xref: /titanic_50/usr/src/uts/sfmmu/vm/hat_sfmmu.c (revision a21e16923712d68dbeecfc9660b47a4279005efd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 /*
25  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
26  */
27 
28 /*
29  * VM - Hardware Address Translation management for Spitfire MMU.
30  *
31  * This file implements the machine specific hardware translation
32  * needed by the VM system.  The machine independent interface is
33  * described in <vm/hat.h> while the machine dependent interface
34  * and data structures are described in <vm/hat_sfmmu.h>.
35  *
36  * The hat layer manages the address translation hardware as a cache
37  * driven by calls from the higher levels in the VM system.
38  */
39 
40 #include <sys/types.h>
41 #include <sys/kstat.h>
42 #include <vm/hat.h>
43 #include <vm/hat_sfmmu.h>
44 #include <vm/page.h>
45 #include <sys/pte.h>
46 #include <sys/systm.h>
47 #include <sys/mman.h>
48 #include <sys/sysmacros.h>
49 #include <sys/machparam.h>
50 #include <sys/vtrace.h>
51 #include <sys/kmem.h>
52 #include <sys/mmu.h>
53 #include <sys/cmn_err.h>
54 #include <sys/cpu.h>
55 #include <sys/cpuvar.h>
56 #include <sys/debug.h>
57 #include <sys/lgrp.h>
58 #include <sys/archsystm.h>
59 #include <sys/machsystm.h>
60 #include <sys/vmsystm.h>
61 #include <vm/as.h>
62 #include <vm/seg.h>
63 #include <vm/seg_kp.h>
64 #include <vm/seg_kmem.h>
65 #include <vm/seg_kpm.h>
66 #include <vm/rm.h>
67 #include <sys/t_lock.h>
68 #include <sys/obpdefs.h>
69 #include <sys/vm_machparam.h>
70 #include <sys/var.h>
71 #include <sys/trap.h>
72 #include <sys/machtrap.h>
73 #include <sys/scb.h>
74 #include <sys/bitmap.h>
75 #include <sys/machlock.h>
76 #include <sys/membar.h>
77 #include <sys/atomic.h>
78 #include <sys/cpu_module.h>
79 #include <sys/prom_debug.h>
80 #include <sys/ksynch.h>
81 #include <sys/mem_config.h>
82 #include <sys/mem_cage.h>
83 #include <vm/vm_dep.h>
84 #include <sys/fpu/fpusystm.h>
85 #include <vm/mach_kpm.h>
86 #include <sys/callb.h>
87 
88 #ifdef	DEBUG
89 #define	SFMMU_VALIDATE_HMERID(hat, rid, saddr, len)			\
90 	if (SFMMU_IS_SHMERID_VALID(rid)) {				\
91 		caddr_t _eaddr = (saddr) + (len);			\
92 		sf_srd_t *_srdp;					\
93 		sf_region_t *_rgnp;					\
94 		ASSERT((rid) < SFMMU_MAX_HME_REGIONS);			\
95 		ASSERT(SF_RGNMAP_TEST(hat->sfmmu_hmeregion_map, rid));	\
96 		ASSERT((hat) != ksfmmup);				\
97 		_srdp = (hat)->sfmmu_srdp;				\
98 		ASSERT(_srdp != NULL);					\
99 		ASSERT(_srdp->srd_refcnt != 0);				\
100 		_rgnp = _srdp->srd_hmergnp[(rid)];			\
101 		ASSERT(_rgnp != NULL && _rgnp->rgn_id == rid);		\
102 		ASSERT(_rgnp->rgn_refcnt != 0);				\
103 		ASSERT(!(_rgnp->rgn_flags & SFMMU_REGION_FREE));	\
104 		ASSERT((_rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) ==	\
105 		    SFMMU_REGION_HME);					\
106 		ASSERT((saddr) >= _rgnp->rgn_saddr);			\
107 		ASSERT((saddr) < _rgnp->rgn_saddr + _rgnp->rgn_size);	\
108 		ASSERT(_eaddr > _rgnp->rgn_saddr);			\
109 		ASSERT(_eaddr <= _rgnp->rgn_saddr + _rgnp->rgn_size);	\
110 	}
111 
112 #define	SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid) 	 	 \
113 {						 			 \
114 		caddr_t _hsva;						 \
115 		caddr_t _heva;						 \
116 		caddr_t _rsva;					 	 \
117 		caddr_t _reva;					 	 \
118 		int	_ttesz = get_hblk_ttesz(hmeblkp);		 \
119 		int	_flagtte;					 \
120 		ASSERT((srdp)->srd_refcnt != 0);			 \
121 		ASSERT((rid) < SFMMU_MAX_HME_REGIONS);			 \
122 		ASSERT((rgnp)->rgn_id == rid);				 \
123 		ASSERT(!((rgnp)->rgn_flags & SFMMU_REGION_FREE));	 \
124 		ASSERT(((rgnp)->rgn_flags & SFMMU_REGION_TYPE_MASK) ==	 \
125 		    SFMMU_REGION_HME);					 \
126 		ASSERT(_ttesz <= (rgnp)->rgn_pgszc);			 \
127 		_hsva = (caddr_t)get_hblk_base(hmeblkp);		 \
128 		_heva = get_hblk_endaddr(hmeblkp);			 \
129 		_rsva = (caddr_t)P2ALIGN(				 \
130 		    (uintptr_t)(rgnp)->rgn_saddr, HBLK_MIN_BYTES);	 \
131 		_reva = (caddr_t)P2ROUNDUP(				 \
132 		    (uintptr_t)((rgnp)->rgn_saddr + (rgnp)->rgn_size),	 \
133 		    HBLK_MIN_BYTES);					 \
134 		ASSERT(_hsva >= _rsva);				 	 \
135 		ASSERT(_hsva < _reva);				 	 \
136 		ASSERT(_heva > _rsva);				 	 \
137 		ASSERT(_heva <= _reva);				 	 \
138 		_flagtte = (_ttesz < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ :  \
139 			_ttesz;						 \
140 		ASSERT(rgnp->rgn_hmeflags & (0x1 << _flagtte));		 \
141 }
142 
143 #else /* DEBUG */
144 #define	SFMMU_VALIDATE_HMERID(hat, rid, addr, len)
145 #define	SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid)
146 #endif /* DEBUG */
147 
148 #if defined(SF_ERRATA_57)
149 extern caddr_t errata57_limit;
150 #endif
151 
152 #define	HME8BLK_SZ_RND		((roundup(HME8BLK_SZ, sizeof (int64_t))) /  \
153 				(sizeof (int64_t)))
154 #define	HBLK_RESERVE		((struct hme_blk *)hblk_reserve)
155 
156 #define	HBLK_RESERVE_CNT	128
157 #define	HBLK_RESERVE_MIN	20
158 
159 static struct hme_blk		*freehblkp;
160 static kmutex_t			freehblkp_lock;
161 static int			freehblkcnt;
162 
163 static int64_t			hblk_reserve[HME8BLK_SZ_RND];
164 static kmutex_t			hblk_reserve_lock;
165 static kthread_t		*hblk_reserve_thread;
166 
167 static nucleus_hblk8_info_t	nucleus_hblk8;
168 static nucleus_hblk1_info_t	nucleus_hblk1;
169 
170 /*
171  * Data to manage per-cpu hmeblk pending queues, hmeblks are queued here
172  * after the initial phase of removing an hmeblk from the hash chain, see
173  * the detailed comment in sfmmu_hblk_hash_rm() for further details.
174  */
175 static cpu_hme_pend_t		*cpu_hme_pend;
176 static uint_t			cpu_hme_pend_thresh;
177 /*
178  * SFMMU specific hat functions
179  */
180 void	hat_pagecachectl(struct page *, int);
181 
182 /* flags for hat_pagecachectl */
183 #define	HAT_CACHE	0x1
184 #define	HAT_UNCACHE	0x2
185 #define	HAT_TMPNC	0x4
186 
187 /*
188  * Flag to allow the creation of non-cacheable translations
189  * to system memory. It is off by default. At the moment this
190  * flag is used by the ecache error injector. The error injector
191  * will turn it on when creating such a translation then shut it
192  * off when it's finished.
193  */
194 
195 int	sfmmu_allow_nc_trans = 0;
196 
197 /*
198  * Flag to disable large page support.
199  * 	value of 1 => disable all large pages.
200  *	bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
201  *
202  * For example, use the value 0x4 to disable 512K pages.
203  *
204  */
205 #define	LARGE_PAGES_OFF		0x1
206 
207 /*
208  * The disable_large_pages and disable_ism_large_pages variables control
209  * hat_memload_array and the page sizes to be used by ISM and the kernel.
210  *
211  * The disable_auto_data_large_pages and disable_auto_text_large_pages variables
212  * are only used to control which OOB pages to use at upper VM segment creation
213  * time, and are set in hat_init_pagesizes and used in the map_pgsz* routines.
214  * Their values may come from platform or CPU specific code to disable page
215  * sizes that should not be used.
216  *
217  * WARNING: 512K pages are currently not supported for ISM/DISM.
218  */
219 uint_t	disable_large_pages = 0;
220 uint_t	disable_ism_large_pages = (1 << TTE512K);
221 uint_t	disable_auto_data_large_pages = 0;
222 uint_t	disable_auto_text_large_pages = 0;
223 
224 /*
225  * Private sfmmu data structures for hat management
226  */
227 static struct kmem_cache *sfmmuid_cache;
228 static struct kmem_cache *mmuctxdom_cache;
229 
230 /*
231  * Private sfmmu data structures for tsb management
232  */
233 static struct kmem_cache *sfmmu_tsbinfo_cache;
234 static struct kmem_cache *sfmmu_tsb8k_cache;
235 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
236 static vmem_t *kmem_bigtsb_arena;
237 static vmem_t *kmem_tsb_arena;
238 
239 /*
240  * sfmmu static variables for hmeblk resource management.
241  */
242 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
243 static struct kmem_cache *sfmmu8_cache;
244 static struct kmem_cache *sfmmu1_cache;
245 static struct kmem_cache *pa_hment_cache;
246 
247 static kmutex_t 	ism_mlist_lock;	/* mutex for ism mapping list */
248 /*
249  * private data for ism
250  */
251 static struct kmem_cache *ism_blk_cache;
252 static struct kmem_cache *ism_ment_cache;
253 #define	ISMID_STARTADDR	NULL
254 
255 /*
256  * Region management data structures and function declarations.
257  */
258 
259 static void	sfmmu_leave_srd(sfmmu_t *);
260 static int	sfmmu_srdcache_constructor(void *, void *, int);
261 static void	sfmmu_srdcache_destructor(void *, void *);
262 static int	sfmmu_rgncache_constructor(void *, void *, int);
263 static void	sfmmu_rgncache_destructor(void *, void *);
264 static int	sfrgnmap_isnull(sf_region_map_t *);
265 static int	sfhmergnmap_isnull(sf_hmeregion_map_t *);
266 static int	sfmmu_scdcache_constructor(void *, void *, int);
267 static void	sfmmu_scdcache_destructor(void *, void *);
268 static void	sfmmu_rgn_cb_noop(caddr_t, caddr_t, caddr_t,
269     size_t, void *, u_offset_t);
270 
271 static uint_t srd_hashmask = SFMMU_MAX_SRD_BUCKETS - 1;
272 static sf_srd_bucket_t *srd_buckets;
273 static struct kmem_cache *srd_cache;
274 static uint_t srd_rgn_hashmask = SFMMU_MAX_REGION_BUCKETS - 1;
275 static struct kmem_cache *region_cache;
276 static struct kmem_cache *scd_cache;
277 
278 #ifdef sun4v
279 int use_bigtsb_arena = 1;
280 #else
281 int use_bigtsb_arena = 0;
282 #endif
283 
284 /* External /etc/system tunable, for turning on&off the shctx support */
285 int disable_shctx = 0;
286 /* Internal variable, set by MD if the HW supports shctx feature */
287 int shctx_on = 0;
288 
289 #ifdef DEBUG
290 static void check_scd_sfmmu_list(sfmmu_t **, sfmmu_t *, int);
291 #endif
292 static void sfmmu_to_scd_list(sfmmu_t **, sfmmu_t *);
293 static void sfmmu_from_scd_list(sfmmu_t **, sfmmu_t *);
294 
295 static sf_scd_t *sfmmu_alloc_scd(sf_srd_t *, sf_region_map_t *);
296 static void sfmmu_find_scd(sfmmu_t *);
297 static void sfmmu_join_scd(sf_scd_t *, sfmmu_t *);
298 static void sfmmu_finish_join_scd(sfmmu_t *);
299 static void sfmmu_leave_scd(sfmmu_t *, uchar_t);
300 static void sfmmu_destroy_scd(sf_srd_t *, sf_scd_t *, sf_region_map_t *);
301 static int sfmmu_alloc_scd_tsbs(sf_srd_t *, sf_scd_t *);
302 static void sfmmu_free_scd_tsbs(sfmmu_t *);
303 static void sfmmu_tsb_inv_ctx(sfmmu_t *);
304 static int find_ism_rid(sfmmu_t *, sfmmu_t *, caddr_t, uint_t *);
305 static void sfmmu_ism_hatflags(sfmmu_t *, int);
306 static int sfmmu_srd_lock_held(sf_srd_t *);
307 static void sfmmu_remove_scd(sf_scd_t **, sf_scd_t *);
308 static void sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *);
309 static void sfmmu_link_scd_to_regions(sf_srd_t *, sf_scd_t *);
310 static void sfmmu_unlink_scd_from_regions(sf_srd_t *, sf_scd_t *);
311 static void sfmmu_link_to_hmeregion(sfmmu_t *, sf_region_t *);
312 static void sfmmu_unlink_from_hmeregion(sfmmu_t *, sf_region_t *);
313 
314 /*
315  * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
316  * HAT flags, synchronizing TLB/TSB coherency, and context management.
317  * The lock is hashed on the sfmmup since the case where we need to lock
318  * all processes is rare but does occur (e.g. we need to unload a shared
319  * mapping from all processes using the mapping).  We have a lot of buckets,
320  * and each slab of sfmmu_t's can use about a quarter of them, giving us
321  * a fairly good distribution without wasting too much space and overhead
322  * when we have to grab them all.
323  */
324 #define	SFMMU_NUM_LOCK	128		/* must be power of two */
325 hatlock_t	hat_lock[SFMMU_NUM_LOCK];
326 
327 /*
328  * Hash algorithm optimized for a small number of slabs.
329  *  7 is (highbit((sizeof sfmmu_t)) - 1)
330  * This hash algorithm is based upon the knowledge that sfmmu_t's come from a
331  * kmem_cache, and thus they will be sequential within that cache.  In
332  * addition, each new slab will have a different "color" up to cache_maxcolor
333  * which will skew the hashing for each successive slab which is allocated.
334  * If the size of sfmmu_t changed to a larger size, this algorithm may need
335  * to be revisited.
336  */
337 #define	TSB_HASH_SHIFT_BITS (7)
338 #define	PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
339 
340 #ifdef DEBUG
341 int tsb_hash_debug = 0;
342 #define	TSB_HASH(sfmmup)	\
343 	(tsb_hash_debug ? &hat_lock[0] : \
344 	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
345 #else	/* DEBUG */
346 #define	TSB_HASH(sfmmup)	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
347 #endif	/* DEBUG */
348 
349 
350 /* sfmmu_replace_tsb() return codes. */
351 typedef enum tsb_replace_rc {
352 	TSB_SUCCESS,
353 	TSB_ALLOCFAIL,
354 	TSB_LOSTRACE,
355 	TSB_ALREADY_SWAPPED,
356 	TSB_CANTGROW
357 } tsb_replace_rc_t;
358 
359 /*
360  * Flags for TSB allocation routines.
361  */
362 #define	TSB_ALLOC	0x01
363 #define	TSB_FORCEALLOC	0x02
364 #define	TSB_GROW	0x04
365 #define	TSB_SHRINK	0x08
366 #define	TSB_SWAPIN	0x10
367 
368 /*
369  * Support for HAT callbacks.
370  */
371 #define	SFMMU_MAX_RELOC_CALLBACKS	10
372 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
373 static id_t sfmmu_cb_nextid = 0;
374 static id_t sfmmu_tsb_cb_id;
375 struct sfmmu_callback *sfmmu_cb_table;
376 
377 kmutex_t	kpr_mutex;
378 kmutex_t	kpr_suspendlock;
379 kthread_t	*kreloc_thread;
380 
381 /*
382  * Enable VA->PA translation sanity checking on DEBUG kernels.
383  * Disabled by default.  This is incompatible with some
384  * drivers (error injector, RSM) so if it breaks you get
385  * to keep both pieces.
386  */
387 int hat_check_vtop = 0;
388 
389 /*
390  * Private sfmmu routines (prototypes)
391  */
392 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
393 static struct 	hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
394 			struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t,
395 			uint_t);
396 static caddr_t	sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
397 			caddr_t, demap_range_t *, uint_t);
398 static caddr_t	sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
399 			caddr_t, int);
400 static void	sfmmu_hblk_free(struct hme_blk **);
401 static void	sfmmu_hblks_list_purge(struct hme_blk **, int);
402 static uint_t	sfmmu_get_free_hblk(struct hme_blk **, uint_t);
403 static uint_t	sfmmu_put_free_hblk(struct hme_blk *, uint_t);
404 static struct hme_blk *sfmmu_hblk_steal(int);
405 static int	sfmmu_steal_this_hblk(struct hmehash_bucket *,
406 			struct hme_blk *, uint64_t, struct hme_blk *);
407 static caddr_t	sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
408 
409 static void	hat_do_memload_array(struct hat *, caddr_t, size_t,
410 		    struct page **, uint_t, uint_t, uint_t);
411 static void	hat_do_memload(struct hat *, caddr_t, struct page *,
412 		    uint_t, uint_t, uint_t);
413 static void	sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
414 		    uint_t, uint_t, pgcnt_t, uint_t);
415 void		sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
416 			uint_t);
417 static int	sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
418 			uint_t, uint_t);
419 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
420 					caddr_t, int, uint_t);
421 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
422 			struct hmehash_bucket *, caddr_t, uint_t, uint_t,
423 			uint_t);
424 static int	sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
425 			caddr_t, page_t **, uint_t, uint_t);
426 static void	sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
427 
428 static int	sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
429 static pfn_t	sfmmu_uvatopfn(caddr_t, sfmmu_t *, tte_t *);
430 void		sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
431 #ifdef VAC
432 static void	sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
433 static int	sfmmu_vacconflict_array(caddr_t, page_t *, int *);
434 int	tst_tnc(page_t *pp, pgcnt_t);
435 void	conv_tnc(page_t *pp, int);
436 #endif
437 
438 static void	sfmmu_get_ctx(sfmmu_t *);
439 static void	sfmmu_free_sfmmu(sfmmu_t *);
440 
441 static void	sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
442 static void	sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
443 
444 cpuset_t	sfmmu_pageunload(page_t *, struct sf_hment *, int);
445 static void	hat_pagereload(struct page *, struct page *);
446 static cpuset_t	sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
447 #ifdef VAC
448 void	sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
449 static void	sfmmu_page_cache(page_t *, int, int, int);
450 #endif
451 
452 cpuset_t	sfmmu_rgntlb_demap(caddr_t, sf_region_t *,
453     struct hme_blk *, int);
454 static void	sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
455 			pfn_t, int, int, int, int);
456 static void	sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
457 			pfn_t, int);
458 static void	sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
459 static void	sfmmu_tlb_range_demap(demap_range_t *);
460 static void	sfmmu_invalidate_ctx(sfmmu_t *);
461 static void	sfmmu_sync_mmustate(sfmmu_t *);
462 
463 static void 	sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
464 static int	sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
465 			sfmmu_t *);
466 static void	sfmmu_tsb_free(struct tsb_info *);
467 static void	sfmmu_tsbinfo_free(struct tsb_info *);
468 static int	sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
469 			sfmmu_t *);
470 static void	sfmmu_tsb_chk_reloc(sfmmu_t *, hatlock_t *);
471 static void	sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
472 static int	sfmmu_select_tsb_szc(pgcnt_t);
473 static void	sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
474 #define		sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
475 	sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
476 #define		sfmmu_unload_tsb(sfmmup, vaddr, szc)    \
477 	sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
478 static void	sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
479 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
480     hatlock_t *, uint_t);
481 static void	sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
482 
483 #ifdef VAC
484 void	sfmmu_cache_flush(pfn_t, int);
485 void	sfmmu_cache_flushcolor(int, pfn_t);
486 #endif
487 static caddr_t	sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
488 			caddr_t, demap_range_t *, uint_t, int);
489 
490 static uint64_t	sfmmu_vtop_attr(uint_t, int mode, tte_t *);
491 static uint_t	sfmmu_ptov_attr(tte_t *);
492 static caddr_t	sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
493 			caddr_t, demap_range_t *, uint_t);
494 static uint_t	sfmmu_vtop_prot(uint_t, uint_t *);
495 static int	sfmmu_idcache_constructor(void *, void *, int);
496 static void	sfmmu_idcache_destructor(void *, void *);
497 static int	sfmmu_hblkcache_constructor(void *, void *, int);
498 static void	sfmmu_hblkcache_destructor(void *, void *);
499 static void	sfmmu_hblkcache_reclaim(void *);
500 static void	sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
501 			struct hmehash_bucket *);
502 static void	sfmmu_hblk_hash_rm(struct hmehash_bucket *, struct hme_blk *,
503 			struct hme_blk *, struct hme_blk **, int);
504 static void	sfmmu_hblk_hash_add(struct hmehash_bucket *, struct hme_blk *,
505 			uint64_t);
506 static struct hme_blk *sfmmu_check_pending_hblks(int);
507 static void	sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
508 static void	sfmmu_cleanup_rhblk(sf_srd_t *, caddr_t, uint_t, int);
509 static void	sfmmu_unload_hmeregion_va(sf_srd_t *, uint_t, caddr_t, caddr_t,
510 			int, caddr_t *);
511 static void	sfmmu_unload_hmeregion(sf_srd_t *, sf_region_t *);
512 
513 static void	sfmmu_rm_large_mappings(page_t *, int);
514 
515 static void	hat_lock_init(void);
516 static void	hat_kstat_init(void);
517 static int	sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
518 static void	sfmmu_set_scd_rttecnt(sf_srd_t *, sf_scd_t *);
519 static	int	sfmmu_is_rgnva(sf_srd_t *, caddr_t, ulong_t, ulong_t);
520 static void	sfmmu_check_page_sizes(sfmmu_t *, int);
521 int	fnd_mapping_sz(page_t *);
522 static void	iment_add(struct ism_ment *,  struct hat *);
523 static void	iment_sub(struct ism_ment *, struct hat *);
524 static pgcnt_t	ism_tsb_entries(sfmmu_t *, int szc);
525 extern void	sfmmu_setup_tsbinfo(sfmmu_t *);
526 extern void	sfmmu_clear_utsbinfo(void);
527 
528 static void		sfmmu_ctx_wrap_around(mmu_ctx_t *, boolean_t);
529 
530 extern int vpm_enable;
531 
532 /* kpm globals */
533 #ifdef	DEBUG
534 /*
535  * Enable trap level tsbmiss handling
536  */
537 int	kpm_tsbmtl = 1;
538 
539 /*
540  * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
541  * required TLB shootdowns in this case, so handle w/ care. Off by default.
542  */
543 int	kpm_tlb_flush;
544 #endif	/* DEBUG */
545 
546 static void	*sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
547 
548 #ifdef DEBUG
549 static void	sfmmu_check_hblk_flist();
550 #endif
551 
552 /*
553  * Semi-private sfmmu data structures.  Some of them are initialize in
554  * startup or in hat_init. Some of them are private but accessed by
555  * assembly code or mach_sfmmu.c
556  */
557 struct hmehash_bucket *uhme_hash;	/* user hmeblk hash table */
558 struct hmehash_bucket *khme_hash;	/* kernel hmeblk hash table */
559 uint64_t	uhme_hash_pa;		/* PA of uhme_hash */
560 uint64_t	khme_hash_pa;		/* PA of khme_hash */
561 int 		uhmehash_num;		/* # of buckets in user hash table */
562 int 		khmehash_num;		/* # of buckets in kernel hash table */
563 
564 uint_t		max_mmu_ctxdoms = 0;	/* max context domains in the system */
565 mmu_ctx_t	**mmu_ctxs_tbl;		/* global array of context domains */
566 uint64_t	mmu_saved_gnum = 0;	/* to init incoming MMUs' gnums */
567 
568 #define	DEFAULT_NUM_CTXS_PER_MMU 8192
569 static uint_t	nctxs = DEFAULT_NUM_CTXS_PER_MMU;
570 
571 int		cache;			/* describes system cache */
572 
573 caddr_t		ktsb_base;		/* kernel 8k-indexed tsb base address */
574 uint64_t	ktsb_pbase;		/* kernel 8k-indexed tsb phys address */
575 int		ktsb_szcode;		/* kernel 8k-indexed tsb size code */
576 int		ktsb_sz;		/* kernel 8k-indexed tsb size */
577 
578 caddr_t		ktsb4m_base;		/* kernel 4m-indexed tsb base address */
579 uint64_t	ktsb4m_pbase;		/* kernel 4m-indexed tsb phys address */
580 int		ktsb4m_szcode;		/* kernel 4m-indexed tsb size code */
581 int		ktsb4m_sz;		/* kernel 4m-indexed tsb size */
582 
583 uint64_t	kpm_tsbbase;		/* kernel seg_kpm 4M TSB base address */
584 int		kpm_tsbsz;		/* kernel seg_kpm 4M TSB size code */
585 uint64_t	kpmsm_tsbbase;		/* kernel seg_kpm 8K TSB base address */
586 int		kpmsm_tsbsz;		/* kernel seg_kpm 8K TSB size code */
587 
588 #ifndef sun4v
589 int		utsb_dtlb_ttenum = -1;	/* index in TLB for utsb locked TTE */
590 int		utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
591 int		dtlb_resv_ttenum;	/* index in TLB of first reserved TTE */
592 caddr_t		utsb_vabase;		/* reserved kernel virtual memory */
593 caddr_t		utsb4m_vabase;		/* for trap handler TSB accesses */
594 #endif /* sun4v */
595 uint64_t	tsb_alloc_bytes = 0;	/* bytes allocated to TSBs */
596 vmem_t		*kmem_tsb_default_arena[NLGRPS_MAX];	/* For dynamic TSBs */
597 vmem_t		*kmem_bigtsb_default_arena[NLGRPS_MAX]; /* dynamic 256M TSBs */
598 
599 /*
600  * Size to use for TSB slabs.  Future platforms that support page sizes
601  * larger than 4M may wish to change these values, and provide their own
602  * assembly macros for building and decoding the TSB base register contents.
603  * Note disable_large_pages will override the value set here.
604  */
605 static	uint_t tsb_slab_ttesz = TTE4M;
606 size_t	tsb_slab_size = MMU_PAGESIZE4M;
607 uint_t	tsb_slab_shift = MMU_PAGESHIFT4M;
608 /* PFN mask for TTE */
609 size_t	tsb_slab_mask = MMU_PAGEOFFSET4M >> MMU_PAGESHIFT;
610 
611 /*
612  * Size to use for TSB slabs.  These are used only when 256M tsb arenas
613  * exist.
614  */
615 static uint_t	bigtsb_slab_ttesz = TTE256M;
616 static size_t	bigtsb_slab_size = MMU_PAGESIZE256M;
617 static uint_t	bigtsb_slab_shift = MMU_PAGESHIFT256M;
618 /* 256M page alignment for 8K pfn */
619 static size_t	bigtsb_slab_mask = MMU_PAGEOFFSET256M >> MMU_PAGESHIFT;
620 
621 /* largest TSB size to grow to, will be smaller on smaller memory systems */
622 static int	tsb_max_growsize = 0;
623 
624 /*
625  * Tunable parameters dealing with TSB policies.
626  */
627 
628 /*
629  * This undocumented tunable forces all 8K TSBs to be allocated from
630  * the kernel heap rather than from the kmem_tsb_default_arena arenas.
631  */
632 #ifdef	DEBUG
633 int	tsb_forceheap = 0;
634 #endif	/* DEBUG */
635 
636 /*
637  * Decide whether to use per-lgroup arenas, or one global set of
638  * TSB arenas.  The default is not to break up per-lgroup, since
639  * most platforms don't recognize any tangible benefit from it.
640  */
641 int	tsb_lgrp_affinity = 0;
642 
643 /*
644  * Used for growing the TSB based on the process RSS.
645  * tsb_rss_factor is based on the smallest TSB, and is
646  * shifted by the TSB size to determine if we need to grow.
647  * The default will grow the TSB if the number of TTEs for
648  * this page size exceeds 75% of the number of TSB entries,
649  * which should _almost_ eliminate all conflict misses
650  * (at the expense of using up lots and lots of memory).
651  */
652 #define	TSB_RSS_FACTOR		(TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
653 #define	SFMMU_RSS_TSBSIZE(tsbszc)	(tsb_rss_factor << tsbszc)
654 #define	SELECT_TSB_SIZECODE(pgcnt) ( \
655 	(enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
656 	default_tsb_size)
657 #define	TSB_OK_SHRINK()	\
658 	(tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
659 #define	TSB_OK_GROW()	\
660 	(tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
661 
662 int	enable_tsb_rss_sizing = 1;
663 int	tsb_rss_factor	= (int)TSB_RSS_FACTOR;
664 
665 /* which TSB size code to use for new address spaces or if rss sizing off */
666 int default_tsb_size = TSB_8K_SZCODE;
667 
668 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
669 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */
670 #define	TSB_ALLOC_HIWATER_FACTOR_DEFAULT	32
671 
672 #ifdef DEBUG
673 static int tsb_random_size = 0;	/* set to 1 to test random tsb sizes on alloc */
674 static int tsb_grow_stress = 0;	/* if set to 1, keep replacing TSB w/ random */
675 static int tsb_alloc_mtbf = 0;	/* fail allocation every n attempts */
676 static int tsb_alloc_fail_mtbf = 0;
677 static int tsb_alloc_count = 0;
678 #endif /* DEBUG */
679 
680 /* if set to 1, will remap valid TTEs when growing TSB. */
681 int tsb_remap_ttes = 1;
682 
683 /*
684  * If we have more than this many mappings, allocate a second TSB.
685  * This default is chosen because the I/D fully associative TLBs are
686  * assumed to have at least 8 available entries. Platforms with a
687  * larger fully-associative TLB could probably override the default.
688  */
689 
690 #ifdef sun4v
691 int tsb_sectsb_threshold = 0;
692 #else
693 int tsb_sectsb_threshold = 8;
694 #endif
695 
696 /*
697  * kstat data
698  */
699 struct sfmmu_global_stat sfmmu_global_stat;
700 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
701 
702 /*
703  * Global data
704  */
705 sfmmu_t 	*ksfmmup;		/* kernel's hat id */
706 
707 #ifdef DEBUG
708 static void	chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
709 #endif
710 
711 /* sfmmu locking operations */
712 static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
713 static int	sfmmu_mlspl_held(struct page *, int);
714 
715 kmutex_t *sfmmu_page_enter(page_t *);
716 void	sfmmu_page_exit(kmutex_t *);
717 int	sfmmu_page_spl_held(struct page *);
718 
719 /* sfmmu internal locking operations - accessed directly */
720 static void	sfmmu_mlist_reloc_enter(page_t *, page_t *,
721 				kmutex_t **, kmutex_t **);
722 static void	sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
723 static hatlock_t *
724 		sfmmu_hat_enter(sfmmu_t *);
725 static hatlock_t *
726 		sfmmu_hat_tryenter(sfmmu_t *);
727 static void	sfmmu_hat_exit(hatlock_t *);
728 static void	sfmmu_hat_lock_all(void);
729 static void	sfmmu_hat_unlock_all(void);
730 static void	sfmmu_ismhat_enter(sfmmu_t *, int);
731 static void	sfmmu_ismhat_exit(sfmmu_t *, int);
732 
733 kpm_hlk_t	*kpmp_table;
734 uint_t		kpmp_table_sz;	/* must be a power of 2 */
735 uchar_t		kpmp_shift;
736 
737 kpm_shlk_t	*kpmp_stable;
738 uint_t		kpmp_stable_sz;	/* must be a power of 2 */
739 
740 /*
741  * SPL_TABLE_SIZE is 2 * NCPU, but no smaller than 128.
742  * SPL_SHIFT is log2(SPL_TABLE_SIZE).
743  */
744 #if ((2*NCPU_P2) > 128)
745 #define	SPL_SHIFT	((unsigned)(NCPU_LOG2 + 1))
746 #else
747 #define	SPL_SHIFT	7U
748 #endif
749 #define	SPL_TABLE_SIZE	(1U << SPL_SHIFT)
750 #define	SPL_MASK	(SPL_TABLE_SIZE - 1)
751 
752 /*
753  * We shift by PP_SHIFT to take care of the low-order 0 bits of a page_t
754  * and by multiples of SPL_SHIFT to get as many varied bits as we can.
755  */
756 #define	SPL_INDEX(pp) \
757 	((((uintptr_t)(pp) >> PP_SHIFT) ^ \
758 	((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT)) ^ \
759 	((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT * 2)) ^ \
760 	((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT * 3))) & \
761 	SPL_MASK)
762 
763 #define	SPL_HASH(pp)    \
764 	(&sfmmu_page_lock[SPL_INDEX(pp)].pad_mutex)
765 
766 static	pad_mutex_t	sfmmu_page_lock[SPL_TABLE_SIZE];
767 
768 /* Array of mutexes protecting a page's mapping list and p_nrm field. */
769 
770 #define	MML_TABLE_SIZE	SPL_TABLE_SIZE
771 #define	MLIST_HASH(pp)	(&mml_table[SPL_INDEX(pp)].pad_mutex)
772 
773 static pad_mutex_t	mml_table[MML_TABLE_SIZE];
774 
775 /*
776  * hat_unload_callback() will group together callbacks in order
777  * to avoid xt_sync() calls.  This is the maximum size of the group.
778  */
779 #define	MAX_CB_ADDR	32
780 
781 tte_t	hw_tte;
782 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
783 
784 static char	*mmu_ctx_kstat_names[] = {
785 	"mmu_ctx_tsb_exceptions",
786 	"mmu_ctx_tsb_raise_exception",
787 	"mmu_ctx_wrap_around",
788 };
789 
790 /*
791  * Wrapper for vmem_xalloc since vmem_create only allows limited
792  * parameters for vm_source_alloc functions.  This function allows us
793  * to specify alignment consistent with the size of the object being
794  * allocated.
795  */
796 static void *
797 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
798 {
799 	return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
800 }
801 
802 /* Common code for setting tsb_alloc_hiwater. */
803 #define	SFMMU_SET_TSB_ALLOC_HIWATER(pages)	tsb_alloc_hiwater = \
804 		ptob(pages) / tsb_alloc_hiwater_factor
805 
806 /*
807  * Set tsb_max_growsize to allow at most all of physical memory to be mapped by
808  * a single TSB.  physmem is the number of physical pages so we need physmem 8K
809  * TTEs to represent all those physical pages.  We round this up by using
810  * 1<<highbit().  To figure out which size code to use, remember that the size
811  * code is just an amount to shift the smallest TSB size to get the size of
812  * this TSB.  So we subtract that size, TSB_START_SIZE, from highbit() (or
813  * highbit() - 1) to get the size code for the smallest TSB that can represent
814  * all of physical memory, while erring on the side of too much.
815  *
816  * Restrict tsb_max_growsize to make sure that:
817  *	1) TSBs can't grow larger than the TSB slab size
818  *	2) TSBs can't grow larger than UTSB_MAX_SZCODE.
819  */
820 #define	SFMMU_SET_TSB_MAX_GROWSIZE(pages) {				\
821 	int	_i, _szc, _slabszc, _tsbszc;				\
822 									\
823 	_i = highbit(pages);						\
824 	if ((1 << (_i - 1)) == (pages))					\
825 		_i--;		/* 2^n case, round down */              \
826 	_szc = _i - TSB_START_SIZE;					\
827 	_slabszc = bigtsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT); \
828 	_tsbszc = MIN(_szc, _slabszc);                                  \
829 	tsb_max_growsize = MIN(_tsbszc, UTSB_MAX_SZCODE);               \
830 }
831 
832 /*
833  * Given a pointer to an sfmmu and a TTE size code, return a pointer to the
834  * tsb_info which handles that TTE size.
835  */
836 #define	SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc) {			\
837 	(tsbinfop) = (sfmmup)->sfmmu_tsb;				\
838 	ASSERT(((tsbinfop)->tsb_flags & TSB_SHAREDCTX) ||		\
839 	    sfmmu_hat_lock_held(sfmmup));				\
840 	if ((tte_szc) >= TTE4M)	{					\
841 		ASSERT((tsbinfop) != NULL);				\
842 		(tsbinfop) = (tsbinfop)->tsb_next;			\
843 	}								\
844 }
845 
846 /*
847  * Macro to use to unload entries from the TSB.
848  * It has knowledge of which page sizes get replicated in the TSB
849  * and will call the appropriate unload routine for the appropriate size.
850  */
851 #define	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, ismhat)		\
852 {									\
853 	int ttesz = get_hblk_ttesz(hmeblkp);				\
854 	if (ttesz == TTE8K || ttesz == TTE4M) {				\
855 		sfmmu_unload_tsb(sfmmup, addr, ttesz);			\
856 	} else {							\
857 		caddr_t sva = ismhat ? addr : 				\
858 		    (caddr_t)get_hblk_base(hmeblkp);			\
859 		caddr_t eva = sva + get_hblk_span(hmeblkp);		\
860 		ASSERT(addr >= sva && addr < eva);			\
861 		sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);	\
862 	}								\
863 }
864 
865 
866 /* Update tsb_alloc_hiwater after memory is configured. */
867 /*ARGSUSED*/
868 static void
869 sfmmu_update_post_add(void *arg, pgcnt_t delta_pages)
870 {
871 	/* Assumes physmem has already been updated. */
872 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
873 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
874 }
875 
876 /*
877  * Update tsb_alloc_hiwater before memory is deleted.  We'll do nothing here
878  * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
879  * deleted.
880  */
881 /*ARGSUSED*/
882 static int
883 sfmmu_update_pre_del(void *arg, pgcnt_t delta_pages)
884 {
885 	return (0);
886 }
887 
888 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
889 /*ARGSUSED*/
890 static void
891 sfmmu_update_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
892 {
893 	/*
894 	 * Whether the delete was cancelled or not, just go ahead and update
895 	 * tsb_alloc_hiwater and tsb_max_growsize.
896 	 */
897 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
898 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
899 }
900 
901 static kphysm_setup_vector_t sfmmu_update_vec = {
902 	KPHYSM_SETUP_VECTOR_VERSION,	/* version */
903 	sfmmu_update_post_add,		/* post_add */
904 	sfmmu_update_pre_del,		/* pre_del */
905 	sfmmu_update_post_del		/* post_del */
906 };
907 
908 
909 /*
910  * HME_BLK HASH PRIMITIVES
911  */
912 
913 /*
914  * Enter a hme on the mapping list for page pp.
915  * When large pages are more prevalent in the system we might want to
916  * keep the mapping list in ascending order by the hment size. For now,
917  * small pages are more frequent, so don't slow it down.
918  */
919 #define	HME_ADD(hme, pp)					\
920 {								\
921 	ASSERT(sfmmu_mlist_held(pp));				\
922 								\
923 	hme->hme_prev = NULL;					\
924 	hme->hme_next = pp->p_mapping;				\
925 	hme->hme_page = pp;					\
926 	if (pp->p_mapping) {					\
927 		((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
928 		ASSERT(pp->p_share > 0);			\
929 	} else  {						\
930 		/* EMPTY */					\
931 		ASSERT(pp->p_share == 0);			\
932 	}							\
933 	pp->p_mapping = hme;					\
934 	pp->p_share++;						\
935 }
936 
937 /*
938  * Enter a hme on the mapping list for page pp.
939  * If we are unmapping a large translation, we need to make sure that the
940  * change is reflect in the corresponding bit of the p_index field.
941  */
942 #define	HME_SUB(hme, pp)					\
943 {								\
944 	ASSERT(sfmmu_mlist_held(pp));				\
945 	ASSERT(hme->hme_page == pp || IS_PAHME(hme));		\
946 								\
947 	if (pp->p_mapping == NULL) {				\
948 		panic("hme_remove - no mappings");		\
949 	}							\
950 								\
951 	membar_stst();	/* ensure previous stores finish */	\
952 								\
953 	ASSERT(pp->p_share > 0);				\
954 	pp->p_share--;						\
955 								\
956 	if (hme->hme_prev) {					\
957 		ASSERT(pp->p_mapping != hme);			\
958 		ASSERT(hme->hme_prev->hme_page == pp ||		\
959 			IS_PAHME(hme->hme_prev));		\
960 		hme->hme_prev->hme_next = hme->hme_next;	\
961 	} else {						\
962 		ASSERT(pp->p_mapping == hme);			\
963 		pp->p_mapping = hme->hme_next;			\
964 		ASSERT((pp->p_mapping == NULL) ?		\
965 			(pp->p_share == 0) : 1);		\
966 	}							\
967 								\
968 	if (hme->hme_next) {					\
969 		ASSERT(hme->hme_next->hme_page == pp ||		\
970 			IS_PAHME(hme->hme_next));		\
971 		hme->hme_next->hme_prev = hme->hme_prev;	\
972 	}							\
973 								\
974 	/* zero out the entry */				\
975 	hme->hme_next = NULL;					\
976 	hme->hme_prev = NULL;					\
977 	hme->hme_page = NULL;					\
978 								\
979 	if (hme_size(hme) > TTE8K) {				\
980 		/* remove mappings for remainder of large pg */	\
981 		sfmmu_rm_large_mappings(pp, hme_size(hme));	\
982 	}							\
983 }
984 
985 /*
986  * This function returns the hment given the hme_blk and a vaddr.
987  * It assumes addr has already been checked to belong to hme_blk's
988  * range.
989  */
990 #define	HBLKTOHME(hment, hmeblkp, addr)					\
991 {									\
992 	int index;							\
993 	HBLKTOHME_IDX(hment, hmeblkp, addr, index)			\
994 }
995 
996 /*
997  * Version of HBLKTOHME that also returns the index in hmeblkp
998  * of the hment.
999  */
1000 #define	HBLKTOHME_IDX(hment, hmeblkp, addr, idx)			\
1001 {									\
1002 	ASSERT(in_hblk_range((hmeblkp), (addr)));			\
1003 									\
1004 	if (get_hblk_ttesz(hmeblkp) == TTE8K) {				\
1005 		idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
1006 	} else								\
1007 		idx = 0;						\
1008 									\
1009 	(hment) = &(hmeblkp)->hblk_hme[idx];				\
1010 }
1011 
1012 /*
1013  * Disable any page sizes not supported by the CPU
1014  */
1015 void
1016 hat_init_pagesizes()
1017 {
1018 	int 		i;
1019 
1020 	mmu_exported_page_sizes = 0;
1021 	for (i = TTE8K; i < max_mmu_page_sizes; i++) {
1022 
1023 		szc_2_userszc[i] = (uint_t)-1;
1024 		userszc_2_szc[i] = (uint_t)-1;
1025 
1026 		if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
1027 			disable_large_pages |= (1 << i);
1028 		} else {
1029 			szc_2_userszc[i] = mmu_exported_page_sizes;
1030 			userszc_2_szc[mmu_exported_page_sizes] = i;
1031 			mmu_exported_page_sizes++;
1032 		}
1033 	}
1034 
1035 	disable_ism_large_pages |= disable_large_pages;
1036 	disable_auto_data_large_pages = disable_large_pages;
1037 	disable_auto_text_large_pages = disable_large_pages;
1038 
1039 	/*
1040 	 * Initialize mmu-specific large page sizes.
1041 	 */
1042 	if (&mmu_large_pages_disabled) {
1043 		disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
1044 		disable_ism_large_pages |=
1045 		    mmu_large_pages_disabled(HAT_LOAD_SHARE);
1046 		disable_auto_data_large_pages |=
1047 		    mmu_large_pages_disabled(HAT_AUTO_DATA);
1048 		disable_auto_text_large_pages |=
1049 		    mmu_large_pages_disabled(HAT_AUTO_TEXT);
1050 	}
1051 }
1052 
1053 /*
1054  * Initialize the hardware address translation structures.
1055  */
1056 void
1057 hat_init(void)
1058 {
1059 	int 		i;
1060 	uint_t		sz;
1061 	size_t		size;
1062 
1063 	hat_lock_init();
1064 	hat_kstat_init();
1065 
1066 	/*
1067 	 * Hardware-only bits in a TTE
1068 	 */
1069 	MAKE_TTE_MASK(&hw_tte);
1070 
1071 	hat_init_pagesizes();
1072 
1073 	/* Initialize the hash locks */
1074 	for (i = 0; i < khmehash_num; i++) {
1075 		mutex_init(&khme_hash[i].hmehash_mutex, NULL,
1076 		    MUTEX_DEFAULT, NULL);
1077 		khme_hash[i].hmeh_nextpa = HMEBLK_ENDPA;
1078 	}
1079 	for (i = 0; i < uhmehash_num; i++) {
1080 		mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
1081 		    MUTEX_DEFAULT, NULL);
1082 		uhme_hash[i].hmeh_nextpa = HMEBLK_ENDPA;
1083 	}
1084 	khmehash_num--;		/* make sure counter starts from 0 */
1085 	uhmehash_num--;		/* make sure counter starts from 0 */
1086 
1087 	/*
1088 	 * Allocate context domain structures.
1089 	 *
1090 	 * A platform may choose to modify max_mmu_ctxdoms in
1091 	 * set_platform_defaults(). If a platform does not define
1092 	 * a set_platform_defaults() or does not choose to modify
1093 	 * max_mmu_ctxdoms, it gets one MMU context domain for every CPU.
1094 	 *
1095 	 * For all platforms that have CPUs sharing MMUs, this
1096 	 * value must be defined.
1097 	 */
1098 	if (max_mmu_ctxdoms == 0)
1099 		max_mmu_ctxdoms = max_ncpus;
1100 
1101 	size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *);
1102 	mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP);
1103 
1104 	/* mmu_ctx_t is 64 bytes aligned */
1105 	mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache",
1106 	    sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
1107 	/*
1108 	 * MMU context domain initialization for the Boot CPU.
1109 	 * This needs the context domains array allocated above.
1110 	 */
1111 	mutex_enter(&cpu_lock);
1112 	sfmmu_cpu_init(CPU);
1113 	mutex_exit(&cpu_lock);
1114 
1115 	/*
1116 	 * Intialize ism mapping list lock.
1117 	 */
1118 
1119 	mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
1120 
1121 	/*
1122 	 * Each sfmmu structure carries an array of MMU context info
1123 	 * structures, one per context domain. The size of this array depends
1124 	 * on the maximum number of context domains. So, the size of the
1125 	 * sfmmu structure varies per platform.
1126 	 *
1127 	 * sfmmu is allocated from static arena, because trap
1128 	 * handler at TL > 0 is not allowed to touch kernel relocatable
1129 	 * memory. sfmmu's alignment is changed to 64 bytes from
1130 	 * default 8 bytes, as the lower 6 bits will be used to pass
1131 	 * pgcnt to vtag_flush_pgcnt_tl1.
1132 	 */
1133 	size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1);
1134 
1135 	sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size,
1136 	    64, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
1137 	    NULL, NULL, static_arena, 0);
1138 
1139 	sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
1140 	    sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
1141 
1142 	/*
1143 	 * Since we only use the tsb8k cache to "borrow" pages for TSBs
1144 	 * from the heap when low on memory or when TSB_FORCEALLOC is
1145 	 * specified, don't use magazines to cache them--we want to return
1146 	 * them to the system as quickly as possible.
1147 	 */
1148 	sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
1149 	    MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
1150 	    static_arena, KMC_NOMAGAZINE);
1151 
1152 	/*
1153 	 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
1154 	 * memory, which corresponds to the old static reserve for TSBs.
1155 	 * tsb_alloc_hiwater_factor defaults to 32.  This caps the amount of
1156 	 * memory we'll allocate for TSB slabs; beyond this point TSB
1157 	 * allocations will be taken from the kernel heap (via
1158 	 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem
1159 	 * consumer.
1160 	 */
1161 	if (tsb_alloc_hiwater_factor == 0) {
1162 		tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
1163 	}
1164 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
1165 
1166 	for (sz = tsb_slab_ttesz; sz > 0; sz--) {
1167 		if (!(disable_large_pages & (1 << sz)))
1168 			break;
1169 	}
1170 
1171 	if (sz < tsb_slab_ttesz) {
1172 		tsb_slab_ttesz = sz;
1173 		tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz;
1174 		tsb_slab_size = 1 << tsb_slab_shift;
1175 		tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1;
1176 		use_bigtsb_arena = 0;
1177 	} else if (use_bigtsb_arena &&
1178 	    (disable_large_pages & (1 << bigtsb_slab_ttesz))) {
1179 		use_bigtsb_arena = 0;
1180 	}
1181 
1182 	if (!use_bigtsb_arena) {
1183 		bigtsb_slab_shift = tsb_slab_shift;
1184 	}
1185 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
1186 
1187 	/*
1188 	 * On smaller memory systems, allocate TSB memory in smaller chunks
1189 	 * than the default 4M slab size. We also honor disable_large_pages
1190 	 * here.
1191 	 *
1192 	 * The trap handlers need to be patched with the final slab shift,
1193 	 * since they need to be able to construct the TSB pointer at runtime.
1194 	 */
1195 	if ((tsb_max_growsize <= TSB_512K_SZCODE) &&
1196 	    !(disable_large_pages & (1 << TTE512K))) {
1197 		tsb_slab_ttesz = TTE512K;
1198 		tsb_slab_shift = MMU_PAGESHIFT512K;
1199 		tsb_slab_size = MMU_PAGESIZE512K;
1200 		tsb_slab_mask = MMU_PAGEOFFSET512K >> MMU_PAGESHIFT;
1201 		use_bigtsb_arena = 0;
1202 	}
1203 
1204 	if (!use_bigtsb_arena) {
1205 		bigtsb_slab_ttesz = tsb_slab_ttesz;
1206 		bigtsb_slab_shift = tsb_slab_shift;
1207 		bigtsb_slab_size = tsb_slab_size;
1208 		bigtsb_slab_mask = tsb_slab_mask;
1209 	}
1210 
1211 
1212 	/*
1213 	 * Set up memory callback to update tsb_alloc_hiwater and
1214 	 * tsb_max_growsize.
1215 	 */
1216 	i = kphysm_setup_func_register(&sfmmu_update_vec, (void *) 0);
1217 	ASSERT(i == 0);
1218 
1219 	/*
1220 	 * kmem_tsb_arena is the source from which large TSB slabs are
1221 	 * drawn.  The quantum of this arena corresponds to the largest
1222 	 * TSB size we can dynamically allocate for user processes.
1223 	 * Currently it must also be a supported page size since we
1224 	 * use exactly one translation entry to map each slab page.
1225 	 *
1226 	 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from
1227 	 * which most TSBs are allocated.  Since most TSB allocations are
1228 	 * typically 8K we have a kmem cache we stack on top of each
1229 	 * kmem_tsb_default_arena to speed up those allocations.
1230 	 *
1231 	 * Note the two-level scheme of arenas is required only
1232 	 * because vmem_create doesn't allow us to specify alignment
1233 	 * requirements.  If this ever changes the code could be
1234 	 * simplified to use only one level of arenas.
1235 	 *
1236 	 * If 256M page support exists on sun4v, 256MB kmem_bigtsb_arena
1237 	 * will be provided in addition to the 4M kmem_tsb_arena.
1238 	 */
1239 	if (use_bigtsb_arena) {
1240 		kmem_bigtsb_arena = vmem_create("kmem_bigtsb", NULL, 0,
1241 		    bigtsb_slab_size, sfmmu_vmem_xalloc_aligned_wrapper,
1242 		    vmem_xfree, heap_arena, 0, VM_SLEEP);
1243 	}
1244 
1245 	kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
1246 	    sfmmu_vmem_xalloc_aligned_wrapper,
1247 	    vmem_xfree, heap_arena, 0, VM_SLEEP);
1248 
1249 	if (tsb_lgrp_affinity) {
1250 		char s[50];
1251 		for (i = 0; i < NLGRPS_MAX; i++) {
1252 			if (use_bigtsb_arena) {
1253 				(void) sprintf(s, "kmem_bigtsb_lgrp%d", i);
1254 				kmem_bigtsb_default_arena[i] = vmem_create(s,
1255 				    NULL, 0, 2 * tsb_slab_size,
1256 				    sfmmu_tsb_segkmem_alloc,
1257 				    sfmmu_tsb_segkmem_free, kmem_bigtsb_arena,
1258 				    0, VM_SLEEP | VM_BESTFIT);
1259 			}
1260 
1261 			(void) sprintf(s, "kmem_tsb_lgrp%d", i);
1262 			kmem_tsb_default_arena[i] = vmem_create(s,
1263 			    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1264 			    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1265 			    VM_SLEEP | VM_BESTFIT);
1266 
1267 			(void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
1268 			sfmmu_tsb_cache[i] = kmem_cache_create(s,
1269 			    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1270 			    kmem_tsb_default_arena[i], 0);
1271 		}
1272 	} else {
1273 		if (use_bigtsb_arena) {
1274 			kmem_bigtsb_default_arena[0] =
1275 			    vmem_create("kmem_bigtsb_default", NULL, 0,
1276 			    2 * tsb_slab_size, sfmmu_tsb_segkmem_alloc,
1277 			    sfmmu_tsb_segkmem_free, kmem_bigtsb_arena, 0,
1278 			    VM_SLEEP | VM_BESTFIT);
1279 		}
1280 
1281 		kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
1282 		    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1283 		    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1284 		    VM_SLEEP | VM_BESTFIT);
1285 		sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
1286 		    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1287 		    kmem_tsb_default_arena[0], 0);
1288 	}
1289 
1290 	sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
1291 	    HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1292 	    sfmmu_hblkcache_destructor,
1293 	    sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
1294 	    hat_memload_arena, KMC_NOHASH);
1295 
1296 	hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
1297 	    segkmem_alloc_permanent, segkmem_free, heap_arena, 0,
1298 	    VMC_DUMPSAFE | VM_SLEEP);
1299 
1300 	sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
1301 	    HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1302 	    sfmmu_hblkcache_destructor,
1303 	    NULL, (void *)HME1BLK_SZ,
1304 	    hat_memload1_arena, KMC_NOHASH);
1305 
1306 	pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
1307 	    0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
1308 
1309 	ism_blk_cache = kmem_cache_create("ism_blk_cache",
1310 	    sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
1311 	    NULL, NULL, static_arena, KMC_NOHASH);
1312 
1313 	ism_ment_cache = kmem_cache_create("ism_ment_cache",
1314 	    sizeof (ism_ment_t), 0, NULL, NULL,
1315 	    NULL, NULL, NULL, 0);
1316 
1317 	/*
1318 	 * We grab the first hat for the kernel,
1319 	 */
1320 	AS_LOCK_ENTER(&kas, RW_WRITER);
1321 	kas.a_hat = hat_alloc(&kas);
1322 	AS_LOCK_EXIT(&kas);
1323 
1324 	/*
1325 	 * Initialize hblk_reserve.
1326 	 */
1327 	((struct hme_blk *)hblk_reserve)->hblk_nextpa =
1328 	    va_to_pa((caddr_t)hblk_reserve);
1329 
1330 #ifndef UTSB_PHYS
1331 	/*
1332 	 * Reserve some kernel virtual address space for the locked TTEs
1333 	 * that allow us to probe the TSB from TL>0.
1334 	 */
1335 	utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1336 	    0, 0, NULL, NULL, VM_SLEEP);
1337 	utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1338 	    0, 0, NULL, NULL, VM_SLEEP);
1339 #endif
1340 
1341 #ifdef VAC
1342 	/*
1343 	 * The big page VAC handling code assumes VAC
1344 	 * will not be bigger than the smallest big
1345 	 * page- which is 64K.
1346 	 */
1347 	if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
1348 		cmn_err(CE_PANIC, "VAC too big!");
1349 	}
1350 #endif
1351 
1352 	uhme_hash_pa = va_to_pa(uhme_hash);
1353 	khme_hash_pa = va_to_pa(khme_hash);
1354 
1355 	/*
1356 	 * Initialize relocation locks. kpr_suspendlock is held
1357 	 * at PIL_MAX to prevent interrupts from pinning the holder
1358 	 * of a suspended TTE which may access it leading to a
1359 	 * deadlock condition.
1360 	 */
1361 	mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
1362 	mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
1363 
1364 	/*
1365 	 * If Shared context support is disabled via /etc/system
1366 	 * set shctx_on to 0 here if it was set to 1 earlier in boot
1367 	 * sequence by cpu module initialization code.
1368 	 */
1369 	if (shctx_on && disable_shctx) {
1370 		shctx_on = 0;
1371 	}
1372 
1373 	if (shctx_on) {
1374 		srd_buckets = kmem_zalloc(SFMMU_MAX_SRD_BUCKETS *
1375 		    sizeof (srd_buckets[0]), KM_SLEEP);
1376 		for (i = 0; i < SFMMU_MAX_SRD_BUCKETS; i++) {
1377 			mutex_init(&srd_buckets[i].srdb_lock, NULL,
1378 			    MUTEX_DEFAULT, NULL);
1379 		}
1380 
1381 		srd_cache = kmem_cache_create("srd_cache", sizeof (sf_srd_t),
1382 		    0, sfmmu_srdcache_constructor, sfmmu_srdcache_destructor,
1383 		    NULL, NULL, NULL, 0);
1384 		region_cache = kmem_cache_create("region_cache",
1385 		    sizeof (sf_region_t), 0, sfmmu_rgncache_constructor,
1386 		    sfmmu_rgncache_destructor, NULL, NULL, NULL, 0);
1387 		scd_cache = kmem_cache_create("scd_cache", sizeof (sf_scd_t),
1388 		    0, sfmmu_scdcache_constructor,  sfmmu_scdcache_destructor,
1389 		    NULL, NULL, NULL, 0);
1390 	}
1391 
1392 	/*
1393 	 * Pre-allocate hrm_hashtab before enabling the collection of
1394 	 * refmod statistics.  Allocating on the fly would mean us
1395 	 * running the risk of suffering recursive mutex enters or
1396 	 * deadlocks.
1397 	 */
1398 	hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
1399 	    KM_SLEEP);
1400 
1401 	/* Allocate per-cpu pending freelist of hmeblks */
1402 	cpu_hme_pend = kmem_zalloc((NCPU * sizeof (cpu_hme_pend_t)) + 64,
1403 	    KM_SLEEP);
1404 	cpu_hme_pend = (cpu_hme_pend_t *)P2ROUNDUP(
1405 	    (uintptr_t)cpu_hme_pend, 64);
1406 
1407 	for (i = 0; i < NCPU; i++) {
1408 		mutex_init(&cpu_hme_pend[i].chp_mutex, NULL, MUTEX_DEFAULT,
1409 		    NULL);
1410 	}
1411 
1412 	if (cpu_hme_pend_thresh == 0) {
1413 		cpu_hme_pend_thresh = CPU_HME_PEND_THRESH;
1414 	}
1415 }
1416 
1417 /*
1418  * Initialize locking for the hat layer, called early during boot.
1419  */
1420 static void
1421 hat_lock_init()
1422 {
1423 	int i;
1424 
1425 	/*
1426 	 * initialize the array of mutexes protecting a page's mapping
1427 	 * list and p_nrm field.
1428 	 */
1429 	for (i = 0; i < MML_TABLE_SIZE; i++)
1430 		mutex_init(&mml_table[i].pad_mutex, NULL, MUTEX_DEFAULT, NULL);
1431 
1432 	if (kpm_enable) {
1433 		for (i = 0; i < kpmp_table_sz; i++) {
1434 			mutex_init(&kpmp_table[i].khl_mutex, NULL,
1435 			    MUTEX_DEFAULT, NULL);
1436 		}
1437 	}
1438 
1439 	/*
1440 	 * Initialize array of mutex locks that protects sfmmu fields and
1441 	 * TSB lists.
1442 	 */
1443 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
1444 		mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
1445 		    NULL);
1446 }
1447 
1448 #define	SFMMU_KERNEL_MAXVA \
1449 	(kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
1450 
1451 /*
1452  * Allocate a hat structure.
1453  * Called when an address space first uses a hat.
1454  */
1455 struct hat *
1456 hat_alloc(struct as *as)
1457 {
1458 	sfmmu_t *sfmmup;
1459 	int i;
1460 	uint64_t cnum;
1461 	extern uint_t get_color_start(struct as *);
1462 
1463 	ASSERT(AS_WRITE_HELD(as));
1464 	sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
1465 	sfmmup->sfmmu_as = as;
1466 	sfmmup->sfmmu_flags = 0;
1467 	sfmmup->sfmmu_tteflags = 0;
1468 	sfmmup->sfmmu_rtteflags = 0;
1469 	LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock);
1470 
1471 	if (as == &kas) {
1472 		ksfmmup = sfmmup;
1473 		sfmmup->sfmmu_cext = 0;
1474 		cnum = KCONTEXT;
1475 
1476 		sfmmup->sfmmu_clrstart = 0;
1477 		sfmmup->sfmmu_tsb = NULL;
1478 		/*
1479 		 * hat_kern_setup() will call sfmmu_init_ktsbinfo()
1480 		 * to setup tsb_info for ksfmmup.
1481 		 */
1482 	} else {
1483 
1484 		/*
1485 		 * Just set to invalid ctx. When it faults, it will
1486 		 * get a valid ctx. This would avoid the situation
1487 		 * where we get a ctx, but it gets stolen and then
1488 		 * we fault when we try to run and so have to get
1489 		 * another ctx.
1490 		 */
1491 		sfmmup->sfmmu_cext = 0;
1492 		cnum = INVALID_CONTEXT;
1493 
1494 		/* initialize original physical page coloring bin */
1495 		sfmmup->sfmmu_clrstart = get_color_start(as);
1496 #ifdef DEBUG
1497 		if (tsb_random_size) {
1498 			uint32_t randval = (uint32_t)gettick() >> 4;
1499 			int size = randval % (tsb_max_growsize + 1);
1500 
1501 			/* chose a random tsb size for stress testing */
1502 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
1503 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1504 		} else
1505 #endif /* DEBUG */
1506 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
1507 			    default_tsb_size,
1508 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1509 		sfmmup->sfmmu_flags = HAT_SWAPPED | HAT_ALLCTX_INVALID;
1510 		ASSERT(sfmmup->sfmmu_tsb != NULL);
1511 	}
1512 
1513 	ASSERT(max_mmu_ctxdoms > 0);
1514 	for (i = 0; i < max_mmu_ctxdoms; i++) {
1515 		sfmmup->sfmmu_ctxs[i].cnum = cnum;
1516 		sfmmup->sfmmu_ctxs[i].gnum = 0;
1517 	}
1518 
1519 	for (i = 0; i < max_mmu_page_sizes; i++) {
1520 		sfmmup->sfmmu_ttecnt[i] = 0;
1521 		sfmmup->sfmmu_scdrttecnt[i] = 0;
1522 		sfmmup->sfmmu_ismttecnt[i] = 0;
1523 		sfmmup->sfmmu_scdismttecnt[i] = 0;
1524 		sfmmup->sfmmu_pgsz[i] = TTE8K;
1525 	}
1526 	sfmmup->sfmmu_tsb0_4minflcnt = 0;
1527 	sfmmup->sfmmu_iblk = NULL;
1528 	sfmmup->sfmmu_ismhat = 0;
1529 	sfmmup->sfmmu_scdhat = 0;
1530 	sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
1531 	if (sfmmup == ksfmmup) {
1532 		CPUSET_ALL(sfmmup->sfmmu_cpusran);
1533 	} else {
1534 		CPUSET_ZERO(sfmmup->sfmmu_cpusran);
1535 	}
1536 	sfmmup->sfmmu_free = 0;
1537 	sfmmup->sfmmu_rmstat = 0;
1538 	sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
1539 	cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
1540 	sfmmup->sfmmu_srdp = NULL;
1541 	SF_RGNMAP_ZERO(sfmmup->sfmmu_region_map);
1542 	bzero(sfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
1543 	sfmmup->sfmmu_scdp = NULL;
1544 	sfmmup->sfmmu_scd_link.next = NULL;
1545 	sfmmup->sfmmu_scd_link.prev = NULL;
1546 	return (sfmmup);
1547 }
1548 
1549 /*
1550  * Create per-MMU context domain kstats for a given MMU ctx.
1551  */
1552 static void
1553 sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp)
1554 {
1555 	mmu_ctx_stat_t	stat;
1556 	kstat_t		*mmu_kstat;
1557 
1558 	ASSERT(MUTEX_HELD(&cpu_lock));
1559 	ASSERT(mmu_ctxp->mmu_kstat == NULL);
1560 
1561 	mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx",
1562 	    "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL);
1563 
1564 	if (mmu_kstat == NULL) {
1565 		cmn_err(CE_WARN, "kstat_create for MMU %d failed",
1566 		    mmu_ctxp->mmu_idx);
1567 	} else {
1568 		mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data;
1569 		for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++)
1570 			kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat],
1571 			    mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64);
1572 		mmu_ctxp->mmu_kstat = mmu_kstat;
1573 		kstat_install(mmu_kstat);
1574 	}
1575 }
1576 
1577 /*
1578  * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU
1579  * context domain information for a given CPU. If a platform does not
1580  * specify that interface, then the function below is used instead to return
1581  * default information. The defaults are as follows:
1582  *
1583  *	- The number of MMU context IDs supported on any CPU in the
1584  *	  system is 8K.
1585  *	- There is one MMU context domain per CPU.
1586  */
1587 /*ARGSUSED*/
1588 static void
1589 sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop)
1590 {
1591 	infop->mmu_nctxs = nctxs;
1592 	infop->mmu_idx = cpu[cpuid]->cpu_seqid;
1593 }
1594 
1595 /*
1596  * Called during CPU initialization to set the MMU context-related information
1597  * for a CPU.
1598  *
1599  * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum.
1600  */
1601 void
1602 sfmmu_cpu_init(cpu_t *cp)
1603 {
1604 	mmu_ctx_info_t	info;
1605 	mmu_ctx_t	*mmu_ctxp;
1606 
1607 	ASSERT(MUTEX_HELD(&cpu_lock));
1608 
1609 	if (&plat_cpuid_to_mmu_ctx_info == NULL)
1610 		sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1611 	else
1612 		plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1613 
1614 	ASSERT(info.mmu_idx < max_mmu_ctxdoms);
1615 
1616 	if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) {
1617 		/* Each mmu_ctx is cacheline aligned. */
1618 		mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP);
1619 		bzero(mmu_ctxp, sizeof (mmu_ctx_t));
1620 
1621 		mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN,
1622 		    (void *)ipltospl(DISP_LEVEL));
1623 		mmu_ctxp->mmu_idx = info.mmu_idx;
1624 		mmu_ctxp->mmu_nctxs = info.mmu_nctxs;
1625 		/*
1626 		 * Globally for lifetime of a system,
1627 		 * gnum must always increase.
1628 		 * mmu_saved_gnum is protected by the cpu_lock.
1629 		 */
1630 		mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1;
1631 		mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
1632 
1633 		sfmmu_mmu_kstat_create(mmu_ctxp);
1634 
1635 		mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp;
1636 	} else {
1637 		ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx);
1638 		ASSERT(mmu_ctxp->mmu_nctxs <= info.mmu_nctxs);
1639 	}
1640 
1641 	/*
1642 	 * The mmu_lock is acquired here to prevent races with
1643 	 * the wrap-around code.
1644 	 */
1645 	mutex_enter(&mmu_ctxp->mmu_lock);
1646 
1647 
1648 	mmu_ctxp->mmu_ncpus++;
1649 	CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1650 	CPU_MMU_IDX(cp) = info.mmu_idx;
1651 	CPU_MMU_CTXP(cp) = mmu_ctxp;
1652 
1653 	mutex_exit(&mmu_ctxp->mmu_lock);
1654 }
1655 
1656 static void
1657 sfmmu_ctxdom_free(mmu_ctx_t *mmu_ctxp)
1658 {
1659 	ASSERT(MUTEX_HELD(&cpu_lock));
1660 	ASSERT(!MUTEX_HELD(&mmu_ctxp->mmu_lock));
1661 
1662 	mutex_destroy(&mmu_ctxp->mmu_lock);
1663 
1664 	if (mmu_ctxp->mmu_kstat)
1665 		kstat_delete(mmu_ctxp->mmu_kstat);
1666 
1667 	/* mmu_saved_gnum is protected by the cpu_lock. */
1668 	if (mmu_saved_gnum < mmu_ctxp->mmu_gnum)
1669 		mmu_saved_gnum = mmu_ctxp->mmu_gnum;
1670 
1671 	kmem_cache_free(mmuctxdom_cache, mmu_ctxp);
1672 }
1673 
1674 /*
1675  * Called to perform MMU context-related cleanup for a CPU.
1676  */
1677 void
1678 sfmmu_cpu_cleanup(cpu_t *cp)
1679 {
1680 	mmu_ctx_t	*mmu_ctxp;
1681 
1682 	ASSERT(MUTEX_HELD(&cpu_lock));
1683 
1684 	mmu_ctxp = CPU_MMU_CTXP(cp);
1685 	ASSERT(mmu_ctxp != NULL);
1686 
1687 	/*
1688 	 * The mmu_lock is acquired here to prevent races with
1689 	 * the wrap-around code.
1690 	 */
1691 	mutex_enter(&mmu_ctxp->mmu_lock);
1692 
1693 	CPU_MMU_CTXP(cp) = NULL;
1694 
1695 	CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1696 	if (--mmu_ctxp->mmu_ncpus == 0) {
1697 		mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL;
1698 		mutex_exit(&mmu_ctxp->mmu_lock);
1699 		sfmmu_ctxdom_free(mmu_ctxp);
1700 		return;
1701 	}
1702 
1703 	mutex_exit(&mmu_ctxp->mmu_lock);
1704 }
1705 
1706 uint_t
1707 sfmmu_ctxdom_nctxs(int idx)
1708 {
1709 	return (mmu_ctxs_tbl[idx]->mmu_nctxs);
1710 }
1711 
1712 #ifdef sun4v
1713 /*
1714  * sfmmu_ctxdoms_* is an interface provided to help keep context domains
1715  * consistant after suspend/resume on system that can resume on a different
1716  * hardware than it was suspended.
1717  *
1718  * sfmmu_ctxdom_lock(void) locks all context domains and prevents new contexts
1719  * from being allocated.  It acquires all hat_locks, which blocks most access to
1720  * context data, except for a few cases that are handled separately or are
1721  * harmless.  It wraps each domain to increment gnum and invalidate on-CPU
1722  * contexts, and forces cnum to its max.  As a result of this call all user
1723  * threads that are running on CPUs trap and try to perform wrap around but
1724  * can't because hat_locks are taken.  Threads that were not on CPUs but started
1725  * by scheduler go to sfmmu_alloc_ctx() to aquire context without checking
1726  * hat_lock, but fail, because cnum == nctxs, and therefore also trap and block
1727  * on hat_lock trying to wrap.  sfmmu_ctxdom_lock() must be called before CPUs
1728  * are paused, else it could deadlock acquiring locks held by paused CPUs.
1729  *
1730  * sfmmu_ctxdoms_remove() removes context domains from every CPUs and records
1731  * the CPUs that had them.  It must be called after CPUs have been paused. This
1732  * ensures that no threads are in sfmmu_alloc_ctx() accessing domain data,
1733  * because pause_cpus sends a mondo interrupt to every CPU, and sfmmu_alloc_ctx
1734  * runs with interrupts disabled.  When CPUs are later resumed, they may enter
1735  * sfmmu_alloc_ctx, but it will check for CPU_MMU_CTXP = NULL and immediately
1736  * return failure.  Or, they will be blocked trying to acquire hat_lock. Thus
1737  * after sfmmu_ctxdoms_remove returns, we are guaranteed that no one is
1738  * accessing the old context domains.
1739  *
1740  * sfmmu_ctxdoms_update(void) frees space used by old context domains and
1741  * allocates new context domains based on hardware layout.  It initializes
1742  * every CPU that had context domain before migration to have one again.
1743  * sfmmu_ctxdoms_update must be called after CPUs are resumed, else it
1744  * could deadlock acquiring locks held by paused CPUs.
1745  *
1746  * sfmmu_ctxdoms_unlock(void) releases all hat_locks after which user threads
1747  * acquire new context ids and continue execution.
1748  *
1749  * Therefore functions should be called in the following order:
1750  *       suspend_routine()
1751  *		sfmmu_ctxdom_lock()
1752  *		pause_cpus()
1753  *		suspend()
1754  *			if (suspend failed)
1755  *				sfmmu_ctxdom_unlock()
1756  *		...
1757  *		sfmmu_ctxdom_remove()
1758  *		resume_cpus()
1759  *		sfmmu_ctxdom_update()
1760  *		sfmmu_ctxdom_unlock()
1761  */
1762 static cpuset_t sfmmu_ctxdoms_pset;
1763 
1764 void
1765 sfmmu_ctxdoms_remove()
1766 {
1767 	processorid_t	id;
1768 	cpu_t		*cp;
1769 
1770 	/*
1771 	 * Record the CPUs that have domains in sfmmu_ctxdoms_pset, so they can
1772 	 * be restored post-migration. A CPU may be powered off and not have a
1773 	 * domain, for example.
1774 	 */
1775 	CPUSET_ZERO(sfmmu_ctxdoms_pset);
1776 
1777 	for (id = 0; id < NCPU; id++) {
1778 		if ((cp = cpu[id]) != NULL && CPU_MMU_CTXP(cp) != NULL) {
1779 			CPUSET_ADD(sfmmu_ctxdoms_pset, id);
1780 			CPU_MMU_CTXP(cp) = NULL;
1781 		}
1782 	}
1783 }
1784 
1785 void
1786 sfmmu_ctxdoms_lock(void)
1787 {
1788 	int		idx;
1789 	mmu_ctx_t	*mmu_ctxp;
1790 
1791 	sfmmu_hat_lock_all();
1792 
1793 	/*
1794 	 * At this point, no thread can be in sfmmu_ctx_wrap_around, because
1795 	 * hat_lock is always taken before calling it.
1796 	 *
1797 	 * For each domain, set mmu_cnum to max so no more contexts can be
1798 	 * allocated, and wrap to flush on-CPU contexts and force threads to
1799 	 * acquire a new context when we later drop hat_lock after migration.
1800 	 * Setting mmu_cnum may race with sfmmu_alloc_ctx which also sets cnum,
1801 	 * but the latter uses CAS and will miscompare and not overwrite it.
1802 	 */
1803 	kpreempt_disable(); /* required by sfmmu_ctx_wrap_around */
1804 	for (idx = 0; idx < max_mmu_ctxdoms; idx++) {
1805 		if ((mmu_ctxp = mmu_ctxs_tbl[idx]) != NULL) {
1806 			mutex_enter(&mmu_ctxp->mmu_lock);
1807 			mmu_ctxp->mmu_cnum = mmu_ctxp->mmu_nctxs;
1808 			/* make sure updated cnum visible */
1809 			membar_enter();
1810 			mutex_exit(&mmu_ctxp->mmu_lock);
1811 			sfmmu_ctx_wrap_around(mmu_ctxp, B_FALSE);
1812 		}
1813 	}
1814 	kpreempt_enable();
1815 }
1816 
1817 void
1818 sfmmu_ctxdoms_unlock(void)
1819 {
1820 	sfmmu_hat_unlock_all();
1821 }
1822 
1823 void
1824 sfmmu_ctxdoms_update(void)
1825 {
1826 	processorid_t	id;
1827 	cpu_t		*cp;
1828 	uint_t		idx;
1829 	mmu_ctx_t	*mmu_ctxp;
1830 
1831 	/*
1832 	 * Free all context domains.  As side effect, this increases
1833 	 * mmu_saved_gnum to the maximum gnum over all domains, which is used to
1834 	 * init gnum in the new domains, which therefore will be larger than the
1835 	 * sfmmu gnum for any process, guaranteeing that every process will see
1836 	 * a new generation and allocate a new context regardless of what new
1837 	 * domain it runs in.
1838 	 */
1839 	mutex_enter(&cpu_lock);
1840 
1841 	for (idx = 0; idx < max_mmu_ctxdoms; idx++) {
1842 		if (mmu_ctxs_tbl[idx] != NULL) {
1843 			mmu_ctxp = mmu_ctxs_tbl[idx];
1844 			mmu_ctxs_tbl[idx] = NULL;
1845 			sfmmu_ctxdom_free(mmu_ctxp);
1846 		}
1847 	}
1848 
1849 	for (id = 0; id < NCPU; id++) {
1850 		if (CPU_IN_SET(sfmmu_ctxdoms_pset, id) &&
1851 		    (cp = cpu[id]) != NULL)
1852 			sfmmu_cpu_init(cp);
1853 	}
1854 	mutex_exit(&cpu_lock);
1855 }
1856 #endif
1857 
1858 /*
1859  * Hat_setup, makes an address space context the current active one.
1860  * In sfmmu this translates to setting the secondary context with the
1861  * corresponding context.
1862  */
1863 void
1864 hat_setup(struct hat *sfmmup, int allocflag)
1865 {
1866 	hatlock_t *hatlockp;
1867 
1868 	/* Init needs some special treatment. */
1869 	if (allocflag == HAT_INIT) {
1870 		/*
1871 		 * Make sure that we have
1872 		 * 1. a TSB
1873 		 * 2. a valid ctx that doesn't get stolen after this point.
1874 		 */
1875 		hatlockp = sfmmu_hat_enter(sfmmup);
1876 
1877 		/*
1878 		 * Swap in the TSB.  hat_init() allocates tsbinfos without
1879 		 * TSBs, but we need one for init, since the kernel does some
1880 		 * special things to set up its stack and needs the TSB to
1881 		 * resolve page faults.
1882 		 */
1883 		sfmmu_tsb_swapin(sfmmup, hatlockp);
1884 
1885 		sfmmu_get_ctx(sfmmup);
1886 
1887 		sfmmu_hat_exit(hatlockp);
1888 	} else {
1889 		ASSERT(allocflag == HAT_ALLOC);
1890 
1891 		hatlockp = sfmmu_hat_enter(sfmmup);
1892 		kpreempt_disable();
1893 
1894 		CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1895 		/*
1896 		 * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter,
1897 		 * pagesize bits don't matter in this case since we are passing
1898 		 * INVALID_CONTEXT to it.
1899 		 * Compatibility Note: hw takes care of MMU_SCONTEXT1
1900 		 */
1901 		sfmmu_setctx_sec(INVALID_CONTEXT);
1902 		sfmmu_clear_utsbinfo();
1903 
1904 		kpreempt_enable();
1905 		sfmmu_hat_exit(hatlockp);
1906 	}
1907 }
1908 
1909 /*
1910  * Free all the translation resources for the specified address space.
1911  * Called from as_free when an address space is being destroyed.
1912  */
1913 void
1914 hat_free_start(struct hat *sfmmup)
1915 {
1916 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as));
1917 	ASSERT(sfmmup != ksfmmup);
1918 
1919 	sfmmup->sfmmu_free = 1;
1920 	if (sfmmup->sfmmu_scdp != NULL) {
1921 		sfmmu_leave_scd(sfmmup, 0);
1922 	}
1923 
1924 	ASSERT(sfmmup->sfmmu_scdp == NULL);
1925 }
1926 
1927 void
1928 hat_free_end(struct hat *sfmmup)
1929 {
1930 	int i;
1931 
1932 	ASSERT(sfmmup->sfmmu_free == 1);
1933 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
1934 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
1935 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
1936 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
1937 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
1938 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
1939 
1940 	if (sfmmup->sfmmu_rmstat) {
1941 		hat_freestat(sfmmup->sfmmu_as, NULL);
1942 	}
1943 
1944 	while (sfmmup->sfmmu_tsb != NULL) {
1945 		struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
1946 		sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
1947 		sfmmup->sfmmu_tsb = next;
1948 	}
1949 
1950 	if (sfmmup->sfmmu_srdp != NULL) {
1951 		sfmmu_leave_srd(sfmmup);
1952 		ASSERT(sfmmup->sfmmu_srdp == NULL);
1953 		for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1954 			if (sfmmup->sfmmu_hmeregion_links[i] != NULL) {
1955 				kmem_free(sfmmup->sfmmu_hmeregion_links[i],
1956 				    SFMMU_L2_HMERLINKS_SIZE);
1957 				sfmmup->sfmmu_hmeregion_links[i] = NULL;
1958 			}
1959 		}
1960 	}
1961 	sfmmu_free_sfmmu(sfmmup);
1962 
1963 #ifdef DEBUG
1964 	for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1965 		ASSERT(sfmmup->sfmmu_hmeregion_links[i] == NULL);
1966 	}
1967 #endif
1968 
1969 	kmem_cache_free(sfmmuid_cache, sfmmup);
1970 }
1971 
1972 /*
1973  * Set up any translation structures, for the specified address space,
1974  * that are needed or preferred when the process is being swapped in.
1975  */
1976 /* ARGSUSED */
1977 void
1978 hat_swapin(struct hat *hat)
1979 {
1980 }
1981 
1982 /*
1983  * Free all of the translation resources, for the specified address space,
1984  * that can be freed while the process is swapped out. Called from as_swapout.
1985  * Also, free up the ctx that this process was using.
1986  */
1987 void
1988 hat_swapout(struct hat *sfmmup)
1989 {
1990 	struct hmehash_bucket *hmebp;
1991 	struct hme_blk *hmeblkp;
1992 	struct hme_blk *pr_hblk = NULL;
1993 	struct hme_blk *nx_hblk;
1994 	int i;
1995 	struct hme_blk *list = NULL;
1996 	hatlock_t *hatlockp;
1997 	struct tsb_info *tsbinfop;
1998 	struct free_tsb {
1999 		struct free_tsb *next;
2000 		struct tsb_info *tsbinfop;
2001 	};			/* free list of TSBs */
2002 	struct free_tsb *freelist, *last, *next;
2003 
2004 	SFMMU_STAT(sf_swapout);
2005 
2006 	/*
2007 	 * There is no way to go from an as to all its translations in sfmmu.
2008 	 * Here is one of the times when we take the big hit and traverse
2009 	 * the hash looking for hme_blks to free up.  Not only do we free up
2010 	 * this as hme_blks but all those that are free.  We are obviously
2011 	 * swapping because we need memory so let's free up as much
2012 	 * as we can.
2013 	 *
2014 	 * Note that we don't flush TLB/TSB here -- it's not necessary
2015 	 * because:
2016 	 *  1) we free the ctx we're using and throw away the TSB(s);
2017 	 *  2) processes aren't runnable while being swapped out.
2018 	 */
2019 	ASSERT(sfmmup != KHATID);
2020 	for (i = 0; i <= UHMEHASH_SZ; i++) {
2021 		hmebp = &uhme_hash[i];
2022 		SFMMU_HASH_LOCK(hmebp);
2023 		hmeblkp = hmebp->hmeblkp;
2024 		pr_hblk = NULL;
2025 		while (hmeblkp) {
2026 
2027 			if ((hmeblkp->hblk_tag.htag_id == sfmmup) &&
2028 			    !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) {
2029 				ASSERT(!hmeblkp->hblk_shared);
2030 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
2031 				    (caddr_t)get_hblk_base(hmeblkp),
2032 				    get_hblk_endaddr(hmeblkp),
2033 				    NULL, HAT_UNLOAD);
2034 			}
2035 			nx_hblk = hmeblkp->hblk_next;
2036 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
2037 				ASSERT(!hmeblkp->hblk_lckcnt);
2038 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
2039 				    &list, 0);
2040 			} else {
2041 				pr_hblk = hmeblkp;
2042 			}
2043 			hmeblkp = nx_hblk;
2044 		}
2045 		SFMMU_HASH_UNLOCK(hmebp);
2046 	}
2047 
2048 	sfmmu_hblks_list_purge(&list, 0);
2049 
2050 	/*
2051 	 * Now free up the ctx so that others can reuse it.
2052 	 */
2053 	hatlockp = sfmmu_hat_enter(sfmmup);
2054 
2055 	sfmmu_invalidate_ctx(sfmmup);
2056 
2057 	/*
2058 	 * Free TSBs, but not tsbinfos, and set SWAPPED flag.
2059 	 * If TSBs were never swapped in, just return.
2060 	 * This implies that we don't support partial swapping
2061 	 * of TSBs -- either all are swapped out, or none are.
2062 	 *
2063 	 * We must hold the HAT lock here to prevent racing with another
2064 	 * thread trying to unmap TTEs from the TSB or running the post-
2065 	 * relocator after relocating the TSB's memory.  Unfortunately, we
2066 	 * can't free memory while holding the HAT lock or we could
2067 	 * deadlock, so we build a list of TSBs to be freed after marking
2068 	 * the tsbinfos as swapped out and free them after dropping the
2069 	 * lock.
2070 	 */
2071 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
2072 		sfmmu_hat_exit(hatlockp);
2073 		return;
2074 	}
2075 
2076 	SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED);
2077 	last = freelist = NULL;
2078 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
2079 	    tsbinfop = tsbinfop->tsb_next) {
2080 		ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0);
2081 
2082 		/*
2083 		 * Cast the TSB into a struct free_tsb and put it on the free
2084 		 * list.
2085 		 */
2086 		if (freelist == NULL) {
2087 			last = freelist = (struct free_tsb *)tsbinfop->tsb_va;
2088 		} else {
2089 			last->next = (struct free_tsb *)tsbinfop->tsb_va;
2090 			last = last->next;
2091 		}
2092 		last->next = NULL;
2093 		last->tsbinfop = tsbinfop;
2094 		tsbinfop->tsb_flags |= TSB_SWAPPED;
2095 		/*
2096 		 * Zero out the TTE to clear the valid bit.
2097 		 * Note we can't use a value like 0xbad because we want to
2098 		 * ensure diagnostic bits are NEVER set on TTEs that might
2099 		 * be loaded.  The intent is to catch any invalid access
2100 		 * to the swapped TSB, such as a thread running with a valid
2101 		 * context without first calling sfmmu_tsb_swapin() to
2102 		 * allocate TSB memory.
2103 		 */
2104 		tsbinfop->tsb_tte.ll = 0;
2105 	}
2106 
2107 	/* Now we can drop the lock and free the TSB memory. */
2108 	sfmmu_hat_exit(hatlockp);
2109 	for (; freelist != NULL; freelist = next) {
2110 		next = freelist->next;
2111 		sfmmu_tsb_free(freelist->tsbinfop);
2112 	}
2113 }
2114 
2115 /*
2116  * Duplicate the translations of an as into another newas
2117  */
2118 /* ARGSUSED */
2119 int
2120 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
2121 	uint_t flag)
2122 {
2123 	sf_srd_t *srdp;
2124 	sf_scd_t *scdp;
2125 	int i;
2126 	extern uint_t get_color_start(struct as *);
2127 
2128 	ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW) ||
2129 	    (flag == HAT_DUP_SRD));
2130 	ASSERT(hat != ksfmmup);
2131 	ASSERT(newhat != ksfmmup);
2132 	ASSERT(flag != HAT_DUP_ALL || hat->sfmmu_srdp == newhat->sfmmu_srdp);
2133 
2134 	if (flag == HAT_DUP_COW) {
2135 		panic("hat_dup: HAT_DUP_COW not supported");
2136 	}
2137 
2138 	if (flag == HAT_DUP_SRD && ((srdp = hat->sfmmu_srdp) != NULL)) {
2139 		ASSERT(srdp->srd_evp != NULL);
2140 		VN_HOLD(srdp->srd_evp);
2141 		ASSERT(srdp->srd_refcnt > 0);
2142 		newhat->sfmmu_srdp = srdp;
2143 		atomic_inc_32((volatile uint_t *)&srdp->srd_refcnt);
2144 	}
2145 
2146 	/*
2147 	 * HAT_DUP_ALL flag is used after as duplication is done.
2148 	 */
2149 	if (flag == HAT_DUP_ALL && ((srdp = newhat->sfmmu_srdp) != NULL)) {
2150 		ASSERT(newhat->sfmmu_srdp->srd_refcnt >= 2);
2151 		newhat->sfmmu_rtteflags = hat->sfmmu_rtteflags;
2152 		if (hat->sfmmu_flags & HAT_4MTEXT_FLAG) {
2153 			newhat->sfmmu_flags |= HAT_4MTEXT_FLAG;
2154 		}
2155 
2156 		/* check if need to join scd */
2157 		if ((scdp = hat->sfmmu_scdp) != NULL &&
2158 		    newhat->sfmmu_scdp != scdp) {
2159 			int ret;
2160 			SF_RGNMAP_IS_SUBSET(&newhat->sfmmu_region_map,
2161 			    &scdp->scd_region_map, ret);
2162 			ASSERT(ret);
2163 			sfmmu_join_scd(scdp, newhat);
2164 			ASSERT(newhat->sfmmu_scdp == scdp &&
2165 			    scdp->scd_refcnt >= 2);
2166 			for (i = 0; i < max_mmu_page_sizes; i++) {
2167 				newhat->sfmmu_ismttecnt[i] =
2168 				    hat->sfmmu_ismttecnt[i];
2169 				newhat->sfmmu_scdismttecnt[i] =
2170 				    hat->sfmmu_scdismttecnt[i];
2171 			}
2172 		}
2173 
2174 		sfmmu_check_page_sizes(newhat, 1);
2175 	}
2176 
2177 	if (flag == HAT_DUP_ALL && consistent_coloring == 0 &&
2178 	    update_proc_pgcolorbase_after_fork != 0) {
2179 		hat->sfmmu_clrbin = get_color_start(hat->sfmmu_as);
2180 	}
2181 	return (0);
2182 }
2183 
2184 void
2185 hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
2186 	uint_t attr, uint_t flags)
2187 {
2188 	hat_do_memload(hat, addr, pp, attr, flags,
2189 	    SFMMU_INVALID_SHMERID);
2190 }
2191 
2192 void
2193 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp,
2194 	uint_t attr, uint_t flags, hat_region_cookie_t rcookie)
2195 {
2196 	uint_t rid;
2197 	if (rcookie == HAT_INVALID_REGION_COOKIE) {
2198 		hat_do_memload(hat, addr, pp, attr, flags,
2199 		    SFMMU_INVALID_SHMERID);
2200 		return;
2201 	}
2202 	rid = (uint_t)((uint64_t)rcookie);
2203 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2204 	hat_do_memload(hat, addr, pp, attr, flags, rid);
2205 }
2206 
2207 /*
2208  * Set up addr to map to page pp with protection prot.
2209  * As an optimization we also load the TSB with the
2210  * corresponding tte but it is no big deal if  the tte gets kicked out.
2211  */
2212 static void
2213 hat_do_memload(struct hat *hat, caddr_t addr, struct page *pp,
2214 	uint_t attr, uint_t flags, uint_t rid)
2215 {
2216 	tte_t tte;
2217 
2218 
2219 	ASSERT(hat != NULL);
2220 	ASSERT(PAGE_LOCKED(pp));
2221 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2222 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2223 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2224 	SFMMU_VALIDATE_HMERID(hat, rid, addr, MMU_PAGESIZE);
2225 
2226 	if (PP_ISFREE(pp)) {
2227 		panic("hat_memload: loading a mapping to free page %p",
2228 		    (void *)pp);
2229 	}
2230 
2231 	ASSERT((hat == ksfmmup) || AS_LOCK_HELD(hat->sfmmu_as));
2232 
2233 	if (flags & ~SFMMU_LOAD_ALLFLAG)
2234 		cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
2235 		    flags & ~SFMMU_LOAD_ALLFLAG);
2236 
2237 	if (hat->sfmmu_rmstat)
2238 		hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
2239 
2240 #if defined(SF_ERRATA_57)
2241 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2242 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2243 	    !(flags & HAT_LOAD_SHARE)) {
2244 		cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
2245 		    " page executable");
2246 		attr &= ~PROT_EXEC;
2247 	}
2248 #endif
2249 
2250 	sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2251 	(void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags, rid);
2252 
2253 	/*
2254 	 * Check TSB and TLB page sizes.
2255 	 */
2256 	if ((flags & HAT_LOAD_SHARE) == 0) {
2257 		sfmmu_check_page_sizes(hat, 1);
2258 	}
2259 }
2260 
2261 /*
2262  * hat_devload can be called to map real memory (e.g.
2263  * /dev/kmem) and even though hat_devload will determine pf is
2264  * for memory, it will be unable to get a shared lock on the
2265  * page (because someone else has it exclusively) and will
2266  * pass dp = NULL.  If tteload doesn't get a non-NULL
2267  * page pointer it can't cache memory.
2268  */
2269 void
2270 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
2271 	uint_t attr, int flags)
2272 {
2273 	tte_t tte;
2274 	struct page *pp = NULL;
2275 	int use_lgpg = 0;
2276 
2277 	ASSERT(hat != NULL);
2278 
2279 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2280 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2281 	ASSERT((hat == ksfmmup) || AS_LOCK_HELD(hat->sfmmu_as));
2282 	if (len == 0)
2283 		panic("hat_devload: zero len");
2284 	if (flags & ~SFMMU_LOAD_ALLFLAG)
2285 		cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
2286 		    flags & ~SFMMU_LOAD_ALLFLAG);
2287 
2288 #if defined(SF_ERRATA_57)
2289 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2290 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2291 	    !(flags & HAT_LOAD_SHARE)) {
2292 		cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
2293 		    " page executable");
2294 		attr &= ~PROT_EXEC;
2295 	}
2296 #endif
2297 
2298 	/*
2299 	 * If it's a memory page find its pp
2300 	 */
2301 	if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
2302 		pp = page_numtopp_nolock(pfn);
2303 		if (pp == NULL) {
2304 			flags |= HAT_LOAD_NOCONSIST;
2305 		} else {
2306 			if (PP_ISFREE(pp)) {
2307 				panic("hat_memload: loading "
2308 				    "a mapping to free page %p",
2309 				    (void *)pp);
2310 			}
2311 			if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
2312 				panic("hat_memload: loading a mapping "
2313 				    "to unlocked relocatable page %p",
2314 				    (void *)pp);
2315 			}
2316 			ASSERT(len == MMU_PAGESIZE);
2317 		}
2318 	}
2319 
2320 	if (hat->sfmmu_rmstat)
2321 		hat_resvstat(len, hat->sfmmu_as, addr);
2322 
2323 	if (flags & HAT_LOAD_NOCONSIST) {
2324 		attr |= SFMMU_UNCACHEVTTE;
2325 		use_lgpg = 1;
2326 	}
2327 	if (!pf_is_memory(pfn)) {
2328 		attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
2329 		use_lgpg = 1;
2330 		switch (attr & HAT_ORDER_MASK) {
2331 			case HAT_STRICTORDER:
2332 			case HAT_UNORDERED_OK:
2333 				/*
2334 				 * we set the side effect bit for all non
2335 				 * memory mappings unless merging is ok
2336 				 */
2337 				attr |= SFMMU_SIDEFFECT;
2338 				break;
2339 			case HAT_MERGING_OK:
2340 			case HAT_LOADCACHING_OK:
2341 			case HAT_STORECACHING_OK:
2342 				break;
2343 			default:
2344 				panic("hat_devload: bad attr");
2345 				break;
2346 		}
2347 	}
2348 	while (len) {
2349 		if (!use_lgpg) {
2350 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
2351 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2352 			    flags, SFMMU_INVALID_SHMERID);
2353 			len -= MMU_PAGESIZE;
2354 			addr += MMU_PAGESIZE;
2355 			pfn++;
2356 			continue;
2357 		}
2358 		/*
2359 		 *  try to use large pages, check va/pa alignments
2360 		 *  Note that 32M/256M page sizes are not (yet) supported.
2361 		 */
2362 		if ((len >= MMU_PAGESIZE4M) &&
2363 		    !((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
2364 		    !(disable_large_pages & (1 << TTE4M)) &&
2365 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
2366 			sfmmu_memtte(&tte, pfn, attr, TTE4M);
2367 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2368 			    flags, SFMMU_INVALID_SHMERID);
2369 			len -= MMU_PAGESIZE4M;
2370 			addr += MMU_PAGESIZE4M;
2371 			pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
2372 		} else if ((len >= MMU_PAGESIZE512K) &&
2373 		    !((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
2374 		    !(disable_large_pages & (1 << TTE512K)) &&
2375 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
2376 			sfmmu_memtte(&tte, pfn, attr, TTE512K);
2377 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2378 			    flags, SFMMU_INVALID_SHMERID);
2379 			len -= MMU_PAGESIZE512K;
2380 			addr += MMU_PAGESIZE512K;
2381 			pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
2382 		} else if ((len >= MMU_PAGESIZE64K) &&
2383 		    !((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
2384 		    !(disable_large_pages & (1 << TTE64K)) &&
2385 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
2386 			sfmmu_memtte(&tte, pfn, attr, TTE64K);
2387 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2388 			    flags, SFMMU_INVALID_SHMERID);
2389 			len -= MMU_PAGESIZE64K;
2390 			addr += MMU_PAGESIZE64K;
2391 			pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
2392 		} else {
2393 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
2394 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2395 			    flags, SFMMU_INVALID_SHMERID);
2396 			len -= MMU_PAGESIZE;
2397 			addr += MMU_PAGESIZE;
2398 			pfn++;
2399 		}
2400 	}
2401 
2402 	/*
2403 	 * Check TSB and TLB page sizes.
2404 	 */
2405 	if ((flags & HAT_LOAD_SHARE) == 0) {
2406 		sfmmu_check_page_sizes(hat, 1);
2407 	}
2408 }
2409 
2410 void
2411 hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
2412 	struct page **pps, uint_t attr, uint_t flags)
2413 {
2414 	hat_do_memload_array(hat, addr, len, pps, attr, flags,
2415 	    SFMMU_INVALID_SHMERID);
2416 }
2417 
2418 void
2419 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len,
2420 	struct page **pps, uint_t attr, uint_t flags,
2421 	hat_region_cookie_t rcookie)
2422 {
2423 	uint_t rid;
2424 	if (rcookie == HAT_INVALID_REGION_COOKIE) {
2425 		hat_do_memload_array(hat, addr, len, pps, attr, flags,
2426 		    SFMMU_INVALID_SHMERID);
2427 		return;
2428 	}
2429 	rid = (uint_t)((uint64_t)rcookie);
2430 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2431 	hat_do_memload_array(hat, addr, len, pps, attr, flags, rid);
2432 }
2433 
2434 /*
2435  * Map the largest extend possible out of the page array. The array may NOT
2436  * be in order.  The largest possible mapping a page can have
2437  * is specified in the p_szc field.  The p_szc field
2438  * cannot change as long as there any mappings (large or small)
2439  * to any of the pages that make up the large page. (ie. any
2440  * promotion/demotion of page size is not up to the hat but up to
2441  * the page free list manager).  The array
2442  * should consist of properly aligned contigous pages that are
2443  * part of a big page for a large mapping to be created.
2444  */
2445 static void
2446 hat_do_memload_array(struct hat *hat, caddr_t addr, size_t len,
2447 	struct page **pps, uint_t attr, uint_t flags, uint_t rid)
2448 {
2449 	int  ttesz;
2450 	size_t mapsz;
2451 	pgcnt_t	numpg, npgs;
2452 	tte_t tte;
2453 	page_t *pp;
2454 	uint_t large_pages_disable;
2455 
2456 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2457 	SFMMU_VALIDATE_HMERID(hat, rid, addr, len);
2458 
2459 	if (hat->sfmmu_rmstat)
2460 		hat_resvstat(len, hat->sfmmu_as, addr);
2461 
2462 #if defined(SF_ERRATA_57)
2463 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2464 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2465 	    !(flags & HAT_LOAD_SHARE)) {
2466 		cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
2467 		    "user page executable");
2468 		attr &= ~PROT_EXEC;
2469 	}
2470 #endif
2471 
2472 	/* Get number of pages */
2473 	npgs = len >> MMU_PAGESHIFT;
2474 
2475 	if (flags & HAT_LOAD_SHARE) {
2476 		large_pages_disable = disable_ism_large_pages;
2477 	} else {
2478 		large_pages_disable = disable_large_pages;
2479 	}
2480 
2481 	if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
2482 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2483 		    rid);
2484 		return;
2485 	}
2486 
2487 	while (npgs >= NHMENTS) {
2488 		pp = *pps;
2489 		for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
2490 			/*
2491 			 * Check if this page size is disabled.
2492 			 */
2493 			if (large_pages_disable & (1 << ttesz))
2494 				continue;
2495 
2496 			numpg = TTEPAGES(ttesz);
2497 			mapsz = numpg << MMU_PAGESHIFT;
2498 			if ((npgs >= numpg) &&
2499 			    IS_P2ALIGNED(addr, mapsz) &&
2500 			    IS_P2ALIGNED(pp->p_pagenum, numpg)) {
2501 				/*
2502 				 * At this point we have enough pages and
2503 				 * we know the virtual address and the pfn
2504 				 * are properly aligned.  We still need
2505 				 * to check for physical contiguity but since
2506 				 * it is very likely that this is the case
2507 				 * we will assume they are so and undo
2508 				 * the request if necessary.  It would
2509 				 * be great if we could get a hint flag
2510 				 * like HAT_CONTIG which would tell us
2511 				 * the pages are contigous for sure.
2512 				 */
2513 				sfmmu_memtte(&tte, (*pps)->p_pagenum,
2514 				    attr, ttesz);
2515 				if (!sfmmu_tteload_array(hat, &tte, addr,
2516 				    pps, flags, rid)) {
2517 					break;
2518 				}
2519 			}
2520 		}
2521 		if (ttesz == TTE8K) {
2522 			/*
2523 			 * We were not able to map array using a large page
2524 			 * batch a hmeblk or fraction at a time.
2525 			 */
2526 			numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
2527 			    & (NHMENTS-1);
2528 			numpg = NHMENTS - numpg;
2529 			ASSERT(numpg <= npgs);
2530 			mapsz = numpg * MMU_PAGESIZE;
2531 			sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
2532 			    numpg, rid);
2533 		}
2534 		addr += mapsz;
2535 		npgs -= numpg;
2536 		pps += numpg;
2537 	}
2538 
2539 	if (npgs) {
2540 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2541 		    rid);
2542 	}
2543 
2544 	/*
2545 	 * Check TSB and TLB page sizes.
2546 	 */
2547 	if ((flags & HAT_LOAD_SHARE) == 0) {
2548 		sfmmu_check_page_sizes(hat, 1);
2549 	}
2550 }
2551 
2552 /*
2553  * Function tries to batch 8K pages into the same hme blk.
2554  */
2555 static void
2556 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
2557 		    uint_t attr, uint_t flags, pgcnt_t npgs, uint_t rid)
2558 {
2559 	tte_t	tte;
2560 	page_t *pp;
2561 	struct hmehash_bucket *hmebp;
2562 	struct hme_blk *hmeblkp;
2563 	int	index;
2564 
2565 	while (npgs) {
2566 		/*
2567 		 * Acquire the hash bucket.
2568 		 */
2569 		hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K,
2570 		    rid);
2571 		ASSERT(hmebp);
2572 
2573 		/*
2574 		 * Find the hment block.
2575 		 */
2576 		hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
2577 		    TTE8K, flags, rid);
2578 		ASSERT(hmeblkp);
2579 
2580 		do {
2581 			/*
2582 			 * Make the tte.
2583 			 */
2584 			pp = *pps;
2585 			sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2586 
2587 			/*
2588 			 * Add the translation.
2589 			 */
2590 			(void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
2591 			    vaddr, pps, flags, rid);
2592 
2593 			/*
2594 			 * Goto next page.
2595 			 */
2596 			pps++;
2597 			npgs--;
2598 
2599 			/*
2600 			 * Goto next address.
2601 			 */
2602 			vaddr += MMU_PAGESIZE;
2603 
2604 			/*
2605 			 * Don't crossover into a different hmentblk.
2606 			 */
2607 			index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
2608 			    (NHMENTS-1));
2609 
2610 		} while (index != 0 && npgs != 0);
2611 
2612 		/*
2613 		 * Release the hash bucket.
2614 		 */
2615 
2616 		sfmmu_tteload_release_hashbucket(hmebp);
2617 	}
2618 }
2619 
2620 /*
2621  * Construct a tte for a page:
2622  *
2623  * tte_valid = 1
2624  * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only)
2625  * tte_size = size
2626  * tte_nfo = attr & HAT_NOFAULT
2627  * tte_ie = attr & HAT_STRUCTURE_LE
2628  * tte_hmenum = hmenum
2629  * tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
2630  * tte_palo = pp->p_pagenum & TTE_PALOMASK;
2631  * tte_ref = 1 (optimization)
2632  * tte_wr_perm = attr & PROT_WRITE;
2633  * tte_no_sync = attr & HAT_NOSYNC
2634  * tte_lock = attr & SFMMU_LOCKTTE
2635  * tte_cp = !(attr & SFMMU_UNCACHEPTTE)
2636  * tte_cv = !(attr & SFMMU_UNCACHEVTTE)
2637  * tte_e = attr & SFMMU_SIDEFFECT
2638  * tte_priv = !(attr & PROT_USER)
2639  * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
2640  * tte_glb = 0
2641  */
2642 void
2643 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
2644 {
2645 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2646 
2647 	ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
2648 	ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
2649 
2650 	if (TTE_IS_NOSYNC(ttep)) {
2651 		TTE_SET_REF(ttep);
2652 		if (TTE_IS_WRITABLE(ttep)) {
2653 			TTE_SET_MOD(ttep);
2654 		}
2655 	}
2656 	if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
2657 		panic("sfmmu_memtte: can't set both NFO and EXEC bits");
2658 	}
2659 }
2660 
2661 /*
2662  * This function will add a translation to the hme_blk and allocate the
2663  * hme_blk if one does not exist.
2664  * If a page structure is specified then it will add the
2665  * corresponding hment to the mapping list.
2666  * It will also update the hmenum field for the tte.
2667  *
2668  * Currently this function is only used for kernel mappings.
2669  * So pass invalid region to sfmmu_tteload_array().
2670  */
2671 void
2672 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
2673 	uint_t flags)
2674 {
2675 	ASSERT(sfmmup == ksfmmup);
2676 	(void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags,
2677 	    SFMMU_INVALID_SHMERID);
2678 }
2679 
2680 /*
2681  * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
2682  * Assumes that a particular page size may only be resident in one TSB.
2683  */
2684 static void
2685 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
2686 {
2687 	struct tsb_info *tsbinfop = NULL;
2688 	uint64_t tag;
2689 	struct tsbe *tsbe_addr;
2690 	uint64_t tsb_base;
2691 	uint_t tsb_size;
2692 	int vpshift = MMU_PAGESHIFT;
2693 	int phys = 0;
2694 
2695 	if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
2696 		phys = ktsb_phys;
2697 		if (ttesz >= TTE4M) {
2698 #ifndef sun4v
2699 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2700 #endif
2701 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2702 			tsb_size = ktsb4m_szcode;
2703 		} else {
2704 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2705 			tsb_size = ktsb_szcode;
2706 		}
2707 	} else {
2708 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2709 
2710 		/*
2711 		 * If there isn't a TSB for this page size, or the TSB is
2712 		 * swapped out, there is nothing to do.  Note that the latter
2713 		 * case seems impossible but can occur if hat_pageunload()
2714 		 * is called on an ISM mapping while the process is swapped
2715 		 * out.
2716 		 */
2717 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2718 			return;
2719 
2720 		/*
2721 		 * If another thread is in the middle of relocating a TSB
2722 		 * we can't unload the entry so set a flag so that the
2723 		 * TSB will be flushed before it can be accessed by the
2724 		 * process.
2725 		 */
2726 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2727 			if (ttep == NULL)
2728 				tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2729 			return;
2730 		}
2731 #if defined(UTSB_PHYS)
2732 		phys = 1;
2733 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2734 #else
2735 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2736 #endif
2737 		tsb_size = tsbinfop->tsb_szc;
2738 	}
2739 	if (ttesz >= TTE4M)
2740 		vpshift = MMU_PAGESHIFT4M;
2741 
2742 	tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2743 	tag = sfmmu_make_tsbtag(vaddr);
2744 
2745 	if (ttep == NULL) {
2746 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2747 	} else {
2748 		if (ttesz >= TTE4M) {
2749 			SFMMU_STAT(sf_tsb_load4m);
2750 		} else {
2751 			SFMMU_STAT(sf_tsb_load8k);
2752 		}
2753 
2754 		sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
2755 	}
2756 }
2757 
2758 /*
2759  * Unmap all entries from [start, end) matching the given page size.
2760  *
2761  * This function is used primarily to unmap replicated 64K or 512K entries
2762  * from the TSB that are inserted using the base page size TSB pointer, but
2763  * it may also be called to unmap a range of addresses from the TSB.
2764  */
2765 void
2766 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
2767 {
2768 	struct tsb_info *tsbinfop;
2769 	uint64_t tag;
2770 	struct tsbe *tsbe_addr;
2771 	caddr_t vaddr;
2772 	uint64_t tsb_base;
2773 	int vpshift, vpgsz;
2774 	uint_t tsb_size;
2775 	int phys = 0;
2776 
2777 	/*
2778 	 * Assumptions:
2779 	 *  If ttesz == 8K, 64K or 512K, we walk through the range 8K
2780 	 *  at a time shooting down any valid entries we encounter.
2781 	 *
2782 	 *  If ttesz >= 4M we walk the range 4M at a time shooting
2783 	 *  down any valid mappings we find.
2784 	 */
2785 	if (sfmmup == ksfmmup) {
2786 		phys = ktsb_phys;
2787 		if (ttesz >= TTE4M) {
2788 #ifndef sun4v
2789 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2790 #endif
2791 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2792 			tsb_size = ktsb4m_szcode;
2793 		} else {
2794 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2795 			tsb_size = ktsb_szcode;
2796 		}
2797 	} else {
2798 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2799 
2800 		/*
2801 		 * If there isn't a TSB for this page size, or the TSB is
2802 		 * swapped out, there is nothing to do.  Note that the latter
2803 		 * case seems impossible but can occur if hat_pageunload()
2804 		 * is called on an ISM mapping while the process is swapped
2805 		 * out.
2806 		 */
2807 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2808 			return;
2809 
2810 		/*
2811 		 * If another thread is in the middle of relocating a TSB
2812 		 * we can't unload the entry so set a flag so that the
2813 		 * TSB will be flushed before it can be accessed by the
2814 		 * process.
2815 		 */
2816 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2817 			tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2818 			return;
2819 		}
2820 #if defined(UTSB_PHYS)
2821 		phys = 1;
2822 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2823 #else
2824 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2825 #endif
2826 		tsb_size = tsbinfop->tsb_szc;
2827 	}
2828 	if (ttesz >= TTE4M) {
2829 		vpshift = MMU_PAGESHIFT4M;
2830 		vpgsz = MMU_PAGESIZE4M;
2831 	} else {
2832 		vpshift = MMU_PAGESHIFT;
2833 		vpgsz = MMU_PAGESIZE;
2834 	}
2835 
2836 	for (vaddr = start; vaddr < end; vaddr += vpgsz) {
2837 		tag = sfmmu_make_tsbtag(vaddr);
2838 		tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2839 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2840 	}
2841 }
2842 
2843 /*
2844  * Select the optimum TSB size given the number of mappings
2845  * that need to be cached.
2846  */
2847 static int
2848 sfmmu_select_tsb_szc(pgcnt_t pgcnt)
2849 {
2850 	int szc = 0;
2851 
2852 #ifdef DEBUG
2853 	if (tsb_grow_stress) {
2854 		uint32_t randval = (uint32_t)gettick() >> 4;
2855 		return (randval % (tsb_max_growsize + 1));
2856 	}
2857 #endif	/* DEBUG */
2858 
2859 	while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
2860 		szc++;
2861 	return (szc);
2862 }
2863 
2864 /*
2865  * This function will add a translation to the hme_blk and allocate the
2866  * hme_blk if one does not exist.
2867  * If a page structure is specified then it will add the
2868  * corresponding hment to the mapping list.
2869  * It will also update the hmenum field for the tte.
2870  * Furthermore, it attempts to create a large page translation
2871  * for <addr,hat> at page array pps.  It assumes addr and first
2872  * pp is correctly aligned.  It returns 0 if successful and 1 otherwise.
2873  */
2874 static int
2875 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
2876 	page_t **pps, uint_t flags, uint_t rid)
2877 {
2878 	struct hmehash_bucket *hmebp;
2879 	struct hme_blk *hmeblkp;
2880 	int 	ret;
2881 	uint_t	size;
2882 
2883 	/*
2884 	 * Get mapping size.
2885 	 */
2886 	size = TTE_CSZ(ttep);
2887 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2888 
2889 	/*
2890 	 * Acquire the hash bucket.
2891 	 */
2892 	hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size, rid);
2893 	ASSERT(hmebp);
2894 
2895 	/*
2896 	 * Find the hment block.
2897 	 */
2898 	hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags,
2899 	    rid);
2900 	ASSERT(hmeblkp);
2901 
2902 	/*
2903 	 * Add the translation.
2904 	 */
2905 	ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags,
2906 	    rid);
2907 
2908 	/*
2909 	 * Release the hash bucket.
2910 	 */
2911 	sfmmu_tteload_release_hashbucket(hmebp);
2912 
2913 	return (ret);
2914 }
2915 
2916 /*
2917  * Function locks and returns a pointer to the hash bucket for vaddr and size.
2918  */
2919 static struct hmehash_bucket *
2920 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size,
2921     uint_t rid)
2922 {
2923 	struct hmehash_bucket *hmebp;
2924 	int hmeshift;
2925 	void *htagid = sfmmutohtagid(sfmmup, rid);
2926 
2927 	ASSERT(htagid != NULL);
2928 
2929 	hmeshift = HME_HASH_SHIFT(size);
2930 
2931 	hmebp = HME_HASH_FUNCTION(htagid, vaddr, hmeshift);
2932 
2933 	SFMMU_HASH_LOCK(hmebp);
2934 
2935 	return (hmebp);
2936 }
2937 
2938 /*
2939  * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
2940  * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
2941  * allocated.
2942  */
2943 static struct hme_blk *
2944 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
2945 	caddr_t vaddr, uint_t size, uint_t flags, uint_t rid)
2946 {
2947 	hmeblk_tag hblktag;
2948 	int hmeshift;
2949 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
2950 
2951 	SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
2952 
2953 	hblktag.htag_id = sfmmutohtagid(sfmmup, rid);
2954 	ASSERT(hblktag.htag_id != NULL);
2955 	hmeshift = HME_HASH_SHIFT(size);
2956 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2957 	hblktag.htag_rehash = HME_HASH_REHASH(size);
2958 	hblktag.htag_rid = rid;
2959 
2960 ttearray_realloc:
2961 
2962 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
2963 
2964 	/*
2965 	 * We block until hblk_reserve_lock is released; it's held by
2966 	 * the thread, temporarily using hblk_reserve, until hblk_reserve is
2967 	 * replaced by a hblk from sfmmu8_cache.
2968 	 */
2969 	if (hmeblkp == (struct hme_blk *)hblk_reserve &&
2970 	    hblk_reserve_thread != curthread) {
2971 		SFMMU_HASH_UNLOCK(hmebp);
2972 		mutex_enter(&hblk_reserve_lock);
2973 		mutex_exit(&hblk_reserve_lock);
2974 		SFMMU_STAT(sf_hblk_reserve_hit);
2975 		SFMMU_HASH_LOCK(hmebp);
2976 		goto ttearray_realloc;
2977 	}
2978 
2979 	if (hmeblkp == NULL) {
2980 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
2981 		    hblktag, flags, rid);
2982 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
2983 		ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
2984 	} else {
2985 		/*
2986 		 * It is possible for 8k and 64k hblks to collide since they
2987 		 * have the same rehash value. This is because we
2988 		 * lazily free hblks and 8K/64K blks could be lingering.
2989 		 * If we find size mismatch we free the block and & try again.
2990 		 */
2991 		if (get_hblk_ttesz(hmeblkp) != size) {
2992 			ASSERT(!hmeblkp->hblk_vcnt);
2993 			ASSERT(!hmeblkp->hblk_hmecnt);
2994 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
2995 			    &list, 0);
2996 			goto ttearray_realloc;
2997 		}
2998 		if (hmeblkp->hblk_shw_bit) {
2999 			/*
3000 			 * if the hblk was previously used as a shadow hblk then
3001 			 * we will change it to a normal hblk
3002 			 */
3003 			ASSERT(!hmeblkp->hblk_shared);
3004 			if (hmeblkp->hblk_shw_mask) {
3005 				sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
3006 				ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3007 				goto ttearray_realloc;
3008 			} else {
3009 				hmeblkp->hblk_shw_bit = 0;
3010 			}
3011 		}
3012 		SFMMU_STAT(sf_hblk_hit);
3013 	}
3014 
3015 	/*
3016 	 * hat_memload() should never call kmem_cache_free() for kernel hmeblks;
3017 	 * see block comment showing the stacktrace in sfmmu_hblk_alloc();
3018 	 * set the flag parameter to 1 so that sfmmu_hblks_list_purge() will
3019 	 * just add these hmeblks to the per-cpu pending queue.
3020 	 */
3021 	sfmmu_hblks_list_purge(&list, 1);
3022 
3023 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
3024 	ASSERT(!hmeblkp->hblk_shw_bit);
3025 	ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
3026 	ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
3027 	ASSERT(hmeblkp->hblk_tag.htag_rid == rid);
3028 
3029 	return (hmeblkp);
3030 }
3031 
3032 /*
3033  * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
3034  * otherwise.
3035  */
3036 static int
3037 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
3038 	caddr_t vaddr, page_t **pps, uint_t flags, uint_t rid)
3039 {
3040 	page_t *pp = *pps;
3041 	int hmenum, size, remap;
3042 	tte_t tteold, flush_tte;
3043 #ifdef DEBUG
3044 	tte_t orig_old;
3045 #endif /* DEBUG */
3046 	struct sf_hment *sfhme;
3047 	kmutex_t *pml, *pmtx;
3048 	hatlock_t *hatlockp;
3049 	int myflt;
3050 
3051 	/*
3052 	 * remove this panic when we decide to let user virtual address
3053 	 * space be >= USERLIMIT.
3054 	 */
3055 	if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
3056 		panic("user addr %p in kernel space", (void *)vaddr);
3057 #if defined(TTE_IS_GLOBAL)
3058 	if (TTE_IS_GLOBAL(ttep))
3059 		panic("sfmmu_tteload: creating global tte");
3060 #endif
3061 
3062 #ifdef DEBUG
3063 	if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
3064 	    !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
3065 		panic("sfmmu_tteload: non cacheable memory tte");
3066 #endif /* DEBUG */
3067 
3068 	/* don't simulate dirty bit for writeable ISM/DISM mappings */
3069 	if ((flags & HAT_LOAD_SHARE) && TTE_IS_WRITABLE(ttep)) {
3070 		TTE_SET_REF(ttep);
3071 		TTE_SET_MOD(ttep);
3072 	}
3073 
3074 	if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
3075 	    !TTE_IS_MOD(ttep)) {
3076 		/*
3077 		 * Don't load TSB for dummy as in ISM.  Also don't preload
3078 		 * the TSB if the TTE isn't writable since we're likely to
3079 		 * fault on it again -- preloading can be fairly expensive.
3080 		 */
3081 		flags |= SFMMU_NO_TSBLOAD;
3082 	}
3083 
3084 	size = TTE_CSZ(ttep);
3085 	switch (size) {
3086 	case TTE8K:
3087 		SFMMU_STAT(sf_tteload8k);
3088 		break;
3089 	case TTE64K:
3090 		SFMMU_STAT(sf_tteload64k);
3091 		break;
3092 	case TTE512K:
3093 		SFMMU_STAT(sf_tteload512k);
3094 		break;
3095 	case TTE4M:
3096 		SFMMU_STAT(sf_tteload4m);
3097 		break;
3098 	case (TTE32M):
3099 		SFMMU_STAT(sf_tteload32m);
3100 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
3101 		break;
3102 	case (TTE256M):
3103 		SFMMU_STAT(sf_tteload256m);
3104 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
3105 		break;
3106 	}
3107 
3108 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
3109 	SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
3110 	ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
3111 	ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
3112 
3113 	HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
3114 
3115 	/*
3116 	 * Need to grab mlist lock here so that pageunload
3117 	 * will not change tte behind us.
3118 	 */
3119 	if (pp) {
3120 		pml = sfmmu_mlist_enter(pp);
3121 	}
3122 
3123 	sfmmu_copytte(&sfhme->hme_tte, &tteold);
3124 	/*
3125 	 * Look for corresponding hment and if valid verify
3126 	 * pfns are equal.
3127 	 */
3128 	remap = TTE_IS_VALID(&tteold);
3129 	if (remap) {
3130 		pfn_t	new_pfn, old_pfn;
3131 
3132 		old_pfn = TTE_TO_PFN(vaddr, &tteold);
3133 		new_pfn = TTE_TO_PFN(vaddr, ttep);
3134 
3135 		if (flags & HAT_LOAD_REMAP) {
3136 			/* make sure we are remapping same type of pages */
3137 			if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
3138 				panic("sfmmu_tteload - tte remap io<->memory");
3139 			}
3140 			if (old_pfn != new_pfn &&
3141 			    (pp != NULL || sfhme->hme_page != NULL)) {
3142 				panic("sfmmu_tteload - tte remap pp != NULL");
3143 			}
3144 		} else if (old_pfn != new_pfn) {
3145 			panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
3146 			    (void *)hmeblkp);
3147 		}
3148 		ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
3149 	}
3150 
3151 	if (pp) {
3152 		if (size == TTE8K) {
3153 #ifdef VAC
3154 			/*
3155 			 * Handle VAC consistency
3156 			 */
3157 			if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
3158 				sfmmu_vac_conflict(sfmmup, vaddr, pp);
3159 			}
3160 #endif
3161 
3162 			if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3163 				pmtx = sfmmu_page_enter(pp);
3164 				PP_CLRRO(pp);
3165 				sfmmu_page_exit(pmtx);
3166 			} else if (!PP_ISMAPPED(pp) &&
3167 			    (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
3168 				pmtx = sfmmu_page_enter(pp);
3169 				if (!(PP_ISMOD(pp))) {
3170 					PP_SETRO(pp);
3171 				}
3172 				sfmmu_page_exit(pmtx);
3173 			}
3174 
3175 		} else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
3176 			/*
3177 			 * sfmmu_pagearray_setup failed so return
3178 			 */
3179 			sfmmu_mlist_exit(pml);
3180 			return (1);
3181 		}
3182 	}
3183 
3184 	/*
3185 	 * Make sure hment is not on a mapping list.
3186 	 */
3187 	ASSERT(remap || (sfhme->hme_page == NULL));
3188 
3189 	/* if it is not a remap then hme->next better be NULL */
3190 	ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
3191 
3192 	if (flags & HAT_LOAD_LOCK) {
3193 		if ((hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
3194 			panic("too high lckcnt-hmeblk %p",
3195 			    (void *)hmeblkp);
3196 		}
3197 		atomic_inc_32(&hmeblkp->hblk_lckcnt);
3198 
3199 		HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
3200 	}
3201 
3202 #ifdef VAC
3203 	if (pp && PP_ISNC(pp)) {
3204 		/*
3205 		 * If the physical page is marked to be uncacheable, like
3206 		 * by a vac conflict, make sure the new mapping is also
3207 		 * uncacheable.
3208 		 */
3209 		TTE_CLR_VCACHEABLE(ttep);
3210 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
3211 	}
3212 #endif
3213 	ttep->tte_hmenum = hmenum;
3214 
3215 #ifdef DEBUG
3216 	orig_old = tteold;
3217 #endif /* DEBUG */
3218 
3219 	while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
3220 		if ((sfmmup == KHATID) &&
3221 		    (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
3222 			sfmmu_copytte(&sfhme->hme_tte, &tteold);
3223 		}
3224 #ifdef DEBUG
3225 		chk_tte(&orig_old, &tteold, ttep, hmeblkp);
3226 #endif /* DEBUG */
3227 	}
3228 	ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
3229 
3230 	if (!TTE_IS_VALID(&tteold)) {
3231 
3232 		atomic_inc_16(&hmeblkp->hblk_vcnt);
3233 		if (rid == SFMMU_INVALID_SHMERID) {
3234 			atomic_inc_ulong(&sfmmup->sfmmu_ttecnt[size]);
3235 		} else {
3236 			sf_srd_t *srdp = sfmmup->sfmmu_srdp;
3237 			sf_region_t *rgnp = srdp->srd_hmergnp[rid];
3238 			/*
3239 			 * We already accounted for region ttecnt's in sfmmu
3240 			 * during hat_join_region() processing. Here we
3241 			 * only update ttecnt's in region struture.
3242 			 */
3243 			atomic_inc_ulong(&rgnp->rgn_ttecnt[size]);
3244 		}
3245 	}
3246 
3247 	myflt = (astosfmmu(curthread->t_procp->p_as) == sfmmup);
3248 	if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
3249 	    sfmmup != ksfmmup) {
3250 		uchar_t tteflag = 1 << size;
3251 		if (rid == SFMMU_INVALID_SHMERID) {
3252 			if (!(sfmmup->sfmmu_tteflags & tteflag)) {
3253 				hatlockp = sfmmu_hat_enter(sfmmup);
3254 				sfmmup->sfmmu_tteflags |= tteflag;
3255 				sfmmu_hat_exit(hatlockp);
3256 			}
3257 		} else if (!(sfmmup->sfmmu_rtteflags & tteflag)) {
3258 			hatlockp = sfmmu_hat_enter(sfmmup);
3259 			sfmmup->sfmmu_rtteflags |= tteflag;
3260 			sfmmu_hat_exit(hatlockp);
3261 		}
3262 		/*
3263 		 * Update the current CPU tsbmiss area, so the current thread
3264 		 * won't need to take the tsbmiss for the new pagesize.
3265 		 * The other threads in the process will update their tsb
3266 		 * miss area lazily in sfmmu_tsbmiss_exception() when they
3267 		 * fail to find the translation for a newly added pagesize.
3268 		 */
3269 		if (size > TTE64K && myflt) {
3270 			struct tsbmiss *tsbmp;
3271 			kpreempt_disable();
3272 			tsbmp = &tsbmiss_area[CPU->cpu_id];
3273 			if (rid == SFMMU_INVALID_SHMERID) {
3274 				if (!(tsbmp->uhat_tteflags & tteflag)) {
3275 					tsbmp->uhat_tteflags |= tteflag;
3276 				}
3277 			} else {
3278 				if (!(tsbmp->uhat_rtteflags & tteflag)) {
3279 					tsbmp->uhat_rtteflags |= tteflag;
3280 				}
3281 			}
3282 			kpreempt_enable();
3283 		}
3284 	}
3285 
3286 	if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
3287 	    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
3288 		hatlockp = sfmmu_hat_enter(sfmmup);
3289 		SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
3290 		sfmmu_hat_exit(hatlockp);
3291 	}
3292 
3293 	flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
3294 	    hw_tte.tte_intlo;
3295 	flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
3296 	    hw_tte.tte_inthi;
3297 
3298 	if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
3299 		/*
3300 		 * If remap and new tte differs from old tte we need
3301 		 * to sync the mod bit and flush TLB/TSB.  We don't
3302 		 * need to sync ref bit because we currently always set
3303 		 * ref bit in tteload.
3304 		 */
3305 		ASSERT(TTE_IS_REF(ttep));
3306 		if (TTE_IS_MOD(&tteold)) {
3307 			sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
3308 		}
3309 		/*
3310 		 * hwtte bits shouldn't change for SRD hmeblks as long as SRD
3311 		 * hmes are only used for read only text. Adding this code for
3312 		 * completeness and future use of shared hmeblks with writable
3313 		 * mappings of VMODSORT vnodes.
3314 		 */
3315 		if (hmeblkp->hblk_shared) {
3316 			cpuset_t cpuset = sfmmu_rgntlb_demap(vaddr,
3317 			    sfmmup->sfmmu_srdp->srd_hmergnp[rid], hmeblkp, 1);
3318 			xt_sync(cpuset);
3319 			SFMMU_STAT_ADD(sf_region_remap_demap, 1);
3320 		} else {
3321 			sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
3322 			xt_sync(sfmmup->sfmmu_cpusran);
3323 		}
3324 	}
3325 
3326 	if ((flags & SFMMU_NO_TSBLOAD) == 0) {
3327 		/*
3328 		 * We only preload 8K and 4M mappings into the TSB, since
3329 		 * 64K and 512K mappings are replicated and hence don't
3330 		 * have a single, unique TSB entry. Ditto for 32M/256M.
3331 		 */
3332 		if (size == TTE8K || size == TTE4M) {
3333 			sf_scd_t *scdp;
3334 			hatlockp = sfmmu_hat_enter(sfmmup);
3335 			/*
3336 			 * Don't preload private TSB if the mapping is used
3337 			 * by the shctx in the SCD.
3338 			 */
3339 			scdp = sfmmup->sfmmu_scdp;
3340 			if (rid == SFMMU_INVALID_SHMERID || scdp == NULL ||
3341 			    !SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
3342 				sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte,
3343 				    size);
3344 			}
3345 			sfmmu_hat_exit(hatlockp);
3346 		}
3347 	}
3348 	if (pp) {
3349 		if (!remap) {
3350 			HME_ADD(sfhme, pp);
3351 			atomic_inc_16(&hmeblkp->hblk_hmecnt);
3352 			ASSERT(hmeblkp->hblk_hmecnt > 0);
3353 
3354 			/*
3355 			 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
3356 			 * see pageunload() for comment.
3357 			 */
3358 		}
3359 		sfmmu_mlist_exit(pml);
3360 	}
3361 
3362 	return (0);
3363 }
3364 /*
3365  * Function unlocks hash bucket.
3366  */
3367 static void
3368 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
3369 {
3370 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3371 	SFMMU_HASH_UNLOCK(hmebp);
3372 }
3373 
3374 /*
3375  * function which checks and sets up page array for a large
3376  * translation.  Will set p_vcolor, p_index, p_ro fields.
3377  * Assumes addr and pfnum of first page are properly aligned.
3378  * Will check for physical contiguity. If check fails it return
3379  * non null.
3380  */
3381 static int
3382 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
3383 {
3384 	int 	i, index, ttesz;
3385 	pfn_t	pfnum;
3386 	pgcnt_t	npgs;
3387 	page_t *pp, *pp1;
3388 	kmutex_t *pmtx;
3389 #ifdef VAC
3390 	int osz;
3391 	int cflags = 0;
3392 	int vac_err = 0;
3393 #endif
3394 	int newidx = 0;
3395 
3396 	ttesz = TTE_CSZ(ttep);
3397 
3398 	ASSERT(ttesz > TTE8K);
3399 
3400 	npgs = TTEPAGES(ttesz);
3401 	index = PAGESZ_TO_INDEX(ttesz);
3402 
3403 	pfnum = (*pps)->p_pagenum;
3404 	ASSERT(IS_P2ALIGNED(pfnum, npgs));
3405 
3406 	/*
3407 	 * Save the first pp so we can do HAT_TMPNC at the end.
3408 	 */
3409 	pp1 = *pps;
3410 #ifdef VAC
3411 	osz = fnd_mapping_sz(pp1);
3412 #endif
3413 
3414 	for (i = 0; i < npgs; i++, pps++) {
3415 		pp = *pps;
3416 		ASSERT(PAGE_LOCKED(pp));
3417 		ASSERT(pp->p_szc >= ttesz);
3418 		ASSERT(pp->p_szc == pp1->p_szc);
3419 		ASSERT(sfmmu_mlist_held(pp));
3420 
3421 		/*
3422 		 * XXX is it possible to maintain P_RO on the root only?
3423 		 */
3424 		if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3425 			pmtx = sfmmu_page_enter(pp);
3426 			PP_CLRRO(pp);
3427 			sfmmu_page_exit(pmtx);
3428 		} else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
3429 		    !PP_ISMOD(pp)) {
3430 			pmtx = sfmmu_page_enter(pp);
3431 			if (!(PP_ISMOD(pp))) {
3432 				PP_SETRO(pp);
3433 			}
3434 			sfmmu_page_exit(pmtx);
3435 		}
3436 
3437 		/*
3438 		 * If this is a remap we skip vac & contiguity checks.
3439 		 */
3440 		if (remap)
3441 			continue;
3442 
3443 		/*
3444 		 * set p_vcolor and detect any vac conflicts.
3445 		 */
3446 #ifdef VAC
3447 		if (vac_err == 0) {
3448 			vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
3449 
3450 		}
3451 #endif
3452 
3453 		/*
3454 		 * Save current index in case we need to undo it.
3455 		 * Note: "PAGESZ_TO_INDEX(sz)	(1 << (sz))"
3456 		 *	"SFMMU_INDEX_SHIFT	6"
3457 		 *	 "SFMMU_INDEX_MASK	((1 << SFMMU_INDEX_SHIFT) - 1)"
3458 		 *	 "PP_MAPINDEX(p_index)	(p_index & SFMMU_INDEX_MASK)"
3459 		 *
3460 		 * So:	index = PAGESZ_TO_INDEX(ttesz);
3461 		 *	if ttesz == 1 then index = 0x2
3462 		 *		    2 then index = 0x4
3463 		 *		    3 then index = 0x8
3464 		 *		    4 then index = 0x10
3465 		 *		    5 then index = 0x20
3466 		 * The code below checks if it's a new pagesize (ie, newidx)
3467 		 * in case we need to take it back out of p_index,
3468 		 * and then or's the new index into the existing index.
3469 		 */
3470 		if ((PP_MAPINDEX(pp) & index) == 0)
3471 			newidx = 1;
3472 		pp->p_index = (PP_MAPINDEX(pp) | index);
3473 
3474 		/*
3475 		 * contiguity check
3476 		 */
3477 		if (pp->p_pagenum != pfnum) {
3478 			/*
3479 			 * If we fail the contiguity test then
3480 			 * the only thing we need to fix is the p_index field.
3481 			 * We might get a few extra flushes but since this
3482 			 * path is rare that is ok.  The p_ro field will
3483 			 * get automatically fixed on the next tteload to
3484 			 * the page.  NO TNC bit is set yet.
3485 			 */
3486 			while (i >= 0) {
3487 				pp = *pps;
3488 				if (newidx)
3489 					pp->p_index = (PP_MAPINDEX(pp) &
3490 					    ~index);
3491 				pps--;
3492 				i--;
3493 			}
3494 			return (1);
3495 		}
3496 		pfnum++;
3497 		addr += MMU_PAGESIZE;
3498 	}
3499 
3500 #ifdef VAC
3501 	if (vac_err) {
3502 		if (ttesz > osz) {
3503 			/*
3504 			 * There are some smaller mappings that causes vac
3505 			 * conflicts. Convert all existing small mappings to
3506 			 * TNC.
3507 			 */
3508 			SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
3509 			sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
3510 			    npgs);
3511 		} else {
3512 			/* EMPTY */
3513 			/*
3514 			 * If there exists an big page mapping,
3515 			 * that means the whole existing big page
3516 			 * has TNC setting already. No need to covert to
3517 			 * TNC again.
3518 			 */
3519 			ASSERT(PP_ISTNC(pp1));
3520 		}
3521 	}
3522 #endif	/* VAC */
3523 
3524 	return (0);
3525 }
3526 
3527 #ifdef VAC
3528 /*
3529  * Routine that detects vac consistency for a large page. It also
3530  * sets virtual color for all pp's for this big mapping.
3531  */
3532 static int
3533 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
3534 {
3535 	int vcolor, ocolor;
3536 
3537 	ASSERT(sfmmu_mlist_held(pp));
3538 
3539 	if (PP_ISNC(pp)) {
3540 		return (HAT_TMPNC);
3541 	}
3542 
3543 	vcolor = addr_to_vcolor(addr);
3544 	if (PP_NEWPAGE(pp)) {
3545 		PP_SET_VCOLOR(pp, vcolor);
3546 		return (0);
3547 	}
3548 
3549 	ocolor = PP_GET_VCOLOR(pp);
3550 	if (ocolor == vcolor) {
3551 		return (0);
3552 	}
3553 
3554 	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
3555 		/*
3556 		 * Previous user of page had a differnet color
3557 		 * but since there are no current users
3558 		 * we just flush the cache and change the color.
3559 		 * As an optimization for large pages we flush the
3560 		 * entire cache of that color and set a flag.
3561 		 */
3562 		SFMMU_STAT(sf_pgcolor_conflict);
3563 		if (!CacheColor_IsFlushed(*cflags, ocolor)) {
3564 			CacheColor_SetFlushed(*cflags, ocolor);
3565 			sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
3566 		}
3567 		PP_SET_VCOLOR(pp, vcolor);
3568 		return (0);
3569 	}
3570 
3571 	/*
3572 	 * We got a real conflict with a current mapping.
3573 	 * set flags to start unencaching all mappings
3574 	 * and return failure so we restart looping
3575 	 * the pp array from the beginning.
3576 	 */
3577 	return (HAT_TMPNC);
3578 }
3579 #endif	/* VAC */
3580 
3581 /*
3582  * creates a large page shadow hmeblk for a tte.
3583  * The purpose of this routine is to allow us to do quick unloads because
3584  * the vm layer can easily pass a very large but sparsely populated range.
3585  */
3586 static struct hme_blk *
3587 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
3588 {
3589 	struct hmehash_bucket *hmebp;
3590 	hmeblk_tag hblktag;
3591 	int hmeshift, size, vshift;
3592 	uint_t shw_mask, newshw_mask;
3593 	struct hme_blk *hmeblkp;
3594 
3595 	ASSERT(sfmmup != KHATID);
3596 	if (mmu_page_sizes == max_mmu_page_sizes) {
3597 		ASSERT(ttesz < TTE256M);
3598 	} else {
3599 		ASSERT(ttesz < TTE4M);
3600 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
3601 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
3602 	}
3603 
3604 	if (ttesz == TTE8K) {
3605 		size = TTE512K;
3606 	} else {
3607 		size = ++ttesz;
3608 	}
3609 
3610 	hblktag.htag_id = sfmmup;
3611 	hmeshift = HME_HASH_SHIFT(size);
3612 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
3613 	hblktag.htag_rehash = HME_HASH_REHASH(size);
3614 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3615 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
3616 
3617 	SFMMU_HASH_LOCK(hmebp);
3618 
3619 	HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3620 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
3621 	if (hmeblkp == NULL) {
3622 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3623 		    hblktag, flags, SFMMU_INVALID_SHMERID);
3624 	}
3625 	ASSERT(hmeblkp);
3626 	if (!hmeblkp->hblk_shw_mask) {
3627 		/*
3628 		 * if this is a unused hblk it was just allocated or could
3629 		 * potentially be a previous large page hblk so we need to
3630 		 * set the shadow bit.
3631 		 */
3632 		ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3633 		hmeblkp->hblk_shw_bit = 1;
3634 	} else if (hmeblkp->hblk_shw_bit == 0) {
3635 		panic("sfmmu_shadow_hcreate: shw bit not set in hmeblkp 0x%p",
3636 		    (void *)hmeblkp);
3637 	}
3638 	ASSERT(hmeblkp->hblk_shw_bit == 1);
3639 	ASSERT(!hmeblkp->hblk_shared);
3640 	vshift = vaddr_to_vshift(hblktag, vaddr, size);
3641 	ASSERT(vshift < 8);
3642 	/*
3643 	 * Atomically set shw mask bit
3644 	 */
3645 	do {
3646 		shw_mask = hmeblkp->hblk_shw_mask;
3647 		newshw_mask = shw_mask | (1 << vshift);
3648 		newshw_mask = atomic_cas_32(&hmeblkp->hblk_shw_mask, shw_mask,
3649 		    newshw_mask);
3650 	} while (newshw_mask != shw_mask);
3651 
3652 	SFMMU_HASH_UNLOCK(hmebp);
3653 
3654 	return (hmeblkp);
3655 }
3656 
3657 /*
3658  * This routine cleanup a previous shadow hmeblk and changes it to
3659  * a regular hblk.  This happens rarely but it is possible
3660  * when a process wants to use large pages and there are hblks still
3661  * lying around from the previous as that used these hmeblks.
3662  * The alternative was to cleanup the shadow hblks at unload time
3663  * but since so few user processes actually use large pages, it is
3664  * better to be lazy and cleanup at this time.
3665  */
3666 static void
3667 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
3668 	struct hmehash_bucket *hmebp)
3669 {
3670 	caddr_t addr, endaddr;
3671 	int hashno, size;
3672 
3673 	ASSERT(hmeblkp->hblk_shw_bit);
3674 	ASSERT(!hmeblkp->hblk_shared);
3675 
3676 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3677 
3678 	if (!hmeblkp->hblk_shw_mask) {
3679 		hmeblkp->hblk_shw_bit = 0;
3680 		return;
3681 	}
3682 	addr = (caddr_t)get_hblk_base(hmeblkp);
3683 	endaddr = get_hblk_endaddr(hmeblkp);
3684 	size = get_hblk_ttesz(hmeblkp);
3685 	hashno = size - 1;
3686 	ASSERT(hashno > 0);
3687 	SFMMU_HASH_UNLOCK(hmebp);
3688 
3689 	sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
3690 
3691 	SFMMU_HASH_LOCK(hmebp);
3692 }
3693 
3694 static void
3695 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
3696 	int hashno)
3697 {
3698 	int hmeshift, shadow = 0;
3699 	hmeblk_tag hblktag;
3700 	struct hmehash_bucket *hmebp;
3701 	struct hme_blk *hmeblkp;
3702 	struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
3703 
3704 	ASSERT(hashno > 0);
3705 	hblktag.htag_id = sfmmup;
3706 	hblktag.htag_rehash = hashno;
3707 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3708 
3709 	hmeshift = HME_HASH_SHIFT(hashno);
3710 
3711 	while (addr < endaddr) {
3712 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3713 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3714 		SFMMU_HASH_LOCK(hmebp);
3715 		/* inline HME_HASH_SEARCH */
3716 		hmeblkp = hmebp->hmeblkp;
3717 		pr_hblk = NULL;
3718 		while (hmeblkp) {
3719 			if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
3720 				/* found hme_blk */
3721 				ASSERT(!hmeblkp->hblk_shared);
3722 				if (hmeblkp->hblk_shw_bit) {
3723 					if (hmeblkp->hblk_shw_mask) {
3724 						shadow = 1;
3725 						sfmmu_shadow_hcleanup(sfmmup,
3726 						    hmeblkp, hmebp);
3727 						break;
3728 					} else {
3729 						hmeblkp->hblk_shw_bit = 0;
3730 					}
3731 				}
3732 
3733 				/*
3734 				 * Hblk_hmecnt and hblk_vcnt could be non zero
3735 				 * since hblk_unload() does not gurantee that.
3736 				 *
3737 				 * XXX - this could cause tteload() to spin
3738 				 * where sfmmu_shadow_hcleanup() is called.
3739 				 */
3740 			}
3741 
3742 			nx_hblk = hmeblkp->hblk_next;
3743 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
3744 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3745 				    &list, 0);
3746 			} else {
3747 				pr_hblk = hmeblkp;
3748 			}
3749 			hmeblkp = nx_hblk;
3750 		}
3751 
3752 		SFMMU_HASH_UNLOCK(hmebp);
3753 
3754 		if (shadow) {
3755 			/*
3756 			 * We found another shadow hblk so cleaned its
3757 			 * children.  We need to go back and cleanup
3758 			 * the original hblk so we don't change the
3759 			 * addr.
3760 			 */
3761 			shadow = 0;
3762 		} else {
3763 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
3764 			    (1 << hmeshift));
3765 		}
3766 	}
3767 	sfmmu_hblks_list_purge(&list, 0);
3768 }
3769 
3770 /*
3771  * This routine's job is to delete stale invalid shared hmeregions hmeblks that
3772  * may still linger on after pageunload.
3773  */
3774 static void
3775 sfmmu_cleanup_rhblk(sf_srd_t *srdp, caddr_t addr, uint_t rid, int ttesz)
3776 {
3777 	int hmeshift;
3778 	hmeblk_tag hblktag;
3779 	struct hmehash_bucket *hmebp;
3780 	struct hme_blk *hmeblkp;
3781 	struct hme_blk *pr_hblk;
3782 	struct hme_blk *list = NULL;
3783 
3784 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3785 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3786 
3787 	hmeshift = HME_HASH_SHIFT(ttesz);
3788 	hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3789 	hblktag.htag_rehash = ttesz;
3790 	hblktag.htag_rid = rid;
3791 	hblktag.htag_id = srdp;
3792 	hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3793 
3794 	SFMMU_HASH_LOCK(hmebp);
3795 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
3796 	if (hmeblkp != NULL) {
3797 		ASSERT(hmeblkp->hblk_shared);
3798 		ASSERT(!hmeblkp->hblk_shw_bit);
3799 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3800 			panic("sfmmu_cleanup_rhblk: valid hmeblk");
3801 		}
3802 		ASSERT(!hmeblkp->hblk_lckcnt);
3803 		sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3804 		    &list, 0);
3805 	}
3806 	SFMMU_HASH_UNLOCK(hmebp);
3807 	sfmmu_hblks_list_purge(&list, 0);
3808 }
3809 
3810 /* ARGSUSED */
3811 static void
3812 sfmmu_rgn_cb_noop(caddr_t saddr, caddr_t eaddr, caddr_t r_saddr,
3813     size_t r_size, void *r_obj, u_offset_t r_objoff)
3814 {
3815 }
3816 
3817 /*
3818  * Searches for an hmeblk which maps addr, then unloads this mapping
3819  * and updates *eaddrp, if the hmeblk is found.
3820  */
3821 static void
3822 sfmmu_unload_hmeregion_va(sf_srd_t *srdp, uint_t rid, caddr_t addr,
3823     caddr_t eaddr, int ttesz, caddr_t *eaddrp)
3824 {
3825 	int hmeshift;
3826 	hmeblk_tag hblktag;
3827 	struct hmehash_bucket *hmebp;
3828 	struct hme_blk *hmeblkp;
3829 	struct hme_blk *pr_hblk;
3830 	struct hme_blk *list = NULL;
3831 
3832 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3833 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3834 	ASSERT(ttesz >= HBLK_MIN_TTESZ);
3835 
3836 	hmeshift = HME_HASH_SHIFT(ttesz);
3837 	hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3838 	hblktag.htag_rehash = ttesz;
3839 	hblktag.htag_rid = rid;
3840 	hblktag.htag_id = srdp;
3841 	hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3842 
3843 	SFMMU_HASH_LOCK(hmebp);
3844 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
3845 	if (hmeblkp != NULL) {
3846 		ASSERT(hmeblkp->hblk_shared);
3847 		ASSERT(!hmeblkp->hblk_lckcnt);
3848 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3849 			*eaddrp = sfmmu_hblk_unload(NULL, hmeblkp, addr,
3850 			    eaddr, NULL, HAT_UNLOAD);
3851 			ASSERT(*eaddrp > addr);
3852 		}
3853 		ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3854 		sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3855 		    &list, 0);
3856 	}
3857 	SFMMU_HASH_UNLOCK(hmebp);
3858 	sfmmu_hblks_list_purge(&list, 0);
3859 }
3860 
3861 static void
3862 sfmmu_unload_hmeregion(sf_srd_t *srdp, sf_region_t *rgnp)
3863 {
3864 	int ttesz = rgnp->rgn_pgszc;
3865 	size_t rsz = rgnp->rgn_size;
3866 	caddr_t rsaddr = rgnp->rgn_saddr;
3867 	caddr_t readdr = rsaddr + rsz;
3868 	caddr_t rhsaddr;
3869 	caddr_t va;
3870 	uint_t rid = rgnp->rgn_id;
3871 	caddr_t cbsaddr;
3872 	caddr_t cbeaddr;
3873 	hat_rgn_cb_func_t rcbfunc;
3874 	ulong_t cnt;
3875 
3876 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3877 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3878 
3879 	ASSERT(IS_P2ALIGNED(rsaddr, TTEBYTES(ttesz)));
3880 	ASSERT(IS_P2ALIGNED(rsz, TTEBYTES(ttesz)));
3881 	if (ttesz < HBLK_MIN_TTESZ) {
3882 		ttesz = HBLK_MIN_TTESZ;
3883 		rhsaddr = (caddr_t)P2ALIGN((uintptr_t)rsaddr, HBLK_MIN_BYTES);
3884 	} else {
3885 		rhsaddr = rsaddr;
3886 	}
3887 
3888 	if ((rcbfunc = rgnp->rgn_cb_function) == NULL) {
3889 		rcbfunc = sfmmu_rgn_cb_noop;
3890 	}
3891 
3892 	while (ttesz >= HBLK_MIN_TTESZ) {
3893 		cbsaddr = rsaddr;
3894 		cbeaddr = rsaddr;
3895 		if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
3896 			ttesz--;
3897 			continue;
3898 		}
3899 		cnt = 0;
3900 		va = rsaddr;
3901 		while (va < readdr) {
3902 			ASSERT(va >= rhsaddr);
3903 			if (va != cbeaddr) {
3904 				if (cbeaddr != cbsaddr) {
3905 					ASSERT(cbeaddr > cbsaddr);
3906 					(*rcbfunc)(cbsaddr, cbeaddr,
3907 					    rsaddr, rsz, rgnp->rgn_obj,
3908 					    rgnp->rgn_objoff);
3909 				}
3910 				cbsaddr = va;
3911 				cbeaddr = va;
3912 			}
3913 			sfmmu_unload_hmeregion_va(srdp, rid, va, readdr,
3914 			    ttesz, &cbeaddr);
3915 			cnt++;
3916 			va = rhsaddr + (cnt << TTE_PAGE_SHIFT(ttesz));
3917 		}
3918 		if (cbeaddr != cbsaddr) {
3919 			ASSERT(cbeaddr > cbsaddr);
3920 			(*rcbfunc)(cbsaddr, cbeaddr, rsaddr,
3921 			    rsz, rgnp->rgn_obj,
3922 			    rgnp->rgn_objoff);
3923 		}
3924 		ttesz--;
3925 	}
3926 }
3927 
3928 /*
3929  * Release one hardware address translation lock on the given address range.
3930  */
3931 void
3932 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
3933 {
3934 	struct hmehash_bucket *hmebp;
3935 	hmeblk_tag hblktag;
3936 	int hmeshift, hashno = 1;
3937 	struct hme_blk *hmeblkp, *list = NULL;
3938 	caddr_t endaddr;
3939 
3940 	ASSERT(sfmmup != NULL);
3941 
3942 	ASSERT((sfmmup == ksfmmup) || AS_LOCK_HELD(sfmmup->sfmmu_as));
3943 	ASSERT((len & MMU_PAGEOFFSET) == 0);
3944 	endaddr = addr + len;
3945 	hblktag.htag_id = sfmmup;
3946 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3947 
3948 	/*
3949 	 * Spitfire supports 4 page sizes.
3950 	 * Most pages are expected to be of the smallest page size (8K) and
3951 	 * these will not need to be rehashed. 64K pages also don't need to be
3952 	 * rehashed because an hmeblk spans 64K of address space. 512K pages
3953 	 * might need 1 rehash and and 4M pages might need 2 rehashes.
3954 	 */
3955 	while (addr < endaddr) {
3956 		hmeshift = HME_HASH_SHIFT(hashno);
3957 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3958 		hblktag.htag_rehash = hashno;
3959 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3960 
3961 		SFMMU_HASH_LOCK(hmebp);
3962 
3963 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3964 		if (hmeblkp != NULL) {
3965 			ASSERT(!hmeblkp->hblk_shared);
3966 			/*
3967 			 * If we encounter a shadow hmeblk then
3968 			 * we know there are no valid hmeblks mapping
3969 			 * this address at this size or larger.
3970 			 * Just increment address by the smallest
3971 			 * page size.
3972 			 */
3973 			if (hmeblkp->hblk_shw_bit) {
3974 				addr += MMU_PAGESIZE;
3975 			} else {
3976 				addr = sfmmu_hblk_unlock(hmeblkp, addr,
3977 				    endaddr);
3978 			}
3979 			SFMMU_HASH_UNLOCK(hmebp);
3980 			hashno = 1;
3981 			continue;
3982 		}
3983 		SFMMU_HASH_UNLOCK(hmebp);
3984 
3985 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
3986 			/*
3987 			 * We have traversed the whole list and rehashed
3988 			 * if necessary without finding the address to unlock
3989 			 * which should never happen.
3990 			 */
3991 			panic("sfmmu_unlock: addr not found. "
3992 			    "addr %p hat %p", (void *)addr, (void *)sfmmup);
3993 		} else {
3994 			hashno++;
3995 		}
3996 	}
3997 
3998 	sfmmu_hblks_list_purge(&list, 0);
3999 }
4000 
4001 void
4002 hat_unlock_region(struct hat *sfmmup, caddr_t addr, size_t len,
4003     hat_region_cookie_t rcookie)
4004 {
4005 	sf_srd_t *srdp;
4006 	sf_region_t *rgnp;
4007 	int ttesz;
4008 	uint_t rid;
4009 	caddr_t eaddr;
4010 	caddr_t va;
4011 	int hmeshift;
4012 	hmeblk_tag hblktag;
4013 	struct hmehash_bucket *hmebp;
4014 	struct hme_blk *hmeblkp;
4015 	struct hme_blk *pr_hblk;
4016 	struct hme_blk *list;
4017 
4018 	if (rcookie == HAT_INVALID_REGION_COOKIE) {
4019 		hat_unlock(sfmmup, addr, len);
4020 		return;
4021 	}
4022 
4023 	ASSERT(sfmmup != NULL);
4024 	ASSERT(sfmmup != ksfmmup);
4025 
4026 	srdp = sfmmup->sfmmu_srdp;
4027 	rid = (uint_t)((uint64_t)rcookie);
4028 	VERIFY3U(rid, <, SFMMU_MAX_HME_REGIONS);
4029 	eaddr = addr + len;
4030 	va = addr;
4031 	list = NULL;
4032 	rgnp = srdp->srd_hmergnp[rid];
4033 	SFMMU_VALIDATE_HMERID(sfmmup, rid, addr, len);
4034 
4035 	ASSERT(IS_P2ALIGNED(addr, TTEBYTES(rgnp->rgn_pgszc)));
4036 	ASSERT(IS_P2ALIGNED(len, TTEBYTES(rgnp->rgn_pgszc)));
4037 	if (rgnp->rgn_pgszc < HBLK_MIN_TTESZ) {
4038 		ttesz = HBLK_MIN_TTESZ;
4039 	} else {
4040 		ttesz = rgnp->rgn_pgszc;
4041 	}
4042 	while (va < eaddr) {
4043 		while (ttesz < rgnp->rgn_pgszc &&
4044 		    IS_P2ALIGNED(va, TTEBYTES(ttesz + 1))) {
4045 			ttesz++;
4046 		}
4047 		while (ttesz >= HBLK_MIN_TTESZ) {
4048 			if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
4049 				ttesz--;
4050 				continue;
4051 			}
4052 			hmeshift = HME_HASH_SHIFT(ttesz);
4053 			hblktag.htag_bspage = HME_HASH_BSPAGE(va, hmeshift);
4054 			hblktag.htag_rehash = ttesz;
4055 			hblktag.htag_rid = rid;
4056 			hblktag.htag_id = srdp;
4057 			hmebp = HME_HASH_FUNCTION(srdp, va, hmeshift);
4058 			SFMMU_HASH_LOCK(hmebp);
4059 			HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk,
4060 			    &list);
4061 			if (hmeblkp == NULL) {
4062 				SFMMU_HASH_UNLOCK(hmebp);
4063 				ttesz--;
4064 				continue;
4065 			}
4066 			ASSERT(hmeblkp->hblk_shared);
4067 			va = sfmmu_hblk_unlock(hmeblkp, va, eaddr);
4068 			ASSERT(va >= eaddr ||
4069 			    IS_P2ALIGNED((uintptr_t)va, TTEBYTES(ttesz)));
4070 			SFMMU_HASH_UNLOCK(hmebp);
4071 			break;
4072 		}
4073 		if (ttesz < HBLK_MIN_TTESZ) {
4074 			panic("hat_unlock_region: addr not found "
4075 			    "addr %p hat %p", (void *)va, (void *)sfmmup);
4076 		}
4077 	}
4078 	sfmmu_hblks_list_purge(&list, 0);
4079 }
4080 
4081 /*
4082  * Function to unlock a range of addresses in an hmeblk.  It returns the
4083  * next address that needs to be unlocked.
4084  * Should be called with the hash lock held.
4085  */
4086 static caddr_t
4087 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
4088 {
4089 	struct sf_hment *sfhme;
4090 	tte_t tteold, ttemod;
4091 	int ttesz, ret;
4092 
4093 	ASSERT(in_hblk_range(hmeblkp, addr));
4094 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4095 
4096 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4097 	ttesz = get_hblk_ttesz(hmeblkp);
4098 
4099 	HBLKTOHME(sfhme, hmeblkp, addr);
4100 	while (addr < endaddr) {
4101 readtte:
4102 		sfmmu_copytte(&sfhme->hme_tte, &tteold);
4103 		if (TTE_IS_VALID(&tteold)) {
4104 
4105 			ttemod = tteold;
4106 
4107 			ret = sfmmu_modifytte_try(&tteold, &ttemod,
4108 			    &sfhme->hme_tte);
4109 
4110 			if (ret < 0)
4111 				goto readtte;
4112 
4113 			if (hmeblkp->hblk_lckcnt == 0)
4114 				panic("zero hblk lckcnt");
4115 
4116 			if (((uintptr_t)addr + TTEBYTES(ttesz)) >
4117 			    (uintptr_t)endaddr)
4118 				panic("can't unlock large tte");
4119 
4120 			ASSERT(hmeblkp->hblk_lckcnt > 0);
4121 			atomic_dec_32(&hmeblkp->hblk_lckcnt);
4122 			HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
4123 		} else {
4124 			panic("sfmmu_hblk_unlock: invalid tte");
4125 		}
4126 		addr += TTEBYTES(ttesz);
4127 		sfhme++;
4128 	}
4129 	return (addr);
4130 }
4131 
4132 /*
4133  * Physical Address Mapping Framework
4134  *
4135  * General rules:
4136  *
4137  * (1) Applies only to seg_kmem memory pages. To make things easier,
4138  *     seg_kpm addresses are also accepted by the routines, but nothing
4139  *     is done with them since by definition their PA mappings are static.
4140  * (2) hat_add_callback() may only be called while holding the page lock
4141  *     SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()),
4142  *     or passing HAC_PAGELOCK flag.
4143  * (3) prehandler() and posthandler() may not call hat_add_callback() or
4144  *     hat_delete_callback(), nor should they allocate memory. Post quiesce
4145  *     callbacks may not sleep or acquire adaptive mutex locks.
4146  * (4) Either prehandler() or posthandler() (but not both) may be specified
4147  *     as being NULL.  Specifying an errhandler() is optional.
4148  *
4149  * Details of using the framework:
4150  *
4151  * registering a callback (hat_register_callback())
4152  *
4153  *	Pass prehandler, posthandler, errhandler addresses
4154  *	as described below. If capture_cpus argument is nonzero,
4155  *	suspend callback to the prehandler will occur with CPUs
4156  *	captured and executing xc_loop() and CPUs will remain
4157  *	captured until after the posthandler suspend callback
4158  *	occurs.
4159  *
4160  * adding a callback (hat_add_callback())
4161  *
4162  *      as_pagelock();
4163  *	hat_add_callback();
4164  *      save returned pfn in private data structures or program registers;
4165  *      as_pageunlock();
4166  *
4167  * prehandler()
4168  *
4169  *	Stop all accesses by physical address to this memory page.
4170  *	Called twice: the first, PRESUSPEND, is a context safe to acquire
4171  *	adaptive locks. The second, SUSPEND, is called at high PIL with
4172  *	CPUs captured so adaptive locks may NOT be acquired (and all spin
4173  *	locks must be XCALL_PIL or higher locks).
4174  *
4175  *	May return the following errors:
4176  *		EIO:	A fatal error has occurred. This will result in panic.
4177  *		EAGAIN:	The page cannot be suspended. This will fail the
4178  *			relocation.
4179  *		0:	Success.
4180  *
4181  * posthandler()
4182  *
4183  *      Save new pfn in private data structures or program registers;
4184  *	not allowed to fail (non-zero return values will result in panic).
4185  *
4186  * errhandler()
4187  *
4188  *	called when an error occurs related to the callback.  Currently
4189  *	the only such error is HAT_CB_ERR_LEAKED which indicates that
4190  *	a page is being freed, but there are still outstanding callback(s)
4191  *	registered on the page.
4192  *
4193  * removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
4194  *
4195  *	stop using physical address
4196  *	hat_delete_callback();
4197  *
4198  */
4199 
4200 /*
4201  * Register a callback class.  Each subsystem should do this once and
4202  * cache the id_t returned for use in setting up and tearing down callbacks.
4203  *
4204  * There is no facility for removing callback IDs once they are created;
4205  * the "key" should be unique for each module, so in case a module is unloaded
4206  * and subsequently re-loaded, we can recycle the module's previous entry.
4207  */
4208 id_t
4209 hat_register_callback(int key,
4210 	int (*prehandler)(caddr_t, uint_t, uint_t, void *),
4211 	int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
4212 	int (*errhandler)(caddr_t, uint_t, uint_t, void *),
4213 	int capture_cpus)
4214 {
4215 	id_t id;
4216 
4217 	/*
4218 	 * Search the table for a pre-existing callback associated with
4219 	 * the identifier "key".  If one exists, we re-use that entry in
4220 	 * the table for this instance, otherwise we assign the next
4221 	 * available table slot.
4222 	 */
4223 	for (id = 0; id < sfmmu_max_cb_id; id++) {
4224 		if (sfmmu_cb_table[id].key == key)
4225 			break;
4226 	}
4227 
4228 	if (id == sfmmu_max_cb_id) {
4229 		id = sfmmu_cb_nextid++;
4230 		if (id >= sfmmu_max_cb_id)
4231 			panic("hat_register_callback: out of callback IDs");
4232 	}
4233 
4234 	ASSERT(prehandler != NULL || posthandler != NULL);
4235 
4236 	sfmmu_cb_table[id].key = key;
4237 	sfmmu_cb_table[id].prehandler = prehandler;
4238 	sfmmu_cb_table[id].posthandler = posthandler;
4239 	sfmmu_cb_table[id].errhandler = errhandler;
4240 	sfmmu_cb_table[id].capture_cpus = capture_cpus;
4241 
4242 	return (id);
4243 }
4244 
4245 #define	HAC_COOKIE_NONE	(void *)-1
4246 
4247 /*
4248  * Add relocation callbacks to the specified addr/len which will be called
4249  * when relocating the associated page. See the description of pre and
4250  * posthandler above for more details.
4251  *
4252  * If HAC_PAGELOCK is included in flags, the underlying memory page is
4253  * locked internally so the caller must be able to deal with the callback
4254  * running even before this function has returned.  If HAC_PAGELOCK is not
4255  * set, it is assumed that the underlying memory pages are locked.
4256  *
4257  * Since the caller must track the individual page boundaries anyway,
4258  * we only allow a callback to be added to a single page (large
4259  * or small).  Thus [addr, addr + len) MUST be contained within a single
4260  * page.
4261  *
4262  * Registering multiple callbacks on the same [addr, addr+len) is supported,
4263  * _provided_that_ a unique parameter is specified for each callback.
4264  * If multiple callbacks are registered on the same range the callback will
4265  * be invoked with each unique parameter. Registering the same callback with
4266  * the same argument more than once will result in corrupted kernel state.
4267  *
4268  * Returns the pfn of the underlying kernel page in *rpfn
4269  * on success, or PFN_INVALID on failure.
4270  *
4271  * cookiep (if passed) provides storage space for an opaque cookie
4272  * to return later to hat_delete_callback(). This cookie makes the callback
4273  * deletion significantly quicker by avoiding a potentially lengthy hash
4274  * search.
4275  *
4276  * Returns values:
4277  *    0:      success
4278  *    ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
4279  *    EINVAL: callback ID is not valid
4280  *    ENXIO:  ["vaddr", "vaddr" + len) is not mapped in the kernel's address
4281  *            space
4282  *    ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary
4283  */
4284 int
4285 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
4286 	void *pvt, pfn_t *rpfn, void **cookiep)
4287 {
4288 	struct 		hmehash_bucket *hmebp;
4289 	hmeblk_tag 	hblktag;
4290 	struct hme_blk	*hmeblkp;
4291 	int 		hmeshift, hashno;
4292 	caddr_t 	saddr, eaddr, baseaddr;
4293 	struct pa_hment *pahmep;
4294 	struct sf_hment *sfhmep, *osfhmep;
4295 	kmutex_t	*pml;
4296 	tte_t   	tte;
4297 	page_t		*pp;
4298 	vnode_t		*vp;
4299 	u_offset_t	off;
4300 	pfn_t		pfn;
4301 	int		kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
4302 	int		locked = 0;
4303 
4304 	/*
4305 	 * For KPM mappings, just return the physical address since we
4306 	 * don't need to register any callbacks.
4307 	 */
4308 	if (IS_KPM_ADDR(vaddr)) {
4309 		uint64_t paddr;
4310 		SFMMU_KPM_VTOP(vaddr, paddr);
4311 		*rpfn = btop(paddr);
4312 		if (cookiep != NULL)
4313 			*cookiep = HAC_COOKIE_NONE;
4314 		return (0);
4315 	}
4316 
4317 	if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
4318 		*rpfn = PFN_INVALID;
4319 		return (EINVAL);
4320 	}
4321 
4322 	if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
4323 		*rpfn = PFN_INVALID;
4324 		return (ENOMEM);
4325 	}
4326 
4327 	sfhmep = &pahmep->sfment;
4328 
4329 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4330 	eaddr = saddr + len;
4331 
4332 rehash:
4333 	/* Find the mapping(s) for this page */
4334 	for (hashno = TTE64K, hmeblkp = NULL;
4335 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
4336 	    hashno++) {
4337 		hmeshift = HME_HASH_SHIFT(hashno);
4338 		hblktag.htag_id = ksfmmup;
4339 		hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4340 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4341 		hblktag.htag_rehash = hashno;
4342 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4343 
4344 		SFMMU_HASH_LOCK(hmebp);
4345 
4346 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4347 
4348 		if (hmeblkp == NULL)
4349 			SFMMU_HASH_UNLOCK(hmebp);
4350 	}
4351 
4352 	if (hmeblkp == NULL) {
4353 		kmem_cache_free(pa_hment_cache, pahmep);
4354 		*rpfn = PFN_INVALID;
4355 		return (ENXIO);
4356 	}
4357 
4358 	ASSERT(!hmeblkp->hblk_shared);
4359 
4360 	HBLKTOHME(osfhmep, hmeblkp, saddr);
4361 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
4362 
4363 	if (!TTE_IS_VALID(&tte)) {
4364 		SFMMU_HASH_UNLOCK(hmebp);
4365 		kmem_cache_free(pa_hment_cache, pahmep);
4366 		*rpfn = PFN_INVALID;
4367 		return (ENXIO);
4368 	}
4369 
4370 	/*
4371 	 * Make sure the boundaries for the callback fall within this
4372 	 * single mapping.
4373 	 */
4374 	baseaddr = (caddr_t)get_hblk_base(hmeblkp);
4375 	ASSERT(saddr >= baseaddr);
4376 	if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) {
4377 		SFMMU_HASH_UNLOCK(hmebp);
4378 		kmem_cache_free(pa_hment_cache, pahmep);
4379 		*rpfn = PFN_INVALID;
4380 		return (ERANGE);
4381 	}
4382 
4383 	pfn = sfmmu_ttetopfn(&tte, vaddr);
4384 
4385 	/*
4386 	 * The pfn may not have a page_t underneath in which case we
4387 	 * just return it. This can happen if we are doing I/O to a
4388 	 * static portion of the kernel's address space, for instance.
4389 	 */
4390 	pp = osfhmep->hme_page;
4391 	if (pp == NULL) {
4392 		SFMMU_HASH_UNLOCK(hmebp);
4393 		kmem_cache_free(pa_hment_cache, pahmep);
4394 		*rpfn = pfn;
4395 		if (cookiep)
4396 			*cookiep = HAC_COOKIE_NONE;
4397 		return (0);
4398 	}
4399 	ASSERT(pp == PP_PAGEROOT(pp));
4400 
4401 	vp = pp->p_vnode;
4402 	off = pp->p_offset;
4403 
4404 	pml = sfmmu_mlist_enter(pp);
4405 
4406 	if (flags & HAC_PAGELOCK) {
4407 		if (!page_trylock(pp, SE_SHARED)) {
4408 			/*
4409 			 * Somebody is holding SE_EXCL lock. Might
4410 			 * even be hat_page_relocate(). Drop all
4411 			 * our locks, lookup the page in &kvp, and
4412 			 * retry. If it doesn't exist in &kvp and &zvp,
4413 			 * then we must be dealing with a kernel mapped
4414 			 * page which doesn't actually belong to
4415 			 * segkmem so we punt.
4416 			 */
4417 			sfmmu_mlist_exit(pml);
4418 			SFMMU_HASH_UNLOCK(hmebp);
4419 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4420 
4421 			/* check zvp before giving up */
4422 			if (pp == NULL)
4423 				pp = page_lookup(&zvp, (u_offset_t)saddr,
4424 				    SE_SHARED);
4425 
4426 			/* Okay, we didn't find it, give up */
4427 			if (pp == NULL) {
4428 				kmem_cache_free(pa_hment_cache, pahmep);
4429 				*rpfn = pfn;
4430 				if (cookiep)
4431 					*cookiep = HAC_COOKIE_NONE;
4432 				return (0);
4433 			}
4434 			page_unlock(pp);
4435 			goto rehash;
4436 		}
4437 		locked = 1;
4438 	}
4439 
4440 	if (!PAGE_LOCKED(pp) && !panicstr)
4441 		panic("hat_add_callback: page 0x%p not locked", (void *)pp);
4442 
4443 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4444 	    pp->p_offset != off) {
4445 		/*
4446 		 * The page moved before we got our hands on it.  Drop
4447 		 * all the locks and try again.
4448 		 */
4449 		ASSERT((flags & HAC_PAGELOCK) != 0);
4450 		sfmmu_mlist_exit(pml);
4451 		SFMMU_HASH_UNLOCK(hmebp);
4452 		page_unlock(pp);
4453 		locked = 0;
4454 		goto rehash;
4455 	}
4456 
4457 	if (!VN_ISKAS(vp)) {
4458 		/*
4459 		 * This is not a segkmem page but another page which
4460 		 * has been kernel mapped. It had better have at least
4461 		 * a share lock on it. Return the pfn.
4462 		 */
4463 		sfmmu_mlist_exit(pml);
4464 		SFMMU_HASH_UNLOCK(hmebp);
4465 		if (locked)
4466 			page_unlock(pp);
4467 		kmem_cache_free(pa_hment_cache, pahmep);
4468 		ASSERT(PAGE_LOCKED(pp));
4469 		*rpfn = pfn;
4470 		if (cookiep)
4471 			*cookiep = HAC_COOKIE_NONE;
4472 		return (0);
4473 	}
4474 
4475 	/*
4476 	 * Setup this pa_hment and link its embedded dummy sf_hment into
4477 	 * the mapping list.
4478 	 */
4479 	pp->p_share++;
4480 	pahmep->cb_id = callback_id;
4481 	pahmep->addr = vaddr;
4482 	pahmep->len = len;
4483 	pahmep->refcnt = 1;
4484 	pahmep->flags = 0;
4485 	pahmep->pvt = pvt;
4486 
4487 	sfhmep->hme_tte.ll = 0;
4488 	sfhmep->hme_data = pahmep;
4489 	sfhmep->hme_prev = osfhmep;
4490 	sfhmep->hme_next = osfhmep->hme_next;
4491 
4492 	if (osfhmep->hme_next)
4493 		osfhmep->hme_next->hme_prev = sfhmep;
4494 
4495 	osfhmep->hme_next = sfhmep;
4496 
4497 	sfmmu_mlist_exit(pml);
4498 	SFMMU_HASH_UNLOCK(hmebp);
4499 
4500 	if (locked)
4501 		page_unlock(pp);
4502 
4503 	*rpfn = pfn;
4504 	if (cookiep)
4505 		*cookiep = (void *)pahmep;
4506 
4507 	return (0);
4508 }
4509 
4510 /*
4511  * Remove the relocation callbacks from the specified addr/len.
4512  */
4513 void
4514 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags,
4515 	void *cookie)
4516 {
4517 	struct		hmehash_bucket *hmebp;
4518 	hmeblk_tag	hblktag;
4519 	struct hme_blk	*hmeblkp;
4520 	int		hmeshift, hashno;
4521 	caddr_t		saddr;
4522 	struct pa_hment	*pahmep;
4523 	struct sf_hment	*sfhmep, *osfhmep;
4524 	kmutex_t	*pml;
4525 	tte_t		tte;
4526 	page_t		*pp;
4527 	vnode_t		*vp;
4528 	u_offset_t	off;
4529 	int		locked = 0;
4530 
4531 	/*
4532 	 * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to
4533 	 * remove so just return.
4534 	 */
4535 	if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr))
4536 		return;
4537 
4538 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4539 
4540 rehash:
4541 	/* Find the mapping(s) for this page */
4542 	for (hashno = TTE64K, hmeblkp = NULL;
4543 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
4544 	    hashno++) {
4545 		hmeshift = HME_HASH_SHIFT(hashno);
4546 		hblktag.htag_id = ksfmmup;
4547 		hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4548 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4549 		hblktag.htag_rehash = hashno;
4550 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4551 
4552 		SFMMU_HASH_LOCK(hmebp);
4553 
4554 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4555 
4556 		if (hmeblkp == NULL)
4557 			SFMMU_HASH_UNLOCK(hmebp);
4558 	}
4559 
4560 	if (hmeblkp == NULL)
4561 		return;
4562 
4563 	ASSERT(!hmeblkp->hblk_shared);
4564 
4565 	HBLKTOHME(osfhmep, hmeblkp, saddr);
4566 
4567 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
4568 	if (!TTE_IS_VALID(&tte)) {
4569 		SFMMU_HASH_UNLOCK(hmebp);
4570 		return;
4571 	}
4572 
4573 	pp = osfhmep->hme_page;
4574 	if (pp == NULL) {
4575 		SFMMU_HASH_UNLOCK(hmebp);
4576 		ASSERT(cookie == NULL);
4577 		return;
4578 	}
4579 
4580 	vp = pp->p_vnode;
4581 	off = pp->p_offset;
4582 
4583 	pml = sfmmu_mlist_enter(pp);
4584 
4585 	if (flags & HAC_PAGELOCK) {
4586 		if (!page_trylock(pp, SE_SHARED)) {
4587 			/*
4588 			 * Somebody is holding SE_EXCL lock. Might
4589 			 * even be hat_page_relocate(). Drop all
4590 			 * our locks, lookup the page in &kvp, and
4591 			 * retry. If it doesn't exist in &kvp and &zvp,
4592 			 * then we must be dealing with a kernel mapped
4593 			 * page which doesn't actually belong to
4594 			 * segkmem so we punt.
4595 			 */
4596 			sfmmu_mlist_exit(pml);
4597 			SFMMU_HASH_UNLOCK(hmebp);
4598 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4599 			/* check zvp before giving up */
4600 			if (pp == NULL)
4601 				pp = page_lookup(&zvp, (u_offset_t)saddr,
4602 				    SE_SHARED);
4603 
4604 			if (pp == NULL) {
4605 				ASSERT(cookie == NULL);
4606 				return;
4607 			}
4608 			page_unlock(pp);
4609 			goto rehash;
4610 		}
4611 		locked = 1;
4612 	}
4613 
4614 	ASSERT(PAGE_LOCKED(pp));
4615 
4616 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4617 	    pp->p_offset != off) {
4618 		/*
4619 		 * The page moved before we got our hands on it.  Drop
4620 		 * all the locks and try again.
4621 		 */
4622 		ASSERT((flags & HAC_PAGELOCK) != 0);
4623 		sfmmu_mlist_exit(pml);
4624 		SFMMU_HASH_UNLOCK(hmebp);
4625 		page_unlock(pp);
4626 		locked = 0;
4627 		goto rehash;
4628 	}
4629 
4630 	if (!VN_ISKAS(vp)) {
4631 		/*
4632 		 * This is not a segkmem page but another page which
4633 		 * has been kernel mapped.
4634 		 */
4635 		sfmmu_mlist_exit(pml);
4636 		SFMMU_HASH_UNLOCK(hmebp);
4637 		if (locked)
4638 			page_unlock(pp);
4639 		ASSERT(cookie == NULL);
4640 		return;
4641 	}
4642 
4643 	if (cookie != NULL) {
4644 		pahmep = (struct pa_hment *)cookie;
4645 		sfhmep = &pahmep->sfment;
4646 	} else {
4647 		for (sfhmep = pp->p_mapping; sfhmep != NULL;
4648 		    sfhmep = sfhmep->hme_next) {
4649 
4650 			/*
4651 			 * skip va<->pa mappings
4652 			 */
4653 			if (!IS_PAHME(sfhmep))
4654 				continue;
4655 
4656 			pahmep = sfhmep->hme_data;
4657 			ASSERT(pahmep != NULL);
4658 
4659 			/*
4660 			 * if pa_hment matches, remove it
4661 			 */
4662 			if ((pahmep->pvt == pvt) &&
4663 			    (pahmep->addr == vaddr) &&
4664 			    (pahmep->len == len)) {
4665 				break;
4666 			}
4667 		}
4668 	}
4669 
4670 	if (sfhmep == NULL) {
4671 		if (!panicstr) {
4672 			panic("hat_delete_callback: pa_hment not found, pp %p",
4673 			    (void *)pp);
4674 		}
4675 		return;
4676 	}
4677 
4678 	/*
4679 	 * Note: at this point a valid kernel mapping must still be
4680 	 * present on this page.
4681 	 */
4682 	pp->p_share--;
4683 	if (pp->p_share <= 0)
4684 		panic("hat_delete_callback: zero p_share");
4685 
4686 	if (--pahmep->refcnt == 0) {
4687 		if (pahmep->flags != 0)
4688 			panic("hat_delete_callback: pa_hment is busy");
4689 
4690 		/*
4691 		 * Remove sfhmep from the mapping list for the page.
4692 		 */
4693 		if (sfhmep->hme_prev) {
4694 			sfhmep->hme_prev->hme_next = sfhmep->hme_next;
4695 		} else {
4696 			pp->p_mapping = sfhmep->hme_next;
4697 		}
4698 
4699 		if (sfhmep->hme_next)
4700 			sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
4701 
4702 		sfmmu_mlist_exit(pml);
4703 		SFMMU_HASH_UNLOCK(hmebp);
4704 
4705 		if (locked)
4706 			page_unlock(pp);
4707 
4708 		kmem_cache_free(pa_hment_cache, pahmep);
4709 		return;
4710 	}
4711 
4712 	sfmmu_mlist_exit(pml);
4713 	SFMMU_HASH_UNLOCK(hmebp);
4714 	if (locked)
4715 		page_unlock(pp);
4716 }
4717 
4718 /*
4719  * hat_probe returns 1 if the translation for the address 'addr' is
4720  * loaded, zero otherwise.
4721  *
4722  * hat_probe should be used only for advisorary purposes because it may
4723  * occasionally return the wrong value. The implementation must guarantee that
4724  * returning the wrong value is a very rare event. hat_probe is used
4725  * to implement optimizations in the segment drivers.
4726  *
4727  */
4728 int
4729 hat_probe(struct hat *sfmmup, caddr_t addr)
4730 {
4731 	pfn_t pfn;
4732 	tte_t tte;
4733 
4734 	ASSERT(sfmmup != NULL);
4735 
4736 	ASSERT((sfmmup == ksfmmup) || AS_LOCK_HELD(sfmmup->sfmmu_as));
4737 
4738 	if (sfmmup == ksfmmup) {
4739 		while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
4740 		    == PFN_SUSPENDED) {
4741 			sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
4742 		}
4743 	} else {
4744 		pfn = sfmmu_uvatopfn(addr, sfmmup, NULL);
4745 	}
4746 
4747 	if (pfn != PFN_INVALID)
4748 		return (1);
4749 	else
4750 		return (0);
4751 }
4752 
4753 ssize_t
4754 hat_getpagesize(struct hat *sfmmup, caddr_t addr)
4755 {
4756 	tte_t tte;
4757 
4758 	if (sfmmup == ksfmmup) {
4759 		if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4760 			return (-1);
4761 		}
4762 	} else {
4763 		if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4764 			return (-1);
4765 		}
4766 	}
4767 
4768 	ASSERT(TTE_IS_VALID(&tte));
4769 	return (TTEBYTES(TTE_CSZ(&tte)));
4770 }
4771 
4772 uint_t
4773 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
4774 {
4775 	tte_t tte;
4776 
4777 	if (sfmmup == ksfmmup) {
4778 		if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4779 			tte.ll = 0;
4780 		}
4781 	} else {
4782 		if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4783 			tte.ll = 0;
4784 		}
4785 	}
4786 	if (TTE_IS_VALID(&tte)) {
4787 		*attr = sfmmu_ptov_attr(&tte);
4788 		return (0);
4789 	}
4790 	*attr = 0;
4791 	return ((uint_t)0xffffffff);
4792 }
4793 
4794 /*
4795  * Enables more attributes on specified address range (ie. logical OR)
4796  */
4797 void
4798 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4799 {
4800 	ASSERT(hat->sfmmu_as != NULL);
4801 
4802 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
4803 }
4804 
4805 /*
4806  * Assigns attributes to the specified address range.  All the attributes
4807  * are specified.
4808  */
4809 void
4810 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4811 {
4812 	ASSERT(hat->sfmmu_as != NULL);
4813 
4814 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
4815 }
4816 
4817 /*
4818  * Remove attributes on the specified address range (ie. loginal NAND)
4819  */
4820 void
4821 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4822 {
4823 	ASSERT(hat->sfmmu_as != NULL);
4824 
4825 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
4826 }
4827 
4828 /*
4829  * Change attributes on an address range to that specified by attr and mode.
4830  */
4831 static void
4832 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
4833 	int mode)
4834 {
4835 	struct hmehash_bucket *hmebp;
4836 	hmeblk_tag hblktag;
4837 	int hmeshift, hashno = 1;
4838 	struct hme_blk *hmeblkp, *list = NULL;
4839 	caddr_t endaddr;
4840 	cpuset_t cpuset;
4841 	demap_range_t dmr;
4842 
4843 	CPUSET_ZERO(cpuset);
4844 
4845 	ASSERT((sfmmup == ksfmmup) || AS_LOCK_HELD(sfmmup->sfmmu_as));
4846 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4847 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4848 
4849 	if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
4850 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4851 		panic("user addr %p in kernel space",
4852 		    (void *)addr);
4853 	}
4854 
4855 	endaddr = addr + len;
4856 	hblktag.htag_id = sfmmup;
4857 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4858 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4859 
4860 	while (addr < endaddr) {
4861 		hmeshift = HME_HASH_SHIFT(hashno);
4862 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4863 		hblktag.htag_rehash = hashno;
4864 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4865 
4866 		SFMMU_HASH_LOCK(hmebp);
4867 
4868 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4869 		if (hmeblkp != NULL) {
4870 			ASSERT(!hmeblkp->hblk_shared);
4871 			/*
4872 			 * We've encountered a shadow hmeblk so skip the range
4873 			 * of the next smaller mapping size.
4874 			 */
4875 			if (hmeblkp->hblk_shw_bit) {
4876 				ASSERT(sfmmup != ksfmmup);
4877 				ASSERT(hashno > 1);
4878 				addr = (caddr_t)P2END((uintptr_t)addr,
4879 				    TTEBYTES(hashno - 1));
4880 			} else {
4881 				addr = sfmmu_hblk_chgattr(sfmmup,
4882 				    hmeblkp, addr, endaddr, &dmr, attr, mode);
4883 			}
4884 			SFMMU_HASH_UNLOCK(hmebp);
4885 			hashno = 1;
4886 			continue;
4887 		}
4888 		SFMMU_HASH_UNLOCK(hmebp);
4889 
4890 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4891 			/*
4892 			 * We have traversed the whole list and rehashed
4893 			 * if necessary without finding the address to chgattr.
4894 			 * This is ok, so we increment the address by the
4895 			 * smallest hmeblk range for kernel mappings or for
4896 			 * user mappings with no large pages, and the largest
4897 			 * hmeblk range, to account for shadow hmeblks, for
4898 			 * user mappings with large pages and continue.
4899 			 */
4900 			if (sfmmup == ksfmmup)
4901 				addr = (caddr_t)P2END((uintptr_t)addr,
4902 				    TTEBYTES(1));
4903 			else
4904 				addr = (caddr_t)P2END((uintptr_t)addr,
4905 				    TTEBYTES(hashno));
4906 			hashno = 1;
4907 		} else {
4908 			hashno++;
4909 		}
4910 	}
4911 
4912 	sfmmu_hblks_list_purge(&list, 0);
4913 	DEMAP_RANGE_FLUSH(&dmr);
4914 	cpuset = sfmmup->sfmmu_cpusran;
4915 	xt_sync(cpuset);
4916 }
4917 
4918 /*
4919  * This function chgattr on a range of addresses in an hmeblk.  It returns the
4920  * next addres that needs to be chgattr.
4921  * It should be called with the hash lock held.
4922  * XXX It should be possible to optimize chgattr by not flushing every time but
4923  * on the other hand:
4924  * 1. do one flush crosscall.
4925  * 2. only flush if we are increasing permissions (make sure this will work)
4926  */
4927 static caddr_t
4928 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4929 	caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
4930 {
4931 	tte_t tte, tteattr, tteflags, ttemod;
4932 	struct sf_hment *sfhmep;
4933 	int ttesz;
4934 	struct page *pp = NULL;
4935 	kmutex_t *pml, *pmtx;
4936 	int ret;
4937 	int use_demap_range;
4938 #if defined(SF_ERRATA_57)
4939 	int check_exec;
4940 #endif
4941 
4942 	ASSERT(in_hblk_range(hmeblkp, addr));
4943 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4944 	ASSERT(!hmeblkp->hblk_shared);
4945 
4946 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4947 	ttesz = get_hblk_ttesz(hmeblkp);
4948 
4949 	/*
4950 	 * Flush the current demap region if addresses have been
4951 	 * skipped or the page size doesn't match.
4952 	 */
4953 	use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
4954 	if (use_demap_range) {
4955 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4956 	} else if (dmrp != NULL) {
4957 		DEMAP_RANGE_FLUSH(dmrp);
4958 	}
4959 
4960 	tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
4961 #if defined(SF_ERRATA_57)
4962 	check_exec = (sfmmup != ksfmmup) &&
4963 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4964 	    TTE_IS_EXECUTABLE(&tteattr);
4965 #endif
4966 	HBLKTOHME(sfhmep, hmeblkp, addr);
4967 	while (addr < endaddr) {
4968 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4969 		if (TTE_IS_VALID(&tte)) {
4970 			if ((tte.ll & tteflags.ll) == tteattr.ll) {
4971 				/*
4972 				 * if the new attr is the same as old
4973 				 * continue
4974 				 */
4975 				goto next_addr;
4976 			}
4977 			if (!TTE_IS_WRITABLE(&tteattr)) {
4978 				/*
4979 				 * make sure we clear hw modify bit if we
4980 				 * removing write protections
4981 				 */
4982 				tteflags.tte_intlo |= TTE_HWWR_INT;
4983 			}
4984 
4985 			pml = NULL;
4986 			pp = sfhmep->hme_page;
4987 			if (pp) {
4988 				pml = sfmmu_mlist_enter(pp);
4989 			}
4990 
4991 			if (pp != sfhmep->hme_page) {
4992 				/*
4993 				 * tte must have been unloaded.
4994 				 */
4995 				ASSERT(pml);
4996 				sfmmu_mlist_exit(pml);
4997 				continue;
4998 			}
4999 
5000 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5001 
5002 			ttemod = tte;
5003 			ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
5004 			ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
5005 
5006 #if defined(SF_ERRATA_57)
5007 			if (check_exec && addr < errata57_limit)
5008 				ttemod.tte_exec_perm = 0;
5009 #endif
5010 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5011 			    &sfhmep->hme_tte);
5012 
5013 			if (ret < 0) {
5014 				/* tte changed underneath us */
5015 				if (pml) {
5016 					sfmmu_mlist_exit(pml);
5017 				}
5018 				continue;
5019 			}
5020 
5021 			if (tteflags.tte_intlo & TTE_HWWR_INT) {
5022 				/*
5023 				 * need to sync if we are clearing modify bit.
5024 				 */
5025 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
5026 			}
5027 
5028 			if (pp && PP_ISRO(pp)) {
5029 				if (tteattr.tte_intlo & TTE_WRPRM_INT) {
5030 					pmtx = sfmmu_page_enter(pp);
5031 					PP_CLRRO(pp);
5032 					sfmmu_page_exit(pmtx);
5033 				}
5034 			}
5035 
5036 			if (ret > 0 && use_demap_range) {
5037 				DEMAP_RANGE_MARKPG(dmrp, addr);
5038 			} else if (ret > 0) {
5039 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
5040 			}
5041 
5042 			if (pml) {
5043 				sfmmu_mlist_exit(pml);
5044 			}
5045 		}
5046 next_addr:
5047 		addr += TTEBYTES(ttesz);
5048 		sfhmep++;
5049 		DEMAP_RANGE_NEXTPG(dmrp);
5050 	}
5051 	return (addr);
5052 }
5053 
5054 /*
5055  * This routine converts virtual attributes to physical ones.  It will
5056  * update the tteflags field with the tte mask corresponding to the attributes
5057  * affected and it returns the new attributes.  It will also clear the modify
5058  * bit if we are taking away write permission.  This is necessary since the
5059  * modify bit is the hardware permission bit and we need to clear it in order
5060  * to detect write faults.
5061  */
5062 static uint64_t
5063 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
5064 {
5065 	tte_t ttevalue;
5066 
5067 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
5068 
5069 	switch (mode) {
5070 	case SFMMU_CHGATTR:
5071 		/* all attributes specified */
5072 		ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
5073 		ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
5074 		ttemaskp->tte_inthi = TTEINTHI_ATTR;
5075 		ttemaskp->tte_intlo = TTEINTLO_ATTR;
5076 		break;
5077 	case SFMMU_SETATTR:
5078 		ASSERT(!(attr & ~HAT_PROT_MASK));
5079 		ttemaskp->ll = 0;
5080 		ttevalue.ll = 0;
5081 		/*
5082 		 * a valid tte implies exec and read for sfmmu
5083 		 * so no need to do anything about them.
5084 		 * since priviledged access implies user access
5085 		 * PROT_USER doesn't make sense either.
5086 		 */
5087 		if (attr & PROT_WRITE) {
5088 			ttemaskp->tte_intlo |= TTE_WRPRM_INT;
5089 			ttevalue.tte_intlo |= TTE_WRPRM_INT;
5090 		}
5091 		break;
5092 	case SFMMU_CLRATTR:
5093 		/* attributes will be nand with current ones */
5094 		if (attr & ~(PROT_WRITE | PROT_USER)) {
5095 			panic("sfmmu: attr %x not supported", attr);
5096 		}
5097 		ttemaskp->ll = 0;
5098 		ttevalue.ll = 0;
5099 		if (attr & PROT_WRITE) {
5100 			/* clear both writable and modify bit */
5101 			ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
5102 		}
5103 		if (attr & PROT_USER) {
5104 			ttemaskp->tte_intlo |= TTE_PRIV_INT;
5105 			ttevalue.tte_intlo |= TTE_PRIV_INT;
5106 		}
5107 		break;
5108 	default:
5109 		panic("sfmmu_vtop_attr: bad mode %x", mode);
5110 	}
5111 	ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
5112 	return (ttevalue.ll);
5113 }
5114 
5115 static uint_t
5116 sfmmu_ptov_attr(tte_t *ttep)
5117 {
5118 	uint_t attr;
5119 
5120 	ASSERT(TTE_IS_VALID(ttep));
5121 
5122 	attr = PROT_READ;
5123 
5124 	if (TTE_IS_WRITABLE(ttep)) {
5125 		attr |= PROT_WRITE;
5126 	}
5127 	if (TTE_IS_EXECUTABLE(ttep)) {
5128 		attr |= PROT_EXEC;
5129 	}
5130 	if (!TTE_IS_PRIVILEGED(ttep)) {
5131 		attr |= PROT_USER;
5132 	}
5133 	if (TTE_IS_NFO(ttep)) {
5134 		attr |= HAT_NOFAULT;
5135 	}
5136 	if (TTE_IS_NOSYNC(ttep)) {
5137 		attr |= HAT_NOSYNC;
5138 	}
5139 	if (TTE_IS_SIDEFFECT(ttep)) {
5140 		attr |= SFMMU_SIDEFFECT;
5141 	}
5142 	if (!TTE_IS_VCACHEABLE(ttep)) {
5143 		attr |= SFMMU_UNCACHEVTTE;
5144 	}
5145 	if (!TTE_IS_PCACHEABLE(ttep)) {
5146 		attr |= SFMMU_UNCACHEPTTE;
5147 	}
5148 	return (attr);
5149 }
5150 
5151 /*
5152  * hat_chgprot is a deprecated hat call.  New segment drivers
5153  * should store all attributes and use hat_*attr calls.
5154  *
5155  * Change the protections in the virtual address range
5156  * given to the specified virtual protection.  If vprot is ~PROT_WRITE,
5157  * then remove write permission, leaving the other
5158  * permissions unchanged.  If vprot is ~PROT_USER, remove user permissions.
5159  *
5160  */
5161 void
5162 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
5163 {
5164 	struct hmehash_bucket *hmebp;
5165 	hmeblk_tag hblktag;
5166 	int hmeshift, hashno = 1;
5167 	struct hme_blk *hmeblkp, *list = NULL;
5168 	caddr_t endaddr;
5169 	cpuset_t cpuset;
5170 	demap_range_t dmr;
5171 
5172 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5173 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
5174 
5175 	ASSERT(sfmmup->sfmmu_as != NULL);
5176 
5177 	CPUSET_ZERO(cpuset);
5178 
5179 	if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
5180 	    ((addr + len) > (caddr_t)USERLIMIT)) {
5181 		panic("user addr %p vprot %x in kernel space",
5182 		    (void *)addr, vprot);
5183 	}
5184 	endaddr = addr + len;
5185 	hblktag.htag_id = sfmmup;
5186 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5187 	DEMAP_RANGE_INIT(sfmmup, &dmr);
5188 
5189 	while (addr < endaddr) {
5190 		hmeshift = HME_HASH_SHIFT(hashno);
5191 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5192 		hblktag.htag_rehash = hashno;
5193 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5194 
5195 		SFMMU_HASH_LOCK(hmebp);
5196 
5197 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
5198 		if (hmeblkp != NULL) {
5199 			ASSERT(!hmeblkp->hblk_shared);
5200 			/*
5201 			 * We've encountered a shadow hmeblk so skip the range
5202 			 * of the next smaller mapping size.
5203 			 */
5204 			if (hmeblkp->hblk_shw_bit) {
5205 				ASSERT(sfmmup != ksfmmup);
5206 				ASSERT(hashno > 1);
5207 				addr = (caddr_t)P2END((uintptr_t)addr,
5208 				    TTEBYTES(hashno - 1));
5209 			} else {
5210 				addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
5211 				    addr, endaddr, &dmr, vprot);
5212 			}
5213 			SFMMU_HASH_UNLOCK(hmebp);
5214 			hashno = 1;
5215 			continue;
5216 		}
5217 		SFMMU_HASH_UNLOCK(hmebp);
5218 
5219 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
5220 			/*
5221 			 * We have traversed the whole list and rehashed
5222 			 * if necessary without finding the address to chgprot.
5223 			 * This is ok so we increment the address by the
5224 			 * smallest hmeblk range for kernel mappings and the
5225 			 * largest hmeblk range, to account for shadow hmeblks,
5226 			 * for user mappings and continue.
5227 			 */
5228 			if (sfmmup == ksfmmup)
5229 				addr = (caddr_t)P2END((uintptr_t)addr,
5230 				    TTEBYTES(1));
5231 			else
5232 				addr = (caddr_t)P2END((uintptr_t)addr,
5233 				    TTEBYTES(hashno));
5234 			hashno = 1;
5235 		} else {
5236 			hashno++;
5237 		}
5238 	}
5239 
5240 	sfmmu_hblks_list_purge(&list, 0);
5241 	DEMAP_RANGE_FLUSH(&dmr);
5242 	cpuset = sfmmup->sfmmu_cpusran;
5243 	xt_sync(cpuset);
5244 }
5245 
5246 /*
5247  * This function chgprots a range of addresses in an hmeblk.  It returns the
5248  * next addres that needs to be chgprot.
5249  * It should be called with the hash lock held.
5250  * XXX It shold be possible to optimize chgprot by not flushing every time but
5251  * on the other hand:
5252  * 1. do one flush crosscall.
5253  * 2. only flush if we are increasing permissions (make sure this will work)
5254  */
5255 static caddr_t
5256 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5257 	caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
5258 {
5259 	uint_t pprot;
5260 	tte_t tte, ttemod;
5261 	struct sf_hment *sfhmep;
5262 	uint_t tteflags;
5263 	int ttesz;
5264 	struct page *pp = NULL;
5265 	kmutex_t *pml, *pmtx;
5266 	int ret;
5267 	int use_demap_range;
5268 #if defined(SF_ERRATA_57)
5269 	int check_exec;
5270 #endif
5271 
5272 	ASSERT(in_hblk_range(hmeblkp, addr));
5273 	ASSERT(hmeblkp->hblk_shw_bit == 0);
5274 	ASSERT(!hmeblkp->hblk_shared);
5275 
5276 #ifdef DEBUG
5277 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5278 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
5279 		panic("sfmmu_hblk_chgprot: partial chgprot of large page");
5280 	}
5281 #endif /* DEBUG */
5282 
5283 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5284 	ttesz = get_hblk_ttesz(hmeblkp);
5285 
5286 	pprot = sfmmu_vtop_prot(vprot, &tteflags);
5287 #if defined(SF_ERRATA_57)
5288 	check_exec = (sfmmup != ksfmmup) &&
5289 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
5290 	    ((vprot & PROT_EXEC) == PROT_EXEC);
5291 #endif
5292 	HBLKTOHME(sfhmep, hmeblkp, addr);
5293 
5294 	/*
5295 	 * Flush the current demap region if addresses have been
5296 	 * skipped or the page size doesn't match.
5297 	 */
5298 	use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
5299 	if (use_demap_range) {
5300 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5301 	} else if (dmrp != NULL) {
5302 		DEMAP_RANGE_FLUSH(dmrp);
5303 	}
5304 
5305 	while (addr < endaddr) {
5306 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5307 		if (TTE_IS_VALID(&tte)) {
5308 			if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
5309 				/*
5310 				 * if the new protection is the same as old
5311 				 * continue
5312 				 */
5313 				goto next_addr;
5314 			}
5315 			pml = NULL;
5316 			pp = sfhmep->hme_page;
5317 			if (pp) {
5318 				pml = sfmmu_mlist_enter(pp);
5319 			}
5320 			if (pp != sfhmep->hme_page) {
5321 				/*
5322 				 * tte most have been unloaded
5323 				 * underneath us.  Recheck
5324 				 */
5325 				ASSERT(pml);
5326 				sfmmu_mlist_exit(pml);
5327 				continue;
5328 			}
5329 
5330 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5331 
5332 			ttemod = tte;
5333 			TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
5334 #if defined(SF_ERRATA_57)
5335 			if (check_exec && addr < errata57_limit)
5336 				ttemod.tte_exec_perm = 0;
5337 #endif
5338 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5339 			    &sfhmep->hme_tte);
5340 
5341 			if (ret < 0) {
5342 				/* tte changed underneath us */
5343 				if (pml) {
5344 					sfmmu_mlist_exit(pml);
5345 				}
5346 				continue;
5347 			}
5348 
5349 			if (tteflags & TTE_HWWR_INT) {
5350 				/*
5351 				 * need to sync if we are clearing modify bit.
5352 				 */
5353 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
5354 			}
5355 
5356 			if (pp && PP_ISRO(pp)) {
5357 				if (pprot & TTE_WRPRM_INT) {
5358 					pmtx = sfmmu_page_enter(pp);
5359 					PP_CLRRO(pp);
5360 					sfmmu_page_exit(pmtx);
5361 				}
5362 			}
5363 
5364 			if (ret > 0 && use_demap_range) {
5365 				DEMAP_RANGE_MARKPG(dmrp, addr);
5366 			} else if (ret > 0) {
5367 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
5368 			}
5369 
5370 			if (pml) {
5371 				sfmmu_mlist_exit(pml);
5372 			}
5373 		}
5374 next_addr:
5375 		addr += TTEBYTES(ttesz);
5376 		sfhmep++;
5377 		DEMAP_RANGE_NEXTPG(dmrp);
5378 	}
5379 	return (addr);
5380 }
5381 
5382 /*
5383  * This routine is deprecated and should only be used by hat_chgprot.
5384  * The correct routine is sfmmu_vtop_attr.
5385  * This routine converts virtual page protections to physical ones.  It will
5386  * update the tteflags field with the tte mask corresponding to the protections
5387  * affected and it returns the new protections.  It will also clear the modify
5388  * bit if we are taking away write permission.  This is necessary since the
5389  * modify bit is the hardware permission bit and we need to clear it in order
5390  * to detect write faults.
5391  * It accepts the following special protections:
5392  * ~PROT_WRITE = remove write permissions.
5393  * ~PROT_USER = remove user permissions.
5394  */
5395 static uint_t
5396 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
5397 {
5398 	if (vprot == (uint_t)~PROT_WRITE) {
5399 		*tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
5400 		return (0);		/* will cause wrprm to be cleared */
5401 	}
5402 	if (vprot == (uint_t)~PROT_USER) {
5403 		*tteflagsp = TTE_PRIV_INT;
5404 		return (0);		/* will cause privprm to be cleared */
5405 	}
5406 	if ((vprot == 0) || (vprot == PROT_USER) ||
5407 	    ((vprot & PROT_ALL) != vprot)) {
5408 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5409 	}
5410 
5411 	switch (vprot) {
5412 	case (PROT_READ):
5413 	case (PROT_EXEC):
5414 	case (PROT_EXEC | PROT_READ):
5415 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5416 		return (TTE_PRIV_INT); 		/* set prv and clr wrt */
5417 	case (PROT_WRITE):
5418 	case (PROT_WRITE | PROT_READ):
5419 	case (PROT_EXEC | PROT_WRITE):
5420 	case (PROT_EXEC | PROT_WRITE | PROT_READ):
5421 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5422 		return (TTE_PRIV_INT | TTE_WRPRM_INT); 	/* set prv and wrt */
5423 	case (PROT_USER | PROT_READ):
5424 	case (PROT_USER | PROT_EXEC):
5425 	case (PROT_USER | PROT_EXEC | PROT_READ):
5426 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5427 		return (0); 			/* clr prv and wrt */
5428 	case (PROT_USER | PROT_WRITE):
5429 	case (PROT_USER | PROT_WRITE | PROT_READ):
5430 	case (PROT_USER | PROT_EXEC | PROT_WRITE):
5431 	case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
5432 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5433 		return (TTE_WRPRM_INT); 	/* clr prv and set wrt */
5434 	default:
5435 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5436 	}
5437 	return (0);
5438 }
5439 
5440 /*
5441  * Alternate unload for very large virtual ranges. With a true 64 bit VA,
5442  * the normal algorithm would take too long for a very large VA range with
5443  * few real mappings. This routine just walks thru all HMEs in the global
5444  * hash table to find and remove mappings.
5445  */
5446 static void
5447 hat_unload_large_virtual(
5448 	struct hat		*sfmmup,
5449 	caddr_t			startaddr,
5450 	size_t			len,
5451 	uint_t			flags,
5452 	hat_callback_t		*callback)
5453 {
5454 	struct hmehash_bucket *hmebp;
5455 	struct hme_blk *hmeblkp;
5456 	struct hme_blk *pr_hblk = NULL;
5457 	struct hme_blk *nx_hblk;
5458 	struct hme_blk *list = NULL;
5459 	int i;
5460 	demap_range_t dmr, *dmrp;
5461 	cpuset_t cpuset;
5462 	caddr_t	endaddr = startaddr + len;
5463 	caddr_t	sa;
5464 	caddr_t	ea;
5465 	caddr_t	cb_sa[MAX_CB_ADDR];
5466 	caddr_t	cb_ea[MAX_CB_ADDR];
5467 	int	addr_cnt = 0;
5468 	int	a = 0;
5469 
5470 	if (sfmmup->sfmmu_free) {
5471 		dmrp = NULL;
5472 	} else {
5473 		dmrp = &dmr;
5474 		DEMAP_RANGE_INIT(sfmmup, dmrp);
5475 	}
5476 
5477 	/*
5478 	 * Loop through all the hash buckets of HME blocks looking for matches.
5479 	 */
5480 	for (i = 0; i <= UHMEHASH_SZ; i++) {
5481 		hmebp = &uhme_hash[i];
5482 		SFMMU_HASH_LOCK(hmebp);
5483 		hmeblkp = hmebp->hmeblkp;
5484 		pr_hblk = NULL;
5485 		while (hmeblkp) {
5486 			nx_hblk = hmeblkp->hblk_next;
5487 
5488 			/*
5489 			 * skip if not this context, if a shadow block or
5490 			 * if the mapping is not in the requested range
5491 			 */
5492 			if (hmeblkp->hblk_tag.htag_id != sfmmup ||
5493 			    hmeblkp->hblk_shw_bit ||
5494 			    (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
5495 			    (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
5496 				pr_hblk = hmeblkp;
5497 				goto next_block;
5498 			}
5499 
5500 			ASSERT(!hmeblkp->hblk_shared);
5501 			/*
5502 			 * unload if there are any current valid mappings
5503 			 */
5504 			if (hmeblkp->hblk_vcnt != 0 ||
5505 			    hmeblkp->hblk_hmecnt != 0)
5506 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
5507 				    sa, ea, dmrp, flags);
5508 
5509 			/*
5510 			 * on unmap we also release the HME block itself, once
5511 			 * all mappings are gone.
5512 			 */
5513 			if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
5514 			    !hmeblkp->hblk_vcnt &&
5515 			    !hmeblkp->hblk_hmecnt) {
5516 				ASSERT(!hmeblkp->hblk_lckcnt);
5517 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
5518 				    &list, 0);
5519 			} else {
5520 				pr_hblk = hmeblkp;
5521 			}
5522 
5523 			if (callback == NULL)
5524 				goto next_block;
5525 
5526 			/*
5527 			 * HME blocks may span more than one page, but we may be
5528 			 * unmapping only one page, so check for a smaller range
5529 			 * for the callback
5530 			 */
5531 			if (sa < startaddr)
5532 				sa = startaddr;
5533 			if (--ea > endaddr)
5534 				ea = endaddr - 1;
5535 
5536 			cb_sa[addr_cnt] = sa;
5537 			cb_ea[addr_cnt] = ea;
5538 			if (++addr_cnt == MAX_CB_ADDR) {
5539 				if (dmrp != NULL) {
5540 					DEMAP_RANGE_FLUSH(dmrp);
5541 					cpuset = sfmmup->sfmmu_cpusran;
5542 					xt_sync(cpuset);
5543 				}
5544 
5545 				for (a = 0; a < MAX_CB_ADDR; ++a) {
5546 					callback->hcb_start_addr = cb_sa[a];
5547 					callback->hcb_end_addr = cb_ea[a];
5548 					callback->hcb_function(callback);
5549 				}
5550 				addr_cnt = 0;
5551 			}
5552 
5553 next_block:
5554 			hmeblkp = nx_hblk;
5555 		}
5556 		SFMMU_HASH_UNLOCK(hmebp);
5557 	}
5558 
5559 	sfmmu_hblks_list_purge(&list, 0);
5560 	if (dmrp != NULL) {
5561 		DEMAP_RANGE_FLUSH(dmrp);
5562 		cpuset = sfmmup->sfmmu_cpusran;
5563 		xt_sync(cpuset);
5564 	}
5565 
5566 	for (a = 0; a < addr_cnt; ++a) {
5567 		callback->hcb_start_addr = cb_sa[a];
5568 		callback->hcb_end_addr = cb_ea[a];
5569 		callback->hcb_function(callback);
5570 	}
5571 
5572 	/*
5573 	 * Check TSB and TLB page sizes if the process isn't exiting.
5574 	 */
5575 	if (!sfmmup->sfmmu_free)
5576 		sfmmu_check_page_sizes(sfmmup, 0);
5577 }
5578 
5579 /*
5580  * Unload all the mappings in the range [addr..addr+len). addr and len must
5581  * be MMU_PAGESIZE aligned.
5582  */
5583 
5584 extern struct seg *segkmap;
5585 #define	ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
5586 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
5587 
5588 
5589 void
5590 hat_unload_callback(
5591 	struct hat *sfmmup,
5592 	caddr_t addr,
5593 	size_t len,
5594 	uint_t flags,
5595 	hat_callback_t *callback)
5596 {
5597 	struct hmehash_bucket *hmebp;
5598 	hmeblk_tag hblktag;
5599 	int hmeshift, hashno, iskernel;
5600 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
5601 	caddr_t endaddr;
5602 	cpuset_t cpuset;
5603 	int addr_count = 0;
5604 	int a;
5605 	caddr_t cb_start_addr[MAX_CB_ADDR];
5606 	caddr_t cb_end_addr[MAX_CB_ADDR];
5607 	int issegkmap = ISSEGKMAP(sfmmup, addr);
5608 	demap_range_t dmr, *dmrp;
5609 
5610 	ASSERT(sfmmup->sfmmu_as != NULL);
5611 
5612 	ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
5613 	    AS_LOCK_HELD(sfmmup->sfmmu_as));
5614 
5615 	ASSERT(sfmmup != NULL);
5616 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5617 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
5618 
5619 	/*
5620 	 * Probing through a large VA range (say 63 bits) will be slow, even
5621 	 * at 4 Meg steps between the probes. So, when the virtual address range
5622 	 * is very large, search the HME entries for what to unload.
5623 	 *
5624 	 *	len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
5625 	 *
5626 	 *	UHMEHASH_SZ is number of hash buckets to examine
5627 	 *
5628 	 */
5629 	if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
5630 		hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
5631 		return;
5632 	}
5633 
5634 	CPUSET_ZERO(cpuset);
5635 
5636 	/*
5637 	 * If the process is exiting, we can save a lot of fuss since
5638 	 * we'll flush the TLB when we free the ctx anyway.
5639 	 */
5640 	if (sfmmup->sfmmu_free) {
5641 		dmrp = NULL;
5642 	} else {
5643 		dmrp = &dmr;
5644 		DEMAP_RANGE_INIT(sfmmup, dmrp);
5645 	}
5646 
5647 	endaddr = addr + len;
5648 	hblktag.htag_id = sfmmup;
5649 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5650 
5651 	/*
5652 	 * It is likely for the vm to call unload over a wide range of
5653 	 * addresses that are actually very sparsely populated by
5654 	 * translations.  In order to speed this up the sfmmu hat supports
5655 	 * the concept of shadow hmeblks. Dummy large page hmeblks that
5656 	 * correspond to actual small translations are allocated at tteload
5657 	 * time and are referred to as shadow hmeblks.  Now, during unload
5658 	 * time, we first check if we have a shadow hmeblk for that
5659 	 * translation.  The absence of one means the corresponding address
5660 	 * range is empty and can be skipped.
5661 	 *
5662 	 * The kernel is an exception to above statement and that is why
5663 	 * we don't use shadow hmeblks and hash starting from the smallest
5664 	 * page size.
5665 	 */
5666 	if (sfmmup == KHATID) {
5667 		iskernel = 1;
5668 		hashno = TTE64K;
5669 	} else {
5670 		iskernel = 0;
5671 		if (mmu_page_sizes == max_mmu_page_sizes) {
5672 			hashno = TTE256M;
5673 		} else {
5674 			hashno = TTE4M;
5675 		}
5676 	}
5677 	while (addr < endaddr) {
5678 		hmeshift = HME_HASH_SHIFT(hashno);
5679 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5680 		hblktag.htag_rehash = hashno;
5681 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5682 
5683 		SFMMU_HASH_LOCK(hmebp);
5684 
5685 		HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
5686 		if (hmeblkp == NULL) {
5687 			/*
5688 			 * didn't find an hmeblk. skip the appropiate
5689 			 * address range.
5690 			 */
5691 			SFMMU_HASH_UNLOCK(hmebp);
5692 			if (iskernel) {
5693 				if (hashno < mmu_hashcnt) {
5694 					hashno++;
5695 					continue;
5696 				} else {
5697 					hashno = TTE64K;
5698 					addr = (caddr_t)roundup((uintptr_t)addr
5699 					    + 1, MMU_PAGESIZE64K);
5700 					continue;
5701 				}
5702 			}
5703 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5704 			    (1 << hmeshift));
5705 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5706 				ASSERT(hashno == TTE64K);
5707 				continue;
5708 			}
5709 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5710 				hashno = TTE512K;
5711 				continue;
5712 			}
5713 			if (mmu_page_sizes == max_mmu_page_sizes) {
5714 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5715 					hashno = TTE4M;
5716 					continue;
5717 				}
5718 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5719 					hashno = TTE32M;
5720 					continue;
5721 				}
5722 				hashno = TTE256M;
5723 				continue;
5724 			} else {
5725 				hashno = TTE4M;
5726 				continue;
5727 			}
5728 		}
5729 		ASSERT(hmeblkp);
5730 		ASSERT(!hmeblkp->hblk_shared);
5731 		if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5732 			/*
5733 			 * If the valid count is zero we can skip the range
5734 			 * mapped by this hmeblk.
5735 			 * We free hblks in the case of HAT_UNMAP.  HAT_UNMAP
5736 			 * is used by segment drivers as a hint
5737 			 * that the mapping resource won't be used any longer.
5738 			 * The best example of this is during exit().
5739 			 */
5740 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5741 			    get_hblk_span(hmeblkp));
5742 			if ((flags & HAT_UNLOAD_UNMAP) ||
5743 			    (iskernel && !issegkmap)) {
5744 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
5745 				    &list, 0);
5746 			}
5747 			SFMMU_HASH_UNLOCK(hmebp);
5748 
5749 			if (iskernel) {
5750 				hashno = TTE64K;
5751 				continue;
5752 			}
5753 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5754 				ASSERT(hashno == TTE64K);
5755 				continue;
5756 			}
5757 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5758 				hashno = TTE512K;
5759 				continue;
5760 			}
5761 			if (mmu_page_sizes == max_mmu_page_sizes) {
5762 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5763 					hashno = TTE4M;
5764 					continue;
5765 				}
5766 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5767 					hashno = TTE32M;
5768 					continue;
5769 				}
5770 				hashno = TTE256M;
5771 				continue;
5772 			} else {
5773 				hashno = TTE4M;
5774 				continue;
5775 			}
5776 		}
5777 		if (hmeblkp->hblk_shw_bit) {
5778 			/*
5779 			 * If we encounter a shadow hmeblk we know there is
5780 			 * smaller sized hmeblks mapping the same address space.
5781 			 * Decrement the hash size and rehash.
5782 			 */
5783 			ASSERT(sfmmup != KHATID);
5784 			hashno--;
5785 			SFMMU_HASH_UNLOCK(hmebp);
5786 			continue;
5787 		}
5788 
5789 		/*
5790 		 * track callback address ranges.
5791 		 * only start a new range when it's not contiguous
5792 		 */
5793 		if (callback != NULL) {
5794 			if (addr_count > 0 &&
5795 			    addr == cb_end_addr[addr_count - 1])
5796 				--addr_count;
5797 			else
5798 				cb_start_addr[addr_count] = addr;
5799 		}
5800 
5801 		addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
5802 		    dmrp, flags);
5803 
5804 		if (callback != NULL)
5805 			cb_end_addr[addr_count++] = addr;
5806 
5807 		if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
5808 		    !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5809 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, &list, 0);
5810 		}
5811 		SFMMU_HASH_UNLOCK(hmebp);
5812 
5813 		/*
5814 		 * Notify our caller as to exactly which pages
5815 		 * have been unloaded. We do these in clumps,
5816 		 * to minimize the number of xt_sync()s that need to occur.
5817 		 */
5818 		if (callback != NULL && addr_count == MAX_CB_ADDR) {
5819 			if (dmrp != NULL) {
5820 				DEMAP_RANGE_FLUSH(dmrp);
5821 				cpuset = sfmmup->sfmmu_cpusran;
5822 				xt_sync(cpuset);
5823 			}
5824 
5825 			for (a = 0; a < MAX_CB_ADDR; ++a) {
5826 				callback->hcb_start_addr = cb_start_addr[a];
5827 				callback->hcb_end_addr = cb_end_addr[a];
5828 				callback->hcb_function(callback);
5829 			}
5830 			addr_count = 0;
5831 		}
5832 		if (iskernel) {
5833 			hashno = TTE64K;
5834 			continue;
5835 		}
5836 		if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5837 			ASSERT(hashno == TTE64K);
5838 			continue;
5839 		}
5840 		if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5841 			hashno = TTE512K;
5842 			continue;
5843 		}
5844 		if (mmu_page_sizes == max_mmu_page_sizes) {
5845 			if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5846 				hashno = TTE4M;
5847 				continue;
5848 			}
5849 			if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5850 				hashno = TTE32M;
5851 				continue;
5852 			}
5853 			hashno = TTE256M;
5854 		} else {
5855 			hashno = TTE4M;
5856 		}
5857 	}
5858 
5859 	sfmmu_hblks_list_purge(&list, 0);
5860 	if (dmrp != NULL) {
5861 		DEMAP_RANGE_FLUSH(dmrp);
5862 		cpuset = sfmmup->sfmmu_cpusran;
5863 		xt_sync(cpuset);
5864 	}
5865 	if (callback && addr_count != 0) {
5866 		for (a = 0; a < addr_count; ++a) {
5867 			callback->hcb_start_addr = cb_start_addr[a];
5868 			callback->hcb_end_addr = cb_end_addr[a];
5869 			callback->hcb_function(callback);
5870 		}
5871 	}
5872 
5873 	/*
5874 	 * Check TSB and TLB page sizes if the process isn't exiting.
5875 	 */
5876 	if (!sfmmup->sfmmu_free)
5877 		sfmmu_check_page_sizes(sfmmup, 0);
5878 }
5879 
5880 /*
5881  * Unload all the mappings in the range [addr..addr+len). addr and len must
5882  * be MMU_PAGESIZE aligned.
5883  */
5884 void
5885 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
5886 {
5887 	hat_unload_callback(sfmmup, addr, len, flags, NULL);
5888 }
5889 
5890 
5891 /*
5892  * Find the largest mapping size for this page.
5893  */
5894 int
5895 fnd_mapping_sz(page_t *pp)
5896 {
5897 	int sz;
5898 	int p_index;
5899 
5900 	p_index = PP_MAPINDEX(pp);
5901 
5902 	sz = 0;
5903 	p_index >>= 1;	/* don't care about 8K bit */
5904 	for (; p_index; p_index >>= 1) {
5905 		sz++;
5906 	}
5907 
5908 	return (sz);
5909 }
5910 
5911 /*
5912  * This function unloads a range of addresses for an hmeblk.
5913  * It returns the next address to be unloaded.
5914  * It should be called with the hash lock held.
5915  */
5916 static caddr_t
5917 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5918 	caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
5919 {
5920 	tte_t	tte, ttemod;
5921 	struct	sf_hment *sfhmep;
5922 	int	ttesz;
5923 	long	ttecnt;
5924 	page_t *pp;
5925 	kmutex_t *pml;
5926 	int ret;
5927 	int use_demap_range;
5928 
5929 	ASSERT(in_hblk_range(hmeblkp, addr));
5930 	ASSERT(!hmeblkp->hblk_shw_bit);
5931 	ASSERT(sfmmup != NULL || hmeblkp->hblk_shared);
5932 	ASSERT(sfmmup == NULL || !hmeblkp->hblk_shared);
5933 	ASSERT(dmrp == NULL || !hmeblkp->hblk_shared);
5934 
5935 #ifdef DEBUG
5936 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5937 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
5938 		panic("sfmmu_hblk_unload: partial unload of large page");
5939 	}
5940 #endif /* DEBUG */
5941 
5942 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5943 	ttesz = get_hblk_ttesz(hmeblkp);
5944 
5945 	use_demap_range = ((dmrp == NULL) ||
5946 	    (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)));
5947 
5948 	if (use_demap_range) {
5949 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5950 	} else if (dmrp != NULL) {
5951 		DEMAP_RANGE_FLUSH(dmrp);
5952 	}
5953 	ttecnt = 0;
5954 	HBLKTOHME(sfhmep, hmeblkp, addr);
5955 
5956 	while (addr < endaddr) {
5957 		pml = NULL;
5958 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5959 		if (TTE_IS_VALID(&tte)) {
5960 			pp = sfhmep->hme_page;
5961 			if (pp != NULL) {
5962 				pml = sfmmu_mlist_enter(pp);
5963 			}
5964 
5965 			/*
5966 			 * Verify if hme still points to 'pp' now that
5967 			 * we have p_mapping lock.
5968 			 */
5969 			if (sfhmep->hme_page != pp) {
5970 				if (pp != NULL && sfhmep->hme_page != NULL) {
5971 					ASSERT(pml != NULL);
5972 					sfmmu_mlist_exit(pml);
5973 					/* Re-start this iteration. */
5974 					continue;
5975 				}
5976 				ASSERT((pp != NULL) &&
5977 				    (sfhmep->hme_page == NULL));
5978 				goto tte_unloaded;
5979 			}
5980 
5981 			/*
5982 			 * This point on we have both HASH and p_mapping
5983 			 * lock.
5984 			 */
5985 			ASSERT(pp == sfhmep->hme_page);
5986 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5987 
5988 			/*
5989 			 * We need to loop on modify tte because it is
5990 			 * possible for pagesync to come along and
5991 			 * change the software bits beneath us.
5992 			 *
5993 			 * Page_unload can also invalidate the tte after
5994 			 * we read tte outside of p_mapping lock.
5995 			 */
5996 again:
5997 			ttemod = tte;
5998 
5999 			TTE_SET_INVALID(&ttemod);
6000 			ret = sfmmu_modifytte_try(&tte, &ttemod,
6001 			    &sfhmep->hme_tte);
6002 
6003 			if (ret <= 0) {
6004 				if (TTE_IS_VALID(&tte)) {
6005 					ASSERT(ret < 0);
6006 					goto again;
6007 				}
6008 				if (pp != NULL) {
6009 					panic("sfmmu_hblk_unload: pp = 0x%p "
6010 					    "tte became invalid under mlist"
6011 					    " lock = 0x%p", (void *)pp,
6012 					    (void *)pml);
6013 				}
6014 				continue;
6015 			}
6016 
6017 			if (!(flags & HAT_UNLOAD_NOSYNC)) {
6018 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
6019 			}
6020 
6021 			/*
6022 			 * Ok- we invalidated the tte. Do the rest of the job.
6023 			 */
6024 			ttecnt++;
6025 
6026 			if (flags & HAT_UNLOAD_UNLOCK) {
6027 				ASSERT(hmeblkp->hblk_lckcnt > 0);
6028 				atomic_dec_32(&hmeblkp->hblk_lckcnt);
6029 				HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
6030 			}
6031 
6032 			/*
6033 			 * Normally we would need to flush the page
6034 			 * from the virtual cache at this point in
6035 			 * order to prevent a potential cache alias
6036 			 * inconsistency.
6037 			 * The particular scenario we need to worry
6038 			 * about is:
6039 			 * Given:  va1 and va2 are two virtual address
6040 			 * that alias and map the same physical
6041 			 * address.
6042 			 * 1.   mapping exists from va1 to pa and data
6043 			 * has been read into the cache.
6044 			 * 2.   unload va1.
6045 			 * 3.   load va2 and modify data using va2.
6046 			 * 4    unload va2.
6047 			 * 5.   load va1 and reference data.  Unless we
6048 			 * flush the data cache when we unload we will
6049 			 * get stale data.
6050 			 * Fortunately, page coloring eliminates the
6051 			 * above scenario by remembering the color a
6052 			 * physical page was last or is currently
6053 			 * mapped to.  Now, we delay the flush until
6054 			 * the loading of translations.  Only when the
6055 			 * new translation is of a different color
6056 			 * are we forced to flush.
6057 			 */
6058 			if (use_demap_range) {
6059 				/*
6060 				 * Mark this page as needing a demap.
6061 				 */
6062 				DEMAP_RANGE_MARKPG(dmrp, addr);
6063 			} else {
6064 				ASSERT(sfmmup != NULL);
6065 				ASSERT(!hmeblkp->hblk_shared);
6066 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
6067 				    sfmmup->sfmmu_free, 0);
6068 			}
6069 
6070 			if (pp) {
6071 				/*
6072 				 * Remove the hment from the mapping list
6073 				 */
6074 				ASSERT(hmeblkp->hblk_hmecnt > 0);
6075 
6076 				/*
6077 				 * Again, we cannot
6078 				 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
6079 				 */
6080 				HME_SUB(sfhmep, pp);
6081 				membar_stst();
6082 				atomic_dec_16(&hmeblkp->hblk_hmecnt);
6083 			}
6084 
6085 			ASSERT(hmeblkp->hblk_vcnt > 0);
6086 			atomic_dec_16(&hmeblkp->hblk_vcnt);
6087 
6088 			ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
6089 			    !hmeblkp->hblk_lckcnt);
6090 
6091 #ifdef VAC
6092 			if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
6093 				if (PP_ISTNC(pp)) {
6094 					/*
6095 					 * If page was temporary
6096 					 * uncached, try to recache
6097 					 * it. Note that HME_SUB() was
6098 					 * called above so p_index and
6099 					 * mlist had been updated.
6100 					 */
6101 					conv_tnc(pp, ttesz);
6102 				} else if (pp->p_mapping == NULL) {
6103 					ASSERT(kpm_enable);
6104 					/*
6105 					 * Page is marked to be in VAC conflict
6106 					 * to an existing kpm mapping and/or is
6107 					 * kpm mapped using only the regular
6108 					 * pagesize.
6109 					 */
6110 					sfmmu_kpm_hme_unload(pp);
6111 				}
6112 			}
6113 #endif	/* VAC */
6114 		} else if ((pp = sfhmep->hme_page) != NULL) {
6115 				/*
6116 				 * TTE is invalid but the hme
6117 				 * still exists. let pageunload
6118 				 * complete its job.
6119 				 */
6120 				ASSERT(pml == NULL);
6121 				pml = sfmmu_mlist_enter(pp);
6122 				if (sfhmep->hme_page != NULL) {
6123 					sfmmu_mlist_exit(pml);
6124 					continue;
6125 				}
6126 				ASSERT(sfhmep->hme_page == NULL);
6127 		} else if (hmeblkp->hblk_hmecnt != 0) {
6128 			/*
6129 			 * pageunload may have not finished decrementing
6130 			 * hblk_vcnt and hblk_hmecnt. Find page_t if any and
6131 			 * wait for pageunload to finish. Rely on pageunload
6132 			 * to decrement hblk_hmecnt after hblk_vcnt.
6133 			 */
6134 			pfn_t pfn = TTE_TO_TTEPFN(&tte);
6135 			ASSERT(pml == NULL);
6136 			if (pf_is_memory(pfn)) {
6137 				pp = page_numtopp_nolock(pfn);
6138 				if (pp != NULL) {
6139 					pml = sfmmu_mlist_enter(pp);
6140 					sfmmu_mlist_exit(pml);
6141 					pml = NULL;
6142 				}
6143 			}
6144 		}
6145 
6146 tte_unloaded:
6147 		/*
6148 		 * At this point, the tte we are looking at
6149 		 * should be unloaded, and hme has been unlinked
6150 		 * from page too. This is important because in
6151 		 * pageunload, it does ttesync() then HME_SUB.
6152 		 * We need to make sure HME_SUB has been completed
6153 		 * so we know ttesync() has been completed. Otherwise,
6154 		 * at exit time, after return from hat layer, VM will
6155 		 * release as structure which hat_setstat() (called
6156 		 * by ttesync()) needs.
6157 		 */
6158 #ifdef DEBUG
6159 		{
6160 			tte_t	dtte;
6161 
6162 			ASSERT(sfhmep->hme_page == NULL);
6163 
6164 			sfmmu_copytte(&sfhmep->hme_tte, &dtte);
6165 			ASSERT(!TTE_IS_VALID(&dtte));
6166 		}
6167 #endif
6168 
6169 		if (pml) {
6170 			sfmmu_mlist_exit(pml);
6171 		}
6172 
6173 		addr += TTEBYTES(ttesz);
6174 		sfhmep++;
6175 		DEMAP_RANGE_NEXTPG(dmrp);
6176 	}
6177 	/*
6178 	 * For shared hmeblks this routine is only called when region is freed
6179 	 * and no longer referenced.  So no need to decrement ttecnt
6180 	 * in the region structure here.
6181 	 */
6182 	if (ttecnt > 0 && sfmmup != NULL) {
6183 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
6184 	}
6185 	return (addr);
6186 }
6187 
6188 /*
6189  * Invalidate a virtual address range for the local CPU.
6190  * For best performance ensure that the va range is completely
6191  * mapped, otherwise the entire TLB will be flushed.
6192  */
6193 void
6194 hat_flush_range(struct hat *sfmmup, caddr_t va, size_t size)
6195 {
6196 	ssize_t sz;
6197 	caddr_t endva = va + size;
6198 
6199 	while (va < endva) {
6200 		sz = hat_getpagesize(sfmmup, va);
6201 		if (sz < 0) {
6202 			vtag_flushall();
6203 			break;
6204 		}
6205 		vtag_flushpage(va, (uint64_t)sfmmup);
6206 		va += sz;
6207 	}
6208 }
6209 
6210 /*
6211  * Synchronize all the mappings in the range [addr..addr+len).
6212  * Can be called with clearflag having two states:
6213  * HAT_SYNC_DONTZERO means just return the rm stats
6214  * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
6215  */
6216 void
6217 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
6218 {
6219 	struct hmehash_bucket *hmebp;
6220 	hmeblk_tag hblktag;
6221 	int hmeshift, hashno = 1;
6222 	struct hme_blk *hmeblkp, *list = NULL;
6223 	caddr_t endaddr;
6224 	cpuset_t cpuset;
6225 
6226 	ASSERT((sfmmup == ksfmmup) || AS_LOCK_HELD(sfmmup->sfmmu_as));
6227 	ASSERT((len & MMU_PAGEOFFSET) == 0);
6228 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
6229 	    (clearflag == HAT_SYNC_ZERORM));
6230 
6231 	CPUSET_ZERO(cpuset);
6232 
6233 	endaddr = addr + len;
6234 	hblktag.htag_id = sfmmup;
6235 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
6236 
6237 	/*
6238 	 * Spitfire supports 4 page sizes.
6239 	 * Most pages are expected to be of the smallest page
6240 	 * size (8K) and these will not need to be rehashed. 64K
6241 	 * pages also don't need to be rehashed because the an hmeblk
6242 	 * spans 64K of address space. 512K pages might need 1 rehash and
6243 	 * and 4M pages 2 rehashes.
6244 	 */
6245 	while (addr < endaddr) {
6246 		hmeshift = HME_HASH_SHIFT(hashno);
6247 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
6248 		hblktag.htag_rehash = hashno;
6249 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
6250 
6251 		SFMMU_HASH_LOCK(hmebp);
6252 
6253 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
6254 		if (hmeblkp != NULL) {
6255 			ASSERT(!hmeblkp->hblk_shared);
6256 			/*
6257 			 * We've encountered a shadow hmeblk so skip the range
6258 			 * of the next smaller mapping size.
6259 			 */
6260 			if (hmeblkp->hblk_shw_bit) {
6261 				ASSERT(sfmmup != ksfmmup);
6262 				ASSERT(hashno > 1);
6263 				addr = (caddr_t)P2END((uintptr_t)addr,
6264 				    TTEBYTES(hashno - 1));
6265 			} else {
6266 				addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
6267 				    addr, endaddr, clearflag);
6268 			}
6269 			SFMMU_HASH_UNLOCK(hmebp);
6270 			hashno = 1;
6271 			continue;
6272 		}
6273 		SFMMU_HASH_UNLOCK(hmebp);
6274 
6275 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
6276 			/*
6277 			 * We have traversed the whole list and rehashed
6278 			 * if necessary without finding the address to sync.
6279 			 * This is ok so we increment the address by the
6280 			 * smallest hmeblk range for kernel mappings and the
6281 			 * largest hmeblk range, to account for shadow hmeblks,
6282 			 * for user mappings and continue.
6283 			 */
6284 			if (sfmmup == ksfmmup)
6285 				addr = (caddr_t)P2END((uintptr_t)addr,
6286 				    TTEBYTES(1));
6287 			else
6288 				addr = (caddr_t)P2END((uintptr_t)addr,
6289 				    TTEBYTES(hashno));
6290 			hashno = 1;
6291 		} else {
6292 			hashno++;
6293 		}
6294 	}
6295 	sfmmu_hblks_list_purge(&list, 0);
6296 	cpuset = sfmmup->sfmmu_cpusran;
6297 	xt_sync(cpuset);
6298 }
6299 
6300 static caddr_t
6301 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
6302 	caddr_t endaddr, int clearflag)
6303 {
6304 	tte_t	tte, ttemod;
6305 	struct sf_hment *sfhmep;
6306 	int ttesz;
6307 	struct page *pp;
6308 	kmutex_t *pml;
6309 	int ret;
6310 
6311 	ASSERT(hmeblkp->hblk_shw_bit == 0);
6312 	ASSERT(!hmeblkp->hblk_shared);
6313 
6314 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
6315 
6316 	ttesz = get_hblk_ttesz(hmeblkp);
6317 	HBLKTOHME(sfhmep, hmeblkp, addr);
6318 
6319 	while (addr < endaddr) {
6320 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
6321 		if (TTE_IS_VALID(&tte)) {
6322 			pml = NULL;
6323 			pp = sfhmep->hme_page;
6324 			if (pp) {
6325 				pml = sfmmu_mlist_enter(pp);
6326 			}
6327 			if (pp != sfhmep->hme_page) {
6328 				/*
6329 				 * tte most have been unloaded
6330 				 * underneath us.  Recheck
6331 				 */
6332 				ASSERT(pml);
6333 				sfmmu_mlist_exit(pml);
6334 				continue;
6335 			}
6336 
6337 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
6338 
6339 			if (clearflag == HAT_SYNC_ZERORM) {
6340 				ttemod = tte;
6341 				TTE_CLR_RM(&ttemod);
6342 				ret = sfmmu_modifytte_try(&tte, &ttemod,
6343 				    &sfhmep->hme_tte);
6344 				if (ret < 0) {
6345 					if (pml) {
6346 						sfmmu_mlist_exit(pml);
6347 					}
6348 					continue;
6349 				}
6350 
6351 				if (ret > 0) {
6352 					sfmmu_tlb_demap(addr, sfmmup,
6353 					    hmeblkp, 0, 0);
6354 				}
6355 			}
6356 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
6357 			if (pml) {
6358 				sfmmu_mlist_exit(pml);
6359 			}
6360 		}
6361 		addr += TTEBYTES(ttesz);
6362 		sfhmep++;
6363 	}
6364 	return (addr);
6365 }
6366 
6367 /*
6368  * This function will sync a tte to the page struct and it will
6369  * update the hat stats. Currently it allows us to pass a NULL pp
6370  * and we will simply update the stats.  We may want to change this
6371  * so we only keep stats for pages backed by pp's.
6372  */
6373 static void
6374 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
6375 {
6376 	uint_t rm = 0;
6377 	int   	sz;
6378 	pgcnt_t	npgs;
6379 
6380 	ASSERT(TTE_IS_VALID(ttep));
6381 
6382 	if (TTE_IS_NOSYNC(ttep)) {
6383 		return;
6384 	}
6385 
6386 	if (TTE_IS_REF(ttep))  {
6387 		rm = P_REF;
6388 	}
6389 	if (TTE_IS_MOD(ttep))  {
6390 		rm |= P_MOD;
6391 	}
6392 
6393 	if (rm == 0) {
6394 		return;
6395 	}
6396 
6397 	sz = TTE_CSZ(ttep);
6398 	if (sfmmup != NULL && sfmmup->sfmmu_rmstat) {
6399 		int i;
6400 		caddr_t	vaddr = addr;
6401 
6402 		for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) {
6403 			hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm);
6404 		}
6405 
6406 	}
6407 
6408 	/*
6409 	 * XXX I want to use cas to update nrm bits but they
6410 	 * currently belong in common/vm and not in hat where
6411 	 * they should be.
6412 	 * The nrm bits are protected by the same mutex as
6413 	 * the one that protects the page's mapping list.
6414 	 */
6415 	if (!pp)
6416 		return;
6417 	ASSERT(sfmmu_mlist_held(pp));
6418 	/*
6419 	 * If the tte is for a large page, we need to sync all the
6420 	 * pages covered by the tte.
6421 	 */
6422 	if (sz != TTE8K) {
6423 		ASSERT(pp->p_szc != 0);
6424 		pp = PP_GROUPLEADER(pp, sz);
6425 		ASSERT(sfmmu_mlist_held(pp));
6426 	}
6427 
6428 	/* Get number of pages from tte size. */
6429 	npgs = TTEPAGES(sz);
6430 
6431 	do {
6432 		ASSERT(pp);
6433 		ASSERT(sfmmu_mlist_held(pp));
6434 		if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
6435 		    ((rm & P_MOD) != 0 && !PP_ISMOD(pp)))
6436 			hat_page_setattr(pp, rm);
6437 
6438 		/*
6439 		 * Are we done? If not, we must have a large mapping.
6440 		 * For large mappings we need to sync the rest of the pages
6441 		 * covered by this tte; goto the next page.
6442 		 */
6443 	} while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
6444 }
6445 
6446 /*
6447  * Execute pre-callback handler of each pa_hment linked to pp
6448  *
6449  * Inputs:
6450  *   flag: either HAT_PRESUSPEND or HAT_SUSPEND.
6451  *   capture_cpus: pointer to return value (below)
6452  *
6453  * Returns:
6454  *   Propagates the subsystem callback return values back to the caller;
6455  *   returns 0 on success.  If capture_cpus is non-NULL, the value returned
6456  *   is zero if all of the pa_hments are of a type that do not require
6457  *   capturing CPUs prior to suspending the mapping, else it is 1.
6458  */
6459 static int
6460 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
6461 {
6462 	struct sf_hment	*sfhmep;
6463 	struct pa_hment *pahmep;
6464 	int (*f)(caddr_t, uint_t, uint_t, void *);
6465 	int		ret;
6466 	id_t		id;
6467 	int		locked = 0;
6468 	kmutex_t	*pml;
6469 
6470 	ASSERT(PAGE_EXCL(pp));
6471 	if (!sfmmu_mlist_held(pp)) {
6472 		pml = sfmmu_mlist_enter(pp);
6473 		locked = 1;
6474 	}
6475 
6476 	if (capture_cpus)
6477 		*capture_cpus = 0;
6478 
6479 top:
6480 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6481 		/*
6482 		 * skip sf_hments corresponding to VA<->PA mappings;
6483 		 * for pa_hment's, hme_tte.ll is zero
6484 		 */
6485 		if (!IS_PAHME(sfhmep))
6486 			continue;
6487 
6488 		pahmep = sfhmep->hme_data;
6489 		ASSERT(pahmep != NULL);
6490 
6491 		/*
6492 		 * skip if pre-handler has been called earlier in this loop
6493 		 */
6494 		if (pahmep->flags & flag)
6495 			continue;
6496 
6497 		id = pahmep->cb_id;
6498 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6499 		if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
6500 			*capture_cpus = 1;
6501 		if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
6502 			pahmep->flags |= flag;
6503 			continue;
6504 		}
6505 
6506 		/*
6507 		 * Drop the mapping list lock to avoid locking order issues.
6508 		 */
6509 		if (locked)
6510 			sfmmu_mlist_exit(pml);
6511 
6512 		ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
6513 		if (ret != 0)
6514 			return (ret);	/* caller must do the cleanup */
6515 
6516 		if (locked) {
6517 			pml = sfmmu_mlist_enter(pp);
6518 			pahmep->flags |= flag;
6519 			goto top;
6520 		}
6521 
6522 		pahmep->flags |= flag;
6523 	}
6524 
6525 	if (locked)
6526 		sfmmu_mlist_exit(pml);
6527 
6528 	return (0);
6529 }
6530 
6531 /*
6532  * Execute post-callback handler of each pa_hment linked to pp
6533  *
6534  * Same overall assumptions and restrictions apply as for
6535  * hat_pageprocess_precallbacks().
6536  */
6537 static void
6538 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
6539 {
6540 	pfn_t pgpfn = pp->p_pagenum;
6541 	pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
6542 	pfn_t newpfn;
6543 	struct sf_hment *sfhmep;
6544 	struct pa_hment *pahmep;
6545 	int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
6546 	id_t	id;
6547 	int	locked = 0;
6548 	kmutex_t *pml;
6549 
6550 	ASSERT(PAGE_EXCL(pp));
6551 	if (!sfmmu_mlist_held(pp)) {
6552 		pml = sfmmu_mlist_enter(pp);
6553 		locked = 1;
6554 	}
6555 
6556 top:
6557 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6558 		/*
6559 		 * skip sf_hments corresponding to VA<->PA mappings;
6560 		 * for pa_hment's, hme_tte.ll is zero
6561 		 */
6562 		if (!IS_PAHME(sfhmep))
6563 			continue;
6564 
6565 		pahmep = sfhmep->hme_data;
6566 		ASSERT(pahmep != NULL);
6567 
6568 		if ((pahmep->flags & flag) == 0)
6569 			continue;
6570 
6571 		pahmep->flags &= ~flag;
6572 
6573 		id = pahmep->cb_id;
6574 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6575 		if ((f = sfmmu_cb_table[id].posthandler) == NULL)
6576 			continue;
6577 
6578 		/*
6579 		 * Convert the base page PFN into the constituent PFN
6580 		 * which is needed by the callback handler.
6581 		 */
6582 		newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
6583 
6584 		/*
6585 		 * Drop the mapping list lock to avoid locking order issues.
6586 		 */
6587 		if (locked)
6588 			sfmmu_mlist_exit(pml);
6589 
6590 		if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
6591 		    != 0)
6592 			panic("sfmmu: posthandler failed");
6593 
6594 		if (locked) {
6595 			pml = sfmmu_mlist_enter(pp);
6596 			goto top;
6597 		}
6598 	}
6599 
6600 	if (locked)
6601 		sfmmu_mlist_exit(pml);
6602 }
6603 
6604 /*
6605  * Suspend locked kernel mapping
6606  */
6607 void
6608 hat_pagesuspend(struct page *pp)
6609 {
6610 	struct sf_hment *sfhmep;
6611 	sfmmu_t *sfmmup;
6612 	tte_t tte, ttemod;
6613 	struct hme_blk *hmeblkp;
6614 	caddr_t addr;
6615 	int index, cons;
6616 	cpuset_t cpuset;
6617 
6618 	ASSERT(PAGE_EXCL(pp));
6619 	ASSERT(sfmmu_mlist_held(pp));
6620 
6621 	mutex_enter(&kpr_suspendlock);
6622 
6623 	/*
6624 	 * We're about to suspend a kernel mapping so mark this thread as
6625 	 * non-traceable by DTrace. This prevents us from running into issues
6626 	 * with probe context trying to touch a suspended page
6627 	 * in the relocation codepath itself.
6628 	 */
6629 	curthread->t_flag |= T_DONTDTRACE;
6630 
6631 	index = PP_MAPINDEX(pp);
6632 	cons = TTE8K;
6633 
6634 retry:
6635 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6636 
6637 		if (IS_PAHME(sfhmep))
6638 			continue;
6639 
6640 		if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
6641 			continue;
6642 
6643 		/*
6644 		 * Loop until we successfully set the suspend bit in
6645 		 * the TTE.
6646 		 */
6647 again:
6648 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
6649 		ASSERT(TTE_IS_VALID(&tte));
6650 
6651 		ttemod = tte;
6652 		TTE_SET_SUSPEND(&ttemod);
6653 		if (sfmmu_modifytte_try(&tte, &ttemod,
6654 		    &sfhmep->hme_tte) < 0)
6655 			goto again;
6656 
6657 		/*
6658 		 * Invalidate TSB entry
6659 		 */
6660 		hmeblkp = sfmmu_hmetohblk(sfhmep);
6661 
6662 		sfmmup = hblktosfmmu(hmeblkp);
6663 		ASSERT(sfmmup == ksfmmup);
6664 		ASSERT(!hmeblkp->hblk_shared);
6665 
6666 		addr = tte_to_vaddr(hmeblkp, tte);
6667 
6668 		/*
6669 		 * No need to make sure that the TSB for this sfmmu is
6670 		 * not being relocated since it is ksfmmup and thus it
6671 		 * will never be relocated.
6672 		 */
6673 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
6674 
6675 		/*
6676 		 * Update xcall stats
6677 		 */
6678 		cpuset = cpu_ready_set;
6679 		CPUSET_DEL(cpuset, CPU->cpu_id);
6680 
6681 		/* LINTED: constant in conditional context */
6682 		SFMMU_XCALL_STATS(ksfmmup);
6683 
6684 		/*
6685 		 * Flush TLB entry on remote CPU's
6686 		 */
6687 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
6688 		    (uint64_t)ksfmmup);
6689 		xt_sync(cpuset);
6690 
6691 		/*
6692 		 * Flush TLB entry on local CPU
6693 		 */
6694 		vtag_flushpage(addr, (uint64_t)ksfmmup);
6695 	}
6696 
6697 	while (index != 0) {
6698 		index = index >> 1;
6699 		if (index != 0)
6700 			cons++;
6701 		if (index & 0x1) {
6702 			pp = PP_GROUPLEADER(pp, cons);
6703 			goto retry;
6704 		}
6705 	}
6706 }
6707 
6708 #ifdef	DEBUG
6709 
6710 #define	N_PRLE	1024
6711 struct prle {
6712 	page_t *targ;
6713 	page_t *repl;
6714 	int status;
6715 	int pausecpus;
6716 	hrtime_t whence;
6717 };
6718 
6719 static struct prle page_relocate_log[N_PRLE];
6720 static int prl_entry;
6721 static kmutex_t prl_mutex;
6722 
6723 #define	PAGE_RELOCATE_LOG(t, r, s, p)					\
6724 	mutex_enter(&prl_mutex);					\
6725 	page_relocate_log[prl_entry].targ = *(t);			\
6726 	page_relocate_log[prl_entry].repl = *(r);			\
6727 	page_relocate_log[prl_entry].status = (s);			\
6728 	page_relocate_log[prl_entry].pausecpus = (p);			\
6729 	page_relocate_log[prl_entry].whence = gethrtime();		\
6730 	prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1;	\
6731 	mutex_exit(&prl_mutex);
6732 
6733 #else	/* !DEBUG */
6734 #define	PAGE_RELOCATE_LOG(t, r, s, p)
6735 #endif
6736 
6737 /*
6738  * Core Kernel Page Relocation Algorithm
6739  *
6740  * Input:
6741  *
6742  * target : 	constituent pages are SE_EXCL locked.
6743  * replacement:	constituent pages are SE_EXCL locked.
6744  *
6745  * Output:
6746  *
6747  * nrelocp:	number of pages relocated
6748  */
6749 int
6750 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
6751 {
6752 	page_t		*targ, *repl;
6753 	page_t		*tpp, *rpp;
6754 	kmutex_t	*low, *high;
6755 	spgcnt_t	npages, i;
6756 	page_t		*pl = NULL;
6757 	int		old_pil;
6758 	cpuset_t	cpuset;
6759 	int		cap_cpus;
6760 	int		ret;
6761 #ifdef VAC
6762 	int		cflags = 0;
6763 #endif
6764 
6765 	if (!kcage_on || PP_ISNORELOC(*target)) {
6766 		PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
6767 		return (EAGAIN);
6768 	}
6769 
6770 	mutex_enter(&kpr_mutex);
6771 	kreloc_thread = curthread;
6772 
6773 	targ = *target;
6774 	repl = *replacement;
6775 	ASSERT(repl != NULL);
6776 	ASSERT(targ->p_szc == repl->p_szc);
6777 
6778 	npages = page_get_pagecnt(targ->p_szc);
6779 
6780 	/*
6781 	 * unload VA<->PA mappings that are not locked
6782 	 */
6783 	tpp = targ;
6784 	for (i = 0; i < npages; i++) {
6785 		(void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
6786 		tpp++;
6787 	}
6788 
6789 	/*
6790 	 * Do "presuspend" callbacks, in a context from which we can still
6791 	 * block as needed. Note that we don't hold the mapping list lock
6792 	 * of "targ" at this point due to potential locking order issues;
6793 	 * we assume that between the hat_pageunload() above and holding
6794 	 * the SE_EXCL lock that the mapping list *cannot* change at this
6795 	 * point.
6796 	 */
6797 	ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
6798 	if (ret != 0) {
6799 		/*
6800 		 * EIO translates to fatal error, for all others cleanup
6801 		 * and return EAGAIN.
6802 		 */
6803 		ASSERT(ret != EIO);
6804 		hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
6805 		PAGE_RELOCATE_LOG(target, replacement, ret, -1);
6806 		kreloc_thread = NULL;
6807 		mutex_exit(&kpr_mutex);
6808 		return (EAGAIN);
6809 	}
6810 
6811 	/*
6812 	 * acquire p_mapping list lock for both the target and replacement
6813 	 * root pages.
6814 	 *
6815 	 * low and high refer to the need to grab the mlist locks in a
6816 	 * specific order in order to prevent race conditions.  Thus the
6817 	 * lower lock must be grabbed before the higher lock.
6818 	 *
6819 	 * This will block hat_unload's accessing p_mapping list.  Since
6820 	 * we have SE_EXCL lock, hat_memload and hat_pageunload will be
6821 	 * blocked.  Thus, no one else will be accessing the p_mapping list
6822 	 * while we suspend and reload the locked mapping below.
6823 	 */
6824 	tpp = targ;
6825 	rpp = repl;
6826 	sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
6827 
6828 	kpreempt_disable();
6829 
6830 	/*
6831 	 * We raise our PIL to 13 so that we don't get captured by
6832 	 * another CPU or pinned by an interrupt thread.  We can't go to
6833 	 * PIL 14 since the nexus driver(s) may need to interrupt at
6834 	 * that level in the case of IOMMU pseudo mappings.
6835 	 */
6836 	cpuset = cpu_ready_set;
6837 	CPUSET_DEL(cpuset, CPU->cpu_id);
6838 	if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
6839 		old_pil = splr(XCALL_PIL);
6840 	} else {
6841 		old_pil = -1;
6842 		xc_attention(cpuset);
6843 	}
6844 	ASSERT(getpil() == XCALL_PIL);
6845 
6846 	/*
6847 	 * Now do suspend callbacks. In the case of an IOMMU mapping
6848 	 * this will suspend all DMA activity to the page while it is
6849 	 * being relocated. Since we are well above LOCK_LEVEL and CPUs
6850 	 * may be captured at this point we should have acquired any needed
6851 	 * locks in the presuspend callback.
6852 	 */
6853 	ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
6854 	if (ret != 0) {
6855 		repl = targ;
6856 		goto suspend_fail;
6857 	}
6858 
6859 	/*
6860 	 * Raise the PIL yet again, this time to block all high-level
6861 	 * interrupts on this CPU. This is necessary to prevent an
6862 	 * interrupt routine from pinning the thread which holds the
6863 	 * mapping suspended and then touching the suspended page.
6864 	 *
6865 	 * Once the page is suspended we also need to be careful to
6866 	 * avoid calling any functions which touch any seg_kmem memory
6867 	 * since that memory may be backed by the very page we are
6868 	 * relocating in here!
6869 	 */
6870 	hat_pagesuspend(targ);
6871 
6872 	/*
6873 	 * Now that we are confident everybody has stopped using this page,
6874 	 * copy the page contents.  Note we use a physical copy to prevent
6875 	 * locking issues and to avoid fpRAS because we can't handle it in
6876 	 * this context.
6877 	 */
6878 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6879 #ifdef VAC
6880 		/*
6881 		 * If the replacement has a different vcolor than
6882 		 * the one being replacd, we need to handle VAC
6883 		 * consistency for it just as we were setting up
6884 		 * a new mapping to it.
6885 		 */
6886 		if ((PP_GET_VCOLOR(rpp) != NO_VCOLOR) &&
6887 		    (tpp->p_vcolor != rpp->p_vcolor) &&
6888 		    !CacheColor_IsFlushed(cflags, PP_GET_VCOLOR(rpp))) {
6889 			CacheColor_SetFlushed(cflags, PP_GET_VCOLOR(rpp));
6890 			sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
6891 			    rpp->p_pagenum);
6892 		}
6893 #endif
6894 		/*
6895 		 * Copy the contents of the page.
6896 		 */
6897 		ppcopy_kernel(tpp, rpp);
6898 	}
6899 
6900 	tpp = targ;
6901 	rpp = repl;
6902 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6903 		/*
6904 		 * Copy attributes.  VAC consistency was handled above,
6905 		 * if required.
6906 		 */
6907 		rpp->p_nrm = tpp->p_nrm;
6908 		tpp->p_nrm = 0;
6909 		rpp->p_index = tpp->p_index;
6910 		tpp->p_index = 0;
6911 #ifdef VAC
6912 		rpp->p_vcolor = tpp->p_vcolor;
6913 #endif
6914 	}
6915 
6916 	/*
6917 	 * First, unsuspend the page, if we set the suspend bit, and transfer
6918 	 * the mapping list from the target page to the replacement page.
6919 	 * Next process postcallbacks; since pa_hment's are linked only to the
6920 	 * p_mapping list of root page, we don't iterate over the constituent
6921 	 * pages.
6922 	 */
6923 	hat_pagereload(targ, repl);
6924 
6925 suspend_fail:
6926 	hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
6927 
6928 	/*
6929 	 * Now lower our PIL and release any captured CPUs since we
6930 	 * are out of the "danger zone".  After this it will again be
6931 	 * safe to acquire adaptive mutex locks, or to drop them...
6932 	 */
6933 	if (old_pil != -1) {
6934 		splx(old_pil);
6935 	} else {
6936 		xc_dismissed(cpuset);
6937 	}
6938 
6939 	kpreempt_enable();
6940 
6941 	sfmmu_mlist_reloc_exit(low, high);
6942 
6943 	/*
6944 	 * Postsuspend callbacks should drop any locks held across
6945 	 * the suspend callbacks.  As before, we don't hold the mapping
6946 	 * list lock at this point.. our assumption is that the mapping
6947 	 * list still can't change due to our holding SE_EXCL lock and
6948 	 * there being no unlocked mappings left. Hence the restriction
6949 	 * on calling context to hat_delete_callback()
6950 	 */
6951 	hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
6952 	if (ret != 0) {
6953 		/*
6954 		 * The second presuspend call failed: we got here through
6955 		 * the suspend_fail label above.
6956 		 */
6957 		ASSERT(ret != EIO);
6958 		PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
6959 		kreloc_thread = NULL;
6960 		mutex_exit(&kpr_mutex);
6961 		return (EAGAIN);
6962 	}
6963 
6964 	/*
6965 	 * Now that we're out of the performance critical section we can
6966 	 * take care of updating the hash table, since we still
6967 	 * hold all the pages locked SE_EXCL at this point we
6968 	 * needn't worry about things changing out from under us.
6969 	 */
6970 	tpp = targ;
6971 	rpp = repl;
6972 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6973 
6974 		/*
6975 		 * replace targ with replacement in page_hash table
6976 		 */
6977 		targ = tpp;
6978 		page_relocate_hash(rpp, targ);
6979 
6980 		/*
6981 		 * concatenate target; caller of platform_page_relocate()
6982 		 * expects target to be concatenated after returning.
6983 		 */
6984 		ASSERT(targ->p_next == targ);
6985 		ASSERT(targ->p_prev == targ);
6986 		page_list_concat(&pl, &targ);
6987 	}
6988 
6989 	ASSERT(*target == pl);
6990 	*nrelocp = npages;
6991 	PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
6992 	kreloc_thread = NULL;
6993 	mutex_exit(&kpr_mutex);
6994 	return (0);
6995 }
6996 
6997 /*
6998  * Called when stray pa_hments are found attached to a page which is
6999  * being freed.  Notify the subsystem which attached the pa_hment of
7000  * the error if it registered a suitable handler, else panic.
7001  */
7002 static void
7003 sfmmu_pahment_leaked(struct pa_hment *pahmep)
7004 {
7005 	id_t cb_id = pahmep->cb_id;
7006 
7007 	ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
7008 	if (sfmmu_cb_table[cb_id].errhandler != NULL) {
7009 		if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
7010 		    HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
7011 			return;		/* non-fatal */
7012 	}
7013 	panic("pa_hment leaked: 0x%p", (void *)pahmep);
7014 }
7015 
7016 /*
7017  * Remove all mappings to page 'pp'.
7018  */
7019 int
7020 hat_pageunload(struct page *pp, uint_t forceflag)
7021 {
7022 	struct page *origpp = pp;
7023 	struct sf_hment *sfhme, *tmphme;
7024 	struct hme_blk *hmeblkp;
7025 	kmutex_t *pml;
7026 #ifdef VAC
7027 	kmutex_t *pmtx;
7028 #endif
7029 	cpuset_t cpuset, tset;
7030 	int index, cons;
7031 	int pa_hments;
7032 
7033 	ASSERT(PAGE_EXCL(pp));
7034 
7035 	tmphme = NULL;
7036 	pa_hments = 0;
7037 	CPUSET_ZERO(cpuset);
7038 
7039 	pml = sfmmu_mlist_enter(pp);
7040 
7041 #ifdef VAC
7042 	if (pp->p_kpmref)
7043 		sfmmu_kpm_pageunload(pp);
7044 	ASSERT(!PP_ISMAPPED_KPM(pp));
7045 #endif
7046 	/*
7047 	 * Clear vpm reference. Since the page is exclusively locked
7048 	 * vpm cannot be referencing it.
7049 	 */
7050 	if (vpm_enable) {
7051 		pp->p_vpmref = 0;
7052 	}
7053 
7054 	index = PP_MAPINDEX(pp);
7055 	cons = TTE8K;
7056 retry:
7057 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7058 		tmphme = sfhme->hme_next;
7059 
7060 		if (IS_PAHME(sfhme)) {
7061 			ASSERT(sfhme->hme_data != NULL);
7062 			pa_hments++;
7063 			continue;
7064 		}
7065 
7066 		hmeblkp = sfmmu_hmetohblk(sfhme);
7067 
7068 		/*
7069 		 * If there are kernel mappings don't unload them, they will
7070 		 * be suspended.
7071 		 */
7072 		if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
7073 		    hmeblkp->hblk_tag.htag_id == ksfmmup)
7074 			continue;
7075 
7076 		tset = sfmmu_pageunload(pp, sfhme, cons);
7077 		CPUSET_OR(cpuset, tset);
7078 	}
7079 
7080 	while (index != 0) {
7081 		index = index >> 1;
7082 		if (index != 0)
7083 			cons++;
7084 		if (index & 0x1) {
7085 			/* Go to leading page */
7086 			pp = PP_GROUPLEADER(pp, cons);
7087 			ASSERT(sfmmu_mlist_held(pp));
7088 			goto retry;
7089 		}
7090 	}
7091 
7092 	/*
7093 	 * cpuset may be empty if the page was only mapped by segkpm,
7094 	 * in which case we won't actually cross-trap.
7095 	 */
7096 	xt_sync(cpuset);
7097 
7098 	/*
7099 	 * The page should have no mappings at this point, unless
7100 	 * we were called from hat_page_relocate() in which case we
7101 	 * leave the locked mappings which will be suspended later.
7102 	 */
7103 	ASSERT(!PP_ISMAPPED(origpp) || pa_hments ||
7104 	    (forceflag == SFMMU_KERNEL_RELOC));
7105 
7106 #ifdef VAC
7107 	if (PP_ISTNC(pp)) {
7108 		if (cons == TTE8K) {
7109 			pmtx = sfmmu_page_enter(pp);
7110 			PP_CLRTNC(pp);
7111 			sfmmu_page_exit(pmtx);
7112 		} else {
7113 			conv_tnc(pp, cons);
7114 		}
7115 	}
7116 #endif	/* VAC */
7117 
7118 	if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
7119 		/*
7120 		 * Unlink any pa_hments and free them, calling back
7121 		 * the responsible subsystem to notify it of the error.
7122 		 * This can occur in situations such as drivers leaking
7123 		 * DMA handles: naughty, but common enough that we'd like
7124 		 * to keep the system running rather than bringing it
7125 		 * down with an obscure error like "pa_hment leaked"
7126 		 * which doesn't aid the user in debugging their driver.
7127 		 */
7128 		for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7129 			tmphme = sfhme->hme_next;
7130 			if (IS_PAHME(sfhme)) {
7131 				struct pa_hment *pahmep = sfhme->hme_data;
7132 				sfmmu_pahment_leaked(pahmep);
7133 				HME_SUB(sfhme, pp);
7134 				kmem_cache_free(pa_hment_cache, pahmep);
7135 			}
7136 		}
7137 
7138 		ASSERT(!PP_ISMAPPED(origpp));
7139 	}
7140 
7141 	sfmmu_mlist_exit(pml);
7142 
7143 	return (0);
7144 }
7145 
7146 cpuset_t
7147 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
7148 {
7149 	struct hme_blk *hmeblkp;
7150 	sfmmu_t *sfmmup;
7151 	tte_t tte, ttemod;
7152 #ifdef DEBUG
7153 	tte_t orig_old;
7154 #endif /* DEBUG */
7155 	caddr_t addr;
7156 	int ttesz;
7157 	int ret;
7158 	cpuset_t cpuset;
7159 
7160 	ASSERT(pp != NULL);
7161 	ASSERT(sfmmu_mlist_held(pp));
7162 	ASSERT(!PP_ISKAS(pp));
7163 
7164 	CPUSET_ZERO(cpuset);
7165 
7166 	hmeblkp = sfmmu_hmetohblk(sfhme);
7167 
7168 readtte:
7169 	sfmmu_copytte(&sfhme->hme_tte, &tte);
7170 	if (TTE_IS_VALID(&tte)) {
7171 		sfmmup = hblktosfmmu(hmeblkp);
7172 		ttesz = get_hblk_ttesz(hmeblkp);
7173 		/*
7174 		 * Only unload mappings of 'cons' size.
7175 		 */
7176 		if (ttesz != cons)
7177 			return (cpuset);
7178 
7179 		/*
7180 		 * Note that we have p_mapping lock, but no hash lock here.
7181 		 * hblk_unload() has to have both hash lock AND p_mapping
7182 		 * lock before it tries to modify tte. So, the tte could
7183 		 * not become invalid in the sfmmu_modifytte_try() below.
7184 		 */
7185 		ttemod = tte;
7186 #ifdef DEBUG
7187 		orig_old = tte;
7188 #endif /* DEBUG */
7189 
7190 		TTE_SET_INVALID(&ttemod);
7191 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7192 		if (ret < 0) {
7193 #ifdef DEBUG
7194 			/* only R/M bits can change. */
7195 			chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
7196 #endif /* DEBUG */
7197 			goto readtte;
7198 		}
7199 
7200 		if (ret == 0) {
7201 			panic("pageunload: cas failed?");
7202 		}
7203 
7204 		addr = tte_to_vaddr(hmeblkp, tte);
7205 
7206 		if (hmeblkp->hblk_shared) {
7207 			sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7208 			uint_t rid = hmeblkp->hblk_tag.htag_rid;
7209 			sf_region_t *rgnp;
7210 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7211 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7212 			ASSERT(srdp != NULL);
7213 			rgnp = srdp->srd_hmergnp[rid];
7214 			SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
7215 			cpuset = sfmmu_rgntlb_demap(addr, rgnp, hmeblkp, 1);
7216 			sfmmu_ttesync(NULL, addr, &tte, pp);
7217 			ASSERT(rgnp->rgn_ttecnt[ttesz] > 0);
7218 			atomic_dec_ulong(&rgnp->rgn_ttecnt[ttesz]);
7219 		} else {
7220 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
7221 			atomic_dec_ulong(&sfmmup->sfmmu_ttecnt[ttesz]);
7222 
7223 			/*
7224 			 * We need to flush the page from the virtual cache
7225 			 * in order to prevent a virtual cache alias
7226 			 * inconsistency. The particular scenario we need
7227 			 * to worry about is:
7228 			 * Given:  va1 and va2 are two virtual address that
7229 			 * alias and will map the same physical address.
7230 			 * 1.   mapping exists from va1 to pa and data has
7231 			 *	been read into the cache.
7232 			 * 2.   unload va1.
7233 			 * 3.   load va2 and modify data using va2.
7234 			 * 4    unload va2.
7235 			 * 5.   load va1 and reference data.  Unless we flush
7236 			 *	the data cache when we unload we will get
7237 			 *	stale data.
7238 			 * This scenario is taken care of by using virtual
7239 			 * page coloring.
7240 			 */
7241 			if (sfmmup->sfmmu_ismhat) {
7242 				/*
7243 				 * Flush TSBs, TLBs and caches
7244 				 * of every process
7245 				 * sharing this ism segment.
7246 				 */
7247 				sfmmu_hat_lock_all();
7248 				mutex_enter(&ism_mlist_lock);
7249 				kpreempt_disable();
7250 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
7251 				    pp->p_pagenum, CACHE_NO_FLUSH);
7252 				kpreempt_enable();
7253 				mutex_exit(&ism_mlist_lock);
7254 				sfmmu_hat_unlock_all();
7255 				cpuset = cpu_ready_set;
7256 			} else {
7257 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7258 				cpuset = sfmmup->sfmmu_cpusran;
7259 			}
7260 		}
7261 
7262 		/*
7263 		 * Hme_sub has to run after ttesync() and a_rss update.
7264 		 * See hblk_unload().
7265 		 */
7266 		HME_SUB(sfhme, pp);
7267 		membar_stst();
7268 
7269 		/*
7270 		 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
7271 		 * since pteload may have done a HME_ADD() right after
7272 		 * we did the HME_SUB() above. Hmecnt is now maintained
7273 		 * by cas only. no lock guranteed its value. The only
7274 		 * gurantee we have is the hmecnt should not be less than
7275 		 * what it should be so the hblk will not be taken away.
7276 		 * It's also important that we decremented the hmecnt after
7277 		 * we are done with hmeblkp so that this hmeblk won't be
7278 		 * stolen.
7279 		 */
7280 		ASSERT(hmeblkp->hblk_hmecnt > 0);
7281 		ASSERT(hmeblkp->hblk_vcnt > 0);
7282 		atomic_dec_16(&hmeblkp->hblk_vcnt);
7283 		atomic_dec_16(&hmeblkp->hblk_hmecnt);
7284 		/*
7285 		 * This is bug 4063182.
7286 		 * XXX: fixme
7287 		 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
7288 		 *	!hmeblkp->hblk_lckcnt);
7289 		 */
7290 	} else {
7291 		panic("invalid tte? pp %p &tte %p",
7292 		    (void *)pp, (void *)&tte);
7293 	}
7294 
7295 	return (cpuset);
7296 }
7297 
7298 /*
7299  * While relocating a kernel page, this function will move the mappings
7300  * from tpp to dpp and modify any associated data with these mappings.
7301  * It also unsuspends the suspended kernel mapping.
7302  */
7303 static void
7304 hat_pagereload(struct page *tpp, struct page *dpp)
7305 {
7306 	struct sf_hment *sfhme;
7307 	tte_t tte, ttemod;
7308 	int index, cons;
7309 
7310 	ASSERT(getpil() == PIL_MAX);
7311 	ASSERT(sfmmu_mlist_held(tpp));
7312 	ASSERT(sfmmu_mlist_held(dpp));
7313 
7314 	index = PP_MAPINDEX(tpp);
7315 	cons = TTE8K;
7316 
7317 	/* Update real mappings to the page */
7318 retry:
7319 	for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
7320 		if (IS_PAHME(sfhme))
7321 			continue;
7322 		sfmmu_copytte(&sfhme->hme_tte, &tte);
7323 		ttemod = tte;
7324 
7325 		/*
7326 		 * replace old pfn with new pfn in TTE
7327 		 */
7328 		PFN_TO_TTE(ttemod, dpp->p_pagenum);
7329 
7330 		/*
7331 		 * clear suspend bit
7332 		 */
7333 		ASSERT(TTE_IS_SUSPEND(&ttemod));
7334 		TTE_CLR_SUSPEND(&ttemod);
7335 
7336 		if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
7337 			panic("hat_pagereload(): sfmmu_modifytte_try() failed");
7338 
7339 		/*
7340 		 * set hme_page point to new page
7341 		 */
7342 		sfhme->hme_page = dpp;
7343 	}
7344 
7345 	/*
7346 	 * move p_mapping list from old page to new page
7347 	 */
7348 	dpp->p_mapping = tpp->p_mapping;
7349 	tpp->p_mapping = NULL;
7350 	dpp->p_share = tpp->p_share;
7351 	tpp->p_share = 0;
7352 
7353 	while (index != 0) {
7354 		index = index >> 1;
7355 		if (index != 0)
7356 			cons++;
7357 		if (index & 0x1) {
7358 			tpp = PP_GROUPLEADER(tpp, cons);
7359 			dpp = PP_GROUPLEADER(dpp, cons);
7360 			goto retry;
7361 		}
7362 	}
7363 
7364 	curthread->t_flag &= ~T_DONTDTRACE;
7365 	mutex_exit(&kpr_suspendlock);
7366 }
7367 
7368 uint_t
7369 hat_pagesync(struct page *pp, uint_t clearflag)
7370 {
7371 	struct sf_hment *sfhme, *tmphme = NULL;
7372 	struct hme_blk *hmeblkp;
7373 	kmutex_t *pml;
7374 	cpuset_t cpuset, tset;
7375 	int	index, cons;
7376 	extern	ulong_t po_share;
7377 	page_t	*save_pp = pp;
7378 	int	stop_on_sh = 0;
7379 	uint_t	shcnt;
7380 
7381 	CPUSET_ZERO(cpuset);
7382 
7383 	if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
7384 		return (PP_GENERIC_ATTR(pp));
7385 	}
7386 
7387 	if ((clearflag & HAT_SYNC_ZERORM) == 0) {
7388 		if ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(pp)) {
7389 			return (PP_GENERIC_ATTR(pp));
7390 		}
7391 		if ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(pp)) {
7392 			return (PP_GENERIC_ATTR(pp));
7393 		}
7394 		if (clearflag & HAT_SYNC_STOPON_SHARED) {
7395 			if (pp->p_share > po_share) {
7396 				hat_page_setattr(pp, P_REF);
7397 				return (PP_GENERIC_ATTR(pp));
7398 			}
7399 			stop_on_sh = 1;
7400 			shcnt = 0;
7401 		}
7402 	}
7403 
7404 	clearflag &= ~HAT_SYNC_STOPON_SHARED;
7405 	pml = sfmmu_mlist_enter(pp);
7406 	index = PP_MAPINDEX(pp);
7407 	cons = TTE8K;
7408 retry:
7409 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7410 		/*
7411 		 * We need to save the next hment on the list since
7412 		 * it is possible for pagesync to remove an invalid hment
7413 		 * from the list.
7414 		 */
7415 		tmphme = sfhme->hme_next;
7416 		if (IS_PAHME(sfhme))
7417 			continue;
7418 		/*
7419 		 * If we are looking for large mappings and this hme doesn't
7420 		 * reach the range we are seeking, just ignore it.
7421 		 */
7422 		hmeblkp = sfmmu_hmetohblk(sfhme);
7423 
7424 		if (hme_size(sfhme) < cons)
7425 			continue;
7426 
7427 		if (stop_on_sh) {
7428 			if (hmeblkp->hblk_shared) {
7429 				sf_srd_t *srdp = hblktosrd(hmeblkp);
7430 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
7431 				sf_region_t *rgnp;
7432 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7433 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7434 				ASSERT(srdp != NULL);
7435 				rgnp = srdp->srd_hmergnp[rid];
7436 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
7437 				    rgnp, rid);
7438 				shcnt += rgnp->rgn_refcnt;
7439 			} else {
7440 				shcnt++;
7441 			}
7442 			if (shcnt > po_share) {
7443 				/*
7444 				 * tell the pager to spare the page this time
7445 				 * around.
7446 				 */
7447 				hat_page_setattr(save_pp, P_REF);
7448 				index = 0;
7449 				break;
7450 			}
7451 		}
7452 		tset = sfmmu_pagesync(pp, sfhme,
7453 		    clearflag & ~HAT_SYNC_STOPON_RM);
7454 		CPUSET_OR(cpuset, tset);
7455 
7456 		/*
7457 		 * If clearflag is HAT_SYNC_DONTZERO, break out as soon
7458 		 * as the "ref" or "mod" is set or share cnt exceeds po_share.
7459 		 */
7460 		if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
7461 		    (((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
7462 		    ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)))) {
7463 			index = 0;
7464 			break;
7465 		}
7466 	}
7467 
7468 	while (index) {
7469 		index = index >> 1;
7470 		cons++;
7471 		if (index & 0x1) {
7472 			/* Go to leading page */
7473 			pp = PP_GROUPLEADER(pp, cons);
7474 			goto retry;
7475 		}
7476 	}
7477 
7478 	xt_sync(cpuset);
7479 	sfmmu_mlist_exit(pml);
7480 	return (PP_GENERIC_ATTR(save_pp));
7481 }
7482 
7483 /*
7484  * Get all the hardware dependent attributes for a page struct
7485  */
7486 static cpuset_t
7487 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
7488 	uint_t clearflag)
7489 {
7490 	caddr_t addr;
7491 	tte_t tte, ttemod;
7492 	struct hme_blk *hmeblkp;
7493 	int ret;
7494 	sfmmu_t *sfmmup;
7495 	cpuset_t cpuset;
7496 
7497 	ASSERT(pp != NULL);
7498 	ASSERT(sfmmu_mlist_held(pp));
7499 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
7500 	    (clearflag == HAT_SYNC_ZERORM));
7501 
7502 	SFMMU_STAT(sf_pagesync);
7503 
7504 	CPUSET_ZERO(cpuset);
7505 
7506 sfmmu_pagesync_retry:
7507 
7508 	sfmmu_copytte(&sfhme->hme_tte, &tte);
7509 	if (TTE_IS_VALID(&tte)) {
7510 		hmeblkp = sfmmu_hmetohblk(sfhme);
7511 		sfmmup = hblktosfmmu(hmeblkp);
7512 		addr = tte_to_vaddr(hmeblkp, tte);
7513 		if (clearflag == HAT_SYNC_ZERORM) {
7514 			ttemod = tte;
7515 			TTE_CLR_RM(&ttemod);
7516 			ret = sfmmu_modifytte_try(&tte, &ttemod,
7517 			    &sfhme->hme_tte);
7518 			if (ret < 0) {
7519 				/*
7520 				 * cas failed and the new value is not what
7521 				 * we want.
7522 				 */
7523 				goto sfmmu_pagesync_retry;
7524 			}
7525 
7526 			if (ret > 0) {
7527 				/* we win the cas */
7528 				if (hmeblkp->hblk_shared) {
7529 					sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7530 					uint_t rid =
7531 					    hmeblkp->hblk_tag.htag_rid;
7532 					sf_region_t *rgnp;
7533 					ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7534 					ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7535 					ASSERT(srdp != NULL);
7536 					rgnp = srdp->srd_hmergnp[rid];
7537 					SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7538 					    srdp, rgnp, rid);
7539 					cpuset = sfmmu_rgntlb_demap(addr,
7540 					    rgnp, hmeblkp, 1);
7541 				} else {
7542 					sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
7543 					    0, 0);
7544 					cpuset = sfmmup->sfmmu_cpusran;
7545 				}
7546 			}
7547 		}
7548 		sfmmu_ttesync(hmeblkp->hblk_shared ? NULL : sfmmup, addr,
7549 		    &tte, pp);
7550 	}
7551 	return (cpuset);
7552 }
7553 
7554 /*
7555  * Remove write permission from a mappings to a page, so that
7556  * we can detect the next modification of it. This requires modifying
7557  * the TTE then invalidating (demap) any TLB entry using that TTE.
7558  * This code is similar to sfmmu_pagesync().
7559  */
7560 static cpuset_t
7561 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
7562 {
7563 	caddr_t addr;
7564 	tte_t tte;
7565 	tte_t ttemod;
7566 	struct hme_blk *hmeblkp;
7567 	int ret;
7568 	sfmmu_t *sfmmup;
7569 	cpuset_t cpuset;
7570 
7571 	ASSERT(pp != NULL);
7572 	ASSERT(sfmmu_mlist_held(pp));
7573 
7574 	CPUSET_ZERO(cpuset);
7575 	SFMMU_STAT(sf_clrwrt);
7576 
7577 retry:
7578 
7579 	sfmmu_copytte(&sfhme->hme_tte, &tte);
7580 	if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
7581 		hmeblkp = sfmmu_hmetohblk(sfhme);
7582 		sfmmup = hblktosfmmu(hmeblkp);
7583 		addr = tte_to_vaddr(hmeblkp, tte);
7584 
7585 		ttemod = tte;
7586 		TTE_CLR_WRT(&ttemod);
7587 		TTE_CLR_MOD(&ttemod);
7588 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7589 
7590 		/*
7591 		 * if cas failed and the new value is not what
7592 		 * we want retry
7593 		 */
7594 		if (ret < 0)
7595 			goto retry;
7596 
7597 		/* we win the cas */
7598 		if (ret > 0) {
7599 			if (hmeblkp->hblk_shared) {
7600 				sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7601 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
7602 				sf_region_t *rgnp;
7603 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7604 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7605 				ASSERT(srdp != NULL);
7606 				rgnp = srdp->srd_hmergnp[rid];
7607 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7608 				    srdp, rgnp, rid);
7609 				cpuset = sfmmu_rgntlb_demap(addr,
7610 				    rgnp, hmeblkp, 1);
7611 			} else {
7612 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7613 				cpuset = sfmmup->sfmmu_cpusran;
7614 			}
7615 		}
7616 	}
7617 
7618 	return (cpuset);
7619 }
7620 
7621 /*
7622  * Walk all mappings of a page, removing write permission and clearing the
7623  * ref/mod bits. This code is similar to hat_pagesync()
7624  */
7625 static void
7626 hat_page_clrwrt(page_t *pp)
7627 {
7628 	struct sf_hment *sfhme;
7629 	struct sf_hment *tmphme = NULL;
7630 	kmutex_t *pml;
7631 	cpuset_t cpuset;
7632 	cpuset_t tset;
7633 	int	index;
7634 	int	 cons;
7635 
7636 	CPUSET_ZERO(cpuset);
7637 
7638 	pml = sfmmu_mlist_enter(pp);
7639 	index = PP_MAPINDEX(pp);
7640 	cons = TTE8K;
7641 retry:
7642 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7643 		tmphme = sfhme->hme_next;
7644 
7645 		/*
7646 		 * If we are looking for large mappings and this hme doesn't
7647 		 * reach the range we are seeking, just ignore its.
7648 		 */
7649 
7650 		if (hme_size(sfhme) < cons)
7651 			continue;
7652 
7653 		tset = sfmmu_pageclrwrt(pp, sfhme);
7654 		CPUSET_OR(cpuset, tset);
7655 	}
7656 
7657 	while (index) {
7658 		index = index >> 1;
7659 		cons++;
7660 		if (index & 0x1) {
7661 			/* Go to leading page */
7662 			pp = PP_GROUPLEADER(pp, cons);
7663 			goto retry;
7664 		}
7665 	}
7666 
7667 	xt_sync(cpuset);
7668 	sfmmu_mlist_exit(pml);
7669 }
7670 
7671 /*
7672  * Set the given REF/MOD/RO bits for the given page.
7673  * For a vnode with a sorted v_pages list, we need to change
7674  * the attributes and the v_pages list together under page_vnode_mutex.
7675  */
7676 void
7677 hat_page_setattr(page_t *pp, uint_t flag)
7678 {
7679 	vnode_t		*vp = pp->p_vnode;
7680 	page_t		**listp;
7681 	kmutex_t	*pmtx;
7682 	kmutex_t	*vphm = NULL;
7683 	int		noshuffle;
7684 
7685 	noshuffle = flag & P_NSH;
7686 	flag &= ~P_NSH;
7687 
7688 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7689 
7690 	/*
7691 	 * nothing to do if attribute already set
7692 	 */
7693 	if ((pp->p_nrm & flag) == flag)
7694 		return;
7695 
7696 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
7697 	    !noshuffle) {
7698 		vphm = page_vnode_mutex(vp);
7699 		mutex_enter(vphm);
7700 	}
7701 
7702 	pmtx = sfmmu_page_enter(pp);
7703 	pp->p_nrm |= flag;
7704 	sfmmu_page_exit(pmtx);
7705 
7706 	if (vphm != NULL) {
7707 		/*
7708 		 * Some File Systems examine v_pages for NULL w/o
7709 		 * grabbing the vphm mutex. Must not let it become NULL when
7710 		 * pp is the only page on the list.
7711 		 */
7712 		if (pp->p_vpnext != pp) {
7713 			page_vpsub(&vp->v_pages, pp);
7714 			if (vp->v_pages != NULL)
7715 				listp = &vp->v_pages->p_vpprev->p_vpnext;
7716 			else
7717 				listp = &vp->v_pages;
7718 			page_vpadd(listp, pp);
7719 		}
7720 		mutex_exit(vphm);
7721 	}
7722 }
7723 
7724 void
7725 hat_page_clrattr(page_t *pp, uint_t flag)
7726 {
7727 	vnode_t		*vp = pp->p_vnode;
7728 	kmutex_t	*pmtx;
7729 
7730 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7731 
7732 	pmtx = sfmmu_page_enter(pp);
7733 
7734 	/*
7735 	 * Caller is expected to hold page's io lock for VMODSORT to work
7736 	 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
7737 	 * bit is cleared.
7738 	 * We don't have assert to avoid tripping some existing third party
7739 	 * code. The dirty page is moved back to top of the v_page list
7740 	 * after IO is done in pvn_write_done().
7741 	 */
7742 	pp->p_nrm &= ~flag;
7743 	sfmmu_page_exit(pmtx);
7744 
7745 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
7746 
7747 		/*
7748 		 * VMODSORT works by removing write permissions and getting
7749 		 * a fault when a page is made dirty. At this point
7750 		 * we need to remove write permission from all mappings
7751 		 * to this page.
7752 		 */
7753 		hat_page_clrwrt(pp);
7754 	}
7755 }
7756 
7757 uint_t
7758 hat_page_getattr(page_t *pp, uint_t flag)
7759 {
7760 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7761 	return ((uint_t)(pp->p_nrm & flag));
7762 }
7763 
7764 /*
7765  * DEBUG kernels: verify that a kernel va<->pa translation
7766  * is safe by checking the underlying page_t is in a page
7767  * relocation-safe state.
7768  */
7769 #ifdef	DEBUG
7770 void
7771 sfmmu_check_kpfn(pfn_t pfn)
7772 {
7773 	page_t *pp;
7774 	int index, cons;
7775 
7776 	if (hat_check_vtop == 0)
7777 		return;
7778 
7779 	if (kvseg.s_base == NULL || panicstr)
7780 		return;
7781 
7782 	pp = page_numtopp_nolock(pfn);
7783 	if (!pp)
7784 		return;
7785 
7786 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7787 		return;
7788 
7789 	/*
7790 	 * Handed a large kernel page, we dig up the root page since we
7791 	 * know the root page might have the lock also.
7792 	 */
7793 	if (pp->p_szc != 0) {
7794 		index = PP_MAPINDEX(pp);
7795 		cons = TTE8K;
7796 again:
7797 		while (index != 0) {
7798 			index >>= 1;
7799 			if (index != 0)
7800 				cons++;
7801 			if (index & 0x1) {
7802 				pp = PP_GROUPLEADER(pp, cons);
7803 				goto again;
7804 			}
7805 		}
7806 	}
7807 
7808 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7809 		return;
7810 
7811 	/*
7812 	 * Pages need to be locked or allocated "permanent" (either from
7813 	 * static_arena arena or explicitly setting PG_NORELOC when calling
7814 	 * page_create_va()) for VA->PA translations to be valid.
7815 	 */
7816 	if (!PP_ISNORELOC(pp))
7817 		panic("Illegal VA->PA translation, pp 0x%p not permanent",
7818 		    (void *)pp);
7819 	else
7820 		panic("Illegal VA->PA translation, pp 0x%p not locked",
7821 		    (void *)pp);
7822 }
7823 #endif	/* DEBUG */
7824 
7825 /*
7826  * Returns a page frame number for a given virtual address.
7827  * Returns PFN_INVALID to indicate an invalid mapping
7828  */
7829 pfn_t
7830 hat_getpfnum(struct hat *hat, caddr_t addr)
7831 {
7832 	pfn_t pfn;
7833 	tte_t tte;
7834 
7835 	/*
7836 	 * We would like to
7837 	 * ASSERT(AS_LOCK_HELD(as));
7838 	 * but we can't because the iommu driver will call this
7839 	 * routine at interrupt time and it can't grab the as lock
7840 	 * or it will deadlock: A thread could have the as lock
7841 	 * and be waiting for io.  The io can't complete
7842 	 * because the interrupt thread is blocked trying to grab
7843 	 * the as lock.
7844 	 */
7845 
7846 	if (hat == ksfmmup) {
7847 		if (IS_KMEM_VA_LARGEPAGE(addr)) {
7848 			ASSERT(segkmem_lpszc > 0);
7849 			pfn = sfmmu_kvaszc2pfn(addr, segkmem_lpszc);
7850 			if (pfn != PFN_INVALID) {
7851 				sfmmu_check_kpfn(pfn);
7852 				return (pfn);
7853 			}
7854 		} else if (segkpm && IS_KPM_ADDR(addr)) {
7855 			return (sfmmu_kpm_vatopfn(addr));
7856 		}
7857 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7858 		    == PFN_SUSPENDED) {
7859 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7860 		}
7861 		sfmmu_check_kpfn(pfn);
7862 		return (pfn);
7863 	} else {
7864 		return (sfmmu_uvatopfn(addr, hat, NULL));
7865 	}
7866 }
7867 
7868 /*
7869  * This routine will return both pfn and tte for the vaddr.
7870  */
7871 static pfn_t
7872 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup, tte_t *ttep)
7873 {
7874 	struct hmehash_bucket *hmebp;
7875 	hmeblk_tag hblktag;
7876 	int hmeshift, hashno = 1;
7877 	struct hme_blk *hmeblkp = NULL;
7878 	tte_t tte;
7879 
7880 	struct sf_hment *sfhmep;
7881 	pfn_t pfn;
7882 
7883 	/* support for ISM */
7884 	ism_map_t	*ism_map;
7885 	ism_blk_t	*ism_blkp;
7886 	int		i;
7887 	sfmmu_t *ism_hatid = NULL;
7888 	sfmmu_t *locked_hatid = NULL;
7889 	sfmmu_t	*sv_sfmmup = sfmmup;
7890 	caddr_t	sv_vaddr = vaddr;
7891 	sf_srd_t *srdp;
7892 
7893 	if (ttep == NULL) {
7894 		ttep = &tte;
7895 	} else {
7896 		ttep->ll = 0;
7897 	}
7898 
7899 	ASSERT(sfmmup != ksfmmup);
7900 	SFMMU_STAT(sf_user_vtop);
7901 	/*
7902 	 * Set ism_hatid if vaddr falls in a ISM segment.
7903 	 */
7904 	ism_blkp = sfmmup->sfmmu_iblk;
7905 	if (ism_blkp != NULL) {
7906 		sfmmu_ismhat_enter(sfmmup, 0);
7907 		locked_hatid = sfmmup;
7908 	}
7909 	while (ism_blkp != NULL && ism_hatid == NULL) {
7910 		ism_map = ism_blkp->iblk_maps;
7911 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
7912 			if (vaddr >= ism_start(ism_map[i]) &&
7913 			    vaddr < ism_end(ism_map[i])) {
7914 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
7915 				vaddr = (caddr_t)(vaddr -
7916 				    ism_start(ism_map[i]));
7917 				break;
7918 			}
7919 		}
7920 		ism_blkp = ism_blkp->iblk_next;
7921 	}
7922 	if (locked_hatid) {
7923 		sfmmu_ismhat_exit(locked_hatid, 0);
7924 	}
7925 
7926 	hblktag.htag_id = sfmmup;
7927 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
7928 	do {
7929 		hmeshift = HME_HASH_SHIFT(hashno);
7930 		hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
7931 		hblktag.htag_rehash = hashno;
7932 		hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
7933 
7934 		SFMMU_HASH_LOCK(hmebp);
7935 
7936 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
7937 		if (hmeblkp != NULL) {
7938 			ASSERT(!hmeblkp->hblk_shared);
7939 			HBLKTOHME(sfhmep, hmeblkp, vaddr);
7940 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
7941 			SFMMU_HASH_UNLOCK(hmebp);
7942 			if (TTE_IS_VALID(ttep)) {
7943 				pfn = TTE_TO_PFN(vaddr, ttep);
7944 				return (pfn);
7945 			}
7946 			break;
7947 		}
7948 		SFMMU_HASH_UNLOCK(hmebp);
7949 		hashno++;
7950 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
7951 
7952 	if (SF_HMERGNMAP_ISNULL(sv_sfmmup)) {
7953 		return (PFN_INVALID);
7954 	}
7955 	srdp = sv_sfmmup->sfmmu_srdp;
7956 	ASSERT(srdp != NULL);
7957 	ASSERT(srdp->srd_refcnt != 0);
7958 	hblktag.htag_id = srdp;
7959 	hashno = 1;
7960 	do {
7961 		hmeshift = HME_HASH_SHIFT(hashno);
7962 		hblktag.htag_bspage = HME_HASH_BSPAGE(sv_vaddr, hmeshift);
7963 		hblktag.htag_rehash = hashno;
7964 		hmebp = HME_HASH_FUNCTION(srdp, sv_vaddr, hmeshift);
7965 
7966 		SFMMU_HASH_LOCK(hmebp);
7967 		for (hmeblkp = hmebp->hmeblkp; hmeblkp != NULL;
7968 		    hmeblkp = hmeblkp->hblk_next) {
7969 			uint_t rid;
7970 			sf_region_t *rgnp;
7971 			caddr_t rsaddr;
7972 			caddr_t readdr;
7973 
7974 			if (!HTAGS_EQ_SHME(hmeblkp->hblk_tag, hblktag,
7975 			    sv_sfmmup->sfmmu_hmeregion_map)) {
7976 				continue;
7977 			}
7978 			ASSERT(hmeblkp->hblk_shared);
7979 			rid = hmeblkp->hblk_tag.htag_rid;
7980 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7981 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7982 			rgnp = srdp->srd_hmergnp[rid];
7983 			SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
7984 			HBLKTOHME(sfhmep, hmeblkp, sv_vaddr);
7985 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
7986 			rsaddr = rgnp->rgn_saddr;
7987 			readdr = rsaddr + rgnp->rgn_size;
7988 #ifdef DEBUG
7989 			if (TTE_IS_VALID(ttep) ||
7990 			    get_hblk_ttesz(hmeblkp) > TTE8K) {
7991 				caddr_t eva = tte_to_evaddr(hmeblkp, ttep);
7992 				ASSERT(eva > sv_vaddr);
7993 				ASSERT(sv_vaddr >= rsaddr);
7994 				ASSERT(sv_vaddr < readdr);
7995 				ASSERT(eva <= readdr);
7996 			}
7997 #endif /* DEBUG */
7998 			/*
7999 			 * Continue the search if we
8000 			 * found an invalid 8K tte outside of the area
8001 			 * covered by this hmeblk's region.
8002 			 */
8003 			if (TTE_IS_VALID(ttep)) {
8004 				SFMMU_HASH_UNLOCK(hmebp);
8005 				pfn = TTE_TO_PFN(sv_vaddr, ttep);
8006 				return (pfn);
8007 			} else if (get_hblk_ttesz(hmeblkp) > TTE8K ||
8008 			    (sv_vaddr >= rsaddr && sv_vaddr < readdr)) {
8009 				SFMMU_HASH_UNLOCK(hmebp);
8010 				pfn = PFN_INVALID;
8011 				return (pfn);
8012 			}
8013 		}
8014 		SFMMU_HASH_UNLOCK(hmebp);
8015 		hashno++;
8016 	} while (hashno <= mmu_hashcnt);
8017 	return (PFN_INVALID);
8018 }
8019 
8020 
8021 /*
8022  * For compatability with AT&T and later optimizations
8023  */
8024 /* ARGSUSED */
8025 void
8026 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
8027 {
8028 	ASSERT(hat != NULL);
8029 }
8030 
8031 /*
8032  * Return the number of mappings to a particular page.  This number is an
8033  * approximation of the number of people sharing the page.
8034  *
8035  * shared hmeblks or ism hmeblks are counted as 1 mapping here.
8036  * hat_page_checkshare() can be used to compare threshold to share
8037  * count that reflects the number of region sharers albeit at higher cost.
8038  */
8039 ulong_t
8040 hat_page_getshare(page_t *pp)
8041 {
8042 	page_t *spp = pp;	/* start page */
8043 	kmutex_t *pml;
8044 	ulong_t	cnt;
8045 	int index, sz = TTE64K;
8046 
8047 	/*
8048 	 * We need to grab the mlist lock to make sure any outstanding
8049 	 * load/unloads complete.  Otherwise we could return zero
8050 	 * even though the unload(s) hasn't finished yet.
8051 	 */
8052 	pml = sfmmu_mlist_enter(spp);
8053 	cnt = spp->p_share;
8054 
8055 #ifdef VAC
8056 	if (kpm_enable)
8057 		cnt += spp->p_kpmref;
8058 #endif
8059 	if (vpm_enable && pp->p_vpmref) {
8060 		cnt += 1;
8061 	}
8062 
8063 	/*
8064 	 * If we have any large mappings, we count the number of
8065 	 * mappings that this large page is part of.
8066 	 */
8067 	index = PP_MAPINDEX(spp);
8068 	index >>= 1;
8069 	while (index) {
8070 		pp = PP_GROUPLEADER(spp, sz);
8071 		if ((index & 0x1) && pp != spp) {
8072 			cnt += pp->p_share;
8073 			spp = pp;
8074 		}
8075 		index >>= 1;
8076 		sz++;
8077 	}
8078 	sfmmu_mlist_exit(pml);
8079 	return (cnt);
8080 }
8081 
8082 /*
8083  * Return 1 if the number of mappings exceeds sh_thresh. Return 0
8084  * otherwise. Count shared hmeblks by region's refcnt.
8085  */
8086 int
8087 hat_page_checkshare(page_t *pp, ulong_t sh_thresh)
8088 {
8089 	kmutex_t *pml;
8090 	ulong_t	cnt = 0;
8091 	int index, sz = TTE8K;
8092 	struct sf_hment *sfhme, *tmphme = NULL;
8093 	struct hme_blk *hmeblkp;
8094 
8095 	pml = sfmmu_mlist_enter(pp);
8096 
8097 #ifdef VAC
8098 	if (kpm_enable)
8099 		cnt = pp->p_kpmref;
8100 #endif
8101 
8102 	if (vpm_enable && pp->p_vpmref) {
8103 		cnt += 1;
8104 	}
8105 
8106 	if (pp->p_share + cnt > sh_thresh) {
8107 		sfmmu_mlist_exit(pml);
8108 		return (1);
8109 	}
8110 
8111 	index = PP_MAPINDEX(pp);
8112 
8113 again:
8114 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
8115 		tmphme = sfhme->hme_next;
8116 		if (IS_PAHME(sfhme)) {
8117 			continue;
8118 		}
8119 
8120 		hmeblkp = sfmmu_hmetohblk(sfhme);
8121 		if (hme_size(sfhme) != sz) {
8122 			continue;
8123 		}
8124 
8125 		if (hmeblkp->hblk_shared) {
8126 			sf_srd_t *srdp = hblktosrd(hmeblkp);
8127 			uint_t rid = hmeblkp->hblk_tag.htag_rid;
8128 			sf_region_t *rgnp;
8129 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
8130 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
8131 			ASSERT(srdp != NULL);
8132 			rgnp = srdp->srd_hmergnp[rid];
8133 			SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
8134 			    rgnp, rid);
8135 			cnt += rgnp->rgn_refcnt;
8136 		} else {
8137 			cnt++;
8138 		}
8139 		if (cnt > sh_thresh) {
8140 			sfmmu_mlist_exit(pml);
8141 			return (1);
8142 		}
8143 	}
8144 
8145 	index >>= 1;
8146 	sz++;
8147 	while (index) {
8148 		pp = PP_GROUPLEADER(pp, sz);
8149 		ASSERT(sfmmu_mlist_held(pp));
8150 		if (index & 0x1) {
8151 			goto again;
8152 		}
8153 		index >>= 1;
8154 		sz++;
8155 	}
8156 	sfmmu_mlist_exit(pml);
8157 	return (0);
8158 }
8159 
8160 /*
8161  * Unload all large mappings to the pp and reset the p_szc field of every
8162  * constituent page according to the remaining mappings.
8163  *
8164  * pp must be locked SE_EXCL. Even though no other constituent pages are
8165  * locked it's legal to unload the large mappings to the pp because all
8166  * constituent pages of large locked mappings have to be locked SE_SHARED.
8167  * This means if we have SE_EXCL lock on one of constituent pages none of the
8168  * large mappings to pp are locked.
8169  *
8170  * Decrease p_szc field starting from the last constituent page and ending
8171  * with the root page. This method is used because other threads rely on the
8172  * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
8173  * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
8174  * ensures that p_szc changes of the constituent pages appears atomic for all
8175  * threads that use sfmmu_mlspl_enter() to examine p_szc field.
8176  *
8177  * This mechanism is only used for file system pages where it's not always
8178  * possible to get SE_EXCL locks on all constituent pages to demote the size
8179  * code (as is done for anonymous or kernel large pages).
8180  *
8181  * See more comments in front of sfmmu_mlspl_enter().
8182  */
8183 void
8184 hat_page_demote(page_t *pp)
8185 {
8186 	int index;
8187 	int sz;
8188 	cpuset_t cpuset;
8189 	int sync = 0;
8190 	page_t *rootpp;
8191 	struct sf_hment *sfhme;
8192 	struct sf_hment *tmphme = NULL;
8193 	struct hme_blk *hmeblkp;
8194 	uint_t pszc;
8195 	page_t *lastpp;
8196 	cpuset_t tset;
8197 	pgcnt_t npgs;
8198 	kmutex_t *pml;
8199 	kmutex_t *pmtx = NULL;
8200 
8201 	ASSERT(PAGE_EXCL(pp));
8202 	ASSERT(!PP_ISFREE(pp));
8203 	ASSERT(!PP_ISKAS(pp));
8204 	ASSERT(page_szc_lock_assert(pp));
8205 	pml = sfmmu_mlist_enter(pp);
8206 
8207 	pszc = pp->p_szc;
8208 	if (pszc == 0) {
8209 		goto out;
8210 	}
8211 
8212 	index = PP_MAPINDEX(pp) >> 1;
8213 
8214 	if (index) {
8215 		CPUSET_ZERO(cpuset);
8216 		sz = TTE64K;
8217 		sync = 1;
8218 	}
8219 
8220 	while (index) {
8221 		if (!(index & 0x1)) {
8222 			index >>= 1;
8223 			sz++;
8224 			continue;
8225 		}
8226 		ASSERT(sz <= pszc);
8227 		rootpp = PP_GROUPLEADER(pp, sz);
8228 		for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
8229 			tmphme = sfhme->hme_next;
8230 			ASSERT(!IS_PAHME(sfhme));
8231 			hmeblkp = sfmmu_hmetohblk(sfhme);
8232 			if (hme_size(sfhme) != sz) {
8233 				continue;
8234 			}
8235 			tset = sfmmu_pageunload(rootpp, sfhme, sz);
8236 			CPUSET_OR(cpuset, tset);
8237 		}
8238 		if (index >>= 1) {
8239 			sz++;
8240 		}
8241 	}
8242 
8243 	ASSERT(!PP_ISMAPPED_LARGE(pp));
8244 
8245 	if (sync) {
8246 		xt_sync(cpuset);
8247 #ifdef VAC
8248 		if (PP_ISTNC(pp)) {
8249 			conv_tnc(rootpp, sz);
8250 		}
8251 #endif	/* VAC */
8252 	}
8253 
8254 	pmtx = sfmmu_page_enter(pp);
8255 
8256 	ASSERT(pp->p_szc == pszc);
8257 	rootpp = PP_PAGEROOT(pp);
8258 	ASSERT(rootpp->p_szc == pszc);
8259 	lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
8260 
8261 	while (lastpp != rootpp) {
8262 		sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
8263 		ASSERT(sz < pszc);
8264 		npgs = (sz == 0) ? 1 : TTEPAGES(sz);
8265 		ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
8266 		while (--npgs > 0) {
8267 			lastpp->p_szc = (uchar_t)sz;
8268 			lastpp = PP_PAGEPREV(lastpp);
8269 		}
8270 		if (sz) {
8271 			/*
8272 			 * make sure before current root's pszc
8273 			 * is updated all updates to constituent pages pszc
8274 			 * fields are globally visible.
8275 			 */
8276 			membar_producer();
8277 		}
8278 		lastpp->p_szc = sz;
8279 		ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
8280 		if (lastpp != rootpp) {
8281 			lastpp = PP_PAGEPREV(lastpp);
8282 		}
8283 	}
8284 	if (sz == 0) {
8285 		/* the loop above doesn't cover this case */
8286 		rootpp->p_szc = 0;
8287 	}
8288 out:
8289 	ASSERT(pp->p_szc == 0);
8290 	if (pmtx != NULL) {
8291 		sfmmu_page_exit(pmtx);
8292 	}
8293 	sfmmu_mlist_exit(pml);
8294 }
8295 
8296 /*
8297  * Refresh the HAT ismttecnt[] element for size szc.
8298  * Caller must have set ISM busy flag to prevent mapping
8299  * lists from changing while we're traversing them.
8300  */
8301 pgcnt_t
8302 ism_tsb_entries(sfmmu_t *sfmmup, int szc)
8303 {
8304 	ism_blk_t	*ism_blkp = sfmmup->sfmmu_iblk;
8305 	ism_map_t	*ism_map;
8306 	pgcnt_t		npgs = 0;
8307 	pgcnt_t		npgs_scd = 0;
8308 	int		j;
8309 	sf_scd_t	*scdp;
8310 	uchar_t		rid;
8311 
8312 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
8313 	scdp = sfmmup->sfmmu_scdp;
8314 
8315 	for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
8316 		ism_map = ism_blkp->iblk_maps;
8317 		for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++) {
8318 			rid = ism_map[j].imap_rid;
8319 			ASSERT(rid == SFMMU_INVALID_ISMRID ||
8320 			    rid < sfmmup->sfmmu_srdp->srd_next_ismrid);
8321 
8322 			if (scdp != NULL && rid != SFMMU_INVALID_ISMRID &&
8323 			    SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
8324 				/* ISM is in sfmmup's SCD */
8325 				npgs_scd +=
8326 				    ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8327 			} else {
8328 				/* ISMs is not in SCD */
8329 				npgs +=
8330 				    ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8331 			}
8332 		}
8333 	}
8334 	sfmmup->sfmmu_ismttecnt[szc] = npgs;
8335 	sfmmup->sfmmu_scdismttecnt[szc] = npgs_scd;
8336 	return (npgs);
8337 }
8338 
8339 /*
8340  * Yield the memory claim requirement for an address space.
8341  *
8342  * This is currently implemented as the number of bytes that have active
8343  * hardware translations that have page structures.  Therefore, it can
8344  * underestimate the traditional resident set size, eg, if the
8345  * physical page is present and the hardware translation is missing;
8346  * and it can overestimate the rss, eg, if there are active
8347  * translations to a frame buffer with page structs.
8348  * Also, it does not take sharing into account.
8349  *
8350  * Note that we don't acquire locks here since this function is most often
8351  * called from the clock thread.
8352  */
8353 size_t
8354 hat_get_mapped_size(struct hat *hat)
8355 {
8356 	size_t		assize = 0;
8357 	int 		i;
8358 
8359 	if (hat == NULL)
8360 		return (0);
8361 
8362 	for (i = 0; i < mmu_page_sizes; i++)
8363 		assize += ((pgcnt_t)hat->sfmmu_ttecnt[i] +
8364 		    (pgcnt_t)hat->sfmmu_scdrttecnt[i]) * TTEBYTES(i);
8365 
8366 	if (hat->sfmmu_iblk == NULL)
8367 		return (assize);
8368 
8369 	for (i = 0; i < mmu_page_sizes; i++)
8370 		assize += ((pgcnt_t)hat->sfmmu_ismttecnt[i] +
8371 		    (pgcnt_t)hat->sfmmu_scdismttecnt[i]) * TTEBYTES(i);
8372 
8373 	return (assize);
8374 }
8375 
8376 int
8377 hat_stats_enable(struct hat *hat)
8378 {
8379 	hatlock_t	*hatlockp;
8380 
8381 	hatlockp = sfmmu_hat_enter(hat);
8382 	hat->sfmmu_rmstat++;
8383 	sfmmu_hat_exit(hatlockp);
8384 	return (1);
8385 }
8386 
8387 void
8388 hat_stats_disable(struct hat *hat)
8389 {
8390 	hatlock_t	*hatlockp;
8391 
8392 	hatlockp = sfmmu_hat_enter(hat);
8393 	hat->sfmmu_rmstat--;
8394 	sfmmu_hat_exit(hatlockp);
8395 }
8396 
8397 /*
8398  * Routines for entering or removing  ourselves from the
8399  * ism_hat's mapping list. This is used for both private and
8400  * SCD hats.
8401  */
8402 static void
8403 iment_add(struct ism_ment *iment,  struct hat *ism_hat)
8404 {
8405 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
8406 
8407 	iment->iment_prev = NULL;
8408 	iment->iment_next = ism_hat->sfmmu_iment;
8409 	if (ism_hat->sfmmu_iment) {
8410 		ism_hat->sfmmu_iment->iment_prev = iment;
8411 	}
8412 	ism_hat->sfmmu_iment = iment;
8413 }
8414 
8415 static void
8416 iment_sub(struct ism_ment *iment, struct hat *ism_hat)
8417 {
8418 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
8419 
8420 	if (ism_hat->sfmmu_iment == NULL) {
8421 		panic("ism map entry remove - no entries");
8422 	}
8423 
8424 	if (iment->iment_prev) {
8425 		ASSERT(ism_hat->sfmmu_iment != iment);
8426 		iment->iment_prev->iment_next = iment->iment_next;
8427 	} else {
8428 		ASSERT(ism_hat->sfmmu_iment == iment);
8429 		ism_hat->sfmmu_iment = iment->iment_next;
8430 	}
8431 
8432 	if (iment->iment_next) {
8433 		iment->iment_next->iment_prev = iment->iment_prev;
8434 	}
8435 
8436 	/*
8437 	 * zero out the entry
8438 	 */
8439 	iment->iment_next = NULL;
8440 	iment->iment_prev = NULL;
8441 	iment->iment_hat =  NULL;
8442 	iment->iment_base_va = 0;
8443 }
8444 
8445 /*
8446  * Hat_share()/unshare() return an (non-zero) error
8447  * when saddr and daddr are not properly aligned.
8448  *
8449  * The top level mapping element determines the alignment
8450  * requirement for saddr and daddr, depending on different
8451  * architectures.
8452  *
8453  * When hat_share()/unshare() are not supported,
8454  * HATOP_SHARE()/UNSHARE() return 0
8455  */
8456 int
8457 hat_share(struct hat *sfmmup, caddr_t addr,
8458 	struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc)
8459 {
8460 	ism_blk_t	*ism_blkp;
8461 	ism_blk_t	*new_iblk;
8462 	ism_map_t 	*ism_map;
8463 	ism_ment_t	*ism_ment;
8464 	int		i, added;
8465 	hatlock_t	*hatlockp;
8466 	int		reload_mmu = 0;
8467 	uint_t		ismshift = page_get_shift(ismszc);
8468 	size_t		ismpgsz = page_get_pagesize(ismszc);
8469 	uint_t		ismmask = (uint_t)ismpgsz - 1;
8470 	size_t		sh_size = ISM_SHIFT(ismshift, len);
8471 	ushort_t	ismhatflag;
8472 	hat_region_cookie_t rcookie;
8473 	sf_scd_t	*old_scdp;
8474 
8475 #ifdef DEBUG
8476 	caddr_t		eaddr = addr + len;
8477 #endif /* DEBUG */
8478 
8479 	ASSERT(ism_hatid != NULL && sfmmup != NULL);
8480 	ASSERT(sptaddr == ISMID_STARTADDR);
8481 	/*
8482 	 * Check the alignment.
8483 	 */
8484 	if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
8485 		return (EINVAL);
8486 
8487 	/*
8488 	 * Check size alignment.
8489 	 */
8490 	if (!ISM_ALIGNED(ismshift, len))
8491 		return (EINVAL);
8492 
8493 	/*
8494 	 * Allocate ism_ment for the ism_hat's mapping list, and an
8495 	 * ism map blk in case we need one.  We must do our
8496 	 * allocations before acquiring locks to prevent a deadlock
8497 	 * in the kmem allocator on the mapping list lock.
8498 	 */
8499 	new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
8500 	ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
8501 
8502 	/*
8503 	 * Serialize ISM mappings with the ISM busy flag, and also the
8504 	 * trap handlers.
8505 	 */
8506 	sfmmu_ismhat_enter(sfmmup, 0);
8507 
8508 	/*
8509 	 * Allocate an ism map blk if necessary.
8510 	 */
8511 	if (sfmmup->sfmmu_iblk == NULL) {
8512 		sfmmup->sfmmu_iblk = new_iblk;
8513 		bzero(new_iblk, sizeof (*new_iblk));
8514 		new_iblk->iblk_nextpa = (uint64_t)-1;
8515 		membar_stst();	/* make sure next ptr visible to all CPUs */
8516 		sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
8517 		reload_mmu = 1;
8518 		new_iblk = NULL;
8519 	}
8520 
8521 #ifdef DEBUG
8522 	/*
8523 	 * Make sure mapping does not already exist.
8524 	 */
8525 	ism_blkp = sfmmup->sfmmu_iblk;
8526 	while (ism_blkp != NULL) {
8527 		ism_map = ism_blkp->iblk_maps;
8528 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
8529 			if ((addr >= ism_start(ism_map[i]) &&
8530 			    addr < ism_end(ism_map[i])) ||
8531 			    eaddr > ism_start(ism_map[i]) &&
8532 			    eaddr <= ism_end(ism_map[i])) {
8533 				panic("sfmmu_share: Already mapped!");
8534 			}
8535 		}
8536 		ism_blkp = ism_blkp->iblk_next;
8537 	}
8538 #endif /* DEBUG */
8539 
8540 	ASSERT(ismszc >= TTE4M);
8541 	if (ismszc == TTE4M) {
8542 		ismhatflag = HAT_4M_FLAG;
8543 	} else if (ismszc == TTE32M) {
8544 		ismhatflag = HAT_32M_FLAG;
8545 	} else if (ismszc == TTE256M) {
8546 		ismhatflag = HAT_256M_FLAG;
8547 	}
8548 	/*
8549 	 * Add mapping to first available mapping slot.
8550 	 */
8551 	ism_blkp = sfmmup->sfmmu_iblk;
8552 	added = 0;
8553 	while (!added) {
8554 		ism_map = ism_blkp->iblk_maps;
8555 		for (i = 0; i < ISM_MAP_SLOTS; i++)  {
8556 			if (ism_map[i].imap_ismhat == NULL) {
8557 
8558 				ism_map[i].imap_ismhat = ism_hatid;
8559 				ism_map[i].imap_vb_shift = (uchar_t)ismshift;
8560 				ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
8561 				ism_map[i].imap_hatflags = ismhatflag;
8562 				ism_map[i].imap_sz_mask = ismmask;
8563 				/*
8564 				 * imap_seg is checked in ISM_CHECK to see if
8565 				 * non-NULL, then other info assumed valid.
8566 				 */
8567 				membar_stst();
8568 				ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
8569 				ism_map[i].imap_ment = ism_ment;
8570 
8571 				/*
8572 				 * Now add ourselves to the ism_hat's
8573 				 * mapping list.
8574 				 */
8575 				ism_ment->iment_hat = sfmmup;
8576 				ism_ment->iment_base_va = addr;
8577 				ism_hatid->sfmmu_ismhat = 1;
8578 				mutex_enter(&ism_mlist_lock);
8579 				iment_add(ism_ment, ism_hatid);
8580 				mutex_exit(&ism_mlist_lock);
8581 				added = 1;
8582 				break;
8583 			}
8584 		}
8585 		if (!added && ism_blkp->iblk_next == NULL) {
8586 			ism_blkp->iblk_next = new_iblk;
8587 			new_iblk = NULL;
8588 			bzero(ism_blkp->iblk_next,
8589 			    sizeof (*ism_blkp->iblk_next));
8590 			ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
8591 			membar_stst();
8592 			ism_blkp->iblk_nextpa =
8593 			    va_to_pa((caddr_t)ism_blkp->iblk_next);
8594 		}
8595 		ism_blkp = ism_blkp->iblk_next;
8596 	}
8597 
8598 	/*
8599 	 * After calling hat_join_region, sfmmup may join a new SCD or
8600 	 * move from the old scd to a new scd, in which case, we want to
8601 	 * shrink the sfmmup's private tsb size, i.e., pass shrink to
8602 	 * sfmmu_check_page_sizes at the end of this routine.
8603 	 */
8604 	old_scdp = sfmmup->sfmmu_scdp;
8605 
8606 	rcookie = hat_join_region(sfmmup, addr, len, (void *)ism_hatid, 0,
8607 	    PROT_ALL, ismszc, NULL, HAT_REGION_ISM);
8608 	if (rcookie != HAT_INVALID_REGION_COOKIE) {
8609 		ism_map[i].imap_rid = (uchar_t)((uint64_t)rcookie);
8610 	}
8611 	/*
8612 	 * Update our counters for this sfmmup's ism mappings.
8613 	 */
8614 	for (i = 0; i <= ismszc; i++) {
8615 		if (!(disable_ism_large_pages & (1 << i)))
8616 			(void) ism_tsb_entries(sfmmup, i);
8617 	}
8618 
8619 	/*
8620 	 * For ISM and DISM we do not support 512K pages, so we only only
8621 	 * search the 4M and 8K/64K hashes for 4 pagesize cpus, and search the
8622 	 * 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
8623 	 *
8624 	 * Need to set 32M/256M ISM flags to make sure
8625 	 * sfmmu_check_page_sizes() enables them on Panther.
8626 	 */
8627 	ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
8628 
8629 	switch (ismszc) {
8630 	case TTE256M:
8631 		if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_ISM)) {
8632 			hatlockp = sfmmu_hat_enter(sfmmup);
8633 			SFMMU_FLAGS_SET(sfmmup, HAT_256M_ISM);
8634 			sfmmu_hat_exit(hatlockp);
8635 		}
8636 		break;
8637 	case TTE32M:
8638 		if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_ISM)) {
8639 			hatlockp = sfmmu_hat_enter(sfmmup);
8640 			SFMMU_FLAGS_SET(sfmmup, HAT_32M_ISM);
8641 			sfmmu_hat_exit(hatlockp);
8642 		}
8643 		break;
8644 	default:
8645 		break;
8646 	}
8647 
8648 	/*
8649 	 * If we updated the ismblkpa for this HAT we must make
8650 	 * sure all CPUs running this process reload their tsbmiss area.
8651 	 * Otherwise they will fail to load the mappings in the tsbmiss
8652 	 * handler and will loop calling pagefault().
8653 	 */
8654 	if (reload_mmu) {
8655 		hatlockp = sfmmu_hat_enter(sfmmup);
8656 		sfmmu_sync_mmustate(sfmmup);
8657 		sfmmu_hat_exit(hatlockp);
8658 	}
8659 
8660 	sfmmu_ismhat_exit(sfmmup, 0);
8661 
8662 	/*
8663 	 * Free up ismblk if we didn't use it.
8664 	 */
8665 	if (new_iblk != NULL)
8666 		kmem_cache_free(ism_blk_cache, new_iblk);
8667 
8668 	/*
8669 	 * Check TSB and TLB page sizes.
8670 	 */
8671 	if (sfmmup->sfmmu_scdp != NULL && old_scdp != sfmmup->sfmmu_scdp) {
8672 		sfmmu_check_page_sizes(sfmmup, 0);
8673 	} else {
8674 		sfmmu_check_page_sizes(sfmmup, 1);
8675 	}
8676 	return (0);
8677 }
8678 
8679 /*
8680  * hat_unshare removes exactly one ism_map from
8681  * this process's as.  It expects multiple calls
8682  * to hat_unshare for multiple shm segments.
8683  */
8684 void
8685 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
8686 {
8687 	ism_map_t 	*ism_map;
8688 	ism_ment_t	*free_ment = NULL;
8689 	ism_blk_t	*ism_blkp;
8690 	struct hat	*ism_hatid;
8691 	int 		found, i;
8692 	hatlock_t	*hatlockp;
8693 	struct tsb_info	*tsbinfo;
8694 	uint_t		ismshift = page_get_shift(ismszc);
8695 	size_t		sh_size = ISM_SHIFT(ismshift, len);
8696 	uchar_t		ism_rid;
8697 	sf_scd_t	*old_scdp;
8698 
8699 	ASSERT(ISM_ALIGNED(ismshift, addr));
8700 	ASSERT(ISM_ALIGNED(ismshift, len));
8701 	ASSERT(sfmmup != NULL);
8702 	ASSERT(sfmmup != ksfmmup);
8703 
8704 	ASSERT(sfmmup->sfmmu_as != NULL);
8705 
8706 	/*
8707 	 * Make sure that during the entire time ISM mappings are removed,
8708 	 * the trap handlers serialize behind us, and that no one else
8709 	 * can be mucking with ISM mappings.  This also lets us get away
8710 	 * with not doing expensive cross calls to flush the TLB -- we
8711 	 * just discard the context, flush the entire TSB, and call it
8712 	 * a day.
8713 	 */
8714 	sfmmu_ismhat_enter(sfmmup, 0);
8715 
8716 	/*
8717 	 * Remove the mapping.
8718 	 *
8719 	 * We can't have any holes in the ism map.
8720 	 * The tsb miss code while searching the ism map will
8721 	 * stop on an empty map slot.  So we must move
8722 	 * everyone past the hole up 1 if any.
8723 	 *
8724 	 * Also empty ism map blks are not freed until the
8725 	 * process exits. This is to prevent a MT race condition
8726 	 * between sfmmu_unshare() and sfmmu_tsbmiss_exception().
8727 	 */
8728 	found = 0;
8729 	ism_blkp = sfmmup->sfmmu_iblk;
8730 	while (!found && ism_blkp != NULL) {
8731 		ism_map = ism_blkp->iblk_maps;
8732 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
8733 			if (addr == ism_start(ism_map[i]) &&
8734 			    sh_size == (size_t)(ism_size(ism_map[i]))) {
8735 				found = 1;
8736 				break;
8737 			}
8738 		}
8739 		if (!found)
8740 			ism_blkp = ism_blkp->iblk_next;
8741 	}
8742 
8743 	if (found) {
8744 		ism_hatid = ism_map[i].imap_ismhat;
8745 		ism_rid = ism_map[i].imap_rid;
8746 		ASSERT(ism_hatid != NULL);
8747 		ASSERT(ism_hatid->sfmmu_ismhat == 1);
8748 
8749 		/*
8750 		 * After hat_leave_region, the sfmmup may leave SCD,
8751 		 * in which case, we want to grow the private tsb size when
8752 		 * calling sfmmu_check_page_sizes at the end of the routine.
8753 		 */
8754 		old_scdp = sfmmup->sfmmu_scdp;
8755 		/*
8756 		 * Then remove ourselves from the region.
8757 		 */
8758 		if (ism_rid != SFMMU_INVALID_ISMRID) {
8759 			hat_leave_region(sfmmup, (void *)((uint64_t)ism_rid),
8760 			    HAT_REGION_ISM);
8761 		}
8762 
8763 		/*
8764 		 * And now guarantee that any other cpu
8765 		 * that tries to process an ISM miss
8766 		 * will go to tl=0.
8767 		 */
8768 		hatlockp = sfmmu_hat_enter(sfmmup);
8769 		sfmmu_invalidate_ctx(sfmmup);
8770 		sfmmu_hat_exit(hatlockp);
8771 
8772 		/*
8773 		 * Remove ourselves from the ism mapping list.
8774 		 */
8775 		mutex_enter(&ism_mlist_lock);
8776 		iment_sub(ism_map[i].imap_ment, ism_hatid);
8777 		mutex_exit(&ism_mlist_lock);
8778 		free_ment = ism_map[i].imap_ment;
8779 
8780 		/*
8781 		 * We delete the ism map by copying
8782 		 * the next map over the current one.
8783 		 * We will take the next one in the maps
8784 		 * array or from the next ism_blk.
8785 		 */
8786 		while (ism_blkp != NULL) {
8787 			ism_map = ism_blkp->iblk_maps;
8788 			while (i < (ISM_MAP_SLOTS - 1)) {
8789 				ism_map[i] = ism_map[i + 1];
8790 				i++;
8791 			}
8792 			/* i == (ISM_MAP_SLOTS - 1) */
8793 			ism_blkp = ism_blkp->iblk_next;
8794 			if (ism_blkp != NULL) {
8795 				ism_map[i] = ism_blkp->iblk_maps[0];
8796 				i = 0;
8797 			} else {
8798 				ism_map[i].imap_seg = 0;
8799 				ism_map[i].imap_vb_shift = 0;
8800 				ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
8801 				ism_map[i].imap_hatflags = 0;
8802 				ism_map[i].imap_sz_mask = 0;
8803 				ism_map[i].imap_ismhat = NULL;
8804 				ism_map[i].imap_ment = NULL;
8805 			}
8806 		}
8807 
8808 		/*
8809 		 * Now flush entire TSB for the process, since
8810 		 * demapping page by page can be too expensive.
8811 		 * We don't have to flush the TLB here anymore
8812 		 * since we switch to a new TLB ctx instead.
8813 		 * Also, there is no need to flush if the process
8814 		 * is exiting since the TSB will be freed later.
8815 		 */
8816 		if (!sfmmup->sfmmu_free) {
8817 			hatlockp = sfmmu_hat_enter(sfmmup);
8818 			for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
8819 			    tsbinfo = tsbinfo->tsb_next) {
8820 				if (tsbinfo->tsb_flags & TSB_SWAPPED)
8821 					continue;
8822 				if (tsbinfo->tsb_flags & TSB_RELOC_FLAG) {
8823 					tsbinfo->tsb_flags |=
8824 					    TSB_FLUSH_NEEDED;
8825 					continue;
8826 				}
8827 
8828 				sfmmu_inv_tsb(tsbinfo->tsb_va,
8829 				    TSB_BYTES(tsbinfo->tsb_szc));
8830 			}
8831 			sfmmu_hat_exit(hatlockp);
8832 		}
8833 	}
8834 
8835 	/*
8836 	 * Update our counters for this sfmmup's ism mappings.
8837 	 */
8838 	for (i = 0; i <= ismszc; i++) {
8839 		if (!(disable_ism_large_pages & (1 << i)))
8840 			(void) ism_tsb_entries(sfmmup, i);
8841 	}
8842 
8843 	sfmmu_ismhat_exit(sfmmup, 0);
8844 
8845 	/*
8846 	 * We must do our freeing here after dropping locks
8847 	 * to prevent a deadlock in the kmem allocator on the
8848 	 * mapping list lock.
8849 	 */
8850 	if (free_ment != NULL)
8851 		kmem_cache_free(ism_ment_cache, free_ment);
8852 
8853 	/*
8854 	 * Check TSB and TLB page sizes if the process isn't exiting.
8855 	 */
8856 	if (!sfmmup->sfmmu_free) {
8857 		if (found && old_scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
8858 			sfmmu_check_page_sizes(sfmmup, 1);
8859 		} else {
8860 			sfmmu_check_page_sizes(sfmmup, 0);
8861 		}
8862 	}
8863 }
8864 
8865 /* ARGSUSED */
8866 static int
8867 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
8868 {
8869 	/* void *buf is sfmmu_t pointer */
8870 	bzero(buf, sizeof (sfmmu_t));
8871 
8872 	return (0);
8873 }
8874 
8875 /* ARGSUSED */
8876 static void
8877 sfmmu_idcache_destructor(void *buf, void *cdrarg)
8878 {
8879 	/* void *buf is sfmmu_t pointer */
8880 }
8881 
8882 /*
8883  * setup kmem hmeblks by bzeroing all members and initializing the nextpa
8884  * field to be the pa of this hmeblk
8885  */
8886 /* ARGSUSED */
8887 static int
8888 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
8889 {
8890 	struct hme_blk *hmeblkp;
8891 
8892 	bzero(buf, (size_t)cdrarg);
8893 	hmeblkp = (struct hme_blk *)buf;
8894 	hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
8895 
8896 #ifdef	HBLK_TRACE
8897 	mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
8898 #endif	/* HBLK_TRACE */
8899 
8900 	return (0);
8901 }
8902 
8903 /* ARGSUSED */
8904 static void
8905 sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
8906 {
8907 
8908 #ifdef	HBLK_TRACE
8909 
8910 	struct hme_blk *hmeblkp;
8911 
8912 	hmeblkp = (struct hme_blk *)buf;
8913 	mutex_destroy(&hmeblkp->hblk_audit_lock);
8914 
8915 #endif	/* HBLK_TRACE */
8916 }
8917 
8918 #define	SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
8919 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
8920 /*
8921  * The kmem allocator will callback into our reclaim routine when the system
8922  * is running low in memory.  We traverse the hash and free up all unused but
8923  * still cached hme_blks.  We also traverse the free list and free them up
8924  * as well.
8925  */
8926 /*ARGSUSED*/
8927 static void
8928 sfmmu_hblkcache_reclaim(void *cdrarg)
8929 {
8930 	int i;
8931 	struct hmehash_bucket *hmebp;
8932 	struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
8933 	static struct hmehash_bucket *uhmehash_reclaim_hand;
8934 	static struct hmehash_bucket *khmehash_reclaim_hand;
8935 	struct hme_blk *list = NULL, *last_hmeblkp;
8936 	cpuset_t cpuset = cpu_ready_set;
8937 	cpu_hme_pend_t *cpuhp;
8938 
8939 	/* Free up hmeblks on the cpu pending lists */
8940 	for (i = 0; i < NCPU; i++) {
8941 		cpuhp = &cpu_hme_pend[i];
8942 		if (cpuhp->chp_listp != NULL)  {
8943 			mutex_enter(&cpuhp->chp_mutex);
8944 			if (cpuhp->chp_listp == NULL) {
8945 				mutex_exit(&cpuhp->chp_mutex);
8946 				continue;
8947 			}
8948 			for (last_hmeblkp = cpuhp->chp_listp;
8949 			    last_hmeblkp->hblk_next != NULL;
8950 			    last_hmeblkp = last_hmeblkp->hblk_next)
8951 				;
8952 			last_hmeblkp->hblk_next = list;
8953 			list = cpuhp->chp_listp;
8954 			cpuhp->chp_listp = NULL;
8955 			cpuhp->chp_count = 0;
8956 			mutex_exit(&cpuhp->chp_mutex);
8957 		}
8958 
8959 	}
8960 
8961 	if (list != NULL) {
8962 		kpreempt_disable();
8963 		CPUSET_DEL(cpuset, CPU->cpu_id);
8964 		xt_sync(cpuset);
8965 		xt_sync(cpuset);
8966 		kpreempt_enable();
8967 		sfmmu_hblk_free(&list);
8968 		list = NULL;
8969 	}
8970 
8971 	hmebp = uhmehash_reclaim_hand;
8972 	if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
8973 		uhmehash_reclaim_hand = hmebp = uhme_hash;
8974 	uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8975 
8976 	for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8977 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8978 			hmeblkp = hmebp->hmeblkp;
8979 			pr_hblk = NULL;
8980 			while (hmeblkp) {
8981 				nx_hblk = hmeblkp->hblk_next;
8982 				if (!hmeblkp->hblk_vcnt &&
8983 				    !hmeblkp->hblk_hmecnt) {
8984 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8985 					    pr_hblk, &list, 0);
8986 				} else {
8987 					pr_hblk = hmeblkp;
8988 				}
8989 				hmeblkp = nx_hblk;
8990 			}
8991 			SFMMU_HASH_UNLOCK(hmebp);
8992 		}
8993 		if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
8994 			hmebp = uhme_hash;
8995 	}
8996 
8997 	hmebp = khmehash_reclaim_hand;
8998 	if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
8999 		khmehash_reclaim_hand = hmebp = khme_hash;
9000 	khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
9001 
9002 	for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
9003 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
9004 			hmeblkp = hmebp->hmeblkp;
9005 			pr_hblk = NULL;
9006 			while (hmeblkp) {
9007 				nx_hblk = hmeblkp->hblk_next;
9008 				if (!hmeblkp->hblk_vcnt &&
9009 				    !hmeblkp->hblk_hmecnt) {
9010 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
9011 					    pr_hblk, &list, 0);
9012 				} else {
9013 					pr_hblk = hmeblkp;
9014 				}
9015 				hmeblkp = nx_hblk;
9016 			}
9017 			SFMMU_HASH_UNLOCK(hmebp);
9018 		}
9019 		if (hmebp++ == &khme_hash[KHMEHASH_SZ])
9020 			hmebp = khme_hash;
9021 	}
9022 	sfmmu_hblks_list_purge(&list, 0);
9023 }
9024 
9025 /*
9026  * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
9027  * same goes for sfmmu_get_addrvcolor().
9028  *
9029  * This function will return the virtual color for the specified page. The
9030  * virtual color corresponds to this page current mapping or its last mapping.
9031  * It is used by memory allocators to choose addresses with the correct
9032  * alignment so vac consistency is automatically maintained.  If the page
9033  * has no color it returns -1.
9034  */
9035 /*ARGSUSED*/
9036 int
9037 sfmmu_get_ppvcolor(struct page *pp)
9038 {
9039 #ifdef VAC
9040 	int color;
9041 
9042 	if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
9043 		return (-1);
9044 	}
9045 	color = PP_GET_VCOLOR(pp);
9046 	ASSERT(color < mmu_btop(shm_alignment));
9047 	return (color);
9048 #else
9049 	return (-1);
9050 #endif	/* VAC */
9051 }
9052 
9053 /*
9054  * This function will return the desired alignment for vac consistency
9055  * (vac color) given a virtual address.  If no vac is present it returns -1.
9056  */
9057 /*ARGSUSED*/
9058 int
9059 sfmmu_get_addrvcolor(caddr_t vaddr)
9060 {
9061 #ifdef VAC
9062 	if (cache & CACHE_VAC) {
9063 		return (addr_to_vcolor(vaddr));
9064 	} else {
9065 		return (-1);
9066 	}
9067 #else
9068 	return (-1);
9069 #endif	/* VAC */
9070 }
9071 
9072 #ifdef VAC
9073 /*
9074  * Check for conflicts.
9075  * A conflict exists if the new and existent mappings do not match in
9076  * their "shm_alignment fields. If conflicts exist, the existant mappings
9077  * are flushed unless one of them is locked. If one of them is locked, then
9078  * the mappings are flushed and converted to non-cacheable mappings.
9079  */
9080 static void
9081 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
9082 {
9083 	struct hat *tmphat;
9084 	struct sf_hment *sfhmep, *tmphme = NULL;
9085 	struct hme_blk *hmeblkp;
9086 	int vcolor;
9087 	tte_t tte;
9088 
9089 	ASSERT(sfmmu_mlist_held(pp));
9090 	ASSERT(!PP_ISNC(pp));		/* page better be cacheable */
9091 
9092 	vcolor = addr_to_vcolor(addr);
9093 	if (PP_NEWPAGE(pp)) {
9094 		PP_SET_VCOLOR(pp, vcolor);
9095 		return;
9096 	}
9097 
9098 	if (PP_GET_VCOLOR(pp) == vcolor) {
9099 		return;
9100 	}
9101 
9102 	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
9103 		/*
9104 		 * Previous user of page had a different color
9105 		 * but since there are no current users
9106 		 * we just flush the cache and change the color.
9107 		 */
9108 		SFMMU_STAT(sf_pgcolor_conflict);
9109 		sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9110 		PP_SET_VCOLOR(pp, vcolor);
9111 		return;
9112 	}
9113 
9114 	/*
9115 	 * If we get here we have a vac conflict with a current
9116 	 * mapping.  VAC conflict policy is as follows.
9117 	 * - The default is to unload the other mappings unless:
9118 	 * - If we have a large mapping we uncache the page.
9119 	 * We need to uncache the rest of the large page too.
9120 	 * - If any of the mappings are locked we uncache the page.
9121 	 * - If the requested mapping is inconsistent
9122 	 * with another mapping and that mapping
9123 	 * is in the same address space we have to
9124 	 * make it non-cached.  The default thing
9125 	 * to do is unload the inconsistent mapping
9126 	 * but if they are in the same address space
9127 	 * we run the risk of unmapping the pc or the
9128 	 * stack which we will use as we return to the user,
9129 	 * in which case we can then fault on the thing
9130 	 * we just unloaded and get into an infinite loop.
9131 	 */
9132 	if (PP_ISMAPPED_LARGE(pp)) {
9133 		int sz;
9134 
9135 		/*
9136 		 * Existing mapping is for big pages. We don't unload
9137 		 * existing big mappings to satisfy new mappings.
9138 		 * Always convert all mappings to TNC.
9139 		 */
9140 		sz = fnd_mapping_sz(pp);
9141 		pp = PP_GROUPLEADER(pp, sz);
9142 		SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
9143 		sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
9144 		    TTEPAGES(sz));
9145 
9146 		return;
9147 	}
9148 
9149 	/*
9150 	 * check if any mapping is in same as or if it is locked
9151 	 * since in that case we need to uncache.
9152 	 */
9153 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9154 		tmphme = sfhmep->hme_next;
9155 		if (IS_PAHME(sfhmep))
9156 			continue;
9157 		hmeblkp = sfmmu_hmetohblk(sfhmep);
9158 		tmphat = hblktosfmmu(hmeblkp);
9159 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
9160 		ASSERT(TTE_IS_VALID(&tte));
9161 		if (hmeblkp->hblk_shared || tmphat == hat ||
9162 		    hmeblkp->hblk_lckcnt) {
9163 			/*
9164 			 * We have an uncache conflict
9165 			 */
9166 			SFMMU_STAT(sf_uncache_conflict);
9167 			sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
9168 			return;
9169 		}
9170 	}
9171 
9172 	/*
9173 	 * We have an unload conflict
9174 	 * We have already checked for LARGE mappings, therefore
9175 	 * the remaining mapping(s) must be TTE8K.
9176 	 */
9177 	SFMMU_STAT(sf_unload_conflict);
9178 
9179 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9180 		tmphme = sfhmep->hme_next;
9181 		if (IS_PAHME(sfhmep))
9182 			continue;
9183 		hmeblkp = sfmmu_hmetohblk(sfhmep);
9184 		ASSERT(!hmeblkp->hblk_shared);
9185 		(void) sfmmu_pageunload(pp, sfhmep, TTE8K);
9186 	}
9187 
9188 	if (PP_ISMAPPED_KPM(pp))
9189 		sfmmu_kpm_vac_unload(pp, addr);
9190 
9191 	/*
9192 	 * Unloads only do TLB flushes so we need to flush the
9193 	 * cache here.
9194 	 */
9195 	sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9196 	PP_SET_VCOLOR(pp, vcolor);
9197 }
9198 
9199 /*
9200  * Whenever a mapping is unloaded and the page is in TNC state,
9201  * we see if the page can be made cacheable again. 'pp' is
9202  * the page that we just unloaded a mapping from, the size
9203  * of mapping that was unloaded is 'ottesz'.
9204  * Remark:
9205  * The recache policy for mpss pages can leave a performance problem
9206  * under the following circumstances:
9207  * . A large page in uncached mode has just been unmapped.
9208  * . All constituent pages are TNC due to a conflicting small mapping.
9209  * . There are many other, non conflicting, small mappings around for
9210  *   a lot of the constituent pages.
9211  * . We're called w/ the "old" groupleader page and the old ottesz,
9212  *   but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
9213  *   we end up w/ TTE8K or npages == 1.
9214  * . We call tst_tnc w/ the old groupleader only, and if there is no
9215  *   conflict, we re-cache only this page.
9216  * . All other small mappings are not checked and will be left in TNC mode.
9217  * The problem is not very serious because:
9218  * . mpss is actually only defined for heap and stack, so the probability
9219  *   is not very high that a large page mapping exists in parallel to a small
9220  *   one (this is possible, but seems to be bad programming style in the
9221  *   appl).
9222  * . The problem gets a little bit more serious, when those TNC pages
9223  *   have to be mapped into kernel space, e.g. for networking.
9224  * . When VAC alias conflicts occur in applications, this is regarded
9225  *   as an application bug. So if kstat's show them, the appl should
9226  *   be changed anyway.
9227  */
9228 void
9229 conv_tnc(page_t *pp, int ottesz)
9230 {
9231 	int cursz, dosz;
9232 	pgcnt_t curnpgs, dopgs;
9233 	pgcnt_t pg64k;
9234 	page_t *pp2;
9235 
9236 	/*
9237 	 * Determine how big a range we check for TNC and find
9238 	 * leader page. cursz is the size of the biggest
9239 	 * mapping that still exist on 'pp'.
9240 	 */
9241 	if (PP_ISMAPPED_LARGE(pp)) {
9242 		cursz = fnd_mapping_sz(pp);
9243 	} else {
9244 		cursz = TTE8K;
9245 	}
9246 
9247 	if (ottesz >= cursz) {
9248 		dosz = ottesz;
9249 		pp2 = pp;
9250 	} else {
9251 		dosz = cursz;
9252 		pp2 = PP_GROUPLEADER(pp, dosz);
9253 	}
9254 
9255 	pg64k = TTEPAGES(TTE64K);
9256 	dopgs = TTEPAGES(dosz);
9257 
9258 	ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
9259 
9260 	while (dopgs != 0) {
9261 		curnpgs = TTEPAGES(cursz);
9262 		if (tst_tnc(pp2, curnpgs)) {
9263 			SFMMU_STAT_ADD(sf_recache, curnpgs);
9264 			sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
9265 			    curnpgs);
9266 		}
9267 
9268 		ASSERT(dopgs >= curnpgs);
9269 		dopgs -= curnpgs;
9270 
9271 		if (dopgs == 0) {
9272 			break;
9273 		}
9274 
9275 		pp2 = PP_PAGENEXT_N(pp2, curnpgs);
9276 		if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
9277 			cursz = fnd_mapping_sz(pp2);
9278 		} else {
9279 			cursz = TTE8K;
9280 		}
9281 	}
9282 }
9283 
9284 /*
9285  * Returns 1 if page(s) can be converted from TNC to cacheable setting,
9286  * returns 0 otherwise. Note that oaddr argument is valid for only
9287  * 8k pages.
9288  */
9289 int
9290 tst_tnc(page_t *pp, pgcnt_t npages)
9291 {
9292 	struct	sf_hment *sfhme;
9293 	struct	hme_blk *hmeblkp;
9294 	tte_t	tte;
9295 	caddr_t	vaddr;
9296 	int	clr_valid = 0;
9297 	int 	color, color1, bcolor;
9298 	int	i, ncolors;
9299 
9300 	ASSERT(pp != NULL);
9301 	ASSERT(!(cache & CACHE_WRITEBACK));
9302 
9303 	if (npages > 1) {
9304 		ncolors = CACHE_NUM_COLOR;
9305 	}
9306 
9307 	for (i = 0; i < npages; i++) {
9308 		ASSERT(sfmmu_mlist_held(pp));
9309 		ASSERT(PP_ISTNC(pp));
9310 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
9311 
9312 		if (PP_ISPNC(pp)) {
9313 			return (0);
9314 		}
9315 
9316 		clr_valid = 0;
9317 		if (PP_ISMAPPED_KPM(pp)) {
9318 			caddr_t kpmvaddr;
9319 
9320 			ASSERT(kpm_enable);
9321 			kpmvaddr = hat_kpm_page2va(pp, 1);
9322 			ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
9323 			color1 = addr_to_vcolor(kpmvaddr);
9324 			clr_valid = 1;
9325 		}
9326 
9327 		for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9328 			if (IS_PAHME(sfhme))
9329 				continue;
9330 			hmeblkp = sfmmu_hmetohblk(sfhme);
9331 
9332 			sfmmu_copytte(&sfhme->hme_tte, &tte);
9333 			ASSERT(TTE_IS_VALID(&tte));
9334 
9335 			vaddr = tte_to_vaddr(hmeblkp, tte);
9336 			color = addr_to_vcolor(vaddr);
9337 
9338 			if (npages > 1) {
9339 				/*
9340 				 * If there is a big mapping, make sure
9341 				 * 8K mapping is consistent with the big
9342 				 * mapping.
9343 				 */
9344 				bcolor = i % ncolors;
9345 				if (color != bcolor) {
9346 					return (0);
9347 				}
9348 			}
9349 			if (!clr_valid) {
9350 				clr_valid = 1;
9351 				color1 = color;
9352 			}
9353 
9354 			if (color1 != color) {
9355 				return (0);
9356 			}
9357 		}
9358 
9359 		pp = PP_PAGENEXT(pp);
9360 	}
9361 
9362 	return (1);
9363 }
9364 
9365 void
9366 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
9367 	pgcnt_t npages)
9368 {
9369 	kmutex_t *pmtx;
9370 	int i, ncolors, bcolor;
9371 	kpm_hlk_t *kpmp;
9372 	cpuset_t cpuset;
9373 
9374 	ASSERT(pp != NULL);
9375 	ASSERT(!(cache & CACHE_WRITEBACK));
9376 
9377 	kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
9378 	pmtx = sfmmu_page_enter(pp);
9379 
9380 	/*
9381 	 * Fast path caching single unmapped page
9382 	 */
9383 	if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
9384 	    flags == HAT_CACHE) {
9385 		PP_CLRTNC(pp);
9386 		PP_CLRPNC(pp);
9387 		sfmmu_page_exit(pmtx);
9388 		sfmmu_kpm_kpmp_exit(kpmp);
9389 		return;
9390 	}
9391 
9392 	/*
9393 	 * We need to capture all cpus in order to change cacheability
9394 	 * because we can't allow one cpu to access the same physical
9395 	 * page using a cacheable and a non-cachebale mapping at the same
9396 	 * time. Since we may end up walking the ism mapping list
9397 	 * have to grab it's lock now since we can't after all the
9398 	 * cpus have been captured.
9399 	 */
9400 	sfmmu_hat_lock_all();
9401 	mutex_enter(&ism_mlist_lock);
9402 	kpreempt_disable();
9403 	cpuset = cpu_ready_set;
9404 	xc_attention(cpuset);
9405 
9406 	if (npages > 1) {
9407 		/*
9408 		 * Make sure all colors are flushed since the
9409 		 * sfmmu_page_cache() only flushes one color-
9410 		 * it does not know big pages.
9411 		 */
9412 		ncolors = CACHE_NUM_COLOR;
9413 		if (flags & HAT_TMPNC) {
9414 			for (i = 0; i < ncolors; i++) {
9415 				sfmmu_cache_flushcolor(i, pp->p_pagenum);
9416 			}
9417 			cache_flush_flag = CACHE_NO_FLUSH;
9418 		}
9419 	}
9420 
9421 	for (i = 0; i < npages; i++) {
9422 
9423 		ASSERT(sfmmu_mlist_held(pp));
9424 
9425 		if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
9426 
9427 			if (npages > 1) {
9428 				bcolor = i % ncolors;
9429 			} else {
9430 				bcolor = NO_VCOLOR;
9431 			}
9432 
9433 			sfmmu_page_cache(pp, flags, cache_flush_flag,
9434 			    bcolor);
9435 		}
9436 
9437 		pp = PP_PAGENEXT(pp);
9438 	}
9439 
9440 	xt_sync(cpuset);
9441 	xc_dismissed(cpuset);
9442 	mutex_exit(&ism_mlist_lock);
9443 	sfmmu_hat_unlock_all();
9444 	sfmmu_page_exit(pmtx);
9445 	sfmmu_kpm_kpmp_exit(kpmp);
9446 	kpreempt_enable();
9447 }
9448 
9449 /*
9450  * This function changes the virtual cacheability of all mappings to a
9451  * particular page.  When changing from uncache to cacheable the mappings will
9452  * only be changed if all of them have the same virtual color.
9453  * We need to flush the cache in all cpus.  It is possible that
9454  * a process referenced a page as cacheable but has sinced exited
9455  * and cleared the mapping list.  We still to flush it but have no
9456  * state so all cpus is the only alternative.
9457  */
9458 static void
9459 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
9460 {
9461 	struct	sf_hment *sfhme;
9462 	struct	hme_blk *hmeblkp;
9463 	sfmmu_t *sfmmup;
9464 	tte_t	tte, ttemod;
9465 	caddr_t	vaddr;
9466 	int	ret, color;
9467 	pfn_t	pfn;
9468 
9469 	color = bcolor;
9470 	pfn = pp->p_pagenum;
9471 
9472 	for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9473 
9474 		if (IS_PAHME(sfhme))
9475 			continue;
9476 		hmeblkp = sfmmu_hmetohblk(sfhme);
9477 
9478 		sfmmu_copytte(&sfhme->hme_tte, &tte);
9479 		ASSERT(TTE_IS_VALID(&tte));
9480 		vaddr = tte_to_vaddr(hmeblkp, tte);
9481 		color = addr_to_vcolor(vaddr);
9482 
9483 #ifdef DEBUG
9484 		if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
9485 			ASSERT(color == bcolor);
9486 		}
9487 #endif
9488 
9489 		ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
9490 
9491 		ttemod = tte;
9492 		if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
9493 			TTE_CLR_VCACHEABLE(&ttemod);
9494 		} else {	/* flags & HAT_CACHE */
9495 			TTE_SET_VCACHEABLE(&ttemod);
9496 		}
9497 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
9498 		if (ret < 0) {
9499 			/*
9500 			 * Since all cpus are captured modifytte should not
9501 			 * fail.
9502 			 */
9503 			panic("sfmmu_page_cache: write to tte failed");
9504 		}
9505 
9506 		sfmmup = hblktosfmmu(hmeblkp);
9507 		if (cache_flush_flag == CACHE_FLUSH) {
9508 			/*
9509 			 * Flush TSBs, TLBs and caches
9510 			 */
9511 			if (hmeblkp->hblk_shared) {
9512 				sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9513 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
9514 				sf_region_t *rgnp;
9515 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9516 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9517 				ASSERT(srdp != NULL);
9518 				rgnp = srdp->srd_hmergnp[rid];
9519 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9520 				    srdp, rgnp, rid);
9521 				(void) sfmmu_rgntlb_demap(vaddr, rgnp,
9522 				    hmeblkp, 0);
9523 				sfmmu_cache_flush(pfn, addr_to_vcolor(vaddr));
9524 			} else if (sfmmup->sfmmu_ismhat) {
9525 				if (flags & HAT_CACHE) {
9526 					SFMMU_STAT(sf_ism_recache);
9527 				} else {
9528 					SFMMU_STAT(sf_ism_uncache);
9529 				}
9530 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9531 				    pfn, CACHE_FLUSH);
9532 			} else {
9533 				sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
9534 				    pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
9535 			}
9536 
9537 			/*
9538 			 * all cache entries belonging to this pfn are
9539 			 * now flushed.
9540 			 */
9541 			cache_flush_flag = CACHE_NO_FLUSH;
9542 		} else {
9543 			/*
9544 			 * Flush only TSBs and TLBs.
9545 			 */
9546 			if (hmeblkp->hblk_shared) {
9547 				sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9548 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
9549 				sf_region_t *rgnp;
9550 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9551 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9552 				ASSERT(srdp != NULL);
9553 				rgnp = srdp->srd_hmergnp[rid];
9554 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9555 				    srdp, rgnp, rid);
9556 				(void) sfmmu_rgntlb_demap(vaddr, rgnp,
9557 				    hmeblkp, 0);
9558 			} else if (sfmmup->sfmmu_ismhat) {
9559 				if (flags & HAT_CACHE) {
9560 					SFMMU_STAT(sf_ism_recache);
9561 				} else {
9562 					SFMMU_STAT(sf_ism_uncache);
9563 				}
9564 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9565 				    pfn, CACHE_NO_FLUSH);
9566 			} else {
9567 				sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
9568 			}
9569 		}
9570 	}
9571 
9572 	if (PP_ISMAPPED_KPM(pp))
9573 		sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
9574 
9575 	switch (flags) {
9576 
9577 		default:
9578 			panic("sfmmu_pagecache: unknown flags");
9579 			break;
9580 
9581 		case HAT_CACHE:
9582 			PP_CLRTNC(pp);
9583 			PP_CLRPNC(pp);
9584 			PP_SET_VCOLOR(pp, color);
9585 			break;
9586 
9587 		case HAT_TMPNC:
9588 			PP_SETTNC(pp);
9589 			PP_SET_VCOLOR(pp, NO_VCOLOR);
9590 			break;
9591 
9592 		case HAT_UNCACHE:
9593 			PP_SETPNC(pp);
9594 			PP_CLRTNC(pp);
9595 			PP_SET_VCOLOR(pp, NO_VCOLOR);
9596 			break;
9597 	}
9598 }
9599 #endif	/* VAC */
9600 
9601 
9602 /*
9603  * Wrapper routine used to return a context.
9604  *
9605  * It's the responsibility of the caller to guarantee that the
9606  * process serializes on calls here by taking the HAT lock for
9607  * the hat.
9608  *
9609  */
9610 static void
9611 sfmmu_get_ctx(sfmmu_t *sfmmup)
9612 {
9613 	mmu_ctx_t *mmu_ctxp;
9614 	uint_t pstate_save;
9615 	int ret;
9616 
9617 	ASSERT(sfmmu_hat_lock_held(sfmmup));
9618 	ASSERT(sfmmup != ksfmmup);
9619 
9620 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID)) {
9621 		sfmmu_setup_tsbinfo(sfmmup);
9622 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_ALLCTX_INVALID);
9623 	}
9624 
9625 	kpreempt_disable();
9626 
9627 	mmu_ctxp = CPU_MMU_CTXP(CPU);
9628 	ASSERT(mmu_ctxp);
9629 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
9630 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
9631 
9632 	/*
9633 	 * Do a wrap-around if cnum reaches the max # cnum supported by a MMU.
9634 	 */
9635 	if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs)
9636 		sfmmu_ctx_wrap_around(mmu_ctxp, B_TRUE);
9637 
9638 	/*
9639 	 * Let the MMU set up the page sizes to use for
9640 	 * this context in the TLB. Don't program 2nd dtlb for ism hat.
9641 	 */
9642 	if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) {
9643 		mmu_set_ctx_page_sizes(sfmmup);
9644 	}
9645 
9646 	/*
9647 	 * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with
9648 	 * interrupts disabled to prevent race condition with wrap-around
9649 	 * ctx invalidatation. In sun4v, ctx invalidation also involves
9650 	 * a HV call to set the number of TSBs to 0. If interrupts are not
9651 	 * disabled until after sfmmu_load_mmustate is complete TSBs may
9652 	 * become assigned to INVALID_CONTEXT. This is not allowed.
9653 	 */
9654 	pstate_save = sfmmu_disable_intrs();
9655 
9656 	if (sfmmu_alloc_ctx(sfmmup, 1, CPU, SFMMU_PRIVATE) &&
9657 	    sfmmup->sfmmu_scdp != NULL) {
9658 		sf_scd_t *scdp = sfmmup->sfmmu_scdp;
9659 		sfmmu_t *scsfmmup = scdp->scd_sfmmup;
9660 		ret = sfmmu_alloc_ctx(scsfmmup, 1, CPU, SFMMU_SHARED);
9661 		/* debug purpose only */
9662 		ASSERT(!ret || scsfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
9663 		    != INVALID_CONTEXT);
9664 	}
9665 	sfmmu_load_mmustate(sfmmup);
9666 
9667 	sfmmu_enable_intrs(pstate_save);
9668 
9669 	kpreempt_enable();
9670 }
9671 
9672 /*
9673  * When all cnums are used up in a MMU, cnum will wrap around to the
9674  * next generation and start from 2.
9675  */
9676 static void
9677 sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp, boolean_t reset_cnum)
9678 {
9679 
9680 	/* caller must have disabled the preemption */
9681 	ASSERT(curthread->t_preempt >= 1);
9682 	ASSERT(mmu_ctxp != NULL);
9683 
9684 	/* acquire Per-MMU (PM) spin lock */
9685 	mutex_enter(&mmu_ctxp->mmu_lock);
9686 
9687 	/* re-check to see if wrap-around is needed */
9688 	if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs)
9689 		goto done;
9690 
9691 	SFMMU_MMU_STAT(mmu_wrap_around);
9692 
9693 	/* update gnum */
9694 	ASSERT(mmu_ctxp->mmu_gnum != 0);
9695 	mmu_ctxp->mmu_gnum++;
9696 	if (mmu_ctxp->mmu_gnum == 0 ||
9697 	    mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) {
9698 		cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.",
9699 		    (void *)mmu_ctxp);
9700 	}
9701 
9702 	if (mmu_ctxp->mmu_ncpus > 1) {
9703 		cpuset_t cpuset;
9704 
9705 		membar_enter(); /* make sure updated gnum visible */
9706 
9707 		SFMMU_XCALL_STATS(NULL);
9708 
9709 		/* xcall to others on the same MMU to invalidate ctx */
9710 		cpuset = mmu_ctxp->mmu_cpuset;
9711 		ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id) || !reset_cnum);
9712 		CPUSET_DEL(cpuset, CPU->cpu_id);
9713 		CPUSET_AND(cpuset, cpu_ready_set);
9714 
9715 		/*
9716 		 * Pass in INVALID_CONTEXT as the first parameter to
9717 		 * sfmmu_raise_tsb_exception, which invalidates the context
9718 		 * of any process running on the CPUs in the MMU.
9719 		 */
9720 		xt_some(cpuset, sfmmu_raise_tsb_exception,
9721 		    INVALID_CONTEXT, INVALID_CONTEXT);
9722 		xt_sync(cpuset);
9723 
9724 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
9725 	}
9726 
9727 	if (sfmmu_getctx_sec() != INVALID_CONTEXT) {
9728 		sfmmu_setctx_sec(INVALID_CONTEXT);
9729 		sfmmu_clear_utsbinfo();
9730 	}
9731 
9732 	/*
9733 	 * No xcall is needed here. For sun4u systems all CPUs in context
9734 	 * domain share a single physical MMU therefore it's enough to flush
9735 	 * TLB on local CPU. On sun4v systems we use 1 global context
9736 	 * domain and flush all remote TLBs in sfmmu_raise_tsb_exception
9737 	 * handler. Note that vtag_flushall_uctxs() is called
9738 	 * for Ultra II machine, where the equivalent flushall functionality
9739 	 * is implemented in SW, and only user ctx TLB entries are flushed.
9740 	 */
9741 	if (&vtag_flushall_uctxs != NULL) {
9742 		vtag_flushall_uctxs();
9743 	} else {
9744 		vtag_flushall();
9745 	}
9746 
9747 	/* reset mmu cnum, skips cnum 0 and 1 */
9748 	if (reset_cnum == B_TRUE)
9749 		mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
9750 
9751 done:
9752 	mutex_exit(&mmu_ctxp->mmu_lock);
9753 }
9754 
9755 
9756 /*
9757  * For multi-threaded process, set the process context to INVALID_CONTEXT
9758  * so that it faults and reloads the MMU state from TL=0. For single-threaded
9759  * process, we can just load the MMU state directly without having to
9760  * set context invalid. Caller must hold the hat lock since we don't
9761  * acquire it here.
9762  */
9763 static void
9764 sfmmu_sync_mmustate(sfmmu_t *sfmmup)
9765 {
9766 	uint_t cnum;
9767 	uint_t pstate_save;
9768 
9769 	ASSERT(sfmmup != ksfmmup);
9770 	ASSERT(sfmmu_hat_lock_held(sfmmup));
9771 
9772 	kpreempt_disable();
9773 
9774 	/*
9775 	 * We check whether the pass'ed-in sfmmup is the same as the
9776 	 * current running proc. This is to makes sure the current proc
9777 	 * stays single-threaded if it already is.
9778 	 */
9779 	if ((sfmmup == curthread->t_procp->p_as->a_hat) &&
9780 	    (curthread->t_procp->p_lwpcnt == 1)) {
9781 		/* single-thread */
9782 		cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum;
9783 		if (cnum != INVALID_CONTEXT) {
9784 			uint_t curcnum;
9785 			/*
9786 			 * Disable interrupts to prevent race condition
9787 			 * with sfmmu_ctx_wrap_around ctx invalidation.
9788 			 * In sun4v, ctx invalidation involves setting
9789 			 * TSB to NULL, hence, interrupts should be disabled
9790 			 * untill after sfmmu_load_mmustate is completed.
9791 			 */
9792 			pstate_save = sfmmu_disable_intrs();
9793 			curcnum = sfmmu_getctx_sec();
9794 			if (curcnum == cnum)
9795 				sfmmu_load_mmustate(sfmmup);
9796 			sfmmu_enable_intrs(pstate_save);
9797 			ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT);
9798 		}
9799 	} else {
9800 		/*
9801 		 * multi-thread
9802 		 * or when sfmmup is not the same as the curproc.
9803 		 */
9804 		sfmmu_invalidate_ctx(sfmmup);
9805 	}
9806 
9807 	kpreempt_enable();
9808 }
9809 
9810 
9811 /*
9812  * Replace the specified TSB with a new TSB.  This function gets called when
9813  * we grow, shrink or swapin a TSB.  When swapping in a TSB (TSB_SWAPIN), the
9814  * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
9815  * (8K).
9816  *
9817  * Caller must hold the HAT lock, but should assume any tsb_info
9818  * pointers it has are no longer valid after calling this function.
9819  *
9820  * Return values:
9821  *	TSB_ALLOCFAIL	Failed to allocate a TSB, due to memory constraints
9822  *	TSB_LOSTRACE	HAT is busy, i.e. another thread is already doing
9823  *			something to this tsbinfo/TSB
9824  *	TSB_SUCCESS	Operation succeeded
9825  */
9826 static tsb_replace_rc_t
9827 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
9828     hatlock_t *hatlockp, uint_t flags)
9829 {
9830 	struct tsb_info *new_tsbinfo = NULL;
9831 	struct tsb_info *curtsb, *prevtsb;
9832 	uint_t tte_sz_mask;
9833 	int i;
9834 
9835 	ASSERT(sfmmup != ksfmmup);
9836 	ASSERT(sfmmup->sfmmu_ismhat == 0);
9837 	ASSERT(sfmmu_hat_lock_held(sfmmup));
9838 	ASSERT(szc <= tsb_max_growsize);
9839 
9840 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
9841 		return (TSB_LOSTRACE);
9842 
9843 	/*
9844 	 * Find the tsb_info ahead of this one in the list, and
9845 	 * also make sure that the tsb_info passed in really
9846 	 * exists!
9847 	 */
9848 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
9849 	    curtsb != old_tsbinfo && curtsb != NULL;
9850 	    prevtsb = curtsb, curtsb = curtsb->tsb_next)
9851 		;
9852 	ASSERT(curtsb != NULL);
9853 
9854 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
9855 		/*
9856 		 * The process is swapped out, so just set the new size
9857 		 * code.  When it swaps back in, we'll allocate a new one
9858 		 * of the new chosen size.
9859 		 */
9860 		curtsb->tsb_szc = szc;
9861 		return (TSB_SUCCESS);
9862 	}
9863 	SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
9864 
9865 	tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
9866 
9867 	/*
9868 	 * All initialization is done inside of sfmmu_tsbinfo_alloc().
9869 	 * If we fail to allocate a TSB, exit.
9870 	 *
9871 	 * If tsb grows with new tsb size > 4M and old tsb size < 4M,
9872 	 * then try 4M slab after the initial alloc fails.
9873 	 *
9874 	 * If tsb swapin with tsb size > 4M, then try 4M after the
9875 	 * initial alloc fails.
9876 	 */
9877 	sfmmu_hat_exit(hatlockp);
9878 	if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc,
9879 	    tte_sz_mask, flags, sfmmup) &&
9880 	    (!(flags & (TSB_GROW | TSB_SWAPIN)) || (szc <= TSB_4M_SZCODE) ||
9881 	    (!(flags & TSB_SWAPIN) &&
9882 	    (old_tsbinfo->tsb_szc >= TSB_4M_SZCODE)) ||
9883 	    sfmmu_tsbinfo_alloc(&new_tsbinfo, TSB_4M_SZCODE,
9884 	    tte_sz_mask, flags, sfmmup))) {
9885 		(void) sfmmu_hat_enter(sfmmup);
9886 		if (!(flags & TSB_SWAPIN))
9887 			SFMMU_STAT(sf_tsb_resize_failures);
9888 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9889 		return (TSB_ALLOCFAIL);
9890 	}
9891 	(void) sfmmu_hat_enter(sfmmup);
9892 
9893 	/*
9894 	 * Re-check to make sure somebody else didn't muck with us while we
9895 	 * didn't hold the HAT lock.  If the process swapped out, fine, just
9896 	 * exit; this can happen if we try to shrink the TSB from the context
9897 	 * of another process (such as on an ISM unmap), though it is rare.
9898 	 */
9899 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
9900 		SFMMU_STAT(sf_tsb_resize_failures);
9901 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9902 		sfmmu_hat_exit(hatlockp);
9903 		sfmmu_tsbinfo_free(new_tsbinfo);
9904 		(void) sfmmu_hat_enter(sfmmup);
9905 		return (TSB_LOSTRACE);
9906 	}
9907 
9908 #ifdef	DEBUG
9909 	/* Reverify that the tsb_info still exists.. for debugging only */
9910 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
9911 	    curtsb != old_tsbinfo && curtsb != NULL;
9912 	    prevtsb = curtsb, curtsb = curtsb->tsb_next)
9913 		;
9914 	ASSERT(curtsb != NULL);
9915 #endif	/* DEBUG */
9916 
9917 	/*
9918 	 * Quiesce any CPUs running this process on their next TLB miss
9919 	 * so they atomically see the new tsb_info.  We temporarily set the
9920 	 * context to invalid context so new threads that come on processor
9921 	 * after we do the xcall to cpusran will also serialize behind the
9922 	 * HAT lock on TLB miss and will see the new TSB.  Since this short
9923 	 * race with a new thread coming on processor is relatively rare,
9924 	 * this synchronization mechanism should be cheaper than always
9925 	 * pausing all CPUs for the duration of the setup, which is what
9926 	 * the old implementation did.  This is particuarly true if we are
9927 	 * copying a huge chunk of memory around during that window.
9928 	 *
9929 	 * The memory barriers are to make sure things stay consistent
9930 	 * with resume() since it does not hold the HAT lock while
9931 	 * walking the list of tsb_info structures.
9932 	 */
9933 	if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
9934 		/* The TSB is either growing or shrinking. */
9935 		sfmmu_invalidate_ctx(sfmmup);
9936 	} else {
9937 		/*
9938 		 * It is illegal to swap in TSBs from a process other
9939 		 * than a process being swapped in.  This in turn
9940 		 * implies we do not have a valid MMU context here
9941 		 * since a process needs one to resolve translation
9942 		 * misses.
9943 		 */
9944 		ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
9945 	}
9946 
9947 #ifdef DEBUG
9948 	ASSERT(max_mmu_ctxdoms > 0);
9949 
9950 	/*
9951 	 * Process should have INVALID_CONTEXT on all MMUs
9952 	 */
9953 	for (i = 0; i < max_mmu_ctxdoms; i++) {
9954 
9955 		ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
9956 	}
9957 #endif
9958 
9959 	new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
9960 	membar_stst();	/* strict ordering required */
9961 	if (prevtsb)
9962 		prevtsb->tsb_next = new_tsbinfo;
9963 	else
9964 		sfmmup->sfmmu_tsb = new_tsbinfo;
9965 	membar_enter();	/* make sure new TSB globally visible */
9966 
9967 	/*
9968 	 * We need to migrate TSB entries from the old TSB to the new TSB
9969 	 * if tsb_remap_ttes is set and the TSB is growing.
9970 	 */
9971 	if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
9972 		sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
9973 
9974 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9975 
9976 	/*
9977 	 * Drop the HAT lock to free our old tsb_info.
9978 	 */
9979 	sfmmu_hat_exit(hatlockp);
9980 
9981 	if ((flags & TSB_GROW) == TSB_GROW) {
9982 		SFMMU_STAT(sf_tsb_grow);
9983 	} else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
9984 		SFMMU_STAT(sf_tsb_shrink);
9985 	}
9986 
9987 	sfmmu_tsbinfo_free(old_tsbinfo);
9988 
9989 	(void) sfmmu_hat_enter(sfmmup);
9990 	return (TSB_SUCCESS);
9991 }
9992 
9993 /*
9994  * This function will re-program hat pgsz array, and invalidate the
9995  * process' context, forcing the process to switch to another
9996  * context on the next TLB miss, and therefore start using the
9997  * TLB that is reprogrammed for the new page sizes.
9998  */
9999 void
10000 sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
10001 {
10002 	int i;
10003 	hatlock_t *hatlockp = NULL;
10004 
10005 	hatlockp = sfmmu_hat_enter(sfmmup);
10006 	/* USIII+-IV+ optimization, requires hat lock */
10007 	if (tmp_pgsz) {
10008 		for (i = 0; i < mmu_page_sizes; i++)
10009 			sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
10010 	}
10011 	SFMMU_STAT(sf_tlb_reprog_pgsz);
10012 
10013 	sfmmu_invalidate_ctx(sfmmup);
10014 
10015 	sfmmu_hat_exit(hatlockp);
10016 }
10017 
10018 /*
10019  * The scd_rttecnt field in the SCD must be updated to take account of the
10020  * regions which it contains.
10021  */
10022 static void
10023 sfmmu_set_scd_rttecnt(sf_srd_t *srdp, sf_scd_t *scdp)
10024 {
10025 	uint_t rid;
10026 	uint_t i, j;
10027 	ulong_t w;
10028 	sf_region_t *rgnp;
10029 
10030 	ASSERT(srdp != NULL);
10031 
10032 	for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
10033 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
10034 			continue;
10035 		}
10036 
10037 		j = 0;
10038 		while (w) {
10039 			if (!(w & 0x1)) {
10040 				j++;
10041 				w >>= 1;
10042 				continue;
10043 			}
10044 			rid = (i << BT_ULSHIFT) | j;
10045 			j++;
10046 			w >>= 1;
10047 
10048 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
10049 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
10050 			rgnp = srdp->srd_hmergnp[rid];
10051 			ASSERT(rgnp->rgn_refcnt > 0);
10052 			ASSERT(rgnp->rgn_id == rid);
10053 
10054 			scdp->scd_rttecnt[rgnp->rgn_pgszc] +=
10055 			    rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
10056 
10057 			/*
10058 			 * Maintain the tsb0 inflation cnt for the regions
10059 			 * in the SCD.
10060 			 */
10061 			if (rgnp->rgn_pgszc >= TTE4M) {
10062 				scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt +=
10063 				    rgnp->rgn_size >>
10064 				    (TTE_PAGE_SHIFT(TTE8K) + 2);
10065 			}
10066 		}
10067 	}
10068 }
10069 
10070 /*
10071  * This function assumes that there are either four or six supported page
10072  * sizes and at most two programmable TLBs, so we need to decide which
10073  * page sizes are most important and then tell the MMU layer so it
10074  * can adjust the TLB page sizes accordingly (if supported).
10075  *
10076  * If these assumptions change, this function will need to be
10077  * updated to support whatever the new limits are.
10078  *
10079  * The growing flag is nonzero if we are growing the address space,
10080  * and zero if it is shrinking.  This allows us to decide whether
10081  * to grow or shrink our TSB, depending upon available memory
10082  * conditions.
10083  */
10084 static void
10085 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
10086 {
10087 	uint64_t ttecnt[MMU_PAGE_SIZES];
10088 	uint64_t tte8k_cnt, tte4m_cnt;
10089 	uint8_t i;
10090 	int sectsb_thresh;
10091 
10092 	/*
10093 	 * Kernel threads, processes with small address spaces not using
10094 	 * large pages, and dummy ISM HATs need not apply.
10095 	 */
10096 	if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL)
10097 		return;
10098 
10099 	if (!SFMMU_LGPGS_INUSE(sfmmup) &&
10100 	    sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
10101 		return;
10102 
10103 	for (i = 0; i < mmu_page_sizes; i++) {
10104 		ttecnt[i] = sfmmup->sfmmu_ttecnt[i] +
10105 		    sfmmup->sfmmu_ismttecnt[i];
10106 	}
10107 
10108 	/* Check pagesizes in use, and possibly reprogram DTLB. */
10109 	if (&mmu_check_page_sizes)
10110 		mmu_check_page_sizes(sfmmup, ttecnt);
10111 
10112 	/*
10113 	 * Calculate the number of 8k ttes to represent the span of these
10114 	 * pages.
10115 	 */
10116 	tte8k_cnt = ttecnt[TTE8K] +
10117 	    (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
10118 	    (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
10119 	if (mmu_page_sizes == max_mmu_page_sizes) {
10120 		tte4m_cnt = ttecnt[TTE4M] +
10121 		    (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
10122 		    (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
10123 	} else {
10124 		tte4m_cnt = ttecnt[TTE4M];
10125 	}
10126 
10127 	/*
10128 	 * Inflate tte8k_cnt to allow for region large page allocation failure.
10129 	 */
10130 	tte8k_cnt += sfmmup->sfmmu_tsb0_4minflcnt;
10131 
10132 	/*
10133 	 * Inflate TSB sizes by a factor of 2 if this process
10134 	 * uses 4M text pages to minimize extra conflict misses
10135 	 * in the first TSB since without counting text pages
10136 	 * 8K TSB may become too small.
10137 	 *
10138 	 * Also double the size of the second TSB to minimize
10139 	 * extra conflict misses due to competition between 4M text pages
10140 	 * and data pages.
10141 	 *
10142 	 * We need to adjust the second TSB allocation threshold by the
10143 	 * inflation factor, since there is no point in creating a second
10144 	 * TSB when we know all the mappings can fit in the I/D TLBs.
10145 	 */
10146 	sectsb_thresh = tsb_sectsb_threshold;
10147 	if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
10148 		tte8k_cnt <<= 1;
10149 		tte4m_cnt <<= 1;
10150 		sectsb_thresh <<= 1;
10151 	}
10152 
10153 	/*
10154 	 * Check to see if our TSB is the right size; we may need to
10155 	 * grow or shrink it.  If the process is small, our work is
10156 	 * finished at this point.
10157 	 */
10158 	if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
10159 		return;
10160 	}
10161 	sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
10162 }
10163 
10164 static void
10165 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
10166 	uint64_t tte4m_cnt, int sectsb_thresh)
10167 {
10168 	int tsb_bits;
10169 	uint_t tsb_szc;
10170 	struct tsb_info *tsbinfop;
10171 	hatlock_t *hatlockp = NULL;
10172 
10173 	hatlockp = sfmmu_hat_enter(sfmmup);
10174 	ASSERT(hatlockp != NULL);
10175 	tsbinfop = sfmmup->sfmmu_tsb;
10176 	ASSERT(tsbinfop != NULL);
10177 
10178 	/*
10179 	 * If we're growing, select the size based on RSS.  If we're
10180 	 * shrinking, leave some room so we don't have to turn around and
10181 	 * grow again immediately.
10182 	 */
10183 	if (growing)
10184 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
10185 	else
10186 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
10187 
10188 	if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10189 	    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10190 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10191 		    hatlockp, TSB_SHRINK);
10192 	} else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
10193 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10194 		    hatlockp, TSB_GROW);
10195 	}
10196 	tsbinfop = sfmmup->sfmmu_tsb;
10197 
10198 	/*
10199 	 * With the TLB and first TSB out of the way, we need to see if
10200 	 * we need a second TSB for 4M pages.  If we managed to reprogram
10201 	 * the TLB page sizes above, the process will start using this new
10202 	 * TSB right away; otherwise, it will start using it on the next
10203 	 * context switch.  Either way, it's no big deal so there's no
10204 	 * synchronization with the trap handlers here unless we grow the
10205 	 * TSB (in which case it's required to prevent using the old one
10206 	 * after it's freed). Note: second tsb is required for 32M/256M
10207 	 * page sizes.
10208 	 */
10209 	if (tte4m_cnt > sectsb_thresh) {
10210 		/*
10211 		 * If we're growing, select the size based on RSS.  If we're
10212 		 * shrinking, leave some room so we don't have to turn
10213 		 * around and grow again immediately.
10214 		 */
10215 		if (growing)
10216 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
10217 		else
10218 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
10219 		if (tsbinfop->tsb_next == NULL) {
10220 			struct tsb_info *newtsb;
10221 			int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
10222 			    0 : TSB_ALLOC;
10223 
10224 			sfmmu_hat_exit(hatlockp);
10225 
10226 			/*
10227 			 * Try to allocate a TSB for 4[32|256]M pages.  If we
10228 			 * can't get the size we want, retry w/a minimum sized
10229 			 * TSB.  If that still didn't work, give up; we can
10230 			 * still run without one.
10231 			 */
10232 			tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
10233 			    TSB4M|TSB32M|TSB256M:TSB4M;
10234 			if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
10235 			    allocflags, sfmmup)) &&
10236 			    (tsb_szc <= TSB_4M_SZCODE ||
10237 			    sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
10238 			    tsb_bits, allocflags, sfmmup)) &&
10239 			    sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
10240 			    tsb_bits, allocflags, sfmmup)) {
10241 				return;
10242 			}
10243 
10244 			hatlockp = sfmmu_hat_enter(sfmmup);
10245 
10246 			sfmmu_invalidate_ctx(sfmmup);
10247 
10248 			if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
10249 				sfmmup->sfmmu_tsb->tsb_next = newtsb;
10250 				SFMMU_STAT(sf_tsb_sectsb_create);
10251 				sfmmu_hat_exit(hatlockp);
10252 				return;
10253 			} else {
10254 				/*
10255 				 * It's annoying, but possible for us
10256 				 * to get here.. we dropped the HAT lock
10257 				 * because of locking order in the kmem
10258 				 * allocator, and while we were off getting
10259 				 * our memory, some other thread decided to
10260 				 * do us a favor and won the race to get a
10261 				 * second TSB for this process.  Sigh.
10262 				 */
10263 				sfmmu_hat_exit(hatlockp);
10264 				sfmmu_tsbinfo_free(newtsb);
10265 				return;
10266 			}
10267 		}
10268 
10269 		/*
10270 		 * We have a second TSB, see if it's big enough.
10271 		 */
10272 		tsbinfop = tsbinfop->tsb_next;
10273 
10274 		/*
10275 		 * Check to see if our second TSB is the right size;
10276 		 * we may need to grow or shrink it.
10277 		 * To prevent thrashing (e.g. growing the TSB on a
10278 		 * subsequent map operation), only try to shrink if
10279 		 * the TSB reach exceeds twice the virtual address
10280 		 * space size.
10281 		 */
10282 		if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10283 		    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10284 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10285 			    tsb_szc, hatlockp, TSB_SHRINK);
10286 		} else if (growing && tsb_szc > tsbinfop->tsb_szc &&
10287 		    TSB_OK_GROW()) {
10288 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10289 			    tsb_szc, hatlockp, TSB_GROW);
10290 		}
10291 	}
10292 
10293 	sfmmu_hat_exit(hatlockp);
10294 }
10295 
10296 /*
10297  * Free up a sfmmu
10298  * Since the sfmmu is currently embedded in the hat struct we simply zero
10299  * out our fields and free up the ism map blk list if any.
10300  */
10301 static void
10302 sfmmu_free_sfmmu(sfmmu_t *sfmmup)
10303 {
10304 	ism_blk_t	*blkp, *nx_blkp;
10305 #ifdef	DEBUG
10306 	ism_map_t	*map;
10307 	int 		i;
10308 #endif
10309 
10310 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
10311 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
10312 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
10313 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
10314 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
10315 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
10316 	ASSERT(SF_RGNMAP_ISNULL(sfmmup));
10317 
10318 	sfmmup->sfmmu_free = 0;
10319 	sfmmup->sfmmu_ismhat = 0;
10320 
10321 	blkp = sfmmup->sfmmu_iblk;
10322 	sfmmup->sfmmu_iblk = NULL;
10323 
10324 	while (blkp) {
10325 #ifdef	DEBUG
10326 		map = blkp->iblk_maps;
10327 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
10328 			ASSERT(map[i].imap_seg == 0);
10329 			ASSERT(map[i].imap_ismhat == NULL);
10330 			ASSERT(map[i].imap_ment == NULL);
10331 		}
10332 #endif
10333 		nx_blkp = blkp->iblk_next;
10334 		blkp->iblk_next = NULL;
10335 		blkp->iblk_nextpa = (uint64_t)-1;
10336 		kmem_cache_free(ism_blk_cache, blkp);
10337 		blkp = nx_blkp;
10338 	}
10339 }
10340 
10341 /*
10342  * Locking primitves accessed by HATLOCK macros
10343  */
10344 
10345 #define	SFMMU_SPL_MTX	(0x0)
10346 #define	SFMMU_ML_MTX	(0x1)
10347 
10348 #define	SFMMU_MLSPL_MTX(type, pg)	(((type) == SFMMU_SPL_MTX) ? \
10349 					    SPL_HASH(pg) : MLIST_HASH(pg))
10350 
10351 kmutex_t *
10352 sfmmu_page_enter(struct page *pp)
10353 {
10354 	return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
10355 }
10356 
10357 void
10358 sfmmu_page_exit(kmutex_t *spl)
10359 {
10360 	mutex_exit(spl);
10361 }
10362 
10363 int
10364 sfmmu_page_spl_held(struct page *pp)
10365 {
10366 	return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
10367 }
10368 
10369 kmutex_t *
10370 sfmmu_mlist_enter(struct page *pp)
10371 {
10372 	return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
10373 }
10374 
10375 void
10376 sfmmu_mlist_exit(kmutex_t *mml)
10377 {
10378 	mutex_exit(mml);
10379 }
10380 
10381 int
10382 sfmmu_mlist_held(struct page *pp)
10383 {
10384 
10385 	return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
10386 }
10387 
10388 /*
10389  * Common code for sfmmu_mlist_enter() and sfmmu_page_enter().  For
10390  * sfmmu_mlist_enter() case mml_table lock array is used and for
10391  * sfmmu_page_enter() sfmmu_page_lock lock array is used.
10392  *
10393  * The lock is taken on a root page so that it protects an operation on all
10394  * constituent pages of a large page pp belongs to.
10395  *
10396  * The routine takes a lock from the appropriate array. The lock is determined
10397  * by hashing the root page. After taking the lock this routine checks if the
10398  * root page has the same size code that was used to determine the root (i.e
10399  * that root hasn't changed).  If root page has the expected p_szc field we
10400  * have the right lock and it's returned to the caller. If root's p_szc
10401  * decreased we release the lock and retry from the beginning.  This case can
10402  * happen due to hat_page_demote() decreasing p_szc between our load of p_szc
10403  * value and taking the lock. The number of retries due to p_szc decrease is
10404  * limited by the maximum p_szc value. If p_szc is 0 we return the lock
10405  * determined by hashing pp itself.
10406  *
10407  * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
10408  * possible that p_szc can increase. To increase p_szc a thread has to lock
10409  * all constituent pages EXCL and do hat_pageunload() on all of them. All the
10410  * callers that don't hold a page locked recheck if hmeblk through which pp
10411  * was found still maps this pp.  If it doesn't map it anymore returned lock
10412  * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
10413  * p_szc increase after taking the lock it returns this lock without further
10414  * retries because in this case the caller doesn't care about which lock was
10415  * taken. The caller will drop it right away.
10416  *
10417  * After the routine returns it's guaranteed that hat_page_demote() can't
10418  * change p_szc field of any of constituent pages of a large page pp belongs
10419  * to as long as pp was either locked at least SHARED prior to this call or
10420  * the caller finds that hment that pointed to this pp still references this
10421  * pp (this also assumes that the caller holds hme hash bucket lock so that
10422  * the same pp can't be remapped into the same hmeblk after it was unmapped by
10423  * hat_pageunload()).
10424  */
10425 static kmutex_t *
10426 sfmmu_mlspl_enter(struct page *pp, int type)
10427 {
10428 	kmutex_t	*mtx;
10429 	uint_t		prev_rszc = UINT_MAX;
10430 	page_t		*rootpp;
10431 	uint_t		szc;
10432 	uint_t		rszc;
10433 	uint_t		pszc = pp->p_szc;
10434 
10435 	ASSERT(pp != NULL);
10436 
10437 again:
10438 	if (pszc == 0) {
10439 		mtx = SFMMU_MLSPL_MTX(type, pp);
10440 		mutex_enter(mtx);
10441 		return (mtx);
10442 	}
10443 
10444 	/* The lock lives in the root page */
10445 	rootpp = PP_GROUPLEADER(pp, pszc);
10446 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
10447 	mutex_enter(mtx);
10448 
10449 	/*
10450 	 * Return mml in the following 3 cases:
10451 	 *
10452 	 * 1) If pp itself is root since if its p_szc decreased before we took
10453 	 * the lock pp is still the root of smaller szc page. And if its p_szc
10454 	 * increased it doesn't matter what lock we return (see comment in
10455 	 * front of this routine).
10456 	 *
10457 	 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
10458 	 * large page we have the right lock since any previous potential
10459 	 * hat_page_demote() is done demoting from greater than current root's
10460 	 * p_szc because hat_page_demote() changes root's p_szc last. No
10461 	 * further hat_page_demote() can start or be in progress since it
10462 	 * would need the same lock we currently hold.
10463 	 *
10464 	 * 3) If rootpp's p_szc increased since previous iteration it doesn't
10465 	 * matter what lock we return (see comment in front of this routine).
10466 	 */
10467 	if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
10468 	    rszc >= prev_rszc) {
10469 		return (mtx);
10470 	}
10471 
10472 	/*
10473 	 * hat_page_demote() could have decreased root's p_szc.
10474 	 * In this case pp's p_szc must also be smaller than pszc.
10475 	 * Retry.
10476 	 */
10477 	if (rszc < pszc) {
10478 		szc = pp->p_szc;
10479 		if (szc < pszc) {
10480 			mutex_exit(mtx);
10481 			pszc = szc;
10482 			goto again;
10483 		}
10484 		/*
10485 		 * pp's p_szc increased after it was decreased.
10486 		 * page cannot be mapped. Return current lock. The caller
10487 		 * will drop it right away.
10488 		 */
10489 		return (mtx);
10490 	}
10491 
10492 	/*
10493 	 * root's p_szc is greater than pp's p_szc.
10494 	 * hat_page_demote() is not done with all pages
10495 	 * yet. Wait for it to complete.
10496 	 */
10497 	mutex_exit(mtx);
10498 	rootpp = PP_GROUPLEADER(rootpp, rszc);
10499 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
10500 	mutex_enter(mtx);
10501 	mutex_exit(mtx);
10502 	prev_rszc = rszc;
10503 	goto again;
10504 }
10505 
10506 static int
10507 sfmmu_mlspl_held(struct page *pp, int type)
10508 {
10509 	kmutex_t	*mtx;
10510 
10511 	ASSERT(pp != NULL);
10512 	/* The lock lives in the root page */
10513 	pp = PP_PAGEROOT(pp);
10514 	ASSERT(pp != NULL);
10515 
10516 	mtx = SFMMU_MLSPL_MTX(type, pp);
10517 	return (MUTEX_HELD(mtx));
10518 }
10519 
10520 static uint_t
10521 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
10522 {
10523 	struct  hme_blk *hblkp;
10524 
10525 
10526 	if (freehblkp != NULL) {
10527 		mutex_enter(&freehblkp_lock);
10528 		if (freehblkp != NULL) {
10529 			/*
10530 			 * If the current thread is owning hblk_reserve OR
10531 			 * critical request from sfmmu_hblk_steal()
10532 			 * let it succeed even if freehblkcnt is really low.
10533 			 */
10534 			if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
10535 				SFMMU_STAT(sf_get_free_throttle);
10536 				mutex_exit(&freehblkp_lock);
10537 				return (0);
10538 			}
10539 			freehblkcnt--;
10540 			*hmeblkpp = freehblkp;
10541 			hblkp = *hmeblkpp;
10542 			freehblkp = hblkp->hblk_next;
10543 			mutex_exit(&freehblkp_lock);
10544 			hblkp->hblk_next = NULL;
10545 			SFMMU_STAT(sf_get_free_success);
10546 
10547 			ASSERT(hblkp->hblk_hmecnt == 0);
10548 			ASSERT(hblkp->hblk_vcnt == 0);
10549 			ASSERT(hblkp->hblk_nextpa == va_to_pa((caddr_t)hblkp));
10550 
10551 			return (1);
10552 		}
10553 		mutex_exit(&freehblkp_lock);
10554 	}
10555 
10556 	/* Check cpu hblk pending queues */
10557 	if ((*hmeblkpp = sfmmu_check_pending_hblks(TTE8K)) != NULL) {
10558 		hblkp = *hmeblkpp;
10559 		hblkp->hblk_next = NULL;
10560 		hblkp->hblk_nextpa = va_to_pa((caddr_t)hblkp);
10561 
10562 		ASSERT(hblkp->hblk_hmecnt == 0);
10563 		ASSERT(hblkp->hblk_vcnt == 0);
10564 
10565 		return (1);
10566 	}
10567 
10568 	SFMMU_STAT(sf_get_free_fail);
10569 	return (0);
10570 }
10571 
10572 static uint_t
10573 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
10574 {
10575 	struct  hme_blk *hblkp;
10576 
10577 	ASSERT(hmeblkp->hblk_hmecnt == 0);
10578 	ASSERT(hmeblkp->hblk_vcnt == 0);
10579 	ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
10580 
10581 	/*
10582 	 * If the current thread is mapping into kernel space,
10583 	 * let it succede even if freehblkcnt is max
10584 	 * so that it will avoid freeing it to kmem.
10585 	 * This will prevent stack overflow due to
10586 	 * possible recursion since kmem_cache_free()
10587 	 * might require creation of a slab which
10588 	 * in turn needs an hmeblk to map that slab;
10589 	 * let's break this vicious chain at the first
10590 	 * opportunity.
10591 	 */
10592 	if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10593 		mutex_enter(&freehblkp_lock);
10594 		if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10595 			SFMMU_STAT(sf_put_free_success);
10596 			freehblkcnt++;
10597 			hmeblkp->hblk_next = freehblkp;
10598 			freehblkp = hmeblkp;
10599 			mutex_exit(&freehblkp_lock);
10600 			return (1);
10601 		}
10602 		mutex_exit(&freehblkp_lock);
10603 	}
10604 
10605 	/*
10606 	 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
10607 	 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
10608 	 * we are not in the process of mapping into kernel space.
10609 	 */
10610 	ASSERT(!critical);
10611 	while (freehblkcnt > HBLK_RESERVE_CNT) {
10612 		mutex_enter(&freehblkp_lock);
10613 		if (freehblkcnt > HBLK_RESERVE_CNT) {
10614 			freehblkcnt--;
10615 			hblkp = freehblkp;
10616 			freehblkp = hblkp->hblk_next;
10617 			mutex_exit(&freehblkp_lock);
10618 			ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
10619 			kmem_cache_free(sfmmu8_cache, hblkp);
10620 			continue;
10621 		}
10622 		mutex_exit(&freehblkp_lock);
10623 	}
10624 	SFMMU_STAT(sf_put_free_fail);
10625 	return (0);
10626 }
10627 
10628 static void
10629 sfmmu_hblk_swap(struct hme_blk *new)
10630 {
10631 	struct hme_blk *old, *hblkp, *prev;
10632 	uint64_t newpa;
10633 	caddr_t	base, vaddr, endaddr;
10634 	struct hmehash_bucket *hmebp;
10635 	struct sf_hment *osfhme, *nsfhme;
10636 	page_t *pp;
10637 	kmutex_t *pml;
10638 	tte_t tte;
10639 	struct hme_blk *list = NULL;
10640 
10641 #ifdef	DEBUG
10642 	hmeblk_tag		hblktag;
10643 	struct hme_blk		*found;
10644 #endif
10645 	old = HBLK_RESERVE;
10646 	ASSERT(!old->hblk_shared);
10647 
10648 	/*
10649 	 * save pa before bcopy clobbers it
10650 	 */
10651 	newpa = new->hblk_nextpa;
10652 
10653 	base = (caddr_t)get_hblk_base(old);
10654 	endaddr = base + get_hblk_span(old);
10655 
10656 	/*
10657 	 * acquire hash bucket lock.
10658 	 */
10659 	hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K,
10660 	    SFMMU_INVALID_SHMERID);
10661 
10662 	/*
10663 	 * copy contents from old to new
10664 	 */
10665 	bcopy((void *)old, (void *)new, HME8BLK_SZ);
10666 
10667 	/*
10668 	 * add new to hash chain
10669 	 */
10670 	sfmmu_hblk_hash_add(hmebp, new, newpa);
10671 
10672 	/*
10673 	 * search hash chain for hblk_reserve; this needs to be performed
10674 	 * after adding new, otherwise prev won't correspond to the hblk which
10675 	 * is prior to old in hash chain when we call sfmmu_hblk_hash_rm to
10676 	 * remove old later.
10677 	 */
10678 	for (prev = NULL,
10679 	    hblkp = hmebp->hmeblkp; hblkp != NULL && hblkp != old;
10680 	    prev = hblkp, hblkp = hblkp->hblk_next)
10681 		;
10682 
10683 	if (hblkp != old)
10684 		panic("sfmmu_hblk_swap: hblk_reserve not found");
10685 
10686 	/*
10687 	 * p_mapping list is still pointing to hments in hblk_reserve;
10688 	 * fix up p_mapping list so that they point to hments in new.
10689 	 *
10690 	 * Since all these mappings are created by hblk_reserve_thread
10691 	 * on the way and it's using at least one of the buffers from each of
10692 	 * the newly minted slabs, there is no danger of any of these
10693 	 * mappings getting unloaded by another thread.
10694 	 *
10695 	 * tsbmiss could only modify ref/mod bits of hments in old/new.
10696 	 * Since all of these hments hold mappings established by segkmem
10697 	 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
10698 	 * have no meaning for the mappings in hblk_reserve.  hments in
10699 	 * old and new are identical except for ref/mod bits.
10700 	 */
10701 	for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
10702 
10703 		HBLKTOHME(osfhme, old, vaddr);
10704 		sfmmu_copytte(&osfhme->hme_tte, &tte);
10705 
10706 		if (TTE_IS_VALID(&tte)) {
10707 			if ((pp = osfhme->hme_page) == NULL)
10708 				panic("sfmmu_hblk_swap: page not mapped");
10709 
10710 			pml = sfmmu_mlist_enter(pp);
10711 
10712 			if (pp != osfhme->hme_page)
10713 				panic("sfmmu_hblk_swap: mapping changed");
10714 
10715 			HBLKTOHME(nsfhme, new, vaddr);
10716 
10717 			HME_ADD(nsfhme, pp);
10718 			HME_SUB(osfhme, pp);
10719 
10720 			sfmmu_mlist_exit(pml);
10721 		}
10722 	}
10723 
10724 	/*
10725 	 * remove old from hash chain
10726 	 */
10727 	sfmmu_hblk_hash_rm(hmebp, old, prev, &list, 1);
10728 
10729 #ifdef	DEBUG
10730 
10731 	hblktag.htag_id = ksfmmup;
10732 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
10733 	hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
10734 	hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
10735 	HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
10736 
10737 	if (found != new)
10738 		panic("sfmmu_hblk_swap: new hblk not found");
10739 #endif
10740 
10741 	SFMMU_HASH_UNLOCK(hmebp);
10742 
10743 	/*
10744 	 * Reset hblk_reserve
10745 	 */
10746 	bzero((void *)old, HME8BLK_SZ);
10747 	old->hblk_nextpa = va_to_pa((caddr_t)old);
10748 }
10749 
10750 /*
10751  * Grab the mlist mutex for both pages passed in.
10752  *
10753  * low and high will be returned as pointers to the mutexes for these pages.
10754  * low refers to the mutex residing in the lower bin of the mlist hash, while
10755  * high refers to the mutex residing in the higher bin of the mlist hash.  This
10756  * is due to the locking order restrictions on the same thread grabbing
10757  * multiple mlist mutexes.  The low lock must be acquired before the high lock.
10758  *
10759  * If both pages hash to the same mutex, only grab that single mutex, and
10760  * high will be returned as NULL
10761  * If the pages hash to different bins in the hash, grab the lower addressed
10762  * lock first and then the higher addressed lock in order to follow the locking
10763  * rules involved with the same thread grabbing multiple mlist mutexes.
10764  * low and high will both have non-NULL values.
10765  */
10766 static void
10767 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
10768     kmutex_t **low, kmutex_t **high)
10769 {
10770 	kmutex_t	*mml_targ, *mml_repl;
10771 
10772 	/*
10773 	 * no need to do the dance around szc as in sfmmu_mlist_enter()
10774 	 * because this routine is only called by hat_page_relocate() and all
10775 	 * targ and repl pages are already locked EXCL so szc can't change.
10776 	 */
10777 
10778 	mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
10779 	mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
10780 
10781 	if (mml_targ == mml_repl) {
10782 		*low = mml_targ;
10783 		*high = NULL;
10784 	} else {
10785 		if (mml_targ < mml_repl) {
10786 			*low = mml_targ;
10787 			*high = mml_repl;
10788 		} else {
10789 			*low = mml_repl;
10790 			*high = mml_targ;
10791 		}
10792 	}
10793 
10794 	mutex_enter(*low);
10795 	if (*high)
10796 		mutex_enter(*high);
10797 }
10798 
10799 static void
10800 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
10801 {
10802 	if (high)
10803 		mutex_exit(high);
10804 	mutex_exit(low);
10805 }
10806 
10807 static hatlock_t *
10808 sfmmu_hat_enter(sfmmu_t *sfmmup)
10809 {
10810 	hatlock_t	*hatlockp;
10811 
10812 	if (sfmmup != ksfmmup) {
10813 		hatlockp = TSB_HASH(sfmmup);
10814 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
10815 		return (hatlockp);
10816 	}
10817 	return (NULL);
10818 }
10819 
10820 static hatlock_t *
10821 sfmmu_hat_tryenter(sfmmu_t *sfmmup)
10822 {
10823 	hatlock_t	*hatlockp;
10824 
10825 	if (sfmmup != ksfmmup) {
10826 		hatlockp = TSB_HASH(sfmmup);
10827 		if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
10828 			return (NULL);
10829 		return (hatlockp);
10830 	}
10831 	return (NULL);
10832 }
10833 
10834 static void
10835 sfmmu_hat_exit(hatlock_t *hatlockp)
10836 {
10837 	if (hatlockp != NULL)
10838 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
10839 }
10840 
10841 static void
10842 sfmmu_hat_lock_all(void)
10843 {
10844 	int i;
10845 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
10846 		mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
10847 }
10848 
10849 static void
10850 sfmmu_hat_unlock_all(void)
10851 {
10852 	int i;
10853 	for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
10854 		mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
10855 }
10856 
10857 int
10858 sfmmu_hat_lock_held(sfmmu_t *sfmmup)
10859 {
10860 	ASSERT(sfmmup != ksfmmup);
10861 	return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
10862 }
10863 
10864 /*
10865  * Locking primitives to provide consistency between ISM unmap
10866  * and other operations.  Since ISM unmap can take a long time, we
10867  * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
10868  * contention on the hatlock buckets while ISM segments are being
10869  * unmapped.  The tradeoff is that the flags don't prevent priority
10870  * inversion from occurring, so we must request kernel priority in
10871  * case we have to sleep to keep from getting buried while holding
10872  * the HAT_ISMBUSY flag set, which in turn could block other kernel
10873  * threads from running (for example, in sfmmu_uvatopfn()).
10874  */
10875 static void
10876 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
10877 {
10878 	hatlock_t *hatlockp;
10879 
10880 	THREAD_KPRI_REQUEST();
10881 	if (!hatlock_held)
10882 		hatlockp = sfmmu_hat_enter(sfmmup);
10883 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
10884 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
10885 	SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
10886 	if (!hatlock_held)
10887 		sfmmu_hat_exit(hatlockp);
10888 }
10889 
10890 static void
10891 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
10892 {
10893 	hatlock_t *hatlockp;
10894 
10895 	if (!hatlock_held)
10896 		hatlockp = sfmmu_hat_enter(sfmmup);
10897 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
10898 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
10899 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10900 	if (!hatlock_held)
10901 		sfmmu_hat_exit(hatlockp);
10902 	THREAD_KPRI_RELEASE();
10903 }
10904 
10905 /*
10906  *
10907  * Algorithm:
10908  *
10909  * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
10910  *	hblks.
10911  *
10912  * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
10913  *
10914  * 		(a) try to return an hblk from reserve pool of free hblks;
10915  *		(b) if the reserve pool is empty, acquire hblk_reserve_lock
10916  *		    and return hblk_reserve.
10917  *
10918  * (3) call kmem_cache_alloc() to allocate hblk;
10919  *
10920  *		(a) if hblk_reserve_lock is held by the current thread,
10921  *		    atomically replace hblk_reserve by the hblk that is
10922  *		    returned by kmem_cache_alloc; release hblk_reserve_lock
10923  *		    and call kmem_cache_alloc() again.
10924  *		(b) if reserve pool is not full, add the hblk that is
10925  *		    returned by kmem_cache_alloc to reserve pool and
10926  *		    call kmem_cache_alloc again.
10927  *
10928  */
10929 static struct hme_blk *
10930 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
10931 	struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
10932 	uint_t flags, uint_t rid)
10933 {
10934 	struct hme_blk *hmeblkp = NULL;
10935 	struct hme_blk *newhblkp;
10936 	struct hme_blk *shw_hblkp = NULL;
10937 	struct kmem_cache *sfmmu_cache = NULL;
10938 	uint64_t hblkpa;
10939 	ulong_t index;
10940 	uint_t owner;		/* set to 1 if using hblk_reserve */
10941 	uint_t forcefree;
10942 	int sleep;
10943 	sf_srd_t *srdp;
10944 	sf_region_t *rgnp;
10945 
10946 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10947 	ASSERT(hblktag.htag_rid == rid);
10948 	SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
10949 	ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
10950 	    IS_P2ALIGNED(vaddr, TTEBYTES(size)));
10951 
10952 	/*
10953 	 * If segkmem is not created yet, allocate from static hmeblks
10954 	 * created at the end of startup_modules().  See the block comment
10955 	 * in startup_modules() describing how we estimate the number of
10956 	 * static hmeblks that will be needed during re-map.
10957 	 */
10958 	if (!hblk_alloc_dynamic) {
10959 
10960 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
10961 
10962 		if (size == TTE8K) {
10963 			index = nucleus_hblk8.index;
10964 			if (index >= nucleus_hblk8.len) {
10965 				/*
10966 				 * If we panic here, see startup_modules() to
10967 				 * make sure that we are calculating the
10968 				 * number of hblk8's that we need correctly.
10969 				 */
10970 				prom_panic("no nucleus hblk8 to allocate");
10971 			}
10972 			hmeblkp =
10973 			    (struct hme_blk *)&nucleus_hblk8.list[index];
10974 			nucleus_hblk8.index++;
10975 			SFMMU_STAT(sf_hblk8_nalloc);
10976 		} else {
10977 			index = nucleus_hblk1.index;
10978 			if (nucleus_hblk1.index >= nucleus_hblk1.len) {
10979 				/*
10980 				 * If we panic here, see startup_modules().
10981 				 * Most likely you need to update the
10982 				 * calculation of the number of hblk1 elements
10983 				 * that the kernel needs to boot.
10984 				 */
10985 				prom_panic("no nucleus hblk1 to allocate");
10986 			}
10987 			hmeblkp =
10988 			    (struct hme_blk *)&nucleus_hblk1.list[index];
10989 			nucleus_hblk1.index++;
10990 			SFMMU_STAT(sf_hblk1_nalloc);
10991 		}
10992 
10993 		goto hblk_init;
10994 	}
10995 
10996 	SFMMU_HASH_UNLOCK(hmebp);
10997 
10998 	if (sfmmup != KHATID && !SFMMU_IS_SHMERID_VALID(rid)) {
10999 		if (mmu_page_sizes == max_mmu_page_sizes) {
11000 			if (size < TTE256M)
11001 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
11002 				    size, flags);
11003 		} else {
11004 			if (size < TTE4M)
11005 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
11006 				    size, flags);
11007 		}
11008 	} else if (SFMMU_IS_SHMERID_VALID(rid)) {
11009 		/*
11010 		 * Shared hmes use per region bitmaps in rgn_hmeflag
11011 		 * rather than shadow hmeblks to keep track of the
11012 		 * mapping sizes which have been allocated for the region.
11013 		 * Here we cleanup old invalid hmeblks with this rid,
11014 		 * which may be left around by pageunload().
11015 		 */
11016 		int ttesz;
11017 		caddr_t va;
11018 		caddr_t	eva = vaddr + TTEBYTES(size);
11019 
11020 		ASSERT(sfmmup != KHATID);
11021 
11022 		srdp = sfmmup->sfmmu_srdp;
11023 		ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11024 		rgnp = srdp->srd_hmergnp[rid];
11025 		ASSERT(rgnp != NULL && rgnp->rgn_id == rid);
11026 		ASSERT(rgnp->rgn_refcnt != 0);
11027 		ASSERT(size <= rgnp->rgn_pgszc);
11028 
11029 		ttesz = HBLK_MIN_TTESZ;
11030 		do {
11031 			if (!(rgnp->rgn_hmeflags & (0x1 << ttesz))) {
11032 				continue;
11033 			}
11034 
11035 			if (ttesz > size && ttesz != HBLK_MIN_TTESZ) {
11036 				sfmmu_cleanup_rhblk(srdp, vaddr, rid, ttesz);
11037 			} else if (ttesz < size) {
11038 				for (va = vaddr; va < eva;
11039 				    va += TTEBYTES(ttesz)) {
11040 					sfmmu_cleanup_rhblk(srdp, va, rid,
11041 					    ttesz);
11042 				}
11043 			}
11044 		} while (++ttesz <= rgnp->rgn_pgszc);
11045 	}
11046 
11047 fill_hblk:
11048 	owner = (hblk_reserve_thread == curthread) ? 1 : 0;
11049 
11050 	if (owner && size == TTE8K) {
11051 
11052 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
11053 		/*
11054 		 * We are really in a tight spot. We already own
11055 		 * hblk_reserve and we need another hblk.  In anticipation
11056 		 * of this kind of scenario, we specifically set aside
11057 		 * HBLK_RESERVE_MIN number of hblks to be used exclusively
11058 		 * by owner of hblk_reserve.
11059 		 */
11060 		SFMMU_STAT(sf_hblk_recurse_cnt);
11061 
11062 		if (!sfmmu_get_free_hblk(&hmeblkp, 1))
11063 			panic("sfmmu_hblk_alloc: reserve list is empty");
11064 
11065 		goto hblk_verify;
11066 	}
11067 
11068 	ASSERT(!owner);
11069 
11070 	if ((flags & HAT_NO_KALLOC) == 0) {
11071 
11072 		sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
11073 		sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
11074 
11075 		if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
11076 			hmeblkp = sfmmu_hblk_steal(size);
11077 		} else {
11078 			/*
11079 			 * if we are the owner of hblk_reserve,
11080 			 * swap hblk_reserve with hmeblkp and
11081 			 * start a fresh life.  Hope things go
11082 			 * better this time.
11083 			 */
11084 			if (hblk_reserve_thread == curthread) {
11085 				ASSERT(sfmmu_cache == sfmmu8_cache);
11086 				sfmmu_hblk_swap(hmeblkp);
11087 				hblk_reserve_thread = NULL;
11088 				mutex_exit(&hblk_reserve_lock);
11089 				goto fill_hblk;
11090 			}
11091 			/*
11092 			 * let's donate this hblk to our reserve list if
11093 			 * we are not mapping kernel range
11094 			 */
11095 			if (size == TTE8K && sfmmup != KHATID) {
11096 				if (sfmmu_put_free_hblk(hmeblkp, 0))
11097 					goto fill_hblk;
11098 			}
11099 		}
11100 	} else {
11101 		/*
11102 		 * We are here to map the slab in sfmmu8_cache; let's
11103 		 * check if we could tap our reserve list; if successful,
11104 		 * this will avoid the pain of going thru sfmmu_hblk_swap
11105 		 */
11106 		SFMMU_STAT(sf_hblk_slab_cnt);
11107 		if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
11108 			/*
11109 			 * let's start hblk_reserve dance
11110 			 */
11111 			SFMMU_STAT(sf_hblk_reserve_cnt);
11112 			owner = 1;
11113 			mutex_enter(&hblk_reserve_lock);
11114 			hmeblkp = HBLK_RESERVE;
11115 			hblk_reserve_thread = curthread;
11116 		}
11117 	}
11118 
11119 hblk_verify:
11120 	ASSERT(hmeblkp != NULL);
11121 	set_hblk_sz(hmeblkp, size);
11122 	ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
11123 	SFMMU_HASH_LOCK(hmebp);
11124 	HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11125 	if (newhblkp != NULL) {
11126 		SFMMU_HASH_UNLOCK(hmebp);
11127 		if (hmeblkp != HBLK_RESERVE) {
11128 			/*
11129 			 * This is really tricky!
11130 			 *
11131 			 * vmem_alloc(vmem_seg_arena)
11132 			 *  vmem_alloc(vmem_internal_arena)
11133 			 *   segkmem_alloc(heap_arena)
11134 			 *    vmem_alloc(heap_arena)
11135 			 *    page_create()
11136 			 *    hat_memload()
11137 			 *	kmem_cache_free()
11138 			 *	 kmem_cache_alloc()
11139 			 *	  kmem_slab_create()
11140 			 *	   vmem_alloc(kmem_internal_arena)
11141 			 *	    segkmem_alloc(heap_arena)
11142 			 *		vmem_alloc(heap_arena)
11143 			 *		page_create()
11144 			 *		hat_memload()
11145 			 *		  kmem_cache_free()
11146 			 *		...
11147 			 *
11148 			 * Thus, hat_memload() could call kmem_cache_free
11149 			 * for enough number of times that we could easily
11150 			 * hit the bottom of the stack or run out of reserve
11151 			 * list of vmem_seg structs.  So, we must donate
11152 			 * this hblk to reserve list if it's allocated
11153 			 * from sfmmu8_cache *and* mapping kernel range.
11154 			 * We don't need to worry about freeing hmeblk1's
11155 			 * to kmem since they don't map any kmem slabs.
11156 			 *
11157 			 * Note: When segkmem supports largepages, we must
11158 			 * free hmeblk1's to reserve list as well.
11159 			 */
11160 			forcefree = (sfmmup == KHATID) ? 1 : 0;
11161 			if (size == TTE8K &&
11162 			    sfmmu_put_free_hblk(hmeblkp, forcefree)) {
11163 				goto re_verify;
11164 			}
11165 			ASSERT(sfmmup != KHATID);
11166 			kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
11167 		} else {
11168 			/*
11169 			 * Hey! we don't need hblk_reserve any more.
11170 			 */
11171 			ASSERT(owner);
11172 			hblk_reserve_thread = NULL;
11173 			mutex_exit(&hblk_reserve_lock);
11174 			owner = 0;
11175 		}
11176 re_verify:
11177 		/*
11178 		 * let's check if the goodies are still present
11179 		 */
11180 		SFMMU_HASH_LOCK(hmebp);
11181 		HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11182 		if (newhblkp != NULL) {
11183 			/*
11184 			 * return newhblkp if it's not hblk_reserve;
11185 			 * if newhblkp is hblk_reserve, return it
11186 			 * _only if_ we are the owner of hblk_reserve.
11187 			 */
11188 			if (newhblkp != HBLK_RESERVE || owner) {
11189 				ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
11190 				    newhblkp->hblk_shared);
11191 				ASSERT(SFMMU_IS_SHMERID_VALID(rid) ||
11192 				    !newhblkp->hblk_shared);
11193 				return (newhblkp);
11194 			} else {
11195 				/*
11196 				 * we just hit hblk_reserve in the hash and
11197 				 * we are not the owner of that;
11198 				 *
11199 				 * block until hblk_reserve_thread completes
11200 				 * swapping hblk_reserve and try the dance
11201 				 * once again.
11202 				 */
11203 				SFMMU_HASH_UNLOCK(hmebp);
11204 				mutex_enter(&hblk_reserve_lock);
11205 				mutex_exit(&hblk_reserve_lock);
11206 				SFMMU_STAT(sf_hblk_reserve_hit);
11207 				goto fill_hblk;
11208 			}
11209 		} else {
11210 			/*
11211 			 * it's no more! try the dance once again.
11212 			 */
11213 			SFMMU_HASH_UNLOCK(hmebp);
11214 			goto fill_hblk;
11215 		}
11216 	}
11217 
11218 hblk_init:
11219 	if (SFMMU_IS_SHMERID_VALID(rid)) {
11220 		uint16_t tteflag = 0x1 <<
11221 		    ((size < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ : size);
11222 
11223 		if (!(rgnp->rgn_hmeflags & tteflag)) {
11224 			atomic_or_16(&rgnp->rgn_hmeflags, tteflag);
11225 		}
11226 		hmeblkp->hblk_shared = 1;
11227 	} else {
11228 		hmeblkp->hblk_shared = 0;
11229 	}
11230 	set_hblk_sz(hmeblkp, size);
11231 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11232 	hmeblkp->hblk_next = (struct hme_blk *)NULL;
11233 	hmeblkp->hblk_tag = hblktag;
11234 	hmeblkp->hblk_shadow = shw_hblkp;
11235 	hblkpa = hmeblkp->hblk_nextpa;
11236 	hmeblkp->hblk_nextpa = HMEBLK_ENDPA;
11237 
11238 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
11239 	ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
11240 	ASSERT(hmeblkp->hblk_hmecnt == 0);
11241 	ASSERT(hmeblkp->hblk_vcnt == 0);
11242 	ASSERT(hmeblkp->hblk_lckcnt == 0);
11243 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
11244 	sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
11245 	return (hmeblkp);
11246 }
11247 
11248 /*
11249  * This function cleans up the hme_blk and returns it to the free list.
11250  */
11251 /* ARGSUSED */
11252 static void
11253 sfmmu_hblk_free(struct hme_blk **listp)
11254 {
11255 	struct hme_blk *hmeblkp, *next_hmeblkp;
11256 	int		size;
11257 	uint_t		critical;
11258 	uint64_t	hblkpa;
11259 
11260 	ASSERT(*listp != NULL);
11261 
11262 	hmeblkp = *listp;
11263 	while (hmeblkp != NULL) {
11264 		next_hmeblkp = hmeblkp->hblk_next;
11265 		ASSERT(!hmeblkp->hblk_hmecnt);
11266 		ASSERT(!hmeblkp->hblk_vcnt);
11267 		ASSERT(!hmeblkp->hblk_lckcnt);
11268 		ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
11269 		ASSERT(hmeblkp->hblk_shared == 0);
11270 		ASSERT(hmeblkp->hblk_shw_bit == 0);
11271 		ASSERT(hmeblkp->hblk_shadow == NULL);
11272 
11273 		hblkpa = va_to_pa((caddr_t)hmeblkp);
11274 		ASSERT(hblkpa != (uint64_t)-1);
11275 		critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
11276 
11277 		size = get_hblk_ttesz(hmeblkp);
11278 		hmeblkp->hblk_next = NULL;
11279 		hmeblkp->hblk_nextpa = hblkpa;
11280 
11281 		if (hmeblkp->hblk_nuc_bit == 0) {
11282 
11283 			if (size != TTE8K ||
11284 			    !sfmmu_put_free_hblk(hmeblkp, critical))
11285 				kmem_cache_free(get_hblk_cache(hmeblkp),
11286 				    hmeblkp);
11287 		}
11288 		hmeblkp = next_hmeblkp;
11289 	}
11290 }
11291 
11292 #define	BUCKETS_TO_SEARCH_BEFORE_UNLOAD	30
11293 #define	SFMMU_HBLK_STEAL_THRESHOLD 5
11294 
11295 static uint_t sfmmu_hblk_steal_twice;
11296 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
11297 
11298 /*
11299  * Steal a hmeblk from user or kernel hme hash lists.
11300  * For 8K tte grab one from reserve pool (freehblkp) before proceeding to
11301  * steal and if we fail to steal after SFMMU_HBLK_STEAL_THRESHOLD attempts
11302  * tap into critical reserve of freehblkp.
11303  * Note: We remain looping in this routine until we find one.
11304  */
11305 static struct hme_blk *
11306 sfmmu_hblk_steal(int size)
11307 {
11308 	static struct hmehash_bucket *uhmehash_steal_hand = NULL;
11309 	struct hmehash_bucket *hmebp;
11310 	struct hme_blk *hmeblkp = NULL, *pr_hblk;
11311 	uint64_t hblkpa;
11312 	int i;
11313 	uint_t loop_cnt = 0, critical;
11314 
11315 	for (;;) {
11316 		/* Check cpu hblk pending queues */
11317 		if ((hmeblkp = sfmmu_check_pending_hblks(size)) != NULL) {
11318 			hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
11319 			ASSERT(hmeblkp->hblk_hmecnt == 0);
11320 			ASSERT(hmeblkp->hblk_vcnt == 0);
11321 			return (hmeblkp);
11322 		}
11323 
11324 		if (size == TTE8K) {
11325 			critical =
11326 			    (++loop_cnt > SFMMU_HBLK_STEAL_THRESHOLD) ? 1 : 0;
11327 			if (sfmmu_get_free_hblk(&hmeblkp, critical))
11328 				return (hmeblkp);
11329 		}
11330 
11331 		hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
11332 		    uhmehash_steal_hand;
11333 		ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
11334 
11335 		for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
11336 		    BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
11337 			SFMMU_HASH_LOCK(hmebp);
11338 			hmeblkp = hmebp->hmeblkp;
11339 			hblkpa = hmebp->hmeh_nextpa;
11340 			pr_hblk = NULL;
11341 			while (hmeblkp) {
11342 				/*
11343 				 * check if it is a hmeblk that is not locked
11344 				 * and not shared. skip shadow hmeblks with
11345 				 * shadow_mask set i.e valid count non zero.
11346 				 */
11347 				if ((get_hblk_ttesz(hmeblkp) == size) &&
11348 				    (hmeblkp->hblk_shw_bit == 0 ||
11349 				    hmeblkp->hblk_vcnt == 0) &&
11350 				    (hmeblkp->hblk_lckcnt == 0)) {
11351 					/*
11352 					 * there is a high probability that we
11353 					 * will find a free one. search some
11354 					 * buckets for a free hmeblk initially
11355 					 * before unloading a valid hmeblk.
11356 					 */
11357 					if ((hmeblkp->hblk_vcnt == 0 &&
11358 					    hmeblkp->hblk_hmecnt == 0) || (i >=
11359 					    BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
11360 						if (sfmmu_steal_this_hblk(hmebp,
11361 						    hmeblkp, hblkpa, pr_hblk)) {
11362 							/*
11363 							 * Hblk is unloaded
11364 							 * successfully
11365 							 */
11366 							break;
11367 						}
11368 					}
11369 				}
11370 				pr_hblk = hmeblkp;
11371 				hblkpa = hmeblkp->hblk_nextpa;
11372 				hmeblkp = hmeblkp->hblk_next;
11373 			}
11374 
11375 			SFMMU_HASH_UNLOCK(hmebp);
11376 			if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
11377 				hmebp = uhme_hash;
11378 		}
11379 		uhmehash_steal_hand = hmebp;
11380 
11381 		if (hmeblkp != NULL)
11382 			break;
11383 
11384 		/*
11385 		 * in the worst case, look for a free one in the kernel
11386 		 * hash table.
11387 		 */
11388 		for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
11389 			SFMMU_HASH_LOCK(hmebp);
11390 			hmeblkp = hmebp->hmeblkp;
11391 			hblkpa = hmebp->hmeh_nextpa;
11392 			pr_hblk = NULL;
11393 			while (hmeblkp) {
11394 				/*
11395 				 * check if it is free hmeblk
11396 				 */
11397 				if ((get_hblk_ttesz(hmeblkp) == size) &&
11398 				    (hmeblkp->hblk_lckcnt == 0) &&
11399 				    (hmeblkp->hblk_vcnt == 0) &&
11400 				    (hmeblkp->hblk_hmecnt == 0)) {
11401 					if (sfmmu_steal_this_hblk(hmebp,
11402 					    hmeblkp, hblkpa, pr_hblk)) {
11403 						break;
11404 					} else {
11405 						/*
11406 						 * Cannot fail since we have
11407 						 * hash lock.
11408 						 */
11409 						panic("fail to steal?");
11410 					}
11411 				}
11412 
11413 				pr_hblk = hmeblkp;
11414 				hblkpa = hmeblkp->hblk_nextpa;
11415 				hmeblkp = hmeblkp->hblk_next;
11416 			}
11417 
11418 			SFMMU_HASH_UNLOCK(hmebp);
11419 			if (hmebp++ == &khme_hash[KHMEHASH_SZ])
11420 				hmebp = khme_hash;
11421 		}
11422 
11423 		if (hmeblkp != NULL)
11424 			break;
11425 		sfmmu_hblk_steal_twice++;
11426 	}
11427 	return (hmeblkp);
11428 }
11429 
11430 /*
11431  * This routine does real work to prepare a hblk to be "stolen" by
11432  * unloading the mappings, updating shadow counts ....
11433  * It returns 1 if the block is ready to be reused (stolen), or 0
11434  * means the block cannot be stolen yet- pageunload is still working
11435  * on this hblk.
11436  */
11437 static int
11438 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
11439 	uint64_t hblkpa, struct hme_blk *pr_hblk)
11440 {
11441 	int shw_size, vshift;
11442 	struct hme_blk *shw_hblkp;
11443 	caddr_t vaddr;
11444 	uint_t shw_mask, newshw_mask;
11445 	struct hme_blk *list = NULL;
11446 
11447 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11448 
11449 	/*
11450 	 * check if the hmeblk is free, unload if necessary
11451 	 */
11452 	if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11453 		sfmmu_t *sfmmup;
11454 		demap_range_t dmr;
11455 
11456 		sfmmup = hblktosfmmu(hmeblkp);
11457 		if (hmeblkp->hblk_shared || sfmmup->sfmmu_ismhat) {
11458 			return (0);
11459 		}
11460 		DEMAP_RANGE_INIT(sfmmup, &dmr);
11461 		(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
11462 		    (caddr_t)get_hblk_base(hmeblkp),
11463 		    get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
11464 		DEMAP_RANGE_FLUSH(&dmr);
11465 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11466 			/*
11467 			 * Pageunload is working on the same hblk.
11468 			 */
11469 			return (0);
11470 		}
11471 
11472 		sfmmu_hblk_steal_unload_count++;
11473 	}
11474 
11475 	ASSERT(hmeblkp->hblk_lckcnt == 0);
11476 	ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
11477 
11478 	sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, &list, 1);
11479 	hmeblkp->hblk_nextpa = hblkpa;
11480 
11481 	shw_hblkp = hmeblkp->hblk_shadow;
11482 	if (shw_hblkp) {
11483 		ASSERT(!hmeblkp->hblk_shared);
11484 		shw_size = get_hblk_ttesz(shw_hblkp);
11485 		vaddr = (caddr_t)get_hblk_base(hmeblkp);
11486 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
11487 		ASSERT(vshift < 8);
11488 		/*
11489 		 * Atomically clear shadow mask bit
11490 		 */
11491 		do {
11492 			shw_mask = shw_hblkp->hblk_shw_mask;
11493 			ASSERT(shw_mask & (1 << vshift));
11494 			newshw_mask = shw_mask & ~(1 << vshift);
11495 			newshw_mask = atomic_cas_32(&shw_hblkp->hblk_shw_mask,
11496 			    shw_mask, newshw_mask);
11497 		} while (newshw_mask != shw_mask);
11498 		hmeblkp->hblk_shadow = NULL;
11499 	}
11500 
11501 	/*
11502 	 * remove shadow bit if we are stealing an unused shadow hmeblk.
11503 	 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if
11504 	 * we are indeed allocating a shadow hmeblk.
11505 	 */
11506 	hmeblkp->hblk_shw_bit = 0;
11507 
11508 	if (hmeblkp->hblk_shared) {
11509 		sf_srd_t	*srdp;
11510 		sf_region_t	*rgnp;
11511 		uint_t		rid;
11512 
11513 		srdp = hblktosrd(hmeblkp);
11514 		ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11515 		rid = hmeblkp->hblk_tag.htag_rid;
11516 		ASSERT(SFMMU_IS_SHMERID_VALID(rid));
11517 		ASSERT(rid < SFMMU_MAX_HME_REGIONS);
11518 		rgnp = srdp->srd_hmergnp[rid];
11519 		ASSERT(rgnp != NULL);
11520 		SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
11521 		hmeblkp->hblk_shared = 0;
11522 	}
11523 
11524 	sfmmu_hblk_steal_count++;
11525 	SFMMU_STAT(sf_steal_count);
11526 
11527 	return (1);
11528 }
11529 
11530 struct hme_blk *
11531 sfmmu_hmetohblk(struct sf_hment *sfhme)
11532 {
11533 	struct hme_blk *hmeblkp;
11534 	struct sf_hment *sfhme0;
11535 	struct hme_blk *hblk_dummy = 0;
11536 
11537 	/*
11538 	 * No dummy sf_hments, please.
11539 	 */
11540 	ASSERT(sfhme->hme_tte.ll != 0);
11541 
11542 	sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
11543 	hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
11544 	    (uintptr_t)&hblk_dummy->hblk_hme[0]);
11545 
11546 	return (hmeblkp);
11547 }
11548 
11549 /*
11550  * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
11551  * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
11552  * KM_SLEEP allocation.
11553  *
11554  * Return 0 on success, -1 otherwise.
11555  */
11556 static void
11557 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
11558 {
11559 	struct tsb_info *tsbinfop, *next;
11560 	tsb_replace_rc_t rc;
11561 	boolean_t gotfirst = B_FALSE;
11562 
11563 	ASSERT(sfmmup != ksfmmup);
11564 	ASSERT(sfmmu_hat_lock_held(sfmmup));
11565 
11566 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
11567 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
11568 	}
11569 
11570 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
11571 		SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
11572 	} else {
11573 		return;
11574 	}
11575 
11576 	ASSERT(sfmmup->sfmmu_tsb != NULL);
11577 
11578 	/*
11579 	 * Loop over all tsbinfo's replacing them with ones that actually have
11580 	 * a TSB.  If any of the replacements ever fail, bail out of the loop.
11581 	 */
11582 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
11583 		ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
11584 		next = tsbinfop->tsb_next;
11585 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
11586 		    hatlockp, TSB_SWAPIN);
11587 		if (rc != TSB_SUCCESS) {
11588 			break;
11589 		}
11590 		gotfirst = B_TRUE;
11591 	}
11592 
11593 	switch (rc) {
11594 	case TSB_SUCCESS:
11595 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11596 		cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11597 		return;
11598 	case TSB_LOSTRACE:
11599 		break;
11600 	case TSB_ALLOCFAIL:
11601 		break;
11602 	default:
11603 		panic("sfmmu_replace_tsb returned unrecognized failure code "
11604 		    "%d", rc);
11605 	}
11606 
11607 	/*
11608 	 * In this case, we failed to get one of our TSBs.  If we failed to
11609 	 * get the first TSB, get one of minimum size (8KB).  Walk the list
11610 	 * and throw away the tsbinfos, starting where the allocation failed;
11611 	 * we can get by with just one TSB as long as we don't leave the
11612 	 * SWAPPED tsbinfo structures lying around.
11613 	 */
11614 	tsbinfop = sfmmup->sfmmu_tsb;
11615 	next = tsbinfop->tsb_next;
11616 	tsbinfop->tsb_next = NULL;
11617 
11618 	sfmmu_hat_exit(hatlockp);
11619 	for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
11620 		next = tsbinfop->tsb_next;
11621 		sfmmu_tsbinfo_free(tsbinfop);
11622 	}
11623 	hatlockp = sfmmu_hat_enter(sfmmup);
11624 
11625 	/*
11626 	 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
11627 	 * pages.
11628 	 */
11629 	if (!gotfirst) {
11630 		tsbinfop = sfmmup->sfmmu_tsb;
11631 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
11632 		    hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
11633 		ASSERT(rc == TSB_SUCCESS);
11634 	}
11635 
11636 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11637 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11638 }
11639 
11640 static int
11641 sfmmu_is_rgnva(sf_srd_t *srdp, caddr_t addr, ulong_t w, ulong_t bmw)
11642 {
11643 	ulong_t bix = 0;
11644 	uint_t rid;
11645 	sf_region_t *rgnp;
11646 
11647 	ASSERT(srdp != NULL);
11648 	ASSERT(srdp->srd_refcnt != 0);
11649 
11650 	w <<= BT_ULSHIFT;
11651 	while (bmw) {
11652 		if (!(bmw & 0x1)) {
11653 			bix++;
11654 			bmw >>= 1;
11655 			continue;
11656 		}
11657 		rid = w | bix;
11658 		rgnp = srdp->srd_hmergnp[rid];
11659 		ASSERT(rgnp->rgn_refcnt > 0);
11660 		ASSERT(rgnp->rgn_id == rid);
11661 		if (addr < rgnp->rgn_saddr ||
11662 		    addr >= (rgnp->rgn_saddr + rgnp->rgn_size)) {
11663 			bix++;
11664 			bmw >>= 1;
11665 		} else {
11666 			return (1);
11667 		}
11668 	}
11669 	return (0);
11670 }
11671 
11672 /*
11673  * Handle exceptions for low level tsb_handler.
11674  *
11675  * There are many scenarios that could land us here:
11676  *
11677  * If the context is invalid we land here. The context can be invalid
11678  * for 3 reasons: 1) we couldn't allocate a new context and now need to
11679  * perform a wrap around operation in order to allocate a new context.
11680  * 2) Context was invalidated to change pagesize programming 3) ISMs or
11681  * TSBs configuration is changeing for this process and we are forced into
11682  * here to do a syncronization operation. If the context is valid we can
11683  * be here from window trap hanlder. In this case just call trap to handle
11684  * the fault.
11685  *
11686  * Note that the process will run in INVALID_CONTEXT before
11687  * faulting into here and subsequently loading the MMU registers
11688  * (including the TSB base register) associated with this process.
11689  * For this reason, the trap handlers must all test for
11690  * INVALID_CONTEXT before attempting to access any registers other
11691  * than the context registers.
11692  */
11693 void
11694 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
11695 {
11696 	sfmmu_t *sfmmup, *shsfmmup;
11697 	uint_t ctxtype;
11698 	klwp_id_t lwp;
11699 	char lwp_save_state;
11700 	hatlock_t *hatlockp, *shatlockp;
11701 	struct tsb_info *tsbinfop;
11702 	struct tsbmiss *tsbmp;
11703 	sf_scd_t *scdp;
11704 
11705 	SFMMU_STAT(sf_tsb_exceptions);
11706 	SFMMU_MMU_STAT(mmu_tsb_exceptions);
11707 	sfmmup = astosfmmu(curthread->t_procp->p_as);
11708 	/*
11709 	 * note that in sun4u, tagacces register contains ctxnum
11710 	 * while sun4v passes ctxtype in the tagaccess register.
11711 	 */
11712 	ctxtype = tagaccess & TAGACC_CTX_MASK;
11713 
11714 	ASSERT(sfmmup != ksfmmup && ctxtype != KCONTEXT);
11715 	ASSERT(sfmmup->sfmmu_ismhat == 0);
11716 	ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) ||
11717 	    ctxtype == INVALID_CONTEXT);
11718 
11719 	if (ctxtype != INVALID_CONTEXT && traptype != T_DATA_PROT) {
11720 		/*
11721 		 * We may land here because shme bitmap and pagesize
11722 		 * flags are updated lazily in tsbmiss area on other cpus.
11723 		 * If we detect here that tsbmiss area is out of sync with
11724 		 * sfmmu update it and retry the trapped instruction.
11725 		 * Otherwise call trap().
11726 		 */
11727 		int ret = 0;
11728 		uchar_t tteflag_mask = (1 << TTE64K) | (1 << TTE8K);
11729 		caddr_t addr = (caddr_t)(tagaccess & TAGACC_VADDR_MASK);
11730 
11731 		/*
11732 		 * Must set lwp state to LWP_SYS before
11733 		 * trying to acquire any adaptive lock
11734 		 */
11735 		lwp = ttolwp(curthread);
11736 		ASSERT(lwp);
11737 		lwp_save_state = lwp->lwp_state;
11738 		lwp->lwp_state = LWP_SYS;
11739 
11740 		hatlockp = sfmmu_hat_enter(sfmmup);
11741 		kpreempt_disable();
11742 		tsbmp = &tsbmiss_area[CPU->cpu_id];
11743 		ASSERT(sfmmup == tsbmp->usfmmup);
11744 		if (((tsbmp->uhat_tteflags ^ sfmmup->sfmmu_tteflags) &
11745 		    ~tteflag_mask) ||
11746 		    ((tsbmp->uhat_rtteflags ^  sfmmup->sfmmu_rtteflags) &
11747 		    ~tteflag_mask)) {
11748 			tsbmp->uhat_tteflags = sfmmup->sfmmu_tteflags;
11749 			tsbmp->uhat_rtteflags = sfmmup->sfmmu_rtteflags;
11750 			ret = 1;
11751 		}
11752 		if (sfmmup->sfmmu_srdp != NULL) {
11753 			ulong_t *sm = sfmmup->sfmmu_hmeregion_map.bitmap;
11754 			ulong_t *tm = tsbmp->shmermap;
11755 			ulong_t i;
11756 			for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
11757 				ulong_t d = tm[i] ^ sm[i];
11758 				if (d) {
11759 					if (d & sm[i]) {
11760 						if (!ret && sfmmu_is_rgnva(
11761 						    sfmmup->sfmmu_srdp,
11762 						    addr, i, d & sm[i])) {
11763 							ret = 1;
11764 						}
11765 					}
11766 					tm[i] = sm[i];
11767 				}
11768 			}
11769 		}
11770 		kpreempt_enable();
11771 		sfmmu_hat_exit(hatlockp);
11772 		lwp->lwp_state = lwp_save_state;
11773 		if (ret) {
11774 			return;
11775 		}
11776 	} else if (ctxtype == INVALID_CONTEXT) {
11777 		/*
11778 		 * First, make sure we come out of here with a valid ctx,
11779 		 * since if we don't get one we'll simply loop on the
11780 		 * faulting instruction.
11781 		 *
11782 		 * If the ISM mappings are changing, the TSB is relocated,
11783 		 * the process is swapped, the process is joining SCD or
11784 		 * leaving SCD or shared regions we serialize behind the
11785 		 * controlling thread with hat lock, sfmmu_flags and
11786 		 * sfmmu_tsb_cv condition variable.
11787 		 */
11788 
11789 		/*
11790 		 * Must set lwp state to LWP_SYS before
11791 		 * trying to acquire any adaptive lock
11792 		 */
11793 		lwp = ttolwp(curthread);
11794 		ASSERT(lwp);
11795 		lwp_save_state = lwp->lwp_state;
11796 		lwp->lwp_state = LWP_SYS;
11797 
11798 		hatlockp = sfmmu_hat_enter(sfmmup);
11799 retry:
11800 		if ((scdp = sfmmup->sfmmu_scdp) != NULL) {
11801 			shsfmmup = scdp->scd_sfmmup;
11802 			ASSERT(shsfmmup != NULL);
11803 
11804 			for (tsbinfop = shsfmmup->sfmmu_tsb; tsbinfop != NULL;
11805 			    tsbinfop = tsbinfop->tsb_next) {
11806 				if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
11807 					/* drop the private hat lock */
11808 					sfmmu_hat_exit(hatlockp);
11809 					/* acquire the shared hat lock */
11810 					shatlockp = sfmmu_hat_enter(shsfmmup);
11811 					/*
11812 					 * recheck to see if anything changed
11813 					 * after we drop the private hat lock.
11814 					 */
11815 					if (sfmmup->sfmmu_scdp == scdp &&
11816 					    shsfmmup == scdp->scd_sfmmup) {
11817 						sfmmu_tsb_chk_reloc(shsfmmup,
11818 						    shatlockp);
11819 					}
11820 					sfmmu_hat_exit(shatlockp);
11821 					hatlockp = sfmmu_hat_enter(sfmmup);
11822 					goto retry;
11823 				}
11824 			}
11825 		}
11826 
11827 		for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
11828 		    tsbinfop = tsbinfop->tsb_next) {
11829 			if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
11830 				cv_wait(&sfmmup->sfmmu_tsb_cv,
11831 				    HATLOCK_MUTEXP(hatlockp));
11832 				goto retry;
11833 			}
11834 		}
11835 
11836 		/*
11837 		 * Wait for ISM maps to be updated.
11838 		 */
11839 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
11840 			cv_wait(&sfmmup->sfmmu_tsb_cv,
11841 			    HATLOCK_MUTEXP(hatlockp));
11842 			goto retry;
11843 		}
11844 
11845 		/* Is this process joining an SCD? */
11846 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
11847 			/*
11848 			 * Flush private TSB and setup shared TSB.
11849 			 * sfmmu_finish_join_scd() does not drop the
11850 			 * hat lock.
11851 			 */
11852 			sfmmu_finish_join_scd(sfmmup);
11853 			SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
11854 		}
11855 
11856 		/*
11857 		 * If we're swapping in, get TSB(s).  Note that we must do
11858 		 * this before we get a ctx or load the MMU state.  Once
11859 		 * we swap in we have to recheck to make sure the TSB(s) and
11860 		 * ISM mappings didn't change while we slept.
11861 		 */
11862 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
11863 			sfmmu_tsb_swapin(sfmmup, hatlockp);
11864 			goto retry;
11865 		}
11866 
11867 		sfmmu_get_ctx(sfmmup);
11868 
11869 		sfmmu_hat_exit(hatlockp);
11870 		/*
11871 		 * Must restore lwp_state if not calling
11872 		 * trap() for further processing. Restore
11873 		 * it anyway.
11874 		 */
11875 		lwp->lwp_state = lwp_save_state;
11876 		return;
11877 	}
11878 	trap(rp, (caddr_t)tagaccess, traptype, 0);
11879 }
11880 
11881 static void
11882 sfmmu_tsb_chk_reloc(sfmmu_t *sfmmup, hatlock_t *hatlockp)
11883 {
11884 	struct tsb_info *tp;
11885 
11886 	ASSERT(sfmmu_hat_lock_held(sfmmup));
11887 
11888 	for (tp = sfmmup->sfmmu_tsb; tp != NULL; tp = tp->tsb_next) {
11889 		if (tp->tsb_flags & TSB_RELOC_FLAG) {
11890 			cv_wait(&sfmmup->sfmmu_tsb_cv,
11891 			    HATLOCK_MUTEXP(hatlockp));
11892 			break;
11893 		}
11894 	}
11895 }
11896 
11897 /*
11898  * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
11899  * TTE_SUSPENDED bit set in tte we block on aquiring a page lock
11900  * rather than spinning to avoid send mondo timeouts with
11901  * interrupts enabled. When the lock is acquired it is immediately
11902  * released and we return back to sfmmu_vatopfn just after
11903  * the GET_TTE call.
11904  */
11905 void
11906 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
11907 {
11908 	struct page	**pp;
11909 
11910 	(void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
11911 	as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
11912 }
11913 
11914 /*
11915  * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
11916  * TTE_SUSPENDED bit set in tte. We do this so that we can handle
11917  * cross traps which cannot be handled while spinning in the
11918  * trap handlers. Simply enter and exit the kpr_suspendlock spin
11919  * mutex, which is held by the holder of the suspend bit, and then
11920  * retry the trapped instruction after unwinding.
11921  */
11922 /*ARGSUSED*/
11923 void
11924 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
11925 {
11926 	ASSERT(curthread != kreloc_thread);
11927 	mutex_enter(&kpr_suspendlock);
11928 	mutex_exit(&kpr_suspendlock);
11929 }
11930 
11931 /*
11932  * This routine could be optimized to reduce the number of xcalls by flushing
11933  * the entire TLBs if region reference count is above some threshold but the
11934  * tradeoff will depend on the size of the TLB. So for now flush the specific
11935  * page a context at a time.
11936  *
11937  * If uselocks is 0 then it's called after all cpus were captured and all the
11938  * hat locks were taken. In this case don't take the region lock by relying on
11939  * the order of list region update operations in hat_join_region(),
11940  * hat_leave_region() and hat_dup_region(). The ordering in those routines
11941  * guarantees that list is always forward walkable and reaches active sfmmus
11942  * regardless of where xc_attention() captures a cpu.
11943  */
11944 cpuset_t
11945 sfmmu_rgntlb_demap(caddr_t addr, sf_region_t *rgnp,
11946     struct hme_blk *hmeblkp, int uselocks)
11947 {
11948 	sfmmu_t	*sfmmup;
11949 	cpuset_t cpuset;
11950 	cpuset_t rcpuset;
11951 	hatlock_t *hatlockp;
11952 	uint_t rid = rgnp->rgn_id;
11953 	sf_rgn_link_t *rlink;
11954 	sf_scd_t *scdp;
11955 
11956 	ASSERT(hmeblkp->hblk_shared);
11957 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
11958 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
11959 
11960 	CPUSET_ZERO(rcpuset);
11961 	if (uselocks) {
11962 		mutex_enter(&rgnp->rgn_mutex);
11963 	}
11964 	sfmmup = rgnp->rgn_sfmmu_head;
11965 	while (sfmmup != NULL) {
11966 		if (uselocks) {
11967 			hatlockp = sfmmu_hat_enter(sfmmup);
11968 		}
11969 
11970 		/*
11971 		 * When an SCD is created the SCD hat is linked on the sfmmu
11972 		 * region lists for each hme region which is part of the
11973 		 * SCD. If we find an SCD hat, when walking these lists,
11974 		 * then we flush the shared TSBs, if we find a private hat,
11975 		 * which is part of an SCD, but where the region
11976 		 * is not part of the SCD then we flush the private TSBs.
11977 		 */
11978 		if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
11979 		    !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
11980 			scdp = sfmmup->sfmmu_scdp;
11981 			if (SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
11982 				if (uselocks) {
11983 					sfmmu_hat_exit(hatlockp);
11984 				}
11985 				goto next;
11986 			}
11987 		}
11988 
11989 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
11990 
11991 		kpreempt_disable();
11992 		cpuset = sfmmup->sfmmu_cpusran;
11993 		CPUSET_AND(cpuset, cpu_ready_set);
11994 		CPUSET_DEL(cpuset, CPU->cpu_id);
11995 		SFMMU_XCALL_STATS(sfmmup);
11996 		xt_some(cpuset, vtag_flushpage_tl1,
11997 		    (uint64_t)addr, (uint64_t)sfmmup);
11998 		vtag_flushpage(addr, (uint64_t)sfmmup);
11999 		if (uselocks) {
12000 			sfmmu_hat_exit(hatlockp);
12001 		}
12002 		kpreempt_enable();
12003 		CPUSET_OR(rcpuset, cpuset);
12004 
12005 next:
12006 		/* LINTED: constant in conditional context */
12007 		SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
12008 		ASSERT(rlink != NULL);
12009 		sfmmup = rlink->next;
12010 	}
12011 	if (uselocks) {
12012 		mutex_exit(&rgnp->rgn_mutex);
12013 	}
12014 	return (rcpuset);
12015 }
12016 
12017 /*
12018  * This routine takes an sfmmu pointer and the va for an adddress in an
12019  * ISM region as input and returns the corresponding region id in ism_rid.
12020  * The return value of 1 indicates that a region has been found and ism_rid
12021  * is valid, otherwise 0 is returned.
12022  */
12023 static int
12024 find_ism_rid(sfmmu_t *sfmmup, sfmmu_t *ism_sfmmup, caddr_t va, uint_t *ism_rid)
12025 {
12026 	ism_blk_t	*ism_blkp;
12027 	int		i;
12028 	ism_map_t	*ism_map;
12029 #ifdef DEBUG
12030 	struct hat	*ism_hatid;
12031 #endif
12032 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12033 
12034 	ism_blkp = sfmmup->sfmmu_iblk;
12035 	while (ism_blkp != NULL) {
12036 		ism_map = ism_blkp->iblk_maps;
12037 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
12038 			if ((va >= ism_start(ism_map[i])) &&
12039 			    (va < ism_end(ism_map[i]))) {
12040 
12041 				*ism_rid = ism_map[i].imap_rid;
12042 #ifdef DEBUG
12043 				ism_hatid = ism_map[i].imap_ismhat;
12044 				ASSERT(ism_hatid == ism_sfmmup);
12045 				ASSERT(ism_hatid->sfmmu_ismhat);
12046 #endif
12047 				return (1);
12048 			}
12049 		}
12050 		ism_blkp = ism_blkp->iblk_next;
12051 	}
12052 	return (0);
12053 }
12054 
12055 /*
12056  * Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
12057  * This routine may be called with all cpu's captured. Therefore, the
12058  * caller is responsible for holding all locks and disabling kernel
12059  * preemption.
12060  */
12061 /* ARGSUSED */
12062 static void
12063 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
12064 	struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
12065 {
12066 	cpuset_t 	cpuset;
12067 	caddr_t 	va;
12068 	ism_ment_t	*ment;
12069 	sfmmu_t		*sfmmup;
12070 #ifdef VAC
12071 	int 		vcolor;
12072 #endif
12073 
12074 	sf_scd_t	*scdp;
12075 	uint_t		ism_rid;
12076 
12077 	ASSERT(!hmeblkp->hblk_shared);
12078 	/*
12079 	 * Walk the ism_hat's mapping list and flush the page
12080 	 * from every hat sharing this ism_hat. This routine
12081 	 * may be called while all cpu's have been captured.
12082 	 * Therefore we can't attempt to grab any locks. For now
12083 	 * this means we will protect the ism mapping list under
12084 	 * a single lock which will be grabbed by the caller.
12085 	 * If hat_share/unshare scalibility becomes a performance
12086 	 * problem then we may need to re-think ism mapping list locking.
12087 	 */
12088 	ASSERT(ism_sfmmup->sfmmu_ismhat);
12089 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
12090 	addr = addr - ISMID_STARTADDR;
12091 
12092 	for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
12093 
12094 		sfmmup = ment->iment_hat;
12095 
12096 		va = ment->iment_base_va;
12097 		va = (caddr_t)((uintptr_t)va  + (uintptr_t)addr);
12098 
12099 		/*
12100 		 * When an SCD is created the SCD hat is linked on the ism
12101 		 * mapping lists for each ISM segment which is part of the
12102 		 * SCD. If we find an SCD hat, when walking these lists,
12103 		 * then we flush the shared TSBs, if we find a private hat,
12104 		 * which is part of an SCD, but where the region
12105 		 * corresponding to this va is not part of the SCD then we
12106 		 * flush the private TSBs.
12107 		 */
12108 		if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
12109 		    !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD) &&
12110 		    !SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
12111 			if (!find_ism_rid(sfmmup, ism_sfmmup, va,
12112 			    &ism_rid)) {
12113 				cmn_err(CE_PANIC,
12114 				    "can't find matching ISM rid!");
12115 			}
12116 
12117 			scdp = sfmmup->sfmmu_scdp;
12118 			if (SFMMU_IS_ISMRID_VALID(ism_rid) &&
12119 			    SF_RGNMAP_TEST(scdp->scd_ismregion_map,
12120 			    ism_rid)) {
12121 				continue;
12122 			}
12123 		}
12124 		SFMMU_UNLOAD_TSB(va, sfmmup, hmeblkp, 1);
12125 
12126 		cpuset = sfmmup->sfmmu_cpusran;
12127 		CPUSET_AND(cpuset, cpu_ready_set);
12128 		CPUSET_DEL(cpuset, CPU->cpu_id);
12129 		SFMMU_XCALL_STATS(sfmmup);
12130 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
12131 		    (uint64_t)sfmmup);
12132 		vtag_flushpage(va, (uint64_t)sfmmup);
12133 
12134 #ifdef VAC
12135 		/*
12136 		 * Flush D$
12137 		 * When flushing D$ we must flush all
12138 		 * cpu's. See sfmmu_cache_flush().
12139 		 */
12140 		if (cache_flush_flag == CACHE_FLUSH) {
12141 			cpuset = cpu_ready_set;
12142 			CPUSET_DEL(cpuset, CPU->cpu_id);
12143 
12144 			SFMMU_XCALL_STATS(sfmmup);
12145 			vcolor = addr_to_vcolor(va);
12146 			xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12147 			vac_flushpage(pfnum, vcolor);
12148 		}
12149 #endif	/* VAC */
12150 	}
12151 }
12152 
12153 /*
12154  * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
12155  * a particular virtual address and ctx.  If noflush is set we do not
12156  * flush the TLB/TSB.  This function may or may not be called with the
12157  * HAT lock held.
12158  */
12159 static void
12160 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12161 	pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
12162 	int hat_lock_held)
12163 {
12164 #ifdef VAC
12165 	int vcolor;
12166 #endif
12167 	cpuset_t cpuset;
12168 	hatlock_t *hatlockp;
12169 
12170 	ASSERT(!hmeblkp->hblk_shared);
12171 
12172 #if defined(lint) && !defined(VAC)
12173 	pfnum = pfnum;
12174 	cpu_flag = cpu_flag;
12175 	cache_flush_flag = cache_flush_flag;
12176 #endif
12177 
12178 	/*
12179 	 * There is no longer a need to protect against ctx being
12180 	 * stolen here since we don't store the ctx in the TSB anymore.
12181 	 */
12182 #ifdef VAC
12183 	vcolor = addr_to_vcolor(addr);
12184 #endif
12185 
12186 	/*
12187 	 * We must hold the hat lock during the flush of TLB,
12188 	 * to avoid a race with sfmmu_invalidate_ctx(), where
12189 	 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12190 	 * causing TLB demap routine to skip flush on that MMU.
12191 	 * If the context on a MMU has already been set to
12192 	 * INVALID_CONTEXT, we just get an extra flush on
12193 	 * that MMU.
12194 	 */
12195 	if (!hat_lock_held && !tlb_noflush)
12196 		hatlockp = sfmmu_hat_enter(sfmmup);
12197 
12198 	kpreempt_disable();
12199 	if (!tlb_noflush) {
12200 		/*
12201 		 * Flush the TSB and TLB.
12202 		 */
12203 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12204 
12205 		cpuset = sfmmup->sfmmu_cpusran;
12206 		CPUSET_AND(cpuset, cpu_ready_set);
12207 		CPUSET_DEL(cpuset, CPU->cpu_id);
12208 
12209 		SFMMU_XCALL_STATS(sfmmup);
12210 
12211 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
12212 		    (uint64_t)sfmmup);
12213 
12214 		vtag_flushpage(addr, (uint64_t)sfmmup);
12215 	}
12216 
12217 	if (!hat_lock_held && !tlb_noflush)
12218 		sfmmu_hat_exit(hatlockp);
12219 
12220 #ifdef VAC
12221 	/*
12222 	 * Flush the D$
12223 	 *
12224 	 * Even if the ctx is stolen, we need to flush the
12225 	 * cache. Our ctx stealer only flushes the TLBs.
12226 	 */
12227 	if (cache_flush_flag == CACHE_FLUSH) {
12228 		if (cpu_flag & FLUSH_ALL_CPUS) {
12229 			cpuset = cpu_ready_set;
12230 		} else {
12231 			cpuset = sfmmup->sfmmu_cpusran;
12232 			CPUSET_AND(cpuset, cpu_ready_set);
12233 		}
12234 		CPUSET_DEL(cpuset, CPU->cpu_id);
12235 		SFMMU_XCALL_STATS(sfmmup);
12236 		xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12237 		vac_flushpage(pfnum, vcolor);
12238 	}
12239 #endif	/* VAC */
12240 	kpreempt_enable();
12241 }
12242 
12243 /*
12244  * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
12245  * address and ctx.  If noflush is set we do not currently do anything.
12246  * This function may or may not be called with the HAT lock held.
12247  */
12248 static void
12249 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12250 	int tlb_noflush, int hat_lock_held)
12251 {
12252 	cpuset_t cpuset;
12253 	hatlock_t *hatlockp;
12254 
12255 	ASSERT(!hmeblkp->hblk_shared);
12256 
12257 	/*
12258 	 * If the process is exiting we have nothing to do.
12259 	 */
12260 	if (tlb_noflush)
12261 		return;
12262 
12263 	/*
12264 	 * Flush TSB.
12265 	 */
12266 	if (!hat_lock_held)
12267 		hatlockp = sfmmu_hat_enter(sfmmup);
12268 	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12269 
12270 	kpreempt_disable();
12271 
12272 	cpuset = sfmmup->sfmmu_cpusran;
12273 	CPUSET_AND(cpuset, cpu_ready_set);
12274 	CPUSET_DEL(cpuset, CPU->cpu_id);
12275 
12276 	SFMMU_XCALL_STATS(sfmmup);
12277 	xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup);
12278 
12279 	vtag_flushpage(addr, (uint64_t)sfmmup);
12280 
12281 	if (!hat_lock_held)
12282 		sfmmu_hat_exit(hatlockp);
12283 
12284 	kpreempt_enable();
12285 
12286 }
12287 
12288 /*
12289  * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
12290  * call handler that can flush a range of pages to save on xcalls.
12291  */
12292 static int sfmmu_xcall_save;
12293 
12294 /*
12295  * this routine is never used for demaping addresses backed by SRD hmeblks.
12296  */
12297 static void
12298 sfmmu_tlb_range_demap(demap_range_t *dmrp)
12299 {
12300 	sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
12301 	hatlock_t *hatlockp;
12302 	cpuset_t cpuset;
12303 	uint64_t sfmmu_pgcnt;
12304 	pgcnt_t pgcnt = 0;
12305 	int pgunload = 0;
12306 	int dirtypg = 0;
12307 	caddr_t addr = dmrp->dmr_addr;
12308 	caddr_t eaddr;
12309 	uint64_t bitvec = dmrp->dmr_bitvec;
12310 
12311 	ASSERT(bitvec & 1);
12312 
12313 	/*
12314 	 * Flush TSB and calculate number of pages to flush.
12315 	 */
12316 	while (bitvec != 0) {
12317 		dirtypg = 0;
12318 		/*
12319 		 * Find the first page to flush and then count how many
12320 		 * pages there are after it that also need to be flushed.
12321 		 * This way the number of TSB flushes is minimized.
12322 		 */
12323 		while ((bitvec & 1) == 0) {
12324 			pgcnt++;
12325 			addr += MMU_PAGESIZE;
12326 			bitvec >>= 1;
12327 		}
12328 		while (bitvec & 1) {
12329 			dirtypg++;
12330 			bitvec >>= 1;
12331 		}
12332 		eaddr = addr + ptob(dirtypg);
12333 		hatlockp = sfmmu_hat_enter(sfmmup);
12334 		sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
12335 		sfmmu_hat_exit(hatlockp);
12336 		pgunload += dirtypg;
12337 		addr = eaddr;
12338 		pgcnt += dirtypg;
12339 	}
12340 
12341 	ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
12342 	if (sfmmup->sfmmu_free == 0) {
12343 		addr = dmrp->dmr_addr;
12344 		bitvec = dmrp->dmr_bitvec;
12345 
12346 		/*
12347 		 * make sure it has SFMMU_PGCNT_SHIFT bits only,
12348 		 * as it will be used to pack argument for xt_some
12349 		 */
12350 		ASSERT((pgcnt > 0) &&
12351 		    (pgcnt <= (1 << SFMMU_PGCNT_SHIFT)));
12352 
12353 		/*
12354 		 * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in
12355 		 * the low 6 bits of sfmmup. This is doable since pgcnt
12356 		 * always >= 1.
12357 		 */
12358 		ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK));
12359 		sfmmu_pgcnt = (uint64_t)sfmmup |
12360 		    ((pgcnt - 1) & SFMMU_PGCNT_MASK);
12361 
12362 		/*
12363 		 * We must hold the hat lock during the flush of TLB,
12364 		 * to avoid a race with sfmmu_invalidate_ctx(), where
12365 		 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12366 		 * causing TLB demap routine to skip flush on that MMU.
12367 		 * If the context on a MMU has already been set to
12368 		 * INVALID_CONTEXT, we just get an extra flush on
12369 		 * that MMU.
12370 		 */
12371 		hatlockp = sfmmu_hat_enter(sfmmup);
12372 		kpreempt_disable();
12373 
12374 		cpuset = sfmmup->sfmmu_cpusran;
12375 		CPUSET_AND(cpuset, cpu_ready_set);
12376 		CPUSET_DEL(cpuset, CPU->cpu_id);
12377 
12378 		SFMMU_XCALL_STATS(sfmmup);
12379 		xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
12380 		    sfmmu_pgcnt);
12381 
12382 		for (; bitvec != 0; bitvec >>= 1) {
12383 			if (bitvec & 1)
12384 				vtag_flushpage(addr, (uint64_t)sfmmup);
12385 			addr += MMU_PAGESIZE;
12386 		}
12387 		kpreempt_enable();
12388 		sfmmu_hat_exit(hatlockp);
12389 
12390 		sfmmu_xcall_save += (pgunload-1);
12391 	}
12392 	dmrp->dmr_bitvec = 0;
12393 }
12394 
12395 /*
12396  * In cases where we need to synchronize with TLB/TSB miss trap
12397  * handlers, _and_ need to flush the TLB, it's a lot easier to
12398  * throw away the context from the process than to do a
12399  * special song and dance to keep things consistent for the
12400  * handlers.
12401  *
12402  * Since the process suddenly ends up without a context and our caller
12403  * holds the hat lock, threads that fault after this function is called
12404  * will pile up on the lock.  We can then do whatever we need to
12405  * atomically from the context of the caller.  The first blocked thread
12406  * to resume executing will get the process a new context, and the
12407  * process will resume executing.
12408  *
12409  * One added advantage of this approach is that on MMUs that
12410  * support a "flush all" operation, we will delay the flush until
12411  * cnum wrap-around, and then flush the TLB one time.  This
12412  * is rather rare, so it's a lot less expensive than making 8000
12413  * x-calls to flush the TLB 8000 times.
12414  *
12415  * A per-process (PP) lock is used to synchronize ctx allocations in
12416  * resume() and ctx invalidations here.
12417  */
12418 static void
12419 sfmmu_invalidate_ctx(sfmmu_t *sfmmup)
12420 {
12421 	cpuset_t cpuset;
12422 	int cnum, currcnum;
12423 	mmu_ctx_t *mmu_ctxp;
12424 	int i;
12425 	uint_t pstate_save;
12426 
12427 	SFMMU_STAT(sf_ctx_inv);
12428 
12429 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12430 	ASSERT(sfmmup != ksfmmup);
12431 
12432 	kpreempt_disable();
12433 
12434 	mmu_ctxp = CPU_MMU_CTXP(CPU);
12435 	ASSERT(mmu_ctxp);
12436 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
12437 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
12438 
12439 	currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum;
12440 
12441 	pstate_save = sfmmu_disable_intrs();
12442 
12443 	lock_set(&sfmmup->sfmmu_ctx_lock);	/* acquire PP lock */
12444 	/* set HAT cnum invalid across all context domains. */
12445 	for (i = 0; i < max_mmu_ctxdoms; i++) {
12446 
12447 		cnum = 	sfmmup->sfmmu_ctxs[i].cnum;
12448 		if (cnum == INVALID_CONTEXT) {
12449 			continue;
12450 		}
12451 
12452 		sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
12453 	}
12454 	membar_enter();	/* make sure globally visible to all CPUs */
12455 	lock_clear(&sfmmup->sfmmu_ctx_lock);	/* release PP lock */
12456 
12457 	sfmmu_enable_intrs(pstate_save);
12458 
12459 	cpuset = sfmmup->sfmmu_cpusran;
12460 	CPUSET_DEL(cpuset, CPU->cpu_id);
12461 	CPUSET_AND(cpuset, cpu_ready_set);
12462 	if (!CPUSET_ISNULL(cpuset)) {
12463 		SFMMU_XCALL_STATS(sfmmup);
12464 		xt_some(cpuset, sfmmu_raise_tsb_exception,
12465 		    (uint64_t)sfmmup, INVALID_CONTEXT);
12466 		xt_sync(cpuset);
12467 		SFMMU_STAT(sf_tsb_raise_exception);
12468 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
12469 	}
12470 
12471 	/*
12472 	 * If the hat to-be-invalidated is the same as the current
12473 	 * process on local CPU we need to invalidate
12474 	 * this CPU context as well.
12475 	 */
12476 	if ((sfmmu_getctx_sec() == currcnum) &&
12477 	    (currcnum != INVALID_CONTEXT)) {
12478 		/* sets shared context to INVALID too */
12479 		sfmmu_setctx_sec(INVALID_CONTEXT);
12480 		sfmmu_clear_utsbinfo();
12481 	}
12482 
12483 	SFMMU_FLAGS_SET(sfmmup, HAT_ALLCTX_INVALID);
12484 
12485 	kpreempt_enable();
12486 
12487 	/*
12488 	 * we hold the hat lock, so nobody should allocate a context
12489 	 * for us yet
12490 	 */
12491 	ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT);
12492 }
12493 
12494 #ifdef VAC
12495 /*
12496  * We need to flush the cache in all cpus.  It is possible that
12497  * a process referenced a page as cacheable but has sinced exited
12498  * and cleared the mapping list.  We still to flush it but have no
12499  * state so all cpus is the only alternative.
12500  */
12501 void
12502 sfmmu_cache_flush(pfn_t pfnum, int vcolor)
12503 {
12504 	cpuset_t cpuset;
12505 
12506 	kpreempt_disable();
12507 	cpuset = cpu_ready_set;
12508 	CPUSET_DEL(cpuset, CPU->cpu_id);
12509 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
12510 	xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12511 	xt_sync(cpuset);
12512 	vac_flushpage(pfnum, vcolor);
12513 	kpreempt_enable();
12514 }
12515 
12516 void
12517 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
12518 {
12519 	cpuset_t cpuset;
12520 
12521 	ASSERT(vcolor >= 0);
12522 
12523 	kpreempt_disable();
12524 	cpuset = cpu_ready_set;
12525 	CPUSET_DEL(cpuset, CPU->cpu_id);
12526 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
12527 	xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
12528 	xt_sync(cpuset);
12529 	vac_flushcolor(vcolor, pfnum);
12530 	kpreempt_enable();
12531 }
12532 #endif	/* VAC */
12533 
12534 /*
12535  * We need to prevent processes from accessing the TSB using a cached physical
12536  * address.  It's alright if they try to access the TSB via virtual address
12537  * since they will just fault on that virtual address once the mapping has
12538  * been suspended.
12539  */
12540 #pragma weak sendmondo_in_recover
12541 
12542 /* ARGSUSED */
12543 static int
12544 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
12545 {
12546 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12547 	sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
12548 	hatlock_t *hatlockp;
12549 	sf_scd_t *scdp;
12550 
12551 	if (flags != HAT_PRESUSPEND)
12552 		return (0);
12553 
12554 	/*
12555 	 * If tsb is a shared TSB with TSB_SHAREDCTX set, sfmmup must
12556 	 * be a shared hat, then set SCD's tsbinfo's flag.
12557 	 * If tsb is not shared, sfmmup is a private hat, then set
12558 	 * its private tsbinfo's flag.
12559 	 */
12560 	hatlockp = sfmmu_hat_enter(sfmmup);
12561 	tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
12562 
12563 	if (!(tsbinfop->tsb_flags & TSB_SHAREDCTX)) {
12564 		sfmmu_tsb_inv_ctx(sfmmup);
12565 		sfmmu_hat_exit(hatlockp);
12566 	} else {
12567 		/* release lock on the shared hat */
12568 		sfmmu_hat_exit(hatlockp);
12569 		/* sfmmup is a shared hat */
12570 		ASSERT(sfmmup->sfmmu_scdhat);
12571 		scdp = sfmmup->sfmmu_scdp;
12572 		ASSERT(scdp != NULL);
12573 		/* get private hat from the scd list */
12574 		mutex_enter(&scdp->scd_mutex);
12575 		sfmmup = scdp->scd_sf_list;
12576 		while (sfmmup != NULL) {
12577 			hatlockp = sfmmu_hat_enter(sfmmup);
12578 			/*
12579 			 * We do not call sfmmu_tsb_inv_ctx here because
12580 			 * sendmondo_in_recover check is only needed for
12581 			 * sun4u.
12582 			 */
12583 			sfmmu_invalidate_ctx(sfmmup);
12584 			sfmmu_hat_exit(hatlockp);
12585 			sfmmup = sfmmup->sfmmu_scd_link.next;
12586 
12587 		}
12588 		mutex_exit(&scdp->scd_mutex);
12589 	}
12590 	return (0);
12591 }
12592 
12593 static void
12594 sfmmu_tsb_inv_ctx(sfmmu_t *sfmmup)
12595 {
12596 	extern uint32_t sendmondo_in_recover;
12597 
12598 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12599 
12600 	/*
12601 	 * For Cheetah+ Erratum 25:
12602 	 * Wait for any active recovery to finish.  We can't risk
12603 	 * relocating the TSB of the thread running mondo_recover_proc()
12604 	 * since, if we did that, we would deadlock.  The scenario we are
12605 	 * trying to avoid is as follows:
12606 	 *
12607 	 * THIS CPU			RECOVER CPU
12608 	 * --------			-----------
12609 	 *				Begins recovery, walking through TSB
12610 	 * hat_pagesuspend() TSB TTE
12611 	 *				TLB miss on TSB TTE, spins at TL1
12612 	 * xt_sync()
12613 	 *	send_mondo_timeout()
12614 	 *	mondo_recover_proc()
12615 	 *	((deadlocked))
12616 	 *
12617 	 * The second half of the workaround is that mondo_recover_proc()
12618 	 * checks to see if the tsb_info has the RELOC flag set, and if it
12619 	 * does, it skips over that TSB without ever touching tsbinfop->tsb_va
12620 	 * and hence avoiding the TLB miss that could result in a deadlock.
12621 	 */
12622 	if (&sendmondo_in_recover) {
12623 		membar_enter();	/* make sure RELOC flag visible */
12624 		while (sendmondo_in_recover) {
12625 			drv_usecwait(1);
12626 			membar_consumer();
12627 		}
12628 	}
12629 
12630 	sfmmu_invalidate_ctx(sfmmup);
12631 }
12632 
12633 /* ARGSUSED */
12634 static int
12635 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
12636 	void *tsbinfo, pfn_t newpfn)
12637 {
12638 	hatlock_t *hatlockp;
12639 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12640 	sfmmu_t	*sfmmup = tsbinfop->tsb_sfmmu;
12641 
12642 	if (flags != HAT_POSTUNSUSPEND)
12643 		return (0);
12644 
12645 	hatlockp = sfmmu_hat_enter(sfmmup);
12646 
12647 	SFMMU_STAT(sf_tsb_reloc);
12648 
12649 	/*
12650 	 * The process may have swapped out while we were relocating one
12651 	 * of its TSBs.  If so, don't bother doing the setup since the
12652 	 * process can't be using the memory anymore.
12653 	 */
12654 	if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
12655 		ASSERT(va == tsbinfop->tsb_va);
12656 		sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
12657 
12658 		if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
12659 			sfmmu_inv_tsb(tsbinfop->tsb_va,
12660 			    TSB_BYTES(tsbinfop->tsb_szc));
12661 			tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
12662 		}
12663 	}
12664 
12665 	membar_exit();
12666 	tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
12667 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
12668 
12669 	sfmmu_hat_exit(hatlockp);
12670 
12671 	return (0);
12672 }
12673 
12674 /*
12675  * Allocate and initialize a tsb_info structure.  Note that we may or may not
12676  * allocate a TSB here, depending on the flags passed in.
12677  */
12678 static int
12679 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
12680 	uint_t flags, sfmmu_t *sfmmup)
12681 {
12682 	int err;
12683 
12684 	*tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
12685 	    sfmmu_tsbinfo_cache, KM_SLEEP);
12686 
12687 	if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
12688 	    tsb_szc, flags, sfmmup)) != 0) {
12689 		kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
12690 		SFMMU_STAT(sf_tsb_allocfail);
12691 		*tsbinfopp = NULL;
12692 		return (err);
12693 	}
12694 	SFMMU_STAT(sf_tsb_alloc);
12695 
12696 	/*
12697 	 * Bump the TSB size counters for this TSB size.
12698 	 */
12699 	(*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
12700 	return (0);
12701 }
12702 
12703 static void
12704 sfmmu_tsb_free(struct tsb_info *tsbinfo)
12705 {
12706 	caddr_t tsbva = tsbinfo->tsb_va;
12707 	uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
12708 	struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
12709 	vmem_t	*vmp = tsbinfo->tsb_vmp;
12710 
12711 	/*
12712 	 * If we allocated this TSB from relocatable kernel memory, then we
12713 	 * need to uninstall the callback handler.
12714 	 */
12715 	if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
12716 		uintptr_t slab_mask;
12717 		caddr_t slab_vaddr;
12718 		page_t **ppl;
12719 		int ret;
12720 
12721 		ASSERT(tsb_size <= MMU_PAGESIZE4M || use_bigtsb_arena);
12722 		if (tsb_size > MMU_PAGESIZE4M)
12723 			slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
12724 		else
12725 			slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
12726 		slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
12727 
12728 		ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
12729 		ASSERT(ret == 0);
12730 		hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
12731 		    0, NULL);
12732 		as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
12733 	}
12734 
12735 	if (kmem_cachep != NULL) {
12736 		kmem_cache_free(kmem_cachep, tsbva);
12737 	} else {
12738 		vmem_xfree(vmp, (void *)tsbva, tsb_size);
12739 	}
12740 	tsbinfo->tsb_va = (caddr_t)0xbad00bad;
12741 	atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
12742 }
12743 
12744 static void
12745 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
12746 {
12747 	if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
12748 		sfmmu_tsb_free(tsbinfo);
12749 	}
12750 	kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
12751 
12752 }
12753 
12754 /*
12755  * Setup all the references to physical memory for this tsbinfo.
12756  * The underlying page(s) must be locked.
12757  */
12758 static void
12759 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
12760 {
12761 	ASSERT(pfn != PFN_INVALID);
12762 	ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
12763 
12764 #ifndef sun4v
12765 	if (tsbinfo->tsb_szc == 0) {
12766 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
12767 		    PROT_WRITE|PROT_READ, TTE8K);
12768 	} else {
12769 		/*
12770 		 * Round down PA and use a large mapping; the handlers will
12771 		 * compute the TSB pointer at the correct offset into the
12772 		 * big virtual page.  NOTE: this assumes all TSBs larger
12773 		 * than 8K must come from physically contiguous slabs of
12774 		 * size tsb_slab_size.
12775 		 */
12776 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
12777 		    PROT_WRITE|PROT_READ, tsb_slab_ttesz);
12778 	}
12779 	tsbinfo->tsb_pa = ptob(pfn);
12780 
12781 	TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
12782 	TTE_SET_MOD(&tsbinfo->tsb_tte);    /* enable writes */
12783 
12784 	ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
12785 	ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
12786 #else /* sun4v */
12787 	tsbinfo->tsb_pa = ptob(pfn);
12788 #endif /* sun4v */
12789 }
12790 
12791 
12792 /*
12793  * Returns zero on success, ENOMEM if over the high water mark,
12794  * or EAGAIN if the caller needs to retry with a smaller TSB
12795  * size (or specify TSB_FORCEALLOC if the allocation can't fail).
12796  *
12797  * This call cannot fail to allocate a TSB if TSB_FORCEALLOC
12798  * is specified and the TSB requested is PAGESIZE, though it
12799  * may sleep waiting for memory if sufficient memory is not
12800  * available.
12801  */
12802 static int
12803 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
12804     int tsbcode, uint_t flags, sfmmu_t *sfmmup)
12805 {
12806 	caddr_t vaddr = NULL;
12807 	caddr_t slab_vaddr;
12808 	uintptr_t slab_mask;
12809 	int tsbbytes = TSB_BYTES(tsbcode);
12810 	int lowmem = 0;
12811 	struct kmem_cache *kmem_cachep = NULL;
12812 	vmem_t *vmp = NULL;
12813 	lgrp_id_t lgrpid = LGRP_NONE;
12814 	pfn_t pfn;
12815 	uint_t cbflags = HAC_SLEEP;
12816 	page_t **pplist;
12817 	int ret;
12818 
12819 	ASSERT(tsbbytes <= MMU_PAGESIZE4M || use_bigtsb_arena);
12820 	if (tsbbytes > MMU_PAGESIZE4M)
12821 		slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
12822 	else
12823 		slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
12824 
12825 	if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
12826 		flags |= TSB_ALLOC;
12827 
12828 	ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
12829 
12830 	tsbinfo->tsb_sfmmu = sfmmup;
12831 
12832 	/*
12833 	 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
12834 	 * return.
12835 	 */
12836 	if ((flags & TSB_ALLOC) == 0) {
12837 		tsbinfo->tsb_szc = tsbcode;
12838 		tsbinfo->tsb_ttesz_mask = tteszmask;
12839 		tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
12840 		tsbinfo->tsb_pa = -1;
12841 		tsbinfo->tsb_tte.ll = 0;
12842 		tsbinfo->tsb_next = NULL;
12843 		tsbinfo->tsb_flags = TSB_SWAPPED;
12844 		tsbinfo->tsb_cache = NULL;
12845 		tsbinfo->tsb_vmp = NULL;
12846 		return (0);
12847 	}
12848 
12849 #ifdef DEBUG
12850 	/*
12851 	 * For debugging:
12852 	 * Randomly force allocation failures every tsb_alloc_mtbf
12853 	 * tries if TSB_FORCEALLOC is not specified.  This will
12854 	 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
12855 	 * it is even, to allow testing of both failure paths...
12856 	 */
12857 	if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
12858 	    (tsb_alloc_count++ == tsb_alloc_mtbf)) {
12859 		tsb_alloc_count = 0;
12860 		tsb_alloc_fail_mtbf++;
12861 		return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
12862 	}
12863 #endif	/* DEBUG */
12864 
12865 	/*
12866 	 * Enforce high water mark if we are not doing a forced allocation
12867 	 * and are not shrinking a process' TSB.
12868 	 */
12869 	if ((flags & TSB_SHRINK) == 0 &&
12870 	    (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
12871 		if ((flags & TSB_FORCEALLOC) == 0)
12872 			return (ENOMEM);
12873 		lowmem = 1;
12874 	}
12875 
12876 	/*
12877 	 * Allocate from the correct location based upon the size of the TSB
12878 	 * compared to the base page size, and what memory conditions dictate.
12879 	 * Note we always do nonblocking allocations from the TSB arena since
12880 	 * we don't want memory fragmentation to cause processes to block
12881 	 * indefinitely waiting for memory; until the kernel algorithms that
12882 	 * coalesce large pages are improved this is our best option.
12883 	 *
12884 	 * Algorithm:
12885 	 *	If allocating a "large" TSB (>8K), allocate from the
12886 	 *		appropriate kmem_tsb_default_arena vmem arena
12887 	 *	else if low on memory or the TSB_FORCEALLOC flag is set or
12888 	 *	tsb_forceheap is set
12889 	 *		Allocate from kernel heap via sfmmu_tsb8k_cache with
12890 	 *		KM_SLEEP (never fails)
12891 	 *	else
12892 	 *		Allocate from appropriate sfmmu_tsb_cache with
12893 	 *		KM_NOSLEEP
12894 	 *	endif
12895 	 */
12896 	if (tsb_lgrp_affinity)
12897 		lgrpid = lgrp_home_id(curthread);
12898 	if (lgrpid == LGRP_NONE)
12899 		lgrpid = 0;	/* use lgrp of boot CPU */
12900 
12901 	if (tsbbytes > MMU_PAGESIZE) {
12902 		if (tsbbytes > MMU_PAGESIZE4M) {
12903 			vmp = kmem_bigtsb_default_arena[lgrpid];
12904 			vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
12905 			    0, 0, NULL, NULL, VM_NOSLEEP);
12906 		} else {
12907 			vmp = kmem_tsb_default_arena[lgrpid];
12908 			vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
12909 			    0, 0, NULL, NULL, VM_NOSLEEP);
12910 		}
12911 #ifdef	DEBUG
12912 	} else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
12913 #else	/* !DEBUG */
12914 	} else if (lowmem || (flags & TSB_FORCEALLOC)) {
12915 #endif	/* DEBUG */
12916 		kmem_cachep = sfmmu_tsb8k_cache;
12917 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
12918 		ASSERT(vaddr != NULL);
12919 	} else {
12920 		kmem_cachep = sfmmu_tsb_cache[lgrpid];
12921 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
12922 	}
12923 
12924 	tsbinfo->tsb_cache = kmem_cachep;
12925 	tsbinfo->tsb_vmp = vmp;
12926 
12927 	if (vaddr == NULL) {
12928 		return (EAGAIN);
12929 	}
12930 
12931 	atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
12932 	kmem_cachep = tsbinfo->tsb_cache;
12933 
12934 	/*
12935 	 * If we are allocating from outside the cage, then we need to
12936 	 * register a relocation callback handler.  Note that for now
12937 	 * since pseudo mappings always hang off of the slab's root page,
12938 	 * we need only lock the first 8K of the TSB slab.  This is a bit
12939 	 * hacky but it is good for performance.
12940 	 */
12941 	if (kmem_cachep != sfmmu_tsb8k_cache) {
12942 		slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
12943 		ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
12944 		ASSERT(ret == 0);
12945 		ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
12946 		    cbflags, (void *)tsbinfo, &pfn, NULL);
12947 
12948 		/*
12949 		 * Need to free up resources if we could not successfully
12950 		 * add the callback function and return an error condition.
12951 		 */
12952 		if (ret != 0) {
12953 			if (kmem_cachep) {
12954 				kmem_cache_free(kmem_cachep, vaddr);
12955 			} else {
12956 				vmem_xfree(vmp, (void *)vaddr, tsbbytes);
12957 			}
12958 			as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
12959 			    S_WRITE);
12960 			return (EAGAIN);
12961 		}
12962 	} else {
12963 		/*
12964 		 * Since allocation of 8K TSBs from heap is rare and occurs
12965 		 * during memory pressure we allocate them from permanent
12966 		 * memory rather than using callbacks to get the PFN.
12967 		 */
12968 		pfn = hat_getpfnum(kas.a_hat, vaddr);
12969 	}
12970 
12971 	tsbinfo->tsb_va = vaddr;
12972 	tsbinfo->tsb_szc = tsbcode;
12973 	tsbinfo->tsb_ttesz_mask = tteszmask;
12974 	tsbinfo->tsb_next = NULL;
12975 	tsbinfo->tsb_flags = 0;
12976 
12977 	sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
12978 
12979 	sfmmu_inv_tsb(vaddr, tsbbytes);
12980 
12981 	if (kmem_cachep != sfmmu_tsb8k_cache) {
12982 		as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
12983 	}
12984 
12985 	return (0);
12986 }
12987 
12988 /*
12989  * Initialize per cpu tsb and per cpu tsbmiss_area
12990  */
12991 void
12992 sfmmu_init_tsbs(void)
12993 {
12994 	int i;
12995 	struct tsbmiss	*tsbmissp;
12996 	struct kpmtsbm	*kpmtsbmp;
12997 #ifndef sun4v
12998 	extern int	dcache_line_mask;
12999 #endif /* sun4v */
13000 	extern uint_t	vac_colors;
13001 
13002 	/*
13003 	 * Init. tsb miss area.
13004 	 */
13005 	tsbmissp = tsbmiss_area;
13006 
13007 	for (i = 0; i < NCPU; tsbmissp++, i++) {
13008 		/*
13009 		 * initialize the tsbmiss area.
13010 		 * Do this for all possible CPUs as some may be added
13011 		 * while the system is running. There is no cost to this.
13012 		 */
13013 		tsbmissp->ksfmmup = ksfmmup;
13014 #ifndef sun4v
13015 		tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
13016 #endif /* sun4v */
13017 		tsbmissp->khashstart =
13018 		    (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
13019 		tsbmissp->uhashstart =
13020 		    (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
13021 		tsbmissp->khashsz = khmehash_num;
13022 		tsbmissp->uhashsz = uhmehash_num;
13023 	}
13024 
13025 	sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
13026 	    sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
13027 
13028 	if (kpm_enable == 0)
13029 		return;
13030 
13031 	/* -- Begin KPM specific init -- */
13032 
13033 	if (kpm_smallpages) {
13034 		/*
13035 		 * If we're using base pagesize pages for seg_kpm
13036 		 * mappings, we use the kernel TSB since we can't afford
13037 		 * to allocate a second huge TSB for these mappings.
13038 		 */
13039 		kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13040 		kpm_tsbsz = ktsb_szcode;
13041 		kpmsm_tsbbase = kpm_tsbbase;
13042 		kpmsm_tsbsz = kpm_tsbsz;
13043 	} else {
13044 		/*
13045 		 * In VAC conflict case, just put the entries in the
13046 		 * kernel 8K indexed TSB for now so we can find them.
13047 		 * This could really be changed in the future if we feel
13048 		 * the need...
13049 		 */
13050 		kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13051 		kpmsm_tsbsz = ktsb_szcode;
13052 		kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
13053 		kpm_tsbsz = ktsb4m_szcode;
13054 	}
13055 
13056 	kpmtsbmp = kpmtsbm_area;
13057 	for (i = 0; i < NCPU; kpmtsbmp++, i++) {
13058 		/*
13059 		 * Initialize the kpmtsbm area.
13060 		 * Do this for all possible CPUs as some may be added
13061 		 * while the system is running. There is no cost to this.
13062 		 */
13063 		kpmtsbmp->vbase = kpm_vbase;
13064 		kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
13065 		kpmtsbmp->sz_shift = kpm_size_shift;
13066 		kpmtsbmp->kpmp_shift = kpmp_shift;
13067 		kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
13068 		if (kpm_smallpages == 0) {
13069 			kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
13070 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
13071 		} else {
13072 			kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
13073 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
13074 		}
13075 		kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
13076 		kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
13077 #ifdef	DEBUG
13078 		kpmtsbmp->flags |= (kpm_tsbmtl) ?  KPMTSBM_TLTSBM_FLAG : 0;
13079 #endif	/* DEBUG */
13080 		if (ktsb_phys)
13081 			kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
13082 	}
13083 
13084 	/* -- End KPM specific init -- */
13085 }
13086 
13087 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
13088 struct tsb_info ktsb_info[2];
13089 
13090 /*
13091  * Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
13092  */
13093 void
13094 sfmmu_init_ktsbinfo()
13095 {
13096 	ASSERT(ksfmmup != NULL);
13097 	ASSERT(ksfmmup->sfmmu_tsb == NULL);
13098 	/*
13099 	 * Allocate tsbinfos for kernel and copy in data
13100 	 * to make debug easier and sun4v setup easier.
13101 	 */
13102 	ktsb_info[0].tsb_sfmmu = ksfmmup;
13103 	ktsb_info[0].tsb_szc = ktsb_szcode;
13104 	ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
13105 	ktsb_info[0].tsb_va = ktsb_base;
13106 	ktsb_info[0].tsb_pa = ktsb_pbase;
13107 	ktsb_info[0].tsb_flags = 0;
13108 	ktsb_info[0].tsb_tte.ll = 0;
13109 	ktsb_info[0].tsb_cache = NULL;
13110 
13111 	ktsb_info[1].tsb_sfmmu = ksfmmup;
13112 	ktsb_info[1].tsb_szc = ktsb4m_szcode;
13113 	ktsb_info[1].tsb_ttesz_mask = TSB4M;
13114 	ktsb_info[1].tsb_va = ktsb4m_base;
13115 	ktsb_info[1].tsb_pa = ktsb4m_pbase;
13116 	ktsb_info[1].tsb_flags = 0;
13117 	ktsb_info[1].tsb_tte.ll = 0;
13118 	ktsb_info[1].tsb_cache = NULL;
13119 
13120 	/* Link them into ksfmmup. */
13121 	ktsb_info[0].tsb_next = &ktsb_info[1];
13122 	ktsb_info[1].tsb_next = NULL;
13123 	ksfmmup->sfmmu_tsb = &ktsb_info[0];
13124 
13125 	sfmmu_setup_tsbinfo(ksfmmup);
13126 }
13127 
13128 /*
13129  * Cache the last value returned from va_to_pa().  If the VA specified
13130  * in the current call to cached_va_to_pa() maps to the same Page (as the
13131  * previous call to cached_va_to_pa()), then compute the PA using
13132  * cached info, else call va_to_pa().
13133  *
13134  * Note: this function is neither MT-safe nor consistent in the presence
13135  * of multiple, interleaved threads.  This function was created to enable
13136  * an optimization used during boot (at a point when there's only one thread
13137  * executing on the "boot CPU", and before startup_vm() has been called).
13138  */
13139 static uint64_t
13140 cached_va_to_pa(void *vaddr)
13141 {
13142 	static uint64_t prev_vaddr_base = 0;
13143 	static uint64_t prev_pfn = 0;
13144 
13145 	if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
13146 		return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
13147 	} else {
13148 		uint64_t pa = va_to_pa(vaddr);
13149 
13150 		if (pa != ((uint64_t)-1)) {
13151 			/*
13152 			 * Computed physical address is valid.  Cache its
13153 			 * related info for the next cached_va_to_pa() call.
13154 			 */
13155 			prev_pfn = pa & MMU_PAGEMASK;
13156 			prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
13157 		}
13158 
13159 		return (pa);
13160 	}
13161 }
13162 
13163 /*
13164  * Carve up our nucleus hblk region.  We may allocate more hblks than
13165  * asked due to rounding errors but we are guaranteed to have at least
13166  * enough space to allocate the requested number of hblk8's and hblk1's.
13167  */
13168 void
13169 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
13170 {
13171 	struct hme_blk *hmeblkp;
13172 	size_t hme8blk_sz, hme1blk_sz;
13173 	size_t i;
13174 	size_t hblk8_bound;
13175 	ulong_t j = 0, k = 0;
13176 
13177 	ASSERT(addr != NULL && size != 0);
13178 
13179 	/* Need to use proper structure alignment */
13180 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
13181 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
13182 
13183 	nucleus_hblk8.list = (void *)addr;
13184 	nucleus_hblk8.index = 0;
13185 
13186 	/*
13187 	 * Use as much memory as possible for hblk8's since we
13188 	 * expect all bop_alloc'ed memory to be allocated in 8k chunks.
13189 	 * We need to hold back enough space for the hblk1's which
13190 	 * we'll allocate next.
13191 	 */
13192 	hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
13193 	for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
13194 		hmeblkp = (struct hme_blk *)addr;
13195 		addr += hme8blk_sz;
13196 		hmeblkp->hblk_nuc_bit = 1;
13197 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13198 	}
13199 	nucleus_hblk8.len = j;
13200 	ASSERT(j >= nhblk8);
13201 	SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
13202 
13203 	nucleus_hblk1.list = (void *)addr;
13204 	nucleus_hblk1.index = 0;
13205 	for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
13206 		hmeblkp = (struct hme_blk *)addr;
13207 		addr += hme1blk_sz;
13208 		hmeblkp->hblk_nuc_bit = 1;
13209 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13210 	}
13211 	ASSERT(k >= nhblk1);
13212 	nucleus_hblk1.len = k;
13213 	SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
13214 }
13215 
13216 /*
13217  * This function is currently not supported on this platform. For what
13218  * it's supposed to do, see hat.c and hat_srmmu.c
13219  */
13220 /* ARGSUSED */
13221 faultcode_t
13222 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
13223     uint_t flags)
13224 {
13225 	return (FC_NOSUPPORT);
13226 }
13227 
13228 /*
13229  * Searchs the mapping list of the page for a mapping of the same size. If not
13230  * found the corresponding bit is cleared in the p_index field. When large
13231  * pages are more prevalent in the system, we can maintain the mapping list
13232  * in order and we don't have to traverse the list each time. Just check the
13233  * next and prev entries, and if both are of different size, we clear the bit.
13234  */
13235 static void
13236 sfmmu_rm_large_mappings(page_t *pp, int ttesz)
13237 {
13238 	struct sf_hment *sfhmep;
13239 	struct hme_blk *hmeblkp;
13240 	int	index;
13241 	pgcnt_t	npgs;
13242 
13243 	ASSERT(ttesz > TTE8K);
13244 
13245 	ASSERT(sfmmu_mlist_held(pp));
13246 
13247 	ASSERT(PP_ISMAPPED_LARGE(pp));
13248 
13249 	/*
13250 	 * Traverse mapping list looking for another mapping of same size.
13251 	 * since we only want to clear index field if all mappings of
13252 	 * that size are gone.
13253 	 */
13254 
13255 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
13256 		if (IS_PAHME(sfhmep))
13257 			continue;
13258 		hmeblkp = sfmmu_hmetohblk(sfhmep);
13259 		if (hme_size(sfhmep) == ttesz) {
13260 			/*
13261 			 * another mapping of the same size. don't clear index.
13262 			 */
13263 			return;
13264 		}
13265 	}
13266 
13267 	/*
13268 	 * Clear the p_index bit for large page.
13269 	 */
13270 	index = PAGESZ_TO_INDEX(ttesz);
13271 	npgs = TTEPAGES(ttesz);
13272 	while (npgs-- > 0) {
13273 		ASSERT(pp->p_index & index);
13274 		pp->p_index &= ~index;
13275 		pp = PP_PAGENEXT(pp);
13276 	}
13277 }
13278 
13279 /*
13280  * return supported features
13281  */
13282 /* ARGSUSED */
13283 int
13284 hat_supported(enum hat_features feature, void *arg)
13285 {
13286 	switch (feature) {
13287 	case    HAT_SHARED_PT:
13288 	case	HAT_DYNAMIC_ISM_UNMAP:
13289 	case	HAT_VMODSORT:
13290 		return (1);
13291 	case	HAT_SHARED_REGIONS:
13292 		if (shctx_on)
13293 			return (1);
13294 		else
13295 			return (0);
13296 	default:
13297 		return (0);
13298 	}
13299 }
13300 
13301 void
13302 hat_enter(struct hat *hat)
13303 {
13304 	hatlock_t	*hatlockp;
13305 
13306 	if (hat != ksfmmup) {
13307 		hatlockp = TSB_HASH(hat);
13308 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
13309 	}
13310 }
13311 
13312 void
13313 hat_exit(struct hat *hat)
13314 {
13315 	hatlock_t	*hatlockp;
13316 
13317 	if (hat != ksfmmup) {
13318 		hatlockp = TSB_HASH(hat);
13319 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
13320 	}
13321 }
13322 
13323 /*ARGSUSED*/
13324 void
13325 hat_reserve(struct as *as, caddr_t addr, size_t len)
13326 {
13327 }
13328 
13329 static void
13330 hat_kstat_init(void)
13331 {
13332 	kstat_t *ksp;
13333 
13334 	ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
13335 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
13336 	    KSTAT_FLAG_VIRTUAL);
13337 	if (ksp) {
13338 		ksp->ks_data = (void *) &sfmmu_global_stat;
13339 		kstat_install(ksp);
13340 	}
13341 	ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
13342 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
13343 	    KSTAT_FLAG_VIRTUAL);
13344 	if (ksp) {
13345 		ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
13346 		kstat_install(ksp);
13347 	}
13348 	ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
13349 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
13350 	    KSTAT_FLAG_WRITABLE);
13351 	if (ksp) {
13352 		ksp->ks_update = sfmmu_kstat_percpu_update;
13353 		kstat_install(ksp);
13354 	}
13355 }
13356 
13357 /* ARGSUSED */
13358 static int
13359 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
13360 {
13361 	struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
13362 	struct tsbmiss *tsbm = tsbmiss_area;
13363 	struct kpmtsbm *kpmtsbm = kpmtsbm_area;
13364 	int i;
13365 
13366 	ASSERT(cpu_kstat);
13367 	if (rw == KSTAT_READ) {
13368 		for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
13369 			cpu_kstat->sf_itlb_misses = 0;
13370 			cpu_kstat->sf_dtlb_misses = 0;
13371 			cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
13372 			    tsbm->uprot_traps;
13373 			cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
13374 			    kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
13375 			cpu_kstat->sf_tsb_hits = 0;
13376 			cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
13377 			cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
13378 		}
13379 	} else {
13380 		/* KSTAT_WRITE is used to clear stats */
13381 		for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
13382 			tsbm->utsb_misses = 0;
13383 			tsbm->ktsb_misses = 0;
13384 			tsbm->uprot_traps = 0;
13385 			tsbm->kprot_traps = 0;
13386 			kpmtsbm->kpm_dtlb_misses = 0;
13387 			kpmtsbm->kpm_tsb_misses = 0;
13388 		}
13389 	}
13390 	return (0);
13391 }
13392 
13393 #ifdef	DEBUG
13394 
13395 tte_t  *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
13396 
13397 /*
13398  * A tte checker. *orig_old is the value we read before cas.
13399  *	*cur is the value returned by cas.
13400  *	*new is the desired value when we do the cas.
13401  *
13402  *	*hmeblkp is currently unused.
13403  */
13404 
13405 /* ARGSUSED */
13406 void
13407 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
13408 {
13409 	pfn_t i, j, k;
13410 	int cpuid = CPU->cpu_id;
13411 
13412 	gorig[cpuid] = orig_old;
13413 	gcur[cpuid] = cur;
13414 	gnew[cpuid] = new;
13415 
13416 #ifdef lint
13417 	hmeblkp = hmeblkp;
13418 #endif
13419 
13420 	if (TTE_IS_VALID(orig_old)) {
13421 		if (TTE_IS_VALID(cur)) {
13422 			i = TTE_TO_TTEPFN(orig_old);
13423 			j = TTE_TO_TTEPFN(cur);
13424 			k = TTE_TO_TTEPFN(new);
13425 			if (i != j) {
13426 				/* remap error? */
13427 				panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j);
13428 			}
13429 
13430 			if (i != k) {
13431 				/* remap error? */
13432 				panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k);
13433 			}
13434 		} else {
13435 			if (TTE_IS_VALID(new)) {
13436 				panic("chk_tte: invalid cur? ");
13437 			}
13438 
13439 			i = TTE_TO_TTEPFN(orig_old);
13440 			k = TTE_TO_TTEPFN(new);
13441 			if (i != k) {
13442 				panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k);
13443 			}
13444 		}
13445 	} else {
13446 		if (TTE_IS_VALID(cur)) {
13447 			j = TTE_TO_TTEPFN(cur);
13448 			if (TTE_IS_VALID(new)) {
13449 				k = TTE_TO_TTEPFN(new);
13450 				if (j != k) {
13451 					panic("chk_tte: bad pfn4, 0x%lx, 0x%lx",
13452 					    j, k);
13453 				}
13454 			} else {
13455 				panic("chk_tte: why here?");
13456 			}
13457 		} else {
13458 			if (!TTE_IS_VALID(new)) {
13459 				panic("chk_tte: why here2 ?");
13460 			}
13461 		}
13462 	}
13463 }
13464 
13465 #endif /* DEBUG */
13466 
13467 extern void prefetch_tsbe_read(struct tsbe *);
13468 extern void prefetch_tsbe_write(struct tsbe *);
13469 
13470 
13471 /*
13472  * We want to prefetch 7 cache lines ahead for our read prefetch.  This gives
13473  * us optimal performance on Cheetah+.  You can only have 8 outstanding
13474  * prefetches at any one time, so we opted for 7 read prefetches and 1 write
13475  * prefetch to make the most utilization of the prefetch capability.
13476  */
13477 #define	TSBE_PREFETCH_STRIDE (7)
13478 
13479 void
13480 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
13481 {
13482 	int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
13483 	int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
13484 	int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
13485 	int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
13486 	struct tsbe *old;
13487 	struct tsbe *new;
13488 	struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
13489 	uint64_t va;
13490 	int new_offset;
13491 	int i;
13492 	int vpshift;
13493 	int last_prefetch;
13494 
13495 	if (old_bytes == new_bytes) {
13496 		bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
13497 	} else {
13498 
13499 		/*
13500 		 * A TSBE is 16 bytes which means there are four TSBE's per
13501 		 * P$ line (64 bytes), thus every 4 TSBE's we prefetch.
13502 		 */
13503 		old = (struct tsbe *)old_tsbinfo->tsb_va;
13504 		last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
13505 		for (i = 0; i < old_entries; i++, old++) {
13506 			if (((i & (4-1)) == 0) && (i < last_prefetch))
13507 				prefetch_tsbe_read(old);
13508 			if (!old->tte_tag.tag_invalid) {
13509 				/*
13510 				 * We have a valid TTE to remap.  Check the
13511 				 * size.  We won't remap 64K or 512K TTEs
13512 				 * because they span more than one TSB entry
13513 				 * and are indexed using an 8K virt. page.
13514 				 * Ditto for 32M and 256M TTEs.
13515 				 */
13516 				if (TTE_CSZ(&old->tte_data) == TTE64K ||
13517 				    TTE_CSZ(&old->tte_data) == TTE512K)
13518 					continue;
13519 				if (mmu_page_sizes == max_mmu_page_sizes) {
13520 					if (TTE_CSZ(&old->tte_data) == TTE32M ||
13521 					    TTE_CSZ(&old->tte_data) == TTE256M)
13522 						continue;
13523 				}
13524 
13525 				/* clear the lower 22 bits of the va */
13526 				va = *(uint64_t *)old << 22;
13527 				/* turn va into a virtual pfn */
13528 				va >>= 22 - TSB_START_SIZE;
13529 				/*
13530 				 * or in bits from the offset in the tsb
13531 				 * to get the real virtual pfn. These
13532 				 * correspond to bits [21:13] in the va
13533 				 */
13534 				vpshift =
13535 				    TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
13536 				    0x1ff;
13537 				va |= (i << vpshift);
13538 				va >>= vpshift;
13539 				new_offset = va & (new_entries - 1);
13540 				new = new_base + new_offset;
13541 				prefetch_tsbe_write(new);
13542 				*new = *old;
13543 			}
13544 		}
13545 	}
13546 }
13547 
13548 /*
13549  * unused in sfmmu
13550  */
13551 void
13552 hat_dump(void)
13553 {
13554 }
13555 
13556 /*
13557  * Called when a thread is exiting and we have switched to the kernel address
13558  * space.  Perform the same VM initialization resume() uses when switching
13559  * processes.
13560  *
13561  * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
13562  * we call it anyway in case the semantics change in the future.
13563  */
13564 /*ARGSUSED*/
13565 void
13566 hat_thread_exit(kthread_t *thd)
13567 {
13568 	uint_t pgsz_cnum;
13569 	uint_t pstate_save;
13570 
13571 	ASSERT(thd->t_procp->p_as == &kas);
13572 
13573 	pgsz_cnum = KCONTEXT;
13574 #ifdef sun4u
13575 	pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT);
13576 #endif
13577 
13578 	/*
13579 	 * Note that sfmmu_load_mmustate() is currently a no-op for
13580 	 * kernel threads. We need to disable interrupts here,
13581 	 * simply because otherwise sfmmu_load_mmustate() would panic
13582 	 * if the caller does not disable interrupts.
13583 	 */
13584 	pstate_save = sfmmu_disable_intrs();
13585 
13586 	/* Compatibility Note: hw takes care of MMU_SCONTEXT1 */
13587 	sfmmu_setctx_sec(pgsz_cnum);
13588 	sfmmu_load_mmustate(ksfmmup);
13589 	sfmmu_enable_intrs(pstate_save);
13590 }
13591 
13592 
13593 /*
13594  * SRD support
13595  */
13596 #define	SRD_HASH_FUNCTION(vp)	(((((uintptr_t)(vp)) >> 4) ^ \
13597 				    (((uintptr_t)(vp)) >> 11)) & \
13598 				    srd_hashmask)
13599 
13600 /*
13601  * Attach the process to the srd struct associated with the exec vnode
13602  * from which the process is started.
13603  */
13604 void
13605 hat_join_srd(struct hat *sfmmup, vnode_t *evp)
13606 {
13607 	uint_t hash = SRD_HASH_FUNCTION(evp);
13608 	sf_srd_t *srdp;
13609 	sf_srd_t *newsrdp;
13610 
13611 	ASSERT(sfmmup != ksfmmup);
13612 	ASSERT(sfmmup->sfmmu_srdp == NULL);
13613 
13614 	if (!shctx_on) {
13615 		return;
13616 	}
13617 
13618 	VN_HOLD(evp);
13619 
13620 	if (srd_buckets[hash].srdb_srdp != NULL) {
13621 		mutex_enter(&srd_buckets[hash].srdb_lock);
13622 		for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13623 		    srdp = srdp->srd_hash) {
13624 			if (srdp->srd_evp == evp) {
13625 				ASSERT(srdp->srd_refcnt >= 0);
13626 				sfmmup->sfmmu_srdp = srdp;
13627 				atomic_inc_32(
13628 				    (volatile uint_t *)&srdp->srd_refcnt);
13629 				mutex_exit(&srd_buckets[hash].srdb_lock);
13630 				return;
13631 			}
13632 		}
13633 		mutex_exit(&srd_buckets[hash].srdb_lock);
13634 	}
13635 	newsrdp = kmem_cache_alloc(srd_cache, KM_SLEEP);
13636 	ASSERT(newsrdp->srd_next_ismrid == 0 && newsrdp->srd_next_hmerid == 0);
13637 
13638 	newsrdp->srd_evp = evp;
13639 	newsrdp->srd_refcnt = 1;
13640 	newsrdp->srd_hmergnfree = NULL;
13641 	newsrdp->srd_ismrgnfree = NULL;
13642 
13643 	mutex_enter(&srd_buckets[hash].srdb_lock);
13644 	for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13645 	    srdp = srdp->srd_hash) {
13646 		if (srdp->srd_evp == evp) {
13647 			ASSERT(srdp->srd_refcnt >= 0);
13648 			sfmmup->sfmmu_srdp = srdp;
13649 			atomic_inc_32((volatile uint_t *)&srdp->srd_refcnt);
13650 			mutex_exit(&srd_buckets[hash].srdb_lock);
13651 			kmem_cache_free(srd_cache, newsrdp);
13652 			return;
13653 		}
13654 	}
13655 	newsrdp->srd_hash = srd_buckets[hash].srdb_srdp;
13656 	srd_buckets[hash].srdb_srdp = newsrdp;
13657 	sfmmup->sfmmu_srdp = newsrdp;
13658 
13659 	mutex_exit(&srd_buckets[hash].srdb_lock);
13660 
13661 }
13662 
13663 static void
13664 sfmmu_leave_srd(sfmmu_t *sfmmup)
13665 {
13666 	vnode_t *evp;
13667 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
13668 	uint_t hash;
13669 	sf_srd_t **prev_srdpp;
13670 	sf_region_t *rgnp;
13671 	sf_region_t *nrgnp;
13672 #ifdef DEBUG
13673 	int rgns = 0;
13674 #endif
13675 	int i;
13676 
13677 	ASSERT(sfmmup != ksfmmup);
13678 	ASSERT(srdp != NULL);
13679 	ASSERT(srdp->srd_refcnt > 0);
13680 	ASSERT(sfmmup->sfmmu_scdp == NULL);
13681 	ASSERT(sfmmup->sfmmu_free == 1);
13682 
13683 	sfmmup->sfmmu_srdp = NULL;
13684 	evp = srdp->srd_evp;
13685 	ASSERT(evp != NULL);
13686 	if (atomic_dec_32_nv((volatile uint_t *)&srdp->srd_refcnt)) {
13687 		VN_RELE(evp);
13688 		return;
13689 	}
13690 
13691 	hash = SRD_HASH_FUNCTION(evp);
13692 	mutex_enter(&srd_buckets[hash].srdb_lock);
13693 	for (prev_srdpp = &srd_buckets[hash].srdb_srdp;
13694 	    (srdp = *prev_srdpp) != NULL; prev_srdpp = &srdp->srd_hash) {
13695 		if (srdp->srd_evp == evp) {
13696 			break;
13697 		}
13698 	}
13699 	if (srdp == NULL || srdp->srd_refcnt) {
13700 		mutex_exit(&srd_buckets[hash].srdb_lock);
13701 		VN_RELE(evp);
13702 		return;
13703 	}
13704 	*prev_srdpp = srdp->srd_hash;
13705 	mutex_exit(&srd_buckets[hash].srdb_lock);
13706 
13707 	ASSERT(srdp->srd_refcnt == 0);
13708 	VN_RELE(evp);
13709 
13710 #ifdef DEBUG
13711 	for (i = 0; i < SFMMU_MAX_REGION_BUCKETS; i++) {
13712 		ASSERT(srdp->srd_rgnhash[i] == NULL);
13713 	}
13714 #endif /* DEBUG */
13715 
13716 	/* free each hme regions in the srd */
13717 	for (rgnp = srdp->srd_hmergnfree; rgnp != NULL; rgnp = nrgnp) {
13718 		nrgnp = rgnp->rgn_next;
13719 		ASSERT(rgnp->rgn_id < srdp->srd_next_hmerid);
13720 		ASSERT(rgnp->rgn_refcnt == 0);
13721 		ASSERT(rgnp->rgn_sfmmu_head == NULL);
13722 		ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13723 		ASSERT(rgnp->rgn_hmeflags == 0);
13724 		ASSERT(srdp->srd_hmergnp[rgnp->rgn_id] == rgnp);
13725 #ifdef DEBUG
13726 		for (i = 0; i < MMU_PAGE_SIZES; i++) {
13727 			ASSERT(rgnp->rgn_ttecnt[i] == 0);
13728 		}
13729 		rgns++;
13730 #endif /* DEBUG */
13731 		kmem_cache_free(region_cache, rgnp);
13732 	}
13733 	ASSERT(rgns == srdp->srd_next_hmerid);
13734 
13735 #ifdef DEBUG
13736 	rgns = 0;
13737 #endif
13738 	/* free each ism rgns in the srd */
13739 	for (rgnp = srdp->srd_ismrgnfree; rgnp != NULL; rgnp = nrgnp) {
13740 		nrgnp = rgnp->rgn_next;
13741 		ASSERT(rgnp->rgn_id < srdp->srd_next_ismrid);
13742 		ASSERT(rgnp->rgn_refcnt == 0);
13743 		ASSERT(rgnp->rgn_sfmmu_head == NULL);
13744 		ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13745 		ASSERT(srdp->srd_ismrgnp[rgnp->rgn_id] == rgnp);
13746 #ifdef DEBUG
13747 		for (i = 0; i < MMU_PAGE_SIZES; i++) {
13748 			ASSERT(rgnp->rgn_ttecnt[i] == 0);
13749 		}
13750 		rgns++;
13751 #endif /* DEBUG */
13752 		kmem_cache_free(region_cache, rgnp);
13753 	}
13754 	ASSERT(rgns == srdp->srd_next_ismrid);
13755 	ASSERT(srdp->srd_ismbusyrgns == 0);
13756 	ASSERT(srdp->srd_hmebusyrgns == 0);
13757 
13758 	srdp->srd_next_ismrid = 0;
13759 	srdp->srd_next_hmerid = 0;
13760 
13761 	bzero((void *)srdp->srd_ismrgnp,
13762 	    sizeof (sf_region_t *) * SFMMU_MAX_ISM_REGIONS);
13763 	bzero((void *)srdp->srd_hmergnp,
13764 	    sizeof (sf_region_t *) * SFMMU_MAX_HME_REGIONS);
13765 
13766 	ASSERT(srdp->srd_scdp == NULL);
13767 	kmem_cache_free(srd_cache, srdp);
13768 }
13769 
13770 /* ARGSUSED */
13771 static int
13772 sfmmu_srdcache_constructor(void *buf, void *cdrarg, int kmflags)
13773 {
13774 	sf_srd_t *srdp = (sf_srd_t *)buf;
13775 	bzero(buf, sizeof (*srdp));
13776 
13777 	mutex_init(&srdp->srd_mutex, NULL, MUTEX_DEFAULT, NULL);
13778 	mutex_init(&srdp->srd_scd_mutex, NULL, MUTEX_DEFAULT, NULL);
13779 	return (0);
13780 }
13781 
13782 /* ARGSUSED */
13783 static void
13784 sfmmu_srdcache_destructor(void *buf, void *cdrarg)
13785 {
13786 	sf_srd_t *srdp = (sf_srd_t *)buf;
13787 
13788 	mutex_destroy(&srdp->srd_mutex);
13789 	mutex_destroy(&srdp->srd_scd_mutex);
13790 }
13791 
13792 /*
13793  * The caller makes sure hat_join_region()/hat_leave_region() can't be called
13794  * at the same time for the same process and address range. This is ensured by
13795  * the fact that address space is locked as writer when a process joins the
13796  * regions. Therefore there's no need to hold an srd lock during the entire
13797  * execution of hat_join_region()/hat_leave_region().
13798  */
13799 
13800 #define	RGN_HASH_FUNCTION(obj)	(((((uintptr_t)(obj)) >> 4) ^ \
13801 				    (((uintptr_t)(obj)) >> 11)) & \
13802 					srd_rgn_hashmask)
13803 /*
13804  * This routine implements the shared context functionality required when
13805  * attaching a segment to an address space. It must be called from
13806  * hat_share() for D(ISM) segments and from segvn_create() for segments
13807  * with the MAP_PRIVATE and MAP_TEXT flags set. It returns a region_cookie
13808  * which is saved in the private segment data for hme segments and
13809  * the ism_map structure for ism segments.
13810  */
13811 hat_region_cookie_t
13812 hat_join_region(struct hat *sfmmup,
13813 	caddr_t r_saddr,
13814 	size_t r_size,
13815 	void *r_obj,
13816 	u_offset_t r_objoff,
13817 	uchar_t r_perm,
13818 	uchar_t r_pgszc,
13819 	hat_rgn_cb_func_t r_cb_function,
13820 	uint_t flags)
13821 {
13822 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
13823 	uint_t rhash;
13824 	uint_t rid;
13825 	hatlock_t *hatlockp;
13826 	sf_region_t *rgnp;
13827 	sf_region_t *new_rgnp = NULL;
13828 	int i;
13829 	uint16_t *nextidp;
13830 	sf_region_t **freelistp;
13831 	int maxids;
13832 	sf_region_t **rarrp;
13833 	uint16_t *busyrgnsp;
13834 	ulong_t rttecnt;
13835 	uchar_t tteflag;
13836 	uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
13837 	int text = (r_type == HAT_REGION_TEXT);
13838 
13839 	if (srdp == NULL || r_size == 0) {
13840 		return (HAT_INVALID_REGION_COOKIE);
13841 	}
13842 
13843 	ASSERT(sfmmup != ksfmmup);
13844 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as));
13845 	ASSERT(srdp->srd_refcnt > 0);
13846 	ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
13847 	ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
13848 	ASSERT(r_pgszc < mmu_page_sizes);
13849 	if (!IS_P2ALIGNED(r_saddr, TTEBYTES(r_pgszc)) ||
13850 	    !IS_P2ALIGNED(r_size, TTEBYTES(r_pgszc))) {
13851 		panic("hat_join_region: region addr or size is not aligned\n");
13852 	}
13853 
13854 
13855 	r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
13856 	    SFMMU_REGION_HME;
13857 	/*
13858 	 * Currently only support shared hmes for the read only main text
13859 	 * region.
13860 	 */
13861 	if (r_type == SFMMU_REGION_HME && ((r_obj != srdp->srd_evp) ||
13862 	    (r_perm & PROT_WRITE))) {
13863 		return (HAT_INVALID_REGION_COOKIE);
13864 	}
13865 
13866 	rhash = RGN_HASH_FUNCTION(r_obj);
13867 
13868 	if (r_type == SFMMU_REGION_ISM) {
13869 		nextidp = &srdp->srd_next_ismrid;
13870 		freelistp = &srdp->srd_ismrgnfree;
13871 		maxids = SFMMU_MAX_ISM_REGIONS;
13872 		rarrp = srdp->srd_ismrgnp;
13873 		busyrgnsp = &srdp->srd_ismbusyrgns;
13874 	} else {
13875 		nextidp = &srdp->srd_next_hmerid;
13876 		freelistp = &srdp->srd_hmergnfree;
13877 		maxids = SFMMU_MAX_HME_REGIONS;
13878 		rarrp = srdp->srd_hmergnp;
13879 		busyrgnsp = &srdp->srd_hmebusyrgns;
13880 	}
13881 
13882 	mutex_enter(&srdp->srd_mutex);
13883 
13884 	for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
13885 	    rgnp = rgnp->rgn_hash) {
13886 		if (rgnp->rgn_saddr == r_saddr && rgnp->rgn_size == r_size &&
13887 		    rgnp->rgn_obj == r_obj && rgnp->rgn_objoff == r_objoff &&
13888 		    rgnp->rgn_perm == r_perm && rgnp->rgn_pgszc == r_pgszc) {
13889 			break;
13890 		}
13891 	}
13892 
13893 rfound:
13894 	if (rgnp != NULL) {
13895 		ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
13896 		ASSERT(rgnp->rgn_cb_function == r_cb_function);
13897 		ASSERT(rgnp->rgn_refcnt >= 0);
13898 		rid = rgnp->rgn_id;
13899 		ASSERT(rid < maxids);
13900 		ASSERT(rarrp[rid] == rgnp);
13901 		ASSERT(rid < *nextidp);
13902 		atomic_inc_32((volatile uint_t *)&rgnp->rgn_refcnt);
13903 		mutex_exit(&srdp->srd_mutex);
13904 		if (new_rgnp != NULL) {
13905 			kmem_cache_free(region_cache, new_rgnp);
13906 		}
13907 		if (r_type == SFMMU_REGION_HME) {
13908 			int myjoin =
13909 			    (sfmmup == astosfmmu(curthread->t_procp->p_as));
13910 
13911 			sfmmu_link_to_hmeregion(sfmmup, rgnp);
13912 			/*
13913 			 * bitmap should be updated after linking sfmmu on
13914 			 * region list so that pageunload() doesn't skip
13915 			 * TSB/TLB flush. As soon as bitmap is updated another
13916 			 * thread in this process can already start accessing
13917 			 * this region.
13918 			 */
13919 			/*
13920 			 * Normally ttecnt accounting is done as part of
13921 			 * pagefault handling. But a process may not take any
13922 			 * pagefaults on shared hmeblks created by some other
13923 			 * process. To compensate for this assume that the
13924 			 * entire region will end up faulted in using
13925 			 * the region's pagesize.
13926 			 *
13927 			 */
13928 			if (r_pgszc > TTE8K) {
13929 				tteflag = 1 << r_pgszc;
13930 				if (disable_large_pages & tteflag) {
13931 					tteflag = 0;
13932 				}
13933 			} else {
13934 				tteflag = 0;
13935 			}
13936 			if (tteflag && !(sfmmup->sfmmu_rtteflags & tteflag)) {
13937 				hatlockp = sfmmu_hat_enter(sfmmup);
13938 				sfmmup->sfmmu_rtteflags |= tteflag;
13939 				sfmmu_hat_exit(hatlockp);
13940 			}
13941 			hatlockp = sfmmu_hat_enter(sfmmup);
13942 
13943 			/*
13944 			 * Preallocate 1/4 of ttecnt's in 8K TSB for >= 4M
13945 			 * region to allow for large page allocation failure.
13946 			 */
13947 			if (r_pgszc >= TTE4M) {
13948 				sfmmup->sfmmu_tsb0_4minflcnt +=
13949 				    r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
13950 			}
13951 
13952 			/* update sfmmu_ttecnt with the shme rgn ttecnt */
13953 			rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
13954 			atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
13955 			    rttecnt);
13956 
13957 			if (text && r_pgszc >= TTE4M &&
13958 			    (tteflag || ((disable_large_pages >> TTE4M) &
13959 			    ((1 << (r_pgszc - TTE4M + 1)) - 1))) &&
13960 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
13961 				SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
13962 			}
13963 
13964 			sfmmu_hat_exit(hatlockp);
13965 			/*
13966 			 * On Panther we need to make sure TLB is programmed
13967 			 * to accept 32M/256M pages.  Call
13968 			 * sfmmu_check_page_sizes() now to make sure TLB is
13969 			 * setup before making hmeregions visible to other
13970 			 * threads.
13971 			 */
13972 			sfmmu_check_page_sizes(sfmmup, 1);
13973 			hatlockp = sfmmu_hat_enter(sfmmup);
13974 			SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
13975 
13976 			/*
13977 			 * if context is invalid tsb miss exception code will
13978 			 * call sfmmu_check_page_sizes() and update tsbmiss
13979 			 * area later.
13980 			 */
13981 			kpreempt_disable();
13982 			if (myjoin &&
13983 			    (sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
13984 			    != INVALID_CONTEXT)) {
13985 				struct tsbmiss *tsbmp;
13986 
13987 				tsbmp = &tsbmiss_area[CPU->cpu_id];
13988 				ASSERT(sfmmup == tsbmp->usfmmup);
13989 				BT_SET(tsbmp->shmermap, rid);
13990 				if (r_pgszc > TTE64K) {
13991 					tsbmp->uhat_rtteflags |= tteflag;
13992 				}
13993 
13994 			}
13995 			kpreempt_enable();
13996 
13997 			sfmmu_hat_exit(hatlockp);
13998 			ASSERT((hat_region_cookie_t)((uint64_t)rid) !=
13999 			    HAT_INVALID_REGION_COOKIE);
14000 		} else {
14001 			hatlockp = sfmmu_hat_enter(sfmmup);
14002 			SF_RGNMAP_ADD(sfmmup->sfmmu_ismregion_map, rid);
14003 			sfmmu_hat_exit(hatlockp);
14004 		}
14005 		ASSERT(rid < maxids);
14006 
14007 		if (r_type == SFMMU_REGION_ISM) {
14008 			sfmmu_find_scd(sfmmup);
14009 		}
14010 		return ((hat_region_cookie_t)((uint64_t)rid));
14011 	}
14012 
14013 	ASSERT(new_rgnp == NULL);
14014 
14015 	if (*busyrgnsp >= maxids) {
14016 		mutex_exit(&srdp->srd_mutex);
14017 		return (HAT_INVALID_REGION_COOKIE);
14018 	}
14019 
14020 	ASSERT(MUTEX_HELD(&srdp->srd_mutex));
14021 	if (*freelistp != NULL) {
14022 		rgnp = *freelistp;
14023 		*freelistp = rgnp->rgn_next;
14024 		ASSERT(rgnp->rgn_id < *nextidp);
14025 		ASSERT(rgnp->rgn_id < maxids);
14026 		ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
14027 		ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK)
14028 		    == r_type);
14029 		ASSERT(rarrp[rgnp->rgn_id] == rgnp);
14030 		ASSERT(rgnp->rgn_hmeflags == 0);
14031 	} else {
14032 		/*
14033 		 * release local locks before memory allocation.
14034 		 */
14035 		mutex_exit(&srdp->srd_mutex);
14036 
14037 		new_rgnp = kmem_cache_alloc(region_cache, KM_SLEEP);
14038 
14039 		mutex_enter(&srdp->srd_mutex);
14040 		for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
14041 		    rgnp = rgnp->rgn_hash) {
14042 			if (rgnp->rgn_saddr == r_saddr &&
14043 			    rgnp->rgn_size == r_size &&
14044 			    rgnp->rgn_obj == r_obj &&
14045 			    rgnp->rgn_objoff == r_objoff &&
14046 			    rgnp->rgn_perm == r_perm &&
14047 			    rgnp->rgn_pgszc == r_pgszc) {
14048 				break;
14049 			}
14050 		}
14051 		if (rgnp != NULL) {
14052 			goto rfound;
14053 		}
14054 
14055 		if (*nextidp >= maxids) {
14056 			mutex_exit(&srdp->srd_mutex);
14057 			goto fail;
14058 		}
14059 		rgnp = new_rgnp;
14060 		new_rgnp = NULL;
14061 		rgnp->rgn_id = (*nextidp)++;
14062 		ASSERT(rgnp->rgn_id < maxids);
14063 		ASSERT(rarrp[rgnp->rgn_id] == NULL);
14064 		rarrp[rgnp->rgn_id] = rgnp;
14065 	}
14066 
14067 	ASSERT(rgnp->rgn_sfmmu_head == NULL);
14068 	ASSERT(rgnp->rgn_hmeflags == 0);
14069 #ifdef DEBUG
14070 	for (i = 0; i < MMU_PAGE_SIZES; i++) {
14071 		ASSERT(rgnp->rgn_ttecnt[i] == 0);
14072 	}
14073 #endif
14074 	rgnp->rgn_saddr = r_saddr;
14075 	rgnp->rgn_size = r_size;
14076 	rgnp->rgn_obj = r_obj;
14077 	rgnp->rgn_objoff = r_objoff;
14078 	rgnp->rgn_perm = r_perm;
14079 	rgnp->rgn_pgszc = r_pgszc;
14080 	rgnp->rgn_flags = r_type;
14081 	rgnp->rgn_refcnt = 0;
14082 	rgnp->rgn_cb_function = r_cb_function;
14083 	rgnp->rgn_hash = srdp->srd_rgnhash[rhash];
14084 	srdp->srd_rgnhash[rhash] = rgnp;
14085 	(*busyrgnsp)++;
14086 	ASSERT(*busyrgnsp <= maxids);
14087 	goto rfound;
14088 
14089 fail:
14090 	ASSERT(new_rgnp != NULL);
14091 	kmem_cache_free(region_cache, new_rgnp);
14092 	return (HAT_INVALID_REGION_COOKIE);
14093 }
14094 
14095 /*
14096  * This function implements the shared context functionality required
14097  * when detaching a segment from an address space. It must be called
14098  * from hat_unshare() for all D(ISM) segments and from segvn_unmap(),
14099  * for segments with a valid region_cookie.
14100  * It will also be called from all seg_vn routines which change a
14101  * segment's attributes such as segvn_setprot(), segvn_setpagesize(),
14102  * segvn_clrszc() & segvn_advise(), as well as in the case of COW fault
14103  * from segvn_fault().
14104  */
14105 void
14106 hat_leave_region(struct hat *sfmmup, hat_region_cookie_t rcookie, uint_t flags)
14107 {
14108 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14109 	sf_scd_t *scdp;
14110 	uint_t rhash;
14111 	uint_t rid = (uint_t)((uint64_t)rcookie);
14112 	hatlock_t *hatlockp = NULL;
14113 	sf_region_t *rgnp;
14114 	sf_region_t **prev_rgnpp;
14115 	sf_region_t *cur_rgnp;
14116 	void *r_obj;
14117 	int i;
14118 	caddr_t	r_saddr;
14119 	caddr_t r_eaddr;
14120 	size_t	r_size;
14121 	uchar_t	r_pgszc;
14122 	uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
14123 
14124 	ASSERT(sfmmup != ksfmmup);
14125 	ASSERT(srdp != NULL);
14126 	ASSERT(srdp->srd_refcnt > 0);
14127 	ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
14128 	ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
14129 	ASSERT(!sfmmup->sfmmu_free || sfmmup->sfmmu_scdp == NULL);
14130 
14131 	r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
14132 	    SFMMU_REGION_HME;
14133 
14134 	if (r_type == SFMMU_REGION_ISM) {
14135 		ASSERT(SFMMU_IS_ISMRID_VALID(rid));
14136 		ASSERT(rid < SFMMU_MAX_ISM_REGIONS);
14137 		rgnp = srdp->srd_ismrgnp[rid];
14138 	} else {
14139 		ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14140 		ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14141 		rgnp = srdp->srd_hmergnp[rid];
14142 	}
14143 	ASSERT(rgnp != NULL);
14144 	ASSERT(rgnp->rgn_id == rid);
14145 	ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14146 	ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14147 	ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as));
14148 
14149 	if (sfmmup->sfmmu_free) {
14150 		ulong_t rttecnt;
14151 		r_pgszc = rgnp->rgn_pgszc;
14152 		r_size = rgnp->rgn_size;
14153 
14154 		ASSERT(sfmmup->sfmmu_scdp == NULL);
14155 		if (r_type == SFMMU_REGION_ISM) {
14156 			SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14157 		} else {
14158 			/* update shme rgns ttecnt in sfmmu_ttecnt */
14159 			rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14160 			ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14161 
14162 			atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
14163 			    -rttecnt);
14164 
14165 			SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14166 		}
14167 	} else if (r_type == SFMMU_REGION_ISM) {
14168 		hatlockp = sfmmu_hat_enter(sfmmup);
14169 		ASSERT(rid < srdp->srd_next_ismrid);
14170 		SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14171 		scdp = sfmmup->sfmmu_scdp;
14172 		if (scdp != NULL &&
14173 		    SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
14174 			sfmmu_leave_scd(sfmmup, r_type);
14175 			ASSERT(sfmmu_hat_lock_held(sfmmup));
14176 		}
14177 		sfmmu_hat_exit(hatlockp);
14178 	} else {
14179 		ulong_t rttecnt;
14180 		r_pgszc = rgnp->rgn_pgszc;
14181 		r_saddr = rgnp->rgn_saddr;
14182 		r_size = rgnp->rgn_size;
14183 		r_eaddr = r_saddr + r_size;
14184 
14185 		ASSERT(r_type == SFMMU_REGION_HME);
14186 		hatlockp = sfmmu_hat_enter(sfmmup);
14187 		ASSERT(rid < srdp->srd_next_hmerid);
14188 		SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14189 
14190 		/*
14191 		 * If region is part of an SCD call sfmmu_leave_scd().
14192 		 * Otherwise if process is not exiting and has valid context
14193 		 * just drop the context on the floor to lose stale TLB
14194 		 * entries and force the update of tsb miss area to reflect
14195 		 * the new region map. After that clean our TSB entries.
14196 		 */
14197 		scdp = sfmmup->sfmmu_scdp;
14198 		if (scdp != NULL &&
14199 		    SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
14200 			sfmmu_leave_scd(sfmmup, r_type);
14201 			ASSERT(sfmmu_hat_lock_held(sfmmup));
14202 		}
14203 		sfmmu_invalidate_ctx(sfmmup);
14204 
14205 		i = TTE8K;
14206 		while (i < mmu_page_sizes) {
14207 			if (rgnp->rgn_ttecnt[i] != 0) {
14208 				sfmmu_unload_tsb_range(sfmmup, r_saddr,
14209 				    r_eaddr, i);
14210 				if (i < TTE4M) {
14211 					i = TTE4M;
14212 					continue;
14213 				} else {
14214 					break;
14215 				}
14216 			}
14217 			i++;
14218 		}
14219 		/* Remove the preallocated 1/4 8k ttecnt for 4M regions. */
14220 		if (r_pgszc >= TTE4M) {
14221 			rttecnt = r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14222 			ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
14223 			    rttecnt);
14224 			sfmmup->sfmmu_tsb0_4minflcnt -= rttecnt;
14225 		}
14226 
14227 		/* update shme rgns ttecnt in sfmmu_ttecnt */
14228 		rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14229 		ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14230 		atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc], -rttecnt);
14231 
14232 		sfmmu_hat_exit(hatlockp);
14233 		if (scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
14234 			/* sfmmup left the scd, grow private tsb */
14235 			sfmmu_check_page_sizes(sfmmup, 1);
14236 		} else {
14237 			sfmmu_check_page_sizes(sfmmup, 0);
14238 		}
14239 	}
14240 
14241 	if (r_type == SFMMU_REGION_HME) {
14242 		sfmmu_unlink_from_hmeregion(sfmmup, rgnp);
14243 	}
14244 
14245 	r_obj = rgnp->rgn_obj;
14246 	if (atomic_dec_32_nv((volatile uint_t *)&rgnp->rgn_refcnt)) {
14247 		return;
14248 	}
14249 
14250 	/*
14251 	 * looks like nobody uses this region anymore. Free it.
14252 	 */
14253 	rhash = RGN_HASH_FUNCTION(r_obj);
14254 	mutex_enter(&srdp->srd_mutex);
14255 	for (prev_rgnpp = &srdp->srd_rgnhash[rhash];
14256 	    (cur_rgnp = *prev_rgnpp) != NULL;
14257 	    prev_rgnpp = &cur_rgnp->rgn_hash) {
14258 		if (cur_rgnp == rgnp && cur_rgnp->rgn_refcnt == 0) {
14259 			break;
14260 		}
14261 	}
14262 
14263 	if (cur_rgnp == NULL) {
14264 		mutex_exit(&srdp->srd_mutex);
14265 		return;
14266 	}
14267 
14268 	ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14269 	*prev_rgnpp = rgnp->rgn_hash;
14270 	if (r_type == SFMMU_REGION_ISM) {
14271 		rgnp->rgn_flags |= SFMMU_REGION_FREE;
14272 		ASSERT(rid < srdp->srd_next_ismrid);
14273 		rgnp->rgn_next = srdp->srd_ismrgnfree;
14274 		srdp->srd_ismrgnfree = rgnp;
14275 		ASSERT(srdp->srd_ismbusyrgns > 0);
14276 		srdp->srd_ismbusyrgns--;
14277 		mutex_exit(&srdp->srd_mutex);
14278 		return;
14279 	}
14280 	mutex_exit(&srdp->srd_mutex);
14281 
14282 	/*
14283 	 * Destroy region's hmeblks.
14284 	 */
14285 	sfmmu_unload_hmeregion(srdp, rgnp);
14286 
14287 	rgnp->rgn_hmeflags = 0;
14288 
14289 	ASSERT(rgnp->rgn_sfmmu_head == NULL);
14290 	ASSERT(rgnp->rgn_id == rid);
14291 	for (i = 0; i < MMU_PAGE_SIZES; i++) {
14292 		rgnp->rgn_ttecnt[i] = 0;
14293 	}
14294 	rgnp->rgn_flags |= SFMMU_REGION_FREE;
14295 	mutex_enter(&srdp->srd_mutex);
14296 	ASSERT(rid < srdp->srd_next_hmerid);
14297 	rgnp->rgn_next = srdp->srd_hmergnfree;
14298 	srdp->srd_hmergnfree = rgnp;
14299 	ASSERT(srdp->srd_hmebusyrgns > 0);
14300 	srdp->srd_hmebusyrgns--;
14301 	mutex_exit(&srdp->srd_mutex);
14302 }
14303 
14304 /*
14305  * For now only called for hmeblk regions and not for ISM regions.
14306  */
14307 void
14308 hat_dup_region(struct hat *sfmmup, hat_region_cookie_t rcookie)
14309 {
14310 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14311 	uint_t rid = (uint_t)((uint64_t)rcookie);
14312 	sf_region_t *rgnp;
14313 	sf_rgn_link_t *rlink;
14314 	sf_rgn_link_t *hrlink;
14315 	ulong_t	rttecnt;
14316 
14317 	ASSERT(sfmmup != ksfmmup);
14318 	ASSERT(srdp != NULL);
14319 	ASSERT(srdp->srd_refcnt > 0);
14320 
14321 	ASSERT(rid < srdp->srd_next_hmerid);
14322 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14323 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14324 
14325 	rgnp = srdp->srd_hmergnp[rid];
14326 	ASSERT(rgnp->rgn_refcnt > 0);
14327 	ASSERT(rgnp->rgn_id == rid);
14328 	ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == SFMMU_REGION_HME);
14329 	ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14330 
14331 	atomic_inc_32((volatile uint_t *)&rgnp->rgn_refcnt);
14332 
14333 	/* LINTED: constant in conditional context */
14334 	SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 0);
14335 	ASSERT(rlink != NULL);
14336 	mutex_enter(&rgnp->rgn_mutex);
14337 	ASSERT(rgnp->rgn_sfmmu_head != NULL);
14338 	/* LINTED: constant in conditional context */
14339 	SFMMU_HMERID2RLINKP(rgnp->rgn_sfmmu_head, rid, hrlink, 0, 0);
14340 	ASSERT(hrlink != NULL);
14341 	ASSERT(hrlink->prev == NULL);
14342 	rlink->next = rgnp->rgn_sfmmu_head;
14343 	rlink->prev = NULL;
14344 	hrlink->prev = sfmmup;
14345 	/*
14346 	 * make sure rlink's next field is correct
14347 	 * before making this link visible.
14348 	 */
14349 	membar_stst();
14350 	rgnp->rgn_sfmmu_head = sfmmup;
14351 	mutex_exit(&rgnp->rgn_mutex);
14352 
14353 	/* update sfmmu_ttecnt with the shme rgn ttecnt */
14354 	rttecnt = rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
14355 	atomic_add_long(&sfmmup->sfmmu_ttecnt[rgnp->rgn_pgszc], rttecnt);
14356 	/* update tsb0 inflation count */
14357 	if (rgnp->rgn_pgszc >= TTE4M) {
14358 		sfmmup->sfmmu_tsb0_4minflcnt +=
14359 		    rgnp->rgn_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14360 	}
14361 	/*
14362 	 * Update regionid bitmask without hat lock since no other thread
14363 	 * can update this region bitmask right now.
14364 	 */
14365 	SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
14366 }
14367 
14368 /* ARGSUSED */
14369 static int
14370 sfmmu_rgncache_constructor(void *buf, void *cdrarg, int kmflags)
14371 {
14372 	sf_region_t *rgnp = (sf_region_t *)buf;
14373 	bzero(buf, sizeof (*rgnp));
14374 
14375 	mutex_init(&rgnp->rgn_mutex, NULL, MUTEX_DEFAULT, NULL);
14376 
14377 	return (0);
14378 }
14379 
14380 /* ARGSUSED */
14381 static void
14382 sfmmu_rgncache_destructor(void *buf, void *cdrarg)
14383 {
14384 	sf_region_t *rgnp = (sf_region_t *)buf;
14385 	mutex_destroy(&rgnp->rgn_mutex);
14386 }
14387 
14388 static int
14389 sfrgnmap_isnull(sf_region_map_t *map)
14390 {
14391 	int i;
14392 
14393 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14394 		if (map->bitmap[i] != 0) {
14395 			return (0);
14396 		}
14397 	}
14398 	return (1);
14399 }
14400 
14401 static int
14402 sfhmergnmap_isnull(sf_hmeregion_map_t *map)
14403 {
14404 	int i;
14405 
14406 	for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
14407 		if (map->bitmap[i] != 0) {
14408 			return (0);
14409 		}
14410 	}
14411 	return (1);
14412 }
14413 
14414 #ifdef DEBUG
14415 static void
14416 check_scd_sfmmu_list(sfmmu_t **headp, sfmmu_t *sfmmup, int onlist)
14417 {
14418 	sfmmu_t *sp;
14419 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14420 
14421 	for (sp = *headp; sp != NULL; sp = sp->sfmmu_scd_link.next) {
14422 		ASSERT(srdp == sp->sfmmu_srdp);
14423 		if (sp == sfmmup) {
14424 			if (onlist) {
14425 				return;
14426 			} else {
14427 				panic("shctx: sfmmu 0x%p found on scd"
14428 				    "list 0x%p", (void *)sfmmup,
14429 				    (void *)*headp);
14430 			}
14431 		}
14432 	}
14433 	if (onlist) {
14434 		panic("shctx: sfmmu 0x%p not found on scd list 0x%p",
14435 		    (void *)sfmmup, (void *)*headp);
14436 	} else {
14437 		return;
14438 	}
14439 }
14440 #else /* DEBUG */
14441 #define	check_scd_sfmmu_list(headp, sfmmup, onlist)
14442 #endif /* DEBUG */
14443 
14444 /*
14445  * Removes an sfmmu from the SCD sfmmu list.
14446  */
14447 static void
14448 sfmmu_from_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14449 {
14450 	ASSERT(sfmmup->sfmmu_srdp != NULL);
14451 	check_scd_sfmmu_list(headp, sfmmup, 1);
14452 	if (sfmmup->sfmmu_scd_link.prev != NULL) {
14453 		ASSERT(*headp != sfmmup);
14454 		sfmmup->sfmmu_scd_link.prev->sfmmu_scd_link.next =
14455 		    sfmmup->sfmmu_scd_link.next;
14456 	} else {
14457 		ASSERT(*headp == sfmmup);
14458 		*headp = sfmmup->sfmmu_scd_link.next;
14459 	}
14460 	if (sfmmup->sfmmu_scd_link.next != NULL) {
14461 		sfmmup->sfmmu_scd_link.next->sfmmu_scd_link.prev =
14462 		    sfmmup->sfmmu_scd_link.prev;
14463 	}
14464 }
14465 
14466 
14467 /*
14468  * Adds an sfmmu to the start of the queue.
14469  */
14470 static void
14471 sfmmu_to_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14472 {
14473 	check_scd_sfmmu_list(headp, sfmmup, 0);
14474 	sfmmup->sfmmu_scd_link.prev = NULL;
14475 	sfmmup->sfmmu_scd_link.next = *headp;
14476 	if (*headp != NULL)
14477 		(*headp)->sfmmu_scd_link.prev = sfmmup;
14478 	*headp = sfmmup;
14479 }
14480 
14481 /*
14482  * Remove an scd from the start of the queue.
14483  */
14484 static void
14485 sfmmu_remove_scd(sf_scd_t **headp, sf_scd_t *scdp)
14486 {
14487 	if (scdp->scd_prev != NULL) {
14488 		ASSERT(*headp != scdp);
14489 		scdp->scd_prev->scd_next = scdp->scd_next;
14490 	} else {
14491 		ASSERT(*headp == scdp);
14492 		*headp = scdp->scd_next;
14493 	}
14494 
14495 	if (scdp->scd_next != NULL) {
14496 		scdp->scd_next->scd_prev = scdp->scd_prev;
14497 	}
14498 }
14499 
14500 /*
14501  * Add an scd to the start of the queue.
14502  */
14503 static void
14504 sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *scdp)
14505 {
14506 	scdp->scd_prev = NULL;
14507 	scdp->scd_next = *headp;
14508 	if (*headp != NULL) {
14509 		(*headp)->scd_prev = scdp;
14510 	}
14511 	*headp = scdp;
14512 }
14513 
14514 static int
14515 sfmmu_alloc_scd_tsbs(sf_srd_t *srdp, sf_scd_t *scdp)
14516 {
14517 	uint_t rid;
14518 	uint_t i;
14519 	uint_t j;
14520 	ulong_t w;
14521 	sf_region_t *rgnp;
14522 	ulong_t tte8k_cnt = 0;
14523 	ulong_t tte4m_cnt = 0;
14524 	uint_t tsb_szc;
14525 	sfmmu_t *scsfmmup = scdp->scd_sfmmup;
14526 	sfmmu_t	*ism_hatid;
14527 	struct tsb_info *newtsb;
14528 	int szc;
14529 
14530 	ASSERT(srdp != NULL);
14531 
14532 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14533 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14534 			continue;
14535 		}
14536 		j = 0;
14537 		while (w) {
14538 			if (!(w & 0x1)) {
14539 				j++;
14540 				w >>= 1;
14541 				continue;
14542 			}
14543 			rid = (i << BT_ULSHIFT) | j;
14544 			j++;
14545 			w >>= 1;
14546 
14547 			if (rid < SFMMU_MAX_HME_REGIONS) {
14548 				rgnp = srdp->srd_hmergnp[rid];
14549 				ASSERT(rgnp->rgn_id == rid);
14550 				ASSERT(rgnp->rgn_refcnt > 0);
14551 
14552 				if (rgnp->rgn_pgszc < TTE4M) {
14553 					tte8k_cnt += rgnp->rgn_size >>
14554 					    TTE_PAGE_SHIFT(TTE8K);
14555 				} else {
14556 					ASSERT(rgnp->rgn_pgszc >= TTE4M);
14557 					tte4m_cnt += rgnp->rgn_size >>
14558 					    TTE_PAGE_SHIFT(TTE4M);
14559 					/*
14560 					 * Inflate SCD tsb0 by preallocating
14561 					 * 1/4 8k ttecnt for 4M regions to
14562 					 * allow for lgpg alloc failure.
14563 					 */
14564 					tte8k_cnt += rgnp->rgn_size >>
14565 					    (TTE_PAGE_SHIFT(TTE8K) + 2);
14566 				}
14567 			} else {
14568 				rid -= SFMMU_MAX_HME_REGIONS;
14569 				rgnp = srdp->srd_ismrgnp[rid];
14570 				ASSERT(rgnp->rgn_id == rid);
14571 				ASSERT(rgnp->rgn_refcnt > 0);
14572 
14573 				ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14574 				ASSERT(ism_hatid->sfmmu_ismhat);
14575 
14576 				for (szc = 0; szc < TTE4M; szc++) {
14577 					tte8k_cnt +=
14578 					    ism_hatid->sfmmu_ttecnt[szc] <<
14579 					    TTE_BSZS_SHIFT(szc);
14580 				}
14581 
14582 				ASSERT(rgnp->rgn_pgszc >= TTE4M);
14583 				if (rgnp->rgn_pgszc >= TTE4M) {
14584 					tte4m_cnt += rgnp->rgn_size >>
14585 					    TTE_PAGE_SHIFT(TTE4M);
14586 				}
14587 			}
14588 		}
14589 	}
14590 
14591 	tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
14592 
14593 	/* Allocate both the SCD TSBs here. */
14594 	if (sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14595 	    tsb_szc, TSB8K|TSB64K|TSB512K, TSB_ALLOC, scsfmmup) &&
14596 	    (tsb_szc <= TSB_4M_SZCODE ||
14597 	    sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14598 	    TSB_4M_SZCODE, TSB8K|TSB64K|TSB512K,
14599 	    TSB_ALLOC, scsfmmup))) {
14600 
14601 		SFMMU_STAT(sf_scd_1sttsb_allocfail);
14602 		return (TSB_ALLOCFAIL);
14603 	} else {
14604 		scsfmmup->sfmmu_tsb->tsb_flags |= TSB_SHAREDCTX;
14605 
14606 		if (tte4m_cnt) {
14607 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
14608 			if (sfmmu_tsbinfo_alloc(&newtsb, tsb_szc,
14609 			    TSB4M|TSB32M|TSB256M, TSB_ALLOC, scsfmmup) &&
14610 			    (tsb_szc <= TSB_4M_SZCODE ||
14611 			    sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
14612 			    TSB4M|TSB32M|TSB256M,
14613 			    TSB_ALLOC, scsfmmup))) {
14614 				/*
14615 				 * If we fail to allocate the 2nd shared tsb,
14616 				 * just free the 1st tsb, return failure.
14617 				 */
14618 				sfmmu_tsbinfo_free(scsfmmup->sfmmu_tsb);
14619 				SFMMU_STAT(sf_scd_2ndtsb_allocfail);
14620 				return (TSB_ALLOCFAIL);
14621 			} else {
14622 				ASSERT(scsfmmup->sfmmu_tsb->tsb_next == NULL);
14623 				newtsb->tsb_flags |= TSB_SHAREDCTX;
14624 				scsfmmup->sfmmu_tsb->tsb_next = newtsb;
14625 				SFMMU_STAT(sf_scd_2ndtsb_alloc);
14626 			}
14627 		}
14628 		SFMMU_STAT(sf_scd_1sttsb_alloc);
14629 	}
14630 	return (TSB_SUCCESS);
14631 }
14632 
14633 static void
14634 sfmmu_free_scd_tsbs(sfmmu_t *scd_sfmmu)
14635 {
14636 	while (scd_sfmmu->sfmmu_tsb != NULL) {
14637 		struct tsb_info *next = scd_sfmmu->sfmmu_tsb->tsb_next;
14638 		sfmmu_tsbinfo_free(scd_sfmmu->sfmmu_tsb);
14639 		scd_sfmmu->sfmmu_tsb = next;
14640 	}
14641 }
14642 
14643 /*
14644  * Link the sfmmu onto the hme region list.
14645  */
14646 void
14647 sfmmu_link_to_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14648 {
14649 	uint_t rid;
14650 	sf_rgn_link_t *rlink;
14651 	sfmmu_t *head;
14652 	sf_rgn_link_t *hrlink;
14653 
14654 	rid = rgnp->rgn_id;
14655 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14656 
14657 	/* LINTED: constant in conditional context */
14658 	SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 1);
14659 	ASSERT(rlink != NULL);
14660 	mutex_enter(&rgnp->rgn_mutex);
14661 	if ((head = rgnp->rgn_sfmmu_head) == NULL) {
14662 		rlink->next = NULL;
14663 		rlink->prev = NULL;
14664 		/*
14665 		 * make sure rlink's next field is NULL
14666 		 * before making this link visible.
14667 		 */
14668 		membar_stst();
14669 		rgnp->rgn_sfmmu_head = sfmmup;
14670 	} else {
14671 		/* LINTED: constant in conditional context */
14672 		SFMMU_HMERID2RLINKP(head, rid, hrlink, 0, 0);
14673 		ASSERT(hrlink != NULL);
14674 		ASSERT(hrlink->prev == NULL);
14675 		rlink->next = head;
14676 		rlink->prev = NULL;
14677 		hrlink->prev = sfmmup;
14678 		/*
14679 		 * make sure rlink's next field is correct
14680 		 * before making this link visible.
14681 		 */
14682 		membar_stst();
14683 		rgnp->rgn_sfmmu_head = sfmmup;
14684 	}
14685 	mutex_exit(&rgnp->rgn_mutex);
14686 }
14687 
14688 /*
14689  * Unlink the sfmmu from the hme region list.
14690  */
14691 void
14692 sfmmu_unlink_from_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14693 {
14694 	uint_t rid;
14695 	sf_rgn_link_t *rlink;
14696 
14697 	rid = rgnp->rgn_id;
14698 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14699 
14700 	/* LINTED: constant in conditional context */
14701 	SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
14702 	ASSERT(rlink != NULL);
14703 	mutex_enter(&rgnp->rgn_mutex);
14704 	if (rgnp->rgn_sfmmu_head == sfmmup) {
14705 		sfmmu_t *next = rlink->next;
14706 		rgnp->rgn_sfmmu_head = next;
14707 		/*
14708 		 * if we are stopped by xc_attention() after this
14709 		 * point the forward link walking in
14710 		 * sfmmu_rgntlb_demap() will work correctly since the
14711 		 * head correctly points to the next element.
14712 		 */
14713 		membar_stst();
14714 		rlink->next = NULL;
14715 		ASSERT(rlink->prev == NULL);
14716 		if (next != NULL) {
14717 			sf_rgn_link_t *nrlink;
14718 			/* LINTED: constant in conditional context */
14719 			SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
14720 			ASSERT(nrlink != NULL);
14721 			ASSERT(nrlink->prev == sfmmup);
14722 			nrlink->prev = NULL;
14723 		}
14724 	} else {
14725 		sfmmu_t *next = rlink->next;
14726 		sfmmu_t *prev = rlink->prev;
14727 		sf_rgn_link_t *prlink;
14728 
14729 		ASSERT(prev != NULL);
14730 		/* LINTED: constant in conditional context */
14731 		SFMMU_HMERID2RLINKP(prev, rid, prlink, 0, 0);
14732 		ASSERT(prlink != NULL);
14733 		ASSERT(prlink->next == sfmmup);
14734 		prlink->next = next;
14735 		/*
14736 		 * if we are stopped by xc_attention()
14737 		 * after this point the forward link walking
14738 		 * will work correctly since the prev element
14739 		 * correctly points to the next element.
14740 		 */
14741 		membar_stst();
14742 		rlink->next = NULL;
14743 		rlink->prev = NULL;
14744 		if (next != NULL) {
14745 			sf_rgn_link_t *nrlink;
14746 			/* LINTED: constant in conditional context */
14747 			SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
14748 			ASSERT(nrlink != NULL);
14749 			ASSERT(nrlink->prev == sfmmup);
14750 			nrlink->prev = prev;
14751 		}
14752 	}
14753 	mutex_exit(&rgnp->rgn_mutex);
14754 }
14755 
14756 /*
14757  * Link scd sfmmu onto ism or hme region list for each region in the
14758  * scd region map.
14759  */
14760 void
14761 sfmmu_link_scd_to_regions(sf_srd_t *srdp, sf_scd_t *scdp)
14762 {
14763 	uint_t rid;
14764 	uint_t i;
14765 	uint_t j;
14766 	ulong_t w;
14767 	sf_region_t *rgnp;
14768 	sfmmu_t *scsfmmup;
14769 
14770 	scsfmmup = scdp->scd_sfmmup;
14771 	ASSERT(scsfmmup->sfmmu_scdhat);
14772 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14773 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14774 			continue;
14775 		}
14776 		j = 0;
14777 		while (w) {
14778 			if (!(w & 0x1)) {
14779 				j++;
14780 				w >>= 1;
14781 				continue;
14782 			}
14783 			rid = (i << BT_ULSHIFT) | j;
14784 			j++;
14785 			w >>= 1;
14786 
14787 			if (rid < SFMMU_MAX_HME_REGIONS) {
14788 				rgnp = srdp->srd_hmergnp[rid];
14789 				ASSERT(rgnp->rgn_id == rid);
14790 				ASSERT(rgnp->rgn_refcnt > 0);
14791 				sfmmu_link_to_hmeregion(scsfmmup, rgnp);
14792 			} else {
14793 				sfmmu_t *ism_hatid = NULL;
14794 				ism_ment_t *ism_ment;
14795 				rid -= SFMMU_MAX_HME_REGIONS;
14796 				rgnp = srdp->srd_ismrgnp[rid];
14797 				ASSERT(rgnp->rgn_id == rid);
14798 				ASSERT(rgnp->rgn_refcnt > 0);
14799 
14800 				ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14801 				ASSERT(ism_hatid->sfmmu_ismhat);
14802 				ism_ment = &scdp->scd_ism_links[rid];
14803 				ism_ment->iment_hat = scsfmmup;
14804 				ism_ment->iment_base_va = rgnp->rgn_saddr;
14805 				mutex_enter(&ism_mlist_lock);
14806 				iment_add(ism_ment, ism_hatid);
14807 				mutex_exit(&ism_mlist_lock);
14808 
14809 			}
14810 		}
14811 	}
14812 }
14813 /*
14814  * Unlink scd sfmmu from ism or hme region list for each region in the
14815  * scd region map.
14816  */
14817 void
14818 sfmmu_unlink_scd_from_regions(sf_srd_t *srdp, sf_scd_t *scdp)
14819 {
14820 	uint_t rid;
14821 	uint_t i;
14822 	uint_t j;
14823 	ulong_t w;
14824 	sf_region_t *rgnp;
14825 	sfmmu_t *scsfmmup;
14826 
14827 	scsfmmup = scdp->scd_sfmmup;
14828 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14829 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14830 			continue;
14831 		}
14832 		j = 0;
14833 		while (w) {
14834 			if (!(w & 0x1)) {
14835 				j++;
14836 				w >>= 1;
14837 				continue;
14838 			}
14839 			rid = (i << BT_ULSHIFT) | j;
14840 			j++;
14841 			w >>= 1;
14842 
14843 			if (rid < SFMMU_MAX_HME_REGIONS) {
14844 				rgnp = srdp->srd_hmergnp[rid];
14845 				ASSERT(rgnp->rgn_id == rid);
14846 				ASSERT(rgnp->rgn_refcnt > 0);
14847 				sfmmu_unlink_from_hmeregion(scsfmmup,
14848 				    rgnp);
14849 
14850 			} else {
14851 				sfmmu_t *ism_hatid = NULL;
14852 				ism_ment_t *ism_ment;
14853 				rid -= SFMMU_MAX_HME_REGIONS;
14854 				rgnp = srdp->srd_ismrgnp[rid];
14855 				ASSERT(rgnp->rgn_id == rid);
14856 				ASSERT(rgnp->rgn_refcnt > 0);
14857 
14858 				ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14859 				ASSERT(ism_hatid->sfmmu_ismhat);
14860 				ism_ment = &scdp->scd_ism_links[rid];
14861 				ASSERT(ism_ment->iment_hat == scdp->scd_sfmmup);
14862 				ASSERT(ism_ment->iment_base_va ==
14863 				    rgnp->rgn_saddr);
14864 				mutex_enter(&ism_mlist_lock);
14865 				iment_sub(ism_ment, ism_hatid);
14866 				mutex_exit(&ism_mlist_lock);
14867 
14868 			}
14869 		}
14870 	}
14871 }
14872 /*
14873  * Allocates and initialises a new SCD structure, this is called with
14874  * the srd_scd_mutex held and returns with the reference count
14875  * initialised to 1.
14876  */
14877 static sf_scd_t *
14878 sfmmu_alloc_scd(sf_srd_t *srdp, sf_region_map_t *new_map)
14879 {
14880 	sf_scd_t *new_scdp;
14881 	sfmmu_t *scsfmmup;
14882 	int i;
14883 
14884 	ASSERT(MUTEX_HELD(&srdp->srd_scd_mutex));
14885 	new_scdp = kmem_cache_alloc(scd_cache, KM_SLEEP);
14886 
14887 	scsfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
14888 	new_scdp->scd_sfmmup = scsfmmup;
14889 	scsfmmup->sfmmu_srdp = srdp;
14890 	scsfmmup->sfmmu_scdp = new_scdp;
14891 	scsfmmup->sfmmu_tsb0_4minflcnt = 0;
14892 	scsfmmup->sfmmu_scdhat = 1;
14893 	CPUSET_ALL(scsfmmup->sfmmu_cpusran);
14894 	bzero(scsfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
14895 
14896 	ASSERT(max_mmu_ctxdoms > 0);
14897 	for (i = 0; i < max_mmu_ctxdoms; i++) {
14898 		scsfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
14899 		scsfmmup->sfmmu_ctxs[i].gnum = 0;
14900 	}
14901 
14902 	for (i = 0; i < MMU_PAGE_SIZES; i++) {
14903 		new_scdp->scd_rttecnt[i] = 0;
14904 	}
14905 
14906 	new_scdp->scd_region_map = *new_map;
14907 	new_scdp->scd_refcnt = 1;
14908 	if (sfmmu_alloc_scd_tsbs(srdp, new_scdp) != TSB_SUCCESS) {
14909 		kmem_cache_free(scd_cache, new_scdp);
14910 		kmem_cache_free(sfmmuid_cache, scsfmmup);
14911 		return (NULL);
14912 	}
14913 	if (&mmu_init_scd) {
14914 		mmu_init_scd(new_scdp);
14915 	}
14916 	return (new_scdp);
14917 }
14918 
14919 /*
14920  * The first phase of a process joining an SCD. The hat structure is
14921  * linked to the SCD queue and then the HAT_JOIN_SCD sfmmu flag is set
14922  * and a cross-call with context invalidation is used to cause the
14923  * remaining work to be carried out in the sfmmu_tsbmiss_exception()
14924  * routine.
14925  */
14926 static void
14927 sfmmu_join_scd(sf_scd_t *scdp, sfmmu_t *sfmmup)
14928 {
14929 	hatlock_t *hatlockp;
14930 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14931 	int i;
14932 	sf_scd_t *old_scdp;
14933 
14934 	ASSERT(srdp != NULL);
14935 	ASSERT(scdp != NULL);
14936 	ASSERT(scdp->scd_refcnt > 0);
14937 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as));
14938 
14939 	if ((old_scdp = sfmmup->sfmmu_scdp) != NULL) {
14940 		ASSERT(old_scdp != scdp);
14941 
14942 		mutex_enter(&old_scdp->scd_mutex);
14943 		sfmmu_from_scd_list(&old_scdp->scd_sf_list, sfmmup);
14944 		mutex_exit(&old_scdp->scd_mutex);
14945 		/*
14946 		 * sfmmup leaves the old scd. Update sfmmu_ttecnt to
14947 		 * include the shme rgn ttecnt for rgns that
14948 		 * were in the old SCD
14949 		 */
14950 		for (i = 0; i < mmu_page_sizes; i++) {
14951 			ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
14952 			    old_scdp->scd_rttecnt[i]);
14953 			atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
14954 			    sfmmup->sfmmu_scdrttecnt[i]);
14955 		}
14956 	}
14957 
14958 	/*
14959 	 * Move sfmmu to the scd lists.
14960 	 */
14961 	mutex_enter(&scdp->scd_mutex);
14962 	sfmmu_to_scd_list(&scdp->scd_sf_list, sfmmup);
14963 	mutex_exit(&scdp->scd_mutex);
14964 	SF_SCD_INCR_REF(scdp);
14965 
14966 	hatlockp = sfmmu_hat_enter(sfmmup);
14967 	/*
14968 	 * For a multi-thread process, we must stop
14969 	 * all the other threads before joining the scd.
14970 	 */
14971 
14972 	SFMMU_FLAGS_SET(sfmmup, HAT_JOIN_SCD);
14973 
14974 	sfmmu_invalidate_ctx(sfmmup);
14975 	sfmmup->sfmmu_scdp = scdp;
14976 
14977 	/*
14978 	 * Copy scd_rttecnt into sfmmup's sfmmu_scdrttecnt, and update
14979 	 * sfmmu_ttecnt to not include the rgn ttecnt just joined in SCD.
14980 	 */
14981 	for (i = 0; i < mmu_page_sizes; i++) {
14982 		sfmmup->sfmmu_scdrttecnt[i] = scdp->scd_rttecnt[i];
14983 		ASSERT(sfmmup->sfmmu_ttecnt[i] >= scdp->scd_rttecnt[i]);
14984 		atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
14985 		    -sfmmup->sfmmu_scdrttecnt[i]);
14986 	}
14987 	/* update tsb0 inflation count */
14988 	if (old_scdp != NULL) {
14989 		sfmmup->sfmmu_tsb0_4minflcnt +=
14990 		    old_scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
14991 	}
14992 	ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
14993 	    scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt);
14994 	sfmmup->sfmmu_tsb0_4minflcnt -= scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
14995 
14996 	sfmmu_hat_exit(hatlockp);
14997 
14998 	if (old_scdp != NULL) {
14999 		SF_SCD_DECR_REF(srdp, old_scdp);
15000 	}
15001 
15002 }
15003 
15004 /*
15005  * This routine is called by a process to become part of an SCD. It is called
15006  * from sfmmu_tsbmiss_exception() once most of the initial work has been
15007  * done by sfmmu_join_scd(). This routine must not drop the hat lock.
15008  */
15009 static void
15010 sfmmu_finish_join_scd(sfmmu_t *sfmmup)
15011 {
15012 	struct tsb_info	*tsbinfop;
15013 
15014 	ASSERT(sfmmu_hat_lock_held(sfmmup));
15015 	ASSERT(sfmmup->sfmmu_scdp != NULL);
15016 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD));
15017 	ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15018 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID));
15019 
15020 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
15021 	    tsbinfop = tsbinfop->tsb_next) {
15022 		if (tsbinfop->tsb_flags & TSB_SWAPPED) {
15023 			continue;
15024 		}
15025 		ASSERT(!(tsbinfop->tsb_flags & TSB_RELOC_FLAG));
15026 
15027 		sfmmu_inv_tsb(tsbinfop->tsb_va,
15028 		    TSB_BYTES(tsbinfop->tsb_szc));
15029 	}
15030 
15031 	/* Set HAT_CTX1_FLAG for all SCD ISMs */
15032 	sfmmu_ism_hatflags(sfmmup, 1);
15033 
15034 	SFMMU_STAT(sf_join_scd);
15035 }
15036 
15037 /*
15038  * This routine is called in order to check if there is an SCD which matches
15039  * the process's region map if not then a new SCD may be created.
15040  */
15041 static void
15042 sfmmu_find_scd(sfmmu_t *sfmmup)
15043 {
15044 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
15045 	sf_scd_t *scdp, *new_scdp;
15046 	int ret;
15047 
15048 	ASSERT(srdp != NULL);
15049 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as));
15050 
15051 	mutex_enter(&srdp->srd_scd_mutex);
15052 	for (scdp = srdp->srd_scdp; scdp != NULL;
15053 	    scdp = scdp->scd_next) {
15054 		SF_RGNMAP_EQUAL(&scdp->scd_region_map,
15055 		    &sfmmup->sfmmu_region_map, ret);
15056 		if (ret == 1) {
15057 			SF_SCD_INCR_REF(scdp);
15058 			mutex_exit(&srdp->srd_scd_mutex);
15059 			sfmmu_join_scd(scdp, sfmmup);
15060 			ASSERT(scdp->scd_refcnt >= 2);
15061 			atomic_dec_32((volatile uint32_t *)&scdp->scd_refcnt);
15062 			return;
15063 		} else {
15064 			/*
15065 			 * If the sfmmu region map is a subset of the scd
15066 			 * region map, then the assumption is that this process
15067 			 * will continue attaching to ISM segments until the
15068 			 * region maps are equal.
15069 			 */
15070 			SF_RGNMAP_IS_SUBSET(&scdp->scd_region_map,
15071 			    &sfmmup->sfmmu_region_map, ret);
15072 			if (ret == 1) {
15073 				mutex_exit(&srdp->srd_scd_mutex);
15074 				return;
15075 			}
15076 		}
15077 	}
15078 
15079 	ASSERT(scdp == NULL);
15080 	/*
15081 	 * No matching SCD has been found, create a new one.
15082 	 */
15083 	if ((new_scdp = sfmmu_alloc_scd(srdp, &sfmmup->sfmmu_region_map)) ==
15084 	    NULL) {
15085 		mutex_exit(&srdp->srd_scd_mutex);
15086 		return;
15087 	}
15088 
15089 	/*
15090 	 * sfmmu_alloc_scd() returns with a ref count of 1 on the scd.
15091 	 */
15092 
15093 	/* Set scd_rttecnt for shme rgns in SCD */
15094 	sfmmu_set_scd_rttecnt(srdp, new_scdp);
15095 
15096 	/*
15097 	 * Link scd onto srd_scdp list and scd sfmmu onto region/iment lists.
15098 	 */
15099 	sfmmu_link_scd_to_regions(srdp, new_scdp);
15100 	sfmmu_add_scd(&srdp->srd_scdp, new_scdp);
15101 	SFMMU_STAT_ADD(sf_create_scd, 1);
15102 
15103 	mutex_exit(&srdp->srd_scd_mutex);
15104 	sfmmu_join_scd(new_scdp, sfmmup);
15105 	ASSERT(new_scdp->scd_refcnt >= 2);
15106 	atomic_dec_32((volatile uint32_t *)&new_scdp->scd_refcnt);
15107 }
15108 
15109 /*
15110  * This routine is called by a process to remove itself from an SCD. It is
15111  * either called when the processes has detached from a segment or from
15112  * hat_free_start() as a result of calling exit.
15113  */
15114 static void
15115 sfmmu_leave_scd(sfmmu_t *sfmmup, uchar_t r_type)
15116 {
15117 	sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15118 	sf_srd_t *srdp =  sfmmup->sfmmu_srdp;
15119 	hatlock_t *hatlockp = TSB_HASH(sfmmup);
15120 	int i;
15121 
15122 	ASSERT(scdp != NULL);
15123 	ASSERT(srdp != NULL);
15124 
15125 	if (sfmmup->sfmmu_free) {
15126 		/*
15127 		 * If the process is part of an SCD the sfmmu is unlinked
15128 		 * from scd_sf_list.
15129 		 */
15130 		mutex_enter(&scdp->scd_mutex);
15131 		sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15132 		mutex_exit(&scdp->scd_mutex);
15133 		/*
15134 		 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15135 		 * are about to leave the SCD
15136 		 */
15137 		for (i = 0; i < mmu_page_sizes; i++) {
15138 			ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15139 			    scdp->scd_rttecnt[i]);
15140 			atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15141 			    sfmmup->sfmmu_scdrttecnt[i]);
15142 			sfmmup->sfmmu_scdrttecnt[i] = 0;
15143 		}
15144 		sfmmup->sfmmu_scdp = NULL;
15145 
15146 		SF_SCD_DECR_REF(srdp, scdp);
15147 		return;
15148 	}
15149 
15150 	ASSERT(r_type != SFMMU_REGION_ISM ||
15151 	    SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15152 	ASSERT(scdp->scd_refcnt);
15153 	ASSERT(!sfmmup->sfmmu_free);
15154 	ASSERT(sfmmu_hat_lock_held(sfmmup));
15155 	ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as));
15156 
15157 	/*
15158 	 * Wait for ISM maps to be updated.
15159 	 */
15160 	if (r_type != SFMMU_REGION_ISM) {
15161 		while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY) &&
15162 		    sfmmup->sfmmu_scdp != NULL) {
15163 			cv_wait(&sfmmup->sfmmu_tsb_cv,
15164 			    HATLOCK_MUTEXP(hatlockp));
15165 		}
15166 
15167 		if (sfmmup->sfmmu_scdp == NULL) {
15168 			sfmmu_hat_exit(hatlockp);
15169 			return;
15170 		}
15171 		SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
15172 	}
15173 
15174 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
15175 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
15176 		/*
15177 		 * Since HAT_JOIN_SCD was set our context
15178 		 * is still invalid.
15179 		 */
15180 	} else {
15181 		/*
15182 		 * For a multi-thread process, we must stop
15183 		 * all the other threads before leaving the scd.
15184 		 */
15185 
15186 		sfmmu_invalidate_ctx(sfmmup);
15187 	}
15188 
15189 	/* Clear all the rid's for ISM, delete flags, etc */
15190 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15191 	sfmmu_ism_hatflags(sfmmup, 0);
15192 
15193 	/*
15194 	 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15195 	 * are in SCD before this sfmmup leaves the SCD.
15196 	 */
15197 	for (i = 0; i < mmu_page_sizes; i++) {
15198 		ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15199 		    scdp->scd_rttecnt[i]);
15200 		atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15201 		    sfmmup->sfmmu_scdrttecnt[i]);
15202 		sfmmup->sfmmu_scdrttecnt[i] = 0;
15203 		/* update ismttecnt to include SCD ism before hat leaves SCD */
15204 		sfmmup->sfmmu_ismttecnt[i] += sfmmup->sfmmu_scdismttecnt[i];
15205 		sfmmup->sfmmu_scdismttecnt[i] = 0;
15206 	}
15207 	/* update tsb0 inflation count */
15208 	sfmmup->sfmmu_tsb0_4minflcnt += scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15209 
15210 	if (r_type != SFMMU_REGION_ISM) {
15211 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
15212 	}
15213 	sfmmup->sfmmu_scdp = NULL;
15214 
15215 	sfmmu_hat_exit(hatlockp);
15216 
15217 	/*
15218 	 * Unlink sfmmu from scd_sf_list this can be done without holding
15219 	 * the hat lock as we hold the sfmmu_as lock which prevents
15220 	 * hat_join_region from adding this thread to the scd again. Other
15221 	 * threads check if sfmmu_scdp is NULL under hat lock and if it's NULL
15222 	 * they won't get here, since sfmmu_leave_scd() clears sfmmu_scdp
15223 	 * while holding the hat lock.
15224 	 */
15225 	mutex_enter(&scdp->scd_mutex);
15226 	sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15227 	mutex_exit(&scdp->scd_mutex);
15228 	SFMMU_STAT(sf_leave_scd);
15229 
15230 	SF_SCD_DECR_REF(srdp, scdp);
15231 	hatlockp = sfmmu_hat_enter(sfmmup);
15232 
15233 }
15234 
15235 /*
15236  * Unlink and free up an SCD structure with a reference count of 0.
15237  */
15238 static void
15239 sfmmu_destroy_scd(sf_srd_t *srdp, sf_scd_t *scdp, sf_region_map_t *scd_rmap)
15240 {
15241 	sfmmu_t *scsfmmup;
15242 	sf_scd_t *sp;
15243 	hatlock_t *shatlockp;
15244 	int i, ret;
15245 
15246 	mutex_enter(&srdp->srd_scd_mutex);
15247 	for (sp = srdp->srd_scdp; sp != NULL; sp = sp->scd_next) {
15248 		if (sp == scdp)
15249 			break;
15250 	}
15251 	if (sp == NULL || sp->scd_refcnt) {
15252 		mutex_exit(&srdp->srd_scd_mutex);
15253 		return;
15254 	}
15255 
15256 	/*
15257 	 * It is possible that the scd has been freed and reallocated with a
15258 	 * different region map while we've been waiting for the srd_scd_mutex.
15259 	 */
15260 	SF_RGNMAP_EQUAL(scd_rmap, &sp->scd_region_map, ret);
15261 	if (ret != 1) {
15262 		mutex_exit(&srdp->srd_scd_mutex);
15263 		return;
15264 	}
15265 
15266 	ASSERT(scdp->scd_sf_list == NULL);
15267 	/*
15268 	 * Unlink scd from srd_scdp list.
15269 	 */
15270 	sfmmu_remove_scd(&srdp->srd_scdp, scdp);
15271 	mutex_exit(&srdp->srd_scd_mutex);
15272 
15273 	sfmmu_unlink_scd_from_regions(srdp, scdp);
15274 
15275 	/* Clear shared context tsb and release ctx */
15276 	scsfmmup = scdp->scd_sfmmup;
15277 
15278 	/*
15279 	 * create a barrier so that scd will not be destroyed
15280 	 * if other thread still holds the same shared hat lock.
15281 	 * E.g., sfmmu_tsbmiss_exception() needs to acquire the
15282 	 * shared hat lock before checking the shared tsb reloc flag.
15283 	 */
15284 	shatlockp = sfmmu_hat_enter(scsfmmup);
15285 	sfmmu_hat_exit(shatlockp);
15286 
15287 	sfmmu_free_scd_tsbs(scsfmmup);
15288 
15289 	for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
15290 		if (scsfmmup->sfmmu_hmeregion_links[i] != NULL) {
15291 			kmem_free(scsfmmup->sfmmu_hmeregion_links[i],
15292 			    SFMMU_L2_HMERLINKS_SIZE);
15293 			scsfmmup->sfmmu_hmeregion_links[i] = NULL;
15294 		}
15295 	}
15296 	kmem_cache_free(sfmmuid_cache, scsfmmup);
15297 	kmem_cache_free(scd_cache, scdp);
15298 	SFMMU_STAT(sf_destroy_scd);
15299 }
15300 
15301 /*
15302  * Modifies the HAT_CTX1_FLAG for each of the ISM segments which correspond to
15303  * bits which are set in the ism_region_map parameter. This flag indicates to
15304  * the tsbmiss handler that mapping for these segments should be loaded using
15305  * the shared context.
15306  */
15307 static void
15308 sfmmu_ism_hatflags(sfmmu_t *sfmmup, int addflag)
15309 {
15310 	sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15311 	ism_blk_t *ism_blkp;
15312 	ism_map_t *ism_map;
15313 	int i, rid;
15314 
15315 	ASSERT(sfmmup->sfmmu_iblk != NULL);
15316 	ASSERT(scdp != NULL);
15317 	/*
15318 	 * Note that the caller either set HAT_ISMBUSY flag or checked
15319 	 * under hat lock that HAT_ISMBUSY was not set by another thread.
15320 	 */
15321 	ASSERT(sfmmu_hat_lock_held(sfmmup));
15322 
15323 	ism_blkp = sfmmup->sfmmu_iblk;
15324 	while (ism_blkp != NULL) {
15325 		ism_map = ism_blkp->iblk_maps;
15326 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
15327 			rid = ism_map[i].imap_rid;
15328 			if (rid == SFMMU_INVALID_ISMRID) {
15329 				continue;
15330 			}
15331 			ASSERT(rid >= 0 && rid < SFMMU_MAX_ISM_REGIONS);
15332 			if (SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid) &&
15333 			    addflag) {
15334 				ism_map[i].imap_hatflags |=
15335 				    HAT_CTX1_FLAG;
15336 			} else {
15337 				ism_map[i].imap_hatflags &=
15338 				    ~HAT_CTX1_FLAG;
15339 			}
15340 		}
15341 		ism_blkp = ism_blkp->iblk_next;
15342 	}
15343 }
15344 
15345 static int
15346 sfmmu_srd_lock_held(sf_srd_t *srdp)
15347 {
15348 	return (MUTEX_HELD(&srdp->srd_mutex));
15349 }
15350 
15351 /* ARGSUSED */
15352 static int
15353 sfmmu_scdcache_constructor(void *buf, void *cdrarg, int kmflags)
15354 {
15355 	sf_scd_t *scdp = (sf_scd_t *)buf;
15356 
15357 	bzero(buf, sizeof (sf_scd_t));
15358 	mutex_init(&scdp->scd_mutex, NULL, MUTEX_DEFAULT, NULL);
15359 	return (0);
15360 }
15361 
15362 /* ARGSUSED */
15363 static void
15364 sfmmu_scdcache_destructor(void *buf, void *cdrarg)
15365 {
15366 	sf_scd_t *scdp = (sf_scd_t *)buf;
15367 
15368 	mutex_destroy(&scdp->scd_mutex);
15369 }
15370 
15371 /*
15372  * The listp parameter is a pointer to a list of hmeblks which are partially
15373  * freed as result of calling sfmmu_hblk_hash_rm(), the last phase of the
15374  * freeing process is to cross-call all cpus to ensure that there are no
15375  * remaining cached references.
15376  *
15377  * If the local generation number is less than the global then we can free
15378  * hmeblks which are already on the pending queue as another cpu has completed
15379  * the cross-call.
15380  *
15381  * We cross-call to make sure that there are no threads on other cpus accessing
15382  * these hmblks and then complete the process of freeing them under the
15383  * following conditions:
15384  * 	The total number of pending hmeblks is greater than the threshold
15385  *	The reserve list has fewer than HBLK_RESERVE_CNT hmeblks
15386  *	It is at least 1 second since the last time we cross-called
15387  *
15388  * Otherwise, we add the hmeblks to the per-cpu pending queue.
15389  */
15390 static void
15391 sfmmu_hblks_list_purge(struct hme_blk **listp, int dontfree)
15392 {
15393 	struct hme_blk *hblkp, *pr_hblkp = NULL;
15394 	int		count = 0;
15395 	cpuset_t	cpuset = cpu_ready_set;
15396 	cpu_hme_pend_t	*cpuhp;
15397 	timestruc_t	now;
15398 	int		one_second_expired = 0;
15399 
15400 	gethrestime_lasttick(&now);
15401 
15402 	for (hblkp = *listp; hblkp != NULL; hblkp = hblkp->hblk_next) {
15403 		ASSERT(hblkp->hblk_shw_bit == 0);
15404 		ASSERT(hblkp->hblk_shared == 0);
15405 		count++;
15406 		pr_hblkp = hblkp;
15407 	}
15408 
15409 	cpuhp = &cpu_hme_pend[CPU->cpu_seqid];
15410 	mutex_enter(&cpuhp->chp_mutex);
15411 
15412 	if ((cpuhp->chp_count + count) == 0) {
15413 		mutex_exit(&cpuhp->chp_mutex);
15414 		return;
15415 	}
15416 
15417 	if ((now.tv_sec - cpuhp->chp_timestamp) > 1) {
15418 		one_second_expired  = 1;
15419 	}
15420 
15421 	if (!dontfree && (freehblkcnt < HBLK_RESERVE_CNT ||
15422 	    (cpuhp->chp_count + count) > cpu_hme_pend_thresh ||
15423 	    one_second_expired)) {
15424 		/* Append global list to local */
15425 		if (pr_hblkp == NULL) {
15426 			*listp = cpuhp->chp_listp;
15427 		} else {
15428 			pr_hblkp->hblk_next = cpuhp->chp_listp;
15429 		}
15430 		cpuhp->chp_listp = NULL;
15431 		cpuhp->chp_count = 0;
15432 		cpuhp->chp_timestamp = now.tv_sec;
15433 		mutex_exit(&cpuhp->chp_mutex);
15434 
15435 		kpreempt_disable();
15436 		CPUSET_DEL(cpuset, CPU->cpu_id);
15437 		xt_sync(cpuset);
15438 		xt_sync(cpuset);
15439 		kpreempt_enable();
15440 
15441 		/*
15442 		 * At this stage we know that no trap handlers on other
15443 		 * cpus can have references to hmeblks on the list.
15444 		 */
15445 		sfmmu_hblk_free(listp);
15446 	} else if (*listp != NULL) {
15447 		pr_hblkp->hblk_next = cpuhp->chp_listp;
15448 		cpuhp->chp_listp = *listp;
15449 		cpuhp->chp_count += count;
15450 		*listp = NULL;
15451 		mutex_exit(&cpuhp->chp_mutex);
15452 	} else {
15453 		mutex_exit(&cpuhp->chp_mutex);
15454 	}
15455 }
15456 
15457 /*
15458  * Add an hmeblk to the the hash list.
15459  */
15460 void
15461 sfmmu_hblk_hash_add(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
15462 	uint64_t hblkpa)
15463 {
15464 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
15465 #ifdef	DEBUG
15466 	if (hmebp->hmeblkp == NULL) {
15467 		ASSERT(hmebp->hmeh_nextpa == HMEBLK_ENDPA);
15468 	}
15469 #endif /* DEBUG */
15470 
15471 	hmeblkp->hblk_nextpa = hmebp->hmeh_nextpa;
15472 	/*
15473 	 * Since the TSB miss handler now does not lock the hash chain before
15474 	 * walking it, make sure that the hmeblks nextpa is globally visible
15475 	 * before we make the hmeblk globally visible by updating the chain root
15476 	 * pointer in the hash bucket.
15477 	 */
15478 	membar_producer();
15479 	hmebp->hmeh_nextpa = hblkpa;
15480 	hmeblkp->hblk_next = hmebp->hmeblkp;
15481 	hmebp->hmeblkp = hmeblkp;
15482 
15483 }
15484 
15485 /*
15486  * This function is the first part of a 2 part process to remove an hmeblk
15487  * from the hash chain. In this phase we unlink the hmeblk from the hash chain
15488  * but leave the next physical pointer unchanged. The hmeblk is then linked onto
15489  * a per-cpu pending list using the virtual address pointer.
15490  *
15491  * TSB miss trap handlers that start after this phase will no longer see
15492  * this hmeblk. TSB miss handlers that still cache this hmeblk in a register
15493  * can still use it for further chain traversal because we haven't yet modifed
15494  * the next physical pointer or freed it.
15495  *
15496  * In the second phase of hmeblk removal we'll issue a barrier xcall before
15497  * we reuse or free this hmeblk. This will make sure all lingering references to
15498  * the hmeblk after first phase disappear before we finally reclaim it.
15499  * This scheme eliminates the need for TSB miss handlers to lock hmeblk chains
15500  * during their traversal.
15501  *
15502  * The hmehash_mutex must be held when calling this function.
15503  *
15504  * Input:
15505  *	 hmebp - hme hash bucket pointer
15506  *	 hmeblkp - address of hmeblk to be removed
15507  *	 pr_hblk - virtual address of previous hmeblkp
15508  *	 listp - pointer to list of hmeblks linked by virtual address
15509  *	 free_now flag - indicates that a complete removal from the hash chains
15510  *			 is necessary.
15511  *
15512  * It is inefficient to use the free_now flag as a cross-call is required to
15513  * remove a single hmeblk from the hash chain but is necessary when hmeblks are
15514  * in short supply.
15515  */
15516 void
15517 sfmmu_hblk_hash_rm(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
15518     struct hme_blk *pr_hblk, struct hme_blk **listp,
15519     int free_now)
15520 {
15521 	int shw_size, vshift;
15522 	struct hme_blk *shw_hblkp;
15523 	uint_t		shw_mask, newshw_mask;
15524 	caddr_t		vaddr;
15525 	int		size;
15526 	cpuset_t cpuset = cpu_ready_set;
15527 
15528 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
15529 
15530 	if (hmebp->hmeblkp == hmeblkp) {
15531 		hmebp->hmeh_nextpa = hmeblkp->hblk_nextpa;
15532 		hmebp->hmeblkp = hmeblkp->hblk_next;
15533 	} else {
15534 		pr_hblk->hblk_nextpa = hmeblkp->hblk_nextpa;
15535 		pr_hblk->hblk_next = hmeblkp->hblk_next;
15536 	}
15537 
15538 	size = get_hblk_ttesz(hmeblkp);
15539 	shw_hblkp = hmeblkp->hblk_shadow;
15540 	if (shw_hblkp) {
15541 		ASSERT(hblktosfmmu(hmeblkp) != KHATID);
15542 		ASSERT(!hmeblkp->hblk_shared);
15543 #ifdef	DEBUG
15544 		if (mmu_page_sizes == max_mmu_page_sizes) {
15545 			ASSERT(size < TTE256M);
15546 		} else {
15547 			ASSERT(size < TTE4M);
15548 		}
15549 #endif /* DEBUG */
15550 
15551 		shw_size = get_hblk_ttesz(shw_hblkp);
15552 		vaddr = (caddr_t)get_hblk_base(hmeblkp);
15553 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
15554 		ASSERT(vshift < 8);
15555 		/*
15556 		 * Atomically clear shadow mask bit
15557 		 */
15558 		do {
15559 			shw_mask = shw_hblkp->hblk_shw_mask;
15560 			ASSERT(shw_mask & (1 << vshift));
15561 			newshw_mask = shw_mask & ~(1 << vshift);
15562 			newshw_mask = atomic_cas_32(&shw_hblkp->hblk_shw_mask,
15563 			    shw_mask, newshw_mask);
15564 		} while (newshw_mask != shw_mask);
15565 		hmeblkp->hblk_shadow = NULL;
15566 	}
15567 	hmeblkp->hblk_shw_bit = 0;
15568 
15569 	if (hmeblkp->hblk_shared) {
15570 #ifdef	DEBUG
15571 		sf_srd_t	*srdp;
15572 		sf_region_t	*rgnp;
15573 		uint_t		rid;
15574 
15575 		srdp = hblktosrd(hmeblkp);
15576 		ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
15577 		rid = hmeblkp->hblk_tag.htag_rid;
15578 		ASSERT(SFMMU_IS_SHMERID_VALID(rid));
15579 		ASSERT(rid < SFMMU_MAX_HME_REGIONS);
15580 		rgnp = srdp->srd_hmergnp[rid];
15581 		ASSERT(rgnp != NULL);
15582 		SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
15583 #endif /* DEBUG */
15584 		hmeblkp->hblk_shared = 0;
15585 	}
15586 	if (free_now) {
15587 		kpreempt_disable();
15588 		CPUSET_DEL(cpuset, CPU->cpu_id);
15589 		xt_sync(cpuset);
15590 		xt_sync(cpuset);
15591 		kpreempt_enable();
15592 
15593 		hmeblkp->hblk_nextpa = HMEBLK_ENDPA;
15594 		hmeblkp->hblk_next = NULL;
15595 	} else {
15596 		/* Append hmeblkp to listp for processing later. */
15597 		hmeblkp->hblk_next = *listp;
15598 		*listp = hmeblkp;
15599 	}
15600 }
15601 
15602 /*
15603  * This routine is called when memory is in short supply and returns a free
15604  * hmeblk of the requested size from the cpu pending lists.
15605  */
15606 static struct hme_blk *
15607 sfmmu_check_pending_hblks(int size)
15608 {
15609 	int i;
15610 	struct hme_blk *hmeblkp = NULL, *last_hmeblkp;
15611 	int found_hmeblk;
15612 	cpuset_t cpuset = cpu_ready_set;
15613 	cpu_hme_pend_t *cpuhp;
15614 
15615 	/* Flush cpu hblk pending queues */
15616 	for (i = 0; i < NCPU; i++) {
15617 		cpuhp = &cpu_hme_pend[i];
15618 		if (cpuhp->chp_listp != NULL)  {
15619 			mutex_enter(&cpuhp->chp_mutex);
15620 			if (cpuhp->chp_listp == NULL)  {
15621 				mutex_exit(&cpuhp->chp_mutex);
15622 				continue;
15623 			}
15624 			found_hmeblk = 0;
15625 			last_hmeblkp = NULL;
15626 			for (hmeblkp = cpuhp->chp_listp; hmeblkp != NULL;
15627 			    hmeblkp = hmeblkp->hblk_next) {
15628 				if (get_hblk_ttesz(hmeblkp) == size) {
15629 					if (last_hmeblkp == NULL) {
15630 						cpuhp->chp_listp =
15631 						    hmeblkp->hblk_next;
15632 					} else {
15633 						last_hmeblkp->hblk_next =
15634 						    hmeblkp->hblk_next;
15635 					}
15636 					ASSERT(cpuhp->chp_count > 0);
15637 					cpuhp->chp_count--;
15638 					found_hmeblk = 1;
15639 					break;
15640 				} else {
15641 					last_hmeblkp = hmeblkp;
15642 				}
15643 			}
15644 			mutex_exit(&cpuhp->chp_mutex);
15645 
15646 			if (found_hmeblk) {
15647 				kpreempt_disable();
15648 				CPUSET_DEL(cpuset, CPU->cpu_id);
15649 				xt_sync(cpuset);
15650 				xt_sync(cpuset);
15651 				kpreempt_enable();
15652 				return (hmeblkp);
15653 			}
15654 		}
15655 	}
15656 	return (NULL);
15657 }
15658