1713 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
1714 	    tsbinfop = tsbinfop->tsb_next) {
1715 		ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0);
1716 
1717 		/*
1718 		 * Cast the TSB into a struct free_tsb and put it on the free
1719 		 * list.
1720 		 */
1721 		if (freelist == NULL) {
1722 			last = freelist = (struct free_tsb *)tsbinfop->tsb_va;
1723 		} else {
1724 			last->next = (struct free_tsb *)tsbinfop->tsb_va;
1725 			last = last->next;
1726 		}
1727 		last->next = NULL;
1728 		last->tsbinfop = tsbinfop;
1729 		tsbinfop->tsb_flags |= TSB_SWAPPED;
1730 		/*
1731 		 * Zero out the TTE to clear the valid bit.
1732 		 * Note we can't use a value like 0xbad because we want to
1733 		 * ensure diagnostic bits are NEVER set on TTEs that might
1734 		 * be loaded.  The intent is to catch any invalid access
1735 		 * to the swapped TSB, such as a thread running with a valid
1736 		 * context without first calling sfmmu_tsb_swapin() to
1737 		 * allocate TSB memory.
1738 		 */
1739 		tsbinfop->tsb_tte.ll = 0;
1740 	}
1741 
1742 #ifdef sun4v
1743 	if (freelist)
1744 		sfmmu_invalidate_tsbinfo(sfmmup);
1745 #endif	/* sun4v */
1746 
1747 	/* Now we can drop the lock and free the TSB memory. */
1748 	sfmmu_hat_exit(hatlockp);
1749 	for (; freelist != NULL; freelist = next) {
1750 		next = freelist->next;
1751 		sfmmu_tsb_free(freelist->tsbinfop);
1752 	}
1753 }
1754 
1755 /*
1756  * Duplicate the translations of an as into another newas
1757  */
1758 /* ARGSUSED */
1759 int
1760 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
1761 	uint_t flag)
1762 {
1763 	extern uint_t get_color_start(struct as *);
1764 
1765 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1766 	ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW));
1767 
1768 	if (flag == HAT_DUP_COW) {
1769 		panic("hat_dup: HAT_DUP_COW not supported");
1770 	}
1771 	if (flag == HAT_DUP_ALL && consistent_coloring == 0 &&
1772 	    update_proc_pgcolorbase_after_fork != 0) {
1773 		hat->sfmmu_clrbin = get_color_start(hat->sfmmu_as);
1774 	}
1775 	return (0);
1776 }
1777 
1778 /*
1779  * Set up addr to map to page pp with protection prot.
1780  * As an optimization we also load the TSB with the
1781  * corresponding tte but it is no big deal if  the tte gets kicked out.
1782  */
1783 void
1784 hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
1785 	uint_t attr, uint_t flags)
1786 {
1787 	tte_t tte;
1788 
1789 
1790 	ASSERT(hat != NULL);
1791 	ASSERT(PAGE_LOCKED(pp));
1792 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
1793 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
1794 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
1795 
1796 	if (PP_ISFREE(pp)) {
1797 		panic("hat_memload: loading a mapping to free page %p",
1798 		    (void *)pp);
1799 	}
1800 
1801 	if (hat->sfmmu_xhat_provider) {
1802 		XHAT_MEMLOAD(hat, addr, pp, attr, flags);
1803 		return;
1804 	}
1805 
1806 	ASSERT((hat == ksfmmup) ||
1807 	    AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
1808 
1809 	if (flags & ~SFMMU_LOAD_ALLFLAG)
1810 		cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
1811 		    flags & ~SFMMU_LOAD_ALLFLAG);
1812 
1813 	if (hat->sfmmu_rmstat)
1814 		hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
1815 
1816 #if defined(SF_ERRATA_57)
1817 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1818 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1819 	    !(flags & HAT_LOAD_SHARE)) {
1820 		cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
1821 		    " page executable");
1822 		attr &= ~PROT_EXEC;
1823 	}
1824 #endif
1825 
1826 	sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
1827 	(void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags);
1828 
1829 	/*
1830 	 * Check TSB and TLB page sizes.
1831 	 */
1832 	if ((flags & HAT_LOAD_SHARE) == 0) {
1833 		sfmmu_check_page_sizes(hat, 1);
1834 	}
1835 }
1836 
1837 /*
1838  * hat_devload can be called to map real memory (e.g.
1839  * /dev/kmem) and even though hat_devload will determine pf is
1840  * for memory, it will be unable to get a shared lock on the
1841  * page (because someone else has it exclusively) and will
1842  * pass dp = NULL.  If tteload doesn't get a non-NULL
1843  * page pointer it can't cache memory.
1844  */
1845 void
1846 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
1847 	uint_t attr, int flags)
1848 {
1849 	tte_t tte;
1850 	struct page *pp = NULL;
1851 	int use_lgpg = 0;
1852 
1853 	ASSERT(hat != NULL);
1854 
1855 	if (hat->sfmmu_xhat_provider) {
1856 		XHAT_DEVLOAD(hat, addr, len, pfn, attr, flags);
1857 		return;
1858 	}
1859 
1860 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
1861 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
1862 	ASSERT((hat == ksfmmup) ||
1863 	    AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
1864 	if (len == 0)
1865 		panic("hat_devload: zero len");
1866 	if (flags & ~SFMMU_LOAD_ALLFLAG)
1867 		cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
1868 		    flags & ~SFMMU_LOAD_ALLFLAG);
1869 
1870 #if defined(SF_ERRATA_57)
1871 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1872 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1873 	    !(flags & HAT_LOAD_SHARE)) {
1874 		cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
1875 		    " page executable");
1876 		attr &= ~PROT_EXEC;
1877 	}
1878 #endif
1879 
1880 	/*
1881 	 * If it's a memory page find its pp
1882 	 */
1883 	if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
1884 		pp = page_numtopp_nolock(pfn);
1885 		if (pp == NULL) {
1886 			flags |= HAT_LOAD_NOCONSIST;
1887 		} else {
1888 			if (PP_ISFREE(pp)) {
1889 				panic("hat_memload: loading "
1890 				    "a mapping to free page %p",
1891 				    (void *)pp);
1892 			}
1893 			if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
1894 				panic("hat_memload: loading a mapping "
1895 				    "to unlocked relocatable page %p",
1896 				    (void *)pp);
1897 			}
1898 			ASSERT(len == MMU_PAGESIZE);
1899 		}
1900 	}
1901 
1902 	if (hat->sfmmu_rmstat)
1903 		hat_resvstat(len, hat->sfmmu_as, addr);
1904 
1905 	if (flags & HAT_LOAD_NOCONSIST) {
1906 		attr |= SFMMU_UNCACHEVTTE;
1907 		use_lgpg = 1;
1908 	}
1909 	if (!pf_is_memory(pfn)) {
1910 		attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
1911 		use_lgpg = 1;
1912 		switch (attr & HAT_ORDER_MASK) {
1913 			case HAT_STRICTORDER:
1914 			case HAT_UNORDERED_OK:
1915 				/*
1916 				 * we set the side effect bit for all non
1917 				 * memory mappings unless merging is ok
1918 				 */
1919 				attr |= SFMMU_SIDEFFECT;
1920 				break;
1921 			case HAT_MERGING_OK:
1922 			case HAT_LOADCACHING_OK:
1923 			case HAT_STORECACHING_OK:
1924 				break;
1925 			default:
1926 				panic("hat_devload: bad attr");
1927 				break;
1928 		}
1929 	}
1930 	while (len) {
1931 		if (!use_lgpg) {
1932 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
1933 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1934 			    flags);
1935 			len -= MMU_PAGESIZE;
1936 			addr += MMU_PAGESIZE;
1937 			pfn++;
1938 			continue;
1939 		}
1940 		/*
1941 		 *  try to use large pages, check va/pa alignments
1942 		 *  Note that 32M/256M page sizes are not (yet) supported.
1943 		 */
1944 		if ((len >= MMU_PAGESIZE4M) &&
1945 		    !((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
1946 		    !(disable_large_pages & (1 << TTE4M)) &&
1947 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
1948 			sfmmu_memtte(&tte, pfn, attr, TTE4M);
1949 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1950 			    flags);
1951 			len -= MMU_PAGESIZE4M;
1952 			addr += MMU_PAGESIZE4M;
1953 			pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
1954 		} else if ((len >= MMU_PAGESIZE512K) &&
1955 		    !((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
1956 		    !(disable_large_pages & (1 << TTE512K)) &&
1957 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
1958 			sfmmu_memtte(&tte, pfn, attr, TTE512K);
1959 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1960 			    flags);
1961 			len -= MMU_PAGESIZE512K;
1962 			addr += MMU_PAGESIZE512K;
1963 			pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
1964 		} else if ((len >= MMU_PAGESIZE64K) &&
1965 		    !((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
1966 		    !(disable_large_pages & (1 << TTE64K)) &&
1967 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
1968 			sfmmu_memtte(&tte, pfn, attr, TTE64K);
1969 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1970 			    flags);
1971 			len -= MMU_PAGESIZE64K;
1972 			addr += MMU_PAGESIZE64K;
1973 			pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
1974 		} else {
1975 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
1976 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1977 			    flags);
1978 			len -= MMU_PAGESIZE;
1979 			addr += MMU_PAGESIZE;
1980 			pfn++;
1981 		}
1982 	}
1983 
1984 	/*
1985 	 * Check TSB and TLB page sizes.
1986 	 */
1987 	if ((flags & HAT_LOAD_SHARE) == 0) {
1988 		sfmmu_check_page_sizes(hat, 1);
1989 	}
1990 }
1991 
1992 /*
1993  * Map the largest extend possible out of the page array. The array may NOT
1994  * be in order.  The largest possible mapping a page can have
1995  * is specified in the p_szc field.  The p_szc field
1996  * cannot change as long as there any mappings (large or small)
1997  * to any of the pages that make up the large page. (ie. any
1998  * promotion/demotion of page size is not up to the hat but up to
1999  * the page free list manager).  The array
2000  * should consist of properly aligned contigous pages that are
2001  * part of a big page for a large mapping to be created.
2002  */
2003 void
2004 hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
2005 	struct page **pps, uint_t attr, uint_t flags)
2006 {
2007 	int  ttesz;
2008 	size_t mapsz;
2009 	pgcnt_t	numpg, npgs;
2010 	tte_t tte;
2011 	page_t *pp;
2012 	uint_t large_pages_disable;
2013 
2014 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2015 
2016 	if (hat->sfmmu_xhat_provider) {
2017 		XHAT_MEMLOAD_ARRAY(hat, addr, len, pps, attr, flags);
2018 		return;
2019 	}
2020 
2021 	if (hat->sfmmu_rmstat)
2022 		hat_resvstat(len, hat->sfmmu_as, addr);
2023 
2024 #if defined(SF_ERRATA_57)
2025 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2026 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2027 	    !(flags & HAT_LOAD_SHARE)) {
2028 		cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
2029 		    "user page executable");
2030 		attr &= ~PROT_EXEC;
2031 	}
2032 #endif
2033 
2034 	/* Get number of pages */
2035 	npgs = len >> MMU_PAGESHIFT;
2036 
2037 	if (flags & HAT_LOAD_SHARE) {
2038 		large_pages_disable = disable_ism_large_pages;
2039 	} else {
2040 		large_pages_disable = disable_large_pages;
2041 	}
2042 
2043 	if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
2044 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
2045 		return;
2046 	}
2047 
2048 	while (npgs >= NHMENTS) {
2049 		pp = *pps;
2050 		for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
2051 			/*
2052 			 * Check if this page size is disabled.
2053 			 */
2054 			if (large_pages_disable & (1 << ttesz))
2055 				continue;
2056 
2057 			numpg = TTEPAGES(ttesz);
2058 			mapsz = numpg << MMU_PAGESHIFT;
2059 			if ((npgs >= numpg) &&
2060 			    IS_P2ALIGNED(addr, mapsz) &&
2061 			    IS_P2ALIGNED(pp->p_pagenum, numpg)) {
2062 				/*
2063 				 * At this point we have enough pages and
2064 				 * we know the virtual address and the pfn
2065 				 * are properly aligned.  We still need
2066 				 * to check for physical contiguity but since
2067 				 * it is very likely that this is the case
2068 				 * we will assume they are so and undo
2069 				 * the request if necessary.  It would
2070 				 * be great if we could get a hint flag
2071 				 * like HAT_CONTIG which would tell us
2072 				 * the pages are contigous for sure.
2073 				 */
2074 				sfmmu_memtte(&tte, (*pps)->p_pagenum,
2075 				    attr, ttesz);
2076 				if (!sfmmu_tteload_array(hat, &tte, addr,
2077 				    pps, flags)) {
2078 					break;
2079 				}
2080 			}
2081 		}
2082 		if (ttesz == TTE8K) {
2083 			/*
2084 			 * We were not able to map array using a large page
2085 			 * batch a hmeblk or fraction at a time.
2086 			 */
2087 			numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
2088 			    & (NHMENTS-1);
2089 			numpg = NHMENTS - numpg;
2090 			ASSERT(numpg <= npgs);
2091 			mapsz = numpg * MMU_PAGESIZE;
2092 			sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
2093 			    numpg);
2094 		}
2095 		addr += mapsz;
2096 		npgs -= numpg;
2097 		pps += numpg;
2098 	}
2099 
2100 	if (npgs) {
2101 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
2102 	}
2103 
2104 	/*
2105 	 * Check TSB and TLB page sizes.
2106 	 */
2107 	if ((flags & HAT_LOAD_SHARE) == 0) {
2108 		sfmmu_check_page_sizes(hat, 1);
2109 	}
2110 }
2111 
2112 /*
2113  * Function tries to batch 8K pages into the same hme blk.
2114  */
2115 static void
2116 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
2117 		    uint_t attr, uint_t flags, pgcnt_t npgs)
2118 {
2119 	tte_t	tte;
2120 	page_t *pp;
2121 	struct hmehash_bucket *hmebp;
2122 	struct hme_blk *hmeblkp;
2123 	int	index;
2124 
2125 	while (npgs) {
2126 		/*
2127 		 * Acquire the hash bucket.
2128 		 */
2129 		hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K);
2130 		ASSERT(hmebp);
2131 
2132 		/*
2133 		 * Find the hment block.
2134 		 */
2135 		hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
2136 		    TTE8K, flags);
2137 		ASSERT(hmeblkp);
2138 
2139 		do {
2140 			/*
2141 			 * Make the tte.
2142 			 */
2143 			pp = *pps;
2144 			sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2145 
2146 			/*
2147 			 * Add the translation.
2148 			 */
2149 			(void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
2150 			    vaddr, pps, flags);
2151 
2152 			/*
2153 			 * Goto next page.
2154 			 */
2155 			pps++;
2156 			npgs--;
2157 
2158 			/*
2159 			 * Goto next address.
2160 			 */
2161 			vaddr += MMU_PAGESIZE;
2162 
2163 			/*
2164 			 * Don't crossover into a different hmentblk.
2165 			 */
2166 			index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
2167 			    (NHMENTS-1));
2168 
2169 		} while (index != 0 && npgs != 0);
2170 
2171 		/*
2172 		 * Release the hash bucket.
2173 		 */
2174 
2175 		sfmmu_tteload_release_hashbucket(hmebp);
2176 	}
2177 }
2178 
2179 /*
2180  * Construct a tte for a page:
2181  *
2182  * tte_valid = 1
2183  * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only)
2184  * tte_size = size
2185  * tte_nfo = attr & HAT_NOFAULT
2186  * tte_ie = attr & HAT_STRUCTURE_LE
2187  * tte_hmenum = hmenum
2188  * tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
2189  * tte_palo = pp->p_pagenum & TTE_PALOMASK;
2190  * tte_ref = 1 (optimization)
2191  * tte_wr_perm = attr & PROT_WRITE;
2192  * tte_no_sync = attr & HAT_NOSYNC
2193  * tte_lock = attr & SFMMU_LOCKTTE
2194  * tte_cp = !(attr & SFMMU_UNCACHEPTTE)
2195  * tte_cv = !(attr & SFMMU_UNCACHEVTTE)
2196  * tte_e = attr & SFMMU_SIDEFFECT
2197  * tte_priv = !(attr & PROT_USER)
2198  * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
2199  * tte_glb = 0
2200  */
2201 void
2202 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
2203 {
2204 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2205 
2206 	ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
2207 	ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
2208 
2209 	if (TTE_IS_NOSYNC(ttep)) {
2210 		TTE_SET_REF(ttep);
2211 		if (TTE_IS_WRITABLE(ttep)) {
2212 			TTE_SET_MOD(ttep);
2213 		}
2214 	}
2215 	if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
2216 		panic("sfmmu_memtte: can't set both NFO and EXEC bits");
2217 	}
2218 }
2219 
2220 /*
2221  * This function will add a translation to the hme_blk and allocate the
2222  * hme_blk if one does not exist.
2223  * If a page structure is specified then it will add the
2224  * corresponding hment to the mapping list.
2225  * It will also update the hmenum field for the tte.
2226  */
2227 void
2228 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
2229 	uint_t flags)
2230 {
2231 	(void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags);
2232 }
2233 
2234 /*
2235  * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
2236  * Assumes that a particular page size may only be resident in one TSB.
2237  */
2238 static void
2239 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
2240 {
2241 	struct tsb_info *tsbinfop = NULL;
2242 	uint64_t tag;
2243 	struct tsbe *tsbe_addr;
2244 	uint64_t tsb_base;
2245 	uint_t tsb_size;
2246 	int vpshift = MMU_PAGESHIFT;
2247 	int phys = 0;
2248 
2249 	if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
2250 		phys = ktsb_phys;
2251 		if (ttesz >= TTE4M) {
2252 #ifndef sun4v
2253 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2254 #endif
2255 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2256 			tsb_size = ktsb4m_szcode;
2257 		} else {
2258 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2259 			tsb_size = ktsb_szcode;
2260 		}
2261 	} else {
2262 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2263 
2264 		/*
2265 		 * If there isn't a TSB for this page size, or the TSB is
2266 		 * swapped out, there is nothing to do.  Note that the latter
2267 		 * case seems impossible but can occur if hat_pageunload()
2268 		 * is called on an ISM mapping while the process is swapped
2269 		 * out.
2270 		 */
2271 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2272 			return;
2273 
2274 		/*
2275 		 * If another thread is in the middle of relocating a TSB
2276 		 * we can't unload the entry so set a flag so that the
2277 		 * TSB will be flushed before it can be accessed by the
2278 		 * process.
2279 		 */
2280 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2281 			if (ttep == NULL)
2282 				tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2283 			return;
2284 		}
2285 #if defined(UTSB_PHYS)
2286 		phys = 1;
2287 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2288 #else
2289 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2290 #endif
2291 		tsb_size = tsbinfop->tsb_szc;
2292 	}
2293 	if (ttesz >= TTE4M)
2294 		vpshift = MMU_PAGESHIFT4M;
2295 
2296 	tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2297 	tag = sfmmu_make_tsbtag(vaddr);
2298 
2299 	if (ttep == NULL) {
2300 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2301 	} else {
2302 		if (ttesz >= TTE4M) {
2303 			SFMMU_STAT(sf_tsb_load4m);
2304 		} else {
2305 			SFMMU_STAT(sf_tsb_load8k);
2306 		}
2307 
2308 		sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
2309 	}
2310 }
2311 
2312 /*
2313  * Unmap all entries from [start, end) matching the given page size.
2314  *
2315  * This function is used primarily to unmap replicated 64K or 512K entries
2316  * from the TSB that are inserted using the base page size TSB pointer, but
2317  * it may also be called to unmap a range of addresses from the TSB.
2318  */
2319 void
2320 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
2321 {
2322 	struct tsb_info *tsbinfop;
2323 	uint64_t tag;
2324 	struct tsbe *tsbe_addr;
2325 	caddr_t vaddr;
2326 	uint64_t tsb_base;
2327 	int vpshift, vpgsz;
2328 	uint_t tsb_size;
2329 	int phys = 0;
2330 
2331 	/*
2332 	 * Assumptions:
2333 	 *  If ttesz == 8K, 64K or 512K, we walk through the range 8K
2334 	 *  at a time shooting down any valid entries we encounter.
2335 	 *
2336 	 *  If ttesz >= 4M we walk the range 4M at a time shooting
2337 	 *  down any valid mappings we find.
2338 	 */
2339 	if (sfmmup == ksfmmup) {
2340 		phys = ktsb_phys;
2341 		if (ttesz >= TTE4M) {
2342 #ifndef sun4v
2343 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2344 #endif
2345 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2346 			tsb_size = ktsb4m_szcode;
2347 		} else {
2348 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2349 			tsb_size = ktsb_szcode;
2350 		}
2351 	} else {
2352 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2353 
2354 		/*
2355 		 * If there isn't a TSB for this page size, or the TSB is
2356 		 * swapped out, there is nothing to do.  Note that the latter
2357 		 * case seems impossible but can occur if hat_pageunload()
2358 		 * is called on an ISM mapping while the process is swapped
2359 		 * out.
2360 		 */
2361 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2362 			return;
2363 
2364 		/*
2365 		 * If another thread is in the middle of relocating a TSB
2366 		 * we can't unload the entry so set a flag so that the
2367 		 * TSB will be flushed before it can be accessed by the
2368 		 * process.
2369 		 */
2370 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2371 			tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2372 			return;
2373 		}
2374 #if defined(UTSB_PHYS)
2375 		phys = 1;
2376 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2377 #else
2378 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2379 #endif
2380 		tsb_size = tsbinfop->tsb_szc;
2381 	}
2382 	if (ttesz >= TTE4M) {
2383 		vpshift = MMU_PAGESHIFT4M;
2384 		vpgsz = MMU_PAGESIZE4M;
2385 	} else {
2386 		vpshift = MMU_PAGESHIFT;
2387 		vpgsz = MMU_PAGESIZE;
2388 	}
2389 
2390 	for (vaddr = start; vaddr < end; vaddr += vpgsz) {
2391 		tag = sfmmu_make_tsbtag(vaddr);
2392 		tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2393 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2394 	}
2395 }
2396 
2397 /*
2398  * Select the optimum TSB size given the number of mappings
2399  * that need to be cached.
2400  */
2401 static int
2402 sfmmu_select_tsb_szc(pgcnt_t pgcnt)
2403 {
2404 	int szc = 0;
2405 
2406 #ifdef DEBUG
2407 	if (tsb_grow_stress) {
2408 		uint32_t randval = (uint32_t)gettick() >> 4;
2409 		return (randval % (tsb_max_growsize + 1));
2410 	}
2411 #endif	/* DEBUG */
2412 
2413 	while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
2414 		szc++;
2415 	return (szc);
2416 }
2417 
2418 /*
2419  * This function will add a translation to the hme_blk and allocate the
2420  * hme_blk if one does not exist.
2421  * If a page structure is specified then it will add the
2422  * corresponding hment to the mapping list.
2423  * It will also update the hmenum field for the tte.
2424  * Furthermore, it attempts to create a large page translation
2425  * for <addr,hat> at page array pps.  It assumes addr and first
2426  * pp is correctly aligned.  It returns 0 if successful and 1 otherwise.
2427  */
2428 static int
2429 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
2430 	page_t **pps, uint_t flags)
2431 {
2432 	struct hmehash_bucket *hmebp;
2433 	struct hme_blk *hmeblkp;
2434 	int 	ret;
2435 	uint_t	size;
2436 
2437 	/*
2438 	 * Get mapping size.
2439 	 */
2440 	size = TTE_CSZ(ttep);
2441 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2442 
2443 	/*
2444 	 * Acquire the hash bucket.
2445 	 */
2446 	hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size);
2447 	ASSERT(hmebp);
2448 
2449 	/*
2450 	 * Find the hment block.
2451 	 */
2452 	hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags);
2453 	ASSERT(hmeblkp);
2454 
2455 	/*
2456 	 * Add the translation.
2457 	 */
2458 	ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags);
2459 
2460 	/*
2461 	 * Release the hash bucket.
2462 	 */
2463 	sfmmu_tteload_release_hashbucket(hmebp);
2464 
2465 	return (ret);
2466 }
2467 
2468 /*
2469  * Function locks and returns a pointer to the hash bucket for vaddr and size.
2470  */
2471 static struct hmehash_bucket *
2472 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size)
2473 {
2474 	struct hmehash_bucket *hmebp;
2475 	int hmeshift;
2476 
2477 	hmeshift = HME_HASH_SHIFT(size);
2478 
2479 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
2480 
2481 	SFMMU_HASH_LOCK(hmebp);
2482 
2483 	return (hmebp);
2484 }
2485 
2486 /*
2487  * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
2488  * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
2489  * allocated.
2490  */
2491 static struct hme_blk *
2492 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
2493 	caddr_t vaddr, uint_t size, uint_t flags)
2494 {
2495 	hmeblk_tag hblktag;
2496 	int hmeshift;
2497 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
2498 	uint64_t hblkpa, prevpa;
2499 	struct kmem_cache *sfmmu_cache;
2500 	uint_t forcefree;
2501 
2502 	hblktag.htag_id = sfmmup;
2503 	hmeshift = HME_HASH_SHIFT(size);
2504 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2505 	hblktag.htag_rehash = HME_HASH_REHASH(size);
2506 
2507 ttearray_realloc:
2508 
2509 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa,
2510 	    pr_hblk, prevpa, &list);
2511 
2512 	/*
2513 	 * We block until hblk_reserve_lock is released; it's held by
2514 	 * the thread, temporarily using hblk_reserve, until hblk_reserve is
2515 	 * replaced by a hblk from sfmmu8_cache.
2516 	 */
2517 	if (hmeblkp == (struct hme_blk *)hblk_reserve &&
2518 	    hblk_reserve_thread != curthread) {
2519 		SFMMU_HASH_UNLOCK(hmebp);
2520 		mutex_enter(&hblk_reserve_lock);
2521 		mutex_exit(&hblk_reserve_lock);
2522 		SFMMU_STAT(sf_hblk_reserve_hit);
2523 		SFMMU_HASH_LOCK(hmebp);
2524 		goto ttearray_realloc;
2525 	}
2526 
2527 	if (hmeblkp == NULL) {
2528 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
2529 		    hblktag, flags);
2530 	} else {
2531 		/*
2532 		 * It is possible for 8k and 64k hblks to collide since they
2533 		 * have the same rehash value. This is because we
2534 		 * lazily free hblks and 8K/64K blks could be lingering.
2535 		 * If we find size mismatch we free the block and & try again.
2536 		 */
2537 		if (get_hblk_ttesz(hmeblkp) != size) {
2538 			ASSERT(!hmeblkp->hblk_vcnt);
2539 			ASSERT(!hmeblkp->hblk_hmecnt);
2540 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
2541 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
2542 			goto ttearray_realloc;
2543 		}
2544 		if (hmeblkp->hblk_shw_bit) {
2545 			/*
2546 			 * if the hblk was previously used as a shadow hblk then
2547 			 * we will change it to a normal hblk
2548 			 */
2549 			if (hmeblkp->hblk_shw_mask) {
2550 				sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
2551 				ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2552 				goto ttearray_realloc;
2553 			} else {
2554 				hmeblkp->hblk_shw_bit = 0;
2555 			}
2556 		}
2557 		SFMMU_STAT(sf_hblk_hit);
2558 	}
2559 
2560 	/*
2561 	 * hat_memload() should never call kmem_cache_free(); see block
2562 	 * comment showing the stacktrace in sfmmu_hblk_alloc();
2563 	 * enqueue each hblk in the list to reserve list if it's created
2564 	 * from sfmmu8_cache *and* sfmmup == KHATID.
2565 	 */
2566 	forcefree = (sfmmup == KHATID) ? 1 : 0;
2567 	while ((pr_hblk = list) != NULL) {
2568 		list = pr_hblk->hblk_next;
2569 		sfmmu_cache = get_hblk_cache(pr_hblk);
2570 		if ((sfmmu_cache == sfmmu8_cache) &&
2571 		    sfmmu_put_free_hblk(pr_hblk, forcefree))
2572 			continue;
2573 
2574 		ASSERT(sfmmup != KHATID);
2575 		kmem_cache_free(sfmmu_cache, pr_hblk);
2576 	}
2577 
2578 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
2579 	ASSERT(!hmeblkp->hblk_shw_bit);
2580 
2581 	return (hmeblkp);
2582 }
2583 
2584 /*
2585  * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
2586  * otherwise.
2587  */
2588 static int
2589 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
2590 	caddr_t vaddr, page_t **pps, uint_t flags)
2591 {
2592 	page_t *pp = *pps;
2593 	int hmenum, size, remap;
2594 	tte_t tteold, flush_tte;
2595 #ifdef DEBUG
2596 	tte_t orig_old;
2597 #endif /* DEBUG */
2598 	struct sf_hment *sfhme;
2599 	kmutex_t *pml, *pmtx;
2600 	hatlock_t *hatlockp;
2601 
2602 	/*
2603 	 * remove this panic when we decide to let user virtual address
2604 	 * space be >= USERLIMIT.
2605 	 */
2606 	if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
2607 		panic("user addr %p in kernel space", vaddr);
2608 #if defined(TTE_IS_GLOBAL)
2609 	if (TTE_IS_GLOBAL(ttep))
2610 		panic("sfmmu_tteload: creating global tte");
2611 #endif
2612 
2613 #ifdef DEBUG
2614 	if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
2615 	    !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
2616 		panic("sfmmu_tteload: non cacheable memory tte");
2617 #endif /* DEBUG */
2618 
2619 	if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
2620 	    !TTE_IS_MOD(ttep)) {
2621 		/*
2622 		 * Don't load TSB for dummy as in ISM.  Also don't preload
2623 		 * the TSB if the TTE isn't writable since we're likely to
2624 		 * fault on it again -- preloading can be fairly expensive.
2625 		 */
2626 		flags |= SFMMU_NO_TSBLOAD;
2627 	}
2628 
2629 	size = TTE_CSZ(ttep);
2630 	switch (size) {
2631 	case TTE8K:
2632 		SFMMU_STAT(sf_tteload8k);
2633 		break;
2634 	case TTE64K:
2635 		SFMMU_STAT(sf_tteload64k);
2636 		break;
2637 	case TTE512K:
2638 		SFMMU_STAT(sf_tteload512k);
2639 		break;
2640 	case TTE4M:
2641 		SFMMU_STAT(sf_tteload4m);
2642 		break;
2643 	case (TTE32M):
2644 		SFMMU_STAT(sf_tteload32m);
2645 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2646 		break;
2647 	case (TTE256M):
2648 		SFMMU_STAT(sf_tteload256m);
2649 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2650 		break;
2651 	}
2652 
2653 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2654 
2655 	HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
2656 
2657 	/*
2658 	 * Need to grab mlist lock here so that pageunload
2659 	 * will not change tte behind us.
2660 	 */
2661 	if (pp) {
2662 		pml = sfmmu_mlist_enter(pp);
2663 	}
2664 
2665 	sfmmu_copytte(&sfhme->hme_tte, &tteold);
2666 	/*
2667 	 * Look for corresponding hment and if valid verify
2668 	 * pfns are equal.
2669 	 */
2670 	remap = TTE_IS_VALID(&tteold);
2671 	if (remap) {
2672 		pfn_t	new_pfn, old_pfn;
2673 
2674 		old_pfn = TTE_TO_PFN(vaddr, &tteold);
2675 		new_pfn = TTE_TO_PFN(vaddr, ttep);
2676 
2677 		if (flags & HAT_LOAD_REMAP) {
2678 			/* make sure we are remapping same type of pages */
2679 			if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
2680 				panic("sfmmu_tteload - tte remap io<->memory");
2681 			}
2682 			if (old_pfn != new_pfn &&
2683 			    (pp != NULL || sfhme->hme_page != NULL)) {
2684 				panic("sfmmu_tteload - tte remap pp != NULL");
2685 			}
2686 		} else if (old_pfn != new_pfn) {
2687 			panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
2688 			    (void *)hmeblkp);
2689 		}
2690 		ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
2691 	}
2692 
2693 	if (pp) {
2694 		if (size == TTE8K) {
2695 #ifdef VAC
2696 			/*
2697 			 * Handle VAC consistency
2698 			 */
2699 			if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
2700 				sfmmu_vac_conflict(sfmmup, vaddr, pp);
2701 			}
2702 #endif
2703 
2704 			if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
2705 				pmtx = sfmmu_page_enter(pp);
2706 				PP_CLRRO(pp);
2707 				sfmmu_page_exit(pmtx);
2708 			} else if (!PP_ISMAPPED(pp) &&
2709 			    (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
2710 				pmtx = sfmmu_page_enter(pp);
2711 				if (!(PP_ISMOD(pp))) {
2712 					PP_SETRO(pp);
2713 				}
2714 				sfmmu_page_exit(pmtx);
2715 			}
2716 
2717 		} else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
2718 			/*
2719 			 * sfmmu_pagearray_setup failed so return
2720 			 */
2721 			sfmmu_mlist_exit(pml);
2722 			return (1);
2723 		}
2724 	}
2725 
2726 	/*
2727 	 * Make sure hment is not on a mapping list.
2728 	 */
2729 	ASSERT(remap || (sfhme->hme_page == NULL));
2730 
2731 	/* if it is not a remap then hme->next better be NULL */
2732 	ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
2733 
2734 	if (flags & HAT_LOAD_LOCK) {
2735 		if (((int)hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
2736 			panic("too high lckcnt-hmeblk %p",
2737 			    (void *)hmeblkp);
2738 		}
2739 		atomic_add_16(&hmeblkp->hblk_lckcnt, 1);
2740 
2741 		HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
2742 	}
2743 
2744 #ifdef VAC
2745 	if (pp && PP_ISNC(pp)) {
2746 		/*
2747 		 * If the physical page is marked to be uncacheable, like
2748 		 * by a vac conflict, make sure the new mapping is also
2749 		 * uncacheable.
2750 		 */
2751 		TTE_CLR_VCACHEABLE(ttep);
2752 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
2753 	}
2754 #endif
2755 	ttep->tte_hmenum = hmenum;
2756 
2757 #ifdef DEBUG
2758 	orig_old = tteold;
2759 #endif /* DEBUG */
2760 
2761 	while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
2762 		if ((sfmmup == KHATID) &&
2763 		    (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
2764 			sfmmu_copytte(&sfhme->hme_tte, &tteold);
2765 		}
2766 #ifdef DEBUG
2767 		chk_tte(&orig_old, &tteold, ttep, hmeblkp);
2768 #endif /* DEBUG */
2769 	}
2770 
2771 	if (!TTE_IS_VALID(&tteold)) {
2772 
2773 		atomic_add_16(&hmeblkp->hblk_vcnt, 1);
2774 		atomic_add_long(&sfmmup->sfmmu_ttecnt[size], 1);
2775 
2776 		/*
2777 		 * HAT_RELOAD_SHARE has been deprecated with lpg DISM.
2778 		 */
2779 
2780 		if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
2781 		    sfmmup != ksfmmup) {
2782 			/*
2783 			 * If this is the first large mapping for the process
2784 			 * we must force any CPUs running this process to TL=0
2785 			 * where they will reload the HAT flags from the
2786 			 * tsbmiss area.  This is necessary to make the large
2787 			 * mappings we are about to load visible to those CPUs;
2788 			 * otherwise they'll loop forever calling pagefault()
2789 			 * since we don't search large hash chains by default.
2790 			 */
2791 			hatlockp = sfmmu_hat_enter(sfmmup);
2792 			if (size == TTE512K &&
2793 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_512K_FLAG)) {
2794 				SFMMU_FLAGS_SET(sfmmup, HAT_512K_FLAG);
2795 				sfmmu_sync_mmustate(sfmmup);
2796 			} else if (size == TTE4M &&
2797 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
2798 				SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
2799 				sfmmu_sync_mmustate(sfmmup);
2800 			} else if (size == TTE64K &&
2801 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG)) {
2802 				SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
2803 				/* no sync mmustate; 64K shares 8K hashes */
2804 			} else if (mmu_page_sizes == max_mmu_page_sizes) {
2805 				if (size == TTE32M &&
2806 				    !SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
2807 					SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
2808 					sfmmu_sync_mmustate(sfmmup);
2809 				} else if (size == TTE256M &&
2810 				    !SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
2811 					SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
2812 					sfmmu_sync_mmustate(sfmmup);
2813 				}
2814 			}
2815 			if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
2816 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
2817 				SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
2818 			}
2819 			sfmmu_hat_exit(hatlockp);
2820 		}
2821 	}
2822 	ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
2823 
2824 	flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
2825 	    hw_tte.tte_intlo;
2826 	flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
2827 	    hw_tte.tte_inthi;
2828 
2829 	if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
2830 		/*
2831 		 * If remap and new tte differs from old tte we need
2832 		 * to sync the mod bit and flush TLB/TSB.  We don't
2833 		 * need to sync ref bit because we currently always set
2834 		 * ref bit in tteload.
2835 		 */
2836 		ASSERT(TTE_IS_REF(ttep));
2837 		if (TTE_IS_MOD(&tteold)) {
2838 			sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
2839 		}
2840 		sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
2841 		xt_sync(sfmmup->sfmmu_cpusran);
2842 	}
2843 
2844 	if ((flags & SFMMU_NO_TSBLOAD) == 0) {
2845 		/*
2846 		 * We only preload 8K and 4M mappings into the TSB, since
2847 		 * 64K and 512K mappings are replicated and hence don't
2848 		 * have a single, unique TSB entry. Ditto for 32M/256M.
2849 		 */
2850 		if (size == TTE8K || size == TTE4M) {
2851 			hatlockp = sfmmu_hat_enter(sfmmup);
2852 			sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte, size);
2853 			sfmmu_hat_exit(hatlockp);
2854 		}
2855 	}
2856 	if (pp) {
2857 		if (!remap) {
2858 			HME_ADD(sfhme, pp);
2859 			atomic_add_16(&hmeblkp->hblk_hmecnt, 1);
2860 			ASSERT(hmeblkp->hblk_hmecnt > 0);
2861 
2862 			/*
2863 			 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
2864 			 * see pageunload() for comment.
2865 			 */
2866 		}
2867 		sfmmu_mlist_exit(pml);
2868 	}
2869 
2870 	return (0);
2871 }
2872 /*
2873  * Function unlocks hash bucket.
2874  */
2875 static void
2876 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
2877 {
2878 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2879 	SFMMU_HASH_UNLOCK(hmebp);
2880 }
2881 
2882 /*
2883  * function which checks and sets up page array for a large
2884  * translation.  Will set p_vcolor, p_index, p_ro fields.
2885  * Assumes addr and pfnum of first page are properly aligned.
2886  * Will check for physical contiguity. If check fails it return
2887  * non null.
2888  */
2889 static int
2890 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
2891 {
2892 	int 	i, index, ttesz;
2893 	pfn_t	pfnum;
2894 	pgcnt_t	npgs;
2895 	page_t *pp, *pp1;
2896 	kmutex_t *pmtx;
2897 #ifdef VAC
2898 	int osz;
2899 	int cflags = 0;
2900 	int vac_err = 0;
2901 #endif
2902 	int newidx = 0;
2903 
2904 	ttesz = TTE_CSZ(ttep);
2905 
2906 	ASSERT(ttesz > TTE8K);
2907 
2908 	npgs = TTEPAGES(ttesz);
2909 	index = PAGESZ_TO_INDEX(ttesz);
2910 
2911 	pfnum = (*pps)->p_pagenum;
2912 	ASSERT(IS_P2ALIGNED(pfnum, npgs));
2913 
2914 	/*
2915 	 * Save the first pp so we can do HAT_TMPNC at the end.
2916 	 */
2917 	pp1 = *pps;
2918 #ifdef VAC
2919 	osz = fnd_mapping_sz(pp1);
2920 #endif
2921 
2922 	for (i = 0; i < npgs; i++, pps++) {
2923 		pp = *pps;
2924 		ASSERT(PAGE_LOCKED(pp));
2925 		ASSERT(pp->p_szc >= ttesz);
2926 		ASSERT(pp->p_szc == pp1->p_szc);
2927 		ASSERT(sfmmu_mlist_held(pp));
2928 
2929 		/*
2930 		 * XXX is it possible to maintain P_RO on the root only?
2931 		 */
2932 		if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
2933 			pmtx = sfmmu_page_enter(pp);
2934 			PP_CLRRO(pp);
2935 			sfmmu_page_exit(pmtx);
2936 		} else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
2937 		    !PP_ISMOD(pp)) {
2938 			pmtx = sfmmu_page_enter(pp);
2939 			if (!(PP_ISMOD(pp))) {
2940 				PP_SETRO(pp);
2941 			}
2942 			sfmmu_page_exit(pmtx);
2943 		}
2944 
2945 		/*
2946 		 * If this is a remap we skip vac & contiguity checks.
2947 		 */
2948 		if (remap)
2949 			continue;
2950 
2951 		/*
2952 		 * set p_vcolor and detect any vac conflicts.
2953 		 */
2954 #ifdef VAC
2955 		if (vac_err == 0) {
2956 			vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
2957 
2958 		}
2959 #endif
2960 
2961 		/*
2962 		 * Save current index in case we need to undo it.
2963 		 * Note: "PAGESZ_TO_INDEX(sz)	(1 << (sz))"
2964 		 *	"SFMMU_INDEX_SHIFT	6"
2965 		 *	 "SFMMU_INDEX_MASK	((1 << SFMMU_INDEX_SHIFT) - 1)"
2966 		 *	 "PP_MAPINDEX(p_index)	(p_index & SFMMU_INDEX_MASK)"
2967 		 *
2968 		 * So:	index = PAGESZ_TO_INDEX(ttesz);
2969 		 *	if ttesz == 1 then index = 0x2
2970 		 *		    2 then index = 0x4
2971 		 *		    3 then index = 0x8
2972 		 *		    4 then index = 0x10
2973 		 *		    5 then index = 0x20
2974 		 * The code below checks if it's a new pagesize (ie, newidx)
2975 		 * in case we need to take it back out of p_index,
2976 		 * and then or's the new index into the existing index.
2977 		 */
2978 		if ((PP_MAPINDEX(pp) & index) == 0)
2979 			newidx = 1;
2980 		pp->p_index = (PP_MAPINDEX(pp) | index);
2981 
2982 		/*
2983 		 * contiguity check
2984 		 */
2985 		if (pp->p_pagenum != pfnum) {
2986 			/*
2987 			 * If we fail the contiguity test then
2988 			 * the only thing we need to fix is the p_index field.
2989 			 * We might get a few extra flushes but since this
2990 			 * path is rare that is ok.  The p_ro field will
2991 			 * get automatically fixed on the next tteload to
2992 			 * the page.  NO TNC bit is set yet.
2993 			 */
2994 			while (i >= 0) {
2995 				pp = *pps;
2996 				if (newidx)
2997 					pp->p_index = (PP_MAPINDEX(pp) &
2998 					    ~index);
2999 				pps--;
3000 				i--;
3001 			}
3002 			return (1);
3003 		}
3004 		pfnum++;
3005 		addr += MMU_PAGESIZE;
3006 	}
3007 
3008 #ifdef VAC
3009 	if (vac_err) {
3010 		if (ttesz > osz) {
3011 			/*
3012 			 * There are some smaller mappings that causes vac
3013 			 * conflicts. Convert all existing small mappings to
3014 			 * TNC.
3015 			 */
3016 			SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
3017 			sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
3018 			    npgs);
3019 		} else {
3020 			/* EMPTY */
3021 			/*
3022 			 * If there exists an big page mapping,
3023 			 * that means the whole existing big page
3024 			 * has TNC setting already. No need to covert to
3025 			 * TNC again.
3026 			 */
3027 			ASSERT(PP_ISTNC(pp1));
3028 		}
3029 	}
3030 #endif	/* VAC */
3031 
3032 	return (0);
3033 }
3034 
3035 #ifdef VAC
3036 /*
3037  * Routine that detects vac consistency for a large page. It also
3038  * sets virtual color for all pp's for this big mapping.
3039  */
3040 static int
3041 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
3042 {
3043 	int vcolor, ocolor;
3044 
3045 	ASSERT(sfmmu_mlist_held(pp));
3046 
3047 	if (PP_ISNC(pp)) {
3048 		return (HAT_TMPNC);
3049 	}
3050 
3051 	vcolor = addr_to_vcolor(addr);
3052 	if (PP_NEWPAGE(pp)) {
3053 		PP_SET_VCOLOR(pp, vcolor);
3054 		return (0);
3055 	}
3056 
3057 	ocolor = PP_GET_VCOLOR(pp);
3058 	if (ocolor == vcolor) {
3059 		return (0);
3060 	}
3061 
3062 	if (!PP_ISMAPPED(pp)) {
3063 		/*
3064 		 * Previous user of page had a differnet color
3065 		 * but since there are no current users
3066 		 * we just flush the cache and change the color.
3067 		 * As an optimization for large pages we flush the
3068 		 * entire cache of that color and set a flag.
3069 		 */
3070 		SFMMU_STAT(sf_pgcolor_conflict);
3071 		if (!CacheColor_IsFlushed(*cflags, ocolor)) {
3072 			CacheColor_SetFlushed(*cflags, ocolor);
3073 			sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
3074 		}
3075 		PP_SET_VCOLOR(pp, vcolor);
3076 		return (0);
3077 	}
3078 
3079 	/*
3080 	 * We got a real conflict with a current mapping.
3081 	 * set flags to start unencaching all mappings
3082 	 * and return failure so we restart looping
3083 	 * the pp array from the beginning.
3084 	 */
3085 	return (HAT_TMPNC);
3086 }
3087 #endif	/* VAC */
3088 
3089 /*
3090  * creates a large page shadow hmeblk for a tte.
3091  * The purpose of this routine is to allow us to do quick unloads because
3092  * the vm layer can easily pass a very large but sparsely populated range.
3093  */
3094 static struct hme_blk *
3095 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
3096 {
3097 	struct hmehash_bucket *hmebp;
3098 	hmeblk_tag hblktag;
3099 	int hmeshift, size, vshift;
3100 	uint_t shw_mask, newshw_mask;
3101 	struct hme_blk *hmeblkp;
3102 
3103 	ASSERT(sfmmup != KHATID);
3104 	if (mmu_page_sizes == max_mmu_page_sizes) {
3105 		ASSERT(ttesz < TTE256M);
3106 	} else {
3107 		ASSERT(ttesz < TTE4M);
3108 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
3109 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
3110 	}
3111 
3112 	if (ttesz == TTE8K) {
3113 		size = TTE512K;
3114 	} else {
3115 		size = ++ttesz;
3116 	}
3117 
3118 	hblktag.htag_id = sfmmup;
3119 	hmeshift = HME_HASH_SHIFT(size);
3120 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
3121 	hblktag.htag_rehash = HME_HASH_REHASH(size);
3122 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
3123 
3124 	SFMMU_HASH_LOCK(hmebp);
3125 
3126 	HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3127 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
3128 	if (hmeblkp == NULL) {
3129 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3130 		    hblktag, flags);
3131 	}
3132 	ASSERT(hmeblkp);
3133 	if (!hmeblkp->hblk_shw_mask) {
3134 		/*
3135 		 * if this is a unused hblk it was just allocated or could
3136 		 * potentially be a previous large page hblk so we need to
3137 		 * set the shadow bit.
3138 		 */
3139 		ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3140 		hmeblkp->hblk_shw_bit = 1;
3141 	} else if (hmeblkp->hblk_shw_bit == 0) {
3142 		panic("sfmmu_shadow_hcreate: shw bit not set in hmeblkp 0x%p",
3143 		    (void *)hmeblkp);
3144 	}
3145 
3146 	vshift = vaddr_to_vshift(hblktag, vaddr, size);
3147 	ASSERT(vshift < 8);
3148 	/*
3149 	 * Atomically set shw mask bit
3150 	 */
3151 	do {
3152 		shw_mask = hmeblkp->hblk_shw_mask;
3153 		newshw_mask = shw_mask | (1 << vshift);
3154 		newshw_mask = cas32(&hmeblkp->hblk_shw_mask, shw_mask,
3155 		    newshw_mask);
3156 	} while (newshw_mask != shw_mask);
3157 
3158 	SFMMU_HASH_UNLOCK(hmebp);
3159 
3160 	return (hmeblkp);
3161 }
3162 
3163 /*
3164  * This routine cleanup a previous shadow hmeblk and changes it to
3165  * a regular hblk.  This happens rarely but it is possible
3166  * when a process wants to use large pages and there are hblks still
3167  * lying around from the previous as that used these hmeblks.
3168  * The alternative was to cleanup the shadow hblks at unload time
3169  * but since so few user processes actually use large pages, it is
3170  * better to be lazy and cleanup at this time.
3171  */
3172 static void
3173 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
3174 	struct hmehash_bucket *hmebp)
3175 {
3176 	caddr_t addr, endaddr;
3177 	int hashno, size;
3178 
3179 	ASSERT(hmeblkp->hblk_shw_bit);
3180 
3181 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3182 
3183 	if (!hmeblkp->hblk_shw_mask) {
3184 		hmeblkp->hblk_shw_bit = 0;
3185 		return;
3186 	}
3187 	addr = (caddr_t)get_hblk_base(hmeblkp);
3188 	endaddr = get_hblk_endaddr(hmeblkp);
3189 	size = get_hblk_ttesz(hmeblkp);
3190 	hashno = size - 1;
3191 	ASSERT(hashno > 0);
3192 	SFMMU_HASH_UNLOCK(hmebp);
3193 
3194 	sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
3195 
3196 	SFMMU_HASH_LOCK(hmebp);
3197 }
3198 
3199 static void
3200 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
3201 	int hashno)
3202 {
3203 	int hmeshift, shadow = 0;
3204 	hmeblk_tag hblktag;
3205 	struct hmehash_bucket *hmebp;
3206 	struct hme_blk *hmeblkp;
3207 	struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
3208 	uint64_t hblkpa, prevpa, nx_pa;
3209 
3210 	ASSERT(hashno > 0);
3211 	hblktag.htag_id = sfmmup;
3212 	hblktag.htag_rehash = hashno;
3213 
3214 	hmeshift = HME_HASH_SHIFT(hashno);
3215 
3216 	while (addr < endaddr) {
3217 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3218 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3219 		SFMMU_HASH_LOCK(hmebp);
3220 		/* inline HME_HASH_SEARCH */
3221 		hmeblkp = hmebp->hmeblkp;
3222 		hblkpa = hmebp->hmeh_nextpa;
3223 		prevpa = 0;
3224 		pr_hblk = NULL;
3225 		while (hmeblkp) {
3226 			ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
3227 			if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
3228 				/* found hme_blk */
3229 				if (hmeblkp->hblk_shw_bit) {
3230 					if (hmeblkp->hblk_shw_mask) {
3231 						shadow = 1;
3232 						sfmmu_shadow_hcleanup(sfmmup,
3233 						    hmeblkp, hmebp);
3234 						break;
3235 					} else {
3236 						hmeblkp->hblk_shw_bit = 0;
3237 					}
3238 				}
3239 
3240 				/*
3241 				 * Hblk_hmecnt and hblk_vcnt could be non zero
3242 				 * since hblk_unload() does not gurantee that.
3243 				 *
3244 				 * XXX - this could cause tteload() to spin
3245 				 * where sfmmu_shadow_hcleanup() is called.
3246 				 */
3247 			}
3248 
3249 			nx_hblk = hmeblkp->hblk_next;
3250 			nx_pa = hmeblkp->hblk_nextpa;
3251 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
3252 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
3253 				    pr_hblk);
3254 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
3255 			} else {
3256 				pr_hblk = hmeblkp;
3257 				prevpa = hblkpa;
3258 			}
3259 			hmeblkp = nx_hblk;
3260 			hblkpa = nx_pa;
3261 		}
3262 
3263 		SFMMU_HASH_UNLOCK(hmebp);
3264 
3265 		if (shadow) {
3266 			/*
3267 			 * We found another shadow hblk so cleaned its
3268 			 * children.  We need to go back and cleanup
3269 			 * the original hblk so we don't change the
3270 			 * addr.
3271 			 */
3272 			shadow = 0;
3273 		} else {
3274 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
3275 			    (1 << hmeshift));
3276 		}
3277 	}
3278 	sfmmu_hblks_list_purge(&list);
3279 }
3280 
3281 /*
3282  * Release one hardware address translation lock on the given address range.
3283  */
3284 void
3285 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
3286 {
3287 	struct hmehash_bucket *hmebp;
3288 	hmeblk_tag hblktag;
3289 	int hmeshift, hashno = 1;
3290 	struct hme_blk *hmeblkp, *list = NULL;
3291 	caddr_t endaddr;
3292 
3293 	ASSERT(sfmmup != NULL);
3294 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3295 
3296 	ASSERT((sfmmup == ksfmmup) ||
3297 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3298 	ASSERT((len & MMU_PAGEOFFSET) == 0);
3299 	endaddr = addr + len;
3300 	hblktag.htag_id = sfmmup;
3301 
3302 	/*
3303 	 * Spitfire supports 4 page sizes.
3304 	 * Most pages are expected to be of the smallest page size (8K) and
3305 	 * these will not need to be rehashed. 64K pages also don't need to be
3306 	 * rehashed because an hmeblk spans 64K of address space. 512K pages
3307 	 * might need 1 rehash and and 4M pages might need 2 rehashes.
3308 	 */
3309 	while (addr < endaddr) {
3310 		hmeshift = HME_HASH_SHIFT(hashno);
3311 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3312 		hblktag.htag_rehash = hashno;
3313 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3314 
3315 		SFMMU_HASH_LOCK(hmebp);
3316 
3317 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3318 		if (hmeblkp != NULL) {
3319 			/*
3320 			 * If we encounter a shadow hmeblk then
3321 			 * we know there are no valid hmeblks mapping
3322 			 * this address at this size or larger.
3323 			 * Just increment address by the smallest
3324 			 * page size.
3325 			 */
3326 			if (hmeblkp->hblk_shw_bit) {
3327 				addr += MMU_PAGESIZE;
3328 			} else {
3329 				addr = sfmmu_hblk_unlock(hmeblkp, addr,
3330 				    endaddr);
3331 			}
3332 			SFMMU_HASH_UNLOCK(hmebp);
3333 			hashno = 1;
3334 			continue;
3335 		}
3336 		SFMMU_HASH_UNLOCK(hmebp);
3337 
3338 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
3339 			/*
3340 			 * We have traversed the whole list and rehashed
3341 			 * if necessary without finding the address to unlock
3342 			 * which should never happen.
3343 			 */
3344 			panic("sfmmu_unlock: addr not found. "
3345 			    "addr %p hat %p", (void *)addr, (void *)sfmmup);
3346 		} else {
3347 			hashno++;
3348 		}
3349 	}
3350 
3351 	sfmmu_hblks_list_purge(&list);
3352 }
3353 
3354 /*
3355  * Function to unlock a range of addresses in an hmeblk.  It returns the
3356  * next address that needs to be unlocked.
3357  * Should be called with the hash lock held.
3358  */
3359 static caddr_t
3360 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
3361 {
3362 	struct sf_hment *sfhme;
3363 	tte_t tteold, ttemod;
3364 	int ttesz, ret;
3365 
3366 	ASSERT(in_hblk_range(hmeblkp, addr));
3367 	ASSERT(hmeblkp->hblk_shw_bit == 0);
3368 
3369 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
3370 	ttesz = get_hblk_ttesz(hmeblkp);
3371 
3372 	HBLKTOHME(sfhme, hmeblkp, addr);
3373 	while (addr < endaddr) {
3374 readtte:
3375 		sfmmu_copytte(&sfhme->hme_tte, &tteold);
3376 		if (TTE_IS_VALID(&tteold)) {
3377 
3378 			ttemod = tteold;
3379 
3380 			ret = sfmmu_modifytte_try(&tteold, &ttemod,
3381 			    &sfhme->hme_tte);
3382 
3383 			if (ret < 0)
3384 				goto readtte;
3385 
3386 			if (hmeblkp->hblk_lckcnt == 0)
3387 				panic("zero hblk lckcnt");
3388 
3389 			if (((uintptr_t)addr + TTEBYTES(ttesz)) >
3390 			    (uintptr_t)endaddr)
3391 				panic("can't unlock large tte");
3392 
3393 			ASSERT(hmeblkp->hblk_lckcnt > 0);
3394 			atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
3395 			HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
3396 		} else {
3397 			panic("sfmmu_hblk_unlock: invalid tte");
3398 		}
3399 		addr += TTEBYTES(ttesz);
3400 		sfhme++;
3401 	}
3402 	return (addr);
3403 }
3404 
3405 /*
3406  * Physical Address Mapping Framework
3407  *
3408  * General rules:
3409  *
3410  * (1) Applies only to seg_kmem memory pages. To make things easier,
3411  *     seg_kpm addresses are also accepted by the routines, but nothing
3412  *     is done with them since by definition their PA mappings are static.
3413  * (2) hat_add_callback() may only be called while holding the page lock
3414  *     SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()),
3415  *     or passing HAC_PAGELOCK flag.
3416  * (3) prehandler() and posthandler() may not call hat_add_callback() or
3417  *     hat_delete_callback(), nor should they allocate memory. Post quiesce
3418  *     callbacks may not sleep or acquire adaptive mutex locks.
3419  * (4) Either prehandler() or posthandler() (but not both) may be specified
3420  *     as being NULL.  Specifying an errhandler() is optional.
3421  *
3422  * Details of using the framework:
3423  *
3424  * registering a callback (hat_register_callback())
3425  *
3426  *	Pass prehandler, posthandler, errhandler addresses
3427  *	as described below. If capture_cpus argument is nonzero,
3428  *	suspend callback to the prehandler will occur with CPUs
3429  *	captured and executing xc_loop() and CPUs will remain
3430  *	captured until after the posthandler suspend callback
3431  *	occurs.
3432  *
3433  * adding a callback (hat_add_callback())
3434  *
3435  *      as_pagelock();
3436  *	hat_add_callback();
3437  *      save returned pfn in private data structures or program registers;
3438  *      as_pageunlock();
3439  *
3440  * prehandler()
3441  *
3442  *	Stop all accesses by physical address to this memory page.
3443  *	Called twice: the first, PRESUSPEND, is a context safe to acquire
3444  *	adaptive locks. The second, SUSPEND, is called at high PIL with
3445  *	CPUs captured so adaptive locks may NOT be acquired (and all spin
3446  *	locks must be XCALL_PIL or higher locks).
3447  *
3448  *	May return the following errors:
3449  *		EIO:	A fatal error has occurred. This will result in panic.
3450  *		EAGAIN:	The page cannot be suspended. This will fail the
3451  *			relocation.
3452  *		0:	Success.
3453  *
3454  * posthandler()
3455  *
3456  *      Save new pfn in private data structures or program registers;
3457  *	not allowed to fail (non-zero return values will result in panic).
3458  *
3459  * errhandler()
3460  *
3461  *	called when an error occurs related to the callback.  Currently
3462  *	the only such error is HAT_CB_ERR_LEAKED which indicates that
3463  *	a page is being freed, but there are still outstanding callback(s)
3464  *	registered on the page.
3465  *
3466  * removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
3467  *
3468  *	stop using physical address
3469  *	hat_delete_callback();
3470  *
3471  */
3472 
3473 /*
3474  * Register a callback class.  Each subsystem should do this once and
3475  * cache the id_t returned for use in setting up and tearing down callbacks.
3476  *
3477  * There is no facility for removing callback IDs once they are created;
3478  * the "key" should be unique for each module, so in case a module is unloaded
3479  * and subsequently re-loaded, we can recycle the module's previous entry.
3480  */
3481 id_t
3482 hat_register_callback(int key,
3483 	int (*prehandler)(caddr_t, uint_t, uint_t, void *),
3484 	int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
3485 	int (*errhandler)(caddr_t, uint_t, uint_t, void *),
3486 	int capture_cpus)
3487 {
3488 	id_t id;
3489 
3490 	/*
3491 	 * Search the table for a pre-existing callback associated with
3492 	 * the identifier "key".  If one exists, we re-use that entry in
3493 	 * the table for this instance, otherwise we assign the next
3494 	 * available table slot.
3495 	 */
3496 	for (id = 0; id < sfmmu_max_cb_id; id++) {
3497 		if (sfmmu_cb_table[id].key == key)
3498 			break;
3499 	}
3500 
3501 	if (id == sfmmu_max_cb_id) {
3502 		id = sfmmu_cb_nextid++;
3503 		if (id >= sfmmu_max_cb_id)
3504 			panic("hat_register_callback: out of callback IDs");
3505 	}
3506 
3507 	ASSERT(prehandler != NULL || posthandler != NULL);
3508 
3509 	sfmmu_cb_table[id].key = key;
3510 	sfmmu_cb_table[id].prehandler = prehandler;
3511 	sfmmu_cb_table[id].posthandler = posthandler;
3512 	sfmmu_cb_table[id].errhandler = errhandler;
3513 	sfmmu_cb_table[id].capture_cpus = capture_cpus;
3514 
3515 	return (id);
3516 }
3517 
3518 #define	HAC_COOKIE_NONE	(void *)-1
3519 
3520 /*
3521  * Add relocation callbacks to the specified addr/len which will be called
3522  * when relocating the associated page. See the description of pre and
3523  * posthandler above for more details.
3524  *
3525  * If HAC_PAGELOCK is included in flags, the underlying memory page is
3526  * locked internally so the caller must be able to deal with the callback
3527  * running even before this function has returned.  If HAC_PAGELOCK is not
3528  * set, it is assumed that the underlying memory pages are locked.
3529  *
3530  * Since the caller must track the individual page boundaries anyway,
3531  * we only allow a callback to be added to a single page (large
3532  * or small).  Thus [addr, addr + len) MUST be contained within a single
3533  * page.
3534  *
3535  * Registering multiple callbacks on the same [addr, addr+len) is supported,
3536  * _provided_that_ a unique parameter is specified for each callback.
3537  * If multiple callbacks are registered on the same range the callback will
3538  * be invoked with each unique parameter. Registering the same callback with
3539  * the same argument more than once will result in corrupted kernel state.
3540  *
3541  * Returns the pfn of the underlying kernel page in *rpfn
3542  * on success, or PFN_INVALID on failure.
3543  *
3544  * cookiep (if passed) provides storage space for an opaque cookie
3545  * to return later to hat_delete_callback(). This cookie makes the callback
3546  * deletion significantly quicker by avoiding a potentially lengthy hash
3547  * search.
3548  *
3549  * Returns values:
3550  *    0:      success
3551  *    ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
3552  *    EINVAL: callback ID is not valid
3553  *    ENXIO:  ["vaddr", "vaddr" + len) is not mapped in the kernel's address
3554  *            space
3555  *    ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary
3556  */
3557 int
3558 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
3559 	void *pvt, pfn_t *rpfn, void **cookiep)
3560 {
3561 	struct 		hmehash_bucket *hmebp;
3562 	hmeblk_tag 	hblktag;
3563 	struct hme_blk	*hmeblkp;
3564 	int 		hmeshift, hashno;
3565 	caddr_t 	saddr, eaddr, baseaddr;
3566 	struct pa_hment *pahmep;
3567 	struct sf_hment *sfhmep, *osfhmep;
3568 	kmutex_t	*pml;
3569 	tte_t   	tte;
3570 	page_t		*pp;
3571 	vnode_t		*vp;
3572 	u_offset_t	off;
3573 	pfn_t		pfn;
3574 	int		kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
3575 	int		locked = 0;
3576 
3577 	/*
3578 	 * For KPM mappings, just return the physical address since we
3579 	 * don't need to register any callbacks.
3580 	 */
3581 	if (IS_KPM_ADDR(vaddr)) {
3582 		uint64_t paddr;
3583 		SFMMU_KPM_VTOP(vaddr, paddr);
3584 		*rpfn = btop(paddr);
3585 		if (cookiep != NULL)
3586 			*cookiep = HAC_COOKIE_NONE;
3587 		return (0);
3588 	}
3589 
3590 	if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
3591 		*rpfn = PFN_INVALID;
3592 		return (EINVAL);
3593 	}
3594 
3595 	if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
3596 		*rpfn = PFN_INVALID;
3597 		return (ENOMEM);
3598 	}
3599 
3600 	sfhmep = &pahmep->sfment;
3601 
3602 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
3603 	eaddr = saddr + len;
3604 
3605 rehash:
3606 	/* Find the mapping(s) for this page */
3607 	for (hashno = TTE64K, hmeblkp = NULL;
3608 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
3609 	    hashno++) {
3610 		hmeshift = HME_HASH_SHIFT(hashno);
3611 		hblktag.htag_id = ksfmmup;
3612 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
3613 		hblktag.htag_rehash = hashno;
3614 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
3615 
3616 		SFMMU_HASH_LOCK(hmebp);
3617 
3618 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3619 
3620 		if (hmeblkp == NULL)
3621 			SFMMU_HASH_UNLOCK(hmebp);
3622 	}
3623 
3624 	if (hmeblkp == NULL) {
3625 		kmem_cache_free(pa_hment_cache, pahmep);
3626 		*rpfn = PFN_INVALID;
3627 		return (ENXIO);
3628 	}
3629 
3630 	HBLKTOHME(osfhmep, hmeblkp, saddr);
3631 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
3632 
3633 	if (!TTE_IS_VALID(&tte)) {
3634 		SFMMU_HASH_UNLOCK(hmebp);
3635 		kmem_cache_free(pa_hment_cache, pahmep);
3636 		*rpfn = PFN_INVALID;
3637 		return (ENXIO);
3638 	}
3639 
3640 	/*
3641 	 * Make sure the boundaries for the callback fall within this
3642 	 * single mapping.
3643 	 */
3644 	baseaddr = (caddr_t)get_hblk_base(hmeblkp);
3645 	ASSERT(saddr >= baseaddr);
3646 	if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) {
3647 		SFMMU_HASH_UNLOCK(hmebp);
3648 		kmem_cache_free(pa_hment_cache, pahmep);
3649 		*rpfn = PFN_INVALID;
3650 		return (ERANGE);
3651 	}
3652 
3653 	pfn = sfmmu_ttetopfn(&tte, vaddr);
3654 
3655 	/*
3656 	 * The pfn may not have a page_t underneath in which case we
3657 	 * just return it. This can happen if we are doing I/O to a
3658 	 * static portion of the kernel's address space, for instance.
3659 	 */
3660 	pp = osfhmep->hme_page;
3661 	if (pp == NULL) {
3662 		SFMMU_HASH_UNLOCK(hmebp);
3663 		kmem_cache_free(pa_hment_cache, pahmep);
3664 		*rpfn = pfn;
3665 		if (cookiep)
3666 			*cookiep = HAC_COOKIE_NONE;
3667 		return (0);
3668 	}
3669 	ASSERT(pp == PP_PAGEROOT(pp));
3670 
3671 	vp = pp->p_vnode;
3672 	off = pp->p_offset;
3673 
3674 	pml = sfmmu_mlist_enter(pp);
3675 
3676 	if (flags & HAC_PAGELOCK) {
3677 		if (!page_trylock(pp, SE_SHARED)) {
3678 			/*
3679 			 * Somebody is holding SE_EXCL lock. Might
3680 			 * even be hat_page_relocate(). Drop all
3681 			 * our locks, lookup the page in &kvp, and
3682 			 * retry. If it doesn't exist in &kvp and &zvp,
3683 			 * then we must be dealing with a kernel mapped
3684 			 * page which doesn't actually belong to
3685 			 * segkmem so we punt.
3686 			 */
3687 			sfmmu_mlist_exit(pml);
3688 			SFMMU_HASH_UNLOCK(hmebp);
3689 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
3690 
3691 			/* check zvp before giving up */
3692 			if (pp == NULL)
3693 				pp = page_lookup(&zvp, (u_offset_t)saddr,
3694 				    SE_SHARED);
3695 
3696 			/* Okay, we didn't find it, give up */
3697 			if (pp == NULL) {
3698 				kmem_cache_free(pa_hment_cache, pahmep);
3699 				*rpfn = pfn;
3700 				if (cookiep)
3701 					*cookiep = HAC_COOKIE_NONE;
3702 				return (0);
3703 			}
3704 			page_unlock(pp);
3705 			goto rehash;
3706 		}
3707 		locked = 1;
3708 	}
3709 
3710 	if (!PAGE_LOCKED(pp) && !panicstr)
3711 		panic("hat_add_callback: page 0x%p not locked", pp);
3712 
3713 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
3714 	    pp->p_offset != off) {
3715 		/*
3716 		 * The page moved before we got our hands on it.  Drop
3717 		 * all the locks and try again.
3718 		 */
3719 		ASSERT((flags & HAC_PAGELOCK) != 0);
3720 		sfmmu_mlist_exit(pml);
3721 		SFMMU_HASH_UNLOCK(hmebp);
3722 		page_unlock(pp);
3723 		locked = 0;
3724 		goto rehash;
3725 	}
3726 
3727 	if (!VN_ISKAS(vp)) {
3728 		/*
3729 		 * This is not a segkmem page but another page which
3730 		 * has been kernel mapped. It had better have at least
3731 		 * a share lock on it. Return the pfn.
3732 		 */
3733 		sfmmu_mlist_exit(pml);
3734 		SFMMU_HASH_UNLOCK(hmebp);
3735 		if (locked)
3736 			page_unlock(pp);
3737 		kmem_cache_free(pa_hment_cache, pahmep);
3738 		ASSERT(PAGE_LOCKED(pp));
3739 		*rpfn = pfn;
3740 		if (cookiep)
3741 			*cookiep = HAC_COOKIE_NONE;
3742 		return (0);
3743 	}
3744 
3745 	/*
3746 	 * Setup this pa_hment and link its embedded dummy sf_hment into
3747 	 * the mapping list.
3748 	 */
3749 	pp->p_share++;
3750 	pahmep->cb_id = callback_id;
3751 	pahmep->addr = vaddr;
3752 	pahmep->len = len;
3753 	pahmep->refcnt = 1;
3754 	pahmep->flags = 0;
3755 	pahmep->pvt = pvt;
3756 
3757 	sfhmep->hme_tte.ll = 0;
3758 	sfhmep->hme_data = pahmep;
3759 	sfhmep->hme_prev = osfhmep;
3760 	sfhmep->hme_next = osfhmep->hme_next;
3761 
3762 	if (osfhmep->hme_next)
3763 		osfhmep->hme_next->hme_prev = sfhmep;
3764 
3765 	osfhmep->hme_next = sfhmep;
3766 
3767 	sfmmu_mlist_exit(pml);
3768 	SFMMU_HASH_UNLOCK(hmebp);
3769 
3770 	if (locked)
3771 		page_unlock(pp);
3772 
3773 	*rpfn = pfn;
3774 	if (cookiep)
3775 		*cookiep = (void *)pahmep;
3776 
3777 	return (0);
3778 }
3779 
3780 /*
3781  * Remove the relocation callbacks from the specified addr/len.
3782  */
3783 void
3784 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags,
3785 	void *cookie)
3786 {
3787 	struct		hmehash_bucket *hmebp;
3788 	hmeblk_tag	hblktag;
3789 	struct hme_blk	*hmeblkp;
3790 	int		hmeshift, hashno;
3791 	caddr_t		saddr;
3792 	struct pa_hment	*pahmep;
3793 	struct sf_hment	*sfhmep, *osfhmep;
3794 	kmutex_t	*pml;
3795 	tte_t		tte;
3796 	page_t		*pp;
3797 	vnode_t		*vp;
3798 	u_offset_t	off;
3799 	int		locked = 0;
3800 
3801 	/*
3802 	 * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to
3803 	 * remove so just return.
3804 	 */
3805 	if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr))
3806 		return;
3807 
3808 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
3809 
3810 rehash:
3811 	/* Find the mapping(s) for this page */
3812 	for (hashno = TTE64K, hmeblkp = NULL;
3813 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
3814 	    hashno++) {
3815 		hmeshift = HME_HASH_SHIFT(hashno);
3816 		hblktag.htag_id = ksfmmup;
3817 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
3818 		hblktag.htag_rehash = hashno;
3819 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
3820 
3821 		SFMMU_HASH_LOCK(hmebp);
3822 
3823 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3824 
3825 		if (hmeblkp == NULL)
3826 			SFMMU_HASH_UNLOCK(hmebp);
3827 	}
3828 
3829 	if (hmeblkp == NULL)
3830 		return;
3831 
3832 	HBLKTOHME(osfhmep, hmeblkp, saddr);
3833 
3834 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
3835 	if (!TTE_IS_VALID(&tte)) {
3836 		SFMMU_HASH_UNLOCK(hmebp);
3837 		return;
3838 	}
3839 
3840 	pp = osfhmep->hme_page;
3841 	if (pp == NULL) {
3842 		SFMMU_HASH_UNLOCK(hmebp);
3843 		ASSERT(cookie == NULL);
3844 		return;
3845 	}
3846 
3847 	vp = pp->p_vnode;
3848 	off = pp->p_offset;
3849 
3850 	pml = sfmmu_mlist_enter(pp);
3851 
3852 	if (flags & HAC_PAGELOCK) {
3853 		if (!page_trylock(pp, SE_SHARED)) {
3854 			/*
3855 			 * Somebody is holding SE_EXCL lock. Might
3856 			 * even be hat_page_relocate(). Drop all
3857 			 * our locks, lookup the page in &kvp, and
3858 			 * retry. If it doesn't exist in &kvp and &zvp,
3859 			 * then we must be dealing with a kernel mapped
3860 			 * page which doesn't actually belong to
3861 			 * segkmem so we punt.
3862 			 */
3863 			sfmmu_mlist_exit(pml);
3864 			SFMMU_HASH_UNLOCK(hmebp);
3865 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
3866 			/* check zvp before giving up */
3867 			if (pp == NULL)
3868 				pp = page_lookup(&zvp, (u_offset_t)saddr,
3869 				    SE_SHARED);
3870 
3871 			if (pp == NULL) {
3872 				ASSERT(cookie == NULL);
3873 				return;
3874 			}
3875 			page_unlock(pp);
3876 			goto rehash;
3877 		}
3878 		locked = 1;
3879 	}
3880 
3881 	ASSERT(PAGE_LOCKED(pp));
3882 
3883 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
3884 	    pp->p_offset != off) {
3885 		/*
3886 		 * The page moved before we got our hands on it.  Drop
3887 		 * all the locks and try again.
3888 		 */
3889 		ASSERT((flags & HAC_PAGELOCK) != 0);
3890 		sfmmu_mlist_exit(pml);
3891 		SFMMU_HASH_UNLOCK(hmebp);
3892 		page_unlock(pp);
3893 		locked = 0;
3894 		goto rehash;
3895 	}
3896 
3897 	if (!VN_ISKAS(vp)) {
3898 		/*
3899 		 * This is not a segkmem page but another page which
3900 		 * has been kernel mapped.
3901 		 */
3902 		sfmmu_mlist_exit(pml);
3903 		SFMMU_HASH_UNLOCK(hmebp);
3904 		if (locked)
3905 			page_unlock(pp);
3906 		ASSERT(cookie == NULL);
3907 		return;
3908 	}
3909 
3910 	if (cookie != NULL) {
3911 		pahmep = (struct pa_hment *)cookie;
3912 		sfhmep = &pahmep->sfment;
3913 	} else {
3914 		for (sfhmep = pp->p_mapping; sfhmep != NULL;
3915 		    sfhmep = sfhmep->hme_next) {
3916 
3917 			/*
3918 			 * skip va<->pa mappings
3919 			 */
3920 			if (!IS_PAHME(sfhmep))
3921 				continue;
3922 
3923 			pahmep = sfhmep->hme_data;
3924 			ASSERT(pahmep != NULL);
3925 
3926 			/*
3927 			 * if pa_hment matches, remove it
3928 			 */
3929 			if ((pahmep->pvt == pvt) &&
3930 			    (pahmep->addr == vaddr) &&
3931 			    (pahmep->len == len)) {
3932 				break;
3933 			}
3934 		}
3935 	}
3936 
3937 	if (sfhmep == NULL) {
3938 		if (!panicstr) {
3939 			panic("hat_delete_callback: pa_hment not found, pp %p",
3940 			    (void *)pp);
3941 		}
3942 		return;
3943 	}
3944 
3945 	/*
3946 	 * Note: at this point a valid kernel mapping must still be
3947 	 * present on this page.
3948 	 */
3949 	pp->p_share--;
3950 	if (pp->p_share <= 0)
3951 		panic("hat_delete_callback: zero p_share");
3952 
3953 	if (--pahmep->refcnt == 0) {
3954 		if (pahmep->flags != 0)
3955 			panic("hat_delete_callback: pa_hment is busy");
3956 
3957 		/*
3958 		 * Remove sfhmep from the mapping list for the page.
3959 		 */
3960 		if (sfhmep->hme_prev) {
3961 			sfhmep->hme_prev->hme_next = sfhmep->hme_next;
3962 		} else {
3963 			pp->p_mapping = sfhmep->hme_next;
3964 		}
3965 
3966 		if (sfhmep->hme_next)
3967 			sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
3968 
3969 		sfmmu_mlist_exit(pml);
3970 		SFMMU_HASH_UNLOCK(hmebp);
3971 
3972 		if (locked)
3973 			page_unlock(pp);
3974 
3975 		kmem_cache_free(pa_hment_cache, pahmep);
3976 		return;
3977 	}
3978 
3979 	sfmmu_mlist_exit(pml);
3980 	SFMMU_HASH_UNLOCK(hmebp);
3981 	if (locked)
3982 		page_unlock(pp);
3983 }
3984 
3985 /*
3986  * hat_probe returns 1 if the translation for the address 'addr' is
3987  * loaded, zero otherwise.
3988  *
3989  * hat_probe should be used only for advisorary purposes because it may
3990  * occasionally return the wrong value. The implementation must guarantee that
3991  * returning the wrong value is a very rare event. hat_probe is used
3992  * to implement optimizations in the segment drivers.
3993  *
3994  */
3995 int
3996 hat_probe(struct hat *sfmmup, caddr_t addr)
3997 {
3998 	pfn_t pfn;
3999 	tte_t tte;
4000 
4001 	ASSERT(sfmmup != NULL);
4002 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4003 
4004 	ASSERT((sfmmup == ksfmmup) ||
4005 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4006 
4007 	if (sfmmup == ksfmmup) {
4008 		while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
4009 		    == PFN_SUSPENDED) {
4010 			sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
4011 		}
4012 	} else {
4013 		pfn = sfmmu_uvatopfn(addr, sfmmup);
4014 	}
4015 
4016 	if (pfn != PFN_INVALID)
4017 		return (1);
4018 	else
4019 		return (0);
4020 }
4021 
4022 ssize_t
4023 hat_getpagesize(struct hat *sfmmup, caddr_t addr)
4024 {
4025 	tte_t tte;
4026 
4027 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4028 
4029 	sfmmu_gettte(sfmmup, addr, &tte);
4030 	if (TTE_IS_VALID(&tte)) {
4031 		return (TTEBYTES(TTE_CSZ(&tte)));
4032 	}
4033 	return (-1);
4034 }
4035 
4036 static void
4037 sfmmu_gettte(struct hat *sfmmup, caddr_t addr, tte_t *ttep)
4038 {
4039 	struct hmehash_bucket *hmebp;
4040 	hmeblk_tag hblktag;
4041 	int hmeshift, hashno = 1;
4042 	struct hme_blk *hmeblkp, *list = NULL;
4043 	struct sf_hment *sfhmep;
4044 
4045 	/* support for ISM */
4046 	ism_map_t	*ism_map;
4047 	ism_blk_t	*ism_blkp;
4048 	int		i;
4049 	sfmmu_t		*ism_hatid = NULL;
4050 	sfmmu_t		*locked_hatid = NULL;
4051 
4052 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
4053 
4054 	ism_blkp = sfmmup->sfmmu_iblk;
4055 	if (ism_blkp) {
4056 		sfmmu_ismhat_enter(sfmmup, 0);
4057 		locked_hatid = sfmmup;
4058 	}
4059 	while (ism_blkp && ism_hatid == NULL) {
4060 		ism_map = ism_blkp->iblk_maps;
4061 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
4062 			if (addr >= ism_start(ism_map[i]) &&
4063 			    addr < ism_end(ism_map[i])) {
4064 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
4065 				addr = (caddr_t)(addr -
4066 				    ism_start(ism_map[i]));
4067 				break;
4068 			}
4069 		}
4070 		ism_blkp = ism_blkp->iblk_next;
4071 	}
4072 	if (locked_hatid) {
4073 		sfmmu_ismhat_exit(locked_hatid, 0);
4074 	}
4075 
4076 	hblktag.htag_id = sfmmup;
4077 	ttep->ll = 0;
4078 
4079 	do {
4080 		hmeshift = HME_HASH_SHIFT(hashno);
4081 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4082 		hblktag.htag_rehash = hashno;
4083 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4084 
4085 		SFMMU_HASH_LOCK(hmebp);
4086 
4087 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4088 		if (hmeblkp != NULL) {
4089 			HBLKTOHME(sfhmep, hmeblkp, addr);
4090 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
4091 			SFMMU_HASH_UNLOCK(hmebp);
4092 			break;
4093 		}
4094 		SFMMU_HASH_UNLOCK(hmebp);
4095 		hashno++;
4096 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
4097 
4098 	sfmmu_hblks_list_purge(&list);
4099 }
4100 
4101 uint_t
4102 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
4103 {
4104 	tte_t tte;
4105 
4106 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4107 
4108 	sfmmu_gettte(sfmmup, addr, &tte);
4109 	if (TTE_IS_VALID(&tte)) {
4110 		*attr = sfmmu_ptov_attr(&tte);
4111 		return (0);
4112 	}
4113 	*attr = 0;
4114 	return ((uint_t)0xffffffff);
4115 }
4116 
4117 /*
4118  * Enables more attributes on specified address range (ie. logical OR)
4119  */
4120 void
4121 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4122 {
4123 	if (hat->sfmmu_xhat_provider) {
4124 		XHAT_SETATTR(hat, addr, len, attr);
4125 		return;
4126 	} else {
4127 		/*
4128 		 * This must be a CPU HAT. If the address space has
4129 		 * XHATs attached, change attributes for all of them,
4130 		 * just in case
4131 		 */
4132 		ASSERT(hat->sfmmu_as != NULL);
4133 		if (hat->sfmmu_as->a_xhat != NULL)
4134 			xhat_setattr_all(hat->sfmmu_as, addr, len, attr);
4135 	}
4136 
4137 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
4138 }
4139 
4140 /*
4141  * Assigns attributes to the specified address range.  All the attributes
4142  * are specified.
4143  */
4144 void
4145 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4146 {
4147 	if (hat->sfmmu_xhat_provider) {
4148 		XHAT_CHGATTR(hat, addr, len, attr);
4149 		return;
4150 	} else {
4151 		/*
4152 		 * This must be a CPU HAT. If the address space has
4153 		 * XHATs attached, change attributes for all of them,
4154 		 * just in case
4155 		 */
4156 		ASSERT(hat->sfmmu_as != NULL);
4157 		if (hat->sfmmu_as->a_xhat != NULL)
4158 			xhat_chgattr_all(hat->sfmmu_as, addr, len, attr);
4159 	}
4160 
4161 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
4162 }
4163 
4164 /*
4165  * Remove attributes on the specified address range (ie. loginal NAND)
4166  */
4167 void
4168 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4169 {
4170 	if (hat->sfmmu_xhat_provider) {
4171 		XHAT_CLRATTR(hat, addr, len, attr);
4172 		return;
4173 	} else {
4174 		/*
4175 		 * This must be a CPU HAT. If the address space has
4176 		 * XHATs attached, change attributes for all of them,
4177 		 * just in case
4178 		 */
4179 		ASSERT(hat->sfmmu_as != NULL);
4180 		if (hat->sfmmu_as->a_xhat != NULL)
4181 			xhat_clrattr_all(hat->sfmmu_as, addr, len, attr);
4182 	}
4183 
4184 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
4185 }
4186 
4187 /*
4188  * Change attributes on an address range to that specified by attr and mode.
4189  */
4190 static void
4191 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
4192 	int mode)
4193 {
4194 	struct hmehash_bucket *hmebp;
4195 	hmeblk_tag hblktag;
4196 	int hmeshift, hashno = 1;
4197 	struct hme_blk *hmeblkp, *list = NULL;
4198 	caddr_t endaddr;
4199 	cpuset_t cpuset;
4200 	demap_range_t dmr;
4201 
4202 	CPUSET_ZERO(cpuset);
4203 
4204 	ASSERT((sfmmup == ksfmmup) ||
4205 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4206 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4207 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4208 
4209 	if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
4210 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4211 		panic("user addr %p in kernel space",
4212 		    (void *)addr);
4213 	}
4214 
4215 	endaddr = addr + len;
4216 	hblktag.htag_id = sfmmup;
4217 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4218 
4219 	while (addr < endaddr) {
4220 		hmeshift = HME_HASH_SHIFT(hashno);
4221 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4222 		hblktag.htag_rehash = hashno;
4223 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4224 
4225 		SFMMU_HASH_LOCK(hmebp);
4226 
4227 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4228 		if (hmeblkp != NULL) {
4229 			/*
4230 			 * We've encountered a shadow hmeblk so skip the range
4231 			 * of the next smaller mapping size.
4232 			 */
4233 			if (hmeblkp->hblk_shw_bit) {
4234 				ASSERT(sfmmup != ksfmmup);
4235 				ASSERT(hashno > 1);
4236 				addr = (caddr_t)P2END((uintptr_t)addr,
4237 				    TTEBYTES(hashno - 1));
4238 			} else {
4239 				addr = sfmmu_hblk_chgattr(sfmmup,
4240 				    hmeblkp, addr, endaddr, &dmr, attr, mode);
4241 			}
4242 			SFMMU_HASH_UNLOCK(hmebp);
4243 			hashno = 1;
4244 			continue;
4245 		}
4246 		SFMMU_HASH_UNLOCK(hmebp);
4247 
4248 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4249 			/*
4250 			 * We have traversed the whole list and rehashed
4251 			 * if necessary without finding the address to chgattr.
4252 			 * This is ok, so we increment the address by the
4253 			 * smallest hmeblk range for kernel mappings or for
4254 			 * user mappings with no large pages, and the largest
4255 			 * hmeblk range, to account for shadow hmeblks, for
4256 			 * user mappings with large pages and continue.
4257 			 */
4258 			if (sfmmup == ksfmmup)
4259 				addr = (caddr_t)P2END((uintptr_t)addr,
4260 				    TTEBYTES(1));
4261 			else
4262 				addr = (caddr_t)P2END((uintptr_t)addr,
4263 				    TTEBYTES(hashno));
4264 			hashno = 1;
4265 		} else {
4266 			hashno++;
4267 		}
4268 	}
4269 
4270 	sfmmu_hblks_list_purge(&list);
4271 	DEMAP_RANGE_FLUSH(&dmr);
4272 	cpuset = sfmmup->sfmmu_cpusran;
4273 	xt_sync(cpuset);
4274 }
4275 
4276 /*
4277  * This function chgattr on a range of addresses in an hmeblk.  It returns the
4278  * next addres that needs to be chgattr.
4279  * It should be called with the hash lock held.
4280  * XXX It should be possible to optimize chgattr by not flushing every time but
4281  * on the other hand:
4282  * 1. do one flush crosscall.
4283  * 2. only flush if we are increasing permissions (make sure this will work)
4284  */
4285 static caddr_t
4286 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4287 	caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
4288 {
4289 	tte_t tte, tteattr, tteflags, ttemod;
4290 	struct sf_hment *sfhmep;
4291 	int ttesz;
4292 	struct page *pp = NULL;
4293 	kmutex_t *pml, *pmtx;
4294 	int ret;
4295 	int use_demap_range;
4296 #if defined(SF_ERRATA_57)
4297 	int check_exec;
4298 #endif
4299 
4300 	ASSERT(in_hblk_range(hmeblkp, addr));
4301 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4302 
4303 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4304 	ttesz = get_hblk_ttesz(hmeblkp);
4305 
4306 	/*
4307 	 * Flush the current demap region if addresses have been
4308 	 * skipped or the page size doesn't match.
4309 	 */
4310 	use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
4311 	if (use_demap_range) {
4312 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4313 	} else {
4314 		DEMAP_RANGE_FLUSH(dmrp);
4315 	}
4316 
4317 	tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
4318 #if defined(SF_ERRATA_57)
4319 	check_exec = (sfmmup != ksfmmup) &&
4320 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4321 	    TTE_IS_EXECUTABLE(&tteattr);
4322 #endif
4323 	HBLKTOHME(sfhmep, hmeblkp, addr);
4324 	while (addr < endaddr) {
4325 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4326 		if (TTE_IS_VALID(&tte)) {
4327 			if ((tte.ll & tteflags.ll) == tteattr.ll) {
4328 				/*
4329 				 * if the new attr is the same as old
4330 				 * continue
4331 				 */
4332 				goto next_addr;
4333 			}
4334 			if (!TTE_IS_WRITABLE(&tteattr)) {
4335 				/*
4336 				 * make sure we clear hw modify bit if we
4337 				 * removing write protections
4338 				 */
4339 				tteflags.tte_intlo |= TTE_HWWR_INT;
4340 			}
4341 
4342 			pml = NULL;
4343 			pp = sfhmep->hme_page;
4344 			if (pp) {
4345 				pml = sfmmu_mlist_enter(pp);
4346 			}
4347 
4348 			if (pp != sfhmep->hme_page) {
4349 				/*
4350 				 * tte must have been unloaded.
4351 				 */
4352 				ASSERT(pml);
4353 				sfmmu_mlist_exit(pml);
4354 				continue;
4355 			}
4356 
4357 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4358 
4359 			ttemod = tte;
4360 			ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
4361 			ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
4362 
4363 #if defined(SF_ERRATA_57)
4364 			if (check_exec && addr < errata57_limit)
4365 				ttemod.tte_exec_perm = 0;
4366 #endif
4367 			ret = sfmmu_modifytte_try(&tte, &ttemod,
4368 			    &sfhmep->hme_tte);
4369 
4370 			if (ret < 0) {
4371 				/* tte changed underneath us */
4372 				if (pml) {
4373 					sfmmu_mlist_exit(pml);
4374 				}
4375 				continue;
4376 			}
4377 
4378 			if (tteflags.tte_intlo & TTE_HWWR_INT) {
4379 				/*
4380 				 * need to sync if we are clearing modify bit.
4381 				 */
4382 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4383 			}
4384 
4385 			if (pp && PP_ISRO(pp)) {
4386 				if (tteattr.tte_intlo & TTE_WRPRM_INT) {
4387 					pmtx = sfmmu_page_enter(pp);
4388 					PP_CLRRO(pp);
4389 					sfmmu_page_exit(pmtx);
4390 				}
4391 			}
4392 
4393 			if (ret > 0 && use_demap_range) {
4394 				DEMAP_RANGE_MARKPG(dmrp, addr);
4395 			} else if (ret > 0) {
4396 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4397 			}
4398 
4399 			if (pml) {
4400 				sfmmu_mlist_exit(pml);
4401 			}
4402 		}
4403 next_addr:
4404 		addr += TTEBYTES(ttesz);
4405 		sfhmep++;
4406 		DEMAP_RANGE_NEXTPG(dmrp);
4407 	}
4408 	return (addr);
4409 }
4410 
4411 /*
4412  * This routine converts virtual attributes to physical ones.  It will
4413  * update the tteflags field with the tte mask corresponding to the attributes
4414  * affected and it returns the new attributes.  It will also clear the modify
4415  * bit if we are taking away write permission.  This is necessary since the
4416  * modify bit is the hardware permission bit and we need to clear it in order
4417  * to detect write faults.
4418  */
4419 static uint64_t
4420 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
4421 {
4422 	tte_t ttevalue;
4423 
4424 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
4425 
4426 	switch (mode) {
4427 	case SFMMU_CHGATTR:
4428 		/* all attributes specified */
4429 		ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
4430 		ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
4431 		ttemaskp->tte_inthi = TTEINTHI_ATTR;
4432 		ttemaskp->tte_intlo = TTEINTLO_ATTR;
4433 		break;
4434 	case SFMMU_SETATTR:
4435 		ASSERT(!(attr & ~HAT_PROT_MASK));
4436 		ttemaskp->ll = 0;
4437 		ttevalue.ll = 0;
4438 		/*
4439 		 * a valid tte implies exec and read for sfmmu
4440 		 * so no need to do anything about them.
4441 		 * since priviledged access implies user access
4442 		 * PROT_USER doesn't make sense either.
4443 		 */
4444 		if (attr & PROT_WRITE) {
4445 			ttemaskp->tte_intlo |= TTE_WRPRM_INT;
4446 			ttevalue.tte_intlo |= TTE_WRPRM_INT;
4447 		}
4448 		break;
4449 	case SFMMU_CLRATTR:
4450 		/* attributes will be nand with current ones */
4451 		if (attr & ~(PROT_WRITE | PROT_USER)) {
4452 			panic("sfmmu: attr %x not supported", attr);
4453 		}
4454 		ttemaskp->ll = 0;
4455 		ttevalue.ll = 0;
4456 		if (attr & PROT_WRITE) {
4457 			/* clear both writable and modify bit */
4458 			ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
4459 		}
4460 		if (attr & PROT_USER) {
4461 			ttemaskp->tte_intlo |= TTE_PRIV_INT;
4462 			ttevalue.tte_intlo |= TTE_PRIV_INT;
4463 		}
4464 		break;
4465 	default:
4466 		panic("sfmmu_vtop_attr: bad mode %x", mode);
4467 	}
4468 	ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
4469 	return (ttevalue.ll);
4470 }
4471 
4472 static uint_t
4473 sfmmu_ptov_attr(tte_t *ttep)
4474 {
4475 	uint_t attr;
4476 
4477 	ASSERT(TTE_IS_VALID(ttep));
4478 
4479 	attr = PROT_READ;
4480 
4481 	if (TTE_IS_WRITABLE(ttep)) {
4482 		attr |= PROT_WRITE;
4483 	}
4484 	if (TTE_IS_EXECUTABLE(ttep)) {
4485 		attr |= PROT_EXEC;
4486 	}
4487 	if (!TTE_IS_PRIVILEGED(ttep)) {
4488 		attr |= PROT_USER;
4489 	}
4490 	if (TTE_IS_NFO(ttep)) {
4491 		attr |= HAT_NOFAULT;
4492 	}
4493 	if (TTE_IS_NOSYNC(ttep)) {
4494 		attr |= HAT_NOSYNC;
4495 	}
4496 	if (TTE_IS_SIDEFFECT(ttep)) {
4497 		attr |= SFMMU_SIDEFFECT;
4498 	}
4499 	if (!TTE_IS_VCACHEABLE(ttep)) {
4500 		attr |= SFMMU_UNCACHEVTTE;
4501 	}
4502 	if (!TTE_IS_PCACHEABLE(ttep)) {
4503 		attr |= SFMMU_UNCACHEPTTE;
4504 	}
4505 	return (attr);
4506 }
4507 
4508 /*
4509  * hat_chgprot is a deprecated hat call.  New segment drivers
4510  * should store all attributes and use hat_*attr calls.
4511  *
4512  * Change the protections in the virtual address range
4513  * given to the specified virtual protection.  If vprot is ~PROT_WRITE,
4514  * then remove write permission, leaving the other
4515  * permissions unchanged.  If vprot is ~PROT_USER, remove user permissions.
4516  *
4517  */
4518 void
4519 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
4520 {
4521 	struct hmehash_bucket *hmebp;
4522 	hmeblk_tag hblktag;
4523 	int hmeshift, hashno = 1;
4524 	struct hme_blk *hmeblkp, *list = NULL;
4525 	caddr_t endaddr;
4526 	cpuset_t cpuset;
4527 	demap_range_t dmr;
4528 
4529 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4530 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4531 
4532 	if (sfmmup->sfmmu_xhat_provider) {
4533 		XHAT_CHGPROT(sfmmup, addr, len, vprot);
4534 		return;
4535 	} else {
4536 		/*
4537 		 * This must be a CPU HAT. If the address space has
4538 		 * XHATs attached, change attributes for all of them,
4539 		 * just in case
4540 		 */
4541 		ASSERT(sfmmup->sfmmu_as != NULL);
4542 		if (sfmmup->sfmmu_as->a_xhat != NULL)
4543 			xhat_chgprot_all(sfmmup->sfmmu_as, addr, len, vprot);
4544 	}
4545 
4546 	CPUSET_ZERO(cpuset);
4547 
4548 	if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
4549 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4550 		panic("user addr %p vprot %x in kernel space",
4551 		    (void *)addr, vprot);
4552 	}
4553 	endaddr = addr + len;
4554 	hblktag.htag_id = sfmmup;
4555 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4556 
4557 	while (addr < endaddr) {
4558 		hmeshift = HME_HASH_SHIFT(hashno);
4559 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4560 		hblktag.htag_rehash = hashno;
4561 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4562 
4563 		SFMMU_HASH_LOCK(hmebp);
4564 
4565 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4566 		if (hmeblkp != NULL) {
4567 			/*
4568 			 * We've encountered a shadow hmeblk so skip the range
4569 			 * of the next smaller mapping size.
4570 			 */
4571 			if (hmeblkp->hblk_shw_bit) {
4572 				ASSERT(sfmmup != ksfmmup);
4573 				ASSERT(hashno > 1);
4574 				addr = (caddr_t)P2END((uintptr_t)addr,
4575 				    TTEBYTES(hashno - 1));
4576 			} else {
4577 				addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
4578 				    addr, endaddr, &dmr, vprot);
4579 			}
4580 			SFMMU_HASH_UNLOCK(hmebp);
4581 			hashno = 1;
4582 			continue;
4583 		}
4584 		SFMMU_HASH_UNLOCK(hmebp);
4585 
4586 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4587 			/*
4588 			 * We have traversed the whole list and rehashed
4589 			 * if necessary without finding the address to chgprot.
4590 			 * This is ok so we increment the address by the
4591 			 * smallest hmeblk range for kernel mappings and the
4592 			 * largest hmeblk range, to account for shadow hmeblks,
4593 			 * for user mappings and continue.
4594 			 */
4595 			if (sfmmup == ksfmmup)
4596 				addr = (caddr_t)P2END((uintptr_t)addr,
4597 				    TTEBYTES(1));
4598 			else
4599 				addr = (caddr_t)P2END((uintptr_t)addr,
4600 				    TTEBYTES(hashno));
4601 			hashno = 1;
4602 		} else {
4603 			hashno++;
4604 		}
4605 	}
4606 
4607 	sfmmu_hblks_list_purge(&list);
4608 	DEMAP_RANGE_FLUSH(&dmr);
4609 	cpuset = sfmmup->sfmmu_cpusran;
4610 	xt_sync(cpuset);
4611 }
4612 
4613 /*
4614  * This function chgprots a range of addresses in an hmeblk.  It returns the
4615  * next addres that needs to be chgprot.
4616  * It should be called with the hash lock held.
4617  * XXX It shold be possible to optimize chgprot by not flushing every time but
4618  * on the other hand:
4619  * 1. do one flush crosscall.
4620  * 2. only flush if we are increasing permissions (make sure this will work)
4621  */
4622 static caddr_t
4623 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4624 	caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
4625 {
4626 	uint_t pprot;
4627 	tte_t tte, ttemod;
4628 	struct sf_hment *sfhmep;
4629 	uint_t tteflags;
4630 	int ttesz;
4631 	struct page *pp = NULL;
4632 	kmutex_t *pml, *pmtx;
4633 	int ret;
4634 	int use_demap_range;
4635 #if defined(SF_ERRATA_57)
4636 	int check_exec;
4637 #endif
4638 
4639 	ASSERT(in_hblk_range(hmeblkp, addr));
4640 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4641 
4642 #ifdef DEBUG
4643 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
4644 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
4645 		panic("sfmmu_hblk_chgprot: partial chgprot of large page");
4646 	}
4647 #endif /* DEBUG */
4648 
4649 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4650 	ttesz = get_hblk_ttesz(hmeblkp);
4651 
4652 	pprot = sfmmu_vtop_prot(vprot, &tteflags);
4653 #if defined(SF_ERRATA_57)
4654 	check_exec = (sfmmup != ksfmmup) &&
4655 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4656 	    ((vprot & PROT_EXEC) == PROT_EXEC);
4657 #endif
4658 	HBLKTOHME(sfhmep, hmeblkp, addr);
4659 
4660 	/*
4661 	 * Flush the current demap region if addresses have been
4662 	 * skipped or the page size doesn't match.
4663 	 */
4664 	use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
4665 	if (use_demap_range) {
4666 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4667 	} else {
4668 		DEMAP_RANGE_FLUSH(dmrp);
4669 	}
4670 
4671 	while (addr < endaddr) {
4672 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4673 		if (TTE_IS_VALID(&tte)) {
4674 			if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
4675 				/*
4676 				 * if the new protection is the same as old
4677 				 * continue
4678 				 */
4679 				goto next_addr;
4680 			}
4681 			pml = NULL;
4682 			pp = sfhmep->hme_page;
4683 			if (pp) {
4684 				pml = sfmmu_mlist_enter(pp);
4685 			}
4686 			if (pp != sfhmep->hme_page) {
4687 				/*
4688 				 * tte most have been unloaded
4689 				 * underneath us.  Recheck
4690 				 */
4691 				ASSERT(pml);
4692 				sfmmu_mlist_exit(pml);
4693 				continue;
4694 			}
4695 
4696 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4697 
4698 			ttemod = tte;
4699 			TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
4700 #if defined(SF_ERRATA_57)
4701 			if (check_exec && addr < errata57_limit)
4702 				ttemod.tte_exec_perm = 0;
4703 #endif
4704 			ret = sfmmu_modifytte_try(&tte, &ttemod,
4705 			    &sfhmep->hme_tte);
4706 
4707 			if (ret < 0) {
4708 				/* tte changed underneath us */
4709 				if (pml) {
4710 					sfmmu_mlist_exit(pml);
4711 				}
4712 				continue;
4713 			}
4714 
4715 			if (tteflags & TTE_HWWR_INT) {
4716 				/*
4717 				 * need to sync if we are clearing modify bit.
4718 				 */
4719 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4720 			}
4721 
4722 			if (pp && PP_ISRO(pp)) {
4723 				if (pprot & TTE_WRPRM_INT) {
4724 					pmtx = sfmmu_page_enter(pp);
4725 					PP_CLRRO(pp);
4726 					sfmmu_page_exit(pmtx);
4727 				}
4728 			}
4729 
4730 			if (ret > 0 && use_demap_range) {
4731 				DEMAP_RANGE_MARKPG(dmrp, addr);
4732 			} else if (ret > 0) {
4733 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4734 			}
4735 
4736 			if (pml) {
4737 				sfmmu_mlist_exit(pml);
4738 			}
4739 		}
4740 next_addr:
4741 		addr += TTEBYTES(ttesz);
4742 		sfhmep++;
4743 		DEMAP_RANGE_NEXTPG(dmrp);
4744 	}
4745 	return (addr);
4746 }
4747 
4748 /*
4749  * This routine is deprecated and should only be used by hat_chgprot.
4750  * The correct routine is sfmmu_vtop_attr.
4751  * This routine converts virtual page protections to physical ones.  It will
4752  * update the tteflags field with the tte mask corresponding to the protections
4753  * affected and it returns the new protections.  It will also clear the modify
4754  * bit if we are taking away write permission.  This is necessary since the
4755  * modify bit is the hardware permission bit and we need to clear it in order
4756  * to detect write faults.
4757  * It accepts the following special protections:
4758  * ~PROT_WRITE = remove write permissions.
4759  * ~PROT_USER = remove user permissions.
4760  */
4761 static uint_t
4762 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
4763 {
4764 	if (vprot == (uint_t)~PROT_WRITE) {
4765 		*tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
4766 		return (0);		/* will cause wrprm to be cleared */
4767 	}
4768 	if (vprot == (uint_t)~PROT_USER) {
4769 		*tteflagsp = TTE_PRIV_INT;
4770 		return (0);		/* will cause privprm to be cleared */
4771 	}
4772 	if ((vprot == 0) || (vprot == PROT_USER) ||
4773 	    ((vprot & PROT_ALL) != vprot)) {
4774 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
4775 	}
4776 
4777 	switch (vprot) {
4778 	case (PROT_READ):
4779 	case (PROT_EXEC):
4780 	case (PROT_EXEC | PROT_READ):
4781 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
4782 		return (TTE_PRIV_INT); 		/* set prv and clr wrt */
4783 	case (PROT_WRITE):
4784 	case (PROT_WRITE | PROT_READ):
4785 	case (PROT_EXEC | PROT_WRITE):
4786 	case (PROT_EXEC | PROT_WRITE | PROT_READ):
4787 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
4788 		return (TTE_PRIV_INT | TTE_WRPRM_INT); 	/* set prv and wrt */
4789 	case (PROT_USER | PROT_READ):
4790 	case (PROT_USER | PROT_EXEC):
4791 	case (PROT_USER | PROT_EXEC | PROT_READ):
4792 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
4793 		return (0); 			/* clr prv and wrt */
4794 	case (PROT_USER | PROT_WRITE):
4795 	case (PROT_USER | PROT_WRITE | PROT_READ):
4796 	case (PROT_USER | PROT_EXEC | PROT_WRITE):
4797 	case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
4798 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
4799 		return (TTE_WRPRM_INT); 	/* clr prv and set wrt */
4800 	default:
4801 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
4802 	}
4803 	return (0);
4804 }
4805 
4806 /*
4807  * Alternate unload for very large virtual ranges. With a true 64 bit VA,
4808  * the normal algorithm would take too long for a very large VA range with
4809  * few real mappings. This routine just walks thru all HMEs in the global
4810  * hash table to find and remove mappings.
4811  */
4812 static void
4813 hat_unload_large_virtual(
4814 	struct hat		*sfmmup,
4815 	caddr_t			startaddr,
4816 	size_t			len,
4817 	uint_t			flags,
4818 	hat_callback_t		*callback)
4819 {
4820 	struct hmehash_bucket *hmebp;
4821 	struct hme_blk *hmeblkp;
4822 	struct hme_blk *pr_hblk = NULL;
4823 	struct hme_blk *nx_hblk;
4824 	struct hme_blk *list = NULL;
4825 	int i;
4826 	uint64_t hblkpa, prevpa, nx_pa;
4827 	demap_range_t dmr, *dmrp;
4828 	cpuset_t cpuset;
4829 	caddr_t	endaddr = startaddr + len;
4830 	caddr_t	sa;
4831 	caddr_t	ea;
4832 	caddr_t	cb_sa[MAX_CB_ADDR];
4833 	caddr_t	cb_ea[MAX_CB_ADDR];
4834 	int	addr_cnt = 0;
4835 	int	a = 0;
4836 
4837 	if (sfmmup->sfmmu_free) {
4838 		dmrp = NULL;
4839 	} else {
4840 		dmrp = &dmr;
4841 		DEMAP_RANGE_INIT(sfmmup, dmrp);
4842 	}
4843 
4844 	/*
4845 	 * Loop through all the hash buckets of HME blocks looking for matches.
4846 	 */
4847 	for (i = 0; i <= UHMEHASH_SZ; i++) {
4848 		hmebp = &uhme_hash[i];
4849 		SFMMU_HASH_LOCK(hmebp);
4850 		hmeblkp = hmebp->hmeblkp;
4851 		hblkpa = hmebp->hmeh_nextpa;
4852 		prevpa = 0;
4853 		pr_hblk = NULL;
4854 		while (hmeblkp) {
4855 			nx_hblk = hmeblkp->hblk_next;
4856 			nx_pa = hmeblkp->hblk_nextpa;
4857 
4858 			/*
4859 			 * skip if not this context, if a shadow block or
4860 			 * if the mapping is not in the requested range
4861 			 */
4862 			if (hmeblkp->hblk_tag.htag_id != sfmmup ||
4863 			    hmeblkp->hblk_shw_bit ||
4864 			    (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
4865 			    (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
4866 				pr_hblk = hmeblkp;
4867 				prevpa = hblkpa;
4868 				goto next_block;
4869 			}
4870 
4871 			/*
4872 			 * unload if there are any current valid mappings
4873 			 */
4874 			if (hmeblkp->hblk_vcnt != 0 ||
4875 			    hmeblkp->hblk_hmecnt != 0)
4876 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
4877 				    sa, ea, dmrp, flags);
4878 
4879 			/*
4880 			 * on unmap we also release the HME block itself, once
4881 			 * all mappings are gone.
4882 			 */
4883 			if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
4884 			    !hmeblkp->hblk_vcnt &&
4885 			    !hmeblkp->hblk_hmecnt) {
4886 				ASSERT(!hmeblkp->hblk_lckcnt);
4887 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
4888 				    prevpa, pr_hblk);
4889 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
4890 			} else {
4891 				pr_hblk = hmeblkp;
4892 				prevpa = hblkpa;
4893 			}
4894 
4895 			if (callback == NULL)
4896 				goto next_block;
4897 
4898 			/*
4899 			 * HME blocks may span more than one page, but we may be
4900 			 * unmapping only one page, so check for a smaller range
4901 			 * for the callback
4902 			 */
4903 			if (sa < startaddr)
4904 				sa = startaddr;
4905 			if (--ea > endaddr)
4906 				ea = endaddr - 1;
4907 
4908 			cb_sa[addr_cnt] = sa;
4909 			cb_ea[addr_cnt] = ea;
4910 			if (++addr_cnt == MAX_CB_ADDR) {
4911 				if (dmrp != NULL) {
4912 					DEMAP_RANGE_FLUSH(dmrp);
4913 					cpuset = sfmmup->sfmmu_cpusran;
4914 					xt_sync(cpuset);
4915 				}
4916 
4917 				for (a = 0; a < MAX_CB_ADDR; ++a) {
4918 					callback->hcb_start_addr = cb_sa[a];
4919 					callback->hcb_end_addr = cb_ea[a];
4920 					callback->hcb_function(callback);
4921 				}
4922 				addr_cnt = 0;
4923 			}
4924 
4925 next_block:
4926 			hmeblkp = nx_hblk;
4927 			hblkpa = nx_pa;
4928 		}
4929 		SFMMU_HASH_UNLOCK(hmebp);
4930 	}
4931 
4932 	sfmmu_hblks_list_purge(&list);
4933 	if (dmrp != NULL) {
4934 		DEMAP_RANGE_FLUSH(dmrp);
4935 		cpuset = sfmmup->sfmmu_cpusran;
4936 		xt_sync(cpuset);
4937 	}
4938 
4939 	for (a = 0; a < addr_cnt; ++a) {
4940 		callback->hcb_start_addr = cb_sa[a];
4941 		callback->hcb_end_addr = cb_ea[a];
4942 		callback->hcb_function(callback);
4943 	}
4944 
4945 	/*
4946 	 * Check TSB and TLB page sizes if the process isn't exiting.
4947 	 */
4948 	if (!sfmmup->sfmmu_free)
4949 		sfmmu_check_page_sizes(sfmmup, 0);
4950 }
4951 
4952 /*
4953  * Unload all the mappings in the range [addr..addr+len). addr and len must
4954  * be MMU_PAGESIZE aligned.
4955  */
4956 
4957 extern struct seg *segkmap;
4958 #define	ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
4959 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
4960 
4961 
4962 void
4963 hat_unload_callback(
4964 	struct hat *sfmmup,
4965 	caddr_t addr,
4966 	size_t len,
4967 	uint_t flags,
4968 	hat_callback_t *callback)
4969 {
4970 	struct hmehash_bucket *hmebp;
4971 	hmeblk_tag hblktag;
4972 	int hmeshift, hashno, iskernel;
4973 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
4974 	caddr_t endaddr;
4975 	cpuset_t cpuset;
4976 	uint64_t hblkpa, prevpa;
4977 	int addr_count = 0;
4978 	int a;
4979 	caddr_t cb_start_addr[MAX_CB_ADDR];
4980 	caddr_t cb_end_addr[MAX_CB_ADDR];
4981 	int issegkmap = ISSEGKMAP(sfmmup, addr);
4982 	demap_range_t dmr, *dmrp;
4983 
4984 	if (sfmmup->sfmmu_xhat_provider) {
4985 		XHAT_UNLOAD_CALLBACK(sfmmup, addr, len, flags, callback);
4986 		return;
4987 	} else {
4988 		/*
4989 		 * This must be a CPU HAT. If the address space has
4990 		 * XHATs attached, unload the mappings for all of them,
4991 		 * just in case
4992 		 */
4993 		ASSERT(sfmmup->sfmmu_as != NULL);
4994 		if (sfmmup->sfmmu_as->a_xhat != NULL)
4995 			xhat_unload_callback_all(sfmmup->sfmmu_as, addr,
4996 			    len, flags, callback);
4997 	}
4998 
4999 	ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
5000 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
5001 
5002 	ASSERT(sfmmup != NULL);
5003 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5004 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
5005 
5006 	/*
5007 	 * Probing through a large VA range (say 63 bits) will be slow, even
5008 	 * at 4 Meg steps between the probes. So, when the virtual address range
5009 	 * is very large, search the HME entries for what to unload.
5010 	 *
5011 	 *	len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
5012 	 *
5013 	 *	UHMEHASH_SZ is number of hash buckets to examine
5014 	 *
5015 	 */
5016 	if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
5017 		hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
5018 		return;
5019 	}
5020 
5021 	CPUSET_ZERO(cpuset);
5022 
5023 	/*
5024 	 * If the process is exiting, we can save a lot of fuss since
5025 	 * we'll flush the TLB when we free the ctx anyway.
5026 	 */
5027 	if (sfmmup->sfmmu_free)
5028 		dmrp = NULL;
5029 	else
5030 		dmrp = &dmr;
5031 
5032 	DEMAP_RANGE_INIT(sfmmup, dmrp);
5033 	endaddr = addr + len;
5034 	hblktag.htag_id = sfmmup;
5035 
5036 	/*
5037 	 * It is likely for the vm to call unload over a wide range of
5038 	 * addresses that are actually very sparsely populated by
5039 	 * translations.  In order to speed this up the sfmmu hat supports
5040 	 * the concept of shadow hmeblks. Dummy large page hmeblks that
5041 	 * correspond to actual small translations are allocated at tteload
5042 	 * time and are referred to as shadow hmeblks.  Now, during unload
5043 	 * time, we first check if we have a shadow hmeblk for that
5044 	 * translation.  The absence of one means the corresponding address
5045 	 * range is empty and can be skipped.
5046 	 *
5047 	 * The kernel is an exception to above statement and that is why
5048 	 * we don't use shadow hmeblks and hash starting from the smallest
5049 	 * page size.
5050 	 */
5051 	if (sfmmup == KHATID) {
5052 		iskernel = 1;
5053 		hashno = TTE64K;
5054 	} else {
5055 		iskernel = 0;
5056 		if (mmu_page_sizes == max_mmu_page_sizes) {
5057 			hashno = TTE256M;
5058 		} else {
5059 			hashno = TTE4M;
5060 		}
5061 	}
5062 	while (addr < endaddr) {
5063 		hmeshift = HME_HASH_SHIFT(hashno);
5064 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5065 		hblktag.htag_rehash = hashno;
5066 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5067 
5068 		SFMMU_HASH_LOCK(hmebp);
5069 
5070 		HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, pr_hblk,
5071 		    prevpa, &list);
5072 		if (hmeblkp == NULL) {
5073 			/*
5074 			 * didn't find an hmeblk. skip the appropiate
5075 			 * address range.
5076 			 */
5077 			SFMMU_HASH_UNLOCK(hmebp);
5078 			if (iskernel) {
5079 				if (hashno < mmu_hashcnt) {
5080 					hashno++;
5081 					continue;
5082 				} else {
5083 					hashno = TTE64K;
5084 					addr = (caddr_t)roundup((uintptr_t)addr
5085 					    + 1, MMU_PAGESIZE64K);
5086 					continue;
5087 				}
5088 			}
5089 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5090 			    (1 << hmeshift));
5091 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5092 				ASSERT(hashno == TTE64K);
5093 				continue;
5094 			}
5095 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5096 				hashno = TTE512K;
5097 				continue;
5098 			}
5099 			if (mmu_page_sizes == max_mmu_page_sizes) {
5100 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5101 					hashno = TTE4M;
5102 					continue;
5103 				}
5104 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5105 					hashno = TTE32M;
5106 					continue;
5107 				}
5108 				hashno = TTE256M;
5109 				continue;
5110 			} else {
5111 				hashno = TTE4M;
5112 				continue;
5113 			}
5114 		}
5115 		ASSERT(hmeblkp);
5116 		if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5117 			/*
5118 			 * If the valid count is zero we can skip the range
5119 			 * mapped by this hmeblk.
5120 			 * We free hblks in the case of HAT_UNMAP.  HAT_UNMAP
5121 			 * is used by segment drivers as a hint
5122 			 * that the mapping resource won't be used any longer.
5123 			 * The best example of this is during exit().
5124 			 */
5125 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5126 			    get_hblk_span(hmeblkp));
5127 			if ((flags & HAT_UNLOAD_UNMAP) ||
5128 			    (iskernel && !issegkmap)) {
5129 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5130 				    pr_hblk);
5131 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5132 			}
5133 			SFMMU_HASH_UNLOCK(hmebp);
5134 
5135 			if (iskernel) {
5136 				hashno = TTE64K;
5137 				continue;
5138 			}
5139 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5140 				ASSERT(hashno == TTE64K);
5141 				continue;
5142 			}
5143 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5144 				hashno = TTE512K;
5145 				continue;
5146 			}
5147 			if (mmu_page_sizes == max_mmu_page_sizes) {
5148 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5149 					hashno = TTE4M;
5150 					continue;
5151 				}
5152 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5153 					hashno = TTE32M;
5154 					continue;
5155 				}
5156 				hashno = TTE256M;
5157 				continue;
5158 			} else {
5159 				hashno = TTE4M;
5160 				continue;
5161 			}
5162 		}
5163 		if (hmeblkp->hblk_shw_bit) {
5164 			/*
5165 			 * If we encounter a shadow hmeblk we know there is
5166 			 * smaller sized hmeblks mapping the same address space.
5167 			 * Decrement the hash size and rehash.
5168 			 */
5169 			ASSERT(sfmmup != KHATID);
5170 			hashno--;
5171 			SFMMU_HASH_UNLOCK(hmebp);
5172 			continue;
5173 		}
5174 
5175 		/*
5176 		 * track callback address ranges.
5177 		 * only start a new range when it's not contiguous
5178 		 */
5179 		if (callback != NULL) {
5180 			if (addr_count > 0 &&
5181 			    addr == cb_end_addr[addr_count - 1])
5182 				--addr_count;
5183 			else
5184 				cb_start_addr[addr_count] = addr;
5185 		}
5186 
5187 		addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
5188 		    dmrp, flags);
5189 
5190 		if (callback != NULL)
5191 			cb_end_addr[addr_count++] = addr;
5192 
5193 		if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
5194 		    !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5195 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5196 			    pr_hblk);
5197 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5198 		}
5199 		SFMMU_HASH_UNLOCK(hmebp);
5200 
5201 		/*
5202 		 * Notify our caller as to exactly which pages
5203 		 * have been unloaded. We do these in clumps,
5204 		 * to minimize the number of xt_sync()s that need to occur.
5205 		 */
5206 		if (callback != NULL && addr_count == MAX_CB_ADDR) {
5207 			DEMAP_RANGE_FLUSH(dmrp);
5208 			if (dmrp != NULL) {
5209 				cpuset = sfmmup->sfmmu_cpusran;
5210 				xt_sync(cpuset);
5211 			}
5212 
5213 			for (a = 0; a < MAX_CB_ADDR; ++a) {
5214 				callback->hcb_start_addr = cb_start_addr[a];
5215 				callback->hcb_end_addr = cb_end_addr[a];
5216 				callback->hcb_function(callback);
5217 			}
5218 			addr_count = 0;
5219 		}
5220 		if (iskernel) {
5221 			hashno = TTE64K;
5222 			continue;
5223 		}
5224 		if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5225 			ASSERT(hashno == TTE64K);
5226 			continue;
5227 		}
5228 		if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5229 			hashno = TTE512K;
5230 			continue;
5231 		}
5232 		if (mmu_page_sizes == max_mmu_page_sizes) {
5233 			if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5234 				hashno = TTE4M;
5235 				continue;
5236 			}
5237 			if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5238 				hashno = TTE32M;
5239 				continue;
5240 			}
5241 			hashno = TTE256M;
5242 		} else {
5243 			hashno = TTE4M;
5244 		}
5245 	}
5246 
5247 	sfmmu_hblks_list_purge(&list);
5248 	DEMAP_RANGE_FLUSH(dmrp);
5249 	if (dmrp != NULL) {
5250 		cpuset = sfmmup->sfmmu_cpusran;
5251 		xt_sync(cpuset);
5252 	}
5253 	if (callback && addr_count != 0) {
5254 		for (a = 0; a < addr_count; ++a) {
5255 			callback->hcb_start_addr = cb_start_addr[a];
5256 			callback->hcb_end_addr = cb_end_addr[a];
5257 			callback->hcb_function(callback);
5258 		}
5259 	}
5260 
5261 	/*
5262 	 * Check TSB and TLB page sizes if the process isn't exiting.
5263 	 */
5264 	if (!sfmmup->sfmmu_free)
5265 		sfmmu_check_page_sizes(sfmmup, 0);
5266 }
5267 
5268 /*
5269  * Unload all the mappings in the range [addr..addr+len). addr and len must
5270  * be MMU_PAGESIZE aligned.
5271  */
5272 void
5273 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
5274 {
5275 	if (sfmmup->sfmmu_xhat_provider) {
5276 		XHAT_UNLOAD(sfmmup, addr, len, flags);
5277 		return;
5278 	}
5279 	hat_unload_callback(sfmmup, addr, len, flags, NULL);
5280 }
5281 
5282 
5283 /*
5284  * Find the largest mapping size for this page.
5285  */
5286 int
5287 fnd_mapping_sz(page_t *pp)
5288 {
5289 	int sz;
5290 	int p_index;
5291 
5292 	p_index = PP_MAPINDEX(pp);
5293 
5294 	sz = 0;
5295 	p_index >>= 1;	/* don't care about 8K bit */
5296 	for (; p_index; p_index >>= 1) {
5297 		sz++;
5298 	}
5299 
5300 	return (sz);
5301 }
5302 
5303 /*
5304  * This function unloads a range of addresses for an hmeblk.
5305  * It returns the next address to be unloaded.
5306  * It should be called with the hash lock held.
5307  */
5308 static caddr_t
5309 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5310 	caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
5311 {
5312 	tte_t	tte, ttemod;
5313 	struct	sf_hment *sfhmep;
5314 	int	ttesz;
5315 	long	ttecnt;
5316 	page_t *pp;
5317 	kmutex_t *pml;
5318 	int ret;
5319 	int use_demap_range;
5320 
5321 	ASSERT(in_hblk_range(hmeblkp, addr));
5322 	ASSERT(!hmeblkp->hblk_shw_bit);
5323 #ifdef DEBUG
5324 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5325 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
5326 		panic("sfmmu_hblk_unload: partial unload of large page");
5327 	}
5328 #endif /* DEBUG */
5329 
5330 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5331 	ttesz = get_hblk_ttesz(hmeblkp);
5332 
5333 	use_demap_range = (do_virtual_coloring &&
5334 	    ((dmrp == NULL) || TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)));
5335 	if (use_demap_range) {
5336 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5337 	} else {
5338 		DEMAP_RANGE_FLUSH(dmrp);
5339 	}
5340 	ttecnt = 0;
5341 	HBLKTOHME(sfhmep, hmeblkp, addr);
5342 
5343 	while (addr < endaddr) {
5344 		pml = NULL;
5345 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5346 		if (TTE_IS_VALID(&tte)) {
5347 			pp = sfhmep->hme_page;
5348 			if (pp != NULL) {
5349 				pml = sfmmu_mlist_enter(pp);
5350 			}
5351 
5352 			/*
5353 			 * Verify if hme still points to 'pp' now that
5354 			 * we have p_mapping lock.
5355 			 */
5356 			if (sfhmep->hme_page != pp) {
5357 				if (pp != NULL && sfhmep->hme_page != NULL) {
5358 					ASSERT(pml != NULL);
5359 					sfmmu_mlist_exit(pml);
5360 					/* Re-start this iteration. */
5361 					continue;
5362 				}
5363 				ASSERT((pp != NULL) &&
5364 				    (sfhmep->hme_page == NULL));
5365 				goto tte_unloaded;
5366 			}
5367 
5368 			/*
5369 			 * This point on we have both HASH and p_mapping
5370 			 * lock.
5371 			 */
5372 			ASSERT(pp == sfhmep->hme_page);
5373 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5374 
5375 			/*
5376 			 * We need to loop on modify tte because it is
5377 			 * possible for pagesync to come along and
5378 			 * change the software bits beneath us.
5379 			 *
5380 			 * Page_unload can also invalidate the tte after
5381 			 * we read tte outside of p_mapping lock.
5382 			 */
5383 again:
5384 			ttemod = tte;
5385 
5386 			TTE_SET_INVALID(&ttemod);
5387 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5388 			    &sfhmep->hme_tte);
5389 
5390 			if (ret <= 0) {
5391 				if (TTE_IS_VALID(&tte)) {
5392 					ASSERT(ret < 0);
5393 					goto again;
5394 				}
5395 				if (pp != NULL) {
5396 					panic("sfmmu_hblk_unload: pp = 0x%p "
5397 					    "tte became invalid under mlist"
5398 					    " lock = 0x%p", pp, pml);
5399 				}
5400 				continue;
5401 			}
5402 
5403 			if (!(flags & HAT_UNLOAD_NOSYNC)) {
5404 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
5405 			}
5406 
5407 			/*
5408 			 * Ok- we invalidated the tte. Do the rest of the job.
5409 			 */
5410 			ttecnt++;
5411 
5412 			if (flags & HAT_UNLOAD_UNLOCK) {
5413 				ASSERT(hmeblkp->hblk_lckcnt > 0);
5414 				atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
5415 				HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
5416 			}
5417 
5418 			/*
5419 			 * Normally we would need to flush the page
5420 			 * from the virtual cache at this point in
5421 			 * order to prevent a potential cache alias
5422 			 * inconsistency.
5423 			 * The particular scenario we need to worry
5424 			 * about is:
5425 			 * Given:  va1 and va2 are two virtual address
5426 			 * that alias and map the same physical
5427 			 * address.
5428 			 * 1.	mapping exists from va1 to pa and data
5429 			 * has been read into the cache.
5430 			 * 2.	unload va1.
5431 			 * 3.	load va2 and modify data using va2.
5432 			 * 4	unload va2.
5433 			 * 5.	load va1 and reference data.  Unless we
5434 			 * flush the data cache when we unload we will
5435 			 * get stale data.
5436 			 * Fortunately, page coloring eliminates the
5437 			 * above scenario by remembering the color a
5438 			 * physical page was last or is currently
5439 			 * mapped to.  Now, we delay the flush until
5440 			 * the loading of translations.  Only when the
5441 			 * new translation is of a different color
5442 			 * are we forced to flush.
5443 			 */
5444 			if (use_demap_range) {
5445 				/*
5446 				 * Mark this page as needing a demap.
5447 				 */
5448 				DEMAP_RANGE_MARKPG(dmrp, addr);
5449 			} else {
5450 				if (do_virtual_coloring) {
5451 					sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
5452 					    sfmmup->sfmmu_free, 0);
5453 				} else {
5454 					pfn_t pfnum;
5455 
5456 					pfnum = TTE_TO_PFN(addr, &tte);
5457 					sfmmu_tlbcache_demap(addr, sfmmup,
5458 					    hmeblkp, pfnum, sfmmup->sfmmu_free,
5459 					    FLUSH_NECESSARY_CPUS,
5460 					    CACHE_FLUSH, 0);
5461 				}
5462 			}
5463 
5464 			if (pp) {
5465 				/*
5466 				 * Remove the hment from the mapping list
5467 				 */
5468 				ASSERT(hmeblkp->hblk_hmecnt > 0);
5469 
5470 				/*
5471 				 * Again, we cannot
5472 				 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
5473 				 */
5474 				HME_SUB(sfhmep, pp);
5475 				membar_stst();
5476 				atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
5477 			}
5478 
5479 			ASSERT(hmeblkp->hblk_vcnt > 0);
5480 			atomic_add_16(&hmeblkp->hblk_vcnt, -1);
5481 
5482 			ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
5483 			    !hmeblkp->hblk_lckcnt);
5484 
5485 #ifdef VAC
5486 			if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
5487 				if (PP_ISTNC(pp)) {
5488 					/*
5489 					 * If page was temporary
5490 					 * uncached, try to recache
5491 					 * it. Note that HME_SUB() was
5492 					 * called above so p_index and
5493 					 * mlist had been updated.
5494 					 */
5495 					conv_tnc(pp, ttesz);
5496 				} else if (pp->p_mapping == NULL) {
5497 					ASSERT(kpm_enable);
5498 					/*
5499 					 * Page is marked to be in VAC conflict
5500 					 * to an existing kpm mapping and/or is
5501 					 * kpm mapped using only the regular
5502 					 * pagesize.
5503 					 */
5504 					sfmmu_kpm_hme_unload(pp);
5505 				}
5506 			}
5507 #endif	/* VAC */
5508 		} else if ((pp = sfhmep->hme_page) != NULL) {
5509 				/*
5510 				 * TTE is invalid but the hme
5511 				 * still exists. let pageunload
5512 				 * complete its job.
5513 				 */
5514 				ASSERT(pml == NULL);
5515 				pml = sfmmu_mlist_enter(pp);
5516 				if (sfhmep->hme_page != NULL) {
5517 					sfmmu_mlist_exit(pml);
5518 					continue;
5519 				}
5520 				ASSERT(sfhmep->hme_page == NULL);
5521 		} else if (hmeblkp->hblk_hmecnt != 0) {
5522 			/*
5523 			 * pageunload may have not finished decrementing
5524 			 * hblk_vcnt and hblk_hmecnt. Find page_t if any and
5525 			 * wait for pageunload to finish. Rely on pageunload
5526 			 * to decrement hblk_hmecnt after hblk_vcnt.
5527 			 */
5528 			pfn_t pfn = TTE_TO_TTEPFN(&tte);
5529 			ASSERT(pml == NULL);
5530 			if (pf_is_memory(pfn)) {
5531 				pp = page_numtopp_nolock(pfn);
5532 				if (pp != NULL) {
5533 					pml = sfmmu_mlist_enter(pp);
5534 					sfmmu_mlist_exit(pml);
5535 					pml = NULL;
5536 				}
5537 			}
5538 		}
5539 
5540 tte_unloaded:
5541 		/*
5542 		 * At this point, the tte we are looking at
5543 		 * should be unloaded, and hme has been unlinked
5544 		 * from page too. This is important because in
5545 		 * pageunload, it does ttesync() then HME_SUB.
5546 		 * We need to make sure HME_SUB has been completed
5547 		 * so we know ttesync() has been completed. Otherwise,
5548 		 * at exit time, after return from hat layer, VM will
5549 		 * release as structure which hat_setstat() (called
5550 		 * by ttesync()) needs.
5551 		 */
5552 #ifdef DEBUG
5553 		{
5554 			tte_t	dtte;
5555 
5556 			ASSERT(sfhmep->hme_page == NULL);
5557 
5558 			sfmmu_copytte(&sfhmep->hme_tte, &dtte);
5559 			ASSERT(!TTE_IS_VALID(&dtte));
5560 		}
5561 #endif
5562 
5563 		if (pml) {
5564 			sfmmu_mlist_exit(pml);
5565 		}
5566 
5567 		addr += TTEBYTES(ttesz);
5568 		sfhmep++;
5569 		DEMAP_RANGE_NEXTPG(dmrp);
5570 	}
5571 	if (ttecnt > 0)
5572 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
5573 	return (addr);
5574 }
5575 
5576 /*
5577  * Synchronize all the mappings in the range [addr..addr+len).
5578  * Can be called with clearflag having two states:
5579  * HAT_SYNC_DONTZERO means just return the rm stats
5580  * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
5581  */
5582 void
5583 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
5584 {
5585 	struct hmehash_bucket *hmebp;
5586 	hmeblk_tag hblktag;
5587 	int hmeshift, hashno = 1;
5588 	struct hme_blk *hmeblkp, *list = NULL;
5589 	caddr_t endaddr;
5590 	cpuset_t cpuset;
5591 
5592 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
5593 	ASSERT((sfmmup == ksfmmup) ||
5594 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
5595 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5596 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
5597 	    (clearflag == HAT_SYNC_ZERORM));
5598 
5599 	CPUSET_ZERO(cpuset);
5600 
5601 	endaddr = addr + len;
5602 	hblktag.htag_id = sfmmup;
5603 	/*
5604 	 * Spitfire supports 4 page sizes.
5605 	 * Most pages are expected to be of the smallest page
5606 	 * size (8K) and these will not need to be rehashed. 64K
5607 	 * pages also don't need to be rehashed because the an hmeblk
5608 	 * spans 64K of address space. 512K pages might need 1 rehash and
5609 	 * and 4M pages 2 rehashes.
5610 	 */
5611 	while (addr < endaddr) {
5612 		hmeshift = HME_HASH_SHIFT(hashno);
5613 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5614 		hblktag.htag_rehash = hashno;
5615 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5616 
5617 		SFMMU_HASH_LOCK(hmebp);
5618 
5619 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
5620 		if (hmeblkp != NULL) {
5621 			/*
5622 			 * We've encountered a shadow hmeblk so skip the range
5623 			 * of the next smaller mapping size.
5624 			 */
5625 			if (hmeblkp->hblk_shw_bit) {
5626 				ASSERT(sfmmup != ksfmmup);
5627 				ASSERT(hashno > 1);
5628 				addr = (caddr_t)P2END((uintptr_t)addr,
5629 				    TTEBYTES(hashno - 1));
5630 			} else {
5631 				addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
5632 				    addr, endaddr, clearflag);
5633 			}
5634 			SFMMU_HASH_UNLOCK(hmebp);
5635 			hashno = 1;
5636 			continue;
5637 		}
5638 		SFMMU_HASH_UNLOCK(hmebp);
5639 
5640 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
5641 			/*
5642 			 * We have traversed the whole list and rehashed
5643 			 * if necessary without finding the address to sync.
5644 			 * This is ok so we increment the address by the
5645 			 * smallest hmeblk range for kernel mappings and the
5646 			 * largest hmeblk range, to account for shadow hmeblks,
5647 			 * for user mappings and continue.
5648 			 */
5649 			if (sfmmup == ksfmmup)
5650 				addr = (caddr_t)P2END((uintptr_t)addr,
5651 				    TTEBYTES(1));
5652 			else
5653 				addr = (caddr_t)P2END((uintptr_t)addr,
5654 				    TTEBYTES(hashno));
5655 			hashno = 1;
5656 		} else {
5657 			hashno++;
5658 		}
5659 	}
5660 	sfmmu_hblks_list_purge(&list);
5661 	cpuset = sfmmup->sfmmu_cpusran;
5662 	xt_sync(cpuset);
5663 }
5664 
5665 static caddr_t
5666 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5667 	caddr_t endaddr, int clearflag)
5668 {
5669 	tte_t	tte, ttemod;
5670 	struct sf_hment *sfhmep;
5671 	int ttesz;
5672 	struct page *pp;
5673 	kmutex_t *pml;
5674 	int ret;
5675 
5676 	ASSERT(hmeblkp->hblk_shw_bit == 0);
5677 
5678 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5679 
5680 	ttesz = get_hblk_ttesz(hmeblkp);
5681 	HBLKTOHME(sfhmep, hmeblkp, addr);
5682 
5683 	while (addr < endaddr) {
5684 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5685 		if (TTE_IS_VALID(&tte)) {
5686 			pml = NULL;
5687 			pp = sfhmep->hme_page;
5688 			if (pp) {
5689 				pml = sfmmu_mlist_enter(pp);
5690 			}
5691 			if (pp != sfhmep->hme_page) {
5692 				/*
5693 				 * tte most have been unloaded
5694 				 * underneath us.  Recheck
5695 				 */
5696 				ASSERT(pml);
5697 				sfmmu_mlist_exit(pml);
5698 				continue;
5699 			}
5700 
5701 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5702 
5703 			if (clearflag == HAT_SYNC_ZERORM) {
5704 				ttemod = tte;
5705 				TTE_CLR_RM(&ttemod);
5706 				ret = sfmmu_modifytte_try(&tte, &ttemod,
5707 				    &sfhmep->hme_tte);
5708 				if (ret < 0) {
5709 					if (pml) {
5710 						sfmmu_mlist_exit(pml);
5711 					}
5712 					continue;
5713 				}
5714 
5715 				if (ret > 0) {
5716 					sfmmu_tlb_demap(addr, sfmmup,
5717 					    hmeblkp, 0, 0);
5718 				}
5719 			}
5720 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
5721 			if (pml) {
5722 				sfmmu_mlist_exit(pml);
5723 			}
5724 		}
5725 		addr += TTEBYTES(ttesz);
5726 		sfhmep++;
5727 	}
5728 	return (addr);
5729 }
5730 
5731 /*
5732  * This function will sync a tte to the page struct and it will
5733  * update the hat stats. Currently it allows us to pass a NULL pp
5734  * and we will simply update the stats.  We may want to change this
5735  * so we only keep stats for pages backed by pp's.
5736  */
5737 static void
5738 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
5739 {
5740 	uint_t rm = 0;
5741 	int   	sz;
5742 	pgcnt_t	npgs;
5743 
5744 	ASSERT(TTE_IS_VALID(ttep));
5745 
5746 	if (TTE_IS_NOSYNC(ttep)) {
5747 		return;
5748 	}
5749 
5750 	if (TTE_IS_REF(ttep))  {
5751 		rm = P_REF;
5752 	}
5753 	if (TTE_IS_MOD(ttep))  {
5754 		rm |= P_MOD;
5755 	}
5756 
5757 	if (rm == 0) {
5758 		return;
5759 	}
5760 
5761 	sz = TTE_CSZ(ttep);
5762 	if (sfmmup->sfmmu_rmstat) {
5763 		int i;
5764 		caddr_t	vaddr = addr;
5765 
5766 		for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) {
5767 			hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm);
5768 		}
5769 
5770 	}
5771 
5772 	/*
5773 	 * XXX I want to use cas to update nrm bits but they
5774 	 * currently belong in common/vm and not in hat where
5775 	 * they should be.
5776 	 * The nrm bits are protected by the same mutex as
5777 	 * the one that protects the page's mapping list.
5778 	 */
5779 	if (!pp)
5780 		return;
5781 	ASSERT(sfmmu_mlist_held(pp));
5782 	/*
5783 	 * If the tte is for a large page, we need to sync all the
5784 	 * pages covered by the tte.
5785 	 */
5786 	if (sz != TTE8K) {
5787 		ASSERT(pp->p_szc != 0);
5788 		pp = PP_GROUPLEADER(pp, sz);
5789 		ASSERT(sfmmu_mlist_held(pp));
5790 	}
5791 
5792 	/* Get number of pages from tte size. */
5793 	npgs = TTEPAGES(sz);
5794 
5795 	do {
5796 		ASSERT(pp);
5797 		ASSERT(sfmmu_mlist_held(pp));
5798 		if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
5799 		    ((rm & P_MOD) != 0 && !PP_ISMOD(pp)))
5800 			hat_page_setattr(pp, rm);
5801 
5802 		/*
5803 		 * Are we done? If not, we must have a large mapping.
5804 		 * For large mappings we need to sync the rest of the pages
5805 		 * covered by this tte; goto the next page.
5806 		 */
5807 	} while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
5808 }
5809 
5810 /*
5811  * Execute pre-callback handler of each pa_hment linked to pp
5812  *
5813  * Inputs:
5814  *   flag: either HAT_PRESUSPEND or HAT_SUSPEND.
5815  *   capture_cpus: pointer to return value (below)
5816  *
5817  * Returns:
5818  *   Propagates the subsystem callback return values back to the caller;
5819  *   returns 0 on success.  If capture_cpus is non-NULL, the value returned
5820  *   is zero if all of the pa_hments are of a type that do not require
5821  *   capturing CPUs prior to suspending the mapping, else it is 1.
5822  */
5823 static int
5824 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
5825 {
5826 	struct sf_hment	*sfhmep;
5827 	struct pa_hment *pahmep;
5828 	int (*f)(caddr_t, uint_t, uint_t, void *);
5829 	int		ret;
5830 	id_t		id;
5831 	int		locked = 0;
5832 	kmutex_t	*pml;
5833 
5834 	ASSERT(PAGE_EXCL(pp));
5835 	if (!sfmmu_mlist_held(pp)) {
5836 		pml = sfmmu_mlist_enter(pp);
5837 		locked = 1;
5838 	}
5839 
5840 	if (capture_cpus)
5841 		*capture_cpus = 0;
5842 
5843 top:
5844 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5845 		/*
5846 		 * skip sf_hments corresponding to VA<->PA mappings;
5847 		 * for pa_hment's, hme_tte.ll is zero
5848 		 */
5849 		if (!IS_PAHME(sfhmep))
5850 			continue;
5851 
5852 		pahmep = sfhmep->hme_data;
5853 		ASSERT(pahmep != NULL);
5854 
5855 		/*
5856 		 * skip if pre-handler has been called earlier in this loop
5857 		 */
5858 		if (pahmep->flags & flag)
5859 			continue;
5860 
5861 		id = pahmep->cb_id;
5862 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
5863 		if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
5864 			*capture_cpus = 1;
5865 		if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
5866 			pahmep->flags |= flag;
5867 			continue;
5868 		}
5869 
5870 		/*
5871 		 * Drop the mapping list lock to avoid locking order issues.
5872 		 */
5873 		if (locked)
5874 			sfmmu_mlist_exit(pml);
5875 
5876 		ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
5877 		if (ret != 0)
5878 			return (ret);	/* caller must do the cleanup */
5879 
5880 		if (locked) {
5881 			pml = sfmmu_mlist_enter(pp);
5882 			pahmep->flags |= flag;
5883 			goto top;
5884 		}
5885 
5886 		pahmep->flags |= flag;
5887 	}
5888 
5889 	if (locked)
5890 		sfmmu_mlist_exit(pml);
5891 
5892 	return (0);
5893 }
5894 
5895 /*
5896  * Execute post-callback handler of each pa_hment linked to pp
5897  *
5898  * Same overall assumptions and restrictions apply as for
5899  * hat_pageprocess_precallbacks().
5900  */
5901 static void
5902 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
5903 {
5904 	pfn_t pgpfn = pp->p_pagenum;
5905 	pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
5906 	pfn_t newpfn;
5907 	struct sf_hment *sfhmep;
5908 	struct pa_hment *pahmep;
5909 	int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
5910 	id_t	id;
5911 	int	locked = 0;
5912 	kmutex_t *pml;
5913 
5914 	ASSERT(PAGE_EXCL(pp));
5915 	if (!sfmmu_mlist_held(pp)) {
5916 		pml = sfmmu_mlist_enter(pp);
5917 		locked = 1;
5918 	}
5919 
5920 top:
5921 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5922 		/*
5923 		 * skip sf_hments corresponding to VA<->PA mappings;
5924 		 * for pa_hment's, hme_tte.ll is zero
5925 		 */
5926 		if (!IS_PAHME(sfhmep))
5927 			continue;
5928 
5929 		pahmep = sfhmep->hme_data;
5930 		ASSERT(pahmep != NULL);
5931 
5932 		if ((pahmep->flags & flag) == 0)
5933 			continue;
5934 
5935 		pahmep->flags &= ~flag;
5936 
5937 		id = pahmep->cb_id;
5938 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
5939 		if ((f = sfmmu_cb_table[id].posthandler) == NULL)
5940 			continue;
5941 
5942 		/*
5943 		 * Convert the base page PFN into the constituent PFN
5944 		 * which is needed by the callback handler.
5945 		 */
5946 		newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
5947 
5948 		/*
5949 		 * Drop the mapping list lock to avoid locking order issues.
5950 		 */
5951 		if (locked)
5952 			sfmmu_mlist_exit(pml);
5953 
5954 		if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
5955 		    != 0)
5956 			panic("sfmmu: posthandler failed");
5957 
5958 		if (locked) {
5959 			pml = sfmmu_mlist_enter(pp);
5960 			goto top;
5961 		}
5962 	}
5963 
5964 	if (locked)
5965 		sfmmu_mlist_exit(pml);
5966 }
5967 
5968 /*
5969  * Suspend locked kernel mapping
5970  */
5971 void
5972 hat_pagesuspend(struct page *pp)
5973 {
5974 	struct sf_hment *sfhmep;
5975 	sfmmu_t *sfmmup;
5976 	tte_t tte, ttemod;
5977 	struct hme_blk *hmeblkp;
5978 	caddr_t addr;
5979 	int index, cons;
5980 	cpuset_t cpuset;
5981 
5982 	ASSERT(PAGE_EXCL(pp));
5983 	ASSERT(sfmmu_mlist_held(pp));
5984 
5985 	mutex_enter(&kpr_suspendlock);
5986 
5987 	/*
5988 	 * We're about to suspend a kernel mapping so mark this thread as
5989 	 * non-traceable by DTrace. This prevents us from running into issues
5990 	 * with probe context trying to touch a suspended page
5991 	 * in the relocation codepath itself.
5992 	 */
5993 	curthread->t_flag |= T_DONTDTRACE;
5994 
5995 	index = PP_MAPINDEX(pp);
5996 	cons = TTE8K;
5997 
5998 retry:
5999 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6000 
6001 		if (IS_PAHME(sfhmep))
6002 			continue;
6003 
6004 		if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
6005 			continue;
6006 
6007 		/*
6008 		 * Loop until we successfully set the suspend bit in
6009 		 * the TTE.
6010 		 */
6011 again:
6012 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
6013 		ASSERT(TTE_IS_VALID(&tte));
6014 
6015 		ttemod = tte;
6016 		TTE_SET_SUSPEND(&ttemod);
6017 		if (sfmmu_modifytte_try(&tte, &ttemod,
6018 		    &sfhmep->hme_tte) < 0)
6019 			goto again;
6020 
6021 		/*
6022 		 * Invalidate TSB entry
6023 		 */
6024 		hmeblkp = sfmmu_hmetohblk(sfhmep);
6025 
6026 		sfmmup = hblktosfmmu(hmeblkp);
6027 		ASSERT(sfmmup == ksfmmup);
6028 
6029 		addr = tte_to_vaddr(hmeblkp, tte);
6030 
6031 		/*
6032 		 * No need to make sure that the TSB for this sfmmu is
6033 		 * not being relocated since it is ksfmmup and thus it
6034 		 * will never be relocated.
6035 		 */
6036 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
6037 
6038 		/*
6039 		 * Update xcall stats
6040 		 */
6041 		cpuset = cpu_ready_set;
6042 		CPUSET_DEL(cpuset, CPU->cpu_id);
6043 
6044 		/* LINTED: constant in conditional context */
6045 		SFMMU_XCALL_STATS(ksfmmup);
6046 
6047 		/*
6048 		 * Flush TLB entry on remote CPU's
6049 		 */
6050 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
6051 		    (uint64_t)ksfmmup);
6052 		xt_sync(cpuset);
6053 
6054 		/*
6055 		 * Flush TLB entry on local CPU
6056 		 */
6057 		vtag_flushpage(addr, (uint64_t)ksfmmup);
6058 	}
6059 
6060 	while (index != 0) {
6061 		index = index >> 1;
6062 		if (index != 0)
6063 			cons++;
6064 		if (index & 0x1) {
6065 			pp = PP_GROUPLEADER(pp, cons);
6066 			goto retry;
6067 		}
6068 	}
6069 }
6070 
6071 #ifdef	DEBUG
6072 
6073 #define	N_PRLE	1024
6074 struct prle {
6075 	page_t *targ;
6076 	page_t *repl;
6077 	int status;
6078 	int pausecpus;
6079 	hrtime_t whence;
6080 };
6081 
6082 static struct prle page_relocate_log[N_PRLE];
6083 static int prl_entry;
6084 static kmutex_t prl_mutex;
6085 
6086 #define	PAGE_RELOCATE_LOG(t, r, s, p)					\
6087 	mutex_enter(&prl_mutex);					\
6088 	page_relocate_log[prl_entry].targ = *(t);			\
6089 	page_relocate_log[prl_entry].repl = *(r);			\
6090 	page_relocate_log[prl_entry].status = (s);			\
6091 	page_relocate_log[prl_entry].pausecpus = (p);			\
6092 	page_relocate_log[prl_entry].whence = gethrtime();		\
6093 	prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1;	\
6094 	mutex_exit(&prl_mutex);
6095 
6096 #else	/* !DEBUG */
6097 #define	PAGE_RELOCATE_LOG(t, r, s, p)
6098 #endif
6099 
6100 /*
6101  * Core Kernel Page Relocation Algorithm
6102  *
6103  * Input:
6104  *
6105  * target : 	constituent pages are SE_EXCL locked.
6106  * replacement:	constituent pages are SE_EXCL locked.
6107  *
6108  * Output:
6109  *
6110  * nrelocp:	number of pages relocated
6111  */
6112 int
6113 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
6114 {
6115 	page_t		*targ, *repl;
6116 	page_t		*tpp, *rpp;
6117 	kmutex_t	*low, *high;
6118 	spgcnt_t	npages, i;
6119 	page_t		*pl = NULL;
6120 	int		old_pil;
6121 	cpuset_t	cpuset;
6122 	int		cap_cpus;
6123 	int		ret;
6124 
6125 	if (hat_kpr_enabled == 0 || !kcage_on || PP_ISNORELOC(*target)) {
6126 		PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
6127 		return (EAGAIN);
6128 	}
6129 
6130 	mutex_enter(&kpr_mutex);
6131 	kreloc_thread = curthread;
6132 
6133 	targ = *target;
6134 	repl = *replacement;
6135 	ASSERT(repl != NULL);
6136 	ASSERT(targ->p_szc == repl->p_szc);
6137 
6138 	npages = page_get_pagecnt(targ->p_szc);
6139 
6140 	/*
6141 	 * unload VA<->PA mappings that are not locked
6142 	 */
6143 	tpp = targ;
6144 	for (i = 0; i < npages; i++) {
6145 		(void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
6146 		tpp++;
6147 	}
6148 
6149 	/*
6150 	 * Do "presuspend" callbacks, in a context from which we can still
6151 	 * block as needed. Note that we don't hold the mapping list lock
6152 	 * of "targ" at this point due to potential locking order issues;
6153 	 * we assume that between the hat_pageunload() above and holding
6154 	 * the SE_EXCL lock that the mapping list *cannot* change at this
6155 	 * point.
6156 	 */
6157 	ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
6158 	if (ret != 0) {
6159 		/*
6160 		 * EIO translates to fatal error, for all others cleanup
6161 		 * and return EAGAIN.
6162 		 */
6163 		ASSERT(ret != EIO);
6164 		hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
6165 		PAGE_RELOCATE_LOG(target, replacement, ret, -1);
6166 		kreloc_thread = NULL;
6167 		mutex_exit(&kpr_mutex);
6168 		return (EAGAIN);
6169 	}
6170 
6171 	/*
6172 	 * acquire p_mapping list lock for both the target and replacement
6173 	 * root pages.
6174 	 *
6175 	 * low and high refer to the need to grab the mlist locks in a
6176 	 * specific order in order to prevent race conditions.  Thus the
6177 	 * lower lock must be grabbed before the higher lock.
6178 	 *
6179 	 * This will block hat_unload's accessing p_mapping list.  Since
6180 	 * we have SE_EXCL lock, hat_memload and hat_pageunload will be
6181 	 * blocked.  Thus, no one else will be accessing the p_mapping list
6182 	 * while we suspend and reload the locked mapping below.
6183 	 */
6184 	tpp = targ;
6185 	rpp = repl;
6186 	sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
6187 
6188 	kpreempt_disable();
6189 
6190 #ifdef VAC
6191 	/*
6192 	 * If the replacement page is of a different virtual color
6193 	 * than the page it is replacing, we need to handle the VAC
6194 	 * consistency for it just as we would if we were setting up
6195 	 * a new mapping to a page.
6196 	 */
6197 	if ((tpp->p_szc == 0) && (PP_GET_VCOLOR(rpp) != NO_VCOLOR)) {
6198 		if (tpp->p_vcolor != rpp->p_vcolor) {
6199 			sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
6200 			    rpp->p_pagenum);
6201 		}
6202 	}
6203 #endif
6204 
6205 	/*
6206 	 * We raise our PIL to 13 so that we don't get captured by
6207 	 * another CPU or pinned by an interrupt thread.  We can't go to
6208 	 * PIL 14 since the nexus driver(s) may need to interrupt at
6209 	 * that level in the case of IOMMU pseudo mappings.
6210 	 */
6211 	cpuset = cpu_ready_set;
6212 	CPUSET_DEL(cpuset, CPU->cpu_id);
6213 	if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
6214 		old_pil = splr(XCALL_PIL);
6215 	} else {
6216 		old_pil = -1;
6217 		xc_attention(cpuset);
6218 	}
6219 	ASSERT(getpil() == XCALL_PIL);
6220 
6221 	/*
6222 	 * Now do suspend callbacks. In the case of an IOMMU mapping
6223 	 * this will suspend all DMA activity to the page while it is
6224 	 * being relocated. Since we are well above LOCK_LEVEL and CPUs
6225 	 * may be captured at this point we should have acquired any needed
6226 	 * locks in the presuspend callback.
6227 	 */
6228 	ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
6229 	if (ret != 0) {
6230 		repl = targ;
6231 		goto suspend_fail;
6232 	}
6233 
6234 	/*
6235 	 * Raise the PIL yet again, this time to block all high-level
6236 	 * interrupts on this CPU. This is necessary to prevent an
6237 	 * interrupt routine from pinning the thread which holds the
6238 	 * mapping suspended and then touching the suspended page.
6239 	 *
6240 	 * Once the page is suspended we also need to be careful to
6241 	 * avoid calling any functions which touch any seg_kmem memory
6242 	 * since that memory may be backed by the very page we are
6243 	 * relocating in here!
6244 	 */
6245 	hat_pagesuspend(targ);
6246 
6247 	/*
6248 	 * Now that we are confident everybody has stopped using this page,
6249 	 * copy the page contents.  Note we use a physical copy to prevent
6250 	 * locking issues and to avoid fpRAS because we can't handle it in
6251 	 * this context.
6252 	 */
6253 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6254 		/*
6255 		 * Copy the contents of the page.
6256 		 */
6257 		ppcopy_kernel(tpp, rpp);
6258 	}
6259 
6260 	tpp = targ;
6261 	rpp = repl;
6262 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6263 		/*
6264 		 * Copy attributes.  VAC consistency was handled above,
6265 		 * if required.
6266 		 */
6267 		rpp->p_nrm = tpp->p_nrm;
6268 		tpp->p_nrm = 0;
6269 		rpp->p_index = tpp->p_index;
6270 		tpp->p_index = 0;
6271 #ifdef VAC
6272 		rpp->p_vcolor = tpp->p_vcolor;
6273 #endif
6274 	}
6275 
6276 	/*
6277 	 * First, unsuspend the page, if we set the suspend bit, and transfer
6278 	 * the mapping list from the target page to the replacement page.
6279 	 * Next process postcallbacks; since pa_hment's are linked only to the
6280 	 * p_mapping list of root page, we don't iterate over the constituent
6281 	 * pages.
6282 	 */
6283 	hat_pagereload(targ, repl);
6284 
6285 suspend_fail:
6286 	hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
6287 
6288 	/*
6289 	 * Now lower our PIL and release any captured CPUs since we
6290 	 * are out of the "danger zone".  After this it will again be
6291 	 * safe to acquire adaptive mutex locks, or to drop them...
6292 	 */
6293 	if (old_pil != -1) {
6294 		splx(old_pil);
6295 	} else {
6296 		xc_dismissed(cpuset);
6297 	}
6298 
6299 	kpreempt_enable();
6300 
6301 	sfmmu_mlist_reloc_exit(low, high);
6302 
6303 	/*
6304 	 * Postsuspend callbacks should drop any locks held across
6305 	 * the suspend callbacks.  As before, we don't hold the mapping
6306 	 * list lock at this point.. our assumption is that the mapping
6307 	 * list still can't change due to our holding SE_EXCL lock and
6308 	 * there being no unlocked mappings left. Hence the restriction
6309 	 * on calling context to hat_delete_callback()
6310 	 */
6311 	hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
6312 	if (ret != 0) {
6313 		/*
6314 		 * The second presuspend call failed: we got here through
6315 		 * the suspend_fail label above.
6316 		 */
6317 		ASSERT(ret != EIO);
6318 		PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
6319 		kreloc_thread = NULL;
6320 		mutex_exit(&kpr_mutex);
6321 		return (EAGAIN);
6322 	}
6323 
6324 	/*
6325 	 * Now that we're out of the performance critical section we can
6326 	 * take care of updating the hash table, since we still
6327 	 * hold all the pages locked SE_EXCL at this point we
6328 	 * needn't worry about things changing out from under us.
6329 	 */
6330 	tpp = targ;
6331 	rpp = repl;
6332 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6333 
6334 		/*
6335 		 * replace targ with replacement in page_hash table
6336 		 */
6337 		targ = tpp;
6338 		page_relocate_hash(rpp, targ);
6339 
6340 		/*
6341 		 * concatenate target; caller of platform_page_relocate()
6342 		 * expects target to be concatenated after returning.
6343 		 */
6344 		ASSERT(targ->p_next == targ);
6345 		ASSERT(targ->p_prev == targ);
6346 		page_list_concat(&pl, &targ);
6347 	}
6348 
6349 	ASSERT(*target == pl);
6350 	*nrelocp = npages;
6351 	PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
6352 	kreloc_thread = NULL;
6353 	mutex_exit(&kpr_mutex);
6354 	return (0);
6355 }
6356 
6357 /*
6358  * Called when stray pa_hments are found attached to a page which is
6359  * being freed.  Notify the subsystem which attached the pa_hment of
6360  * the error if it registered a suitable handler, else panic.
6361  */
6362 static void
6363 sfmmu_pahment_leaked(struct pa_hment *pahmep)
6364 {
6365 	id_t cb_id = pahmep->cb_id;
6366 
6367 	ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
6368 	if (sfmmu_cb_table[cb_id].errhandler != NULL) {
6369 		if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
6370 		    HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
6371 			return;		/* non-fatal */
6372 	}
6373 	panic("pa_hment leaked: 0x%p", pahmep);
6374 }
6375 
6376 /*
6377  * Remove all mappings to page 'pp'.
6378  */
6379 int
6380 hat_pageunload(struct page *pp, uint_t forceflag)
6381 {
6382 	struct page *origpp = pp;
6383 	struct sf_hment *sfhme, *tmphme;
6384 	struct hme_blk *hmeblkp;
6385 	kmutex_t *pml;
6386 #ifdef VAC
6387 	kmutex_t *pmtx;
6388 #endif
6389 	cpuset_t cpuset, tset;
6390 	int index, cons;
6391 	int xhme_blks;
6392 	int pa_hments;
6393 
6394 	ASSERT(PAGE_EXCL(pp));
6395 
6396 retry_xhat:
6397 	tmphme = NULL;
6398 	xhme_blks = 0;
6399 	pa_hments = 0;
6400 	CPUSET_ZERO(cpuset);
6401 
6402 	pml = sfmmu_mlist_enter(pp);
6403 
6404 #ifdef VAC
6405 	if (pp->p_kpmref)
6406 		sfmmu_kpm_pageunload(pp);
6407 	ASSERT(!PP_ISMAPPED_KPM(pp));
6408 #endif
6409 
6410 	index = PP_MAPINDEX(pp);
6411 	cons = TTE8K;
6412 retry:
6413 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6414 		tmphme = sfhme->hme_next;
6415 
6416 		if (IS_PAHME(sfhme)) {
6417 			ASSERT(sfhme->hme_data != NULL);
6418 			pa_hments++;
6419 			continue;
6420 		}
6421 
6422 		hmeblkp = sfmmu_hmetohblk(sfhme);
6423 		if (hmeblkp->hblk_xhat_bit) {
6424 			struct xhat_hme_blk *xblk =
6425 			    (struct xhat_hme_blk *)hmeblkp;
6426 
6427 			(void) XHAT_PAGEUNLOAD(xblk->xhat_hme_blk_hat,
6428 			    pp, forceflag, XBLK2PROVBLK(xblk));
6429 
6430 			xhme_blks = 1;
6431 			continue;
6432 		}
6433 
6434 		/*
6435 		 * If there are kernel mappings don't unload them, they will
6436 		 * be suspended.
6437 		 */
6438 		if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
6439 		    hmeblkp->hblk_tag.htag_id == ksfmmup)
6440 			continue;
6441 
6442 		tset = sfmmu_pageunload(pp, sfhme, cons);
6443 		CPUSET_OR(cpuset, tset);
6444 	}
6445 
6446 	while (index != 0) {
6447 		index = index >> 1;
6448 		if (index != 0)
6449 			cons++;
6450 		if (index & 0x1) {
6451 			/* Go to leading page */
6452 			pp = PP_GROUPLEADER(pp, cons);
6453 			ASSERT(sfmmu_mlist_held(pp));
6454 			goto retry;
6455 		}
6456 	}
6457 
6458 	/*
6459 	 * cpuset may be empty if the page was only mapped by segkpm,
6460 	 * in which case we won't actually cross-trap.
6461 	 */
6462 	xt_sync(cpuset);
6463 
6464 	/*
6465 	 * The page should have no mappings at this point, unless
6466 	 * we were called from hat_page_relocate() in which case we
6467 	 * leave the locked mappings which will be suspended later.
6468 	 */
6469 	ASSERT(!PP_ISMAPPED(origpp) || xhme_blks || pa_hments ||
6470 	    (forceflag == SFMMU_KERNEL_RELOC));
6471 
6472 #ifdef VAC
6473 	if (PP_ISTNC(pp)) {
6474 		if (cons == TTE8K) {
6475 			pmtx = sfmmu_page_enter(pp);
6476 			PP_CLRTNC(pp);
6477 			sfmmu_page_exit(pmtx);
6478 		} else {
6479 			conv_tnc(pp, cons);
6480 		}
6481 	}
6482 #endif	/* VAC */
6483 
6484 	if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
6485 		/*
6486 		 * Unlink any pa_hments and free them, calling back
6487 		 * the responsible subsystem to notify it of the error.
6488 		 * This can occur in situations such as drivers leaking
6489 		 * DMA handles: naughty, but common enough that we'd like
6490 		 * to keep the system running rather than bringing it
6491 		 * down with an obscure error like "pa_hment leaked"
6492 		 * which doesn't aid the user in debugging their driver.
6493 		 */
6494 		for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6495 			tmphme = sfhme->hme_next;
6496 			if (IS_PAHME(sfhme)) {
6497 				struct pa_hment *pahmep = sfhme->hme_data;
6498 				sfmmu_pahment_leaked(pahmep);
6499 				HME_SUB(sfhme, pp);
6500 				kmem_cache_free(pa_hment_cache, pahmep);
6501 			}
6502 		}
6503 
6504 		ASSERT(!PP_ISMAPPED(origpp) || xhme_blks);
6505 	}
6506 
6507 	sfmmu_mlist_exit(pml);
6508 
6509 	/*
6510 	 * XHAT may not have finished unloading pages
6511 	 * because some other thread was waiting for
6512 	 * mlist lock and XHAT_PAGEUNLOAD let it do
6513 	 * the job.
6514 	 */
6515 	if (xhme_blks) {
6516 		pp = origpp;
6517 		goto retry_xhat;
6518 	}
6519 
6520 	return (0);
6521 }
6522 
6523 cpuset_t
6524 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
6525 {
6526 	struct hme_blk *hmeblkp;
6527 	sfmmu_t *sfmmup;
6528 	tte_t tte, ttemod;
6529 #ifdef DEBUG
6530 	tte_t orig_old;
6531 #endif /* DEBUG */
6532 	caddr_t addr;
6533 	int ttesz;
6534 	int ret;
6535 	cpuset_t cpuset;
6536 
6537 	ASSERT(pp != NULL);
6538 	ASSERT(sfmmu_mlist_held(pp));
6539 	ASSERT(!PP_ISKAS(pp));
6540 
6541 	CPUSET_ZERO(cpuset);
6542 
6543 	hmeblkp = sfmmu_hmetohblk(sfhme);
6544 
6545 readtte:
6546 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6547 	if (TTE_IS_VALID(&tte)) {
6548 		sfmmup = hblktosfmmu(hmeblkp);
6549 		ttesz = get_hblk_ttesz(hmeblkp);
6550 		/*
6551 		 * Only unload mappings of 'cons' size.
6552 		 */
6553 		if (ttesz != cons)
6554 			return (cpuset);
6555 
6556 		/*
6557 		 * Note that we have p_mapping lock, but no hash lock here.
6558 		 * hblk_unload() has to have both hash lock AND p_mapping
6559 		 * lock before it tries to modify tte. So, the tte could
6560 		 * not become invalid in the sfmmu_modifytte_try() below.
6561 		 */
6562 		ttemod = tte;
6563 #ifdef DEBUG
6564 		orig_old = tte;
6565 #endif /* DEBUG */
6566 
6567 		TTE_SET_INVALID(&ttemod);
6568 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
6569 		if (ret < 0) {
6570 #ifdef DEBUG
6571 			/* only R/M bits can change. */
6572 			chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
6573 #endif /* DEBUG */
6574 			goto readtte;
6575 		}
6576 
6577 		if (ret == 0) {
6578 			panic("pageunload: cas failed?");
6579 		}
6580 
6581 		addr = tte_to_vaddr(hmeblkp, tte);
6582 
6583 		sfmmu_ttesync(sfmmup, addr, &tte, pp);
6584 
6585 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -1);
6586 
6587 		/*
6588 		 * We need to flush the page from the virtual cache
6589 		 * in order to prevent a virtual cache alias
6590 		 * inconsistency. The particular scenario we need
6591 		 * to worry about is:
6592 		 * Given:  va1 and va2 are two virtual address that
6593 		 * alias and will map the same physical address.
6594 		 * 1.	mapping exists from va1 to pa and data has
6595 		 *	been read into the cache.
6596 		 * 2.	unload va1.
6597 		 * 3.	load va2 and modify data using va2.
6598 		 * 4	unload va2.
6599 		 * 5.	load va1 and reference data.  Unless we flush
6600 		 *	the data cache when we unload we will get
6601 		 *	stale data.
6602 		 * This scenario is taken care of by using virtual
6603 		 * page coloring.
6604 		 */
6605 		if (sfmmup->sfmmu_ismhat) {
6606 			/*
6607 			 * Flush TSBs, TLBs and caches
6608 			 * of every process
6609 			 * sharing this ism segment.
6610 			 */
6611 			sfmmu_hat_lock_all();
6612 			mutex_enter(&ism_mlist_lock);
6613 			kpreempt_disable();
6614 			if (do_virtual_coloring)
6615 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
6616 				    pp->p_pagenum, CACHE_NO_FLUSH);
6617 			else
6618 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
6619 				    pp->p_pagenum, CACHE_FLUSH);
6620 			kpreempt_enable();
6621 			mutex_exit(&ism_mlist_lock);
6622 			sfmmu_hat_unlock_all();
6623 			cpuset = cpu_ready_set;
6624 		} else if (do_virtual_coloring) {
6625 			sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6626 			cpuset = sfmmup->sfmmu_cpusran;
6627 		} else {
6628 			sfmmu_tlbcache_demap(addr, sfmmup, hmeblkp,
6629 			    pp->p_pagenum, 0, FLUSH_NECESSARY_CPUS,
6630 			    CACHE_FLUSH, 0);
6631 			cpuset = sfmmup->sfmmu_cpusran;
6632 		}
6633 
6634 		/*
6635 		 * Hme_sub has to run after ttesync() and a_rss update.
6636 		 * See hblk_unload().
6637 		 */
6638 		HME_SUB(sfhme, pp);
6639 		membar_stst();
6640 
6641 		/*
6642 		 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
6643 		 * since pteload may have done a HME_ADD() right after
6644 		 * we did the HME_SUB() above. Hmecnt is now maintained
6645 		 * by cas only. no lock guranteed its value. The only
6646 		 * gurantee we have is the hmecnt should not be less than
6647 		 * what it should be so the hblk will not be taken away.
6648 		 * It's also important that we decremented the hmecnt after
6649 		 * we are done with hmeblkp so that this hmeblk won't be
6650 		 * stolen.
6651 		 */
6652 		ASSERT(hmeblkp->hblk_hmecnt > 0);
6653 		ASSERT(hmeblkp->hblk_vcnt > 0);
6654 		atomic_add_16(&hmeblkp->hblk_vcnt, -1);
6655 		atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
6656 		/*
6657 		 * This is bug 4063182.
6658 		 * XXX: fixme
6659 		 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
6660 		 *	!hmeblkp->hblk_lckcnt);
6661 		 */
6662 	} else {
6663 		panic("invalid tte? pp %p &tte %p",
6664 		    (void *)pp, (void *)&tte);
6665 	}
6666 
6667 	return (cpuset);
6668 }
6669 
6670 /*
6671  * While relocating a kernel page, this function will move the mappings
6672  * from tpp to dpp and modify any associated data with these mappings.
6673  * It also unsuspends the suspended kernel mapping.
6674  */
6675 static void
6676 hat_pagereload(struct page *tpp, struct page *dpp)
6677 {
6678 	struct sf_hment *sfhme;
6679 	tte_t tte, ttemod;
6680 	int index, cons;
6681 
6682 	ASSERT(getpil() == PIL_MAX);
6683 	ASSERT(sfmmu_mlist_held(tpp));
6684 	ASSERT(sfmmu_mlist_held(dpp));
6685 
6686 	index = PP_MAPINDEX(tpp);
6687 	cons = TTE8K;
6688 
6689 	/* Update real mappings to the page */
6690 retry:
6691 	for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
6692 		if (IS_PAHME(sfhme))
6693 			continue;
6694 		sfmmu_copytte(&sfhme->hme_tte, &tte);
6695 		ttemod = tte;
6696 
6697 		/*
6698 		 * replace old pfn with new pfn in TTE
6699 		 */
6700 		PFN_TO_TTE(ttemod, dpp->p_pagenum);
6701 
6702 		/*
6703 		 * clear suspend bit
6704 		 */
6705 		ASSERT(TTE_IS_SUSPEND(&ttemod));
6706 		TTE_CLR_SUSPEND(&ttemod);
6707 
6708 		if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
6709 			panic("hat_pagereload(): sfmmu_modifytte_try() failed");
6710 
6711 		/*
6712 		 * set hme_page point to new page
6713 		 */
6714 		sfhme->hme_page = dpp;
6715 	}
6716 
6717 	/*
6718 	 * move p_mapping list from old page to new page
6719 	 */
6720 	dpp->p_mapping = tpp->p_mapping;
6721 	tpp->p_mapping = NULL;
6722 	dpp->p_share = tpp->p_share;
6723 	tpp->p_share = 0;
6724 
6725 	while (index != 0) {
6726 		index = index >> 1;
6727 		if (index != 0)
6728 			cons++;
6729 		if (index & 0x1) {
6730 			tpp = PP_GROUPLEADER(tpp, cons);
6731 			dpp = PP_GROUPLEADER(dpp, cons);
6732 			goto retry;
6733 		}
6734 	}
6735 
6736 	curthread->t_flag &= ~T_DONTDTRACE;
6737 	mutex_exit(&kpr_suspendlock);
6738 }
6739 
6740 uint_t
6741 hat_pagesync(struct page *pp, uint_t clearflag)
6742 {
6743 	struct sf_hment *sfhme, *tmphme = NULL;
6744 	struct hme_blk *hmeblkp;
6745 	kmutex_t *pml;
6746 	cpuset_t cpuset, tset;
6747 	int	index, cons;
6748 	extern	ulong_t po_share;
6749 	page_t	*save_pp = pp;
6750 
6751 	CPUSET_ZERO(cpuset);
6752 
6753 	if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
6754 		return (PP_GENERIC_ATTR(pp));
6755 	}
6756 
6757 	if ((clearflag == (HAT_SYNC_STOPON_REF | HAT_SYNC_DONTZERO)) &&
6758 	    PP_ISREF(pp)) {
6759 		return (PP_GENERIC_ATTR(pp));
6760 	}
6761 
6762 	if ((clearflag == (HAT_SYNC_STOPON_MOD | HAT_SYNC_DONTZERO)) &&
6763 	    PP_ISMOD(pp)) {
6764 		return (PP_GENERIC_ATTR(pp));
6765 	}
6766 
6767 	if ((clearflag & HAT_SYNC_STOPON_SHARED) != 0 &&
6768 	    (pp->p_share > po_share) &&
6769 	    !(clearflag & HAT_SYNC_ZERORM)) {
6770 		if (PP_ISRO(pp))
6771 			hat_page_setattr(pp, P_REF);
6772 		return (PP_GENERIC_ATTR(pp));
6773 	}
6774 
6775 	clearflag &= ~HAT_SYNC_STOPON_SHARED;
6776 	pml = sfmmu_mlist_enter(pp);
6777 	index = PP_MAPINDEX(pp);
6778 	cons = TTE8K;
6779 retry:
6780 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6781 		/*
6782 		 * We need to save the next hment on the list since
6783 		 * it is possible for pagesync to remove an invalid hment
6784 		 * from the list.
6785 		 */
6786 		tmphme = sfhme->hme_next;
6787 		/*
6788 		 * If we are looking for large mappings and this hme doesn't
6789 		 * reach the range we are seeking, just ignore its.
6790 		 */
6791 		hmeblkp = sfmmu_hmetohblk(sfhme);
6792 		if (hmeblkp->hblk_xhat_bit)
6793 			continue;
6794 
6795 		if (hme_size(sfhme) < cons)
6796 			continue;
6797 		tset = sfmmu_pagesync(pp, sfhme,
6798 		    clearflag & ~HAT_SYNC_STOPON_RM);
6799 		CPUSET_OR(cpuset, tset);
6800 		/*
6801 		 * If clearflag is HAT_SYNC_DONTZERO, break out as soon
6802 		 * as the "ref" or "mod" is set.
6803 		 */
6804 		if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
6805 		    ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
6806 		    ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp))) {
6807 			index = 0;
6808 			break;
6809 		}
6810 	}
6811 
6812 	while (index) {
6813 		index = index >> 1;
6814 		cons++;
6815 		if (index & 0x1) {
6816 			/* Go to leading page */
6817 			pp = PP_GROUPLEADER(pp, cons);
6818 			goto retry;
6819 		}
6820 	}
6821 
6822 	xt_sync(cpuset);
6823 	sfmmu_mlist_exit(pml);
6824 	return (PP_GENERIC_ATTR(save_pp));
6825 }
6826 
6827 /*
6828  * Get all the hardware dependent attributes for a page struct
6829  */
6830 static cpuset_t
6831 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
6832 	uint_t clearflag)
6833 {
6834 	caddr_t addr;
6835 	tte_t tte, ttemod;
6836 	struct hme_blk *hmeblkp;
6837 	int ret;
6838 	sfmmu_t *sfmmup;
6839 	cpuset_t cpuset;
6840 
6841 	ASSERT(pp != NULL);
6842 	ASSERT(sfmmu_mlist_held(pp));
6843 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
6844 	    (clearflag == HAT_SYNC_ZERORM));
6845 
6846 	SFMMU_STAT(sf_pagesync);
6847 
6848 	CPUSET_ZERO(cpuset);
6849 
6850 sfmmu_pagesync_retry:
6851 
6852 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6853 	if (TTE_IS_VALID(&tte)) {
6854 		hmeblkp = sfmmu_hmetohblk(sfhme);
6855 		sfmmup = hblktosfmmu(hmeblkp);
6856 		addr = tte_to_vaddr(hmeblkp, tte);
6857 		if (clearflag == HAT_SYNC_ZERORM) {
6858 			ttemod = tte;
6859 			TTE_CLR_RM(&ttemod);
6860 			ret = sfmmu_modifytte_try(&tte, &ttemod,
6861 			    &sfhme->hme_tte);
6862 			if (ret < 0) {
6863 				/*
6864 				 * cas failed and the new value is not what
6865 				 * we want.
6866 				 */
6867 				goto sfmmu_pagesync_retry;
6868 			}
6869 
6870 			if (ret > 0) {
6871 				/* we win the cas */
6872 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6873 				cpuset = sfmmup->sfmmu_cpusran;
6874 			}
6875 		}
6876 
6877 		sfmmu_ttesync(sfmmup, addr, &tte, pp);
6878 	}
6879 	return (cpuset);
6880 }
6881 
6882 /*
6883  * Remove write permission from a mappings to a page, so that
6884  * we can detect the next modification of it. This requires modifying
6885  * the TTE then invalidating (demap) any TLB entry using that TTE.
6886  * This code is similar to sfmmu_pagesync().
6887  */
6888 static cpuset_t
6889 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
6890 {
6891 	caddr_t addr;
6892 	tte_t tte;
6893 	tte_t ttemod;
6894 	struct hme_blk *hmeblkp;
6895 	int ret;
6896 	sfmmu_t *sfmmup;
6897 	cpuset_t cpuset;
6898 
6899 	ASSERT(pp != NULL);
6900 	ASSERT(sfmmu_mlist_held(pp));
6901 
6902 	CPUSET_ZERO(cpuset);
6903 	SFMMU_STAT(sf_clrwrt);
6904 
6905 retry:
6906 
6907 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6908 	if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
6909 		hmeblkp = sfmmu_hmetohblk(sfhme);
6910 
6911 		/*
6912 		 * xhat mappings should never be to a VMODSORT page.
6913 		 */
6914 		ASSERT(hmeblkp->hblk_xhat_bit == 0);
6915 
6916 		sfmmup = hblktosfmmu(hmeblkp);
6917 		addr = tte_to_vaddr(hmeblkp, tte);
6918 
6919 		ttemod = tte;
6920 		TTE_CLR_WRT(&ttemod);
6921 		TTE_CLR_MOD(&ttemod);
6922 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
6923 
6924 		/*
6925 		 * if cas failed and the new value is not what
6926 		 * we want retry
6927 		 */
6928 		if (ret < 0)
6929 			goto retry;
6930 
6931 		/* we win the cas */
6932 		if (ret > 0) {
6933 			sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6934 			cpuset = sfmmup->sfmmu_cpusran;
6935 		}
6936 	}
6937 
6938 	return (cpuset);
6939 }
6940 
6941 /*
6942  * Walk all mappings of a page, removing write permission and clearing the
6943  * ref/mod bits. This code is similar to hat_pagesync()
6944  */
6945 static void
6946 hat_page_clrwrt(page_t *pp)
6947 {
6948 	struct sf_hment *sfhme;
6949 	struct sf_hment *tmphme = NULL;
6950 	kmutex_t *pml;
6951 	cpuset_t cpuset;
6952 	cpuset_t tset;
6953 	int	index;
6954 	int	 cons;
6955 
6956 	CPUSET_ZERO(cpuset);
6957 
6958 	pml = sfmmu_mlist_enter(pp);
6959 	index = PP_MAPINDEX(pp);
6960 	cons = TTE8K;
6961 retry:
6962 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6963 		tmphme = sfhme->hme_next;
6964 
6965 		/*
6966 		 * If we are looking for large mappings and this hme doesn't
6967 		 * reach the range we are seeking, just ignore its.
6968 		 */
6969 
6970 		if (hme_size(sfhme) < cons)
6971 			continue;
6972 
6973 		tset = sfmmu_pageclrwrt(pp, sfhme);
6974 		CPUSET_OR(cpuset, tset);
6975 	}
6976 
6977 	while (index) {
6978 		index = index >> 1;
6979 		cons++;
6980 		if (index & 0x1) {
6981 			/* Go to leading page */
6982 			pp = PP_GROUPLEADER(pp, cons);
6983 			goto retry;
6984 		}
6985 	}
6986 
6987 	xt_sync(cpuset);
6988 	sfmmu_mlist_exit(pml);
6989 }
6990 
6991 /*
6992  * Set the given REF/MOD/RO bits for the given page.
6993  * For a vnode with a sorted v_pages list, we need to change
6994  * the attributes and the v_pages list together under page_vnode_mutex.
6995  */
6996 void
6997 hat_page_setattr(page_t *pp, uint_t flag)
6998 {
6999 	vnode_t		*vp = pp->p_vnode;
7000 	page_t		**listp;
7001 	kmutex_t	*pmtx;
7002 	kmutex_t	*vphm = NULL;
7003 	int		noshuffle;
7004 
7005 	noshuffle = flag & P_NSH;
7006 	flag &= ~P_NSH;
7007 
7008 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7009 
7010 	/*
7011 	 * nothing to do if attribute already set
7012 	 */
7013 	if ((pp->p_nrm & flag) == flag)
7014 		return;
7015 
7016 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
7017 	    !noshuffle) {
7018 		vphm = page_vnode_mutex(vp);
7019 		mutex_enter(vphm);
7020 	}
7021 
7022 	pmtx = sfmmu_page_enter(pp);
7023 	pp->p_nrm |= flag;
7024 	sfmmu_page_exit(pmtx);
7025 
7026 	if (vphm != NULL) {
7027 		/*
7028 		 * Some File Systems examine v_pages for NULL w/o
7029 		 * grabbing the vphm mutex. Must not let it become NULL when
7030 		 * pp is the only page on the list.
7031 		 */
7032 		if (pp->p_vpnext != pp) {
7033 			page_vpsub(&vp->v_pages, pp);
7034 			if (vp->v_pages != NULL)
7035 				listp = &vp->v_pages->p_vpprev->p_vpnext;
7036 			else
7037 				listp = &vp->v_pages;
7038 			page_vpadd(listp, pp);
7039 		}
7040 		mutex_exit(vphm);
7041 	}
7042 }
7043 
7044 void
7045 hat_page_clrattr(page_t *pp, uint_t flag)
7046 {
7047 	vnode_t		*vp = pp->p_vnode;
7048 	kmutex_t	*pmtx;
7049 
7050 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7051 
7052 	pmtx = sfmmu_page_enter(pp);
7053 
7054 	/*
7055 	 * Caller is expected to hold page's io lock for VMODSORT to work
7056 	 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
7057 	 * bit is cleared.
7058 	 * We don't have assert to avoid tripping some existing third party
7059 	 * code. The dirty page is moved back to top of the v_page list
7060 	 * after IO is done in pvn_write_done().
7061 	 */
7062 	pp->p_nrm &= ~flag;
7063 	sfmmu_page_exit(pmtx);
7064 
7065 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
7066 
7067 		/*
7068 		 * VMODSORT works by removing write permissions and getting
7069 		 * a fault when a page is made dirty. At this point
7070 		 * we need to remove write permission from all mappings
7071 		 * to this page.
7072 		 */
7073 		hat_page_clrwrt(pp);
7074 	}
7075 }
7076 
7077 uint_t
7078 hat_page_getattr(page_t *pp, uint_t flag)
7079 {
7080 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7081 	return ((uint_t)(pp->p_nrm & flag));
7082 }
7083 
7084 /*
7085  * DEBUG kernels: verify that a kernel va<->pa translation
7086  * is safe by checking the underlying page_t is in a page
7087  * relocation-safe state.
7088  */
7089 #ifdef	DEBUG
7090 void
7091 sfmmu_check_kpfn(pfn_t pfn)
7092 {
7093 	page_t *pp;
7094 	int index, cons;
7095 
7096 	if (hat_check_vtop == 0)
7097 		return;
7098 
7099 	if (hat_kpr_enabled == 0 || kvseg.s_base == NULL || panicstr)
7100 		return;
7101 
7102 	pp = page_numtopp_nolock(pfn);
7103 	if (!pp)
7104 		return;
7105 
7106 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7107 		return;
7108 
7109 	/*
7110 	 * Handed a large kernel page, we dig up the root page since we
7111 	 * know the root page might have the lock also.
7112 	 */
7113 	if (pp->p_szc != 0) {
7114 		index = PP_MAPINDEX(pp);
7115 		cons = TTE8K;
7116 again:
7117 		while (index != 0) {
7118 			index >>= 1;
7119 			if (index != 0)
7120 				cons++;
7121 			if (index & 0x1) {
7122 				pp = PP_GROUPLEADER(pp, cons);
7123 				goto again;
7124 			}
7125 		}
7126 	}
7127 
7128 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7129 		return;
7130 
7131 	/*
7132 	 * Pages need to be locked or allocated "permanent" (either from
7133 	 * static_arena arena or explicitly setting PG_NORELOC when calling
7134 	 * page_create_va()) for VA->PA translations to be valid.
7135 	 */
7136 	if (!PP_ISNORELOC(pp))
7137 		panic("Illegal VA->PA translation, pp 0x%p not permanent", pp);
7138 	else
7139 		panic("Illegal VA->PA translation, pp 0x%p not locked", pp);
7140 }
7141 #endif	/* DEBUG */
7142 
7143 /*
7144  * Returns a page frame number for a given virtual address.
7145  * Returns PFN_INVALID to indicate an invalid mapping
7146  */
7147 pfn_t
7148 hat_getpfnum(struct hat *hat, caddr_t addr)
7149 {
7150 	pfn_t pfn;
7151 	tte_t tte;
7152 
7153 	/*
7154 	 * We would like to
7155 	 * ASSERT(AS_LOCK_HELD(as, &as->a_lock));
7156 	 * but we can't because the iommu driver will call this
7157 	 * routine at interrupt time and it can't grab the as lock
7158 	 * or it will deadlock: A thread could have the as lock
7159 	 * and be waiting for io.  The io can't complete
7160 	 * because the interrupt thread is blocked trying to grab
7161 	 * the as lock.
7162 	 */
7163 
7164 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7165 
7166 	if (hat == ksfmmup) {
7167 		if (IS_KMEM_VA_LARGEPAGE(addr)) {
7168 			ASSERT(segkmem_lpszc > 0);
7169 			pfn = sfmmu_kvaszc2pfn(addr, segkmem_lpszc);
7170 			if (pfn != PFN_INVALID) {
7171 				sfmmu_check_kpfn(pfn);
7172 				return (pfn);
7173 			}
7174 		} else if (segkpm && IS_KPM_ADDR(addr)) {
7175 			return (sfmmu_kpm_vatopfn(addr));
7176 		}
7177 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7178 		    == PFN_SUSPENDED) {
7179 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7180 		}
7181 		sfmmu_check_kpfn(pfn);
7182 		return (pfn);
7183 	} else {
7184 		return (sfmmu_uvatopfn(addr, hat));
7185 	}
7186 }
7187 
7188 /*
7189  * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
7190  * Use hat_getpfnum(kas.a_hat, ...) instead.
7191  *
7192  * We'd like to return PFN_INVALID if the mappings have underlying page_t's
7193  * but can't right now due to the fact that some software has grown to use
7194  * this interface incorrectly. So for now when the interface is misused,
7195  * return a warning to the user that in the future it won't work in the
7196  * way they're abusing it, and carry on (after disabling page relocation).
7197  */
7198 pfn_t
7199 hat_getkpfnum(caddr_t addr)
7200 {
7201 	pfn_t pfn;
7202 	tte_t tte;
7203 	int badcaller = 0;
7204 	extern int segkmem_reloc;
7205 
7206 	if (segkpm && IS_KPM_ADDR(addr)) {
7207 		badcaller = 1;
7208 		pfn = sfmmu_kpm_vatopfn(addr);
7209 	} else {
7210 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7211 		    == PFN_SUSPENDED) {
7212 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7213 		}
7214 		badcaller = pf_is_memory(pfn);
7215 	}
7216 
7217 	if (badcaller) {
7218 		/*
7219 		 * We can't return PFN_INVALID or the caller may panic
7220 		 * or corrupt the system.  The only alternative is to
7221 		 * disable page relocation at this point for all kernel
7222 		 * memory.  This will impact any callers of page_relocate()
7223 		 * such as FMA or DR.
7224 		 *
7225 		 * RFE: Add junk here to spit out an ereport so the sysadmin
7226 		 * can be advised that he should upgrade his device driver
7227 		 * so that this doesn't happen.
7228 		 */
7229 		hat_getkpfnum_badcall(caller());
7230 		if (hat_kpr_enabled && segkmem_reloc) {
7231 			hat_kpr_enabled = 0;
7232 			segkmem_reloc = 0;
7233 			cmn_err(CE_WARN, "Kernel Page Relocation is DISABLED");
7234 		}
7235 	}
7236 	return (pfn);
7237 }
7238 
7239 pfn_t
7240 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup)
7241 {
7242 	struct hmehash_bucket *hmebp;
7243 	hmeblk_tag hblktag;
7244 	int hmeshift, hashno = 1;
7245 	struct hme_blk *hmeblkp = NULL;
7246 
7247 	struct sf_hment *sfhmep;
7248 	tte_t tte;
7249 	pfn_t pfn;
7250 
7251 	/* support for ISM */
7252 	ism_map_t	*ism_map;
7253 	ism_blk_t	*ism_blkp;
7254 	int		i;
7255 	sfmmu_t *ism_hatid = NULL;
7256 	sfmmu_t *locked_hatid = NULL;
7257 
7258 
7259 	ASSERT(sfmmup != ksfmmup);
7260 	SFMMU_STAT(sf_user_vtop);
7261 	/*
7262 	 * Set ism_hatid if vaddr falls in a ISM segment.
7263 	 */
7264 	ism_blkp = sfmmup->sfmmu_iblk;
7265 	if (ism_blkp) {
7266 		sfmmu_ismhat_enter(sfmmup, 0);
7267 		locked_hatid = sfmmup;
7268 	}
7269 	while (ism_blkp && ism_hatid == NULL) {
7270 		ism_map = ism_blkp->iblk_maps;
7271 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
7272 			if (vaddr >= ism_start(ism_map[i]) &&
7273 			    vaddr < ism_end(ism_map[i])) {
7274 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
7275 				vaddr = (caddr_t)(vaddr -
7276 				    ism_start(ism_map[i]));
7277 				break;
7278 			}
7279 		}
7280 		ism_blkp = ism_blkp->iblk_next;
7281 	}
7282 	if (locked_hatid) {
7283 		sfmmu_ismhat_exit(locked_hatid, 0);
7284 	}
7285 
7286 	hblktag.htag_id = sfmmup;
7287 	do {
7288 		hmeshift = HME_HASH_SHIFT(hashno);
7289 		hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
7290 		hblktag.htag_rehash = hashno;
7291 		hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
7292 
7293 		SFMMU_HASH_LOCK(hmebp);
7294 
7295 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
7296 		if (hmeblkp != NULL) {
7297 			HBLKTOHME(sfhmep, hmeblkp, vaddr);
7298 			sfmmu_copytte(&sfhmep->hme_tte, &tte);
7299 			if (TTE_IS_VALID(&tte)) {
7300 				pfn = TTE_TO_PFN(vaddr, &tte);
7301 			} else {
7302 				pfn = PFN_INVALID;
7303 			}
7304 			SFMMU_HASH_UNLOCK(hmebp);
7305 			return (pfn);
7306 		}
7307 		SFMMU_HASH_UNLOCK(hmebp);
7308 		hashno++;
7309 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
7310 	return (PFN_INVALID);
7311 }
7312 
7313 
7314 /*
7315  * For compatability with AT&T and later optimizations
7316  */
7317 /* ARGSUSED */
7318 void
7319 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
7320 {
7321 	ASSERT(hat != NULL);
7322 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7323 }
7324 
7325 /*
7326  * Return the number of mappings to a particular page.
7327  * This number is an approximation of the number of
7328  * number of people sharing the page.
7329  */
7330 ulong_t
7331 hat_page_getshare(page_t *pp)
7332 {
7333 	page_t *spp = pp;	/* start page */
7334 	kmutex_t *pml;
7335 	ulong_t	cnt;
7336 	int index, sz = TTE64K;
7337 
7338 	/*
7339 	 * We need to grab the mlist lock to make sure any outstanding
7340 	 * load/unloads complete.  Otherwise we could return zero
7341 	 * even though the unload(s) hasn't finished yet.
7342 	 */
7343 	pml = sfmmu_mlist_enter(spp);
7344 	cnt = spp->p_share;
7345 
7346 #ifdef VAC
7347 	if (kpm_enable)
7348 		cnt += spp->p_kpmref;
7349 #endif
7350 
7351 	/*
7352 	 * If we have any large mappings, we count the number of
7353 	 * mappings that this large page is part of.
7354 	 */
7355 	index = PP_MAPINDEX(spp);
7356 	index >>= 1;
7357 	while (index) {
7358 		pp = PP_GROUPLEADER(spp, sz);
7359 		if ((index & 0x1) && pp != spp) {
7360 			cnt += pp->p_share;
7361 			spp = pp;
7362 		}
7363 		index >>= 1;
7364 		sz++;
7365 	}
7366 	sfmmu_mlist_exit(pml);
7367 	return (cnt);
7368 }
7369 
7370 /*
7371  * Unload all large mappings to the pp and reset the p_szc field of every
7372  * constituent page according to the remaining mappings.
7373  *
7374  * pp must be locked SE_EXCL. Even though no other constituent pages are
7375  * locked it's legal to unload the large mappings to the pp because all
7376  * constituent pages of large locked mappings have to be locked SE_SHARED.
7377  * This means if we have SE_EXCL lock on one of constituent pages none of the
7378  * large mappings to pp are locked.
7379  *
7380  * Decrease p_szc field starting from the last constituent page and ending
7381  * with the root page. This method is used because other threads rely on the
7382  * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
7383  * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
7384  * ensures that p_szc changes of the constituent pages appears atomic for all
7385  * threads that use sfmmu_mlspl_enter() to examine p_szc field.
7386  *
7387  * This mechanism is only used for file system pages where it's not always
7388  * possible to get SE_EXCL locks on all constituent pages to demote the size
7389  * code (as is done for anonymous or kernel large pages).
7390  *
7391  * See more comments in front of sfmmu_mlspl_enter().
7392  */
7393 void
7394 hat_page_demote(page_t *pp)
7395 {
7396 	int index;
7397 	int sz;
7398 	cpuset_t cpuset;
7399 	int sync = 0;
7400 	page_t *rootpp;
7401 	struct sf_hment *sfhme;
7402 	struct sf_hment *tmphme = NULL;
7403 	struct hme_blk *hmeblkp;
7404 	uint_t pszc;
7405 	page_t *lastpp;
7406 	cpuset_t tset;
7407 	pgcnt_t npgs;
7408 	kmutex_t *pml;
7409 	kmutex_t *pmtx = NULL;
7410 
7411 	ASSERT(PAGE_EXCL(pp));
7412 	ASSERT(!PP_ISFREE(pp));
7413 	ASSERT(page_szc_lock_assert(pp));
7414 	pml = sfmmu_mlist_enter(pp);
7415 
7416 	pszc = pp->p_szc;
7417 	if (pszc == 0) {
7418 		goto out;
7419 	}
7420 
7421 	index = PP_MAPINDEX(pp) >> 1;
7422 
7423 	if (index) {
7424 		CPUSET_ZERO(cpuset);
7425 		sz = TTE64K;
7426 		sync = 1;
7427 	}
7428 
7429 	while (index) {
7430 		if (!(index & 0x1)) {
7431 			index >>= 1;
7432 			sz++;
7433 			continue;
7434 		}
7435 		ASSERT(sz <= pszc);
7436 		rootpp = PP_GROUPLEADER(pp, sz);
7437 		for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
7438 			tmphme = sfhme->hme_next;
7439 			hmeblkp = sfmmu_hmetohblk(sfhme);
7440 			if (hme_size(sfhme) != sz) {
7441 				continue;
7442 			}
7443 			if (hmeblkp->hblk_xhat_bit) {
7444 				cmn_err(CE_PANIC,
7445 				    "hat_page_demote: xhat hmeblk");
7446 			}
7447 			tset = sfmmu_pageunload(rootpp, sfhme, sz);
7448 			CPUSET_OR(cpuset, tset);
7449 		}
7450 		if (index >>= 1) {
7451 			sz++;
7452 		}
7453 	}
7454 
7455 	ASSERT(!PP_ISMAPPED_LARGE(pp));
7456 
7457 	if (sync) {
7458 		xt_sync(cpuset);
7459 #ifdef VAC
7460 		if (PP_ISTNC(pp)) {
7461 			conv_tnc(rootpp, sz);
7462 		}
7463 #endif	/* VAC */
7464 	}
7465 
7466 	pmtx = sfmmu_page_enter(pp);
7467 
7468 	ASSERT(pp->p_szc == pszc);
7469 	rootpp = PP_PAGEROOT(pp);
7470 	ASSERT(rootpp->p_szc == pszc);
7471 	lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
7472 
7473 	while (lastpp != rootpp) {
7474 		sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
7475 		ASSERT(sz < pszc);
7476 		npgs = (sz == 0) ? 1 : TTEPAGES(sz);
7477 		ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
7478 		while (--npgs > 0) {
7479 			lastpp->p_szc = (uchar_t)sz;
7480 			lastpp = PP_PAGEPREV(lastpp);
7481 		}
7482 		if (sz) {
7483 			/*
7484 			 * make sure before current root's pszc
7485 			 * is updated all updates to constituent pages pszc
7486 			 * fields are globally visible.
7487 			 */
7488 			membar_producer();
7489 		}
7490 		lastpp->p_szc = sz;
7491 		ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
7492 		if (lastpp != rootpp) {
7493 			lastpp = PP_PAGEPREV(lastpp);
7494 		}
7495 	}
7496 	if (sz == 0) {
7497 		/* the loop above doesn't cover this case */
7498 		rootpp->p_szc = 0;
7499 	}
7500 out:
7501 	ASSERT(pp->p_szc == 0);
7502 	if (pmtx != NULL) {
7503 		sfmmu_page_exit(pmtx);
7504 	}
7505 	sfmmu_mlist_exit(pml);
7506 }
7507 
7508 /*
7509  * Refresh the HAT ismttecnt[] element for size szc.
7510  * Caller must have set ISM busy flag to prevent mapping
7511  * lists from changing while we're traversing them.
7512  */
7513 pgcnt_t
7514 ism_tsb_entries(sfmmu_t *sfmmup, int szc)
7515 {
7516 	ism_blk_t	*ism_blkp = sfmmup->sfmmu_iblk;
7517 	ism_map_t	*ism_map;
7518 	pgcnt_t		npgs = 0;
7519 	int		j;
7520 
7521 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
7522 	for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
7523 		ism_map = ism_blkp->iblk_maps;
7524 		for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++)
7525 			npgs += ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
7526 	}
7527 	sfmmup->sfmmu_ismttecnt[szc] = npgs;
7528 	return (npgs);
7529 }
7530 
7531 /*
7532  * Yield the memory claim requirement for an address space.
7533  *
7534  * This is currently implemented as the number of bytes that have active
7535  * hardware translations that have page structures.  Therefore, it can
7536  * underestimate the traditional resident set size, eg, if the
7537  * physical page is present and the hardware translation is missing;
7538  * and it can overestimate the rss, eg, if there are active
7539  * translations to a frame buffer with page structs.
7540  * Also, it does not take sharing into account.
7541  *
7542  * Note that we don't acquire locks here since this function is most often
7543  * called from the clock thread.
7544  */
7545 size_t
7546 hat_get_mapped_size(struct hat *hat)
7547 {
7548 	size_t		assize = 0;
7549 	int 		i;
7550 
7551 	if (hat == NULL)
7552 		return (0);
7553 
7554 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7555 
7556 	for (i = 0; i < mmu_page_sizes; i++)
7557 		assize += (pgcnt_t)hat->sfmmu_ttecnt[i] * TTEBYTES(i);
7558 
7559 	if (hat->sfmmu_iblk == NULL)
7560 		return (assize);
7561 
7562 	for (i = 0; i < mmu_page_sizes; i++)
7563 		assize += (pgcnt_t)hat->sfmmu_ismttecnt[i] * TTEBYTES(i);
7564 
7565 	return (assize);
7566 }
7567 
7568 int
7569 hat_stats_enable(struct hat *hat)
7570 {
7571 	hatlock_t	*hatlockp;
7572 
7573 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7574 
7575 	hatlockp = sfmmu_hat_enter(hat);
7576 	hat->sfmmu_rmstat++;
7577 	sfmmu_hat_exit(hatlockp);
7578 	return (1);
7579 }
7580 
7581 void
7582 hat_stats_disable(struct hat *hat)
7583 {
7584 	hatlock_t	*hatlockp;
7585 
7586 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7587 
7588 	hatlockp = sfmmu_hat_enter(hat);
7589 	hat->sfmmu_rmstat--;
7590 	sfmmu_hat_exit(hatlockp);
7591 }
7592 
7593 /*
7594  * Routines for entering or removing  ourselves from the
7595  * ism_hat's mapping list.
7596  */
7597 static void
7598 iment_add(struct ism_ment *iment,  struct hat *ism_hat)
7599 {
7600 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
7601 
7602 	iment->iment_prev = NULL;
7603 	iment->iment_next = ism_hat->sfmmu_iment;
7604 	if (ism_hat->sfmmu_iment) {
7605 		ism_hat->sfmmu_iment->iment_prev = iment;
7606 	}
7607 	ism_hat->sfmmu_iment = iment;
7608 }
7609 
7610 static void
7611 iment_sub(struct ism_ment *iment, struct hat *ism_hat)
7612 {
7613 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
7614 
7615 	if (ism_hat->sfmmu_iment == NULL) {
7616 		panic("ism map entry remove - no entries");
7617 	}
7618 
7619 	if (iment->iment_prev) {
7620 		ASSERT(ism_hat->sfmmu_iment != iment);
7621 		iment->iment_prev->iment_next = iment->iment_next;
7622 	} else {
7623 		ASSERT(ism_hat->sfmmu_iment == iment);
7624 		ism_hat->sfmmu_iment = iment->iment_next;
7625 	}
7626 
7627 	if (iment->iment_next) {
7628 		iment->iment_next->iment_prev = iment->iment_prev;
7629 	}
7630 
7631 	/*
7632 	 * zero out the entry
7633 	 */
7634 	iment->iment_next = NULL;
7635 	iment->iment_prev = NULL;
7636 	iment->iment_hat =  NULL;
7637 }
7638 
7639 /*
7640  * Hat_share()/unshare() return an (non-zero) error
7641  * when saddr and daddr are not properly aligned.
7642  *
7643  * The top level mapping element determines the alignment
7644  * requirement for saddr and daddr, depending on different
7645  * architectures.
7646  *
7647  * When hat_share()/unshare() are not supported,
7648  * HATOP_SHARE()/UNSHARE() return 0
7649  */
7650 int
7651 hat_share(struct hat *sfmmup, caddr_t addr,
7652 	struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc)
7653 {
7654 	ism_blk_t	*ism_blkp;
7655 	ism_blk_t	*new_iblk;
7656 	ism_map_t 	*ism_map;
7657 	ism_ment_t	*ism_ment;
7658 	int		i, added;
7659 	hatlock_t	*hatlockp;
7660 	int		reload_mmu = 0;
7661 	uint_t		ismshift = page_get_shift(ismszc);
7662 	size_t		ismpgsz = page_get_pagesize(ismszc);
7663 	uint_t		ismmask = (uint_t)ismpgsz - 1;
7664 	size_t		sh_size = ISM_SHIFT(ismshift, len);
7665 	ushort_t	ismhatflag;
7666 
7667 #ifdef DEBUG
7668 	caddr_t		eaddr = addr + len;
7669 #endif /* DEBUG */
7670 
7671 	ASSERT(ism_hatid != NULL && sfmmup != NULL);
7672 	ASSERT(sptaddr == ISMID_STARTADDR);
7673 	/*
7674 	 * Check the alignment.
7675 	 */
7676 	if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
7677 		return (EINVAL);
7678 
7679 	/*
7680 	 * Check size alignment.
7681 	 */
7682 	if (!ISM_ALIGNED(ismshift, len))
7683 		return (EINVAL);
7684 
7685 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
7686 
7687 	/*
7688 	 * Allocate ism_ment for the ism_hat's mapping list, and an
7689 	 * ism map blk in case we need one.  We must do our
7690 	 * allocations before acquiring locks to prevent a deadlock
7691 	 * in the kmem allocator on the mapping list lock.
7692 	 */
7693 	new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
7694 	ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
7695 
7696 	/*
7697 	 * Serialize ISM mappings with the ISM busy flag, and also the
7698 	 * trap handlers.
7699 	 */
7700 	sfmmu_ismhat_enter(sfmmup, 0);
7701 
7702 	/*
7703 	 * Allocate an ism map blk if necessary.
7704 	 */
7705 	if (sfmmup->sfmmu_iblk == NULL) {
7706 		sfmmup->sfmmu_iblk = new_iblk;
7707 		bzero(new_iblk, sizeof (*new_iblk));
7708 		new_iblk->iblk_nextpa = (uint64_t)-1;
7709 		membar_stst();	/* make sure next ptr visible to all CPUs */
7710 		sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
7711 		reload_mmu = 1;
7712 		new_iblk = NULL;
7713 	}
7714 
7715 #ifdef DEBUG
7716 	/*
7717 	 * Make sure mapping does not already exist.
7718 	 */
7719 	ism_blkp = sfmmup->sfmmu_iblk;
7720 	while (ism_blkp) {
7721 		ism_map = ism_blkp->iblk_maps;
7722 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
7723 			if ((addr >= ism_start(ism_map[i]) &&
7724 			    addr < ism_end(ism_map[i])) ||
7725 			    eaddr > ism_start(ism_map[i]) &&
7726 			    eaddr <= ism_end(ism_map[i])) {
7727 				panic("sfmmu_share: Already mapped!");
7728 			}
7729 		}
7730 		ism_blkp = ism_blkp->iblk_next;
7731 	}
7732 #endif /* DEBUG */
7733 
7734 	ASSERT(ismszc >= TTE4M);
7735 	if (ismszc == TTE4M) {
7736 		ismhatflag = HAT_4M_FLAG;
7737 	} else if (ismszc == TTE32M) {
7738 		ismhatflag = HAT_32M_FLAG;
7739 	} else if (ismszc == TTE256M) {
7740 		ismhatflag = HAT_256M_FLAG;
7741 	}
7742 	/*
7743 	 * Add mapping to first available mapping slot.
7744 	 */
7745 	ism_blkp = sfmmup->sfmmu_iblk;
7746 	added = 0;
7747 	while (!added) {
7748 		ism_map = ism_blkp->iblk_maps;
7749 		for (i = 0; i < ISM_MAP_SLOTS; i++)  {
7750 			if (ism_map[i].imap_ismhat == NULL) {
7751 
7752 				ism_map[i].imap_ismhat = ism_hatid;
7753 				ism_map[i].imap_vb_shift = (ushort_t)ismshift;
7754 				ism_map[i].imap_hatflags = ismhatflag;
7755 				ism_map[i].imap_sz_mask = ismmask;
7756 				/*
7757 				 * imap_seg is checked in ISM_CHECK to see if
7758 				 * non-NULL, then other info assumed valid.
7759 				 */
7760 				membar_stst();
7761 				ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
7762 				ism_map[i].imap_ment = ism_ment;
7763 
7764 				/*
7765 				 * Now add ourselves to the ism_hat's
7766 				 * mapping list.
7767 				 */
7768 				ism_ment->iment_hat = sfmmup;
7769 				ism_ment->iment_base_va = addr;
7770 				ism_hatid->sfmmu_ismhat = 1;
7771 				ism_hatid->sfmmu_flags = 0;
7772 				mutex_enter(&ism_mlist_lock);
7773 				iment_add(ism_ment, ism_hatid);
7774 				mutex_exit(&ism_mlist_lock);
7775 				added = 1;
7776 				break;
7777 			}
7778 		}
7779 		if (!added && ism_blkp->iblk_next == NULL) {
7780 			ism_blkp->iblk_next = new_iblk;
7781 			new_iblk = NULL;
7782 			bzero(ism_blkp->iblk_next,
7783 			    sizeof (*ism_blkp->iblk_next));
7784 			ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
7785 			membar_stst();
7786 			ism_blkp->iblk_nextpa =
7787 			    va_to_pa((caddr_t)ism_blkp->iblk_next);
7788 		}
7789 		ism_blkp = ism_blkp->iblk_next;
7790 	}
7791 
7792 	/*
7793 	 * Update our counters for this sfmmup's ism mappings.
7794 	 */
7795 	for (i = 0; i <= ismszc; i++) {
7796 		if (!(disable_ism_large_pages & (1 << i)))
7797 			(void) ism_tsb_entries(sfmmup, i);
7798 	}
7799 
7800 	hatlockp = sfmmu_hat_enter(sfmmup);
7801 
7802 	/*
7803 	 * For ISM and DISM we do not support 512K pages, so we only
7804 	 * only search the 4M and 8K/64K hashes for 4 pagesize cpus, and search
7805 	 * the 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
7806 	 */
7807 	ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
7808 
7809 	if (ismszc > TTE4M && !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG))
7810 		SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
7811 
7812 	if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG))
7813 		SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
7814 
7815 	/*
7816 	 * If we updated the ismblkpa for this HAT or we need
7817 	 * to start searching the 256M or 32M or 4M hash, we must
7818 	 * make sure all CPUs running this process reload their
7819 	 * tsbmiss area.  Otherwise they will fail to load the mappings
7820 	 * in the tsbmiss handler and will loop calling pagefault().
7821 	 */
7822 	switch (ismszc) {
7823 	case TTE256M:
7824 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
7825 			SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
7826 			sfmmu_sync_mmustate(sfmmup);
7827 		}
7828 		break;
7829 	case TTE32M:
7830 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
7831 			SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
7832 			sfmmu_sync_mmustate(sfmmup);
7833 		}
7834 		break;
7835 	case TTE4M:
7836 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
7837 			SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
7838 			sfmmu_sync_mmustate(sfmmup);
7839 		}
7840 		break;
7841 	default:
7842 		break;
7843 	}
7844 
7845 	/*
7846 	 * Now we can drop the locks.
7847 	 */
7848 	sfmmu_ismhat_exit(sfmmup, 1);
7849 	sfmmu_hat_exit(hatlockp);
7850 
7851 	/*
7852 	 * Free up ismblk if we didn't use it.
7853 	 */
7854 	if (new_iblk != NULL)
7855 		kmem_cache_free(ism_blk_cache, new_iblk);
7856 
7857 	/*
7858 	 * Check TSB and TLB page sizes.
7859 	 */
7860 	sfmmu_check_page_sizes(sfmmup, 1);
7861 
7862 	return (0);
7863 }
7864 
7865 /*
7866  * hat_unshare removes exactly one ism_map from
7867  * this process's as.  It expects multiple calls
7868  * to hat_unshare for multiple shm segments.
7869  */
7870 void
7871 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
7872 {
7873 	ism_map_t 	*ism_map;
7874 	ism_ment_t	*free_ment = NULL;
7875 	ism_blk_t	*ism_blkp;
7876 	struct hat	*ism_hatid;
7877 	int 		found, i;
7878 	hatlock_t	*hatlockp;
7879 	struct tsb_info	*tsbinfo;
7880 	uint_t		ismshift = page_get_shift(ismszc);
7881 	size_t		sh_size = ISM_SHIFT(ismshift, len);
7882 
7883 	ASSERT(ISM_ALIGNED(ismshift, addr));
7884 	ASSERT(ISM_ALIGNED(ismshift, len));
7885 	ASSERT(sfmmup != NULL);
7886 	ASSERT(sfmmup != ksfmmup);
7887 
7888 	if (sfmmup->sfmmu_xhat_provider) {
7889 		XHAT_UNSHARE(sfmmup, addr, len);
7890 		return;
7891 	} else {
7892 		/*
7893 		 * This must be a CPU HAT. If the address space has
7894 		 * XHATs attached, inform all XHATs that ISM segment
7895 		 * is going away
7896 		 */
7897 		ASSERT(sfmmup->sfmmu_as != NULL);
7898 		if (sfmmup->sfmmu_as->a_xhat != NULL)
7899 			xhat_unshare_all(sfmmup->sfmmu_as, addr, len);
7900 	}
7901 
7902 	/*
7903 	 * Make sure that during the entire time ISM mappings are removed,
7904 	 * the trap handlers serialize behind us, and that no one else
7905 	 * can be mucking with ISM mappings.  This also lets us get away
7906 	 * with not doing expensive cross calls to flush the TLB -- we
7907 	 * just discard the context, flush the entire TSB, and call it
7908 	 * a day.
7909 	 */
7910 	sfmmu_ismhat_enter(sfmmup, 0);
7911 
7912 	/*
7913 	 * Remove the mapping.
7914 	 *
7915 	 * We can't have any holes in the ism map.
7916 	 * The tsb miss code while searching the ism map will
7917 	 * stop on an empty map slot.  So we must move
7918 	 * everyone past the hole up 1 if any.
7919 	 *
7920 	 * Also empty ism map blks are not freed until the
7921 	 * process exits. This is to prevent a MT race condition
7922 	 * between sfmmu_unshare() and sfmmu_tsbmiss_exception().
7923 	 */
7924 	found = 0;
7925 	ism_blkp = sfmmup->sfmmu_iblk;
7926 	while (!found && ism_blkp) {
7927 		ism_map = ism_blkp->iblk_maps;
7928 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
7929 			if (addr == ism_start(ism_map[i]) &&
7930 			    sh_size == (size_t)(ism_size(ism_map[i]))) {
7931 				found = 1;
7932 				break;
7933 			}
7934 		}
7935 		if (!found)
7936 			ism_blkp = ism_blkp->iblk_next;
7937 	}
7938 
7939 	if (found) {
7940 		ism_hatid = ism_map[i].imap_ismhat;
7941 		ASSERT(ism_hatid != NULL);
7942 		ASSERT(ism_hatid->sfmmu_ismhat == 1);
7943 
7944 		/*
7945 		 * First remove ourselves from the ism mapping list.
7946 		 */
7947 		mutex_enter(&ism_mlist_lock);
7948 		iment_sub(ism_map[i].imap_ment, ism_hatid);
7949 		mutex_exit(&ism_mlist_lock);
7950 		free_ment = ism_map[i].imap_ment;
7951 
7952 		/*
7953 		 * Now gurantee that any other cpu
7954 		 * that tries to process an ISM miss
7955 		 * will go to tl=0.
7956 		 */
7957 		hatlockp = sfmmu_hat_enter(sfmmup);
7958 
7959 		sfmmu_invalidate_ctx(sfmmup);
7960 
7961 		sfmmu_hat_exit(hatlockp);
7962 
7963 		/*
7964 		 * We delete the ism map by copying
7965 		 * the next map over the current one.
7966 		 * We will take the next one in the maps
7967 		 * array or from the next ism_blk.
7968 		 */
7969 		while (ism_blkp) {
7970 			ism_map = ism_blkp->iblk_maps;
7971 			while (i < (ISM_MAP_SLOTS - 1)) {
7972 				ism_map[i] = ism_map[i + 1];
7973 				i++;
7974 			}
7975 			/* i == (ISM_MAP_SLOTS - 1) */
7976 			ism_blkp = ism_blkp->iblk_next;
7977 			if (ism_blkp) {
7978 				ism_map[i] = ism_blkp->iblk_maps[0];
7979 				i = 0;
7980 			} else {
7981 				ism_map[i].imap_seg = 0;
7982 				ism_map[i].imap_vb_shift = 0;
7983 				ism_map[i].imap_hatflags = 0;
7984 				ism_map[i].imap_sz_mask = 0;
7985 				ism_map[i].imap_ismhat = NULL;
7986 				ism_map[i].imap_ment = NULL;
7987 			}
7988 		}
7989 
7990 		/*
7991 		 * Now flush entire TSB for the process, since
7992 		 * demapping page by page can be too expensive.
7993 		 * We don't have to flush the TLB here anymore
7994 		 * since we switch to a new TLB ctx instead.
7995 		 * Also, there is no need to flush if the process
7996 		 * is exiting since the TSB will be freed later.
7997 		 */
7998 		if (!sfmmup->sfmmu_free) {
7999 			hatlockp = sfmmu_hat_enter(sfmmup);
8000 			for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
8001 			    tsbinfo = tsbinfo->tsb_next) {
8002 				if (tsbinfo->tsb_flags & TSB_SWAPPED)
8003 					continue;
8004 				sfmmu_inv_tsb(tsbinfo->tsb_va,
8005 				    TSB_BYTES(tsbinfo->tsb_szc));
8006 			}
8007 			sfmmu_hat_exit(hatlockp);
8008 		}
8009 	}
8010 
8011 	/*
8012 	 * Update our counters for this sfmmup's ism mappings.
8013 	 */
8014 	for (i = 0; i <= ismszc; i++) {
8015 		if (!(disable_ism_large_pages & (1 << i)))
8016 			(void) ism_tsb_entries(sfmmup, i);
8017 	}
8018 
8019 	sfmmu_ismhat_exit(sfmmup, 0);
8020 
8021 	/*
8022 	 * We must do our freeing here after dropping locks
8023 	 * to prevent a deadlock in the kmem allocator on the
8024 	 * mapping list lock.
8025 	 */
8026 	if (free_ment != NULL)
8027 		kmem_cache_free(ism_ment_cache, free_ment);
8028 
8029 	/*
8030 	 * Check TSB and TLB page sizes if the process isn't exiting.
8031 	 */
8032 	if (!sfmmup->sfmmu_free)
8033 		sfmmu_check_page_sizes(sfmmup, 0);
8034 }
8035 
8036 /* ARGSUSED */
8037 static int
8038 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
8039 {
8040 	/* void *buf is sfmmu_t pointer */
8041 	return (0);
8042 }
8043 
8044 /* ARGSUSED */
8045 static void
8046 sfmmu_idcache_destructor(void *buf, void *cdrarg)
8047 {
8048 	/* void *buf is sfmmu_t pointer */
8049 }
8050 
8051 /*
8052  * setup kmem hmeblks by bzeroing all members and initializing the nextpa
8053  * field to be the pa of this hmeblk
8054  */
8055 /* ARGSUSED */
8056 static int
8057 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
8058 {
8059 	struct hme_blk *hmeblkp;
8060 
8061 	bzero(buf, (size_t)cdrarg);
8062 	hmeblkp = (struct hme_blk *)buf;
8063 	hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
8064 
8065 #ifdef	HBLK_TRACE
8066 	mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
8067 #endif	/* HBLK_TRACE */
8068 
8069 	return (0);
8070 }
8071 
8072 /* ARGSUSED */
8073 static void
8074 sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
8075 {
8076 
8077 #ifdef	HBLK_TRACE
8078 
8079 	struct hme_blk *hmeblkp;
8080 
8081 	hmeblkp = (struct hme_blk *)buf;
8082 	mutex_destroy(&hmeblkp->hblk_audit_lock);
8083 
8084 #endif	/* HBLK_TRACE */
8085 }
8086 
8087 #define	SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
8088 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
8089 /*
8090  * The kmem allocator will callback into our reclaim routine when the system
8091  * is running low in memory.  We traverse the hash and free up all unused but
8092  * still cached hme_blks.  We also traverse the free list and free them up
8093  * as well.
8094  */
8095 /*ARGSUSED*/
8096 static void
8097 sfmmu_hblkcache_reclaim(void *cdrarg)
8098 {
8099 	int i;
8100 	uint64_t hblkpa, prevpa, nx_pa;
8101 	struct hmehash_bucket *hmebp;
8102 	struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
8103 	static struct hmehash_bucket *uhmehash_reclaim_hand;
8104 	static struct hmehash_bucket *khmehash_reclaim_hand;
8105 	struct hme_blk *list = NULL;
8106 
8107 	hmebp = uhmehash_reclaim_hand;
8108 	if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
8109 		uhmehash_reclaim_hand = hmebp = uhme_hash;
8110 	uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8111 
8112 	for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8113 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8114 			hmeblkp = hmebp->hmeblkp;
8115 			hblkpa = hmebp->hmeh_nextpa;
8116 			prevpa = 0;
8117 			pr_hblk = NULL;
8118 			while (hmeblkp) {
8119 				nx_hblk = hmeblkp->hblk_next;
8120 				nx_pa = hmeblkp->hblk_nextpa;
8121 				if (!hmeblkp->hblk_vcnt &&
8122 				    !hmeblkp->hblk_hmecnt) {
8123 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8124 					    prevpa, pr_hblk);
8125 					sfmmu_hblk_free(hmebp, hmeblkp,
8126 					    hblkpa, &list);
8127 				} else {
8128 					pr_hblk = hmeblkp;
8129 					prevpa = hblkpa;
8130 				}
8131 				hmeblkp = nx_hblk;
8132 				hblkpa = nx_pa;
8133 			}
8134 			SFMMU_HASH_UNLOCK(hmebp);
8135 		}
8136 		if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
8137 			hmebp = uhme_hash;
8138 	}
8139 
8140 	hmebp = khmehash_reclaim_hand;
8141 	if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
8142 		khmehash_reclaim_hand = hmebp = khme_hash;
8143 	khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8144 
8145 	for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8146 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8147 			hmeblkp = hmebp->hmeblkp;
8148 			hblkpa = hmebp->hmeh_nextpa;
8149 			prevpa = 0;
8150 			pr_hblk = NULL;
8151 			while (hmeblkp) {
8152 				nx_hblk = hmeblkp->hblk_next;
8153 				nx_pa = hmeblkp->hblk_nextpa;
8154 				if (!hmeblkp->hblk_vcnt &&
8155 				    !hmeblkp->hblk_hmecnt) {
8156 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8157 					    prevpa, pr_hblk);
8158 					sfmmu_hblk_free(hmebp, hmeblkp,
8159 					    hblkpa, &list);
8160 				} else {
8161 					pr_hblk = hmeblkp;
8162 					prevpa = hblkpa;
8163 				}
8164 				hmeblkp = nx_hblk;
8165 				hblkpa = nx_pa;
8166 			}
8167 			SFMMU_HASH_UNLOCK(hmebp);
8168 		}
8169 		if (hmebp++ == &khme_hash[KHMEHASH_SZ])
8170 			hmebp = khme_hash;
8171 	}
8172 	sfmmu_hblks_list_purge(&list);
8173 }
8174 
8175 /*
8176  * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
8177  * same goes for sfmmu_get_addrvcolor().
8178  *
8179  * This function will return the virtual color for the specified page. The
8180  * virtual color corresponds to this page current mapping or its last mapping.
8181  * It is used by memory allocators to choose addresses with the correct
8182  * alignment so vac consistency is automatically maintained.  If the page
8183  * has no color it returns -1.
8184  */
8185 /*ARGSUSED*/
8186 int
8187 sfmmu_get_ppvcolor(struct page *pp)
8188 {
8189 #ifdef VAC
8190 	int color;
8191 
8192 	if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
8193 		return (-1);
8194 	}
8195 	color = PP_GET_VCOLOR(pp);
8196 	ASSERT(color < mmu_btop(shm_alignment));
8197 	return (color);
8198 #else
8199 	return (-1);
8200 #endif	/* VAC */
8201 }
8202 
8203 /*
8204  * This function will return the desired alignment for vac consistency
8205  * (vac color) given a virtual address.  If no vac is present it returns -1.
8206  */
8207 /*ARGSUSED*/
8208 int
8209 sfmmu_get_addrvcolor(caddr_t vaddr)
8210 {
8211 #ifdef VAC
8212 	if (cache & CACHE_VAC) {
8213 		return (addr_to_vcolor(vaddr));
8214 	} else {
8215 		return (-1);
8216 	}
8217 #else
8218 	return (-1);
8219 #endif	/* VAC */
8220 }
8221 
8222 #ifdef VAC
8223 /*
8224  * Check for conflicts.
8225  * A conflict exists if the new and existent mappings do not match in
8226  * their "shm_alignment fields. If conflicts exist, the existant mappings
8227  * are flushed unless one of them is locked. If one of them is locked, then
8228  * the mappings are flushed and converted to non-cacheable mappings.
8229  */
8230 static void
8231 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
8232 {
8233 	struct hat *tmphat;
8234 	struct sf_hment *sfhmep, *tmphme = NULL;
8235 	struct hme_blk *hmeblkp;
8236 	int vcolor;
8237 	tte_t tte;
8238 
8239 	ASSERT(sfmmu_mlist_held(pp));
8240 	ASSERT(!PP_ISNC(pp));		/* page better be cacheable */
8241 
8242 	vcolor = addr_to_vcolor(addr);
8243 	if (PP_NEWPAGE(pp)) {
8244 		PP_SET_VCOLOR(pp, vcolor);
8245 		return;
8246 	}
8247 
8248 	if (PP_GET_VCOLOR(pp) == vcolor) {
8249 		return;
8250 	}
8251 
8252 	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
8253 		/*
8254 		 * Previous user of page had a different color
8255 		 * but since there are no current users
8256 		 * we just flush the cache and change the color.
8257 		 */
8258 		SFMMU_STAT(sf_pgcolor_conflict);
8259 		sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
8260 		PP_SET_VCOLOR(pp, vcolor);
8261 		return;
8262 	}
8263 
8264 	/*
8265 	 * If we get here we have a vac conflict with a current
8266 	 * mapping.  VAC conflict policy is as follows.
8267 	 * - The default is to unload the other mappings unless:
8268 	 * - If we have a large mapping we uncache the page.
8269 	 * We need to uncache the rest of the large page too.
8270 	 * - If any of the mappings are locked we uncache the page.
8271 	 * - If the requested mapping is inconsistent
8272 	 * with another mapping and that mapping
8273 	 * is in the same address space we have to
8274 	 * make it non-cached.  The default thing
8275 	 * to do is unload the inconsistent mapping
8276 	 * but if they are in the same address space
8277 	 * we run the risk of unmapping the pc or the
8278 	 * stack which we will use as we return to the user,
8279 	 * in which case we can then fault on the thing
8280 	 * we just unloaded and get into an infinite loop.
8281 	 */
8282 	if (PP_ISMAPPED_LARGE(pp)) {
8283 		int sz;
8284 
8285 		/*
8286 		 * Existing mapping is for big pages. We don't unload
8287 		 * existing big mappings to satisfy new mappings.
8288 		 * Always convert all mappings to TNC.
8289 		 */
8290 		sz = fnd_mapping_sz(pp);
8291 		pp = PP_GROUPLEADER(pp, sz);
8292 		SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
8293 		sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
8294 		    TTEPAGES(sz));
8295 
8296 		return;
8297 	}
8298 
8299 	/*
8300 	 * check if any mapping is in same as or if it is locked
8301 	 * since in that case we need to uncache.
8302 	 */
8303 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
8304 		tmphme = sfhmep->hme_next;
8305 		hmeblkp = sfmmu_hmetohblk(sfhmep);
8306 		if (hmeblkp->hblk_xhat_bit)
8307 			continue;
8308 		tmphat = hblktosfmmu(hmeblkp);
8309 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
8310 		ASSERT(TTE_IS_VALID(&tte));
8311 		if ((tmphat == hat) || hmeblkp->hblk_lckcnt) {
8312 			/*
8313 			 * We have an uncache conflict
8314 			 */
8315 			SFMMU_STAT(sf_uncache_conflict);
8316 			sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
8317 			return;
8318 		}
8319 	}
8320 
8321 	/*
8322 	 * We have an unload conflict
8323 	 * We have already checked for LARGE mappings, therefore
8324 	 * the remaining mapping(s) must be TTE8K.
8325 	 */
8326 	SFMMU_STAT(sf_unload_conflict);
8327 
8328 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
8329 		tmphme = sfhmep->hme_next;
8330 		hmeblkp = sfmmu_hmetohblk(sfhmep);
8331 		if (hmeblkp->hblk_xhat_bit)
8332 			continue;
8333 		(void) sfmmu_pageunload(pp, sfhmep, TTE8K);
8334 	}
8335 
8336 	if (PP_ISMAPPED_KPM(pp))
8337 		sfmmu_kpm_vac_unload(pp, addr);
8338 
8339 	/*
8340 	 * Unloads only do TLB flushes so we need to flush the
8341 	 * cache here.
8342 	 */
8343 	sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
8344 	PP_SET_VCOLOR(pp, vcolor);
8345 }
8346 
8347 /*
8348  * Whenever a mapping is unloaded and the page is in TNC state,
8349  * we see if the page can be made cacheable again. 'pp' is
8350  * the page that we just unloaded a mapping from, the size
8351  * of mapping that was unloaded is 'ottesz'.
8352  * Remark:
8353  * The recache policy for mpss pages can leave a performance problem
8354  * under the following circumstances:
8355  * . A large page in uncached mode has just been unmapped.
8356  * . All constituent pages are TNC due to a conflicting small mapping.
8357  * . There are many other, non conflicting, small mappings around for
8358  *   a lot of the constituent pages.
8359  * . We're called w/ the "old" groupleader page and the old ottesz,
8360  *   but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
8361  *   we end up w/ TTE8K or npages == 1.
8362  * . We call tst_tnc w/ the old groupleader only, and if there is no
8363  *   conflict, we re-cache only this page.
8364  * . All other small mappings are not checked and will be left in TNC mode.
8365  * The problem is not very serious because:
8366  * . mpss is actually only defined for heap and stack, so the probability
8367  *   is not very high that a large page mapping exists in parallel to a small
8368  *   one (this is possible, but seems to be bad programming style in the
8369  *   appl).
8370  * . The problem gets a little bit more serious, when those TNC pages
8371  *   have to be mapped into kernel space, e.g. for networking.
8372  * . When VAC alias conflicts occur in applications, this is regarded
8373  *   as an application bug. So if kstat's show them, the appl should
8374  *   be changed anyway.
8375  */
8376 void
8377 conv_tnc(page_t *pp, int ottesz)
8378 {
8379 	int cursz, dosz;
8380 	pgcnt_t curnpgs, dopgs;
8381 	pgcnt_t pg64k;
8382 	page_t *pp2;
8383 
8384 	/*
8385 	 * Determine how big a range we check for TNC and find
8386 	 * leader page. cursz is the size of the biggest
8387 	 * mapping that still exist on 'pp'.
8388 	 */
8389 	if (PP_ISMAPPED_LARGE(pp)) {
8390 		cursz = fnd_mapping_sz(pp);
8391 	} else {
8392 		cursz = TTE8K;
8393 	}
8394 
8395 	if (ottesz >= cursz) {
8396 		dosz = ottesz;
8397 		pp2 = pp;
8398 	} else {
8399 		dosz = cursz;
8400 		pp2 = PP_GROUPLEADER(pp, dosz);
8401 	}
8402 
8403 	pg64k = TTEPAGES(TTE64K);
8404 	dopgs = TTEPAGES(dosz);
8405 
8406 	ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
8407 
8408 	while (dopgs != 0) {
8409 		curnpgs = TTEPAGES(cursz);
8410 		if (tst_tnc(pp2, curnpgs)) {
8411 			SFMMU_STAT_ADD(sf_recache, curnpgs);
8412 			sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
8413 			    curnpgs);
8414 		}
8415 
8416 		ASSERT(dopgs >= curnpgs);
8417 		dopgs -= curnpgs;
8418 
8419 		if (dopgs == 0) {
8420 			break;
8421 		}
8422 
8423 		pp2 = PP_PAGENEXT_N(pp2, curnpgs);
8424 		if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
8425 			cursz = fnd_mapping_sz(pp2);
8426 		} else {
8427 			cursz = TTE8K;
8428 		}
8429 	}
8430 }
8431 
8432 /*
8433  * Returns 1 if page(s) can be converted from TNC to cacheable setting,
8434  * returns 0 otherwise. Note that oaddr argument is valid for only
8435  * 8k pages.
8436  */
8437 int
8438 tst_tnc(page_t *pp, pgcnt_t npages)
8439 {
8440 	struct	sf_hment *sfhme;
8441 	struct	hme_blk *hmeblkp;
8442 	tte_t	tte;
8443 	caddr_t	vaddr;
8444 	int	clr_valid = 0;
8445 	int 	color, color1, bcolor;
8446 	int	i, ncolors;
8447 
8448 	ASSERT(pp != NULL);
8449 	ASSERT(!(cache & CACHE_WRITEBACK));
8450 
8451 	if (npages > 1) {
8452 		ncolors = CACHE_NUM_COLOR;
8453 	}
8454 
8455 	for (i = 0; i < npages; i++) {
8456 		ASSERT(sfmmu_mlist_held(pp));
8457 		ASSERT(PP_ISTNC(pp));
8458 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
8459 
8460 		if (PP_ISPNC(pp)) {
8461 			return (0);
8462 		}
8463 
8464 		clr_valid = 0;
8465 		if (PP_ISMAPPED_KPM(pp)) {
8466 			caddr_t kpmvaddr;
8467 
8468 			ASSERT(kpm_enable);
8469 			kpmvaddr = hat_kpm_page2va(pp, 1);
8470 			ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
8471 			color1 = addr_to_vcolor(kpmvaddr);
8472 			clr_valid = 1;
8473 		}
8474 
8475 		for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
8476 			hmeblkp = sfmmu_hmetohblk(sfhme);
8477 			if (hmeblkp->hblk_xhat_bit)
8478 				continue;
8479 
8480 			sfmmu_copytte(&sfhme->hme_tte, &tte);
8481 			ASSERT(TTE_IS_VALID(&tte));
8482 
8483 			vaddr = tte_to_vaddr(hmeblkp, tte);
8484 			color = addr_to_vcolor(vaddr);
8485 
8486 			if (npages > 1) {
8487 				/*
8488 				 * If there is a big mapping, make sure
8489 				 * 8K mapping is consistent with the big
8490 				 * mapping.
8491 				 */
8492 				bcolor = i % ncolors;
8493 				if (color != bcolor) {
8494 					return (0);
8495 				}
8496 			}
8497 			if (!clr_valid) {
8498 				clr_valid = 1;
8499 				color1 = color;
8500 			}
8501 
8502 			if (color1 != color) {
8503 				return (0);
8504 			}
8505 		}
8506 
8507 		pp = PP_PAGENEXT(pp);
8508 	}
8509 
8510 	return (1);
8511 }
8512 
8513 void
8514 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
8515 	pgcnt_t npages)
8516 {
8517 	kmutex_t *pmtx;
8518 	int i, ncolors, bcolor;
8519 	kpm_hlk_t *kpmp;
8520 	cpuset_t cpuset;
8521 
8522 	ASSERT(pp != NULL);
8523 	ASSERT(!(cache & CACHE_WRITEBACK));
8524 
8525 	kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
8526 	pmtx = sfmmu_page_enter(pp);
8527 
8528 	/*
8529 	 * Fast path caching single unmapped page
8530 	 */
8531 	if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
8532 	    flags == HAT_CACHE) {
8533 		PP_CLRTNC(pp);
8534 		PP_CLRPNC(pp);
8535 		sfmmu_page_exit(pmtx);
8536 		sfmmu_kpm_kpmp_exit(kpmp);
8537 		return;
8538 	}
8539 
8540 	/*
8541 	 * We need to capture all cpus in order to change cacheability
8542 	 * because we can't allow one cpu to access the same physical
8543 	 * page using a cacheable and a non-cachebale mapping at the same
8544 	 * time. Since we may end up walking the ism mapping list
8545 	 * have to grab it's lock now since we can't after all the
8546 	 * cpus have been captured.
8547 	 */
8548 	sfmmu_hat_lock_all();
8549 	mutex_enter(&ism_mlist_lock);
8550 	kpreempt_disable();
8551 	cpuset = cpu_ready_set;
8552 	xc_attention(cpuset);
8553 
8554 	if (npages > 1) {
8555 		/*
8556 		 * Make sure all colors are flushed since the
8557 		 * sfmmu_page_cache() only flushes one color-
8558 		 * it does not know big pages.
8559 		 */
8560 		ncolors = CACHE_NUM_COLOR;
8561 		if (flags & HAT_TMPNC) {
8562 			for (i = 0; i < ncolors; i++) {
8563 				sfmmu_cache_flushcolor(i, pp->p_pagenum);
8564 			}
8565 			cache_flush_flag = CACHE_NO_FLUSH;
8566 		}
8567 	}
8568 
8569 	for (i = 0; i < npages; i++) {
8570 
8571 		ASSERT(sfmmu_mlist_held(pp));
8572 
8573 		if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
8574 
8575 			if (npages > 1) {
8576 				bcolor = i % ncolors;
8577 			} else {
8578 				bcolor = NO_VCOLOR;
8579 			}
8580 
8581 			sfmmu_page_cache(pp, flags, cache_flush_flag,
8582 			    bcolor);
8583 		}
8584 
8585 		pp = PP_PAGENEXT(pp);
8586 	}
8587 
8588 	xt_sync(cpuset);
8589 	xc_dismissed(cpuset);
8590 	mutex_exit(&ism_mlist_lock);
8591 	sfmmu_hat_unlock_all();
8592 	sfmmu_page_exit(pmtx);
8593 	sfmmu_kpm_kpmp_exit(kpmp);
8594 	kpreempt_enable();
8595 }
8596 
8597 /*
8598  * This function changes the virtual cacheability of all mappings to a
8599  * particular page.  When changing from uncache to cacheable the mappings will
8600  * only be changed if all of them have the same virtual color.
8601  * We need to flush the cache in all cpus.  It is possible that
8602  * a process referenced a page as cacheable but has sinced exited
8603  * and cleared the mapping list.  We still to flush it but have no
8604  * state so all cpus is the only alternative.
8605  */
8606 static void
8607 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
8608 {
8609 	struct	sf_hment *sfhme;
8610 	struct	hme_blk *hmeblkp;
8611 	sfmmu_t *sfmmup;
8612 	tte_t	tte, ttemod;
8613 	caddr_t	vaddr;
8614 	int	ret, color;
8615 	pfn_t	pfn;
8616 
8617 	color = bcolor;
8618 	pfn = pp->p_pagenum;
8619 
8620 	for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
8621 
8622 		hmeblkp = sfmmu_hmetohblk(sfhme);
8623 
8624 		if (hmeblkp->hblk_xhat_bit)
8625 			continue;
8626 
8627 		sfmmu_copytte(&sfhme->hme_tte, &tte);
8628 		ASSERT(TTE_IS_VALID(&tte));
8629 		vaddr = tte_to_vaddr(hmeblkp, tte);
8630 		color = addr_to_vcolor(vaddr);
8631 
8632 #ifdef DEBUG
8633 		if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
8634 			ASSERT(color == bcolor);
8635 		}
8636 #endif
8637 
8638 		ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
8639 
8640 		ttemod = tte;
8641 		if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
8642 			TTE_CLR_VCACHEABLE(&ttemod);
8643 		} else {	/* flags & HAT_CACHE */
8644 			TTE_SET_VCACHEABLE(&ttemod);
8645 		}
8646 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
8647 		if (ret < 0) {
8648 			/*
8649 			 * Since all cpus are captured modifytte should not
8650 			 * fail.
8651 			 */
8652 			panic("sfmmu_page_cache: write to tte failed");
8653 		}
8654 
8655 		sfmmup = hblktosfmmu(hmeblkp);
8656 		if (cache_flush_flag == CACHE_FLUSH) {
8657 			/*
8658 			 * Flush TSBs, TLBs and caches
8659 			 */
8660 			if (sfmmup->sfmmu_ismhat) {
8661 				if (flags & HAT_CACHE) {
8662 					SFMMU_STAT(sf_ism_recache);
8663 				} else {
8664 					SFMMU_STAT(sf_ism_uncache);
8665 				}
8666 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
8667 				    pfn, CACHE_FLUSH);
8668 			} else {
8669 				sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
8670 				    pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
8671 			}
8672 
8673 			/*
8674 			 * all cache entries belonging to this pfn are
8675 			 * now flushed.
8676 			 */
8677 			cache_flush_flag = CACHE_NO_FLUSH;
8678 		} else {
8679 
8680 			/*
8681 			 * Flush only TSBs and TLBs.
8682 			 */
8683 			if (sfmmup->sfmmu_ismhat) {
8684 				if (flags & HAT_CACHE) {
8685 					SFMMU_STAT(sf_ism_recache);
8686 				} else {
8687 					SFMMU_STAT(sf_ism_uncache);
8688 				}
8689 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
8690 				    pfn, CACHE_NO_FLUSH);
8691 			} else {
8692 				sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
8693 			}
8694 		}
8695 	}
8696 
8697 	if (PP_ISMAPPED_KPM(pp))
8698 		sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
8699 
8700 	switch (flags) {
8701 
8702 		default:
8703 			panic("sfmmu_pagecache: unknown flags");
8704 			break;
8705 
8706 		case HAT_CACHE:
8707 			PP_CLRTNC(pp);
8708 			PP_CLRPNC(pp);
8709 			PP_SET_VCOLOR(pp, color);
8710 			break;
8711 
8712 		case HAT_TMPNC:
8713 			PP_SETTNC(pp);
8714 			PP_SET_VCOLOR(pp, NO_VCOLOR);
8715 			break;
8716 
8717 		case HAT_UNCACHE:
8718 			PP_SETPNC(pp);
8719 			PP_CLRTNC(pp);
8720 			PP_SET_VCOLOR(pp, NO_VCOLOR);
8721 			break;
8722 	}
8723 }
8724 #endif	/* VAC */
8725 
8726 
8727 /*
8728  * Wrapper routine used to return a context.
8729  *
8730  * It's the responsibility of the caller to guarantee that the
8731  * process serializes on calls here by taking the HAT lock for
8732  * the hat.
8733  *
8734  */
8735 static void
8736 sfmmu_get_ctx(sfmmu_t *sfmmup)
8737 {
8738 	mmu_ctx_t *mmu_ctxp;
8739 	uint_t pstate_save;
8740 
8741 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8742 	ASSERT(sfmmup != ksfmmup);
8743 
8744 	kpreempt_disable();
8745 
8746 	mmu_ctxp = CPU_MMU_CTXP(CPU);
8747 	ASSERT(mmu_ctxp);
8748 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
8749 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
8750 
8751 	/*
8752 	 * Do a wrap-around if cnum reaches the max # cnum supported by a MMU.
8753 	 */
8754 	if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs)
8755 		sfmmu_ctx_wrap_around(mmu_ctxp);
8756 
8757 	/*
8758 	 * Let the MMU set up the page sizes to use for
8759 	 * this context in the TLB. Don't program 2nd dtlb for ism hat.
8760 	 */
8761 	if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) {
8762 		mmu_set_ctx_page_sizes(sfmmup);
8763 	}
8764 
8765 	/*
8766 	 * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with
8767 	 * interrupts disabled to prevent race condition with wrap-around
8768 	 * ctx invalidatation. In sun4v, ctx invalidation also involves
8769 	 * a HV call to set the number of TSBs to 0. If interrupts are not
8770 	 * disabled until after sfmmu_load_mmustate is complete TSBs may
8771 	 * become assigned to INVALID_CONTEXT. This is not allowed.
8772 	 */
8773 	pstate_save = sfmmu_disable_intrs();
8774 
8775 	sfmmu_alloc_ctx(sfmmup, 1, CPU);
8776 	sfmmu_load_mmustate(sfmmup);
8777 
8778 	sfmmu_enable_intrs(pstate_save);
8779 
8780 	kpreempt_enable();
8781 }
8782 
8783 /*
8784  * When all cnums are used up in a MMU, cnum will wrap around to the
8785  * next generation and start from 2.
8786  */
8787 static void
8788 sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp)
8789 {
8790 
8791 	/* caller must have disabled the preemption */
8792 	ASSERT(curthread->t_preempt >= 1);
8793 	ASSERT(mmu_ctxp != NULL);
8794 
8795 	/* acquire Per-MMU (PM) spin lock */
8796 	mutex_enter(&mmu_ctxp->mmu_lock);
8797 
8798 	/* re-check to see if wrap-around is needed */
8799 	if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs)
8800 		goto done;
8801 
8802 	SFMMU_MMU_STAT(mmu_wrap_around);
8803 
8804 	/* update gnum */
8805 	ASSERT(mmu_ctxp->mmu_gnum != 0);
8806 	mmu_ctxp->mmu_gnum++;
8807 	if (mmu_ctxp->mmu_gnum == 0 ||
8808 	    mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) {
8809 		cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.",
8810 		    (void *)mmu_ctxp);
8811 	}
8812 
8813 	if (mmu_ctxp->mmu_ncpus > 1) {
8814 		cpuset_t cpuset;
8815 
8816 		membar_enter(); /* make sure updated gnum visible */
8817 
8818 		SFMMU_XCALL_STATS(NULL);
8819 
8820 		/* xcall to others on the same MMU to invalidate ctx */
8821 		cpuset = mmu_ctxp->mmu_cpuset;
8822 		ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id));
8823 		CPUSET_DEL(cpuset, CPU->cpu_id);
8824 		CPUSET_AND(cpuset, cpu_ready_set);
8825 
8826 		/*
8827 		 * Pass in INVALID_CONTEXT as the first parameter to
8828 		 * sfmmu_raise_tsb_exception, which invalidates the context
8829 		 * of any process running on the CPUs in the MMU.
8830 		 */
8831 		xt_some(cpuset, sfmmu_raise_tsb_exception,
8832 		    INVALID_CONTEXT, INVALID_CONTEXT);
8833 		xt_sync(cpuset);
8834 
8835 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
8836 	}
8837 
8838 	if (sfmmu_getctx_sec() != INVALID_CONTEXT) {
8839 		sfmmu_setctx_sec(INVALID_CONTEXT);
8840 		sfmmu_clear_utsbinfo();
8841 	}
8842 
8843 	/*
8844 	 * No xcall is needed here. For sun4u systems all CPUs in context
8845 	 * domain share a single physical MMU therefore it's enough to flush
8846 	 * TLB on local CPU. On sun4v systems we use 1 global context
8847 	 * domain and flush all remote TLBs in sfmmu_raise_tsb_exception
8848 	 * handler. Note that vtag_flushall_uctxs() is called
8849 	 * for Ultra II machine, where the equivalent flushall functionality
8850 	 * is implemented in SW, and only user ctx TLB entries are flushed.
8851 	 */
8852 	if (&vtag_flushall_uctxs != NULL) {
8853 		vtag_flushall_uctxs();
8854 	} else {
8855 		vtag_flushall();
8856 	}
8857 
8858 	/* reset mmu cnum, skips cnum 0 and 1 */
8859 	mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
8860 
8861 done:
8862 	mutex_exit(&mmu_ctxp->mmu_lock);
8863 }
8864 
8865 
8866 /*
8867  * For multi-threaded process, set the process context to INVALID_CONTEXT
8868  * so that it faults and reloads the MMU state from TL=0. For single-threaded
8869  * process, we can just load the MMU state directly without having to
8870  * set context invalid. Caller must hold the hat lock since we don't
8871  * acquire it here.
8872  */
8873 static void
8874 sfmmu_sync_mmustate(sfmmu_t *sfmmup)
8875 {
8876 	uint_t cnum;
8877 	uint_t pstate_save;
8878 
8879 	ASSERT(sfmmup != ksfmmup);
8880 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8881 
8882 	kpreempt_disable();
8883 
8884 	/*
8885 	 * We check whether the pass'ed-in sfmmup is the same as the
8886 	 * current running proc. This is to makes sure the current proc
8887 	 * stays single-threaded if it already is.
8888 	 */
8889 	if ((sfmmup == curthread->t_procp->p_as->a_hat) &&
8890 	    (curthread->t_procp->p_lwpcnt == 1)) {
8891 		/* single-thread */
8892 		cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum;
8893 		if (cnum != INVALID_CONTEXT) {
8894 			uint_t curcnum;
8895 			/*
8896 			 * Disable interrupts to prevent race condition
8897 			 * with sfmmu_ctx_wrap_around ctx invalidation.
8898 			 * In sun4v, ctx invalidation involves setting
8899 			 * TSB to NULL, hence, interrupts should be disabled
8900 			 * untill after sfmmu_load_mmustate is completed.
8901 			 */
8902 			pstate_save = sfmmu_disable_intrs();
8903 			curcnum = sfmmu_getctx_sec();
8904 			if (curcnum == cnum)
8905 				sfmmu_load_mmustate(sfmmup);
8906 			sfmmu_enable_intrs(pstate_save);
8907 			ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT);
8908 		}
8909 	} else {
8910 		/*
8911 		 * multi-thread
8912 		 * or when sfmmup is not the same as the curproc.
8913 		 */
8914 		sfmmu_invalidate_ctx(sfmmup);
8915 	}
8916 
8917 	kpreempt_enable();
8918 }
8919 
8920 
8921 /*
8922  * Replace the specified TSB with a new TSB.  This function gets called when
8923  * we grow, shrink or swapin a TSB.  When swapping in a TSB (TSB_SWAPIN), the
8924  * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
8925  * (8K).
8926  *
8927  * Caller must hold the HAT lock, but should assume any tsb_info
8928  * pointers it has are no longer valid after calling this function.
8929  *
8930  * Return values:
8931  *	TSB_ALLOCFAIL	Failed to allocate a TSB, due to memory constraints
8932  *	TSB_LOSTRACE	HAT is busy, i.e. another thread is already doing
8933  *			something to this tsbinfo/TSB
8934  *	TSB_SUCCESS	Operation succeeded
8935  */
8936 static tsb_replace_rc_t
8937 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
8938     hatlock_t *hatlockp, uint_t flags)
8939 {
8940 	struct tsb_info *new_tsbinfo = NULL;
8941 	struct tsb_info *curtsb, *prevtsb;
8942 	uint_t tte_sz_mask;
8943 	int i;
8944 
8945 	ASSERT(sfmmup != ksfmmup);
8946 	ASSERT(sfmmup->sfmmu_ismhat == 0);
8947 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8948 	ASSERT(szc <= tsb_max_growsize);
8949 
8950 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
8951 		return (TSB_LOSTRACE);
8952 
8953 	/*
8954 	 * Find the tsb_info ahead of this one in the list, and
8955 	 * also make sure that the tsb_info passed in really
8956 	 * exists!
8957 	 */
8958 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
8959 	    curtsb != old_tsbinfo && curtsb != NULL;
8960 	    prevtsb = curtsb, curtsb = curtsb->tsb_next)
8961 		;
8962 	ASSERT(curtsb != NULL);
8963 
8964 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
8965 		/*
8966 		 * The process is swapped out, so just set the new size
8967 		 * code.  When it swaps back in, we'll allocate a new one
8968 		 * of the new chosen size.
8969 		 */
8970 		curtsb->tsb_szc = szc;
8971 		return (TSB_SUCCESS);
8972 	}
8973 	SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
8974 
8975 	tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
8976 
8977 	/*
8978 	 * All initialization is done inside of sfmmu_tsbinfo_alloc().
8979 	 * If we fail to allocate a TSB, exit.
8980 	 */
8981 	sfmmu_hat_exit(hatlockp);
8982 	if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc, tte_sz_mask,
8983 	    flags, sfmmup)) {
8984 		(void) sfmmu_hat_enter(sfmmup);
8985 		if (!(flags & TSB_SWAPIN))
8986 			SFMMU_STAT(sf_tsb_resize_failures);
8987 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
8988 		return (TSB_ALLOCFAIL);
8989 	}
8990 	(void) sfmmu_hat_enter(sfmmup);
8991 
8992 	/*
8993 	 * Re-check to make sure somebody else didn't muck with us while we
8994 	 * didn't hold the HAT lock.  If the process swapped out, fine, just
8995 	 * exit; this can happen if we try to shrink the TSB from the context
8996 	 * of another process (such as on an ISM unmap), though it is rare.
8997 	 */
8998 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
8999 		SFMMU_STAT(sf_tsb_resize_failures);
9000 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9001 		sfmmu_hat_exit(hatlockp);
9002 		sfmmu_tsbinfo_free(new_tsbinfo);
9003 		(void) sfmmu_hat_enter(sfmmup);
9004 		return (TSB_LOSTRACE);
9005 	}
9006 
9007 #ifdef	DEBUG
9008 	/* Reverify that the tsb_info still exists.. for debugging only */
9009 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
9010 	    curtsb != old_tsbinfo && curtsb != NULL;
9011 	    prevtsb = curtsb, curtsb = curtsb->tsb_next)
9012 		;
9013 	ASSERT(curtsb != NULL);
9014 #endif	/* DEBUG */
9015 
9016 	/*
9017 	 * Quiesce any CPUs running this process on their next TLB miss
9018 	 * so they atomically see the new tsb_info.  We temporarily set the
9019 	 * context to invalid context so new threads that come on processor
9020 	 * after we do the xcall to cpusran will also serialize behind the
9021 	 * HAT lock on TLB miss and will see the new TSB.  Since this short
9022 	 * race with a new thread coming on processor is relatively rare,
9023 	 * this synchronization mechanism should be cheaper than always
9024 	 * pausing all CPUs for the duration of the setup, which is what
9025 	 * the old implementation did.  This is particuarly true if we are
9026 	 * copying a huge chunk of memory around during that window.
9027 	 *
9028 	 * The memory barriers are to make sure things stay consistent
9029 	 * with resume() since it does not hold the HAT lock while
9030 	 * walking the list of tsb_info structures.
9031 	 */
9032 	if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
9033 		/* The TSB is either growing or shrinking. */
9034 		sfmmu_invalidate_ctx(sfmmup);
9035 	} else {
9036 		/*
9037 		 * It is illegal to swap in TSBs from a process other
9038 		 * than a process being swapped in.  This in turn
9039 		 * implies we do not have a valid MMU context here
9040 		 * since a process needs one to resolve translation
9041 		 * misses.
9042 		 */
9043 		ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
9044 	}
9045 
9046 #ifdef DEBUG
9047 	ASSERT(max_mmu_ctxdoms > 0);
9048 
9049 	/*
9050 	 * Process should have INVALID_CONTEXT on all MMUs
9051 	 */
9052 	for (i = 0; i < max_mmu_ctxdoms; i++) {
9053 
9054 		ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
9055 	}
9056 #endif
9057 
9058 	new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
9059 	membar_stst();	/* strict ordering required */
9060 	if (prevtsb)
9061 		prevtsb->tsb_next = new_tsbinfo;
9062 	else
9063 		sfmmup->sfmmu_tsb = new_tsbinfo;
9064 	membar_enter();	/* make sure new TSB globally visible */
9065 	sfmmu_setup_tsbinfo(sfmmup);
9066 
9067 	/*
9068 	 * We need to migrate TSB entries from the old TSB to the new TSB
9069 	 * if tsb_remap_ttes is set and the TSB is growing.
9070 	 */
9071 	if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
9072 		sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
9073 
9074 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9075 
9076 	/*
9077 	 * Drop the HAT lock to free our old tsb_info.
9078 	 */
9079 	sfmmu_hat_exit(hatlockp);
9080 
9081 	if ((flags & TSB_GROW) == TSB_GROW) {
9082 		SFMMU_STAT(sf_tsb_grow);
9083 	} else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
9084 		SFMMU_STAT(sf_tsb_shrink);
9085 	}
9086 
9087 	sfmmu_tsbinfo_free(old_tsbinfo);
9088 
9089 	(void) sfmmu_hat_enter(sfmmup);
9090 	return (TSB_SUCCESS);
9091 }
9092 
9093 /*
9094  * This function will re-program hat pgsz array, and invalidate the
9095  * process' context, forcing the process to switch to another
9096  * context on the next TLB miss, and therefore start using the
9097  * TLB that is reprogrammed for the new page sizes.
9098  */
9099 void
9100 sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
9101 {
9102 	int i;
9103 	hatlock_t *hatlockp = NULL;
9104 
9105 	hatlockp = sfmmu_hat_enter(sfmmup);
9106 	/* USIII+-IV+ optimization, requires hat lock */
9107 	if (tmp_pgsz) {
9108 		for (i = 0; i < mmu_page_sizes; i++)
9109 			sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
9110 	}
9111 	SFMMU_STAT(sf_tlb_reprog_pgsz);
9112 
9113 	sfmmu_invalidate_ctx(sfmmup);
9114 
9115 	sfmmu_hat_exit(hatlockp);
9116 }
9117 
9118 /*
9119  * This function assumes that there are either four or six supported page
9120  * sizes and at most two programmable TLBs, so we need to decide which
9121  * page sizes are most important and then tell the MMU layer so it
9122  * can adjust the TLB page sizes accordingly (if supported).
9123  *
9124  * If these assumptions change, this function will need to be
9125  * updated to support whatever the new limits are.
9126  *
9127  * The growing flag is nonzero if we are growing the address space,
9128  * and zero if it is shrinking.  This allows us to decide whether
9129  * to grow or shrink our TSB, depending upon available memory
9130  * conditions.
9131  */
9132 static void
9133 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
9134 {
9135 	uint64_t ttecnt[MMU_PAGE_SIZES];
9136 	uint64_t tte8k_cnt, tte4m_cnt;
9137 	uint8_t i;
9138 	int sectsb_thresh;
9139 
9140 	/*
9141 	 * Kernel threads, processes with small address spaces not using
9142 	 * large pages, and dummy ISM HATs need not apply.
9143 	 */
9144 	if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL)
9145 		return;
9146 
9147 	if ((sfmmup->sfmmu_flags & HAT_LGPG_FLAGS) == 0 &&
9148 	    sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
9149 		return;
9150 
9151 	for (i = 0; i < mmu_page_sizes; i++) {
9152 		ttecnt[i] = SFMMU_TTE_CNT(sfmmup, i);
9153 	}
9154 
9155 	/* Check pagesizes in use, and possibly reprogram DTLB. */
9156 	if (&mmu_check_page_sizes)
9157 		mmu_check_page_sizes(sfmmup, ttecnt);
9158 
9159 	/*
9160 	 * Calculate the number of 8k ttes to represent the span of these
9161 	 * pages.
9162 	 */
9163 	tte8k_cnt = ttecnt[TTE8K] +
9164 	    (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
9165 	    (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
9166 	if (mmu_page_sizes == max_mmu_page_sizes) {
9167 		tte4m_cnt = ttecnt[TTE4M] +
9168 		    (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
9169 		    (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
9170 	} else {
9171 		tte4m_cnt = ttecnt[TTE4M];
9172 	}
9173 
9174 	/*
9175 	 * Inflate TSB sizes by a factor of 2 if this process
9176 	 * uses 4M text pages to minimize extra conflict misses
9177 	 * in the first TSB since without counting text pages
9178 	 * 8K TSB may become too small.
9179 	 *
9180 	 * Also double the size of the second TSB to minimize
9181 	 * extra conflict misses due to competition between 4M text pages
9182 	 * and data pages.
9183 	 *
9184 	 * We need to adjust the second TSB allocation threshold by the
9185 	 * inflation factor, since there is no point in creating a second
9186 	 * TSB when we know all the mappings can fit in the I/D TLBs.
9187 	 */
9188 	sectsb_thresh = tsb_sectsb_threshold;
9189 	if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
9190 		tte8k_cnt <<= 1;
9191 		tte4m_cnt <<= 1;
9192 		sectsb_thresh <<= 1;
9193 	}
9194 
9195 	/*
9196 	 * Check to see if our TSB is the right size; we may need to
9197 	 * grow or shrink it.  If the process is small, our work is
9198 	 * finished at this point.
9199 	 */
9200 	if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
9201 		return;
9202 	}
9203 	sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
9204 }
9205 
9206 static void
9207 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
9208 	uint64_t tte4m_cnt, int sectsb_thresh)
9209 {
9210 	int tsb_bits;
9211 	uint_t tsb_szc;
9212 	struct tsb_info *tsbinfop;
9213 	hatlock_t *hatlockp = NULL;
9214 
9215 	hatlockp = sfmmu_hat_enter(sfmmup);
9216 	ASSERT(hatlockp != NULL);
9217 	tsbinfop = sfmmup->sfmmu_tsb;
9218 	ASSERT(tsbinfop != NULL);
9219 
9220 	/*
9221 	 * If we're growing, select the size based on RSS.  If we're
9222 	 * shrinking, leave some room so we don't have to turn around and
9223 	 * grow again immediately.
9224 	 */
9225 	if (growing)
9226 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
9227 	else
9228 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
9229 
9230 	if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
9231 	    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
9232 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
9233 		    hatlockp, TSB_SHRINK);
9234 	} else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
9235 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
9236 		    hatlockp, TSB_GROW);
9237 	}
9238 	tsbinfop = sfmmup->sfmmu_tsb;
9239 
9240 	/*
9241 	 * With the TLB and first TSB out of the way, we need to see if
9242 	 * we need a second TSB for 4M pages.  If we managed to reprogram
9243 	 * the TLB page sizes above, the process will start using this new
9244 	 * TSB right away; otherwise, it will start using it on the next
9245 	 * context switch.  Either way, it's no big deal so there's no
9246 	 * synchronization with the trap handlers here unless we grow the
9247 	 * TSB (in which case it's required to prevent using the old one
9248 	 * after it's freed). Note: second tsb is required for 32M/256M
9249 	 * page sizes.
9250 	 */
9251 	if (tte4m_cnt > sectsb_thresh) {
9252 		/*
9253 		 * If we're growing, select the size based on RSS.  If we're
9254 		 * shrinking, leave some room so we don't have to turn
9255 		 * around and grow again immediately.
9256 		 */
9257 		if (growing)
9258 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
9259 		else
9260 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
9261 		if (tsbinfop->tsb_next == NULL) {
9262 			struct tsb_info *newtsb;
9263 			int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
9264 			    0 : TSB_ALLOC;
9265 
9266 			sfmmu_hat_exit(hatlockp);
9267 
9268 			/*
9269 			 * Try to allocate a TSB for 4[32|256]M pages.  If we
9270 			 * can't get the size we want, retry w/a minimum sized
9271 			 * TSB.  If that still didn't work, give up; we can
9272 			 * still run without one.
9273 			 */
9274 			tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
9275 			    TSB4M|TSB32M|TSB256M:TSB4M;
9276 			if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
9277 			    allocflags, sfmmup) != 0) &&
9278 			    (sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
9279 			    tsb_bits, allocflags, sfmmup) != 0)) {
9280 				return;
9281 			}
9282 
9283 			hatlockp = sfmmu_hat_enter(sfmmup);
9284 
9285 			if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
9286 				sfmmup->sfmmu_tsb->tsb_next = newtsb;
9287 				SFMMU_STAT(sf_tsb_sectsb_create);
9288 				sfmmu_setup_tsbinfo(sfmmup);
9289 				sfmmu_hat_exit(hatlockp);
9290 				return;
9291 			} else {
9292 				/*
9293 				 * It's annoying, but possible for us
9294 				 * to get here.. we dropped the HAT lock
9295 				 * because of locking order in the kmem
9296 				 * allocator, and while we were off getting
9297 				 * our memory, some other thread decided to
9298 				 * do us a favor and won the race to get a
9299 				 * second TSB for this process.  Sigh.
9300 				 */
9301 				sfmmu_hat_exit(hatlockp);
9302 				sfmmu_tsbinfo_free(newtsb);
9303 				return;
9304 			}
9305 		}
9306 
9307 		/*
9308 		 * We have a second TSB, see if it's big enough.
9309 		 */
9310 		tsbinfop = tsbinfop->tsb_next;
9311 
9312 		/*
9313 		 * Check to see if our second TSB is the right size;
9314 		 * we may need to grow or shrink it.
9315 		 * To prevent thrashing (e.g. growing the TSB on a
9316 		 * subsequent map operation), only try to shrink if
9317 		 * the TSB reach exceeds twice the virtual address
9318 		 * space size.
9319 		 */
9320 		if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
9321 		    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
9322 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
9323 			    tsb_szc, hatlockp, TSB_SHRINK);
9324 		} else if (growing && tsb_szc > tsbinfop->tsb_szc &&
9325 		    TSB_OK_GROW()) {
9326 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
9327 			    tsb_szc, hatlockp, TSB_GROW);
9328 		}
9329 	}
9330 
9331 	sfmmu_hat_exit(hatlockp);
9332 }
9333 
9334 /*
9335  * Free up a sfmmu
9336  * Since the sfmmu is currently embedded in the hat struct we simply zero
9337  * out our fields and free up the ism map blk list if any.
9338  */
9339 static void
9340 sfmmu_free_sfmmu(sfmmu_t *sfmmup)
9341 {
9342 	ism_blk_t	*blkp, *nx_blkp;
9343 #ifdef	DEBUG
9344 	ism_map_t	*map;
9345 	int 		i;
9346 #endif
9347 
9348 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
9349 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
9350 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
9351 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
9352 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
9353 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
9354 
9355 	sfmmup->sfmmu_free = 0;
9356 	sfmmup->sfmmu_ismhat = 0;
9357 
9358 	blkp = sfmmup->sfmmu_iblk;
9359 	sfmmup->sfmmu_iblk = NULL;
9360 
9361 	while (blkp) {
9362 #ifdef	DEBUG
9363 		map = blkp->iblk_maps;
9364 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
9365 			ASSERT(map[i].imap_seg == 0);
9366 			ASSERT(map[i].imap_ismhat == NULL);
9367 			ASSERT(map[i].imap_ment == NULL);
9368 		}
9369 #endif
9370 		nx_blkp = blkp->iblk_next;
9371 		blkp->iblk_next = NULL;
9372 		blkp->iblk_nextpa = (uint64_t)-1;
9373 		kmem_cache_free(ism_blk_cache, blkp);
9374 		blkp = nx_blkp;
9375 	}
9376 }
9377 
9378 /*
9379  * Locking primitves accessed by HATLOCK macros
9380  */
9381 
9382 #define	SFMMU_SPL_MTX	(0x0)
9383 #define	SFMMU_ML_MTX	(0x1)
9384 
9385 #define	SFMMU_MLSPL_MTX(type, pg)	(((type) == SFMMU_SPL_MTX) ? \
9386 					    SPL_HASH(pg) : MLIST_HASH(pg))
9387 
9388 kmutex_t *
9389 sfmmu_page_enter(struct page *pp)
9390 {
9391 	return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
9392 }
9393 
9394 void
9395 sfmmu_page_exit(kmutex_t *spl)
9396 {
9397 	mutex_exit(spl);
9398 }
9399 
9400 int
9401 sfmmu_page_spl_held(struct page *pp)
9402 {
9403 	return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
9404 }
9405 
9406 kmutex_t *
9407 sfmmu_mlist_enter(struct page *pp)
9408 {
9409 	return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
9410 }
9411 
9412 void
9413 sfmmu_mlist_exit(kmutex_t *mml)
9414 {
9415 	mutex_exit(mml);
9416 }
9417 
9418 int
9419 sfmmu_mlist_held(struct page *pp)
9420 {
9421 
9422 	return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
9423 }
9424 
9425 /*
9426  * Common code for sfmmu_mlist_enter() and sfmmu_page_enter().  For
9427  * sfmmu_mlist_enter() case mml_table lock array is used and for
9428  * sfmmu_page_enter() sfmmu_page_lock lock array is used.
9429  *
9430  * The lock is taken on a root page so that it protects an operation on all
9431  * constituent pages of a large page pp belongs to.
9432  *
9433  * The routine takes a lock from the appropriate array. The lock is determined
9434  * by hashing the root page. After taking the lock this routine checks if the
9435  * root page has the same size code that was used to determine the root (i.e
9436  * that root hasn't changed).  If root page has the expected p_szc field we
9437  * have the right lock and it's returned to the caller. If root's p_szc
9438  * decreased we release the lock and retry from the beginning.  This case can
9439  * happen due to hat_page_demote() decreasing p_szc between our load of p_szc
9440  * value and taking the lock. The number of retries due to p_szc decrease is
9441  * limited by the maximum p_szc value. If p_szc is 0 we return the lock
9442  * determined by hashing pp itself.
9443  *
9444  * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
9445  * possible that p_szc can increase. To increase p_szc a thread has to lock
9446  * all constituent pages EXCL and do hat_pageunload() on all of them. All the
9447  * callers that don't hold a page locked recheck if hmeblk through which pp
9448  * was found still maps this pp.  If it doesn't map it anymore returned lock
9449  * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
9450  * p_szc increase after taking the lock it returns this lock without further
9451  * retries because in this case the caller doesn't care about which lock was
9452  * taken. The caller will drop it right away.
9453  *
9454  * After the routine returns it's guaranteed that hat_page_demote() can't
9455  * change p_szc field of any of constituent pages of a large page pp belongs
9456  * to as long as pp was either locked at least SHARED prior to this call or
9457  * the caller finds that hment that pointed to this pp still references this
9458  * pp (this also assumes that the caller holds hme hash bucket lock so that
9459  * the same pp can't be remapped into the same hmeblk after it was unmapped by
9460  * hat_pageunload()).
9461  */
9462 static kmutex_t *
9463 sfmmu_mlspl_enter(struct page *pp, int type)
9464 {
9465 	kmutex_t	*mtx;
9466 	uint_t		prev_rszc = UINT_MAX;
9467 	page_t		*rootpp;
9468 	uint_t		szc;
9469 	uint_t		rszc;
9470 	uint_t		pszc = pp->p_szc;
9471 
9472 	ASSERT(pp != NULL);
9473 
9474 again:
9475 	if (pszc == 0) {
9476 		mtx = SFMMU_MLSPL_MTX(type, pp);
9477 		mutex_enter(mtx);
9478 		return (mtx);
9479 	}
9480 
9481 	/* The lock lives in the root page */
9482 	rootpp = PP_GROUPLEADER(pp, pszc);
9483 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
9484 	mutex_enter(mtx);
9485 
9486 	/*
9487 	 * Return mml in the following 3 cases:
9488 	 *
9489 	 * 1) If pp itself is root since if its p_szc decreased before we took
9490 	 * the lock pp is still the root of smaller szc page. And if its p_szc
9491 	 * increased it doesn't matter what lock we return (see comment in
9492 	 * front of this routine).
9493 	 *
9494 	 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
9495 	 * large page we have the right lock since any previous potential
9496 	 * hat_page_demote() is done demoting from greater than current root's
9497 	 * p_szc because hat_page_demote() changes root's p_szc last. No
9498 	 * further hat_page_demote() can start or be in progress since it
9499 	 * would need the same lock we currently hold.
9500 	 *
9501 	 * 3) If rootpp's p_szc increased since previous iteration it doesn't
9502 	 * matter what lock we return (see comment in front of this routine).
9503 	 */
9504 	if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
9505 	    rszc >= prev_rszc) {
9506 		return (mtx);
9507 	}
9508 
9509 	/*
9510 	 * hat_page_demote() could have decreased root's p_szc.
9511 	 * In this case pp's p_szc must also be smaller than pszc.
9512 	 * Retry.
9513 	 */
9514 	if (rszc < pszc) {
9515 		szc = pp->p_szc;
9516 		if (szc < pszc) {
9517 			mutex_exit(mtx);
9518 			pszc = szc;
9519 			goto again;
9520 		}
9521 		/*
9522 		 * pp's p_szc increased after it was decreased.
9523 		 * page cannot be mapped. Return current lock. The caller
9524 		 * will drop it right away.
9525 		 */
9526 		return (mtx);
9527 	}
9528 
9529 	/*
9530 	 * root's p_szc is greater than pp's p_szc.
9531 	 * hat_page_demote() is not done with all pages
9532 	 * yet. Wait for it to complete.
9533 	 */
9534 	mutex_exit(mtx);
9535 	rootpp = PP_GROUPLEADER(rootpp, rszc);
9536 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
9537 	mutex_enter(mtx);
9538 	mutex_exit(mtx);
9539 	prev_rszc = rszc;
9540 	goto again;
9541 }
9542 
9543 static int
9544 sfmmu_mlspl_held(struct page *pp, int type)
9545 {
9546 	kmutex_t	*mtx;
9547 
9548 	ASSERT(pp != NULL);
9549 	/* The lock lives in the root page */
9550 	pp = PP_PAGEROOT(pp);
9551 	ASSERT(pp != NULL);
9552 
9553 	mtx = SFMMU_MLSPL_MTX(type, pp);
9554 	return (MUTEX_HELD(mtx));
9555 }
9556 
9557 static uint_t
9558 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
9559 {
9560 	struct  hme_blk *hblkp;
9561 
9562 	if (freehblkp != NULL) {
9563 		mutex_enter(&freehblkp_lock);
9564 		if (freehblkp != NULL) {
9565 			/*
9566 			 * If the current thread is owning hblk_reserve OR
9567 			 * critical request from sfmmu_hblk_steal()
9568 			 * let it succeed even if freehblkcnt is really low.
9569 			 */
9570 			if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
9571 				SFMMU_STAT(sf_get_free_throttle);
9572 				mutex_exit(&freehblkp_lock);
9573 				return (0);
9574 			}
9575 			freehblkcnt--;
9576 			*hmeblkpp = freehblkp;
9577 			hblkp = *hmeblkpp;
9578 			freehblkp = hblkp->hblk_next;
9579 			mutex_exit(&freehblkp_lock);
9580 			hblkp->hblk_next = NULL;
9581 			SFMMU_STAT(sf_get_free_success);
9582 			return (1);
9583 		}
9584 		mutex_exit(&freehblkp_lock);
9585 	}
9586 	SFMMU_STAT(sf_get_free_fail);
9587 	return (0);
9588 }
9589 
9590 static uint_t
9591 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
9592 {
9593 	struct  hme_blk *hblkp;
9594 
9595 	/*
9596 	 * If the current thread is mapping into kernel space,
9597 	 * let it succede even if freehblkcnt is max
9598 	 * so that it will avoid freeing it to kmem.
9599 	 * This will prevent stack overflow due to
9600 	 * possible recursion since kmem_cache_free()
9601 	 * might require creation of a slab which
9602 	 * in turn needs an hmeblk to map that slab;
9603 	 * let's break this vicious chain at the first
9604 	 * opportunity.
9605 	 */
9606 	if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
9607 		mutex_enter(&freehblkp_lock);
9608 		if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
9609 			SFMMU_STAT(sf_put_free_success);
9610 			freehblkcnt++;
9611 			hmeblkp->hblk_next = freehblkp;
9612 			freehblkp = hmeblkp;
9613 			mutex_exit(&freehblkp_lock);
9614 			return (1);
9615 		}
9616 		mutex_exit(&freehblkp_lock);
9617 	}
9618 
9619 	/*
9620 	 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
9621 	 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
9622 	 * we are not in the process of mapping into kernel space.
9623 	 */
9624 	ASSERT(!critical);
9625 	while (freehblkcnt > HBLK_RESERVE_CNT) {
9626 		mutex_enter(&freehblkp_lock);
9627 		if (freehblkcnt > HBLK_RESERVE_CNT) {
9628 			freehblkcnt--;
9629 			hblkp = freehblkp;
9630 			freehblkp = hblkp->hblk_next;
9631 			mutex_exit(&freehblkp_lock);
9632 			ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
9633 			kmem_cache_free(sfmmu8_cache, hblkp);
9634 			continue;
9635 		}
9636 		mutex_exit(&freehblkp_lock);
9637 	}
9638 	SFMMU_STAT(sf_put_free_fail);
9639 	return (0);
9640 }
9641 
9642 static void
9643 sfmmu_hblk_swap(struct hme_blk *new)
9644 {
9645 	struct hme_blk *old, *hblkp, *prev;
9646 	uint64_t hblkpa, prevpa, newpa;
9647 	caddr_t	base, vaddr, endaddr;
9648 	struct hmehash_bucket *hmebp;
9649 	struct sf_hment *osfhme, *nsfhme;
9650 	page_t *pp;
9651 	kmutex_t *pml;
9652 	tte_t tte;
9653 
9654 #ifdef	DEBUG
9655 	hmeblk_tag		hblktag;
9656 	struct hme_blk		*found;
9657 #endif
9658 	old = HBLK_RESERVE;
9659 
9660 	/*
9661 	 * save pa before bcopy clobbers it
9662 	 */
9663 	newpa = new->hblk_nextpa;
9664 
9665 	base = (caddr_t)get_hblk_base(old);
9666 	endaddr = base + get_hblk_span(old);
9667 
9668 	/*
9669 	 * acquire hash bucket lock.
9670 	 */
9671 	hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K);
9672 
9673 	/*
9674 	 * copy contents from old to new
9675 	 */
9676 	bcopy((void *)old, (void *)new, HME8BLK_SZ);
9677 
9678 	/*
9679 	 * add new to hash chain
9680 	 */
9681 	sfmmu_hblk_hash_add(hmebp, new, newpa);
9682 
9683 	/*
9684 	 * search hash chain for hblk_reserve; this needs to be performed
9685 	 * after adding new, otherwise prevpa and prev won't correspond
9686 	 * to the hblk which is prior to old in hash chain when we call
9687 	 * sfmmu_hblk_hash_rm to remove old later.
9688 	 */
9689 	for (prevpa = 0, prev = NULL,
9690 	    hblkpa = hmebp->hmeh_nextpa, hblkp = hmebp->hmeblkp;
9691 	    hblkp != NULL && hblkp != old;
9692 	    prevpa = hblkpa, prev = hblkp,
9693 	    hblkpa = hblkp->hblk_nextpa, hblkp = hblkp->hblk_next)
9694 		;
9695 
9696 	if (hblkp != old)
9697 		panic("sfmmu_hblk_swap: hblk_reserve not found");
9698 
9699 	/*
9700 	 * p_mapping list is still pointing to hments in hblk_reserve;
9701 	 * fix up p_mapping list so that they point to hments in new.
9702 	 *
9703 	 * Since all these mappings are created by hblk_reserve_thread
9704 	 * on the way and it's using at least one of the buffers from each of
9705 	 * the newly minted slabs, there is no danger of any of these
9706 	 * mappings getting unloaded by another thread.
9707 	 *
9708 	 * tsbmiss could only modify ref/mod bits of hments in old/new.
9709 	 * Since all of these hments hold mappings established by segkmem
9710 	 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
9711 	 * have no meaning for the mappings in hblk_reserve.  hments in
9712 	 * old and new are identical except for ref/mod bits.
9713 	 */
9714 	for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
9715 
9716 		HBLKTOHME(osfhme, old, vaddr);
9717 		sfmmu_copytte(&osfhme->hme_tte, &tte);
9718 
9719 		if (TTE_IS_VALID(&tte)) {
9720 			if ((pp = osfhme->hme_page) == NULL)
9721 				panic("sfmmu_hblk_swap: page not mapped");
9722 
9723 			pml = sfmmu_mlist_enter(pp);
9724 
9725 			if (pp != osfhme->hme_page)
9726 				panic("sfmmu_hblk_swap: mapping changed");
9727 
9728 			HBLKTOHME(nsfhme, new, vaddr);
9729 
9730 			HME_ADD(nsfhme, pp);
9731 			HME_SUB(osfhme, pp);
9732 
9733 			sfmmu_mlist_exit(pml);
9734 		}
9735 	}
9736 
9737 	/*
9738 	 * remove old from hash chain
9739 	 */
9740 	sfmmu_hblk_hash_rm(hmebp, old, prevpa, prev);
9741 
9742 #ifdef	DEBUG
9743 
9744 	hblktag.htag_id = ksfmmup;
9745 	hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
9746 	hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
9747 	HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
9748 
9749 	if (found != new)
9750 		panic("sfmmu_hblk_swap: new hblk not found");
9751 #endif
9752 
9753 	SFMMU_HASH_UNLOCK(hmebp);
9754 
9755 	/*
9756 	 * Reset hblk_reserve
9757 	 */
9758 	bzero((void *)old, HME8BLK_SZ);
9759 	old->hblk_nextpa = va_to_pa((caddr_t)old);
9760 }
9761 
9762 /*
9763  * Grab the mlist mutex for both pages passed in.
9764  *
9765  * low and high will be returned as pointers to the mutexes for these pages.
9766  * low refers to the mutex residing in the lower bin of the mlist hash, while
9767  * high refers to the mutex residing in the higher bin of the mlist hash.  This
9768  * is due to the locking order restrictions on the same thread grabbing
9769  * multiple mlist mutexes.  The low lock must be acquired before the high lock.
9770  *
9771  * If both pages hash to the same mutex, only grab that single mutex, and
9772  * high will be returned as NULL
9773  * If the pages hash to different bins in the hash, grab the lower addressed
9774  * lock first and then the higher addressed lock in order to follow the locking
9775  * rules involved with the same thread grabbing multiple mlist mutexes.
9776  * low and high will both have non-NULL values.
9777  */
9778 static void
9779 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
9780     kmutex_t **low, kmutex_t **high)
9781 {
9782 	kmutex_t	*mml_targ, *mml_repl;
9783 
9784 	/*
9785 	 * no need to do the dance around szc as in sfmmu_mlist_enter()
9786 	 * because this routine is only called by hat_page_relocate() and all
9787 	 * targ and repl pages are already locked EXCL so szc can't change.
9788 	 */
9789 
9790 	mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
9791 	mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
9792 
9793 	if (mml_targ == mml_repl) {
9794 		*low = mml_targ;
9795 		*high = NULL;
9796 	} else {
9797 		if (mml_targ < mml_repl) {
9798 			*low = mml_targ;
9799 			*high = mml_repl;
9800 		} else {
9801 			*low = mml_repl;
9802 			*high = mml_targ;
9803 		}
9804 	}
9805 
9806 	mutex_enter(*low);
9807 	if (*high)
9808 		mutex_enter(*high);
9809 }
9810 
9811 static void
9812 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
9813 {
9814 	if (high)
9815 		mutex_exit(high);
9816 	mutex_exit(low);
9817 }
9818 
9819 static hatlock_t *
9820 sfmmu_hat_enter(sfmmu_t *sfmmup)
9821 {
9822 	hatlock_t	*hatlockp;
9823 
9824 	if (sfmmup != ksfmmup) {
9825 		hatlockp = TSB_HASH(sfmmup);
9826 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
9827 		return (hatlockp);
9828 	}
9829 	return (NULL);
9830 }
9831 
9832 static hatlock_t *
9833 sfmmu_hat_tryenter(sfmmu_t *sfmmup)
9834 {
9835 	hatlock_t	*hatlockp;
9836 
9837 	if (sfmmup != ksfmmup) {
9838 		hatlockp = TSB_HASH(sfmmup);
9839 		if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
9840 			return (NULL);
9841 		return (hatlockp);
9842 	}
9843 	return (NULL);
9844 }
9845 
9846 static void
9847 sfmmu_hat_exit(hatlock_t *hatlockp)
9848 {
9849 	if (hatlockp != NULL)
9850 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
9851 }
9852 
9853 static void
9854 sfmmu_hat_lock_all(void)
9855 {
9856 	int i;
9857 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
9858 		mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
9859 }
9860 
9861 static void
9862 sfmmu_hat_unlock_all(void)
9863 {
9864 	int i;
9865 	for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
9866 		mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
9867 }
9868 
9869 int
9870 sfmmu_hat_lock_held(sfmmu_t *sfmmup)
9871 {
9872 	ASSERT(sfmmup != ksfmmup);
9873 	return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
9874 }
9875 
9876 /*
9877  * Locking primitives to provide consistency between ISM unmap
9878  * and other operations.  Since ISM unmap can take a long time, we
9879  * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
9880  * contention on the hatlock buckets while ISM segments are being
9881  * unmapped.  The tradeoff is that the flags don't prevent priority
9882  * inversion from occurring, so we must request kernel priority in
9883  * case we have to sleep to keep from getting buried while holding
9884  * the HAT_ISMBUSY flag set, which in turn could block other kernel
9885  * threads from running (for example, in sfmmu_uvatopfn()).
9886  */
9887 static void
9888 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
9889 {
9890 	hatlock_t *hatlockp;
9891 
9892 	THREAD_KPRI_REQUEST();
9893 	if (!hatlock_held)
9894 		hatlockp = sfmmu_hat_enter(sfmmup);
9895 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
9896 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
9897 	SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
9898 	if (!hatlock_held)
9899 		sfmmu_hat_exit(hatlockp);
9900 }
9901 
9902 static void
9903 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
9904 {
9905 	hatlock_t *hatlockp;
9906 
9907 	if (!hatlock_held)
9908 		hatlockp = sfmmu_hat_enter(sfmmup);
9909 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
9910 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
9911 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
9912 	if (!hatlock_held)
9913 		sfmmu_hat_exit(hatlockp);
9914 	THREAD_KPRI_RELEASE();
9915 }
9916 
9917 /*
9918  *
9919  * Algorithm:
9920  *
9921  * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
9922  *	hblks.
9923  *
9924  * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
9925  *
9926  * 		(a) try to return an hblk from reserve pool of free hblks;
9927  *		(b) if the reserve pool is empty, acquire hblk_reserve_lock
9928  *		    and return hblk_reserve.
9929  *
9930  * (3) call kmem_cache_alloc() to allocate hblk;
9931  *
9932  *		(a) if hblk_reserve_lock is held by the current thread,
9933  *		    atomically replace hblk_reserve by the hblk that is
9934  *		    returned by kmem_cache_alloc; release hblk_reserve_lock
9935  *		    and call kmem_cache_alloc() again.
9936  *		(b) if reserve pool is not full, add the hblk that is
9937  *		    returned by kmem_cache_alloc to reserve pool and
9938  *		    call kmem_cache_alloc again.
9939  *
9940  */
9941 static struct hme_blk *
9942 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
9943 	struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
9944 	uint_t flags)
9945 {
9946 	struct hme_blk *hmeblkp = NULL;
9947 	struct hme_blk *newhblkp;
9948 	struct hme_blk *shw_hblkp = NULL;
9949 	struct kmem_cache *sfmmu_cache = NULL;
9950 	uint64_t hblkpa;
9951 	ulong_t index;
9952 	uint_t owner;		/* set to 1 if using hblk_reserve */
9953 	uint_t forcefree;
9954 	int sleep;
9955 
9956 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
9957 
9958 	/*
9959 	 * If segkmem is not created yet, allocate from static hmeblks
9960 	 * created at the end of startup_modules().  See the block comment
9961 	 * in startup_modules() describing how we estimate the number of
9962 	 * static hmeblks that will be needed during re-map.
9963 	 */
9964 	if (!hblk_alloc_dynamic) {
9965 
9966 		if (size == TTE8K) {
9967 			index = nucleus_hblk8.index;
9968 			if (index >= nucleus_hblk8.len) {
9969 				/*
9970 				 * If we panic here, see startup_modules() to
9971 				 * make sure that we are calculating the
9972 				 * number of hblk8's that we need correctly.
9973 				 */
9974 				prom_panic("no nucleus hblk8 to allocate");
9975 			}
9976 			hmeblkp =
9977 			    (struct hme_blk *)&nucleus_hblk8.list[index];
9978 			nucleus_hblk8.index++;
9979 			SFMMU_STAT(sf_hblk8_nalloc);
9980 		} else {
9981 			index = nucleus_hblk1.index;
9982 			if (nucleus_hblk1.index >= nucleus_hblk1.len) {
9983 				/*
9984 				 * If we panic here, see startup_modules().
9985 				 * Most likely you need to update the
9986 				 * calculation of the number of hblk1 elements
9987 				 * that the kernel needs to boot.
9988 				 */
9989 				prom_panic("no nucleus hblk1 to allocate");
9990 			}
9991 			hmeblkp =
9992 			    (struct hme_blk *)&nucleus_hblk1.list[index];
9993 			nucleus_hblk1.index++;
9994 			SFMMU_STAT(sf_hblk1_nalloc);
9995 		}
9996 
9997 		goto hblk_init;
9998 	}
9999 
10000 	SFMMU_HASH_UNLOCK(hmebp);
10001 
10002 	if (sfmmup != KHATID) {
10003 		if (mmu_page_sizes == max_mmu_page_sizes) {
10004 			if (size < TTE256M)
10005 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
10006 				    size, flags);
10007 		} else {
10008 			if (size < TTE4M)
10009 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
10010 				    size, flags);
10011 		}
10012 	}
10013 
10014 fill_hblk:
10015 	owner = (hblk_reserve_thread == curthread) ? 1 : 0;
10016 
10017 	if (owner && size == TTE8K) {
10018 
10019 		/*
10020 		 * We are really in a tight spot. We already own
10021 		 * hblk_reserve and we need another hblk.  In anticipation
10022 		 * of this kind of scenario, we specifically set aside
10023 		 * HBLK_RESERVE_MIN number of hblks to be used exclusively
10024 		 * by owner of hblk_reserve.
10025 		 */
10026 		SFMMU_STAT(sf_hblk_recurse_cnt);
10027 
10028 		if (!sfmmu_get_free_hblk(&hmeblkp, 1))
10029 			panic("sfmmu_hblk_alloc: reserve list is empty");
10030 
10031 		goto hblk_verify;
10032 	}
10033 
10034 	ASSERT(!owner);
10035 
10036 	if ((flags & HAT_NO_KALLOC) == 0) {
10037 
10038 		sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
10039 		sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
10040 
10041 		if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
10042 			hmeblkp = sfmmu_hblk_steal(size);
10043 		} else {
10044 			/*
10045 			 * if we are the owner of hblk_reserve,
10046 			 * swap hblk_reserve with hmeblkp and
10047 			 * start a fresh life.  Hope things go
10048 			 * better this time.
10049 			 */
10050 			if (hblk_reserve_thread == curthread) {
10051 				ASSERT(sfmmu_cache == sfmmu8_cache);
10052 				sfmmu_hblk_swap(hmeblkp);
10053 				hblk_reserve_thread = NULL;
10054 				mutex_exit(&hblk_reserve_lock);
10055 				goto fill_hblk;
10056 			}
10057 			/*
10058 			 * let's donate this hblk to our reserve list if
10059 			 * we are not mapping kernel range
10060 			 */
10061 			if (size == TTE8K && sfmmup != KHATID)
10062 				if (sfmmu_put_free_hblk(hmeblkp, 0))
10063 					goto fill_hblk;
10064 		}
10065 	} else {
10066 		/*
10067 		 * We are here to map the slab in sfmmu8_cache; let's
10068 		 * check if we could tap our reserve list; if successful,
10069 		 * this will avoid the pain of going thru sfmmu_hblk_swap
10070 		 */
10071 		SFMMU_STAT(sf_hblk_slab_cnt);
10072 		if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
10073 			/*
10074 			 * let's start hblk_reserve dance
10075 			 */
10076 			SFMMU_STAT(sf_hblk_reserve_cnt);
10077 			owner = 1;
10078 			mutex_enter(&hblk_reserve_lock);
10079 			hmeblkp = HBLK_RESERVE;
10080 			hblk_reserve_thread = curthread;
10081 		}
10082 	}
10083 
10084 hblk_verify:
10085 	ASSERT(hmeblkp != NULL);
10086 	set_hblk_sz(hmeblkp, size);
10087 	ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
10088 	SFMMU_HASH_LOCK(hmebp);
10089 	HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
10090 	if (newhblkp != NULL) {
10091 		SFMMU_HASH_UNLOCK(hmebp);
10092 		if (hmeblkp != HBLK_RESERVE) {
10093 			/*
10094 			 * This is really tricky!
10095 			 *
10096 			 * vmem_alloc(vmem_seg_arena)
10097 			 *  vmem_alloc(vmem_internal_arena)
10098 			 *   segkmem_alloc(heap_arena)
10099 			 *    vmem_alloc(heap_arena)
10100 			 *    page_create()
10101 			 *    hat_memload()
10102 			 *	kmem_cache_free()
10103 			 *	 kmem_cache_alloc()
10104 			 *	  kmem_slab_create()
10105 			 *	   vmem_alloc(kmem_internal_arena)
10106 			 *	    segkmem_alloc(heap_arena)
10107 			 *		vmem_alloc(heap_arena)
10108 			 *		page_create()
10109 			 *		hat_memload()
10110 			 *		  kmem_cache_free()
10111 			 *		...
10112 			 *
10113 			 * Thus, hat_memload() could call kmem_cache_free
10114 			 * for enough number of times that we could easily
10115 			 * hit the bottom of the stack or run out of reserve
10116 			 * list of vmem_seg structs.  So, we must donate
10117 			 * this hblk to reserve list if it's allocated
10118 			 * from sfmmu8_cache *and* mapping kernel range.
10119 			 * We don't need to worry about freeing hmeblk1's
10120 			 * to kmem since they don't map any kmem slabs.
10121 			 *
10122 			 * Note: When segkmem supports largepages, we must
10123 			 * free hmeblk1's to reserve list as well.
10124 			 */
10125 			forcefree = (sfmmup == KHATID) ? 1 : 0;
10126 			if (size == TTE8K &&
10127 			    sfmmu_put_free_hblk(hmeblkp, forcefree)) {
10128 				goto re_verify;
10129 			}
10130 			ASSERT(sfmmup != KHATID);
10131 			kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
10132 		} else {
10133 			/*
10134 			 * Hey! we don't need hblk_reserve any more.
10135 			 */
10136 			ASSERT(owner);
10137 			hblk_reserve_thread = NULL;
10138 			mutex_exit(&hblk_reserve_lock);
10139 			owner = 0;
10140 		}
10141 re_verify:
10142 		/*
10143 		 * let's check if the goodies are still present
10144 		 */
10145 		SFMMU_HASH_LOCK(hmebp);
10146 		HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
10147 		if (newhblkp != NULL) {
10148 			/*
10149 			 * return newhblkp if it's not hblk_reserve;
10150 			 * if newhblkp is hblk_reserve, return it
10151 			 * _only if_ we are the owner of hblk_reserve.
10152 			 */
10153 			if (newhblkp != HBLK_RESERVE || owner) {
10154 				return (newhblkp);
10155 			} else {
10156 				/*
10157 				 * we just hit hblk_reserve in the hash and
10158 				 * we are not the owner of that;
10159 				 *
10160 				 * block until hblk_reserve_thread completes
10161 				 * swapping hblk_reserve and try the dance
10162 				 * once again.
10163 				 */
10164 				SFMMU_HASH_UNLOCK(hmebp);
10165 				mutex_enter(&hblk_reserve_lock);
10166 				mutex_exit(&hblk_reserve_lock);
10167 				SFMMU_STAT(sf_hblk_reserve_hit);
10168 				goto fill_hblk;
10169 			}
10170 		} else {
10171 			/*
10172 			 * it's no more! try the dance once again.
10173 			 */
10174 			SFMMU_HASH_UNLOCK(hmebp);
10175 			goto fill_hblk;
10176 		}
10177 	}
10178 
10179 hblk_init:
10180 	set_hblk_sz(hmeblkp, size);
10181 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10182 	hmeblkp->hblk_next = (struct hme_blk *)NULL;
10183 	hmeblkp->hblk_tag = hblktag;
10184 	hmeblkp->hblk_shadow = shw_hblkp;
10185 	hblkpa = hmeblkp->hblk_nextpa;
10186 	hmeblkp->hblk_nextpa = 0;
10187 
10188 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
10189 	ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
10190 	ASSERT(hmeblkp->hblk_hmecnt == 0);
10191 	ASSERT(hmeblkp->hblk_vcnt == 0);
10192 	ASSERT(hmeblkp->hblk_lckcnt == 0);
10193 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
10194 	sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
10195 	return (hmeblkp);
10196 }
10197 
10198 /*
10199  * This function performs any cleanup required on the hme_blk
10200  * and returns it to the free list.
10201  */
10202 /* ARGSUSED */
10203 static void
10204 sfmmu_hblk_free(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
10205 	uint64_t hblkpa, struct hme_blk **listp)
10206 {
10207 	int shw_size, vshift;
10208 	struct hme_blk *shw_hblkp;
10209 	uint_t		shw_mask, newshw_mask;
10210 	uintptr_t	vaddr;
10211 	int		size;
10212 	uint_t		critical;
10213 
10214 	ASSERT(hmeblkp);
10215 	ASSERT(!hmeblkp->hblk_hmecnt);
10216 	ASSERT(!hmeblkp->hblk_vcnt);
10217 	ASSERT(!hmeblkp->hblk_lckcnt);
10218 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
10219 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
10220 
10221 	critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
10222 
10223 	size = get_hblk_ttesz(hmeblkp);
10224 	shw_hblkp = hmeblkp->hblk_shadow;
10225 	if (shw_hblkp) {
10226 		ASSERT(hblktosfmmu(hmeblkp) != KHATID);
10227 		if (mmu_page_sizes == max_mmu_page_sizes) {
10228 			ASSERT(size < TTE256M);
10229 		} else {
10230 			ASSERT(size < TTE4M);
10231 		}
10232 
10233 		shw_size = get_hblk_ttesz(shw_hblkp);
10234 		vaddr = get_hblk_base(hmeblkp);
10235 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
10236 		ASSERT(vshift < 8);
10237 		/*
10238 		 * Atomically clear shadow mask bit
10239 		 */
10240 		do {
10241 			shw_mask = shw_hblkp->hblk_shw_mask;
10242 			ASSERT(shw_mask & (1 << vshift));
10243 			newshw_mask = shw_mask & ~(1 << vshift);
10244 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
10245 			    shw_mask, newshw_mask);
10246 		} while (newshw_mask != shw_mask);
10247 		hmeblkp->hblk_shadow = NULL;
10248 	}
10249 	hmeblkp->hblk_next = NULL;
10250 	hmeblkp->hblk_nextpa = hblkpa;
10251 	hmeblkp->hblk_shw_bit = 0;
10252 
10253 	if (hmeblkp->hblk_nuc_bit == 0) {
10254 
10255 		if (size == TTE8K && sfmmu_put_free_hblk(hmeblkp, critical))
10256 			return;
10257 
10258 		hmeblkp->hblk_next = *listp;
10259 		*listp = hmeblkp;
10260 	}
10261 }
10262 
10263 static void
10264 sfmmu_hblks_list_purge(struct hme_blk **listp)
10265 {
10266 	struct hme_blk	*hmeblkp;
10267 
10268 	while ((hmeblkp = *listp) != NULL) {
10269 		*listp = hmeblkp->hblk_next;
10270 		kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
10271 	}
10272 }
10273 
10274 #define	BUCKETS_TO_SEARCH_BEFORE_UNLOAD	30
10275 #define	SFMMU_HBLK_STEAL_THRESHOLD 5
10276 
10277 static uint_t sfmmu_hblk_steal_twice;
10278 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
10279 
10280 /*
10281  * Steal a hmeblk from user or kernel hme hash lists.
10282  * For 8K tte grab one from reserve pool (freehblkp) before proceeding to
10283  * steal and if we fail to steal after SFMMU_HBLK_STEAL_THRESHOLD attempts
10284  * tap into critical reserve of freehblkp.
10285  * Note: We remain looping in this routine until we find one.
10286  */
10287 static struct hme_blk *
10288 sfmmu_hblk_steal(int size)
10289 {
10290 	static struct hmehash_bucket *uhmehash_steal_hand = NULL;
10291 	struct hmehash_bucket *hmebp;
10292 	struct hme_blk *hmeblkp = NULL, *pr_hblk;
10293 	uint64_t hblkpa, prevpa;
10294 	int i;
10295 	uint_t loop_cnt = 0, critical;
10296 
10297 	for (;;) {
10298 		if (size == TTE8K) {
10299 			critical =
10300 			    (++loop_cnt > SFMMU_HBLK_STEAL_THRESHOLD) ? 1 : 0;
10301 			if (sfmmu_get_free_hblk(&hmeblkp, critical))
10302 				return (hmeblkp);
10303 		}
10304 
10305 		hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
10306 		    uhmehash_steal_hand;
10307 		ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
10308 
10309 		for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
10310 		    BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
10311 			SFMMU_HASH_LOCK(hmebp);
10312 			hmeblkp = hmebp->hmeblkp;
10313 			hblkpa = hmebp->hmeh_nextpa;
10314 			prevpa = 0;
10315 			pr_hblk = NULL;
10316 			while (hmeblkp) {
10317 				/*
10318 				 * check if it is a hmeblk that is not locked
10319 				 * and not shared. skip shadow hmeblks with
10320 				 * shadow_mask set i.e valid count non zero.
10321 				 */
10322 				if ((get_hblk_ttesz(hmeblkp) == size) &&
10323 				    (hmeblkp->hblk_shw_bit == 0 ||
10324 				    hmeblkp->hblk_vcnt == 0) &&
10325 				    (hmeblkp->hblk_lckcnt == 0)) {
10326 					/*
10327 					 * there is a high probability that we
10328 					 * will find a free one. search some
10329 					 * buckets for a free hmeblk initially
10330 					 * before unloading a valid hmeblk.
10331 					 */
10332 					if ((hmeblkp->hblk_vcnt == 0 &&
10333 					    hmeblkp->hblk_hmecnt == 0) || (i >=
10334 					    BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
10335 						if (sfmmu_steal_this_hblk(hmebp,
10336 						    hmeblkp, hblkpa, prevpa,
10337 						    pr_hblk)) {
10338 							/*
10339 							 * Hblk is unloaded
10340 							 * successfully
10341 							 */
10342 							break;
10343 						}
10344 					}
10345 				}
10346 				pr_hblk = hmeblkp;
10347 				prevpa = hblkpa;
10348 				hblkpa = hmeblkp->hblk_nextpa;
10349 				hmeblkp = hmeblkp->hblk_next;
10350 			}
10351 
10352 			SFMMU_HASH_UNLOCK(hmebp);
10353 			if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
10354 				hmebp = uhme_hash;
10355 		}
10356 		uhmehash_steal_hand = hmebp;
10357 
10358 		if (hmeblkp != NULL)
10359 			break;
10360 
10361 		/*
10362 		 * in the worst case, look for a free one in the kernel
10363 		 * hash table.
10364 		 */
10365 		for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
10366 			SFMMU_HASH_LOCK(hmebp);
10367 			hmeblkp = hmebp->hmeblkp;
10368 			hblkpa = hmebp->hmeh_nextpa;
10369 			prevpa = 0;
10370 			pr_hblk = NULL;
10371 			while (hmeblkp) {
10372 				/*
10373 				 * check if it is free hmeblk
10374 				 */
10375 				if ((get_hblk_ttesz(hmeblkp) == size) &&
10376 				    (hmeblkp->hblk_lckcnt == 0) &&
10377 				    (hmeblkp->hblk_vcnt == 0) &&
10378 				    (hmeblkp->hblk_hmecnt == 0)) {
10379 					if (sfmmu_steal_this_hblk(hmebp,
10380 					    hmeblkp, hblkpa, prevpa, pr_hblk)) {
10381 						break;
10382 					} else {
10383 						/*
10384 						 * Cannot fail since we have
10385 						 * hash lock.
10386 						 */
10387 						panic("fail to steal?");
10388 					}
10389 				}
10390 
10391 				pr_hblk = hmeblkp;
10392 				prevpa = hblkpa;
10393 				hblkpa = hmeblkp->hblk_nextpa;
10394 				hmeblkp = hmeblkp->hblk_next;
10395 			}
10396 
10397 			SFMMU_HASH_UNLOCK(hmebp);
10398 			if (hmebp++ == &khme_hash[KHMEHASH_SZ])
10399 				hmebp = khme_hash;
10400 		}
10401 
10402 		if (hmeblkp != NULL)
10403 			break;
10404 		sfmmu_hblk_steal_twice++;
10405 	}
10406 	return (hmeblkp);
10407 }
10408 
10409 /*
10410  * This routine does real work to prepare a hblk to be "stolen" by
10411  * unloading the mappings, updating shadow counts ....
10412  * It returns 1 if the block is ready to be reused (stolen), or 0
10413  * means the block cannot be stolen yet- pageunload is still working
10414  * on this hblk.
10415  */
10416 static int
10417 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
10418 	uint64_t hblkpa, uint64_t prevpa, struct hme_blk *pr_hblk)
10419 {
10420 	int shw_size, vshift;
10421 	struct hme_blk *shw_hblkp;
10422 	uintptr_t vaddr;
10423 	uint_t shw_mask, newshw_mask;
10424 
10425 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10426 
10427 	/*
10428 	 * check if the hmeblk is free, unload if necessary
10429 	 */
10430 	if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
10431 		sfmmu_t *sfmmup;
10432 		demap_range_t dmr;
10433 
10434 		sfmmup = hblktosfmmu(hmeblkp);
10435 		DEMAP_RANGE_INIT(sfmmup, &dmr);
10436 		(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
10437 		    (caddr_t)get_hblk_base(hmeblkp),
10438 		    get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
10439 		DEMAP_RANGE_FLUSH(&dmr);
10440 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
10441 			/*
10442 			 * Pageunload is working on the same hblk.
10443 			 */
10444 			return (0);
10445 		}
10446 
10447 		sfmmu_hblk_steal_unload_count++;
10448 	}
10449 
10450 	ASSERT(hmeblkp->hblk_lckcnt == 0);
10451 	ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
10452 
10453 	sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
10454 	hmeblkp->hblk_nextpa = hblkpa;
10455 
10456 	shw_hblkp = hmeblkp->hblk_shadow;
10457 	if (shw_hblkp) {
10458 		shw_size = get_hblk_ttesz(shw_hblkp);
10459 		vaddr = get_hblk_base(hmeblkp);
10460 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
10461 		ASSERT(vshift < 8);
10462 		/*
10463 		 * Atomically clear shadow mask bit
10464 		 */
10465 		do {
10466 			shw_mask = shw_hblkp->hblk_shw_mask;
10467 			ASSERT(shw_mask & (1 << vshift));
10468 			newshw_mask = shw_mask & ~(1 << vshift);
10469 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
10470 			    shw_mask, newshw_mask);
10471 		} while (newshw_mask != shw_mask);
10472 		hmeblkp->hblk_shadow = NULL;
10473 	}
10474 
10475 	/*
10476 	 * remove shadow bit if we are stealing an unused shadow hmeblk.
10477 	 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if
10478 	 * we are indeed allocating a shadow hmeblk.
10479 	 */
10480 	hmeblkp->hblk_shw_bit = 0;
10481 
10482 	sfmmu_hblk_steal_count++;
10483 	SFMMU_STAT(sf_steal_count);
10484 
10485 	return (1);
10486 }
10487 
10488 struct hme_blk *
10489 sfmmu_hmetohblk(struct sf_hment *sfhme)
10490 {
10491 	struct hme_blk *hmeblkp;
10492 	struct sf_hment *sfhme0;
10493 	struct hme_blk *hblk_dummy = 0;
10494 
10495 	/*
10496 	 * No dummy sf_hments, please.
10497 	 */
10498 	ASSERT(sfhme->hme_tte.ll != 0);
10499 
10500 	sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
10501 	hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
10502 	    (uintptr_t)&hblk_dummy->hblk_hme[0]);
10503 
10504 	return (hmeblkp);
10505 }
10506 
10507 /*
10508  * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
10509  * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
10510  * KM_SLEEP allocation.
10511  *
10512  * Return 0 on success, -1 otherwise.
10513  */
10514 static void
10515 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
10516 {
10517 	struct tsb_info *tsbinfop, *next;
10518 	tsb_replace_rc_t rc;
10519 	boolean_t gotfirst = B_FALSE;
10520 
10521 	ASSERT(sfmmup != ksfmmup);
10522 	ASSERT(sfmmu_hat_lock_held(sfmmup));
10523 
10524 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
10525 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
10526 	}
10527 
10528 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10529 		SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
10530 	} else {
10531 		return;
10532 	}
10533 
10534 	ASSERT(sfmmup->sfmmu_tsb != NULL);
10535 
10536 	/*
10537 	 * Loop over all tsbinfo's replacing them with ones that actually have
10538 	 * a TSB.  If any of the replacements ever fail, bail out of the loop.
10539 	 */
10540 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
10541 		ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
10542 		next = tsbinfop->tsb_next;
10543 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
10544 		    hatlockp, TSB_SWAPIN);
10545 		if (rc != TSB_SUCCESS) {
10546 			break;
10547 		}
10548 		gotfirst = B_TRUE;
10549 	}
10550 
10551 	switch (rc) {
10552 	case TSB_SUCCESS:
10553 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
10554 		cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10555 		return;
10556 	case TSB_ALLOCFAIL:
10557 		break;
10558 	default:
10559 		panic("sfmmu_replace_tsb returned unrecognized failure code "
10560 		    "%d", rc);
10561 	}
10562 
10563 	/*
10564 	 * In this case, we failed to get one of our TSBs.  If we failed to
10565 	 * get the first TSB, get one of minimum size (8KB).  Walk the list
10566 	 * and throw away the tsbinfos, starting where the allocation failed;
10567 	 * we can get by with just one TSB as long as we don't leave the
10568 	 * SWAPPED tsbinfo structures lying around.
10569 	 */
10570 	tsbinfop = sfmmup->sfmmu_tsb;
10571 	next = tsbinfop->tsb_next;
10572 	tsbinfop->tsb_next = NULL;
10573 
10574 	sfmmu_hat_exit(hatlockp);
10575 	for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
10576 		next = tsbinfop->tsb_next;
10577 		sfmmu_tsbinfo_free(tsbinfop);
10578 	}
10579 	hatlockp = sfmmu_hat_enter(sfmmup);
10580 
10581 	/*
10582 	 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
10583 	 * pages.
10584 	 */
10585 	if (!gotfirst) {
10586 		tsbinfop = sfmmup->sfmmu_tsb;
10587 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
10588 		    hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
10589 		ASSERT(rc == TSB_SUCCESS);
10590 	} else {
10591 		/* update machine specific tsbinfo */
10592 		sfmmu_setup_tsbinfo(sfmmup);
10593 	}
10594 
10595 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
10596 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10597 }
10598 
10599 /*
10600  * Handle exceptions for low level tsb_handler.
10601  *
10602  * There are many scenarios that could land us here:
10603  *
10604  * If the context is invalid we land here. The context can be invalid
10605  * for 3 reasons: 1) we couldn't allocate a new context and now need to
10606  * perform a wrap around operation in order to allocate a new context.
10607  * 2) Context was invalidated to change pagesize programming 3) ISMs or
10608  * TSBs configuration is changeing for this process and we are forced into
10609  * here to do a syncronization operation. If the context is valid we can
10610  * be here from window trap hanlder. In this case just call trap to handle
10611  * the fault.
10612  *
10613  * Note that the process will run in INVALID_CONTEXT before
10614  * faulting into here and subsequently loading the MMU registers
10615  * (including the TSB base register) associated with this process.
10616  * For this reason, the trap handlers must all test for
10617  * INVALID_CONTEXT before attempting to access any registers other
10618  * than the context registers.
10619  */
10620 void
10621 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
10622 {
10623 	sfmmu_t *sfmmup;
10624 	uint_t ctxtype;
10625 	klwp_id_t lwp;
10626 	char lwp_save_state;
10627 	hatlock_t *hatlockp;
10628 	struct tsb_info *tsbinfop;
10629 
10630 	SFMMU_STAT(sf_tsb_exceptions);
10631 	SFMMU_MMU_STAT(mmu_tsb_exceptions);
10632 	sfmmup = astosfmmu(curthread->t_procp->p_as);
10633 	/*
10634 	 * note that in sun4u, tagacces register contains ctxnum
10635 	 * while sun4v passes ctxtype in the tagaccess register.
10636 	 */
10637 	ctxtype = tagaccess & TAGACC_CTX_MASK;
10638 
10639 	ASSERT(sfmmup != ksfmmup && ctxtype != KCONTEXT);
10640 	ASSERT(sfmmup->sfmmu_ismhat == 0);
10641 	/*
10642 	 * First, make sure we come out of here with a valid ctx,
10643 	 * since if we don't get one we'll simply loop on the
10644 	 * faulting instruction.
10645 	 *
10646 	 * If the ISM mappings are changing, the TSB is being relocated, or
10647 	 * the process is swapped out we serialize behind the controlling
10648 	 * thread with the sfmmu_flags and sfmmu_tsb_cv condition variable.
10649 	 * Otherwise we synchronize with the context stealer or the thread
10650 	 * that required us to change out our MMU registers (such
10651 	 * as a thread changing out our TSB while we were running) by
10652 	 * locking the HAT and grabbing the rwlock on the context as a
10653 	 * reader temporarily.
10654 	 */
10655 	ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) ||
10656 	    ctxtype == INVALID_CONTEXT);
10657 
10658 	if (ctxtype == INVALID_CONTEXT) {
10659 		/*
10660 		 * Must set lwp state to LWP_SYS before
10661 		 * trying to acquire any adaptive lock
10662 		 */
10663 		lwp = ttolwp(curthread);
10664 		ASSERT(lwp);
10665 		lwp_save_state = lwp->lwp_state;
10666 		lwp->lwp_state = LWP_SYS;
10667 
10668 		hatlockp = sfmmu_hat_enter(sfmmup);
10669 retry:
10670 		for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
10671 		    tsbinfop = tsbinfop->tsb_next) {
10672 			if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
10673 				cv_wait(&sfmmup->sfmmu_tsb_cv,
10674 				    HATLOCK_MUTEXP(hatlockp));
10675 				goto retry;
10676 			}
10677 		}
10678 
10679 		/*
10680 		 * Wait for ISM maps to be updated.
10681 		 */
10682 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
10683 			cv_wait(&sfmmup->sfmmu_tsb_cv,
10684 			    HATLOCK_MUTEXP(hatlockp));
10685 			goto retry;
10686 		}
10687 
10688 		/*
10689 		 * If we're swapping in, get TSB(s).  Note that we must do
10690 		 * this before we get a ctx or load the MMU state.  Once
10691 		 * we swap in we have to recheck to make sure the TSB(s) and
10692 		 * ISM mappings didn't change while we slept.
10693 		 */
10694 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10695 			sfmmu_tsb_swapin(sfmmup, hatlockp);
10696 			goto retry;
10697 		}
10698 
10699 		sfmmu_get_ctx(sfmmup);
10700 
10701 		sfmmu_hat_exit(hatlockp);
10702 		/*
10703 		 * Must restore lwp_state if not calling
10704 		 * trap() for further processing. Restore
10705 		 * it anyway.
10706 		 */
10707 		lwp->lwp_state = lwp_save_state;
10708 		if (sfmmup->sfmmu_ttecnt[TTE8K] != 0 ||
10709 		    sfmmup->sfmmu_ttecnt[TTE64K] != 0 ||
10710 		    sfmmup->sfmmu_ttecnt[TTE512K] != 0 ||
10711 		    sfmmup->sfmmu_ttecnt[TTE4M] != 0 ||
10712 		    sfmmup->sfmmu_ttecnt[TTE32M] != 0 ||
10713 		    sfmmup->sfmmu_ttecnt[TTE256M] != 0) {
10714 			return;
10715 		}
10716 		if (traptype == T_DATA_PROT) {
10717 			traptype = T_DATA_MMU_MISS;
10718 		}
10719 	}
10720 	trap(rp, (caddr_t)tagaccess, traptype, 0);
10721 }
10722 
10723 /*
10724  * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
10725  * TTE_SUSPENDED bit set in tte we block on aquiring a page lock
10726  * rather than spinning to avoid send mondo timeouts with
10727  * interrupts enabled. When the lock is acquired it is immediately
10728  * released and we return back to sfmmu_vatopfn just after
10729  * the GET_TTE call.
10730  */
10731 void
10732 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
10733 {
10734 	struct page	**pp;
10735 
10736 	(void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
10737 	as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
10738 }
10739 
10740 /*
10741  * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
10742  * TTE_SUSPENDED bit set in tte. We do this so that we can handle
10743  * cross traps which cannot be handled while spinning in the
10744  * trap handlers. Simply enter and exit the kpr_suspendlock spin
10745  * mutex, which is held by the holder of the suspend bit, and then
10746  * retry the trapped instruction after unwinding.
10747  */
10748 /*ARGSUSED*/
10749 void
10750 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
10751 {
10752 	ASSERT(curthread != kreloc_thread);
10753 	mutex_enter(&kpr_suspendlock);
10754 	mutex_exit(&kpr_suspendlock);
10755 }
10756 
10757 /*
10758  * Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
10759  * This routine may be called with all cpu's captured. Therefore, the
10760  * caller is responsible for holding all locks and disabling kernel
10761  * preemption.
10762  */
10763 /* ARGSUSED */
10764 static void
10765 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
10766 	struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
10767 {
10768 	cpuset_t 	cpuset;
10769 	caddr_t 	va;
10770 	ism_ment_t	*ment;
10771 	sfmmu_t		*sfmmup;
10772 #ifdef VAC
10773 	int 		vcolor;
10774 #endif
10775 	int		ttesz;
10776 
10777 	/*
10778 	 * Walk the ism_hat's mapping list and flush the page
10779 	 * from every hat sharing this ism_hat. This routine
10780 	 * may be called while all cpu's have been captured.
10781 	 * Therefore we can't attempt to grab any locks. For now
10782 	 * this means we will protect the ism mapping list under
10783 	 * a single lock which will be grabbed by the caller.
10784 	 * If hat_share/unshare scalibility becomes a performance
10785 	 * problem then we may need to re-think ism mapping list locking.
10786 	 */
10787 	ASSERT(ism_sfmmup->sfmmu_ismhat);
10788 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
10789 	addr = addr - ISMID_STARTADDR;
10790 	for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
10791 
10792 		sfmmup = ment->iment_hat;
10793 
10794 		va = ment->iment_base_va;
10795 		va = (caddr_t)((uintptr_t)va  + (uintptr_t)addr);
10796 
10797 		/*
10798 		 * Flush TSB of ISM mappings.
10799 		 */
10800 		ttesz = get_hblk_ttesz(hmeblkp);
10801 		if (ttesz == TTE8K || ttesz == TTE4M) {
10802 			sfmmu_unload_tsb(sfmmup, va, ttesz);
10803 		} else {
10804 			caddr_t sva = va;
10805 			caddr_t eva;
10806 			ASSERT(addr == (caddr_t)get_hblk_base(hmeblkp));
10807 			eva = sva + get_hblk_span(hmeblkp);
10808 			sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);
10809 		}
10810 
10811 		cpuset = sfmmup->sfmmu_cpusran;
10812 		CPUSET_AND(cpuset, cpu_ready_set);
10813 		CPUSET_DEL(cpuset, CPU->cpu_id);
10814 
10815 		SFMMU_XCALL_STATS(sfmmup);
10816 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
10817 		    (uint64_t)sfmmup);
10818 
10819 		vtag_flushpage(va, (uint64_t)sfmmup);
10820 
10821 #ifdef VAC
10822 		/*
10823 		 * Flush D$
10824 		 * When flushing D$ we must flush all
10825 		 * cpu's. See sfmmu_cache_flush().
10826 		 */
10827 		if (cache_flush_flag == CACHE_FLUSH) {
10828 			cpuset = cpu_ready_set;
10829 			CPUSET_DEL(cpuset, CPU->cpu_id);
10830 
10831 			SFMMU_XCALL_STATS(sfmmup);
10832 			vcolor = addr_to_vcolor(va);
10833 			xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
10834 			vac_flushpage(pfnum, vcolor);
10835 		}
10836 #endif	/* VAC */
10837 	}
10838 }
10839 
10840 /*
10841  * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
10842  * a particular virtual address and ctx.  If noflush is set we do not
10843  * flush the TLB/TSB.  This function may or may not be called with the
10844  * HAT lock held.
10845  */
10846 static void
10847 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
10848 	pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
10849 	int hat_lock_held)
10850 {
10851 #ifdef VAC
10852 	int vcolor;
10853 #endif
10854 	cpuset_t cpuset;
10855 	hatlock_t *hatlockp;
10856 
10857 #if defined(lint) && !defined(VAC)
10858 	pfnum = pfnum;
10859 	cpu_flag = cpu_flag;
10860 	cache_flush_flag = cache_flush_flag;
10861 #endif
10862 	/*
10863 	 * There is no longer a need to protect against ctx being
10864 	 * stolen here since we don't store the ctx in the TSB anymore.
10865 	 */
10866 #ifdef VAC
10867 	vcolor = addr_to_vcolor(addr);
10868 #endif
10869 
10870 	/*
10871 	 * We must hold the hat lock during the flush of TLB,
10872 	 * to avoid a race with sfmmu_invalidate_ctx(), where
10873 	 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
10874 	 * causing TLB demap routine to skip flush on that MMU.
10875 	 * If the context on a MMU has already been set to
10876 	 * INVALID_CONTEXT, we just get an extra flush on
10877 	 * that MMU.
10878 	 */
10879 	if (!hat_lock_held && !tlb_noflush)
10880 		hatlockp = sfmmu_hat_enter(sfmmup);
10881 
10882 	kpreempt_disable();
10883 	if (!tlb_noflush) {
10884 		/*
10885 		 * Flush the TSB and TLB.
10886 		 */
10887 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
10888 
10889 		cpuset = sfmmup->sfmmu_cpusran;
10890 		CPUSET_AND(cpuset, cpu_ready_set);
10891 		CPUSET_DEL(cpuset, CPU->cpu_id);
10892 
10893 		SFMMU_XCALL_STATS(sfmmup);
10894 
10895 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
10896 		    (uint64_t)sfmmup);
10897 
10898 		vtag_flushpage(addr, (uint64_t)sfmmup);
10899 	}
10900 
10901 	if (!hat_lock_held && !tlb_noflush)
10902 		sfmmu_hat_exit(hatlockp);
10903 
10904 #ifdef VAC
10905 	/*
10906 	 * Flush the D$
10907 	 *
10908 	 * Even if the ctx is stolen, we need to flush the
10909 	 * cache. Our ctx stealer only flushes the TLBs.
10910 	 */
10911 	if (cache_flush_flag == CACHE_FLUSH) {
10912 		if (cpu_flag & FLUSH_ALL_CPUS) {
10913 			cpuset = cpu_ready_set;
10914 		} else {
10915 			cpuset = sfmmup->sfmmu_cpusran;
10916 			CPUSET_AND(cpuset, cpu_ready_set);
10917 		}
10918 		CPUSET_DEL(cpuset, CPU->cpu_id);
10919 		SFMMU_XCALL_STATS(sfmmup);
10920 		xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
10921 		vac_flushpage(pfnum, vcolor);
10922 	}
10923 #endif	/* VAC */
10924 	kpreempt_enable();
10925 }
10926 
10927 /*
10928  * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
10929  * address and ctx.  If noflush is set we do not currently do anything.
10930  * This function may or may not be called with the HAT lock held.
10931  */
10932 static void
10933 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
10934 	int tlb_noflush, int hat_lock_held)
10935 {
10936 	cpuset_t cpuset;
10937 	hatlock_t *hatlockp;
10938 
10939 	/*
10940 	 * If the process is exiting we have nothing to do.
10941 	 */
10942 	if (tlb_noflush)
10943 		return;
10944 
10945 	/*
10946 	 * Flush TSB.
10947 	 */
10948 	if (!hat_lock_held)
10949 		hatlockp = sfmmu_hat_enter(sfmmup);
10950 	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
10951 
10952 	kpreempt_disable();
10953 
10954 	cpuset = sfmmup->sfmmu_cpusran;
10955 	CPUSET_AND(cpuset, cpu_ready_set);
10956 	CPUSET_DEL(cpuset, CPU->cpu_id);
10957 
10958 	SFMMU_XCALL_STATS(sfmmup);
10959 	xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup);
10960 
10961 	vtag_flushpage(addr, (uint64_t)sfmmup);
10962 
10963 	if (!hat_lock_held)
10964 		sfmmu_hat_exit(hatlockp);
10965 
10966 	kpreempt_enable();
10967 
10968 }
10969 
10970 /*
10971  * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
10972  * call handler that can flush a range of pages to save on xcalls.
10973  */
10974 static int sfmmu_xcall_save;
10975 
10976 static void
10977 sfmmu_tlb_range_demap(demap_range_t *dmrp)
10978 {
10979 	sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
10980 	hatlock_t *hatlockp;
10981 	cpuset_t cpuset;
10982 	uint64_t sfmmu_pgcnt;
10983 	pgcnt_t pgcnt = 0;
10984 	int pgunload = 0;
10985 	int dirtypg = 0;
10986 	caddr_t addr = dmrp->dmr_addr;
10987 	caddr_t eaddr;
10988 	uint64_t bitvec = dmrp->dmr_bitvec;
10989 
10990 	ASSERT(bitvec & 1);
10991 
10992 	/*
10993 	 * Flush TSB and calculate number of pages to flush.
10994 	 */
10995 	while (bitvec != 0) {
10996 		dirtypg = 0;
10997 		/*
10998 		 * Find the first page to flush and then count how many
10999 		 * pages there are after it that also need to be flushed.
11000 		 * This way the number of TSB flushes is minimized.
11001 		 */
11002 		while ((bitvec & 1) == 0) {
11003 			pgcnt++;
11004 			addr += MMU_PAGESIZE;
11005 			bitvec >>= 1;
11006 		}
11007 		while (bitvec & 1) {
11008 			dirtypg++;
11009 			bitvec >>= 1;
11010 		}
11011 		eaddr = addr + ptob(dirtypg);
11012 		hatlockp = sfmmu_hat_enter(sfmmup);
11013 		sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
11014 		sfmmu_hat_exit(hatlockp);
11015 		pgunload += dirtypg;
11016 		addr = eaddr;
11017 		pgcnt += dirtypg;
11018 	}
11019 
11020 	ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
11021 	if (sfmmup->sfmmu_free == 0) {
11022 		addr = dmrp->dmr_addr;
11023 		bitvec = dmrp->dmr_bitvec;
11024 
11025 		/*
11026 		 * make sure it has SFMMU_PGCNT_SHIFT bits only,
11027 		 * as it will be used to pack argument for xt_some
11028 		 */
11029 		ASSERT((pgcnt > 0) &&
11030 		    (pgcnt <= (1 << SFMMU_PGCNT_SHIFT)));
11031 
11032 		/*
11033 		 * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in
11034 		 * the low 6 bits of sfmmup. This is doable since pgcnt
11035 		 * always >= 1.
11036 		 */
11037 		ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK));
11038 		sfmmu_pgcnt = (uint64_t)sfmmup |
11039 		    ((pgcnt - 1) & SFMMU_PGCNT_MASK);
11040 
11041 		/*
11042 		 * We must hold the hat lock during the flush of TLB,
11043 		 * to avoid a race with sfmmu_invalidate_ctx(), where
11044 		 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
11045 		 * causing TLB demap routine to skip flush on that MMU.
11046 		 * If the context on a MMU has already been set to
11047 		 * INVALID_CONTEXT, we just get an extra flush on
11048 		 * that MMU.
11049 		 */
11050 		hatlockp = sfmmu_hat_enter(sfmmup);
11051 		kpreempt_disable();
11052 
11053 		cpuset = sfmmup->sfmmu_cpusran;
11054 		CPUSET_AND(cpuset, cpu_ready_set);
11055 		CPUSET_DEL(cpuset, CPU->cpu_id);
11056 
11057 		SFMMU_XCALL_STATS(sfmmup);
11058 		xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
11059 		    sfmmu_pgcnt);
11060 
11061 		for (; bitvec != 0; bitvec >>= 1) {
11062 			if (bitvec & 1)
11063 				vtag_flushpage(addr, (uint64_t)sfmmup);
11064 			addr += MMU_PAGESIZE;
11065 		}
11066 		kpreempt_enable();
11067 		sfmmu_hat_exit(hatlockp);
11068 
11069 		sfmmu_xcall_save += (pgunload-1);
11070 	}
11071 	dmrp->dmr_bitvec = 0;
11072 }
11073 
11074 /*
11075  * In cases where we need to synchronize with TLB/TSB miss trap
11076  * handlers, _and_ need to flush the TLB, it's a lot easier to
11077  * throw away the context from the process than to do a
11078  * special song and dance to keep things consistent for the
11079  * handlers.
11080  *
11081  * Since the process suddenly ends up without a context and our caller
11082  * holds the hat lock, threads that fault after this function is called
11083  * will pile up on the lock.  We can then do whatever we need to
11084  * atomically from the context of the caller.  The first blocked thread
11085  * to resume executing will get the process a new context, and the
11086  * process will resume executing.
11087  *
11088  * One added advantage of this approach is that on MMUs that
11089  * support a "flush all" operation, we will delay the flush until
11090  * cnum wrap-around, and then flush the TLB one time.  This
11091  * is rather rare, so it's a lot less expensive than making 8000
11092  * x-calls to flush the TLB 8000 times.
11093  *
11094  * A per-process (PP) lock is used to synchronize ctx allocations in
11095  * resume() and ctx invalidations here.
11096  */
11097 static void
11098 sfmmu_invalidate_ctx(sfmmu_t *sfmmup)
11099 {
11100 	cpuset_t cpuset;
11101 	int cnum, currcnum;
11102 	mmu_ctx_t *mmu_ctxp;
11103 	int i;
11104 	uint_t pstate_save;
11105 
11106 	SFMMU_STAT(sf_ctx_inv);
11107 
11108 	ASSERT(sfmmu_hat_lock_held(sfmmup));
11109 	ASSERT(sfmmup != ksfmmup);
11110 
11111 	kpreempt_disable();
11112 
11113 	mmu_ctxp = CPU_MMU_CTXP(CPU);
11114 	ASSERT(mmu_ctxp);
11115 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
11116 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
11117 
11118 	currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum;
11119 
11120 	pstate_save = sfmmu_disable_intrs();
11121 
11122 	lock_set(&sfmmup->sfmmu_ctx_lock);	/* acquire PP lock */
11123 	/* set HAT cnum invalid across all context domains. */
11124 	for (i = 0; i < max_mmu_ctxdoms; i++) {
11125 
11126 		cnum = 	sfmmup->sfmmu_ctxs[i].cnum;
11127 		if (cnum == INVALID_CONTEXT) {
11128 			continue;
11129 		}
11130 
11131 		sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
11132 	}
11133 	membar_enter();	/* make sure globally visible to all CPUs */
11134 	lock_clear(&sfmmup->sfmmu_ctx_lock);	/* release PP lock */
11135 
11136 	sfmmu_enable_intrs(pstate_save);
11137 
11138 	cpuset = sfmmup->sfmmu_cpusran;
11139 	CPUSET_DEL(cpuset, CPU->cpu_id);
11140 	CPUSET_AND(cpuset, cpu_ready_set);
11141 	if (!CPUSET_ISNULL(cpuset)) {
11142 		SFMMU_XCALL_STATS(sfmmup);
11143 		xt_some(cpuset, sfmmu_raise_tsb_exception,
11144 		    (uint64_t)sfmmup, INVALID_CONTEXT);
11145 		xt_sync(cpuset);
11146 		SFMMU_STAT(sf_tsb_raise_exception);
11147 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
11148 	}
11149 
11150 	/*
11151 	 * If the hat to-be-invalidated is the same as the current
11152 	 * process on local CPU we need to invalidate
11153 	 * this CPU context as well.
11154 	 */
11155 	if ((sfmmu_getctx_sec() == currcnum) &&
11156 	    (currcnum != INVALID_CONTEXT)) {
11157 		sfmmu_setctx_sec(INVALID_CONTEXT);
11158 		sfmmu_clear_utsbinfo();
11159 	}
11160 
11161 	kpreempt_enable();
11162 
11163 	/*
11164 	 * we hold the hat lock, so nobody should allocate a context
11165 	 * for us yet
11166 	 */
11167 	ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT);
11168 }
11169 
11170 #ifdef VAC
11171 /*
11172  * We need to flush the cache in all cpus.  It is possible that
11173  * a process referenced a page as cacheable but has sinced exited
11174  * and cleared the mapping list.  We still to flush it but have no
11175  * state so all cpus is the only alternative.
11176  */
11177 void
11178 sfmmu_cache_flush(pfn_t pfnum, int vcolor)
11179 {
11180 	cpuset_t cpuset;
11181 
11182 	kpreempt_disable();
11183 	cpuset = cpu_ready_set;
11184 	CPUSET_DEL(cpuset, CPU->cpu_id);
11185 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
11186 	xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
11187 	xt_sync(cpuset);
11188 	vac_flushpage(pfnum, vcolor);
11189 	kpreempt_enable();
11190 }
11191 
11192 void
11193 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
11194 {
11195 	cpuset_t cpuset;
11196 
11197 	ASSERT(vcolor >= 0);
11198 
11199 	kpreempt_disable();
11200 	cpuset = cpu_ready_set;
11201 	CPUSET_DEL(cpuset, CPU->cpu_id);
11202 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
11203 	xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
11204 	xt_sync(cpuset);
11205 	vac_flushcolor(vcolor, pfnum);
11206 	kpreempt_enable();
11207 }
11208 #endif	/* VAC */
11209 
11210 /*
11211  * We need to prevent processes from accessing the TSB using a cached physical
11212  * address.  It's alright if they try to access the TSB via virtual address
11213  * since they will just fault on that virtual address once the mapping has
11214  * been suspended.
11215  */
11216 #pragma weak sendmondo_in_recover
11217 
11218 /* ARGSUSED */
11219 static int
11220 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
11221 {
11222 	hatlock_t *hatlockp;
11223 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
11224 	sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
11225 	extern uint32_t sendmondo_in_recover;
11226 
11227 	if (flags != HAT_PRESUSPEND)
11228 		return (0);
11229 
11230 	hatlockp = sfmmu_hat_enter(sfmmup);
11231 
11232 	tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
11233 
11234 	/*
11235 	 * For Cheetah+ Erratum 25:
11236 	 * Wait for any active recovery to finish.  We can't risk
11237 	 * relocating the TSB of the thread running mondo_recover_proc()
11238 	 * since, if we did that, we would deadlock.  The scenario we are
11239 	 * trying to avoid is as follows:
11240 	 *
11241 	 * THIS CPU			RECOVER CPU
11242 	 * --------			-----------
11243 	 *				Begins recovery, walking through TSB
11244 	 * hat_pagesuspend() TSB TTE
11245 	 *				TLB miss on TSB TTE, spins at TL1
11246 	 * xt_sync()
11247 	 *	send_mondo_timeout()
11248 	 *	mondo_recover_proc()
11249 	 *	((deadlocked))
11250 	 *
11251 	 * The second half of the workaround is that mondo_recover_proc()
11252 	 * checks to see if the tsb_info has the RELOC flag set, and if it
11253 	 * does, it skips over that TSB without ever touching tsbinfop->tsb_va
11254 	 * and hence avoiding the TLB miss that could result in a deadlock.
11255 	 */
11256 	if (&sendmondo_in_recover) {
11257 		membar_enter();	/* make sure RELOC flag visible */
11258 		while (sendmondo_in_recover) {
11259 			drv_usecwait(1);
11260 			membar_consumer();
11261 		}
11262 	}
11263 
11264 	sfmmu_invalidate_ctx(sfmmup);
11265 	sfmmu_hat_exit(hatlockp);
11266 
11267 	return (0);
11268 }
11269 
11270 /* ARGSUSED */
11271 static int
11272 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
11273 	void *tsbinfo, pfn_t newpfn)
11274 {
11275 	hatlock_t *hatlockp;
11276 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
11277 	sfmmu_t	*sfmmup = tsbinfop->tsb_sfmmu;
11278 
11279 	if (flags != HAT_POSTUNSUSPEND)
11280 		return (0);
11281 
11282 	hatlockp = sfmmu_hat_enter(sfmmup);
11283 
11284 	SFMMU_STAT(sf_tsb_reloc);
11285 
11286 	/*
11287 	 * The process may have swapped out while we were relocating one
11288 	 * of its TSBs.  If so, don't bother doing the setup since the
11289 	 * process can't be using the memory anymore.
11290 	 */
11291 	if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
11292 		ASSERT(va == tsbinfop->tsb_va);
11293 		sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
11294 		sfmmu_setup_tsbinfo(sfmmup);
11295 
11296 		if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
11297 			sfmmu_inv_tsb(tsbinfop->tsb_va,
11298 			    TSB_BYTES(tsbinfop->tsb_szc));
11299 			tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
11300 		}
11301 	}
11302 
11303 	membar_exit();
11304 	tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
11305 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11306 
11307 	sfmmu_hat_exit(hatlockp);
11308 
11309 	return (0);
11310 }
11311 
11312 /*
11313  * Allocate and initialize a tsb_info structure.  Note that we may or may not
11314  * allocate a TSB here, depending on the flags passed in.
11315  */
11316 static int
11317 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
11318 	uint_t flags, sfmmu_t *sfmmup)
11319 {
11320 	int err;
11321 
11322 	*tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
11323 	    sfmmu_tsbinfo_cache, KM_SLEEP);
11324 
11325 	if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
11326 	    tsb_szc, flags, sfmmup)) != 0) {
11327 		kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
11328 		SFMMU_STAT(sf_tsb_allocfail);
11329 		*tsbinfopp = NULL;
11330 		return (err);
11331 	}
11332 	SFMMU_STAT(sf_tsb_alloc);
11333 
11334 	/*
11335 	 * Bump the TSB size counters for this TSB size.
11336 	 */
11337 	(*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
11338 	return (0);
11339 }
11340 
11341 static void
11342 sfmmu_tsb_free(struct tsb_info *tsbinfo)
11343 {
11344 	caddr_t tsbva = tsbinfo->tsb_va;
11345 	uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
11346 	struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
11347 	vmem_t	*vmp = tsbinfo->tsb_vmp;
11348 
11349 	/*
11350 	 * If we allocated this TSB from relocatable kernel memory, then we
11351 	 * need to uninstall the callback handler.
11352 	 */
11353 	if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
11354 		uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
11355 		caddr_t slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
11356 		page_t **ppl;
11357 		int ret;
11358 
11359 		ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
11360 		ASSERT(ret == 0);
11361 		hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
11362 		    0, NULL);
11363 		as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
11364 	}
11365 
11366 	if (kmem_cachep != NULL) {
11367 		kmem_cache_free(kmem_cachep, tsbva);
11368 	} else {
11369 		vmem_xfree(vmp, (void *)tsbva, tsb_size);
11370 	}
11371 	tsbinfo->tsb_va = (caddr_t)0xbad00bad;
11372 	atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
11373 }
11374 
11375 static void
11376 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
11377 {
11378 	if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
11379 		sfmmu_tsb_free(tsbinfo);
11380 	}
11381 	kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
11382 
11383 }
11384 
11385 /*
11386  * Setup all the references to physical memory for this tsbinfo.
11387  * The underlying page(s) must be locked.
11388  */
11389 static void
11390 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
11391 {
11392 	ASSERT(pfn != PFN_INVALID);
11393 	ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
11394 
11395 #ifndef sun4v
11396 	if (tsbinfo->tsb_szc == 0) {
11397 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
11398 		    PROT_WRITE|PROT_READ, TTE8K);
11399 	} else {
11400 		/*
11401 		 * Round down PA and use a large mapping; the handlers will
11402 		 * compute the TSB pointer at the correct offset into the
11403 		 * big virtual page.  NOTE: this assumes all TSBs larger
11404 		 * than 8K must come from physically contiguous slabs of
11405 		 * size tsb_slab_size.
11406 		 */
11407 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
11408 		    PROT_WRITE|PROT_READ, tsb_slab_ttesz);
11409 	}
11410 	tsbinfo->tsb_pa = ptob(pfn);
11411 
11412 	TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
11413 	TTE_SET_MOD(&tsbinfo->tsb_tte);    /* enable writes */
11414 
11415 	ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
11416 	ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
11417 #else /* sun4v */
11418 	tsbinfo->tsb_pa = ptob(pfn);
11419 #endif /* sun4v */
11420 }
11421 
11422 
11423 /*
11424  * Returns zero on success, ENOMEM if over the high water mark,
11425  * or EAGAIN if the caller needs to retry with a smaller TSB
11426  * size (or specify TSB_FORCEALLOC if the allocation can't fail).
11427  *
11428  * This call cannot fail to allocate a TSB if TSB_FORCEALLOC
11429  * is specified and the TSB requested is PAGESIZE, though it
11430  * may sleep waiting for memory if sufficient memory is not
11431  * available.
11432  */
11433 static int
11434 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
11435     int tsbcode, uint_t flags, sfmmu_t *sfmmup)
11436 {
11437 	caddr_t vaddr = NULL;
11438 	caddr_t slab_vaddr;
11439 	uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
11440 	int tsbbytes = TSB_BYTES(tsbcode);
11441 	int lowmem = 0;
11442 	struct kmem_cache *kmem_cachep = NULL;
11443 	vmem_t *vmp = NULL;
11444 	lgrp_id_t lgrpid = LGRP_NONE;
11445 	pfn_t pfn;
11446 	uint_t cbflags = HAC_SLEEP;
11447 	page_t **pplist;
11448 	int ret;
11449 
11450 	if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
11451 		flags |= TSB_ALLOC;
11452 
11453 	ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
11454 
11455 	tsbinfo->tsb_sfmmu = sfmmup;
11456 
11457 	/*
11458 	 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
11459 	 * return.
11460 	 */
11461 	if ((flags & TSB_ALLOC) == 0) {
11462 		tsbinfo->tsb_szc = tsbcode;
11463 		tsbinfo->tsb_ttesz_mask = tteszmask;
11464 		tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
11465 		tsbinfo->tsb_pa = -1;
11466 		tsbinfo->tsb_tte.ll = 0;
11467 		tsbinfo->tsb_next = NULL;
11468 		tsbinfo->tsb_flags = TSB_SWAPPED;
11469 		tsbinfo->tsb_cache = NULL;
11470 		tsbinfo->tsb_vmp = NULL;
11471 		return (0);
11472 	}
11473 
11474 #ifdef DEBUG
11475 	/*
11476 	 * For debugging:
11477 	 * Randomly force allocation failures every tsb_alloc_mtbf
11478 	 * tries if TSB_FORCEALLOC is not specified.  This will
11479 	 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
11480 	 * it is even, to allow testing of both failure paths...
11481 	 */
11482 	if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
11483 	    (tsb_alloc_count++ == tsb_alloc_mtbf)) {
11484 		tsb_alloc_count = 0;
11485 		tsb_alloc_fail_mtbf++;
11486 		return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
11487 	}
11488 #endif	/* DEBUG */
11489 
11490 	/*
11491 	 * Enforce high water mark if we are not doing a forced allocation
11492 	 * and are not shrinking a process' TSB.
11493 	 */
11494 	if ((flags & TSB_SHRINK) == 0 &&
11495 	    (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
11496 		if ((flags & TSB_FORCEALLOC) == 0)
11497 			return (ENOMEM);
11498 		lowmem = 1;
11499 	}
11500 
11501 	/*
11502 	 * Allocate from the correct location based upon the size of the TSB
11503 	 * compared to the base page size, and what memory conditions dictate.
11504 	 * Note we always do nonblocking allocations from the TSB arena since
11505 	 * we don't want memory fragmentation to cause processes to block
11506 	 * indefinitely waiting for memory; until the kernel algorithms that
11507 	 * coalesce large pages are improved this is our best option.
11508 	 *
11509 	 * Algorithm:
11510 	 *	If allocating a "large" TSB (>8K), allocate from the
11511 	 *		appropriate kmem_tsb_default_arena vmem arena
11512 	 *	else if low on memory or the TSB_FORCEALLOC flag is set or
11513 	 *	tsb_forceheap is set
11514 	 *		Allocate from kernel heap via sfmmu_tsb8k_cache with
11515 	 *		KM_SLEEP (never fails)
11516 	 *	else
11517 	 *		Allocate from appropriate sfmmu_tsb_cache with
11518 	 *		KM_NOSLEEP
11519 	 *	endif
11520 	 */
11521 	if (tsb_lgrp_affinity)
11522 		lgrpid = lgrp_home_id(curthread);
11523 	if (lgrpid == LGRP_NONE)
11524 		lgrpid = 0;	/* use lgrp of boot CPU */
11525 
11526 	if (tsbbytes > MMU_PAGESIZE) {
11527 		vmp = kmem_tsb_default_arena[lgrpid];
11528 		vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes, 0, 0,
11529 		    NULL, NULL, VM_NOSLEEP);
11530 #ifdef	DEBUG
11531 	} else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
11532 #else	/* !DEBUG */
11533 	} else if (lowmem || (flags & TSB_FORCEALLOC)) {
11534 #endif	/* DEBUG */
11535 		kmem_cachep = sfmmu_tsb8k_cache;
11536 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
11537 		ASSERT(vaddr != NULL);
11538 	} else {
11539 		kmem_cachep = sfmmu_tsb_cache[lgrpid];
11540 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
11541 	}
11542 
11543 	tsbinfo->tsb_cache = kmem_cachep;
11544 	tsbinfo->tsb_vmp = vmp;
11545 
11546 	if (vaddr == NULL) {
11547 		return (EAGAIN);
11548 	}
11549 
11550 	atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
11551 	kmem_cachep = tsbinfo->tsb_cache;
11552 
11553 	/*
11554 	 * If we are allocating from outside the cage, then we need to
11555 	 * register a relocation callback handler.  Note that for now
11556 	 * since pseudo mappings always hang off of the slab's root page,
11557 	 * we need only lock the first 8K of the TSB slab.  This is a bit
11558 	 * hacky but it is good for performance.
11559 	 */
11560 	if (kmem_cachep != sfmmu_tsb8k_cache) {
11561 		slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
11562 		ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
11563 		ASSERT(ret == 0);
11564 		ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
11565 		    cbflags, (void *)tsbinfo, &pfn, NULL);
11566 
11567 		/*
11568 		 * Need to free up resources if we could not successfully
11569 		 * add the callback function and return an error condition.
11570 		 */
11571 		if (ret != 0) {
11572 			if (kmem_cachep) {
11573 				kmem_cache_free(kmem_cachep, vaddr);
11574 			} else {
11575 				vmem_xfree(vmp, (void *)vaddr, tsbbytes);
11576 			}
11577 			as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
11578 			    S_WRITE);
11579 			return (EAGAIN);
11580 		}
11581 	} else {
11582 		/*
11583 		 * Since allocation of 8K TSBs from heap is rare and occurs
11584 		 * during memory pressure we allocate them from permanent
11585 		 * memory rather than using callbacks to get the PFN.
11586 		 */
11587 		pfn = hat_getpfnum(kas.a_hat, vaddr);
11588 	}
11589 
11590 	tsbinfo->tsb_va = vaddr;
11591 	tsbinfo->tsb_szc = tsbcode;
11592 	tsbinfo->tsb_ttesz_mask = tteszmask;
11593 	tsbinfo->tsb_next = NULL;
11594 	tsbinfo->tsb_flags = 0;
11595 
11596 	sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
11597 
11598 	if (kmem_cachep != sfmmu_tsb8k_cache) {
11599 		as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
11600 	}
11601 
11602 	sfmmu_inv_tsb(vaddr, tsbbytes);
11603 	return (0);
11604 }
11605 
11606 /*
11607  * Initialize per cpu tsb and per cpu tsbmiss_area
11608  */
11609 void
11610 sfmmu_init_tsbs(void)
11611 {
11612 	int i;
11613 	struct tsbmiss	*tsbmissp;
11614 	struct kpmtsbm	*kpmtsbmp;
11615 #ifndef sun4v
11616 	extern int	dcache_line_mask;
11617 #endif /* sun4v */
11618 	extern uint_t	vac_colors;
11619 
11620 	/*
11621 	 * Init. tsb miss area.
11622 	 */
11623 	tsbmissp = tsbmiss_area;
11624 
11625 	for (i = 0; i < NCPU; tsbmissp++, i++) {
11626 		/*
11627 		 * initialize the tsbmiss area.
11628 		 * Do this for all possible CPUs as some may be added
11629 		 * while the system is running. There is no cost to this.
11630 		 */
11631 		tsbmissp->ksfmmup = ksfmmup;
11632 #ifndef sun4v
11633 		tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
11634 #endif /* sun4v */
11635 		tsbmissp->khashstart =
11636 		    (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
11637 		tsbmissp->uhashstart =
11638 		    (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
11639 		tsbmissp->khashsz = khmehash_num;
11640 		tsbmissp->uhashsz = uhmehash_num;
11641 	}
11642 
11643 	sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
11644 	    sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
11645 
11646 	if (kpm_enable == 0)
11647 		return;
11648 
11649 	/* -- Begin KPM specific init -- */
11650 
11651 	if (kpm_smallpages) {
11652 		/*
11653 		 * If we're using base pagesize pages for seg_kpm
11654 		 * mappings, we use the kernel TSB since we can't afford
11655 		 * to allocate a second huge TSB for these mappings.
11656 		 */
11657 		kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
11658 		kpm_tsbsz = ktsb_szcode;
11659 		kpmsm_tsbbase = kpm_tsbbase;
11660 		kpmsm_tsbsz = kpm_tsbsz;
11661 	} else {
11662 		/*
11663 		 * In VAC conflict case, just put the entries in the
11664 		 * kernel 8K indexed TSB for now so we can find them.
11665 		 * This could really be changed in the future if we feel
11666 		 * the need...
11667 		 */
11668 		kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
11669 		kpmsm_tsbsz = ktsb_szcode;
11670 		kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
11671 		kpm_tsbsz = ktsb4m_szcode;
11672 	}
11673 
11674 	kpmtsbmp = kpmtsbm_area;
11675 	for (i = 0; i < NCPU; kpmtsbmp++, i++) {
11676 		/*
11677 		 * Initialize the kpmtsbm area.
11678 		 * Do this for all possible CPUs as some may be added
11679 		 * while the system is running. There is no cost to this.
11680 		 */
11681 		kpmtsbmp->vbase = kpm_vbase;
11682 		kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
11683 		kpmtsbmp->sz_shift = kpm_size_shift;
11684 		kpmtsbmp->kpmp_shift = kpmp_shift;
11685 		kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
11686 		if (kpm_smallpages == 0) {
11687 			kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
11688 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
11689 		} else {
11690 			kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
11691 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
11692 		}
11693 		kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
11694 		kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
11695 #ifdef	DEBUG
11696 		kpmtsbmp->flags |= (kpm_tsbmtl) ?  KPMTSBM_TLTSBM_FLAG : 0;
11697 #endif	/* DEBUG */
11698 		if (ktsb_phys)
11699 			kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
11700 	}
11701 
11702 	/* -- End KPM specific init -- */
11703 }
11704 
11705 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
11706 struct tsb_info ktsb_info[2];
11707 
11708 /*
11709  * Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
11710  */
11711 void
11712 sfmmu_init_ktsbinfo()
11713 {
11714 	ASSERT(ksfmmup != NULL);
11715 	ASSERT(ksfmmup->sfmmu_tsb == NULL);
11716 	/*
11717 	 * Allocate tsbinfos for kernel and copy in data
11718 	 * to make debug easier and sun4v setup easier.
11719 	 */
11720 	ktsb_info[0].tsb_sfmmu = ksfmmup;
11721 	ktsb_info[0].tsb_szc = ktsb_szcode;
11722 	ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
11723 	ktsb_info[0].tsb_va = ktsb_base;
11724 	ktsb_info[0].tsb_pa = ktsb_pbase;
11725 	ktsb_info[0].tsb_flags = 0;
11726 	ktsb_info[0].tsb_tte.ll = 0;
11727 	ktsb_info[0].tsb_cache = NULL;
11728 
11729 	ktsb_info[1].tsb_sfmmu = ksfmmup;
11730 	ktsb_info[1].tsb_szc = ktsb4m_szcode;
11731 	ktsb_info[1].tsb_ttesz_mask = TSB4M;
11732 	ktsb_info[1].tsb_va = ktsb4m_base;
11733 	ktsb_info[1].tsb_pa = ktsb4m_pbase;
11734 	ktsb_info[1].tsb_flags = 0;
11735 	ktsb_info[1].tsb_tte.ll = 0;
11736 	ktsb_info[1].tsb_cache = NULL;
11737 
11738 	/* Link them into ksfmmup. */
11739 	ktsb_info[0].tsb_next = &ktsb_info[1];
11740 	ktsb_info[1].tsb_next = NULL;
11741 	ksfmmup->sfmmu_tsb = &ktsb_info[0];
11742 
11743 	sfmmu_setup_tsbinfo(ksfmmup);
11744 }
11745 
11746 /*
11747  * Cache the last value returned from va_to_pa().  If the VA specified
11748  * in the current call to cached_va_to_pa() maps to the same Page (as the
11749  * previous call to cached_va_to_pa()), then compute the PA using
11750  * cached info, else call va_to_pa().
11751  *
11752  * Note: this function is neither MT-safe nor consistent in the presence
11753  * of multiple, interleaved threads.  This function was created to enable
11754  * an optimization used during boot (at a point when there's only one thread
11755  * executing on the "boot CPU", and before startup_vm() has been called).
11756  */
11757 static uint64_t
11758 cached_va_to_pa(void *vaddr)
11759 {
11760 	static uint64_t prev_vaddr_base = 0;
11761 	static uint64_t prev_pfn = 0;
11762 
11763 	if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
11764 		return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
11765 	} else {
11766 		uint64_t pa = va_to_pa(vaddr);
11767 
11768 		if (pa != ((uint64_t)-1)) {
11769 			/*
11770 			 * Computed physical address is valid.  Cache its
11771 			 * related info for the next cached_va_to_pa() call.
11772 			 */
11773 			prev_pfn = pa & MMU_PAGEMASK;
11774 			prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
11775 		}
11776 
11777 		return (pa);
11778 	}
11779 }
11780 
11781 /*
11782  * Carve up our nucleus hblk region.  We may allocate more hblks than
11783  * asked due to rounding errors but we are guaranteed to have at least
11784  * enough space to allocate the requested number of hblk8's and hblk1's.
11785  */
11786 void
11787 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
11788 {
11789 	struct hme_blk *hmeblkp;
11790 	size_t hme8blk_sz, hme1blk_sz;
11791 	size_t i;
11792 	size_t hblk8_bound;
11793 	ulong_t j = 0, k = 0;
11794 
11795 	ASSERT(addr != NULL && size != 0);
11796 
11797 	/* Need to use proper structure alignment */
11798 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
11799 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
11800 
11801 	nucleus_hblk8.list = (void *)addr;
11802 	nucleus_hblk8.index = 0;
11803 
11804 	/*
11805 	 * Use as much memory as possible for hblk8's since we
11806 	 * expect all bop_alloc'ed memory to be allocated in 8k chunks.
11807 	 * We need to hold back enough space for the hblk1's which
11808 	 * we'll allocate next.
11809 	 */
11810 	hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
11811 	for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
11812 		hmeblkp = (struct hme_blk *)addr;
11813 		addr += hme8blk_sz;
11814 		hmeblkp->hblk_nuc_bit = 1;
11815 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
11816 	}
11817 	nucleus_hblk8.len = j;
11818 	ASSERT(j >= nhblk8);
11819 	SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
11820 
11821 	nucleus_hblk1.list = (void *)addr;
11822 	nucleus_hblk1.index = 0;
11823 	for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
11824 		hmeblkp = (struct hme_blk *)addr;
11825 		addr += hme1blk_sz;
11826 		hmeblkp->hblk_nuc_bit = 1;
11827 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
11828 	}
11829 	ASSERT(k >= nhblk1);
11830 	nucleus_hblk1.len = k;
11831 	SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
11832 }
11833 
11834 /*
11835  * This function is currently not supported on this platform. For what
11836  * it's supposed to do, see hat.c and hat_srmmu.c
11837  */
11838 /* ARGSUSED */
11839 faultcode_t
11840 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
11841     uint_t flags)
11842 {
11843 	ASSERT(hat->sfmmu_xhat_provider == NULL);
11844 	return (FC_NOSUPPORT);
11845 }
11846 
11847 /*
11848  * Searchs the mapping list of the page for a mapping of the same size. If not
11849  * found the corresponding bit is cleared in the p_index field. When large
11850  * pages are more prevalent in the system, we can maintain the mapping list
11851  * in order and we don't have to traverse the list each time. Just check the
11852  * next and prev entries, and if both are of different size, we clear the bit.
11853  */
11854 static void
11855 sfmmu_rm_large_mappings(page_t *pp, int ttesz)
11856 {
11857 	struct sf_hment *sfhmep;
11858 	struct hme_blk *hmeblkp;
11859 	int	index;
11860 	pgcnt_t	npgs;
11861 
11862 	ASSERT(ttesz > TTE8K);
11863 
11864 	ASSERT(sfmmu_mlist_held(pp));
11865 
11866 	ASSERT(PP_ISMAPPED_LARGE(pp));
11867 
11868 	/*
11869 	 * Traverse mapping list looking for another mapping of same size.
11870 	 * since we only want to clear index field if all mappings of
11871 	 * that size are gone.
11872 	 */
11873 
11874 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
11875 		hmeblkp = sfmmu_hmetohblk(sfhmep);
11876 		if (hmeblkp->hblk_xhat_bit)
11877 			continue;
11878 		if (hme_size(sfhmep) == ttesz) {
11879 			/*
11880 			 * another mapping of the same size. don't clear index.
11881 			 */
11882 			return;
11883 		}
11884 	}
11885 
11886 	/*
11887 	 * Clear the p_index bit for large page.
11888 	 */
11889 	index = PAGESZ_TO_INDEX(ttesz);
11890 	npgs = TTEPAGES(ttesz);
11891 	while (npgs-- > 0) {
11892 		ASSERT(pp->p_index & index);
11893 		pp->p_index &= ~index;
11894 		pp = PP_PAGENEXT(pp);
11895 	}
11896 }
11897 
11898 /*
11899  * return supported features
11900  */
11901 /* ARGSUSED */
11902 int
11903 hat_supported(enum hat_features feature, void *arg)
11904 {
11905 	switch (feature) {
11906 	case    HAT_SHARED_PT:
11907 	case	HAT_DYNAMIC_ISM_UNMAP:
11908 	case	HAT_VMODSORT:
11909 		return (1);
11910 	default:
11911 		return (0);
11912 	}
11913 }
11914 
11915 void
11916 hat_enter(struct hat *hat)
11917 {
11918 	hatlock_t	*hatlockp;
11919 
11920 	if (hat != ksfmmup) {
11921 		hatlockp = TSB_HASH(hat);
11922 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
11923 	}
11924 }
11925 
11926 void
11927 hat_exit(struct hat *hat)
11928 {
11929 	hatlock_t	*hatlockp;
11930 
11931 	if (hat != ksfmmup) {
11932 		hatlockp = TSB_HASH(hat);
11933 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
11934 	}
11935 }
11936 
11937 /*ARGSUSED*/
11938 void
11939 hat_reserve(struct as *as, caddr_t addr, size_t len)
11940 {
11941 }
11942 
11943 static void
11944 hat_kstat_init(void)
11945 {
11946 	kstat_t *ksp;
11947 
11948 	ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
11949 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
11950 	    KSTAT_FLAG_VIRTUAL);
11951 	if (ksp) {
11952 		ksp->ks_data = (void *) &sfmmu_global_stat;
11953 		kstat_install(ksp);
11954 	}
11955 	ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
11956 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
11957 	    KSTAT_FLAG_VIRTUAL);
11958 	if (ksp) {
11959 		ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
11960 		kstat_install(ksp);
11961 	}
11962 	ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
11963 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
11964 	    KSTAT_FLAG_WRITABLE);
11965 	if (ksp) {
11966 		ksp->ks_update = sfmmu_kstat_percpu_update;
11967 		kstat_install(ksp);
11968 	}
11969 }
11970 
11971 /* ARGSUSED */
11972 static int
11973 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
11974 {
11975 	struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
11976 	struct tsbmiss *tsbm = tsbmiss_area;
11977 	struct kpmtsbm *kpmtsbm = kpmtsbm_area;
11978 	int i;
11979 
11980 	ASSERT(cpu_kstat);
11981 	if (rw == KSTAT_READ) {
11982 		for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
11983 			cpu_kstat->sf_itlb_misses = tsbm->itlb_misses;
11984 			cpu_kstat->sf_dtlb_misses = tsbm->dtlb_misses;
11985 			cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
11986 			    tsbm->uprot_traps;
11987 			cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
11988 			    kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
11989 
11990 			if (tsbm->itlb_misses > 0 && tsbm->dtlb_misses > 0) {
11991 				cpu_kstat->sf_tsb_hits =
11992 				    (tsbm->itlb_misses + tsbm->dtlb_misses) -
11993 				    (tsbm->utsb_misses + tsbm->ktsb_misses +
11994 				    kpmtsbm->kpm_tsb_misses);
11995 			} else {
11996 				cpu_kstat->sf_tsb_hits = 0;
11997 			}
11998 			cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
11999 			cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
12000 		}
12001 	} else {
12002 		/* KSTAT_WRITE is used to clear stats */
12003 		for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
12004 			tsbm->itlb_misses = 0;
12005 			tsbm->dtlb_misses = 0;
12006 			tsbm->utsb_misses = 0;
12007 			tsbm->ktsb_misses = 0;
12008 			tsbm->uprot_traps = 0;
12009 			tsbm->kprot_traps = 0;
12010 			kpmtsbm->kpm_dtlb_misses = 0;
12011 			kpmtsbm->kpm_tsb_misses = 0;
12012 		}
12013 	}
12014 	return (0);
12015 }
12016 
12017 #ifdef	DEBUG
12018 
12019 tte_t  *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
12020 
12021 /*
12022  * A tte checker. *orig_old is the value we read before cas.
12023  *	*cur is the value returned by cas.
12024  *	*new is the desired value when we do the cas.
12025  *
12026  *	*hmeblkp is currently unused.
12027  */
12028 
12029 /* ARGSUSED */
12030 void
12031 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
12032 {
12033 	pfn_t i, j, k;
12034 	int cpuid = CPU->cpu_id;
12035 
12036 	gorig[cpuid] = orig_old;
12037 	gcur[cpuid] = cur;
12038 	gnew[cpuid] = new;
12039 
12040 #ifdef lint
12041 	hmeblkp = hmeblkp;
12042 #endif
12043 
12044 	if (TTE_IS_VALID(orig_old)) {
12045 		if (TTE_IS_VALID(cur)) {
12046 			i = TTE_TO_TTEPFN(orig_old);
12047 			j = TTE_TO_TTEPFN(cur);
12048 			k = TTE_TO_TTEPFN(new);
12049 			if (i != j) {
12050 				/* remap error? */
12051 				panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j);
12052 			}
12053 
12054 			if (i != k) {
12055 				/* remap error? */
12056 				panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k);
12057 			}
12058 		} else {
12059 			if (TTE_IS_VALID(new)) {
12060 				panic("chk_tte: invalid cur? ");
12061 			}
12062 
12063 			i = TTE_TO_TTEPFN(orig_old);
12064 			k = TTE_TO_TTEPFN(new);
12065 			if (i != k) {
12066 				panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k);
12067 			}
12068 		}
12069 	} else {
12070 		if (TTE_IS_VALID(cur)) {
12071 			j = TTE_TO_TTEPFN(cur);
12072 			if (TTE_IS_VALID(new)) {
12073 				k = TTE_TO_TTEPFN(new);
12074 				if (j != k) {
12075 					panic("chk_tte: bad pfn4, 0x%lx, 0x%lx",
12076 					    j, k);
12077 				}
12078 			} else {
12079 				panic("chk_tte: why here?");
12080 			}
12081 		} else {
12082 			if (!TTE_IS_VALID(new)) {
12083 				panic("chk_tte: why here2 ?");
12084 			}
12085 		}
12086 	}
12087 }
12088 
12089 #endif /* DEBUG */
12090 
12091 extern void prefetch_tsbe_read(struct tsbe *);
12092 extern void prefetch_tsbe_write(struct tsbe *);
12093 
12094 
12095 /*
12096  * We want to prefetch 7 cache lines ahead for our read prefetch.  This gives
12097  * us optimal performance on Cheetah+.  You can only have 8 outstanding
12098  * prefetches at any one time, so we opted for 7 read prefetches and 1 write
12099  * prefetch to make the most utilization of the prefetch capability.
12100  */
12101 #define	TSBE_PREFETCH_STRIDE (7)
12102 
12103 void
12104 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
12105 {
12106 	int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
12107 	int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
12108 	int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
12109 	int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
12110 	struct tsbe *old;
12111 	struct tsbe *new;
12112 	struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
12113 	uint64_t va;
12114 	int new_offset;
12115 	int i;
12116 	int vpshift;
12117 	int last_prefetch;
12118 
12119 	if (old_bytes == new_bytes) {
12120 		bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
12121 	} else {
12122 
12123 		/*
12124 		 * A TSBE is 16 bytes which means there are four TSBE's per
12125 		 * P$ line (64 bytes), thus every 4 TSBE's we prefetch.
12126 		 */
12127 		old = (struct tsbe *)old_tsbinfo->tsb_va;
12128 		last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
12129 		for (i = 0; i < old_entries; i++, old++) {
12130 			if (((i & (4-1)) == 0) && (i < last_prefetch))
12131 				prefetch_tsbe_read(old);
12132 			if (!old->tte_tag.tag_invalid) {
12133 				/*
12134 				 * We have a valid TTE to remap.  Check the
12135 				 * size.  We won't remap 64K or 512K TTEs
12136 				 * because they span more than one TSB entry
12137 				 * and are indexed using an 8K virt. page.
12138 				 * Ditto for 32M and 256M TTEs.
12139 				 */
12140 				if (TTE_CSZ(&old->tte_data) == TTE64K ||
12141 				    TTE_CSZ(&old->tte_data) == TTE512K)
12142 					continue;
12143 				if (mmu_page_sizes == max_mmu_page_sizes) {
12144 					if (TTE_CSZ(&old->tte_data) == TTE32M ||
12145 					    TTE_CSZ(&old->tte_data) == TTE256M)
12146 						continue;
12147 				}
12148 
12149 				/* clear the lower 22 bits of the va */
12150 				va = *(uint64_t *)old << 22;
12151 				/* turn va into a virtual pfn */
12152 				va >>= 22 - TSB_START_SIZE;
12153 				/*
12154 				 * or in bits from the offset in the tsb
12155 				 * to get the real virtual pfn. These
12156 				 * correspond to bits [21:13] in the va
12157 				 */
12158 				vpshift =
12159 				    TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
12160 				    0x1ff;
12161 				va |= (i << vpshift);
12162 				va >>= vpshift;
12163 				new_offset = va & (new_entries - 1);
12164 				new = new_base + new_offset;
12165 				prefetch_tsbe_write(new);
12166 				*new = *old;
12167 			}
12168 		}
12169 	}
12170 }
12171 
12172 /*
12173  * unused in sfmmu
12174  */
12175 void
12176 hat_dump(void)
12177 {
12178 }
12179 
12180 /*
12181  * Called when a thread is exiting and we have switched to the kernel address
12182  * space.  Perform the same VM initialization resume() uses when switching
12183  * processes.
12184  *
12185  * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
12186  * we call it anyway in case the semantics change in the future.
12187  */
12188 /*ARGSUSED*/
12189 void
12190 hat_thread_exit(kthread_t *thd)
12191 {
12192 	uint64_t pgsz_cnum;
12193 	uint_t pstate_save;
12194 
12195 	ASSERT(thd->t_procp->p_as == &kas);
12196 
12197 	pgsz_cnum = KCONTEXT;
12198 #ifdef sun4u
12199 	pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT);
12200 #endif
12201 	/*
12202 	 * Note that sfmmu_load_mmustate() is currently a no-op for
12203 	 * kernel threads. We need to disable interrupts here,
12204 	 * simply because otherwise sfmmu_load_mmustate() would panic
12205 	 * if the caller does not disable interrupts.
12206 	 */
12207 	pstate_save = sfmmu_disable_intrs();
12208 	sfmmu_setctx_sec(pgsz_cnum);
12209 	sfmmu_load_mmustate(ksfmmup);
12210 	sfmmu_enable_intrs(pstate_save);
12211 }
12212