xref: /titanic_50/usr/src/uts/sfmmu/vm/hat_sfmmu.c (revision 858a4b9997a29c40b725e606eb9bc3ac0a8c765b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * VM - Hardware Address Translation management for Spitfire MMU.
30  *
31  * This file implements the machine specific hardware translation
32  * needed by the VM system.  The machine independent interface is
33  * described in <vm/hat.h> while the machine dependent interface
34  * and data structures are described in <vm/hat_sfmmu.h>.
35  *
36  * The hat layer manages the address translation hardware as a cache
37  * driven by calls from the higher levels in the VM system.
38  */
39 
40 #include <sys/types.h>
41 #include <sys/kstat.h>
42 #include <vm/hat.h>
43 #include <vm/hat_sfmmu.h>
44 #include <vm/page.h>
45 #include <sys/pte.h>
46 #include <sys/systm.h>
47 #include <sys/mman.h>
48 #include <sys/sysmacros.h>
49 #include <sys/machparam.h>
50 #include <sys/vtrace.h>
51 #include <sys/kmem.h>
52 #include <sys/mmu.h>
53 #include <sys/cmn_err.h>
54 #include <sys/cpu.h>
55 #include <sys/cpuvar.h>
56 #include <sys/debug.h>
57 #include <sys/lgrp.h>
58 #include <sys/archsystm.h>
59 #include <sys/machsystm.h>
60 #include <sys/vmsystm.h>
61 #include <vm/as.h>
62 #include <vm/seg.h>
63 #include <vm/seg_kp.h>
64 #include <vm/seg_kmem.h>
65 #include <vm/seg_kpm.h>
66 #include <vm/rm.h>
67 #include <sys/t_lock.h>
68 #include <sys/obpdefs.h>
69 #include <sys/vm_machparam.h>
70 #include <sys/var.h>
71 #include <sys/trap.h>
72 #include <sys/machtrap.h>
73 #include <sys/scb.h>
74 #include <sys/bitmap.h>
75 #include <sys/machlock.h>
76 #include <sys/membar.h>
77 #include <sys/atomic.h>
78 #include <sys/cpu_module.h>
79 #include <sys/prom_debug.h>
80 #include <sys/ksynch.h>
81 #include <sys/mem_config.h>
82 #include <sys/mem_cage.h>
83 #include <sys/dtrace.h>
84 #include <vm/vm_dep.h>
85 #include <vm/xhat_sfmmu.h>
86 #include <sys/fpu/fpusystm.h>
87 #include <vm/mach_kpm.h>
88 
89 #if defined(SF_ERRATA_57)
90 extern caddr_t errata57_limit;
91 #endif
92 
93 #define	HME8BLK_SZ_RND		((roundup(HME8BLK_SZ, sizeof (int64_t))) /  \
94 				(sizeof (int64_t)))
95 #define	HBLK_RESERVE		((struct hme_blk *)hblk_reserve)
96 
97 #define	HBLK_RESERVE_CNT	128
98 #define	HBLK_RESERVE_MIN	20
99 
100 static struct hme_blk		*freehblkp;
101 static kmutex_t			freehblkp_lock;
102 static int			freehblkcnt;
103 
104 static int64_t			hblk_reserve[HME8BLK_SZ_RND];
105 static kmutex_t			hblk_reserve_lock;
106 static kthread_t		*hblk_reserve_thread;
107 
108 static nucleus_hblk8_info_t	nucleus_hblk8;
109 static nucleus_hblk1_info_t	nucleus_hblk1;
110 
111 /*
112  * SFMMU specific hat functions
113  */
114 void	hat_pagecachectl(struct page *, int);
115 
116 /* flags for hat_pagecachectl */
117 #define	HAT_CACHE	0x1
118 #define	HAT_UNCACHE	0x2
119 #define	HAT_TMPNC	0x4
120 
121 /*
122  * Flag to allow the creation of non-cacheable translations
123  * to system memory. It is off by default. At the moment this
124  * flag is used by the ecache error injector. The error injector
125  * will turn it on when creating such a translation then shut it
126  * off when it's finished.
127  */
128 
129 int	sfmmu_allow_nc_trans = 0;
130 
131 /*
132  * Flag to disable large page support.
133  * 	value of 1 => disable all large pages.
134  *	bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
135  *
136  * For example, use the value 0x4 to disable 512K pages.
137  *
138  */
139 #define	LARGE_PAGES_OFF		0x1
140 
141 /*
142  * The disable_large_pages and disable_ism_large_pages variables control
143  * hat_memload_array and the page sizes to be used by ISM and the kernel.
144  *
145  * The disable_auto_data_large_pages and disable_auto_text_large_pages variables
146  * are only used to control which OOB pages to use at upper VM segment creation
147  * time, and are set in hat_init_pagesizes and used in the map_pgsz* routines.
148  * Their values may come from platform or CPU specific code to disable page
149  * sizes that should not be used.
150  *
151  * WARNING: 512K pages are currently not supported for ISM/DISM.
152  */
153 uint_t	disable_large_pages = 0;
154 uint_t	disable_ism_large_pages = (1 << TTE512K);
155 uint_t	disable_auto_data_large_pages = 0;
156 uint_t	disable_auto_text_large_pages = 0;
157 
158 /*
159  * Private sfmmu data structures for hat management
160  */
161 static struct kmem_cache *sfmmuid_cache;
162 static struct kmem_cache *mmuctxdom_cache;
163 
164 /*
165  * Private sfmmu data structures for tsb management
166  */
167 static struct kmem_cache *sfmmu_tsbinfo_cache;
168 static struct kmem_cache *sfmmu_tsb8k_cache;
169 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
170 static vmem_t *kmem_tsb_arena;
171 
172 /*
173  * sfmmu static variables for hmeblk resource management.
174  */
175 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
176 static struct kmem_cache *sfmmu8_cache;
177 static struct kmem_cache *sfmmu1_cache;
178 static struct kmem_cache *pa_hment_cache;
179 
180 static kmutex_t 	ism_mlist_lock;	/* mutex for ism mapping list */
181 /*
182  * private data for ism
183  */
184 static struct kmem_cache *ism_blk_cache;
185 static struct kmem_cache *ism_ment_cache;
186 #define	ISMID_STARTADDR	NULL
187 
188 /*
189  * Whether to delay TLB flushes and use Cheetah's flush-all support
190  * when removing contexts from the dirty list.
191  */
192 int delay_tlb_flush;
193 int disable_delay_tlb_flush;
194 
195 /*
196  * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
197  * HAT flags, synchronizing TLB/TSB coherency, and context management.
198  * The lock is hashed on the sfmmup since the case where we need to lock
199  * all processes is rare but does occur (e.g. we need to unload a shared
200  * mapping from all processes using the mapping).  We have a lot of buckets,
201  * and each slab of sfmmu_t's can use about a quarter of them, giving us
202  * a fairly good distribution without wasting too much space and overhead
203  * when we have to grab them all.
204  */
205 #define	SFMMU_NUM_LOCK	128		/* must be power of two */
206 hatlock_t	hat_lock[SFMMU_NUM_LOCK];
207 
208 /*
209  * Hash algorithm optimized for a small number of slabs.
210  *  7 is (highbit((sizeof sfmmu_t)) - 1)
211  * This hash algorithm is based upon the knowledge that sfmmu_t's come from a
212  * kmem_cache, and thus they will be sequential within that cache.  In
213  * addition, each new slab will have a different "color" up to cache_maxcolor
214  * which will skew the hashing for each successive slab which is allocated.
215  * If the size of sfmmu_t changed to a larger size, this algorithm may need
216  * to be revisited.
217  */
218 #define	TSB_HASH_SHIFT_BITS (7)
219 #define	PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
220 
221 #ifdef DEBUG
222 int tsb_hash_debug = 0;
223 #define	TSB_HASH(sfmmup)	\
224 	(tsb_hash_debug ? &hat_lock[0] : \
225 	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
226 #else	/* DEBUG */
227 #define	TSB_HASH(sfmmup)	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
228 #endif	/* DEBUG */
229 
230 
231 /* sfmmu_replace_tsb() return codes. */
232 typedef enum tsb_replace_rc {
233 	TSB_SUCCESS,
234 	TSB_ALLOCFAIL,
235 	TSB_LOSTRACE,
236 	TSB_ALREADY_SWAPPED,
237 	TSB_CANTGROW
238 } tsb_replace_rc_t;
239 
240 /*
241  * Flags for TSB allocation routines.
242  */
243 #define	TSB_ALLOC	0x01
244 #define	TSB_FORCEALLOC	0x02
245 #define	TSB_GROW	0x04
246 #define	TSB_SHRINK	0x08
247 #define	TSB_SWAPIN	0x10
248 
249 /*
250  * Support for HAT callbacks.
251  */
252 #define	SFMMU_MAX_RELOC_CALLBACKS	10
253 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
254 static id_t sfmmu_cb_nextid = 0;
255 static id_t sfmmu_tsb_cb_id;
256 struct sfmmu_callback *sfmmu_cb_table;
257 
258 /*
259  * Kernel page relocation is enabled by default for non-caged
260  * kernel pages.  This has little effect unless segkmem_reloc is
261  * set, since by default kernel memory comes from inside the
262  * kernel cage.
263  */
264 int hat_kpr_enabled = 1;
265 
266 kmutex_t	kpr_mutex;
267 kmutex_t	kpr_suspendlock;
268 kthread_t	*kreloc_thread;
269 
270 /*
271  * Enable VA->PA translation sanity checking on DEBUG kernels.
272  * Disabled by default.  This is incompatible with some
273  * drivers (error injector, RSM) so if it breaks you get
274  * to keep both pieces.
275  */
276 int hat_check_vtop = 0;
277 
278 /*
279  * Private sfmmu routines (prototypes)
280  */
281 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
282 static struct 	hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
283 			struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t);
284 static caddr_t	sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
285 			caddr_t, demap_range_t *, uint_t);
286 static caddr_t	sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
287 			caddr_t, int);
288 static void	sfmmu_hblk_free(struct hmehash_bucket *, struct hme_blk *,
289 			uint64_t, struct hme_blk **);
290 static void	sfmmu_hblks_list_purge(struct hme_blk **);
291 static uint_t	sfmmu_get_free_hblk(struct hme_blk **, uint_t);
292 static uint_t	sfmmu_put_free_hblk(struct hme_blk *, uint_t);
293 static struct hme_blk *sfmmu_hblk_steal(int);
294 static int	sfmmu_steal_this_hblk(struct hmehash_bucket *,
295 			struct hme_blk *, uint64_t, uint64_t,
296 			struct hme_blk *);
297 static caddr_t	sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
298 
299 static void	sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
300 		    uint_t, uint_t, pgcnt_t);
301 void		sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
302 			uint_t);
303 static int	sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
304 			uint_t);
305 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
306 					caddr_t, int);
307 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
308 			struct hmehash_bucket *, caddr_t, uint_t, uint_t);
309 static int	sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
310 			caddr_t, page_t **, uint_t);
311 static void	sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
312 
313 static int	sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
314 pfn_t		sfmmu_uvatopfn(caddr_t, sfmmu_t *);
315 void		sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
316 #ifdef VAC
317 static void	sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
318 static int	sfmmu_vacconflict_array(caddr_t, page_t *, int *);
319 int	tst_tnc(page_t *pp, pgcnt_t);
320 void	conv_tnc(page_t *pp, int);
321 #endif
322 
323 static void	sfmmu_get_ctx(sfmmu_t *);
324 static void	sfmmu_free_sfmmu(sfmmu_t *);
325 
326 static void	sfmmu_gettte(struct hat *, caddr_t, tte_t *);
327 static void	sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
328 static void	sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
329 
330 cpuset_t	sfmmu_pageunload(page_t *, struct sf_hment *, int);
331 static void	hat_pagereload(struct page *, struct page *);
332 static cpuset_t	sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
333 #ifdef VAC
334 void	sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
335 static void	sfmmu_page_cache(page_t *, int, int, int);
336 #endif
337 
338 static void	sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
339 			pfn_t, int, int, int, int);
340 static void	sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
341 			pfn_t, int);
342 static void	sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
343 static void	sfmmu_tlb_range_demap(demap_range_t *);
344 static void	sfmmu_invalidate_ctx(sfmmu_t *);
345 static void	sfmmu_sync_mmustate(sfmmu_t *);
346 
347 static void 	sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
348 static int	sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
349 			sfmmu_t *);
350 static void	sfmmu_tsb_free(struct tsb_info *);
351 static void	sfmmu_tsbinfo_free(struct tsb_info *);
352 static int	sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
353 			sfmmu_t *);
354 
355 static void	sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
356 static int	sfmmu_select_tsb_szc(pgcnt_t);
357 static void	sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
358 #define		sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
359 	sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
360 #define		sfmmu_unload_tsb(sfmmup, vaddr, szc)    \
361 	sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
362 static void	sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
363 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
364     hatlock_t *, uint_t);
365 static void	sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
366 
367 #ifdef VAC
368 void	sfmmu_cache_flush(pfn_t, int);
369 void	sfmmu_cache_flushcolor(int, pfn_t);
370 #endif
371 static caddr_t	sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
372 			caddr_t, demap_range_t *, uint_t, int);
373 
374 static uint64_t	sfmmu_vtop_attr(uint_t, int mode, tte_t *);
375 static uint_t	sfmmu_ptov_attr(tte_t *);
376 static caddr_t	sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
377 			caddr_t, demap_range_t *, uint_t);
378 static uint_t	sfmmu_vtop_prot(uint_t, uint_t *);
379 static int	sfmmu_idcache_constructor(void *, void *, int);
380 static void	sfmmu_idcache_destructor(void *, void *);
381 static int	sfmmu_hblkcache_constructor(void *, void *, int);
382 static void	sfmmu_hblkcache_destructor(void *, void *);
383 static void	sfmmu_hblkcache_reclaim(void *);
384 static void	sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
385 			struct hmehash_bucket *);
386 static void	sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
387 static void	sfmmu_rm_large_mappings(page_t *, int);
388 
389 static void	hat_lock_init(void);
390 static void	hat_kstat_init(void);
391 static int	sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
392 static void	sfmmu_check_page_sizes(sfmmu_t *, int);
393 int	fnd_mapping_sz(page_t *);
394 static void	iment_add(struct ism_ment *,  struct hat *);
395 static void	iment_sub(struct ism_ment *, struct hat *);
396 static pgcnt_t	ism_tsb_entries(sfmmu_t *, int szc);
397 extern void	sfmmu_setup_tsbinfo(sfmmu_t *);
398 #ifdef sun4v
399 extern void	sfmmu_invalidate_tsbinfo(sfmmu_t *);
400 #endif	/* sun4v */
401 extern void	sfmmu_clear_utsbinfo(void);
402 
403 static void	sfmmu_ctx_wrap_around(mmu_ctx_t *);
404 
405 /* kpm globals */
406 #ifdef	DEBUG
407 /*
408  * Enable trap level tsbmiss handling
409  */
410 int	kpm_tsbmtl = 1;
411 
412 /*
413  * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
414  * required TLB shootdowns in this case, so handle w/ care. Off by default.
415  */
416 int	kpm_tlb_flush;
417 #endif	/* DEBUG */
418 
419 static void	*sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
420 
421 #ifdef DEBUG
422 static void	sfmmu_check_hblk_flist();
423 #endif
424 
425 /*
426  * Semi-private sfmmu data structures.  Some of them are initialize in
427  * startup or in hat_init. Some of them are private but accessed by
428  * assembly code or mach_sfmmu.c
429  */
430 struct hmehash_bucket *uhme_hash;	/* user hmeblk hash table */
431 struct hmehash_bucket *khme_hash;	/* kernel hmeblk hash table */
432 uint64_t	uhme_hash_pa;		/* PA of uhme_hash */
433 uint64_t	khme_hash_pa;		/* PA of khme_hash */
434 int 		uhmehash_num;		/* # of buckets in user hash table */
435 int 		khmehash_num;		/* # of buckets in kernel hash table */
436 
437 uint_t		max_mmu_ctxdoms = 0;	/* max context domains in the system */
438 mmu_ctx_t	**mmu_ctxs_tbl;		/* global array of context domains */
439 uint64_t	mmu_saved_gnum = 0;	/* to init incoming MMUs' gnums */
440 
441 #define	DEFAULT_NUM_CTXS_PER_MMU 8192
442 static uint_t	nctxs = DEFAULT_NUM_CTXS_PER_MMU;
443 
444 int		cache;			/* describes system cache */
445 
446 caddr_t		ktsb_base;		/* kernel 8k-indexed tsb base address */
447 uint64_t	ktsb_pbase;		/* kernel 8k-indexed tsb phys address */
448 int		ktsb_szcode;		/* kernel 8k-indexed tsb size code */
449 int		ktsb_sz;		/* kernel 8k-indexed tsb size */
450 
451 caddr_t		ktsb4m_base;		/* kernel 4m-indexed tsb base address */
452 uint64_t	ktsb4m_pbase;		/* kernel 4m-indexed tsb phys address */
453 int		ktsb4m_szcode;		/* kernel 4m-indexed tsb size code */
454 int		ktsb4m_sz;		/* kernel 4m-indexed tsb size */
455 
456 uint64_t	kpm_tsbbase;		/* kernel seg_kpm 4M TSB base address */
457 int		kpm_tsbsz;		/* kernel seg_kpm 4M TSB size code */
458 uint64_t	kpmsm_tsbbase;		/* kernel seg_kpm 8K TSB base address */
459 int		kpmsm_tsbsz;		/* kernel seg_kpm 8K TSB size code */
460 
461 #ifndef sun4v
462 int		utsb_dtlb_ttenum = -1;	/* index in TLB for utsb locked TTE */
463 int		utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
464 int		dtlb_resv_ttenum;	/* index in TLB of first reserved TTE */
465 caddr_t		utsb_vabase;		/* reserved kernel virtual memory */
466 caddr_t		utsb4m_vabase;		/* for trap handler TSB accesses */
467 #endif /* sun4v */
468 uint64_t	tsb_alloc_bytes = 0;	/* bytes allocated to TSBs */
469 vmem_t		*kmem_tsb_default_arena[NLGRPS_MAX];	/* For dynamic TSBs */
470 
471 /*
472  * Size to use for TSB slabs.  Future platforms that support page sizes
473  * larger than 4M may wish to change these values, and provide their own
474  * assembly macros for building and decoding the TSB base register contents.
475  * Note disable_large_pages will override the value set here.
476  */
477 uint_t	tsb_slab_ttesz = TTE4M;
478 uint_t	tsb_slab_size;
479 uint_t	tsb_slab_shift;
480 uint_t	tsb_slab_mask;	/* PFN mask for TTE */
481 
482 /* largest TSB size to grow to, will be smaller on smaller memory systems */
483 int	tsb_max_growsize = UTSB_MAX_SZCODE;
484 
485 /*
486  * Tunable parameters dealing with TSB policies.
487  */
488 
489 /*
490  * This undocumented tunable forces all 8K TSBs to be allocated from
491  * the kernel heap rather than from the kmem_tsb_default_arena arenas.
492  */
493 #ifdef	DEBUG
494 int	tsb_forceheap = 0;
495 #endif	/* DEBUG */
496 
497 /*
498  * Decide whether to use per-lgroup arenas, or one global set of
499  * TSB arenas.  The default is not to break up per-lgroup, since
500  * most platforms don't recognize any tangible benefit from it.
501  */
502 int	tsb_lgrp_affinity = 0;
503 
504 /*
505  * Used for growing the TSB based on the process RSS.
506  * tsb_rss_factor is based on the smallest TSB, and is
507  * shifted by the TSB size to determine if we need to grow.
508  * The default will grow the TSB if the number of TTEs for
509  * this page size exceeds 75% of the number of TSB entries,
510  * which should _almost_ eliminate all conflict misses
511  * (at the expense of using up lots and lots of memory).
512  */
513 #define	TSB_RSS_FACTOR		(TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
514 #define	SFMMU_RSS_TSBSIZE(tsbszc)	(tsb_rss_factor << tsbszc)
515 #define	SELECT_TSB_SIZECODE(pgcnt) ( \
516 	(enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
517 	default_tsb_size)
518 #define	TSB_OK_SHRINK()	\
519 	(tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
520 #define	TSB_OK_GROW()	\
521 	(tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
522 
523 int	enable_tsb_rss_sizing = 1;
524 int	tsb_rss_factor	= (int)TSB_RSS_FACTOR;
525 
526 /* which TSB size code to use for new address spaces or if rss sizing off */
527 int default_tsb_size = TSB_8K_SZCODE;
528 
529 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
530 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */
531 #define	TSB_ALLOC_HIWATER_FACTOR_DEFAULT	32
532 
533 #ifdef DEBUG
534 static int tsb_random_size = 0;	/* set to 1 to test random tsb sizes on alloc */
535 static int tsb_grow_stress = 0;	/* if set to 1, keep replacing TSB w/ random */
536 static int tsb_alloc_mtbf = 0;	/* fail allocation every n attempts */
537 static int tsb_alloc_fail_mtbf = 0;
538 static int tsb_alloc_count = 0;
539 #endif /* DEBUG */
540 
541 /* if set to 1, will remap valid TTEs when growing TSB. */
542 int tsb_remap_ttes = 1;
543 
544 /*
545  * If we have more than this many mappings, allocate a second TSB.
546  * This default is chosen because the I/D fully associative TLBs are
547  * assumed to have at least 8 available entries. Platforms with a
548  * larger fully-associative TLB could probably override the default.
549  */
550 int tsb_sectsb_threshold = 8;
551 
552 /*
553  * kstat data
554  */
555 struct sfmmu_global_stat sfmmu_global_stat;
556 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
557 
558 /*
559  * Global data
560  */
561 sfmmu_t 	*ksfmmup;		/* kernel's hat id */
562 
563 #ifdef DEBUG
564 static void	chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
565 #endif
566 
567 /* sfmmu locking operations */
568 static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
569 static int	sfmmu_mlspl_held(struct page *, int);
570 
571 kmutex_t *sfmmu_page_enter(page_t *);
572 void	sfmmu_page_exit(kmutex_t *);
573 int	sfmmu_page_spl_held(struct page *);
574 
575 /* sfmmu internal locking operations - accessed directly */
576 static void	sfmmu_mlist_reloc_enter(page_t *, page_t *,
577 				kmutex_t **, kmutex_t **);
578 static void	sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
579 static hatlock_t *
580 		sfmmu_hat_enter(sfmmu_t *);
581 static hatlock_t *
582 		sfmmu_hat_tryenter(sfmmu_t *);
583 static void	sfmmu_hat_exit(hatlock_t *);
584 static void	sfmmu_hat_lock_all(void);
585 static void	sfmmu_hat_unlock_all(void);
586 static void	sfmmu_ismhat_enter(sfmmu_t *, int);
587 static void	sfmmu_ismhat_exit(sfmmu_t *, int);
588 
589 /*
590  * Array of mutexes protecting a page's mapping list and p_nrm field.
591  *
592  * The hash function looks complicated, but is made up so that:
593  *
594  * "pp" not shifted, so adjacent pp values will hash to different cache lines
595  *  (8 byte alignment * 8 bytes/mutes == 64 byte coherency subblock)
596  *
597  * "pp" >> mml_shift, incorporates more source bits into the hash result
598  *
599  *  "& (mml_table_size - 1), should be faster than using remainder "%"
600  *
601  * Hopefully, mml_table, mml_table_size and mml_shift are all in the same
602  * cacheline, since they get declared next to each other below. We'll trust
603  * ld not to do something random.
604  */
605 #ifdef	DEBUG
606 int mlist_hash_debug = 0;
607 #define	MLIST_HASH(pp)	(mlist_hash_debug ? &mml_table[0] : \
608 	&mml_table[((uintptr_t)(pp) + \
609 	((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)])
610 #else	/* !DEBUG */
611 #define	MLIST_HASH(pp)   &mml_table[ \
612 	((uintptr_t)(pp) + ((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)]
613 #endif	/* !DEBUG */
614 
615 kmutex_t		*mml_table;
616 uint_t			mml_table_sz;	/* must be a power of 2 */
617 uint_t			mml_shift;	/* log2(mml_table_sz) + 3 for align */
618 
619 kpm_hlk_t	*kpmp_table;
620 uint_t		kpmp_table_sz;	/* must be a power of 2 */
621 uchar_t		kpmp_shift;
622 
623 kpm_shlk_t	*kpmp_stable;
624 uint_t		kpmp_stable_sz;	/* must be a power of 2 */
625 
626 /*
627  * SPL_HASH was improved to avoid false cache line sharing
628  */
629 #define	SPL_TABLE_SIZE	128
630 #define	SPL_MASK	(SPL_TABLE_SIZE - 1)
631 #define	SPL_SHIFT	7		/* log2(SPL_TABLE_SIZE) */
632 
633 #define	SPL_INDEX(pp) \
634 	((((uintptr_t)(pp) >> SPL_SHIFT) ^ \
635 	((uintptr_t)(pp) >> (SPL_SHIFT << 1))) & \
636 	(SPL_TABLE_SIZE - 1))
637 
638 #define	SPL_HASH(pp)    \
639 	(&sfmmu_page_lock[SPL_INDEX(pp) & SPL_MASK].pad_mutex)
640 
641 static	pad_mutex_t	sfmmu_page_lock[SPL_TABLE_SIZE];
642 
643 
644 /*
645  * hat_unload_callback() will group together callbacks in order
646  * to avoid xt_sync() calls.  This is the maximum size of the group.
647  */
648 #define	MAX_CB_ADDR	32
649 
650 tte_t	hw_tte;
651 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
652 
653 static char	*mmu_ctx_kstat_names[] = {
654 	"mmu_ctx_tsb_exceptions",
655 	"mmu_ctx_tsb_raise_exception",
656 	"mmu_ctx_wrap_around",
657 };
658 
659 /*
660  * Wrapper for vmem_xalloc since vmem_create only allows limited
661  * parameters for vm_source_alloc functions.  This function allows us
662  * to specify alignment consistent with the size of the object being
663  * allocated.
664  */
665 static void *
666 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
667 {
668 	return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
669 }
670 
671 /* Common code for setting tsb_alloc_hiwater. */
672 #define	SFMMU_SET_TSB_ALLOC_HIWATER(pages)	tsb_alloc_hiwater = \
673 		ptob(pages) / tsb_alloc_hiwater_factor
674 
675 /*
676  * Set tsb_max_growsize to allow at most all of physical memory to be mapped by
677  * a single TSB.  physmem is the number of physical pages so we need physmem 8K
678  * TTEs to represent all those physical pages.  We round this up by using
679  * 1<<highbit().  To figure out which size code to use, remember that the size
680  * code is just an amount to shift the smallest TSB size to get the size of
681  * this TSB.  So we subtract that size, TSB_START_SIZE, from highbit() (or
682  * highbit() - 1) to get the size code for the smallest TSB that can represent
683  * all of physical memory, while erring on the side of too much.
684  *
685  * If the computed size code is less than the current tsb_max_growsize, we set
686  * tsb_max_growsize to the computed size code.  In the case where the computed
687  * size code is greater than tsb_max_growsize, we have these restrictions that
688  * apply to increasing tsb_max_growsize:
689  *	1) TSBs can't grow larger than the TSB slab size
690  *	2) TSBs can't grow larger than UTSB_MAX_SZCODE.
691  */
692 #define	SFMMU_SET_TSB_MAX_GROWSIZE(pages) {				\
693 	int	i, szc;							\
694 									\
695 	i = highbit(pages);						\
696 	if ((1 << (i - 1)) == (pages))					\
697 		i--;		/* 2^n case, round down */		\
698 	szc = i - TSB_START_SIZE;					\
699 	if (szc < tsb_max_growsize)					\
700 		tsb_max_growsize = szc;					\
701 	else if ((szc > tsb_max_growsize) &&				\
702 	    (szc <= tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT))) \
703 		tsb_max_growsize = MIN(szc, UTSB_MAX_SZCODE);		\
704 }
705 
706 /*
707  * Given a pointer to an sfmmu and a TTE size code, return a pointer to the
708  * tsb_info which handles that TTE size.
709  */
710 #define	SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc)			\
711 	(tsbinfop) = (sfmmup)->sfmmu_tsb;				\
712 	ASSERT(sfmmu_hat_lock_held(sfmmup));				\
713 	if ((tte_szc) >= TTE4M)						\
714 		(tsbinfop) = (tsbinfop)->tsb_next;
715 
716 /*
717  * Return the number of mappings present in the HAT
718  * for a particular process and page size.
719  */
720 #define	SFMMU_TTE_CNT(sfmmup, szc)					\
721 	(sfmmup)->sfmmu_iblk?						\
722 	    (sfmmup)->sfmmu_ismttecnt[(szc)] +				\
723 	    (sfmmup)->sfmmu_ttecnt[(szc)] :				\
724 	    (sfmmup)->sfmmu_ttecnt[(szc)];
725 
726 /*
727  * Macro to use to unload entries from the TSB.
728  * It has knowledge of which page sizes get replicated in the TSB
729  * and will call the appropriate unload routine for the appropriate size.
730  */
731 #define	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp)				\
732 {									\
733 	int ttesz = get_hblk_ttesz(hmeblkp);				\
734 	if (ttesz == TTE8K || ttesz == TTE4M) {				\
735 		sfmmu_unload_tsb(sfmmup, addr, ttesz);			\
736 	} else {							\
737 		caddr_t sva = (caddr_t)get_hblk_base(hmeblkp);		\
738 		caddr_t eva = sva + get_hblk_span(hmeblkp);		\
739 		ASSERT(addr >= sva && addr < eva);			\
740 		sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);	\
741 	}								\
742 }
743 
744 
745 /* Update tsb_alloc_hiwater after memory is configured. */
746 /*ARGSUSED*/
747 static void
748 sfmmu_update_tsb_post_add(void *arg, pgcnt_t delta_pages)
749 {
750 	/* Assumes physmem has already been updated. */
751 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
752 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
753 }
754 
755 /*
756  * Update tsb_alloc_hiwater before memory is deleted.  We'll do nothing here
757  * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
758  * deleted.
759  */
760 /*ARGSUSED*/
761 static int
762 sfmmu_update_tsb_pre_del(void *arg, pgcnt_t delta_pages)
763 {
764 	return (0);
765 }
766 
767 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
768 /*ARGSUSED*/
769 static void
770 sfmmu_update_tsb_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
771 {
772 	/*
773 	 * Whether the delete was cancelled or not, just go ahead and update
774 	 * tsb_alloc_hiwater and tsb_max_growsize.
775 	 */
776 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
777 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
778 }
779 
780 static kphysm_setup_vector_t sfmmu_update_tsb_vec = {
781 	KPHYSM_SETUP_VECTOR_VERSION,	/* version */
782 	sfmmu_update_tsb_post_add,	/* post_add */
783 	sfmmu_update_tsb_pre_del,	/* pre_del */
784 	sfmmu_update_tsb_post_del	/* post_del */
785 };
786 
787 
788 /*
789  * HME_BLK HASH PRIMITIVES
790  */
791 
792 /*
793  * Enter a hme on the mapping list for page pp.
794  * When large pages are more prevalent in the system we might want to
795  * keep the mapping list in ascending order by the hment size. For now,
796  * small pages are more frequent, so don't slow it down.
797  */
798 #define	HME_ADD(hme, pp)					\
799 {								\
800 	ASSERT(sfmmu_mlist_held(pp));				\
801 								\
802 	hme->hme_prev = NULL;					\
803 	hme->hme_next = pp->p_mapping;				\
804 	hme->hme_page = pp;					\
805 	if (pp->p_mapping) {					\
806 		((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
807 		ASSERT(pp->p_share > 0);			\
808 	} else  {						\
809 		/* EMPTY */					\
810 		ASSERT(pp->p_share == 0);			\
811 	}							\
812 	pp->p_mapping = hme;					\
813 	pp->p_share++;						\
814 }
815 
816 /*
817  * Enter a hme on the mapping list for page pp.
818  * If we are unmapping a large translation, we need to make sure that the
819  * change is reflect in the corresponding bit of the p_index field.
820  */
821 #define	HME_SUB(hme, pp)					\
822 {								\
823 	ASSERT(sfmmu_mlist_held(pp));				\
824 	ASSERT(hme->hme_page == pp || IS_PAHME(hme));		\
825 								\
826 	if (pp->p_mapping == NULL) {				\
827 		panic("hme_remove - no mappings");		\
828 	}							\
829 								\
830 	membar_stst();	/* ensure previous stores finish */	\
831 								\
832 	ASSERT(pp->p_share > 0);				\
833 	pp->p_share--;						\
834 								\
835 	if (hme->hme_prev) {					\
836 		ASSERT(pp->p_mapping != hme);			\
837 		ASSERT(hme->hme_prev->hme_page == pp ||		\
838 			IS_PAHME(hme->hme_prev));		\
839 		hme->hme_prev->hme_next = hme->hme_next;	\
840 	} else {						\
841 		ASSERT(pp->p_mapping == hme);			\
842 		pp->p_mapping = hme->hme_next;			\
843 		ASSERT((pp->p_mapping == NULL) ?		\
844 			(pp->p_share == 0) : 1);		\
845 	}							\
846 								\
847 	if (hme->hme_next) {					\
848 		ASSERT(hme->hme_next->hme_page == pp ||		\
849 			IS_PAHME(hme->hme_next));		\
850 		hme->hme_next->hme_prev = hme->hme_prev;	\
851 	}							\
852 								\
853 	/* zero out the entry */				\
854 	hme->hme_next = NULL;					\
855 	hme->hme_prev = NULL;					\
856 	hme->hme_page = NULL;					\
857 								\
858 	if (hme_size(hme) > TTE8K) {				\
859 		/* remove mappings for remainder of large pg */	\
860 		sfmmu_rm_large_mappings(pp, hme_size(hme));	\
861 	}							\
862 }
863 
864 /*
865  * This function returns the hment given the hme_blk and a vaddr.
866  * It assumes addr has already been checked to belong to hme_blk's
867  * range.
868  */
869 #define	HBLKTOHME(hment, hmeblkp, addr)					\
870 {									\
871 	int index;							\
872 	HBLKTOHME_IDX(hment, hmeblkp, addr, index)			\
873 }
874 
875 /*
876  * Version of HBLKTOHME that also returns the index in hmeblkp
877  * of the hment.
878  */
879 #define	HBLKTOHME_IDX(hment, hmeblkp, addr, idx)			\
880 {									\
881 	ASSERT(in_hblk_range((hmeblkp), (addr)));			\
882 									\
883 	if (get_hblk_ttesz(hmeblkp) == TTE8K) {				\
884 		idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
885 	} else								\
886 		idx = 0;						\
887 									\
888 	(hment) = &(hmeblkp)->hblk_hme[idx];				\
889 }
890 
891 /*
892  * Disable any page sizes not supported by the CPU
893  */
894 void
895 hat_init_pagesizes()
896 {
897 	int 		i;
898 
899 	mmu_exported_page_sizes = 0;
900 	for (i = TTE8K; i < max_mmu_page_sizes; i++) {
901 
902 		szc_2_userszc[i] = (uint_t)-1;
903 		userszc_2_szc[i] = (uint_t)-1;
904 
905 		if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
906 			disable_large_pages |= (1 << i);
907 		} else {
908 			szc_2_userszc[i] = mmu_exported_page_sizes;
909 			userszc_2_szc[mmu_exported_page_sizes] = i;
910 			mmu_exported_page_sizes++;
911 		}
912 	}
913 
914 	disable_ism_large_pages |= disable_large_pages;
915 	disable_auto_data_large_pages = disable_large_pages;
916 	disable_auto_text_large_pages = disable_large_pages;
917 
918 	/*
919 	 * Initialize mmu-specific large page sizes.
920 	 */
921 	if (&mmu_large_pages_disabled) {
922 		disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
923 		disable_ism_large_pages |=
924 		    mmu_large_pages_disabled(HAT_LOAD_SHARE);
925 		disable_auto_data_large_pages |=
926 		    mmu_large_pages_disabled(HAT_AUTO_DATA);
927 		disable_auto_text_large_pages |=
928 		    mmu_large_pages_disabled(HAT_AUTO_TEXT);
929 	}
930 }
931 
932 /*
933  * Initialize the hardware address translation structures.
934  */
935 void
936 hat_init(void)
937 {
938 	int 		i;
939 	uint_t		sz;
940 	uint_t		maxtsb;
941 	size_t		size;
942 
943 	hat_lock_init();
944 	hat_kstat_init();
945 
946 	/*
947 	 * Hardware-only bits in a TTE
948 	 */
949 	MAKE_TTE_MASK(&hw_tte);
950 
951 	hat_init_pagesizes();
952 
953 	/* Initialize the hash locks */
954 	for (i = 0; i < khmehash_num; i++) {
955 		mutex_init(&khme_hash[i].hmehash_mutex, NULL,
956 		    MUTEX_DEFAULT, NULL);
957 	}
958 	for (i = 0; i < uhmehash_num; i++) {
959 		mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
960 		    MUTEX_DEFAULT, NULL);
961 	}
962 	khmehash_num--;		/* make sure counter starts from 0 */
963 	uhmehash_num--;		/* make sure counter starts from 0 */
964 
965 	/*
966 	 * Allocate context domain structures.
967 	 *
968 	 * A platform may choose to modify max_mmu_ctxdoms in
969 	 * set_platform_defaults(). If a platform does not define
970 	 * a set_platform_defaults() or does not choose to modify
971 	 * max_mmu_ctxdoms, it gets one MMU context domain for every CPU.
972 	 *
973 	 * For sun4v, there will be one global context domain, this is to
974 	 * avoid the ldom cpu substitution problem.
975 	 *
976 	 * For all platforms that have CPUs sharing MMUs, this
977 	 * value must be defined.
978 	 */
979 	if (max_mmu_ctxdoms == 0) {
980 #ifndef sun4v
981 		max_mmu_ctxdoms = max_ncpus;
982 #else /* sun4v */
983 		max_mmu_ctxdoms = 1;
984 #endif /* sun4v */
985 	}
986 
987 	size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *);
988 	mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP);
989 
990 	/* mmu_ctx_t is 64 bytes aligned */
991 	mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache",
992 	    sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
993 	/*
994 	 * MMU context domain initialization for the Boot CPU.
995 	 * This needs the context domains array allocated above.
996 	 */
997 	mutex_enter(&cpu_lock);
998 	sfmmu_cpu_init(CPU);
999 	mutex_exit(&cpu_lock);
1000 
1001 	/*
1002 	 * Intialize ism mapping list lock.
1003 	 */
1004 
1005 	mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
1006 
1007 	/*
1008 	 * Each sfmmu structure carries an array of MMU context info
1009 	 * structures, one per context domain. The size of this array depends
1010 	 * on the maximum number of context domains. So, the size of the
1011 	 * sfmmu structure varies per platform.
1012 	 *
1013 	 * sfmmu is allocated from static arena, because trap
1014 	 * handler at TL > 0 is not allowed to touch kernel relocatable
1015 	 * memory. sfmmu's alignment is changed to 64 bytes from
1016 	 * default 8 bytes, as the lower 6 bits will be used to pass
1017 	 * pgcnt to vtag_flush_pgcnt_tl1.
1018 	 */
1019 	size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1);
1020 
1021 	sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size,
1022 	    64, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
1023 	    NULL, NULL, static_arena, 0);
1024 
1025 	sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
1026 	    sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
1027 
1028 	/*
1029 	 * Since we only use the tsb8k cache to "borrow" pages for TSBs
1030 	 * from the heap when low on memory or when TSB_FORCEALLOC is
1031 	 * specified, don't use magazines to cache them--we want to return
1032 	 * them to the system as quickly as possible.
1033 	 */
1034 	sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
1035 	    MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
1036 	    static_arena, KMC_NOMAGAZINE);
1037 
1038 	/*
1039 	 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
1040 	 * memory, which corresponds to the old static reserve for TSBs.
1041 	 * tsb_alloc_hiwater_factor defaults to 32.  This caps the amount of
1042 	 * memory we'll allocate for TSB slabs; beyond this point TSB
1043 	 * allocations will be taken from the kernel heap (via
1044 	 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem
1045 	 * consumer.
1046 	 */
1047 	if (tsb_alloc_hiwater_factor == 0) {
1048 		tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
1049 	}
1050 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
1051 
1052 	/* Set tsb_max_growsize. */
1053 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
1054 
1055 	/*
1056 	 * On smaller memory systems, allocate TSB memory in smaller chunks
1057 	 * than the default 4M slab size. We also honor disable_large_pages
1058 	 * here.
1059 	 *
1060 	 * The trap handlers need to be patched with the final slab shift,
1061 	 * since they need to be able to construct the TSB pointer at runtime.
1062 	 */
1063 	if (tsb_max_growsize <= TSB_512K_SZCODE)
1064 		tsb_slab_ttesz = TTE512K;
1065 
1066 	for (sz = tsb_slab_ttesz; sz > 0; sz--) {
1067 		if (!(disable_large_pages & (1 << sz)))
1068 			break;
1069 	}
1070 
1071 	tsb_slab_ttesz = sz;
1072 	tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz;
1073 	tsb_slab_size = 1 << tsb_slab_shift;
1074 	tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1;
1075 
1076 	maxtsb = tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT);
1077 	if (tsb_max_growsize > maxtsb)
1078 		tsb_max_growsize = maxtsb;
1079 
1080 	/*
1081 	 * Set up memory callback to update tsb_alloc_hiwater and
1082 	 * tsb_max_growsize.
1083 	 */
1084 	i = kphysm_setup_func_register(&sfmmu_update_tsb_vec, (void *) 0);
1085 	ASSERT(i == 0);
1086 
1087 	/*
1088 	 * kmem_tsb_arena is the source from which large TSB slabs are
1089 	 * drawn.  The quantum of this arena corresponds to the largest
1090 	 * TSB size we can dynamically allocate for user processes.
1091 	 * Currently it must also be a supported page size since we
1092 	 * use exactly one translation entry to map each slab page.
1093 	 *
1094 	 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from
1095 	 * which most TSBs are allocated.  Since most TSB allocations are
1096 	 * typically 8K we have a kmem cache we stack on top of each
1097 	 * kmem_tsb_default_arena to speed up those allocations.
1098 	 *
1099 	 * Note the two-level scheme of arenas is required only
1100 	 * because vmem_create doesn't allow us to specify alignment
1101 	 * requirements.  If this ever changes the code could be
1102 	 * simplified to use only one level of arenas.
1103 	 */
1104 	kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
1105 	    sfmmu_vmem_xalloc_aligned_wrapper, vmem_xfree, heap_arena,
1106 	    0, VM_SLEEP);
1107 
1108 	if (tsb_lgrp_affinity) {
1109 		char s[50];
1110 		for (i = 0; i < NLGRPS_MAX; i++) {
1111 			(void) sprintf(s, "kmem_tsb_lgrp%d", i);
1112 			kmem_tsb_default_arena[i] =
1113 			    vmem_create(s, NULL, 0, PAGESIZE,
1114 			    sfmmu_tsb_segkmem_alloc, sfmmu_tsb_segkmem_free,
1115 			    kmem_tsb_arena, 0, VM_SLEEP | VM_BESTFIT);
1116 			(void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
1117 			sfmmu_tsb_cache[i] = kmem_cache_create(s, PAGESIZE,
1118 			    PAGESIZE, NULL, NULL, NULL, NULL,
1119 			    kmem_tsb_default_arena[i], 0);
1120 		}
1121 	} else {
1122 		kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
1123 		    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1124 		    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1125 		    VM_SLEEP | VM_BESTFIT);
1126 
1127 		sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
1128 		    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1129 		    kmem_tsb_default_arena[0], 0);
1130 	}
1131 
1132 	sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
1133 		HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1134 		sfmmu_hblkcache_destructor,
1135 		sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
1136 		hat_memload_arena, KMC_NOHASH);
1137 
1138 	hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
1139 	    segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP);
1140 
1141 	sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
1142 		HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1143 		sfmmu_hblkcache_destructor,
1144 		NULL, (void *)HME1BLK_SZ,
1145 		hat_memload1_arena, KMC_NOHASH);
1146 
1147 	pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
1148 		0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
1149 
1150 	ism_blk_cache = kmem_cache_create("ism_blk_cache",
1151 		sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
1152 		NULL, NULL, static_arena, KMC_NOHASH);
1153 
1154 	ism_ment_cache = kmem_cache_create("ism_ment_cache",
1155 		sizeof (ism_ment_t), 0, NULL, NULL,
1156 		NULL, NULL, NULL, 0);
1157 
1158 	/*
1159 	 * We grab the first hat for the kernel,
1160 	 */
1161 	AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
1162 	kas.a_hat = hat_alloc(&kas);
1163 	AS_LOCK_EXIT(&kas, &kas.a_lock);
1164 
1165 	/*
1166 	 * Initialize hblk_reserve.
1167 	 */
1168 	((struct hme_blk *)hblk_reserve)->hblk_nextpa =
1169 				va_to_pa((caddr_t)hblk_reserve);
1170 
1171 #ifndef UTSB_PHYS
1172 	/*
1173 	 * Reserve some kernel virtual address space for the locked TTEs
1174 	 * that allow us to probe the TSB from TL>0.
1175 	 */
1176 	utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1177 		0, 0, NULL, NULL, VM_SLEEP);
1178 	utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1179 		0, 0, NULL, NULL, VM_SLEEP);
1180 #endif
1181 
1182 #ifdef VAC
1183 	/*
1184 	 * The big page VAC handling code assumes VAC
1185 	 * will not be bigger than the smallest big
1186 	 * page- which is 64K.
1187 	 */
1188 	if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
1189 		cmn_err(CE_PANIC, "VAC too big!");
1190 	}
1191 #endif
1192 
1193 	(void) xhat_init();
1194 
1195 	uhme_hash_pa = va_to_pa(uhme_hash);
1196 	khme_hash_pa = va_to_pa(khme_hash);
1197 
1198 	/*
1199 	 * Initialize relocation locks. kpr_suspendlock is held
1200 	 * at PIL_MAX to prevent interrupts from pinning the holder
1201 	 * of a suspended TTE which may access it leading to a
1202 	 * deadlock condition.
1203 	 */
1204 	mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
1205 	mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
1206 
1207 	/*
1208 	 * Pre-allocate hrm_hashtab before enabling the collection of
1209 	 * refmod statistics.  Allocating on the fly would mean us
1210 	 * running the risk of suffering recursive mutex enters or
1211 	 * deadlocks.
1212 	 */
1213 	hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
1214 	    KM_SLEEP);
1215 }
1216 
1217 /*
1218  * Initialize locking for the hat layer, called early during boot.
1219  */
1220 static void
1221 hat_lock_init()
1222 {
1223 	int i;
1224 
1225 	/*
1226 	 * initialize the array of mutexes protecting a page's mapping
1227 	 * list and p_nrm field.
1228 	 */
1229 	for (i = 0; i < mml_table_sz; i++)
1230 		mutex_init(&mml_table[i], NULL, MUTEX_DEFAULT, NULL);
1231 
1232 	if (kpm_enable) {
1233 		for (i = 0; i < kpmp_table_sz; i++) {
1234 			mutex_init(&kpmp_table[i].khl_mutex, NULL,
1235 			    MUTEX_DEFAULT, NULL);
1236 		}
1237 	}
1238 
1239 	/*
1240 	 * Initialize array of mutex locks that protects sfmmu fields and
1241 	 * TSB lists.
1242 	 */
1243 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
1244 		mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
1245 		    NULL);
1246 }
1247 
1248 #define	SFMMU_KERNEL_MAXVA \
1249 	(kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
1250 
1251 /*
1252  * Allocate a hat structure.
1253  * Called when an address space first uses a hat.
1254  */
1255 struct hat *
1256 hat_alloc(struct as *as)
1257 {
1258 	sfmmu_t *sfmmup;
1259 	int i;
1260 	uint64_t cnum;
1261 	extern uint_t get_color_start(struct as *);
1262 
1263 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1264 	sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
1265 	sfmmup->sfmmu_as = as;
1266 	sfmmup->sfmmu_flags = 0;
1267 	LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock);
1268 
1269 	if (as == &kas) {
1270 		ksfmmup = sfmmup;
1271 		sfmmup->sfmmu_cext = 0;
1272 		cnum = KCONTEXT;
1273 
1274 		sfmmup->sfmmu_clrstart = 0;
1275 		sfmmup->sfmmu_tsb = NULL;
1276 		/*
1277 		 * hat_kern_setup() will call sfmmu_init_ktsbinfo()
1278 		 * to setup tsb_info for ksfmmup.
1279 		 */
1280 	} else {
1281 
1282 		/*
1283 		 * Just set to invalid ctx. When it faults, it will
1284 		 * get a valid ctx. This would avoid the situation
1285 		 * where we get a ctx, but it gets stolen and then
1286 		 * we fault when we try to run and so have to get
1287 		 * another ctx.
1288 		 */
1289 		sfmmup->sfmmu_cext = 0;
1290 		cnum = INVALID_CONTEXT;
1291 
1292 		/* initialize original physical page coloring bin */
1293 		sfmmup->sfmmu_clrstart = get_color_start(as);
1294 #ifdef DEBUG
1295 		if (tsb_random_size) {
1296 			uint32_t randval = (uint32_t)gettick() >> 4;
1297 			int size = randval % (tsb_max_growsize + 1);
1298 
1299 			/* chose a random tsb size for stress testing */
1300 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
1301 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1302 		} else
1303 #endif /* DEBUG */
1304 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
1305 			    default_tsb_size,
1306 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1307 		sfmmup->sfmmu_flags = HAT_SWAPPED;
1308 		ASSERT(sfmmup->sfmmu_tsb != NULL);
1309 	}
1310 
1311 	ASSERT(max_mmu_ctxdoms > 0);
1312 	for (i = 0; i < max_mmu_ctxdoms; i++) {
1313 		sfmmup->sfmmu_ctxs[i].cnum = cnum;
1314 		sfmmup->sfmmu_ctxs[i].gnum = 0;
1315 	}
1316 
1317 	sfmmu_setup_tsbinfo(sfmmup);
1318 	for (i = 0; i < max_mmu_page_sizes; i++) {
1319 		sfmmup->sfmmu_ttecnt[i] = 0;
1320 		sfmmup->sfmmu_ismttecnt[i] = 0;
1321 		sfmmup->sfmmu_pgsz[i] = TTE8K;
1322 	}
1323 
1324 	sfmmup->sfmmu_iblk = NULL;
1325 	sfmmup->sfmmu_ismhat = 0;
1326 	sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
1327 	if (sfmmup == ksfmmup) {
1328 		CPUSET_ALL(sfmmup->sfmmu_cpusran);
1329 	} else {
1330 		CPUSET_ZERO(sfmmup->sfmmu_cpusran);
1331 	}
1332 	sfmmup->sfmmu_free = 0;
1333 	sfmmup->sfmmu_rmstat = 0;
1334 	sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
1335 	sfmmup->sfmmu_xhat_provider = NULL;
1336 	cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
1337 	return (sfmmup);
1338 }
1339 
1340 /*
1341  * Create per-MMU context domain kstats for a given MMU ctx.
1342  */
1343 static void
1344 sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp)
1345 {
1346 	mmu_ctx_stat_t	stat;
1347 	kstat_t		*mmu_kstat;
1348 
1349 	ASSERT(MUTEX_HELD(&cpu_lock));
1350 	ASSERT(mmu_ctxp->mmu_kstat == NULL);
1351 
1352 	mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx",
1353 	    "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL);
1354 
1355 	if (mmu_kstat == NULL) {
1356 		cmn_err(CE_WARN, "kstat_create for MMU %d failed",
1357 		    mmu_ctxp->mmu_idx);
1358 	} else {
1359 		mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data;
1360 		for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++)
1361 			kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat],
1362 			    mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64);
1363 		mmu_ctxp->mmu_kstat = mmu_kstat;
1364 		kstat_install(mmu_kstat);
1365 	}
1366 }
1367 
1368 /*
1369  * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU
1370  * context domain information for a given CPU. If a platform does not
1371  * specify that interface, then the function below is used instead to return
1372  * default information. The defaults are as follows:
1373  *
1374  *	- For sun4u systems there's one MMU context domain per CPU.
1375  *	  This default is used by all sun4u systems except OPL. OPL systems
1376  *	  provide platform specific interface to map CPU ids to MMU ids
1377  *	  because on OPL more than 1 CPU shares a single MMU.
1378  *        Note that on sun4v, there is one global context domain for
1379  *	  the entire system. This is to avoid running into potential problem
1380  *	  with ldom physical cpu substitution feature.
1381  *	- The number of MMU context IDs supported on any CPU in the
1382  *	  system is 8K.
1383  */
1384 /*ARGSUSED*/
1385 static void
1386 sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop)
1387 {
1388 	infop->mmu_nctxs = nctxs;
1389 #ifndef sun4v
1390 	infop->mmu_idx = cpu[cpuid]->cpu_seqid;
1391 #else /* sun4v */
1392 	infop->mmu_idx = 0;
1393 #endif /* sun4v */
1394 }
1395 
1396 /*
1397  * Called during CPU initialization to set the MMU context-related information
1398  * for a CPU.
1399  *
1400  * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum.
1401  */
1402 void
1403 sfmmu_cpu_init(cpu_t *cp)
1404 {
1405 	mmu_ctx_info_t	info;
1406 	mmu_ctx_t	*mmu_ctxp;
1407 
1408 	ASSERT(MUTEX_HELD(&cpu_lock));
1409 
1410 	if (&plat_cpuid_to_mmu_ctx_info == NULL)
1411 		sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1412 	else
1413 		plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1414 
1415 	ASSERT(info.mmu_idx < max_mmu_ctxdoms);
1416 
1417 	if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) {
1418 		/* Each mmu_ctx is cacheline aligned. */
1419 		mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP);
1420 		bzero(mmu_ctxp, sizeof (mmu_ctx_t));
1421 
1422 		mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN,
1423 		    (void *)ipltospl(DISP_LEVEL));
1424 		mmu_ctxp->mmu_idx = info.mmu_idx;
1425 		mmu_ctxp->mmu_nctxs = info.mmu_nctxs;
1426 		/*
1427 		 * Globally for lifetime of a system,
1428 		 * gnum must always increase.
1429 		 * mmu_saved_gnum is protected by the cpu_lock.
1430 		 */
1431 		mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1;
1432 		mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
1433 
1434 		sfmmu_mmu_kstat_create(mmu_ctxp);
1435 
1436 		mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp;
1437 	} else {
1438 		ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx);
1439 	}
1440 
1441 	/*
1442 	 * The mmu_lock is acquired here to prevent races with
1443 	 * the wrap-around code.
1444 	 */
1445 	mutex_enter(&mmu_ctxp->mmu_lock);
1446 
1447 
1448 	mmu_ctxp->mmu_ncpus++;
1449 	CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1450 	CPU_MMU_IDX(cp) = info.mmu_idx;
1451 	CPU_MMU_CTXP(cp) = mmu_ctxp;
1452 
1453 	mutex_exit(&mmu_ctxp->mmu_lock);
1454 }
1455 
1456 /*
1457  * Called to perform MMU context-related cleanup for a CPU.
1458  */
1459 void
1460 sfmmu_cpu_cleanup(cpu_t *cp)
1461 {
1462 	mmu_ctx_t	*mmu_ctxp;
1463 
1464 	ASSERT(MUTEX_HELD(&cpu_lock));
1465 
1466 	mmu_ctxp = CPU_MMU_CTXP(cp);
1467 	ASSERT(mmu_ctxp != NULL);
1468 
1469 	/*
1470 	 * The mmu_lock is acquired here to prevent races with
1471 	 * the wrap-around code.
1472 	 */
1473 	mutex_enter(&mmu_ctxp->mmu_lock);
1474 
1475 	CPU_MMU_CTXP(cp) = NULL;
1476 
1477 	CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1478 	if (--mmu_ctxp->mmu_ncpus == 0) {
1479 		mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL;
1480 		mutex_exit(&mmu_ctxp->mmu_lock);
1481 		mutex_destroy(&mmu_ctxp->mmu_lock);
1482 
1483 		if (mmu_ctxp->mmu_kstat)
1484 			kstat_delete(mmu_ctxp->mmu_kstat);
1485 
1486 		/* mmu_saved_gnum is protected by the cpu_lock. */
1487 		if (mmu_saved_gnum < mmu_ctxp->mmu_gnum)
1488 			mmu_saved_gnum = mmu_ctxp->mmu_gnum;
1489 
1490 		kmem_cache_free(mmuctxdom_cache, mmu_ctxp);
1491 
1492 		return;
1493 	}
1494 
1495 	mutex_exit(&mmu_ctxp->mmu_lock);
1496 }
1497 
1498 /*
1499  * Hat_setup, makes an address space context the current active one.
1500  * In sfmmu this translates to setting the secondary context with the
1501  * corresponding context.
1502  */
1503 void
1504 hat_setup(struct hat *sfmmup, int allocflag)
1505 {
1506 	hatlock_t *hatlockp;
1507 
1508 	/* Init needs some special treatment. */
1509 	if (allocflag == HAT_INIT) {
1510 		/*
1511 		 * Make sure that we have
1512 		 * 1. a TSB
1513 		 * 2. a valid ctx that doesn't get stolen after this point.
1514 		 */
1515 		hatlockp = sfmmu_hat_enter(sfmmup);
1516 
1517 		/*
1518 		 * Swap in the TSB.  hat_init() allocates tsbinfos without
1519 		 * TSBs, but we need one for init, since the kernel does some
1520 		 * special things to set up its stack and needs the TSB to
1521 		 * resolve page faults.
1522 		 */
1523 		sfmmu_tsb_swapin(sfmmup, hatlockp);
1524 
1525 		sfmmu_get_ctx(sfmmup);
1526 
1527 		sfmmu_hat_exit(hatlockp);
1528 	} else {
1529 		ASSERT(allocflag == HAT_ALLOC);
1530 
1531 		hatlockp = sfmmu_hat_enter(sfmmup);
1532 		kpreempt_disable();
1533 
1534 		CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1535 
1536 		/*
1537 		 * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter,
1538 		 * pagesize bits don't matter in this case since we are passing
1539 		 * INVALID_CONTEXT to it.
1540 		 */
1541 		sfmmu_setctx_sec(INVALID_CONTEXT);
1542 		sfmmu_clear_utsbinfo();
1543 
1544 		kpreempt_enable();
1545 		sfmmu_hat_exit(hatlockp);
1546 	}
1547 }
1548 
1549 /*
1550  * Free all the translation resources for the specified address space.
1551  * Called from as_free when an address space is being destroyed.
1552  */
1553 void
1554 hat_free_start(struct hat *sfmmup)
1555 {
1556 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
1557 	ASSERT(sfmmup != ksfmmup);
1558 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1559 
1560 	sfmmup->sfmmu_free = 1;
1561 }
1562 
1563 void
1564 hat_free_end(struct hat *sfmmup)
1565 {
1566 	int i;
1567 
1568 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1569 	if (sfmmup->sfmmu_ismhat) {
1570 		for (i = 0; i < mmu_page_sizes; i++) {
1571 			sfmmup->sfmmu_ttecnt[i] = 0;
1572 			sfmmup->sfmmu_ismttecnt[i] = 0;
1573 		}
1574 	} else {
1575 		/* EMPTY */
1576 		ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
1577 		ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
1578 		ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
1579 		ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
1580 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
1581 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
1582 	}
1583 
1584 	if (sfmmup->sfmmu_rmstat) {
1585 		hat_freestat(sfmmup->sfmmu_as, NULL);
1586 	}
1587 
1588 	while (sfmmup->sfmmu_tsb != NULL) {
1589 		struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
1590 		sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
1591 		sfmmup->sfmmu_tsb = next;
1592 	}
1593 	sfmmu_free_sfmmu(sfmmup);
1594 
1595 	kmem_cache_free(sfmmuid_cache, sfmmup);
1596 }
1597 
1598 /*
1599  * Set up any translation structures, for the specified address space,
1600  * that are needed or preferred when the process is being swapped in.
1601  */
1602 /* ARGSUSED */
1603 void
1604 hat_swapin(struct hat *hat)
1605 {
1606 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1607 }
1608 
1609 /*
1610  * Free all of the translation resources, for the specified address space,
1611  * that can be freed while the process is swapped out. Called from as_swapout.
1612  * Also, free up the ctx that this process was using.
1613  */
1614 void
1615 hat_swapout(struct hat *sfmmup)
1616 {
1617 	struct hmehash_bucket *hmebp;
1618 	struct hme_blk *hmeblkp;
1619 	struct hme_blk *pr_hblk = NULL;
1620 	struct hme_blk *nx_hblk;
1621 	int i;
1622 	uint64_t hblkpa, prevpa, nx_pa;
1623 	struct hme_blk *list = NULL;
1624 	hatlock_t *hatlockp;
1625 	struct tsb_info *tsbinfop;
1626 	struct free_tsb {
1627 		struct free_tsb *next;
1628 		struct tsb_info *tsbinfop;
1629 	};			/* free list of TSBs */
1630 	struct free_tsb *freelist, *last, *next;
1631 
1632 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1633 	SFMMU_STAT(sf_swapout);
1634 
1635 	/*
1636 	 * There is no way to go from an as to all its translations in sfmmu.
1637 	 * Here is one of the times when we take the big hit and traverse
1638 	 * the hash looking for hme_blks to free up.  Not only do we free up
1639 	 * this as hme_blks but all those that are free.  We are obviously
1640 	 * swapping because we need memory so let's free up as much
1641 	 * as we can.
1642 	 *
1643 	 * Note that we don't flush TLB/TSB here -- it's not necessary
1644 	 * because:
1645 	 *  1) we free the ctx we're using and throw away the TSB(s);
1646 	 *  2) processes aren't runnable while being swapped out.
1647 	 */
1648 	ASSERT(sfmmup != KHATID);
1649 	for (i = 0; i <= UHMEHASH_SZ; i++) {
1650 		hmebp = &uhme_hash[i];
1651 		SFMMU_HASH_LOCK(hmebp);
1652 		hmeblkp = hmebp->hmeblkp;
1653 		hblkpa = hmebp->hmeh_nextpa;
1654 		prevpa = 0;
1655 		pr_hblk = NULL;
1656 		while (hmeblkp) {
1657 
1658 			ASSERT(!hmeblkp->hblk_xhat_bit);
1659 
1660 			if ((hmeblkp->hblk_tag.htag_id == sfmmup) &&
1661 			    !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) {
1662 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
1663 					(caddr_t)get_hblk_base(hmeblkp),
1664 					get_hblk_endaddr(hmeblkp),
1665 					NULL, HAT_UNLOAD);
1666 			}
1667 			nx_hblk = hmeblkp->hblk_next;
1668 			nx_pa = hmeblkp->hblk_nextpa;
1669 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
1670 				ASSERT(!hmeblkp->hblk_lckcnt);
1671 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
1672 					prevpa, pr_hblk);
1673 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
1674 			} else {
1675 				pr_hblk = hmeblkp;
1676 				prevpa = hblkpa;
1677 			}
1678 			hmeblkp = nx_hblk;
1679 			hblkpa = nx_pa;
1680 		}
1681 		SFMMU_HASH_UNLOCK(hmebp);
1682 	}
1683 
1684 	sfmmu_hblks_list_purge(&list);
1685 
1686 	/*
1687 	 * Now free up the ctx so that others can reuse it.
1688 	 */
1689 	hatlockp = sfmmu_hat_enter(sfmmup);
1690 
1691 	sfmmu_invalidate_ctx(sfmmup);
1692 
1693 	/*
1694 	 * Free TSBs, but not tsbinfos, and set SWAPPED flag.
1695 	 * If TSBs were never swapped in, just return.
1696 	 * This implies that we don't support partial swapping
1697 	 * of TSBs -- either all are swapped out, or none are.
1698 	 *
1699 	 * We must hold the HAT lock here to prevent racing with another
1700 	 * thread trying to unmap TTEs from the TSB or running the post-
1701 	 * relocator after relocating the TSB's memory.  Unfortunately, we
1702 	 * can't free memory while holding the HAT lock or we could
1703 	 * deadlock, so we build a list of TSBs to be freed after marking
1704 	 * the tsbinfos as swapped out and free them after dropping the
1705 	 * lock.
1706 	 */
1707 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
1708 		sfmmu_hat_exit(hatlockp);
1709 		return;
1710 	}
1711 
1712 	SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED);
1713 	last = freelist = NULL;
1714 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
1715 	    tsbinfop = tsbinfop->tsb_next) {
1716 		ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0);
1717 
1718 		/*
1719 		 * Cast the TSB into a struct free_tsb and put it on the free
1720 		 * list.
1721 		 */
1722 		if (freelist == NULL) {
1723 			last = freelist = (struct free_tsb *)tsbinfop->tsb_va;
1724 		} else {
1725 			last->next = (struct free_tsb *)tsbinfop->tsb_va;
1726 			last = last->next;
1727 		}
1728 		last->next = NULL;
1729 		last->tsbinfop = tsbinfop;
1730 		tsbinfop->tsb_flags |= TSB_SWAPPED;
1731 		/*
1732 		 * Zero out the TTE to clear the valid bit.
1733 		 * Note we can't use a value like 0xbad because we want to
1734 		 * ensure diagnostic bits are NEVER set on TTEs that might
1735 		 * be loaded.  The intent is to catch any invalid access
1736 		 * to the swapped TSB, such as a thread running with a valid
1737 		 * context without first calling sfmmu_tsb_swapin() to
1738 		 * allocate TSB memory.
1739 		 */
1740 		tsbinfop->tsb_tte.ll = 0;
1741 	}
1742 
1743 #ifdef sun4v
1744 	if (freelist)
1745 		sfmmu_invalidate_tsbinfo(sfmmup);
1746 #endif	/* sun4v */
1747 
1748 	/* Now we can drop the lock and free the TSB memory. */
1749 	sfmmu_hat_exit(hatlockp);
1750 	for (; freelist != NULL; freelist = next) {
1751 		next = freelist->next;
1752 		sfmmu_tsb_free(freelist->tsbinfop);
1753 	}
1754 }
1755 
1756 /*
1757  * Duplicate the translations of an as into another newas
1758  */
1759 /* ARGSUSED */
1760 int
1761 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
1762 	uint_t flag)
1763 {
1764 	extern uint_t get_color_start(struct as *);
1765 
1766 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1767 	ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW));
1768 
1769 	if (flag == HAT_DUP_COW) {
1770 		panic("hat_dup: HAT_DUP_COW not supported");
1771 	}
1772 	if (flag == HAT_DUP_ALL && consistent_coloring == 0 &&
1773 	    update_proc_pgcolorbase_after_fork != 0) {
1774 		hat->sfmmu_clrbin = get_color_start(hat->sfmmu_as);
1775 	}
1776 	return (0);
1777 }
1778 
1779 /*
1780  * Set up addr to map to page pp with protection prot.
1781  * As an optimization we also load the TSB with the
1782  * corresponding tte but it is no big deal if  the tte gets kicked out.
1783  */
1784 void
1785 hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
1786 	uint_t attr, uint_t flags)
1787 {
1788 	tte_t tte;
1789 
1790 
1791 	ASSERT(hat != NULL);
1792 	ASSERT(PAGE_LOCKED(pp));
1793 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
1794 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
1795 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
1796 
1797 	if (PP_ISFREE(pp)) {
1798 		panic("hat_memload: loading a mapping to free page %p",
1799 		    (void *)pp);
1800 	}
1801 
1802 	if (hat->sfmmu_xhat_provider) {
1803 		XHAT_MEMLOAD(hat, addr, pp, attr, flags);
1804 		return;
1805 	}
1806 
1807 	ASSERT((hat == ksfmmup) ||
1808 		AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
1809 
1810 	if (flags & ~SFMMU_LOAD_ALLFLAG)
1811 		cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
1812 		    flags & ~SFMMU_LOAD_ALLFLAG);
1813 
1814 	if (hat->sfmmu_rmstat)
1815 		hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
1816 
1817 #if defined(SF_ERRATA_57)
1818 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1819 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1820 	    !(flags & HAT_LOAD_SHARE)) {
1821 		cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
1822 		    " page executable");
1823 		attr &= ~PROT_EXEC;
1824 	}
1825 #endif
1826 
1827 	sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
1828 	(void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags);
1829 
1830 	/*
1831 	 * Check TSB and TLB page sizes.
1832 	 */
1833 	if ((flags & HAT_LOAD_SHARE) == 0) {
1834 		sfmmu_check_page_sizes(hat, 1);
1835 	}
1836 }
1837 
1838 /*
1839  * hat_devload can be called to map real memory (e.g.
1840  * /dev/kmem) and even though hat_devload will determine pf is
1841  * for memory, it will be unable to get a shared lock on the
1842  * page (because someone else has it exclusively) and will
1843  * pass dp = NULL.  If tteload doesn't get a non-NULL
1844  * page pointer it can't cache memory.
1845  */
1846 void
1847 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
1848 	uint_t attr, int flags)
1849 {
1850 	tte_t tte;
1851 	struct page *pp = NULL;
1852 	int use_lgpg = 0;
1853 
1854 	ASSERT(hat != NULL);
1855 
1856 	if (hat->sfmmu_xhat_provider) {
1857 		XHAT_DEVLOAD(hat, addr, len, pfn, attr, flags);
1858 		return;
1859 	}
1860 
1861 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
1862 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
1863 	ASSERT((hat == ksfmmup) ||
1864 		AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
1865 	if (len == 0)
1866 		panic("hat_devload: zero len");
1867 	if (flags & ~SFMMU_LOAD_ALLFLAG)
1868 		cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
1869 		    flags & ~SFMMU_LOAD_ALLFLAG);
1870 
1871 #if defined(SF_ERRATA_57)
1872 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1873 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1874 	    !(flags & HAT_LOAD_SHARE)) {
1875 		cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
1876 		    " page executable");
1877 		attr &= ~PROT_EXEC;
1878 	}
1879 #endif
1880 
1881 	/*
1882 	 * If it's a memory page find its pp
1883 	 */
1884 	if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
1885 		pp = page_numtopp_nolock(pfn);
1886 		if (pp == NULL) {
1887 			flags |= HAT_LOAD_NOCONSIST;
1888 		} else {
1889 			if (PP_ISFREE(pp)) {
1890 				panic("hat_memload: loading "
1891 				    "a mapping to free page %p",
1892 				    (void *)pp);
1893 			}
1894 			if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
1895 				panic("hat_memload: loading a mapping "
1896 				    "to unlocked relocatable page %p",
1897 				    (void *)pp);
1898 			}
1899 			ASSERT(len == MMU_PAGESIZE);
1900 		}
1901 	}
1902 
1903 	if (hat->sfmmu_rmstat)
1904 		hat_resvstat(len, hat->sfmmu_as, addr);
1905 
1906 	if (flags & HAT_LOAD_NOCONSIST) {
1907 		attr |= SFMMU_UNCACHEVTTE;
1908 		use_lgpg = 1;
1909 	}
1910 	if (!pf_is_memory(pfn)) {
1911 		attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
1912 		use_lgpg = 1;
1913 		switch (attr & HAT_ORDER_MASK) {
1914 			case HAT_STRICTORDER:
1915 			case HAT_UNORDERED_OK:
1916 				/*
1917 				 * we set the side effect bit for all non
1918 				 * memory mappings unless merging is ok
1919 				 */
1920 				attr |= SFMMU_SIDEFFECT;
1921 				break;
1922 			case HAT_MERGING_OK:
1923 			case HAT_LOADCACHING_OK:
1924 			case HAT_STORECACHING_OK:
1925 				break;
1926 			default:
1927 				panic("hat_devload: bad attr");
1928 				break;
1929 		}
1930 	}
1931 	while (len) {
1932 		if (!use_lgpg) {
1933 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
1934 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1935 			    flags);
1936 			len -= MMU_PAGESIZE;
1937 			addr += MMU_PAGESIZE;
1938 			pfn++;
1939 			continue;
1940 		}
1941 		/*
1942 		 *  try to use large pages, check va/pa alignments
1943 		 *  Note that 32M/256M page sizes are not (yet) supported.
1944 		 */
1945 		if ((len >= MMU_PAGESIZE4M) &&
1946 		    !((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
1947 		    !(disable_large_pages & (1 << TTE4M)) &&
1948 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
1949 			sfmmu_memtte(&tte, pfn, attr, TTE4M);
1950 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1951 			    flags);
1952 			len -= MMU_PAGESIZE4M;
1953 			addr += MMU_PAGESIZE4M;
1954 			pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
1955 		} else if ((len >= MMU_PAGESIZE512K) &&
1956 		    !((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
1957 		    !(disable_large_pages & (1 << TTE512K)) &&
1958 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
1959 			sfmmu_memtte(&tte, pfn, attr, TTE512K);
1960 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1961 			    flags);
1962 			len -= MMU_PAGESIZE512K;
1963 			addr += MMU_PAGESIZE512K;
1964 			pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
1965 		} else if ((len >= MMU_PAGESIZE64K) &&
1966 		    !((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
1967 		    !(disable_large_pages & (1 << TTE64K)) &&
1968 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
1969 			sfmmu_memtte(&tte, pfn, attr, TTE64K);
1970 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1971 			    flags);
1972 			len -= MMU_PAGESIZE64K;
1973 			addr += MMU_PAGESIZE64K;
1974 			pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
1975 		} else {
1976 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
1977 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1978 			    flags);
1979 			len -= MMU_PAGESIZE;
1980 			addr += MMU_PAGESIZE;
1981 			pfn++;
1982 		}
1983 	}
1984 
1985 	/*
1986 	 * Check TSB and TLB page sizes.
1987 	 */
1988 	if ((flags & HAT_LOAD_SHARE) == 0) {
1989 		sfmmu_check_page_sizes(hat, 1);
1990 	}
1991 }
1992 
1993 /*
1994  * Map the largest extend possible out of the page array. The array may NOT
1995  * be in order.  The largest possible mapping a page can have
1996  * is specified in the p_szc field.  The p_szc field
1997  * cannot change as long as there any mappings (large or small)
1998  * to any of the pages that make up the large page. (ie. any
1999  * promotion/demotion of page size is not up to the hat but up to
2000  * the page free list manager).  The array
2001  * should consist of properly aligned contigous pages that are
2002  * part of a big page for a large mapping to be created.
2003  */
2004 void
2005 hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
2006 	struct page **pps, uint_t attr, uint_t flags)
2007 {
2008 	int  ttesz;
2009 	size_t mapsz;
2010 	pgcnt_t	numpg, npgs;
2011 	tte_t tte;
2012 	page_t *pp;
2013 	uint_t large_pages_disable;
2014 
2015 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2016 
2017 	if (hat->sfmmu_xhat_provider) {
2018 		XHAT_MEMLOAD_ARRAY(hat, addr, len, pps, attr, flags);
2019 		return;
2020 	}
2021 
2022 	if (hat->sfmmu_rmstat)
2023 		hat_resvstat(len, hat->sfmmu_as, addr);
2024 
2025 #if defined(SF_ERRATA_57)
2026 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2027 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2028 	    !(flags & HAT_LOAD_SHARE)) {
2029 		cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
2030 		    "user page executable");
2031 		attr &= ~PROT_EXEC;
2032 	}
2033 #endif
2034 
2035 	/* Get number of pages */
2036 	npgs = len >> MMU_PAGESHIFT;
2037 
2038 	if (flags & HAT_LOAD_SHARE) {
2039 		large_pages_disable = disable_ism_large_pages;
2040 	} else {
2041 		large_pages_disable = disable_large_pages;
2042 	}
2043 
2044 	if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
2045 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
2046 		return;
2047 	}
2048 
2049 	while (npgs >= NHMENTS) {
2050 		pp = *pps;
2051 		for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
2052 			/*
2053 			 * Check if this page size is disabled.
2054 			 */
2055 			if (large_pages_disable & (1 << ttesz))
2056 				continue;
2057 
2058 			numpg = TTEPAGES(ttesz);
2059 			mapsz = numpg << MMU_PAGESHIFT;
2060 			if ((npgs >= numpg) &&
2061 			    IS_P2ALIGNED(addr, mapsz) &&
2062 			    IS_P2ALIGNED(pp->p_pagenum, numpg)) {
2063 				/*
2064 				 * At this point we have enough pages and
2065 				 * we know the virtual address and the pfn
2066 				 * are properly aligned.  We still need
2067 				 * to check for physical contiguity but since
2068 				 * it is very likely that this is the case
2069 				 * we will assume they are so and undo
2070 				 * the request if necessary.  It would
2071 				 * be great if we could get a hint flag
2072 				 * like HAT_CONTIG which would tell us
2073 				 * the pages are contigous for sure.
2074 				 */
2075 				sfmmu_memtte(&tte, (*pps)->p_pagenum,
2076 					attr, ttesz);
2077 				if (!sfmmu_tteload_array(hat, &tte, addr,
2078 				    pps, flags)) {
2079 					break;
2080 				}
2081 			}
2082 		}
2083 		if (ttesz == TTE8K) {
2084 			/*
2085 			 * We were not able to map array using a large page
2086 			 * batch a hmeblk or fraction at a time.
2087 			 */
2088 			numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
2089 				& (NHMENTS-1);
2090 			numpg = NHMENTS - numpg;
2091 			ASSERT(numpg <= npgs);
2092 			mapsz = numpg * MMU_PAGESIZE;
2093 			sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
2094 							numpg);
2095 		}
2096 		addr += mapsz;
2097 		npgs -= numpg;
2098 		pps += numpg;
2099 	}
2100 
2101 	if (npgs) {
2102 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
2103 	}
2104 
2105 	/*
2106 	 * Check TSB and TLB page sizes.
2107 	 */
2108 	if ((flags & HAT_LOAD_SHARE) == 0) {
2109 		sfmmu_check_page_sizes(hat, 1);
2110 	}
2111 }
2112 
2113 /*
2114  * Function tries to batch 8K pages into the same hme blk.
2115  */
2116 static void
2117 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
2118 		    uint_t attr, uint_t flags, pgcnt_t npgs)
2119 {
2120 	tte_t	tte;
2121 	page_t *pp;
2122 	struct hmehash_bucket *hmebp;
2123 	struct hme_blk *hmeblkp;
2124 	int	index;
2125 
2126 	while (npgs) {
2127 		/*
2128 		 * Acquire the hash bucket.
2129 		 */
2130 		hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K);
2131 		ASSERT(hmebp);
2132 
2133 		/*
2134 		 * Find the hment block.
2135 		 */
2136 		hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
2137 				TTE8K, flags);
2138 		ASSERT(hmeblkp);
2139 
2140 		do {
2141 			/*
2142 			 * Make the tte.
2143 			 */
2144 			pp = *pps;
2145 			sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2146 
2147 			/*
2148 			 * Add the translation.
2149 			 */
2150 			(void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
2151 					vaddr, pps, flags);
2152 
2153 			/*
2154 			 * Goto next page.
2155 			 */
2156 			pps++;
2157 			npgs--;
2158 
2159 			/*
2160 			 * Goto next address.
2161 			 */
2162 			vaddr += MMU_PAGESIZE;
2163 
2164 			/*
2165 			 * Don't crossover into a different hmentblk.
2166 			 */
2167 			index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
2168 			    (NHMENTS-1));
2169 
2170 		} while (index != 0 && npgs != 0);
2171 
2172 		/*
2173 		 * Release the hash bucket.
2174 		 */
2175 
2176 		sfmmu_tteload_release_hashbucket(hmebp);
2177 	}
2178 }
2179 
2180 /*
2181  * Construct a tte for a page:
2182  *
2183  * tte_valid = 1
2184  * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only)
2185  * tte_size = size
2186  * tte_nfo = attr & HAT_NOFAULT
2187  * tte_ie = attr & HAT_STRUCTURE_LE
2188  * tte_hmenum = hmenum
2189  * tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
2190  * tte_palo = pp->p_pagenum & TTE_PALOMASK;
2191  * tte_ref = 1 (optimization)
2192  * tte_wr_perm = attr & PROT_WRITE;
2193  * tte_no_sync = attr & HAT_NOSYNC
2194  * tte_lock = attr & SFMMU_LOCKTTE
2195  * tte_cp = !(attr & SFMMU_UNCACHEPTTE)
2196  * tte_cv = !(attr & SFMMU_UNCACHEVTTE)
2197  * tte_e = attr & SFMMU_SIDEFFECT
2198  * tte_priv = !(attr & PROT_USER)
2199  * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
2200  * tte_glb = 0
2201  */
2202 void
2203 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
2204 {
2205 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2206 
2207 	ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
2208 	ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
2209 
2210 	if (TTE_IS_NOSYNC(ttep)) {
2211 		TTE_SET_REF(ttep);
2212 		if (TTE_IS_WRITABLE(ttep)) {
2213 			TTE_SET_MOD(ttep);
2214 		}
2215 	}
2216 	if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
2217 		panic("sfmmu_memtte: can't set both NFO and EXEC bits");
2218 	}
2219 }
2220 
2221 /*
2222  * This function will add a translation to the hme_blk and allocate the
2223  * hme_blk if one does not exist.
2224  * If a page structure is specified then it will add the
2225  * corresponding hment to the mapping list.
2226  * It will also update the hmenum field for the tte.
2227  */
2228 void
2229 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
2230 	uint_t flags)
2231 {
2232 	(void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags);
2233 }
2234 
2235 /*
2236  * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
2237  * Assumes that a particular page size may only be resident in one TSB.
2238  */
2239 static void
2240 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
2241 {
2242 	struct tsb_info *tsbinfop = NULL;
2243 	uint64_t tag;
2244 	struct tsbe *tsbe_addr;
2245 	uint64_t tsb_base;
2246 	uint_t tsb_size;
2247 	int vpshift = MMU_PAGESHIFT;
2248 	int phys = 0;
2249 
2250 	if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
2251 		phys = ktsb_phys;
2252 		if (ttesz >= TTE4M) {
2253 #ifndef sun4v
2254 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2255 #endif
2256 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2257 			tsb_size = ktsb4m_szcode;
2258 		} else {
2259 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2260 			tsb_size = ktsb_szcode;
2261 		}
2262 	} else {
2263 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2264 
2265 		/*
2266 		 * If there isn't a TSB for this page size, or the TSB is
2267 		 * swapped out, there is nothing to do.  Note that the latter
2268 		 * case seems impossible but can occur if hat_pageunload()
2269 		 * is called on an ISM mapping while the process is swapped
2270 		 * out.
2271 		 */
2272 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2273 			return;
2274 
2275 		/*
2276 		 * If another thread is in the middle of relocating a TSB
2277 		 * we can't unload the entry so set a flag so that the
2278 		 * TSB will be flushed before it can be accessed by the
2279 		 * process.
2280 		 */
2281 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2282 			if (ttep == NULL)
2283 				tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2284 			return;
2285 		}
2286 #if defined(UTSB_PHYS)
2287 		phys = 1;
2288 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2289 #else
2290 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2291 #endif
2292 		tsb_size = tsbinfop->tsb_szc;
2293 	}
2294 	if (ttesz >= TTE4M)
2295 		vpshift = MMU_PAGESHIFT4M;
2296 
2297 	tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2298 	tag = sfmmu_make_tsbtag(vaddr);
2299 
2300 	if (ttep == NULL) {
2301 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2302 	} else {
2303 		if (ttesz >= TTE4M) {
2304 			SFMMU_STAT(sf_tsb_load4m);
2305 		} else {
2306 			SFMMU_STAT(sf_tsb_load8k);
2307 		}
2308 
2309 		sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
2310 	}
2311 }
2312 
2313 /*
2314  * Unmap all entries from [start, end) matching the given page size.
2315  *
2316  * This function is used primarily to unmap replicated 64K or 512K entries
2317  * from the TSB that are inserted using the base page size TSB pointer, but
2318  * it may also be called to unmap a range of addresses from the TSB.
2319  */
2320 void
2321 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
2322 {
2323 	struct tsb_info *tsbinfop;
2324 	uint64_t tag;
2325 	struct tsbe *tsbe_addr;
2326 	caddr_t vaddr;
2327 	uint64_t tsb_base;
2328 	int vpshift, vpgsz;
2329 	uint_t tsb_size;
2330 	int phys = 0;
2331 
2332 	/*
2333 	 * Assumptions:
2334 	 *  If ttesz == 8K, 64K or 512K, we walk through the range 8K
2335 	 *  at a time shooting down any valid entries we encounter.
2336 	 *
2337 	 *  If ttesz >= 4M we walk the range 4M at a time shooting
2338 	 *  down any valid mappings we find.
2339 	 */
2340 	if (sfmmup == ksfmmup) {
2341 		phys = ktsb_phys;
2342 		if (ttesz >= TTE4M) {
2343 #ifndef sun4v
2344 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2345 #endif
2346 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2347 			tsb_size = ktsb4m_szcode;
2348 		} else {
2349 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2350 			tsb_size = ktsb_szcode;
2351 		}
2352 	} else {
2353 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2354 
2355 		/*
2356 		 * If there isn't a TSB for this page size, or the TSB is
2357 		 * swapped out, there is nothing to do.  Note that the latter
2358 		 * case seems impossible but can occur if hat_pageunload()
2359 		 * is called on an ISM mapping while the process is swapped
2360 		 * out.
2361 		 */
2362 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2363 			return;
2364 
2365 		/*
2366 		 * If another thread is in the middle of relocating a TSB
2367 		 * we can't unload the entry so set a flag so that the
2368 		 * TSB will be flushed before it can be accessed by the
2369 		 * process.
2370 		 */
2371 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2372 			tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2373 			return;
2374 		}
2375 #if defined(UTSB_PHYS)
2376 		phys = 1;
2377 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2378 #else
2379 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2380 #endif
2381 		tsb_size = tsbinfop->tsb_szc;
2382 	}
2383 	if (ttesz >= TTE4M) {
2384 		vpshift = MMU_PAGESHIFT4M;
2385 		vpgsz = MMU_PAGESIZE4M;
2386 	} else {
2387 		vpshift = MMU_PAGESHIFT;
2388 		vpgsz = MMU_PAGESIZE;
2389 	}
2390 
2391 	for (vaddr = start; vaddr < end; vaddr += vpgsz) {
2392 		tag = sfmmu_make_tsbtag(vaddr);
2393 		tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2394 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2395 	}
2396 }
2397 
2398 /*
2399  * Select the optimum TSB size given the number of mappings
2400  * that need to be cached.
2401  */
2402 static int
2403 sfmmu_select_tsb_szc(pgcnt_t pgcnt)
2404 {
2405 	int szc = 0;
2406 
2407 #ifdef DEBUG
2408 	if (tsb_grow_stress) {
2409 		uint32_t randval = (uint32_t)gettick() >> 4;
2410 		return (randval % (tsb_max_growsize + 1));
2411 	}
2412 #endif	/* DEBUG */
2413 
2414 	while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
2415 		szc++;
2416 	return (szc);
2417 }
2418 
2419 /*
2420  * This function will add a translation to the hme_blk and allocate the
2421  * hme_blk if one does not exist.
2422  * If a page structure is specified then it will add the
2423  * corresponding hment to the mapping list.
2424  * It will also update the hmenum field for the tte.
2425  * Furthermore, it attempts to create a large page translation
2426  * for <addr,hat> at page array pps.  It assumes addr and first
2427  * pp is correctly aligned.  It returns 0 if successful and 1 otherwise.
2428  */
2429 static int
2430 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
2431 	page_t **pps, uint_t flags)
2432 {
2433 	struct hmehash_bucket *hmebp;
2434 	struct hme_blk *hmeblkp;
2435 	int 	ret;
2436 	uint_t	size;
2437 
2438 	/*
2439 	 * Get mapping size.
2440 	 */
2441 	size = TTE_CSZ(ttep);
2442 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2443 
2444 	/*
2445 	 * Acquire the hash bucket.
2446 	 */
2447 	hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size);
2448 	ASSERT(hmebp);
2449 
2450 	/*
2451 	 * Find the hment block.
2452 	 */
2453 	hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags);
2454 	ASSERT(hmeblkp);
2455 
2456 	/*
2457 	 * Add the translation.
2458 	 */
2459 	ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags);
2460 
2461 	/*
2462 	 * Release the hash bucket.
2463 	 */
2464 	sfmmu_tteload_release_hashbucket(hmebp);
2465 
2466 	return (ret);
2467 }
2468 
2469 /*
2470  * Function locks and returns a pointer to the hash bucket for vaddr and size.
2471  */
2472 static struct hmehash_bucket *
2473 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size)
2474 {
2475 	struct hmehash_bucket *hmebp;
2476 	int hmeshift;
2477 
2478 	hmeshift = HME_HASH_SHIFT(size);
2479 
2480 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
2481 
2482 	SFMMU_HASH_LOCK(hmebp);
2483 
2484 	return (hmebp);
2485 }
2486 
2487 /*
2488  * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
2489  * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
2490  * allocated.
2491  */
2492 static struct hme_blk *
2493 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
2494 	caddr_t vaddr, uint_t size, uint_t flags)
2495 {
2496 	hmeblk_tag hblktag;
2497 	int hmeshift;
2498 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
2499 	uint64_t hblkpa, prevpa;
2500 	struct kmem_cache *sfmmu_cache;
2501 	uint_t forcefree;
2502 
2503 	hblktag.htag_id = sfmmup;
2504 	hmeshift = HME_HASH_SHIFT(size);
2505 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2506 	hblktag.htag_rehash = HME_HASH_REHASH(size);
2507 
2508 ttearray_realloc:
2509 
2510 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa,
2511 	    pr_hblk, prevpa, &list);
2512 
2513 	/*
2514 	 * We block until hblk_reserve_lock is released; it's held by
2515 	 * the thread, temporarily using hblk_reserve, until hblk_reserve is
2516 	 * replaced by a hblk from sfmmu8_cache.
2517 	 */
2518 	if (hmeblkp == (struct hme_blk *)hblk_reserve &&
2519 	    hblk_reserve_thread != curthread) {
2520 		SFMMU_HASH_UNLOCK(hmebp);
2521 		mutex_enter(&hblk_reserve_lock);
2522 		mutex_exit(&hblk_reserve_lock);
2523 		SFMMU_STAT(sf_hblk_reserve_hit);
2524 		SFMMU_HASH_LOCK(hmebp);
2525 		goto ttearray_realloc;
2526 	}
2527 
2528 	if (hmeblkp == NULL) {
2529 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
2530 		    hblktag, flags);
2531 	} else {
2532 		/*
2533 		 * It is possible for 8k and 64k hblks to collide since they
2534 		 * have the same rehash value. This is because we
2535 		 * lazily free hblks and 8K/64K blks could be lingering.
2536 		 * If we find size mismatch we free the block and & try again.
2537 		 */
2538 		if (get_hblk_ttesz(hmeblkp) != size) {
2539 			ASSERT(!hmeblkp->hblk_vcnt);
2540 			ASSERT(!hmeblkp->hblk_hmecnt);
2541 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
2542 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
2543 			goto ttearray_realloc;
2544 		}
2545 		if (hmeblkp->hblk_shw_bit) {
2546 			/*
2547 			 * if the hblk was previously used as a shadow hblk then
2548 			 * we will change it to a normal hblk
2549 			 */
2550 			if (hmeblkp->hblk_shw_mask) {
2551 				sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
2552 				ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2553 				goto ttearray_realloc;
2554 			} else {
2555 				hmeblkp->hblk_shw_bit = 0;
2556 			}
2557 		}
2558 		SFMMU_STAT(sf_hblk_hit);
2559 	}
2560 
2561 	/*
2562 	 * hat_memload() should never call kmem_cache_free(); see block
2563 	 * comment showing the stacktrace in sfmmu_hblk_alloc();
2564 	 * enqueue each hblk in the list to reserve list if it's created
2565 	 * from sfmmu8_cache *and* sfmmup == KHATID.
2566 	 */
2567 	forcefree = (sfmmup == KHATID) ? 1 : 0;
2568 	while ((pr_hblk = list) != NULL) {
2569 		list = pr_hblk->hblk_next;
2570 		sfmmu_cache = get_hblk_cache(pr_hblk);
2571 		if ((sfmmu_cache == sfmmu8_cache) &&
2572 		    sfmmu_put_free_hblk(pr_hblk, forcefree))
2573 			continue;
2574 
2575 		ASSERT(sfmmup != KHATID);
2576 		kmem_cache_free(sfmmu_cache, pr_hblk);
2577 	}
2578 
2579 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
2580 	ASSERT(!hmeblkp->hblk_shw_bit);
2581 
2582 	return (hmeblkp);
2583 }
2584 
2585 /*
2586  * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
2587  * otherwise.
2588  */
2589 static int
2590 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
2591 	caddr_t vaddr, page_t **pps, uint_t flags)
2592 {
2593 	page_t *pp = *pps;
2594 	int hmenum, size, remap;
2595 	tte_t tteold, flush_tte;
2596 #ifdef DEBUG
2597 	tte_t orig_old;
2598 #endif /* DEBUG */
2599 	struct sf_hment *sfhme;
2600 	kmutex_t *pml, *pmtx;
2601 	hatlock_t *hatlockp;
2602 
2603 	/*
2604 	 * remove this panic when we decide to let user virtual address
2605 	 * space be >= USERLIMIT.
2606 	 */
2607 	if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
2608 		panic("user addr %p in kernel space", vaddr);
2609 #if defined(TTE_IS_GLOBAL)
2610 	if (TTE_IS_GLOBAL(ttep))
2611 		panic("sfmmu_tteload: creating global tte");
2612 #endif
2613 
2614 #ifdef DEBUG
2615 	if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
2616 	    !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
2617 		panic("sfmmu_tteload: non cacheable memory tte");
2618 #endif /* DEBUG */
2619 
2620 	if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
2621 	    !TTE_IS_MOD(ttep)) {
2622 		/*
2623 		 * Don't load TSB for dummy as in ISM.  Also don't preload
2624 		 * the TSB if the TTE isn't writable since we're likely to
2625 		 * fault on it again -- preloading can be fairly expensive.
2626 		 */
2627 		flags |= SFMMU_NO_TSBLOAD;
2628 	}
2629 
2630 	size = TTE_CSZ(ttep);
2631 	switch (size) {
2632 	case TTE8K:
2633 		SFMMU_STAT(sf_tteload8k);
2634 		break;
2635 	case TTE64K:
2636 		SFMMU_STAT(sf_tteload64k);
2637 		break;
2638 	case TTE512K:
2639 		SFMMU_STAT(sf_tteload512k);
2640 		break;
2641 	case TTE4M:
2642 		SFMMU_STAT(sf_tteload4m);
2643 		break;
2644 	case (TTE32M):
2645 		SFMMU_STAT(sf_tteload32m);
2646 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2647 		break;
2648 	case (TTE256M):
2649 		SFMMU_STAT(sf_tteload256m);
2650 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2651 		break;
2652 	}
2653 
2654 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2655 
2656 	HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
2657 
2658 	/*
2659 	 * Need to grab mlist lock here so that pageunload
2660 	 * will not change tte behind us.
2661 	 */
2662 	if (pp) {
2663 		pml = sfmmu_mlist_enter(pp);
2664 	}
2665 
2666 	sfmmu_copytte(&sfhme->hme_tte, &tteold);
2667 	/*
2668 	 * Look for corresponding hment and if valid verify
2669 	 * pfns are equal.
2670 	 */
2671 	remap = TTE_IS_VALID(&tteold);
2672 	if (remap) {
2673 		pfn_t	new_pfn, old_pfn;
2674 
2675 		old_pfn = TTE_TO_PFN(vaddr, &tteold);
2676 		new_pfn = TTE_TO_PFN(vaddr, ttep);
2677 
2678 		if (flags & HAT_LOAD_REMAP) {
2679 			/* make sure we are remapping same type of pages */
2680 			if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
2681 				panic("sfmmu_tteload - tte remap io<->memory");
2682 			}
2683 			if (old_pfn != new_pfn &&
2684 			    (pp != NULL || sfhme->hme_page != NULL)) {
2685 				panic("sfmmu_tteload - tte remap pp != NULL");
2686 			}
2687 		} else if (old_pfn != new_pfn) {
2688 			panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
2689 			    (void *)hmeblkp);
2690 		}
2691 		ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
2692 	}
2693 
2694 	if (pp) {
2695 		if (size == TTE8K) {
2696 #ifdef VAC
2697 			/*
2698 			 * Handle VAC consistency
2699 			 */
2700 			if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
2701 				sfmmu_vac_conflict(sfmmup, vaddr, pp);
2702 			}
2703 #endif
2704 
2705 			if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
2706 				pmtx = sfmmu_page_enter(pp);
2707 				PP_CLRRO(pp);
2708 				sfmmu_page_exit(pmtx);
2709 			} else if (!PP_ISMAPPED(pp) &&
2710 			    (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
2711 				pmtx = sfmmu_page_enter(pp);
2712 				if (!(PP_ISMOD(pp))) {
2713 					PP_SETRO(pp);
2714 				}
2715 				sfmmu_page_exit(pmtx);
2716 			}
2717 
2718 		} else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
2719 			/*
2720 			 * sfmmu_pagearray_setup failed so return
2721 			 */
2722 			sfmmu_mlist_exit(pml);
2723 			return (1);
2724 		}
2725 	}
2726 
2727 	/*
2728 	 * Make sure hment is not on a mapping list.
2729 	 */
2730 	ASSERT(remap || (sfhme->hme_page == NULL));
2731 
2732 	/* if it is not a remap then hme->next better be NULL */
2733 	ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
2734 
2735 	if (flags & HAT_LOAD_LOCK) {
2736 		if (((int)hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
2737 			panic("too high lckcnt-hmeblk %p",
2738 			    (void *)hmeblkp);
2739 		}
2740 		atomic_add_16(&hmeblkp->hblk_lckcnt, 1);
2741 
2742 		HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
2743 	}
2744 
2745 #ifdef VAC
2746 	if (pp && PP_ISNC(pp)) {
2747 		/*
2748 		 * If the physical page is marked to be uncacheable, like
2749 		 * by a vac conflict, make sure the new mapping is also
2750 		 * uncacheable.
2751 		 */
2752 		TTE_CLR_VCACHEABLE(ttep);
2753 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
2754 	}
2755 #endif
2756 	ttep->tte_hmenum = hmenum;
2757 
2758 #ifdef DEBUG
2759 	orig_old = tteold;
2760 #endif /* DEBUG */
2761 
2762 	while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
2763 		if ((sfmmup == KHATID) &&
2764 		    (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
2765 			sfmmu_copytte(&sfhme->hme_tte, &tteold);
2766 		}
2767 #ifdef DEBUG
2768 		chk_tte(&orig_old, &tteold, ttep, hmeblkp);
2769 #endif /* DEBUG */
2770 	}
2771 
2772 	if (!TTE_IS_VALID(&tteold)) {
2773 
2774 		atomic_add_16(&hmeblkp->hblk_vcnt, 1);
2775 		atomic_add_long(&sfmmup->sfmmu_ttecnt[size], 1);
2776 
2777 		/*
2778 		 * HAT_RELOAD_SHARE has been deprecated with lpg DISM.
2779 		 */
2780 
2781 		if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
2782 		    sfmmup != ksfmmup) {
2783 			/*
2784 			 * If this is the first large mapping for the process
2785 			 * we must force any CPUs running this process to TL=0
2786 			 * where they will reload the HAT flags from the
2787 			 * tsbmiss area.  This is necessary to make the large
2788 			 * mappings we are about to load visible to those CPUs;
2789 			 * otherwise they'll loop forever calling pagefault()
2790 			 * since we don't search large hash chains by default.
2791 			 */
2792 			hatlockp = sfmmu_hat_enter(sfmmup);
2793 			if (size == TTE512K &&
2794 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_512K_FLAG)) {
2795 				SFMMU_FLAGS_SET(sfmmup, HAT_512K_FLAG);
2796 				sfmmu_sync_mmustate(sfmmup);
2797 			} else if (size == TTE4M &&
2798 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
2799 				SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
2800 				sfmmu_sync_mmustate(sfmmup);
2801 			} else if (size == TTE64K &&
2802 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG)) {
2803 				SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
2804 				/* no sync mmustate; 64K shares 8K hashes */
2805 			} else if (mmu_page_sizes == max_mmu_page_sizes) {
2806 			    if (size == TTE32M &&
2807 				!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
2808 				SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
2809 				sfmmu_sync_mmustate(sfmmup);
2810 			    } else if (size == TTE256M &&
2811 				!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
2812 				SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
2813 				sfmmu_sync_mmustate(sfmmup);
2814 			    }
2815 			}
2816 			if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
2817 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
2818 				SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
2819 			}
2820 			sfmmu_hat_exit(hatlockp);
2821 		}
2822 	}
2823 	ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
2824 
2825 	flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
2826 	    hw_tte.tte_intlo;
2827 	flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
2828 	    hw_tte.tte_inthi;
2829 
2830 	if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
2831 		/*
2832 		 * If remap and new tte differs from old tte we need
2833 		 * to sync the mod bit and flush TLB/TSB.  We don't
2834 		 * need to sync ref bit because we currently always set
2835 		 * ref bit in tteload.
2836 		 */
2837 		ASSERT(TTE_IS_REF(ttep));
2838 		if (TTE_IS_MOD(&tteold)) {
2839 			sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
2840 		}
2841 		sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
2842 		xt_sync(sfmmup->sfmmu_cpusran);
2843 	}
2844 
2845 	if ((flags & SFMMU_NO_TSBLOAD) == 0) {
2846 		/*
2847 		 * We only preload 8K and 4M mappings into the TSB, since
2848 		 * 64K and 512K mappings are replicated and hence don't
2849 		 * have a single, unique TSB entry. Ditto for 32M/256M.
2850 		 */
2851 		if (size == TTE8K || size == TTE4M) {
2852 			hatlockp = sfmmu_hat_enter(sfmmup);
2853 			sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte, size);
2854 			sfmmu_hat_exit(hatlockp);
2855 		}
2856 	}
2857 	if (pp) {
2858 		if (!remap) {
2859 			HME_ADD(sfhme, pp);
2860 			atomic_add_16(&hmeblkp->hblk_hmecnt, 1);
2861 			ASSERT(hmeblkp->hblk_hmecnt > 0);
2862 
2863 			/*
2864 			 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
2865 			 * see pageunload() for comment.
2866 			 */
2867 		}
2868 		sfmmu_mlist_exit(pml);
2869 	}
2870 
2871 	return (0);
2872 }
2873 /*
2874  * Function unlocks hash bucket.
2875  */
2876 static void
2877 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
2878 {
2879 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2880 	SFMMU_HASH_UNLOCK(hmebp);
2881 }
2882 
2883 /*
2884  * function which checks and sets up page array for a large
2885  * translation.  Will set p_vcolor, p_index, p_ro fields.
2886  * Assumes addr and pfnum of first page are properly aligned.
2887  * Will check for physical contiguity. If check fails it return
2888  * non null.
2889  */
2890 static int
2891 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
2892 {
2893 	int 	i, index, ttesz;
2894 	pfn_t	pfnum;
2895 	pgcnt_t	npgs;
2896 	page_t *pp, *pp1;
2897 	kmutex_t *pmtx;
2898 #ifdef VAC
2899 	int osz;
2900 	int cflags = 0;
2901 	int vac_err = 0;
2902 #endif
2903 	int newidx = 0;
2904 
2905 	ttesz = TTE_CSZ(ttep);
2906 
2907 	ASSERT(ttesz > TTE8K);
2908 
2909 	npgs = TTEPAGES(ttesz);
2910 	index = PAGESZ_TO_INDEX(ttesz);
2911 
2912 	pfnum = (*pps)->p_pagenum;
2913 	ASSERT(IS_P2ALIGNED(pfnum, npgs));
2914 
2915 	/*
2916 	 * Save the first pp so we can do HAT_TMPNC at the end.
2917 	 */
2918 	pp1 = *pps;
2919 #ifdef VAC
2920 	osz = fnd_mapping_sz(pp1);
2921 #endif
2922 
2923 	for (i = 0; i < npgs; i++, pps++) {
2924 		pp = *pps;
2925 		ASSERT(PAGE_LOCKED(pp));
2926 		ASSERT(pp->p_szc >= ttesz);
2927 		ASSERT(pp->p_szc == pp1->p_szc);
2928 		ASSERT(sfmmu_mlist_held(pp));
2929 
2930 		/*
2931 		 * XXX is it possible to maintain P_RO on the root only?
2932 		 */
2933 		if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
2934 			pmtx = sfmmu_page_enter(pp);
2935 			PP_CLRRO(pp);
2936 			sfmmu_page_exit(pmtx);
2937 		} else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
2938 		    !PP_ISMOD(pp)) {
2939 			pmtx = sfmmu_page_enter(pp);
2940 			if (!(PP_ISMOD(pp))) {
2941 				PP_SETRO(pp);
2942 			}
2943 			sfmmu_page_exit(pmtx);
2944 		}
2945 
2946 		/*
2947 		 * If this is a remap we skip vac & contiguity checks.
2948 		 */
2949 		if (remap)
2950 			continue;
2951 
2952 		/*
2953 		 * set p_vcolor and detect any vac conflicts.
2954 		 */
2955 #ifdef VAC
2956 		if (vac_err == 0) {
2957 			vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
2958 
2959 		}
2960 #endif
2961 
2962 		/*
2963 		 * Save current index in case we need to undo it.
2964 		 * Note: "PAGESZ_TO_INDEX(sz)	(1 << (sz))"
2965 		 *	"SFMMU_INDEX_SHIFT	6"
2966 		 *	 "SFMMU_INDEX_MASK	((1 << SFMMU_INDEX_SHIFT) - 1)"
2967 		 *	 "PP_MAPINDEX(p_index)	(p_index & SFMMU_INDEX_MASK)"
2968 		 *
2969 		 * So:	index = PAGESZ_TO_INDEX(ttesz);
2970 		 *	if ttesz == 1 then index = 0x2
2971 		 *		    2 then index = 0x4
2972 		 *		    3 then index = 0x8
2973 		 *		    4 then index = 0x10
2974 		 *		    5 then index = 0x20
2975 		 * The code below checks if it's a new pagesize (ie, newidx)
2976 		 * in case we need to take it back out of p_index,
2977 		 * and then or's the new index into the existing index.
2978 		 */
2979 		if ((PP_MAPINDEX(pp) & index) == 0)
2980 			newidx = 1;
2981 		pp->p_index = (PP_MAPINDEX(pp) | index);
2982 
2983 		/*
2984 		 * contiguity check
2985 		 */
2986 		if (pp->p_pagenum != pfnum) {
2987 			/*
2988 			 * If we fail the contiguity test then
2989 			 * the only thing we need to fix is the p_index field.
2990 			 * We might get a few extra flushes but since this
2991 			 * path is rare that is ok.  The p_ro field will
2992 			 * get automatically fixed on the next tteload to
2993 			 * the page.  NO TNC bit is set yet.
2994 			 */
2995 			while (i >= 0) {
2996 				pp = *pps;
2997 				if (newidx)
2998 					pp->p_index = (PP_MAPINDEX(pp) &
2999 					    ~index);
3000 				pps--;
3001 				i--;
3002 			}
3003 			return (1);
3004 		}
3005 		pfnum++;
3006 		addr += MMU_PAGESIZE;
3007 	}
3008 
3009 #ifdef VAC
3010 	if (vac_err) {
3011 		if (ttesz > osz) {
3012 			/*
3013 			 * There are some smaller mappings that causes vac
3014 			 * conflicts. Convert all existing small mappings to
3015 			 * TNC.
3016 			 */
3017 			SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
3018 			sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
3019 				npgs);
3020 		} else {
3021 			/* EMPTY */
3022 			/*
3023 			 * If there exists an big page mapping,
3024 			 * that means the whole existing big page
3025 			 * has TNC setting already. No need to covert to
3026 			 * TNC again.
3027 			 */
3028 			ASSERT(PP_ISTNC(pp1));
3029 		}
3030 	}
3031 #endif	/* VAC */
3032 
3033 	return (0);
3034 }
3035 
3036 #ifdef VAC
3037 /*
3038  * Routine that detects vac consistency for a large page. It also
3039  * sets virtual color for all pp's for this big mapping.
3040  */
3041 static int
3042 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
3043 {
3044 	int vcolor, ocolor;
3045 
3046 	ASSERT(sfmmu_mlist_held(pp));
3047 
3048 	if (PP_ISNC(pp)) {
3049 		return (HAT_TMPNC);
3050 	}
3051 
3052 	vcolor = addr_to_vcolor(addr);
3053 	if (PP_NEWPAGE(pp)) {
3054 		PP_SET_VCOLOR(pp, vcolor);
3055 		return (0);
3056 	}
3057 
3058 	ocolor = PP_GET_VCOLOR(pp);
3059 	if (ocolor == vcolor) {
3060 		return (0);
3061 	}
3062 
3063 	if (!PP_ISMAPPED(pp)) {
3064 		/*
3065 		 * Previous user of page had a differnet color
3066 		 * but since there are no current users
3067 		 * we just flush the cache and change the color.
3068 		 * As an optimization for large pages we flush the
3069 		 * entire cache of that color and set a flag.
3070 		 */
3071 		SFMMU_STAT(sf_pgcolor_conflict);
3072 		if (!CacheColor_IsFlushed(*cflags, ocolor)) {
3073 			CacheColor_SetFlushed(*cflags, ocolor);
3074 			sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
3075 		}
3076 		PP_SET_VCOLOR(pp, vcolor);
3077 		return (0);
3078 	}
3079 
3080 	/*
3081 	 * We got a real conflict with a current mapping.
3082 	 * set flags to start unencaching all mappings
3083 	 * and return failure so we restart looping
3084 	 * the pp array from the beginning.
3085 	 */
3086 	return (HAT_TMPNC);
3087 }
3088 #endif	/* VAC */
3089 
3090 /*
3091  * creates a large page shadow hmeblk for a tte.
3092  * The purpose of this routine is to allow us to do quick unloads because
3093  * the vm layer can easily pass a very large but sparsely populated range.
3094  */
3095 static struct hme_blk *
3096 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
3097 {
3098 	struct hmehash_bucket *hmebp;
3099 	hmeblk_tag hblktag;
3100 	int hmeshift, size, vshift;
3101 	uint_t shw_mask, newshw_mask;
3102 	struct hme_blk *hmeblkp;
3103 
3104 	ASSERT(sfmmup != KHATID);
3105 	if (mmu_page_sizes == max_mmu_page_sizes) {
3106 		ASSERT(ttesz < TTE256M);
3107 	} else {
3108 		ASSERT(ttesz < TTE4M);
3109 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
3110 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
3111 	}
3112 
3113 	if (ttesz == TTE8K) {
3114 		size = TTE512K;
3115 	} else {
3116 		size = ++ttesz;
3117 	}
3118 
3119 	hblktag.htag_id = sfmmup;
3120 	hmeshift = HME_HASH_SHIFT(size);
3121 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
3122 	hblktag.htag_rehash = HME_HASH_REHASH(size);
3123 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
3124 
3125 	SFMMU_HASH_LOCK(hmebp);
3126 
3127 	HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3128 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
3129 	if (hmeblkp == NULL) {
3130 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3131 			hblktag, flags);
3132 	}
3133 	ASSERT(hmeblkp);
3134 	if (!hmeblkp->hblk_shw_mask) {
3135 		/*
3136 		 * if this is a unused hblk it was just allocated or could
3137 		 * potentially be a previous large page hblk so we need to
3138 		 * set the shadow bit.
3139 		 */
3140 		ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3141 		hmeblkp->hblk_shw_bit = 1;
3142 	} else if (hmeblkp->hblk_shw_bit == 0) {
3143 		panic("sfmmu_shadow_hcreate: shw bit not set in hmeblkp 0x%p",
3144 		    (void *)hmeblkp);
3145 	}
3146 
3147 	vshift = vaddr_to_vshift(hblktag, vaddr, size);
3148 	ASSERT(vshift < 8);
3149 	/*
3150 	 * Atomically set shw mask bit
3151 	 */
3152 	do {
3153 		shw_mask = hmeblkp->hblk_shw_mask;
3154 		newshw_mask = shw_mask | (1 << vshift);
3155 		newshw_mask = cas32(&hmeblkp->hblk_shw_mask, shw_mask,
3156 		    newshw_mask);
3157 	} while (newshw_mask != shw_mask);
3158 
3159 	SFMMU_HASH_UNLOCK(hmebp);
3160 
3161 	return (hmeblkp);
3162 }
3163 
3164 /*
3165  * This routine cleanup a previous shadow hmeblk and changes it to
3166  * a regular hblk.  This happens rarely but it is possible
3167  * when a process wants to use large pages and there are hblks still
3168  * lying around from the previous as that used these hmeblks.
3169  * The alternative was to cleanup the shadow hblks at unload time
3170  * but since so few user processes actually use large pages, it is
3171  * better to be lazy and cleanup at this time.
3172  */
3173 static void
3174 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
3175 	struct hmehash_bucket *hmebp)
3176 {
3177 	caddr_t addr, endaddr;
3178 	int hashno, size;
3179 
3180 	ASSERT(hmeblkp->hblk_shw_bit);
3181 
3182 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3183 
3184 	if (!hmeblkp->hblk_shw_mask) {
3185 		hmeblkp->hblk_shw_bit = 0;
3186 		return;
3187 	}
3188 	addr = (caddr_t)get_hblk_base(hmeblkp);
3189 	endaddr = get_hblk_endaddr(hmeblkp);
3190 	size = get_hblk_ttesz(hmeblkp);
3191 	hashno = size - 1;
3192 	ASSERT(hashno > 0);
3193 	SFMMU_HASH_UNLOCK(hmebp);
3194 
3195 	sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
3196 
3197 	SFMMU_HASH_LOCK(hmebp);
3198 }
3199 
3200 static void
3201 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
3202 	int hashno)
3203 {
3204 	int hmeshift, shadow = 0;
3205 	hmeblk_tag hblktag;
3206 	struct hmehash_bucket *hmebp;
3207 	struct hme_blk *hmeblkp;
3208 	struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
3209 	uint64_t hblkpa, prevpa, nx_pa;
3210 
3211 	ASSERT(hashno > 0);
3212 	hblktag.htag_id = sfmmup;
3213 	hblktag.htag_rehash = hashno;
3214 
3215 	hmeshift = HME_HASH_SHIFT(hashno);
3216 
3217 	while (addr < endaddr) {
3218 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3219 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3220 		SFMMU_HASH_LOCK(hmebp);
3221 		/* inline HME_HASH_SEARCH */
3222 		hmeblkp = hmebp->hmeblkp;
3223 		hblkpa = hmebp->hmeh_nextpa;
3224 		prevpa = 0;
3225 		pr_hblk = NULL;
3226 		while (hmeblkp) {
3227 			ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
3228 			if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
3229 				/* found hme_blk */
3230 				if (hmeblkp->hblk_shw_bit) {
3231 					if (hmeblkp->hblk_shw_mask) {
3232 						shadow = 1;
3233 						sfmmu_shadow_hcleanup(sfmmup,
3234 						    hmeblkp, hmebp);
3235 						break;
3236 					} else {
3237 						hmeblkp->hblk_shw_bit = 0;
3238 					}
3239 				}
3240 
3241 				/*
3242 				 * Hblk_hmecnt and hblk_vcnt could be non zero
3243 				 * since hblk_unload() does not gurantee that.
3244 				 *
3245 				 * XXX - this could cause tteload() to spin
3246 				 * where sfmmu_shadow_hcleanup() is called.
3247 				 */
3248 			}
3249 
3250 			nx_hblk = hmeblkp->hblk_next;
3251 			nx_pa = hmeblkp->hblk_nextpa;
3252 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
3253 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
3254 					pr_hblk);
3255 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
3256 			} else {
3257 				pr_hblk = hmeblkp;
3258 				prevpa = hblkpa;
3259 			}
3260 			hmeblkp = nx_hblk;
3261 			hblkpa = nx_pa;
3262 		}
3263 
3264 		SFMMU_HASH_UNLOCK(hmebp);
3265 
3266 		if (shadow) {
3267 			/*
3268 			 * We found another shadow hblk so cleaned its
3269 			 * children.  We need to go back and cleanup
3270 			 * the original hblk so we don't change the
3271 			 * addr.
3272 			 */
3273 			shadow = 0;
3274 		} else {
3275 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
3276 				(1 << hmeshift));
3277 		}
3278 	}
3279 	sfmmu_hblks_list_purge(&list);
3280 }
3281 
3282 /*
3283  * Release one hardware address translation lock on the given address range.
3284  */
3285 void
3286 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
3287 {
3288 	struct hmehash_bucket *hmebp;
3289 	hmeblk_tag hblktag;
3290 	int hmeshift, hashno = 1;
3291 	struct hme_blk *hmeblkp, *list = NULL;
3292 	caddr_t endaddr;
3293 
3294 	ASSERT(sfmmup != NULL);
3295 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3296 
3297 	ASSERT((sfmmup == ksfmmup) ||
3298 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3299 	ASSERT((len & MMU_PAGEOFFSET) == 0);
3300 	endaddr = addr + len;
3301 	hblktag.htag_id = sfmmup;
3302 
3303 	/*
3304 	 * Spitfire supports 4 page sizes.
3305 	 * Most pages are expected to be of the smallest page size (8K) and
3306 	 * these will not need to be rehashed. 64K pages also don't need to be
3307 	 * rehashed because an hmeblk spans 64K of address space. 512K pages
3308 	 * might need 1 rehash and and 4M pages might need 2 rehashes.
3309 	 */
3310 	while (addr < endaddr) {
3311 		hmeshift = HME_HASH_SHIFT(hashno);
3312 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3313 		hblktag.htag_rehash = hashno;
3314 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3315 
3316 		SFMMU_HASH_LOCK(hmebp);
3317 
3318 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3319 		if (hmeblkp != NULL) {
3320 			/*
3321 			 * If we encounter a shadow hmeblk then
3322 			 * we know there are no valid hmeblks mapping
3323 			 * this address at this size or larger.
3324 			 * Just increment address by the smallest
3325 			 * page size.
3326 			 */
3327 			if (hmeblkp->hblk_shw_bit) {
3328 				addr += MMU_PAGESIZE;
3329 			} else {
3330 				addr = sfmmu_hblk_unlock(hmeblkp, addr,
3331 				    endaddr);
3332 			}
3333 			SFMMU_HASH_UNLOCK(hmebp);
3334 			hashno = 1;
3335 			continue;
3336 		}
3337 		SFMMU_HASH_UNLOCK(hmebp);
3338 
3339 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
3340 			/*
3341 			 * We have traversed the whole list and rehashed
3342 			 * if necessary without finding the address to unlock
3343 			 * which should never happen.
3344 			 */
3345 			panic("sfmmu_unlock: addr not found. "
3346 			    "addr %p hat %p", (void *)addr, (void *)sfmmup);
3347 		} else {
3348 			hashno++;
3349 		}
3350 	}
3351 
3352 	sfmmu_hblks_list_purge(&list);
3353 }
3354 
3355 /*
3356  * Function to unlock a range of addresses in an hmeblk.  It returns the
3357  * next address that needs to be unlocked.
3358  * Should be called with the hash lock held.
3359  */
3360 static caddr_t
3361 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
3362 {
3363 	struct sf_hment *sfhme;
3364 	tte_t tteold, ttemod;
3365 	int ttesz, ret;
3366 
3367 	ASSERT(in_hblk_range(hmeblkp, addr));
3368 	ASSERT(hmeblkp->hblk_shw_bit == 0);
3369 
3370 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
3371 	ttesz = get_hblk_ttesz(hmeblkp);
3372 
3373 	HBLKTOHME(sfhme, hmeblkp, addr);
3374 	while (addr < endaddr) {
3375 readtte:
3376 		sfmmu_copytte(&sfhme->hme_tte, &tteold);
3377 		if (TTE_IS_VALID(&tteold)) {
3378 
3379 			ttemod = tteold;
3380 
3381 			ret = sfmmu_modifytte_try(&tteold, &ttemod,
3382 			    &sfhme->hme_tte);
3383 
3384 			if (ret < 0)
3385 				goto readtte;
3386 
3387 			if (hmeblkp->hblk_lckcnt == 0)
3388 				panic("zero hblk lckcnt");
3389 
3390 			if (((uintptr_t)addr + TTEBYTES(ttesz)) >
3391 			    (uintptr_t)endaddr)
3392 				panic("can't unlock large tte");
3393 
3394 			ASSERT(hmeblkp->hblk_lckcnt > 0);
3395 			atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
3396 			HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
3397 		} else {
3398 			panic("sfmmu_hblk_unlock: invalid tte");
3399 		}
3400 		addr += TTEBYTES(ttesz);
3401 		sfhme++;
3402 	}
3403 	return (addr);
3404 }
3405 
3406 /*
3407  * Physical Address Mapping Framework
3408  *
3409  * General rules:
3410  *
3411  * (1) Applies only to seg_kmem memory pages. To make things easier,
3412  *     seg_kpm addresses are also accepted by the routines, but nothing
3413  *     is done with them since by definition their PA mappings are static.
3414  * (2) hat_add_callback() may only be called while holding the page lock
3415  *     SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()),
3416  *     or passing HAC_PAGELOCK flag.
3417  * (3) prehandler() and posthandler() may not call hat_add_callback() or
3418  *     hat_delete_callback(), nor should they allocate memory. Post quiesce
3419  *     callbacks may not sleep or acquire adaptive mutex locks.
3420  * (4) Either prehandler() or posthandler() (but not both) may be specified
3421  *     as being NULL.  Specifying an errhandler() is optional.
3422  *
3423  * Details of using the framework:
3424  *
3425  * registering a callback (hat_register_callback())
3426  *
3427  *	Pass prehandler, posthandler, errhandler addresses
3428  *	as described below. If capture_cpus argument is nonzero,
3429  *	suspend callback to the prehandler will occur with CPUs
3430  *	captured and executing xc_loop() and CPUs will remain
3431  *	captured until after the posthandler suspend callback
3432  *	occurs.
3433  *
3434  * adding a callback (hat_add_callback())
3435  *
3436  *      as_pagelock();
3437  *	hat_add_callback();
3438  *      save returned pfn in private data structures or program registers;
3439  *      as_pageunlock();
3440  *
3441  * prehandler()
3442  *
3443  *	Stop all accesses by physical address to this memory page.
3444  *	Called twice: the first, PRESUSPEND, is a context safe to acquire
3445  *	adaptive locks. The second, SUSPEND, is called at high PIL with
3446  *	CPUs captured so adaptive locks may NOT be acquired (and all spin
3447  *	locks must be XCALL_PIL or higher locks).
3448  *
3449  *	May return the following errors:
3450  *		EIO:	A fatal error has occurred. This will result in panic.
3451  *		EAGAIN:	The page cannot be suspended. This will fail the
3452  *			relocation.
3453  *		0:	Success.
3454  *
3455  * posthandler()
3456  *
3457  *      Save new pfn in private data structures or program registers;
3458  *	not allowed to fail (non-zero return values will result in panic).
3459  *
3460  * errhandler()
3461  *
3462  *	called when an error occurs related to the callback.  Currently
3463  *	the only such error is HAT_CB_ERR_LEAKED which indicates that
3464  *	a page is being freed, but there are still outstanding callback(s)
3465  *	registered on the page.
3466  *
3467  * removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
3468  *
3469  *	stop using physical address
3470  *	hat_delete_callback();
3471  *
3472  */
3473 
3474 /*
3475  * Register a callback class.  Each subsystem should do this once and
3476  * cache the id_t returned for use in setting up and tearing down callbacks.
3477  *
3478  * There is no facility for removing callback IDs once they are created;
3479  * the "key" should be unique for each module, so in case a module is unloaded
3480  * and subsequently re-loaded, we can recycle the module's previous entry.
3481  */
3482 id_t
3483 hat_register_callback(int key,
3484 	int (*prehandler)(caddr_t, uint_t, uint_t, void *),
3485 	int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
3486 	int (*errhandler)(caddr_t, uint_t, uint_t, void *),
3487 	int capture_cpus)
3488 {
3489 	id_t id;
3490 
3491 	/*
3492 	 * Search the table for a pre-existing callback associated with
3493 	 * the identifier "key".  If one exists, we re-use that entry in
3494 	 * the table for this instance, otherwise we assign the next
3495 	 * available table slot.
3496 	 */
3497 	for (id = 0; id < sfmmu_max_cb_id; id++) {
3498 		if (sfmmu_cb_table[id].key == key)
3499 			break;
3500 	}
3501 
3502 	if (id == sfmmu_max_cb_id) {
3503 		id = sfmmu_cb_nextid++;
3504 		if (id >= sfmmu_max_cb_id)
3505 			panic("hat_register_callback: out of callback IDs");
3506 	}
3507 
3508 	ASSERT(prehandler != NULL || posthandler != NULL);
3509 
3510 	sfmmu_cb_table[id].key = key;
3511 	sfmmu_cb_table[id].prehandler = prehandler;
3512 	sfmmu_cb_table[id].posthandler = posthandler;
3513 	sfmmu_cb_table[id].errhandler = errhandler;
3514 	sfmmu_cb_table[id].capture_cpus = capture_cpus;
3515 
3516 	return (id);
3517 }
3518 
3519 #define	HAC_COOKIE_NONE	(void *)-1
3520 
3521 /*
3522  * Add relocation callbacks to the specified addr/len which will be called
3523  * when relocating the associated page. See the description of pre and
3524  * posthandler above for more details.
3525  *
3526  * If HAC_PAGELOCK is included in flags, the underlying memory page is
3527  * locked internally so the caller must be able to deal with the callback
3528  * running even before this function has returned.  If HAC_PAGELOCK is not
3529  * set, it is assumed that the underlying memory pages are locked.
3530  *
3531  * Since the caller must track the individual page boundaries anyway,
3532  * we only allow a callback to be added to a single page (large
3533  * or small).  Thus [addr, addr + len) MUST be contained within a single
3534  * page.
3535  *
3536  * Registering multiple callbacks on the same [addr, addr+len) is supported,
3537  * _provided_that_ a unique parameter is specified for each callback.
3538  * If multiple callbacks are registered on the same range the callback will
3539  * be invoked with each unique parameter. Registering the same callback with
3540  * the same argument more than once will result in corrupted kernel state.
3541  *
3542  * Returns the pfn of the underlying kernel page in *rpfn
3543  * on success, or PFN_INVALID on failure.
3544  *
3545  * cookiep (if passed) provides storage space for an opaque cookie
3546  * to return later to hat_delete_callback(). This cookie makes the callback
3547  * deletion significantly quicker by avoiding a potentially lengthy hash
3548  * search.
3549  *
3550  * Returns values:
3551  *    0:      success
3552  *    ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
3553  *    EINVAL: callback ID is not valid
3554  *    ENXIO:  ["vaddr", "vaddr" + len) is not mapped in the kernel's address
3555  *            space
3556  *    ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary
3557  */
3558 int
3559 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
3560 	void *pvt, pfn_t *rpfn, void **cookiep)
3561 {
3562 	struct 		hmehash_bucket *hmebp;
3563 	hmeblk_tag 	hblktag;
3564 	struct hme_blk	*hmeblkp;
3565 	int 		hmeshift, hashno;
3566 	caddr_t 	saddr, eaddr, baseaddr;
3567 	struct pa_hment *pahmep;
3568 	struct sf_hment *sfhmep, *osfhmep;
3569 	kmutex_t	*pml;
3570 	tte_t   	tte;
3571 	page_t		*pp;
3572 	vnode_t		*vp;
3573 	u_offset_t	off;
3574 	pfn_t		pfn;
3575 	int		kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
3576 	int		locked = 0;
3577 
3578 	/*
3579 	 * For KPM mappings, just return the physical address since we
3580 	 * don't need to register any callbacks.
3581 	 */
3582 	if (IS_KPM_ADDR(vaddr)) {
3583 		uint64_t paddr;
3584 		SFMMU_KPM_VTOP(vaddr, paddr);
3585 		*rpfn = btop(paddr);
3586 		if (cookiep != NULL)
3587 			*cookiep = HAC_COOKIE_NONE;
3588 		return (0);
3589 	}
3590 
3591 	if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
3592 		*rpfn = PFN_INVALID;
3593 		return (EINVAL);
3594 	}
3595 
3596 	if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
3597 		*rpfn = PFN_INVALID;
3598 		return (ENOMEM);
3599 	}
3600 
3601 	sfhmep = &pahmep->sfment;
3602 
3603 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
3604 	eaddr = saddr + len;
3605 
3606 rehash:
3607 	/* Find the mapping(s) for this page */
3608 	for (hashno = TTE64K, hmeblkp = NULL;
3609 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
3610 	    hashno++) {
3611 		hmeshift = HME_HASH_SHIFT(hashno);
3612 		hblktag.htag_id = ksfmmup;
3613 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
3614 		hblktag.htag_rehash = hashno;
3615 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
3616 
3617 		SFMMU_HASH_LOCK(hmebp);
3618 
3619 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3620 
3621 		if (hmeblkp == NULL)
3622 			SFMMU_HASH_UNLOCK(hmebp);
3623 	}
3624 
3625 	if (hmeblkp == NULL) {
3626 		kmem_cache_free(pa_hment_cache, pahmep);
3627 		*rpfn = PFN_INVALID;
3628 		return (ENXIO);
3629 	}
3630 
3631 	HBLKTOHME(osfhmep, hmeblkp, saddr);
3632 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
3633 
3634 	if (!TTE_IS_VALID(&tte)) {
3635 		SFMMU_HASH_UNLOCK(hmebp);
3636 		kmem_cache_free(pa_hment_cache, pahmep);
3637 		*rpfn = PFN_INVALID;
3638 		return (ENXIO);
3639 	}
3640 
3641 	/*
3642 	 * Make sure the boundaries for the callback fall within this
3643 	 * single mapping.
3644 	 */
3645 	baseaddr = (caddr_t)get_hblk_base(hmeblkp);
3646 	ASSERT(saddr >= baseaddr);
3647 	if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) {
3648 		SFMMU_HASH_UNLOCK(hmebp);
3649 		kmem_cache_free(pa_hment_cache, pahmep);
3650 		*rpfn = PFN_INVALID;
3651 		return (ERANGE);
3652 	}
3653 
3654 	pfn = sfmmu_ttetopfn(&tte, vaddr);
3655 
3656 	/*
3657 	 * The pfn may not have a page_t underneath in which case we
3658 	 * just return it. This can happen if we are doing I/O to a
3659 	 * static portion of the kernel's address space, for instance.
3660 	 */
3661 	pp = osfhmep->hme_page;
3662 	if (pp == NULL) {
3663 		SFMMU_HASH_UNLOCK(hmebp);
3664 		kmem_cache_free(pa_hment_cache, pahmep);
3665 		*rpfn = pfn;
3666 		if (cookiep)
3667 			*cookiep = HAC_COOKIE_NONE;
3668 		return (0);
3669 	}
3670 	ASSERT(pp == PP_PAGEROOT(pp));
3671 
3672 	vp = pp->p_vnode;
3673 	off = pp->p_offset;
3674 
3675 	pml = sfmmu_mlist_enter(pp);
3676 
3677 	if (flags & HAC_PAGELOCK) {
3678 		if (!page_trylock(pp, SE_SHARED)) {
3679 			/*
3680 			 * Somebody is holding SE_EXCL lock. Might
3681 			 * even be hat_page_relocate(). Drop all
3682 			 * our locks, lookup the page in &kvp, and
3683 			 * retry. If it doesn't exist in &kvp and &zvp,
3684 			 * then we must be dealing with a kernel mapped
3685 			 * page which doesn't actually belong to
3686 			 * segkmem so we punt.
3687 			 */
3688 			sfmmu_mlist_exit(pml);
3689 			SFMMU_HASH_UNLOCK(hmebp);
3690 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
3691 
3692 			/* check zvp before giving up */
3693 			if (pp == NULL)
3694 				pp = page_lookup(&zvp, (u_offset_t)saddr,
3695 				    SE_SHARED);
3696 
3697 			/* Okay, we didn't find it, give up */
3698 			if (pp == NULL) {
3699 				kmem_cache_free(pa_hment_cache, pahmep);
3700 				*rpfn = pfn;
3701 				if (cookiep)
3702 					*cookiep = HAC_COOKIE_NONE;
3703 				return (0);
3704 			}
3705 			page_unlock(pp);
3706 			goto rehash;
3707 		}
3708 		locked = 1;
3709 	}
3710 
3711 	if (!PAGE_LOCKED(pp) && !panicstr)
3712 		panic("hat_add_callback: page 0x%p not locked", pp);
3713 
3714 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
3715 	    pp->p_offset != off) {
3716 		/*
3717 		 * The page moved before we got our hands on it.  Drop
3718 		 * all the locks and try again.
3719 		 */
3720 		ASSERT((flags & HAC_PAGELOCK) != 0);
3721 		sfmmu_mlist_exit(pml);
3722 		SFMMU_HASH_UNLOCK(hmebp);
3723 		page_unlock(pp);
3724 		locked = 0;
3725 		goto rehash;
3726 	}
3727 
3728 	if (!VN_ISKAS(vp)) {
3729 		/*
3730 		 * This is not a segkmem page but another page which
3731 		 * has been kernel mapped. It had better have at least
3732 		 * a share lock on it. Return the pfn.
3733 		 */
3734 		sfmmu_mlist_exit(pml);
3735 		SFMMU_HASH_UNLOCK(hmebp);
3736 		if (locked)
3737 			page_unlock(pp);
3738 		kmem_cache_free(pa_hment_cache, pahmep);
3739 		ASSERT(PAGE_LOCKED(pp));
3740 		*rpfn = pfn;
3741 		if (cookiep)
3742 			*cookiep = HAC_COOKIE_NONE;
3743 		return (0);
3744 	}
3745 
3746 	/*
3747 	 * Setup this pa_hment and link its embedded dummy sf_hment into
3748 	 * the mapping list.
3749 	 */
3750 	pp->p_share++;
3751 	pahmep->cb_id = callback_id;
3752 	pahmep->addr = vaddr;
3753 	pahmep->len = len;
3754 	pahmep->refcnt = 1;
3755 	pahmep->flags = 0;
3756 	pahmep->pvt = pvt;
3757 
3758 	sfhmep->hme_tte.ll = 0;
3759 	sfhmep->hme_data = pahmep;
3760 	sfhmep->hme_prev = osfhmep;
3761 	sfhmep->hme_next = osfhmep->hme_next;
3762 
3763 	if (osfhmep->hme_next)
3764 		osfhmep->hme_next->hme_prev = sfhmep;
3765 
3766 	osfhmep->hme_next = sfhmep;
3767 
3768 	sfmmu_mlist_exit(pml);
3769 	SFMMU_HASH_UNLOCK(hmebp);
3770 
3771 	if (locked)
3772 		page_unlock(pp);
3773 
3774 	*rpfn = pfn;
3775 	if (cookiep)
3776 		*cookiep = (void *)pahmep;
3777 
3778 	return (0);
3779 }
3780 
3781 /*
3782  * Remove the relocation callbacks from the specified addr/len.
3783  */
3784 void
3785 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags,
3786 	void *cookie)
3787 {
3788 	struct		hmehash_bucket *hmebp;
3789 	hmeblk_tag	hblktag;
3790 	struct hme_blk	*hmeblkp;
3791 	int		hmeshift, hashno;
3792 	caddr_t		saddr;
3793 	struct pa_hment	*pahmep;
3794 	struct sf_hment	*sfhmep, *osfhmep;
3795 	kmutex_t	*pml;
3796 	tte_t		tte;
3797 	page_t		*pp;
3798 	vnode_t		*vp;
3799 	u_offset_t	off;
3800 	int		locked = 0;
3801 
3802 	/*
3803 	 * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to
3804 	 * remove so just return.
3805 	 */
3806 	if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr))
3807 		return;
3808 
3809 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
3810 
3811 rehash:
3812 	/* Find the mapping(s) for this page */
3813 	for (hashno = TTE64K, hmeblkp = NULL;
3814 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
3815 	    hashno++) {
3816 		hmeshift = HME_HASH_SHIFT(hashno);
3817 		hblktag.htag_id = ksfmmup;
3818 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
3819 		hblktag.htag_rehash = hashno;
3820 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
3821 
3822 		SFMMU_HASH_LOCK(hmebp);
3823 
3824 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3825 
3826 		if (hmeblkp == NULL)
3827 			SFMMU_HASH_UNLOCK(hmebp);
3828 	}
3829 
3830 	if (hmeblkp == NULL)
3831 		return;
3832 
3833 	HBLKTOHME(osfhmep, hmeblkp, saddr);
3834 
3835 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
3836 	if (!TTE_IS_VALID(&tte)) {
3837 		SFMMU_HASH_UNLOCK(hmebp);
3838 		return;
3839 	}
3840 
3841 	pp = osfhmep->hme_page;
3842 	if (pp == NULL) {
3843 		SFMMU_HASH_UNLOCK(hmebp);
3844 		ASSERT(cookie == NULL);
3845 		return;
3846 	}
3847 
3848 	vp = pp->p_vnode;
3849 	off = pp->p_offset;
3850 
3851 	pml = sfmmu_mlist_enter(pp);
3852 
3853 	if (flags & HAC_PAGELOCK) {
3854 		if (!page_trylock(pp, SE_SHARED)) {
3855 			/*
3856 			 * Somebody is holding SE_EXCL lock. Might
3857 			 * even be hat_page_relocate(). Drop all
3858 			 * our locks, lookup the page in &kvp, and
3859 			 * retry. If it doesn't exist in &kvp and &zvp,
3860 			 * then we must be dealing with a kernel mapped
3861 			 * page which doesn't actually belong to
3862 			 * segkmem so we punt.
3863 			 */
3864 			sfmmu_mlist_exit(pml);
3865 			SFMMU_HASH_UNLOCK(hmebp);
3866 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
3867 			/* check zvp before giving up */
3868 			if (pp == NULL)
3869 				pp = page_lookup(&zvp, (u_offset_t)saddr,
3870 				    SE_SHARED);
3871 
3872 			if (pp == NULL) {
3873 				ASSERT(cookie == NULL);
3874 				return;
3875 			}
3876 			page_unlock(pp);
3877 			goto rehash;
3878 		}
3879 		locked = 1;
3880 	}
3881 
3882 	ASSERT(PAGE_LOCKED(pp));
3883 
3884 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
3885 	    pp->p_offset != off) {
3886 		/*
3887 		 * The page moved before we got our hands on it.  Drop
3888 		 * all the locks and try again.
3889 		 */
3890 		ASSERT((flags & HAC_PAGELOCK) != 0);
3891 		sfmmu_mlist_exit(pml);
3892 		SFMMU_HASH_UNLOCK(hmebp);
3893 		page_unlock(pp);
3894 		locked = 0;
3895 		goto rehash;
3896 	}
3897 
3898 	if (!VN_ISKAS(vp)) {
3899 		/*
3900 		 * This is not a segkmem page but another page which
3901 		 * has been kernel mapped.
3902 		 */
3903 		sfmmu_mlist_exit(pml);
3904 		SFMMU_HASH_UNLOCK(hmebp);
3905 		if (locked)
3906 			page_unlock(pp);
3907 		ASSERT(cookie == NULL);
3908 		return;
3909 	}
3910 
3911 	if (cookie != NULL) {
3912 		pahmep = (struct pa_hment *)cookie;
3913 		sfhmep = &pahmep->sfment;
3914 	} else {
3915 		for (sfhmep = pp->p_mapping; sfhmep != NULL;
3916 		    sfhmep = sfhmep->hme_next) {
3917 
3918 			/*
3919 			 * skip va<->pa mappings
3920 			 */
3921 			if (!IS_PAHME(sfhmep))
3922 				continue;
3923 
3924 			pahmep = sfhmep->hme_data;
3925 			ASSERT(pahmep != NULL);
3926 
3927 			/*
3928 			 * if pa_hment matches, remove it
3929 			 */
3930 			if ((pahmep->pvt == pvt) &&
3931 			    (pahmep->addr == vaddr) &&
3932 			    (pahmep->len == len)) {
3933 				break;
3934 			}
3935 		}
3936 	}
3937 
3938 	if (sfhmep == NULL) {
3939 		if (!panicstr) {
3940 			panic("hat_delete_callback: pa_hment not found, pp %p",
3941 			    (void *)pp);
3942 		}
3943 		return;
3944 	}
3945 
3946 	/*
3947 	 * Note: at this point a valid kernel mapping must still be
3948 	 * present on this page.
3949 	 */
3950 	pp->p_share--;
3951 	if (pp->p_share <= 0)
3952 		panic("hat_delete_callback: zero p_share");
3953 
3954 	if (--pahmep->refcnt == 0) {
3955 		if (pahmep->flags != 0)
3956 			panic("hat_delete_callback: pa_hment is busy");
3957 
3958 		/*
3959 		 * Remove sfhmep from the mapping list for the page.
3960 		 */
3961 		if (sfhmep->hme_prev) {
3962 			sfhmep->hme_prev->hme_next = sfhmep->hme_next;
3963 		} else {
3964 			pp->p_mapping = sfhmep->hme_next;
3965 		}
3966 
3967 		if (sfhmep->hme_next)
3968 			sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
3969 
3970 		sfmmu_mlist_exit(pml);
3971 		SFMMU_HASH_UNLOCK(hmebp);
3972 
3973 		if (locked)
3974 			page_unlock(pp);
3975 
3976 		kmem_cache_free(pa_hment_cache, pahmep);
3977 		return;
3978 	}
3979 
3980 	sfmmu_mlist_exit(pml);
3981 	SFMMU_HASH_UNLOCK(hmebp);
3982 	if (locked)
3983 		page_unlock(pp);
3984 }
3985 
3986 /*
3987  * hat_probe returns 1 if the translation for the address 'addr' is
3988  * loaded, zero otherwise.
3989  *
3990  * hat_probe should be used only for advisorary purposes because it may
3991  * occasionally return the wrong value. The implementation must guarantee that
3992  * returning the wrong value is a very rare event. hat_probe is used
3993  * to implement optimizations in the segment drivers.
3994  *
3995  */
3996 int
3997 hat_probe(struct hat *sfmmup, caddr_t addr)
3998 {
3999 	pfn_t pfn;
4000 	tte_t tte;
4001 
4002 	ASSERT(sfmmup != NULL);
4003 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4004 
4005 	ASSERT((sfmmup == ksfmmup) ||
4006 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4007 
4008 	if (sfmmup == ksfmmup) {
4009 		while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
4010 		    == PFN_SUSPENDED) {
4011 			sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
4012 		}
4013 	} else {
4014 		pfn = sfmmu_uvatopfn(addr, sfmmup);
4015 	}
4016 
4017 	if (pfn != PFN_INVALID)
4018 		return (1);
4019 	else
4020 		return (0);
4021 }
4022 
4023 ssize_t
4024 hat_getpagesize(struct hat *sfmmup, caddr_t addr)
4025 {
4026 	tte_t tte;
4027 
4028 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4029 
4030 	sfmmu_gettte(sfmmup, addr, &tte);
4031 	if (TTE_IS_VALID(&tte)) {
4032 		return (TTEBYTES(TTE_CSZ(&tte)));
4033 	}
4034 	return (-1);
4035 }
4036 
4037 static void
4038 sfmmu_gettte(struct hat *sfmmup, caddr_t addr, tte_t *ttep)
4039 {
4040 	struct hmehash_bucket *hmebp;
4041 	hmeblk_tag hblktag;
4042 	int hmeshift, hashno = 1;
4043 	struct hme_blk *hmeblkp, *list = NULL;
4044 	struct sf_hment *sfhmep;
4045 
4046 	/* support for ISM */
4047 	ism_map_t	*ism_map;
4048 	ism_blk_t	*ism_blkp;
4049 	int		i;
4050 	sfmmu_t		*ism_hatid = NULL;
4051 	sfmmu_t		*locked_hatid = NULL;
4052 
4053 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
4054 
4055 	ism_blkp = sfmmup->sfmmu_iblk;
4056 	if (ism_blkp) {
4057 		sfmmu_ismhat_enter(sfmmup, 0);
4058 		locked_hatid = sfmmup;
4059 	}
4060 	while (ism_blkp && ism_hatid == NULL) {
4061 		ism_map = ism_blkp->iblk_maps;
4062 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
4063 			if (addr >= ism_start(ism_map[i]) &&
4064 			    addr < ism_end(ism_map[i])) {
4065 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
4066 				addr = (caddr_t)(addr -
4067 					ism_start(ism_map[i]));
4068 				break;
4069 			}
4070 		}
4071 		ism_blkp = ism_blkp->iblk_next;
4072 	}
4073 	if (locked_hatid) {
4074 		sfmmu_ismhat_exit(locked_hatid, 0);
4075 	}
4076 
4077 	hblktag.htag_id = sfmmup;
4078 	ttep->ll = 0;
4079 
4080 	do {
4081 		hmeshift = HME_HASH_SHIFT(hashno);
4082 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4083 		hblktag.htag_rehash = hashno;
4084 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4085 
4086 		SFMMU_HASH_LOCK(hmebp);
4087 
4088 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4089 		if (hmeblkp != NULL) {
4090 			HBLKTOHME(sfhmep, hmeblkp, addr);
4091 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
4092 			SFMMU_HASH_UNLOCK(hmebp);
4093 			break;
4094 		}
4095 		SFMMU_HASH_UNLOCK(hmebp);
4096 		hashno++;
4097 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
4098 
4099 	sfmmu_hblks_list_purge(&list);
4100 }
4101 
4102 uint_t
4103 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
4104 {
4105 	tte_t tte;
4106 
4107 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4108 
4109 	sfmmu_gettte(sfmmup, addr, &tte);
4110 	if (TTE_IS_VALID(&tte)) {
4111 		*attr = sfmmu_ptov_attr(&tte);
4112 		return (0);
4113 	}
4114 	*attr = 0;
4115 	return ((uint_t)0xffffffff);
4116 }
4117 
4118 /*
4119  * Enables more attributes on specified address range (ie. logical OR)
4120  */
4121 void
4122 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4123 {
4124 	if (hat->sfmmu_xhat_provider) {
4125 		XHAT_SETATTR(hat, addr, len, attr);
4126 		return;
4127 	} else {
4128 		/*
4129 		 * This must be a CPU HAT. If the address space has
4130 		 * XHATs attached, change attributes for all of them,
4131 		 * just in case
4132 		 */
4133 		ASSERT(hat->sfmmu_as != NULL);
4134 		if (hat->sfmmu_as->a_xhat != NULL)
4135 			xhat_setattr_all(hat->sfmmu_as, addr, len, attr);
4136 	}
4137 
4138 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
4139 }
4140 
4141 /*
4142  * Assigns attributes to the specified address range.  All the attributes
4143  * are specified.
4144  */
4145 void
4146 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4147 {
4148 	if (hat->sfmmu_xhat_provider) {
4149 		XHAT_CHGATTR(hat, addr, len, attr);
4150 		return;
4151 	} else {
4152 		/*
4153 		 * This must be a CPU HAT. If the address space has
4154 		 * XHATs attached, change attributes for all of them,
4155 		 * just in case
4156 		 */
4157 		ASSERT(hat->sfmmu_as != NULL);
4158 		if (hat->sfmmu_as->a_xhat != NULL)
4159 			xhat_chgattr_all(hat->sfmmu_as, addr, len, attr);
4160 	}
4161 
4162 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
4163 }
4164 
4165 /*
4166  * Remove attributes on the specified address range (ie. loginal NAND)
4167  */
4168 void
4169 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4170 {
4171 	if (hat->sfmmu_xhat_provider) {
4172 		XHAT_CLRATTR(hat, addr, len, attr);
4173 		return;
4174 	} else {
4175 		/*
4176 		 * This must be a CPU HAT. If the address space has
4177 		 * XHATs attached, change attributes for all of them,
4178 		 * just in case
4179 		 */
4180 		ASSERT(hat->sfmmu_as != NULL);
4181 		if (hat->sfmmu_as->a_xhat != NULL)
4182 			xhat_clrattr_all(hat->sfmmu_as, addr, len, attr);
4183 	}
4184 
4185 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
4186 }
4187 
4188 /*
4189  * Change attributes on an address range to that specified by attr and mode.
4190  */
4191 static void
4192 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
4193 	int mode)
4194 {
4195 	struct hmehash_bucket *hmebp;
4196 	hmeblk_tag hblktag;
4197 	int hmeshift, hashno = 1;
4198 	struct hme_blk *hmeblkp, *list = NULL;
4199 	caddr_t endaddr;
4200 	cpuset_t cpuset;
4201 	demap_range_t dmr;
4202 
4203 	CPUSET_ZERO(cpuset);
4204 
4205 	ASSERT((sfmmup == ksfmmup) ||
4206 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4207 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4208 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4209 
4210 	if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
4211 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4212 		panic("user addr %p in kernel space",
4213 		    (void *)addr);
4214 	}
4215 
4216 	endaddr = addr + len;
4217 	hblktag.htag_id = sfmmup;
4218 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4219 
4220 	while (addr < endaddr) {
4221 		hmeshift = HME_HASH_SHIFT(hashno);
4222 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4223 		hblktag.htag_rehash = hashno;
4224 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4225 
4226 		SFMMU_HASH_LOCK(hmebp);
4227 
4228 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4229 		if (hmeblkp != NULL) {
4230 			/*
4231 			 * We've encountered a shadow hmeblk so skip the range
4232 			 * of the next smaller mapping size.
4233 			 */
4234 			if (hmeblkp->hblk_shw_bit) {
4235 				ASSERT(sfmmup != ksfmmup);
4236 				ASSERT(hashno > 1);
4237 				addr = (caddr_t)P2END((uintptr_t)addr,
4238 					    TTEBYTES(hashno - 1));
4239 			} else {
4240 				addr = sfmmu_hblk_chgattr(sfmmup,
4241 				    hmeblkp, addr, endaddr, &dmr, attr, mode);
4242 			}
4243 			SFMMU_HASH_UNLOCK(hmebp);
4244 			hashno = 1;
4245 			continue;
4246 		}
4247 		SFMMU_HASH_UNLOCK(hmebp);
4248 
4249 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4250 			/*
4251 			 * We have traversed the whole list and rehashed
4252 			 * if necessary without finding the address to chgattr.
4253 			 * This is ok, so we increment the address by the
4254 			 * smallest hmeblk range for kernel mappings or for
4255 			 * user mappings with no large pages, and the largest
4256 			 * hmeblk range, to account for shadow hmeblks, for
4257 			 * user mappings with large pages and continue.
4258 			 */
4259 			if (sfmmup == ksfmmup)
4260 				addr = (caddr_t)P2END((uintptr_t)addr,
4261 					    TTEBYTES(1));
4262 			else
4263 				addr = (caddr_t)P2END((uintptr_t)addr,
4264 					    TTEBYTES(hashno));
4265 			hashno = 1;
4266 		} else {
4267 			hashno++;
4268 		}
4269 	}
4270 
4271 	sfmmu_hblks_list_purge(&list);
4272 	DEMAP_RANGE_FLUSH(&dmr);
4273 	cpuset = sfmmup->sfmmu_cpusran;
4274 	xt_sync(cpuset);
4275 }
4276 
4277 /*
4278  * This function chgattr on a range of addresses in an hmeblk.  It returns the
4279  * next addres that needs to be chgattr.
4280  * It should be called with the hash lock held.
4281  * XXX It should be possible to optimize chgattr by not flushing every time but
4282  * on the other hand:
4283  * 1. do one flush crosscall.
4284  * 2. only flush if we are increasing permissions (make sure this will work)
4285  */
4286 static caddr_t
4287 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4288 	caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
4289 {
4290 	tte_t tte, tteattr, tteflags, ttemod;
4291 	struct sf_hment *sfhmep;
4292 	int ttesz;
4293 	struct page *pp = NULL;
4294 	kmutex_t *pml, *pmtx;
4295 	int ret;
4296 	int use_demap_range;
4297 #if defined(SF_ERRATA_57)
4298 	int check_exec;
4299 #endif
4300 
4301 	ASSERT(in_hblk_range(hmeblkp, addr));
4302 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4303 
4304 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4305 	ttesz = get_hblk_ttesz(hmeblkp);
4306 
4307 	/*
4308 	 * Flush the current demap region if addresses have been
4309 	 * skipped or the page size doesn't match.
4310 	 */
4311 	use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
4312 	if (use_demap_range) {
4313 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4314 	} else {
4315 		DEMAP_RANGE_FLUSH(dmrp);
4316 	}
4317 
4318 	tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
4319 #if defined(SF_ERRATA_57)
4320 	check_exec = (sfmmup != ksfmmup) &&
4321 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4322 	    TTE_IS_EXECUTABLE(&tteattr);
4323 #endif
4324 	HBLKTOHME(sfhmep, hmeblkp, addr);
4325 	while (addr < endaddr) {
4326 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4327 		if (TTE_IS_VALID(&tte)) {
4328 			if ((tte.ll & tteflags.ll) == tteattr.ll) {
4329 				/*
4330 				 * if the new attr is the same as old
4331 				 * continue
4332 				 */
4333 				goto next_addr;
4334 			}
4335 			if (!TTE_IS_WRITABLE(&tteattr)) {
4336 				/*
4337 				 * make sure we clear hw modify bit if we
4338 				 * removing write protections
4339 				 */
4340 				tteflags.tte_intlo |= TTE_HWWR_INT;
4341 			}
4342 
4343 			pml = NULL;
4344 			pp = sfhmep->hme_page;
4345 			if (pp) {
4346 				pml = sfmmu_mlist_enter(pp);
4347 			}
4348 
4349 			if (pp != sfhmep->hme_page) {
4350 				/*
4351 				 * tte must have been unloaded.
4352 				 */
4353 				ASSERT(pml);
4354 				sfmmu_mlist_exit(pml);
4355 				continue;
4356 			}
4357 
4358 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4359 
4360 			ttemod = tte;
4361 			ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
4362 			ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
4363 
4364 #if defined(SF_ERRATA_57)
4365 			if (check_exec && addr < errata57_limit)
4366 				ttemod.tte_exec_perm = 0;
4367 #endif
4368 			ret = sfmmu_modifytte_try(&tte, &ttemod,
4369 			    &sfhmep->hme_tte);
4370 
4371 			if (ret < 0) {
4372 				/* tte changed underneath us */
4373 				if (pml) {
4374 					sfmmu_mlist_exit(pml);
4375 				}
4376 				continue;
4377 			}
4378 
4379 			if (tteflags.tte_intlo & TTE_HWWR_INT) {
4380 				/*
4381 				 * need to sync if we are clearing modify bit.
4382 				 */
4383 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4384 			}
4385 
4386 			if (pp && PP_ISRO(pp)) {
4387 				if (tteattr.tte_intlo & TTE_WRPRM_INT) {
4388 					pmtx = sfmmu_page_enter(pp);
4389 					PP_CLRRO(pp);
4390 					sfmmu_page_exit(pmtx);
4391 				}
4392 			}
4393 
4394 			if (ret > 0 && use_demap_range) {
4395 				DEMAP_RANGE_MARKPG(dmrp, addr);
4396 			} else if (ret > 0) {
4397 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4398 			}
4399 
4400 			if (pml) {
4401 				sfmmu_mlist_exit(pml);
4402 			}
4403 		}
4404 next_addr:
4405 		addr += TTEBYTES(ttesz);
4406 		sfhmep++;
4407 		DEMAP_RANGE_NEXTPG(dmrp);
4408 	}
4409 	return (addr);
4410 }
4411 
4412 /*
4413  * This routine converts virtual attributes to physical ones.  It will
4414  * update the tteflags field with the tte mask corresponding to the attributes
4415  * affected and it returns the new attributes.  It will also clear the modify
4416  * bit if we are taking away write permission.  This is necessary since the
4417  * modify bit is the hardware permission bit and we need to clear it in order
4418  * to detect write faults.
4419  */
4420 static uint64_t
4421 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
4422 {
4423 	tte_t ttevalue;
4424 
4425 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
4426 
4427 	switch (mode) {
4428 	case SFMMU_CHGATTR:
4429 		/* all attributes specified */
4430 		ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
4431 		ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
4432 		ttemaskp->tte_inthi = TTEINTHI_ATTR;
4433 		ttemaskp->tte_intlo = TTEINTLO_ATTR;
4434 		break;
4435 	case SFMMU_SETATTR:
4436 		ASSERT(!(attr & ~HAT_PROT_MASK));
4437 		ttemaskp->ll = 0;
4438 		ttevalue.ll = 0;
4439 		/*
4440 		 * a valid tte implies exec and read for sfmmu
4441 		 * so no need to do anything about them.
4442 		 * since priviledged access implies user access
4443 		 * PROT_USER doesn't make sense either.
4444 		 */
4445 		if (attr & PROT_WRITE) {
4446 			ttemaskp->tte_intlo |= TTE_WRPRM_INT;
4447 			ttevalue.tte_intlo |= TTE_WRPRM_INT;
4448 		}
4449 		break;
4450 	case SFMMU_CLRATTR:
4451 		/* attributes will be nand with current ones */
4452 		if (attr & ~(PROT_WRITE | PROT_USER)) {
4453 			panic("sfmmu: attr %x not supported", attr);
4454 		}
4455 		ttemaskp->ll = 0;
4456 		ttevalue.ll = 0;
4457 		if (attr & PROT_WRITE) {
4458 			/* clear both writable and modify bit */
4459 			ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
4460 		}
4461 		if (attr & PROT_USER) {
4462 			ttemaskp->tte_intlo |= TTE_PRIV_INT;
4463 			ttevalue.tte_intlo |= TTE_PRIV_INT;
4464 		}
4465 		break;
4466 	default:
4467 		panic("sfmmu_vtop_attr: bad mode %x", mode);
4468 	}
4469 	ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
4470 	return (ttevalue.ll);
4471 }
4472 
4473 static uint_t
4474 sfmmu_ptov_attr(tte_t *ttep)
4475 {
4476 	uint_t attr;
4477 
4478 	ASSERT(TTE_IS_VALID(ttep));
4479 
4480 	attr = PROT_READ;
4481 
4482 	if (TTE_IS_WRITABLE(ttep)) {
4483 		attr |= PROT_WRITE;
4484 	}
4485 	if (TTE_IS_EXECUTABLE(ttep)) {
4486 		attr |= PROT_EXEC;
4487 	}
4488 	if (!TTE_IS_PRIVILEGED(ttep)) {
4489 		attr |= PROT_USER;
4490 	}
4491 	if (TTE_IS_NFO(ttep)) {
4492 		attr |= HAT_NOFAULT;
4493 	}
4494 	if (TTE_IS_NOSYNC(ttep)) {
4495 		attr |= HAT_NOSYNC;
4496 	}
4497 	if (TTE_IS_SIDEFFECT(ttep)) {
4498 		attr |= SFMMU_SIDEFFECT;
4499 	}
4500 	if (!TTE_IS_VCACHEABLE(ttep)) {
4501 		attr |= SFMMU_UNCACHEVTTE;
4502 	}
4503 	if (!TTE_IS_PCACHEABLE(ttep)) {
4504 		attr |= SFMMU_UNCACHEPTTE;
4505 	}
4506 	return (attr);
4507 }
4508 
4509 /*
4510  * hat_chgprot is a deprecated hat call.  New segment drivers
4511  * should store all attributes and use hat_*attr calls.
4512  *
4513  * Change the protections in the virtual address range
4514  * given to the specified virtual protection.  If vprot is ~PROT_WRITE,
4515  * then remove write permission, leaving the other
4516  * permissions unchanged.  If vprot is ~PROT_USER, remove user permissions.
4517  *
4518  */
4519 void
4520 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
4521 {
4522 	struct hmehash_bucket *hmebp;
4523 	hmeblk_tag hblktag;
4524 	int hmeshift, hashno = 1;
4525 	struct hme_blk *hmeblkp, *list = NULL;
4526 	caddr_t endaddr;
4527 	cpuset_t cpuset;
4528 	demap_range_t dmr;
4529 
4530 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4531 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4532 
4533 	if (sfmmup->sfmmu_xhat_provider) {
4534 		XHAT_CHGPROT(sfmmup, addr, len, vprot);
4535 		return;
4536 	} else {
4537 		/*
4538 		 * This must be a CPU HAT. If the address space has
4539 		 * XHATs attached, change attributes for all of them,
4540 		 * just in case
4541 		 */
4542 		ASSERT(sfmmup->sfmmu_as != NULL);
4543 		if (sfmmup->sfmmu_as->a_xhat != NULL)
4544 			xhat_chgprot_all(sfmmup->sfmmu_as, addr, len, vprot);
4545 	}
4546 
4547 	CPUSET_ZERO(cpuset);
4548 
4549 	if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
4550 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4551 		panic("user addr %p vprot %x in kernel space",
4552 		    (void *)addr, vprot);
4553 	}
4554 	endaddr = addr + len;
4555 	hblktag.htag_id = sfmmup;
4556 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4557 
4558 	while (addr < endaddr) {
4559 		hmeshift = HME_HASH_SHIFT(hashno);
4560 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4561 		hblktag.htag_rehash = hashno;
4562 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4563 
4564 		SFMMU_HASH_LOCK(hmebp);
4565 
4566 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4567 		if (hmeblkp != NULL) {
4568 			/*
4569 			 * We've encountered a shadow hmeblk so skip the range
4570 			 * of the next smaller mapping size.
4571 			 */
4572 			if (hmeblkp->hblk_shw_bit) {
4573 				ASSERT(sfmmup != ksfmmup);
4574 				ASSERT(hashno > 1);
4575 				addr = (caddr_t)P2END((uintptr_t)addr,
4576 					    TTEBYTES(hashno - 1));
4577 			} else {
4578 				addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
4579 					addr, endaddr, &dmr, vprot);
4580 			}
4581 			SFMMU_HASH_UNLOCK(hmebp);
4582 			hashno = 1;
4583 			continue;
4584 		}
4585 		SFMMU_HASH_UNLOCK(hmebp);
4586 
4587 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4588 			/*
4589 			 * We have traversed the whole list and rehashed
4590 			 * if necessary without finding the address to chgprot.
4591 			 * This is ok so we increment the address by the
4592 			 * smallest hmeblk range for kernel mappings and the
4593 			 * largest hmeblk range, to account for shadow hmeblks,
4594 			 * for user mappings and continue.
4595 			 */
4596 			if (sfmmup == ksfmmup)
4597 				addr = (caddr_t)P2END((uintptr_t)addr,
4598 					    TTEBYTES(1));
4599 			else
4600 				addr = (caddr_t)P2END((uintptr_t)addr,
4601 					    TTEBYTES(hashno));
4602 			hashno = 1;
4603 		} else {
4604 			hashno++;
4605 		}
4606 	}
4607 
4608 	sfmmu_hblks_list_purge(&list);
4609 	DEMAP_RANGE_FLUSH(&dmr);
4610 	cpuset = sfmmup->sfmmu_cpusran;
4611 	xt_sync(cpuset);
4612 }
4613 
4614 /*
4615  * This function chgprots a range of addresses in an hmeblk.  It returns the
4616  * next addres that needs to be chgprot.
4617  * It should be called with the hash lock held.
4618  * XXX It shold be possible to optimize chgprot by not flushing every time but
4619  * on the other hand:
4620  * 1. do one flush crosscall.
4621  * 2. only flush if we are increasing permissions (make sure this will work)
4622  */
4623 static caddr_t
4624 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4625 	caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
4626 {
4627 	uint_t pprot;
4628 	tte_t tte, ttemod;
4629 	struct sf_hment *sfhmep;
4630 	uint_t tteflags;
4631 	int ttesz;
4632 	struct page *pp = NULL;
4633 	kmutex_t *pml, *pmtx;
4634 	int ret;
4635 	int use_demap_range;
4636 #if defined(SF_ERRATA_57)
4637 	int check_exec;
4638 #endif
4639 
4640 	ASSERT(in_hblk_range(hmeblkp, addr));
4641 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4642 
4643 #ifdef DEBUG
4644 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
4645 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
4646 		panic("sfmmu_hblk_chgprot: partial chgprot of large page");
4647 	}
4648 #endif /* DEBUG */
4649 
4650 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4651 	ttesz = get_hblk_ttesz(hmeblkp);
4652 
4653 	pprot = sfmmu_vtop_prot(vprot, &tteflags);
4654 #if defined(SF_ERRATA_57)
4655 	check_exec = (sfmmup != ksfmmup) &&
4656 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4657 	    ((vprot & PROT_EXEC) == PROT_EXEC);
4658 #endif
4659 	HBLKTOHME(sfhmep, hmeblkp, addr);
4660 
4661 	/*
4662 	 * Flush the current demap region if addresses have been
4663 	 * skipped or the page size doesn't match.
4664 	 */
4665 	use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
4666 	if (use_demap_range) {
4667 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4668 	} else {
4669 		DEMAP_RANGE_FLUSH(dmrp);
4670 	}
4671 
4672 	while (addr < endaddr) {
4673 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4674 		if (TTE_IS_VALID(&tte)) {
4675 			if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
4676 				/*
4677 				 * if the new protection is the same as old
4678 				 * continue
4679 				 */
4680 				goto next_addr;
4681 			}
4682 			pml = NULL;
4683 			pp = sfhmep->hme_page;
4684 			if (pp) {
4685 				pml = sfmmu_mlist_enter(pp);
4686 			}
4687 			if (pp != sfhmep->hme_page) {
4688 				/*
4689 				 * tte most have been unloaded
4690 				 * underneath us.  Recheck
4691 				 */
4692 				ASSERT(pml);
4693 				sfmmu_mlist_exit(pml);
4694 				continue;
4695 			}
4696 
4697 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4698 
4699 			ttemod = tte;
4700 			TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
4701 #if defined(SF_ERRATA_57)
4702 			if (check_exec && addr < errata57_limit)
4703 				ttemod.tte_exec_perm = 0;
4704 #endif
4705 			ret = sfmmu_modifytte_try(&tte, &ttemod,
4706 			    &sfhmep->hme_tte);
4707 
4708 			if (ret < 0) {
4709 				/* tte changed underneath us */
4710 				if (pml) {
4711 					sfmmu_mlist_exit(pml);
4712 				}
4713 				continue;
4714 			}
4715 
4716 			if (tteflags & TTE_HWWR_INT) {
4717 				/*
4718 				 * need to sync if we are clearing modify bit.
4719 				 */
4720 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4721 			}
4722 
4723 			if (pp && PP_ISRO(pp)) {
4724 				if (pprot & TTE_WRPRM_INT) {
4725 					pmtx = sfmmu_page_enter(pp);
4726 					PP_CLRRO(pp);
4727 					sfmmu_page_exit(pmtx);
4728 				}
4729 			}
4730 
4731 			if (ret > 0 && use_demap_range) {
4732 				DEMAP_RANGE_MARKPG(dmrp, addr);
4733 			} else if (ret > 0) {
4734 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4735 			}
4736 
4737 			if (pml) {
4738 				sfmmu_mlist_exit(pml);
4739 			}
4740 		}
4741 next_addr:
4742 		addr += TTEBYTES(ttesz);
4743 		sfhmep++;
4744 		DEMAP_RANGE_NEXTPG(dmrp);
4745 	}
4746 	return (addr);
4747 }
4748 
4749 /*
4750  * This routine is deprecated and should only be used by hat_chgprot.
4751  * The correct routine is sfmmu_vtop_attr.
4752  * This routine converts virtual page protections to physical ones.  It will
4753  * update the tteflags field with the tte mask corresponding to the protections
4754  * affected and it returns the new protections.  It will also clear the modify
4755  * bit if we are taking away write permission.  This is necessary since the
4756  * modify bit is the hardware permission bit and we need to clear it in order
4757  * to detect write faults.
4758  * It accepts the following special protections:
4759  * ~PROT_WRITE = remove write permissions.
4760  * ~PROT_USER = remove user permissions.
4761  */
4762 static uint_t
4763 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
4764 {
4765 	if (vprot == (uint_t)~PROT_WRITE) {
4766 		*tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
4767 		return (0);		/* will cause wrprm to be cleared */
4768 	}
4769 	if (vprot == (uint_t)~PROT_USER) {
4770 		*tteflagsp = TTE_PRIV_INT;
4771 		return (0);		/* will cause privprm to be cleared */
4772 	}
4773 	if ((vprot == 0) || (vprot == PROT_USER) ||
4774 		((vprot & PROT_ALL) != vprot)) {
4775 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
4776 	}
4777 
4778 	switch (vprot) {
4779 	case (PROT_READ):
4780 	case (PROT_EXEC):
4781 	case (PROT_EXEC | PROT_READ):
4782 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
4783 		return (TTE_PRIV_INT); 		/* set prv and clr wrt */
4784 	case (PROT_WRITE):
4785 	case (PROT_WRITE | PROT_READ):
4786 	case (PROT_EXEC | PROT_WRITE):
4787 	case (PROT_EXEC | PROT_WRITE | PROT_READ):
4788 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
4789 		return (TTE_PRIV_INT | TTE_WRPRM_INT); 	/* set prv and wrt */
4790 	case (PROT_USER | PROT_READ):
4791 	case (PROT_USER | PROT_EXEC):
4792 	case (PROT_USER | PROT_EXEC | PROT_READ):
4793 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
4794 		return (0); 			/* clr prv and wrt */
4795 	case (PROT_USER | PROT_WRITE):
4796 	case (PROT_USER | PROT_WRITE | PROT_READ):
4797 	case (PROT_USER | PROT_EXEC | PROT_WRITE):
4798 	case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
4799 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
4800 		return (TTE_WRPRM_INT); 	/* clr prv and set wrt */
4801 	default:
4802 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
4803 	}
4804 	return (0);
4805 }
4806 
4807 /*
4808  * Alternate unload for very large virtual ranges. With a true 64 bit VA,
4809  * the normal algorithm would take too long for a very large VA range with
4810  * few real mappings. This routine just walks thru all HMEs in the global
4811  * hash table to find and remove mappings.
4812  */
4813 static void
4814 hat_unload_large_virtual(
4815 	struct hat		*sfmmup,
4816 	caddr_t			startaddr,
4817 	size_t			len,
4818 	uint_t			flags,
4819 	hat_callback_t		*callback)
4820 {
4821 	struct hmehash_bucket *hmebp;
4822 	struct hme_blk *hmeblkp;
4823 	struct hme_blk *pr_hblk = NULL;
4824 	struct hme_blk *nx_hblk;
4825 	struct hme_blk *list = NULL;
4826 	int i;
4827 	uint64_t hblkpa, prevpa, nx_pa;
4828 	demap_range_t dmr, *dmrp;
4829 	cpuset_t cpuset;
4830 	caddr_t	endaddr = startaddr + len;
4831 	caddr_t	sa;
4832 	caddr_t	ea;
4833 	caddr_t	cb_sa[MAX_CB_ADDR];
4834 	caddr_t	cb_ea[MAX_CB_ADDR];
4835 	int	addr_cnt = 0;
4836 	int	a = 0;
4837 
4838 	if (sfmmup->sfmmu_free) {
4839 		dmrp = NULL;
4840 	} else {
4841 		dmrp = &dmr;
4842 		DEMAP_RANGE_INIT(sfmmup, dmrp);
4843 	}
4844 
4845 	/*
4846 	 * Loop through all the hash buckets of HME blocks looking for matches.
4847 	 */
4848 	for (i = 0; i <= UHMEHASH_SZ; i++) {
4849 		hmebp = &uhme_hash[i];
4850 		SFMMU_HASH_LOCK(hmebp);
4851 		hmeblkp = hmebp->hmeblkp;
4852 		hblkpa = hmebp->hmeh_nextpa;
4853 		prevpa = 0;
4854 		pr_hblk = NULL;
4855 		while (hmeblkp) {
4856 			nx_hblk = hmeblkp->hblk_next;
4857 			nx_pa = hmeblkp->hblk_nextpa;
4858 
4859 			/*
4860 			 * skip if not this context, if a shadow block or
4861 			 * if the mapping is not in the requested range
4862 			 */
4863 			if (hmeblkp->hblk_tag.htag_id != sfmmup ||
4864 			    hmeblkp->hblk_shw_bit ||
4865 			    (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
4866 			    (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
4867 				pr_hblk = hmeblkp;
4868 				prevpa = hblkpa;
4869 				goto next_block;
4870 			}
4871 
4872 			/*
4873 			 * unload if there are any current valid mappings
4874 			 */
4875 			if (hmeblkp->hblk_vcnt != 0 ||
4876 			    hmeblkp->hblk_hmecnt != 0)
4877 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
4878 				    sa, ea, dmrp, flags);
4879 
4880 			/*
4881 			 * on unmap we also release the HME block itself, once
4882 			 * all mappings are gone.
4883 			 */
4884 			if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
4885 			    !hmeblkp->hblk_vcnt &&
4886 			    !hmeblkp->hblk_hmecnt) {
4887 				ASSERT(!hmeblkp->hblk_lckcnt);
4888 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
4889 					prevpa, pr_hblk);
4890 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
4891 			} else {
4892 				pr_hblk = hmeblkp;
4893 				prevpa = hblkpa;
4894 			}
4895 
4896 			if (callback == NULL)
4897 				goto next_block;
4898 
4899 			/*
4900 			 * HME blocks may span more than one page, but we may be
4901 			 * unmapping only one page, so check for a smaller range
4902 			 * for the callback
4903 			 */
4904 			if (sa < startaddr)
4905 				sa = startaddr;
4906 			if (--ea > endaddr)
4907 				ea = endaddr - 1;
4908 
4909 			cb_sa[addr_cnt] = sa;
4910 			cb_ea[addr_cnt] = ea;
4911 			if (++addr_cnt == MAX_CB_ADDR) {
4912 				if (dmrp != NULL) {
4913 					DEMAP_RANGE_FLUSH(dmrp);
4914 					cpuset = sfmmup->sfmmu_cpusran;
4915 					xt_sync(cpuset);
4916 				}
4917 
4918 				for (a = 0; a < MAX_CB_ADDR; ++a) {
4919 					callback->hcb_start_addr = cb_sa[a];
4920 					callback->hcb_end_addr = cb_ea[a];
4921 					callback->hcb_function(callback);
4922 				}
4923 				addr_cnt = 0;
4924 			}
4925 
4926 next_block:
4927 			hmeblkp = nx_hblk;
4928 			hblkpa = nx_pa;
4929 		}
4930 		SFMMU_HASH_UNLOCK(hmebp);
4931 	}
4932 
4933 	sfmmu_hblks_list_purge(&list);
4934 	if (dmrp != NULL) {
4935 		DEMAP_RANGE_FLUSH(dmrp);
4936 		cpuset = sfmmup->sfmmu_cpusran;
4937 		xt_sync(cpuset);
4938 	}
4939 
4940 	for (a = 0; a < addr_cnt; ++a) {
4941 		callback->hcb_start_addr = cb_sa[a];
4942 		callback->hcb_end_addr = cb_ea[a];
4943 		callback->hcb_function(callback);
4944 	}
4945 
4946 	/*
4947 	 * Check TSB and TLB page sizes if the process isn't exiting.
4948 	 */
4949 	if (!sfmmup->sfmmu_free)
4950 		sfmmu_check_page_sizes(sfmmup, 0);
4951 }
4952 
4953 /*
4954  * Unload all the mappings in the range [addr..addr+len). addr and len must
4955  * be MMU_PAGESIZE aligned.
4956  */
4957 
4958 extern struct seg *segkmap;
4959 #define	ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
4960 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
4961 
4962 
4963 void
4964 hat_unload_callback(
4965 	struct hat *sfmmup,
4966 	caddr_t addr,
4967 	size_t len,
4968 	uint_t flags,
4969 	hat_callback_t *callback)
4970 {
4971 	struct hmehash_bucket *hmebp;
4972 	hmeblk_tag hblktag;
4973 	int hmeshift, hashno, iskernel;
4974 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
4975 	caddr_t endaddr;
4976 	cpuset_t cpuset;
4977 	uint64_t hblkpa, prevpa;
4978 	int addr_count = 0;
4979 	int a;
4980 	caddr_t cb_start_addr[MAX_CB_ADDR];
4981 	caddr_t cb_end_addr[MAX_CB_ADDR];
4982 	int issegkmap = ISSEGKMAP(sfmmup, addr);
4983 	demap_range_t dmr, *dmrp;
4984 
4985 	if (sfmmup->sfmmu_xhat_provider) {
4986 		XHAT_UNLOAD_CALLBACK(sfmmup, addr, len, flags, callback);
4987 		return;
4988 	} else {
4989 		/*
4990 		 * This must be a CPU HAT. If the address space has
4991 		 * XHATs attached, unload the mappings for all of them,
4992 		 * just in case
4993 		 */
4994 		ASSERT(sfmmup->sfmmu_as != NULL);
4995 		if (sfmmup->sfmmu_as->a_xhat != NULL)
4996 			xhat_unload_callback_all(sfmmup->sfmmu_as, addr,
4997 			    len, flags, callback);
4998 	}
4999 
5000 	ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
5001 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
5002 
5003 	ASSERT(sfmmup != NULL);
5004 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5005 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
5006 
5007 	/*
5008 	 * Probing through a large VA range (say 63 bits) will be slow, even
5009 	 * at 4 Meg steps between the probes. So, when the virtual address range
5010 	 * is very large, search the HME entries for what to unload.
5011 	 *
5012 	 *	len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
5013 	 *
5014 	 *	UHMEHASH_SZ is number of hash buckets to examine
5015 	 *
5016 	 */
5017 	if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
5018 		hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
5019 		return;
5020 	}
5021 
5022 	CPUSET_ZERO(cpuset);
5023 
5024 	/*
5025 	 * If the process is exiting, we can save a lot of fuss since
5026 	 * we'll flush the TLB when we free the ctx anyway.
5027 	 */
5028 	if (sfmmup->sfmmu_free)
5029 		dmrp = NULL;
5030 	else
5031 		dmrp = &dmr;
5032 
5033 	DEMAP_RANGE_INIT(sfmmup, dmrp);
5034 	endaddr = addr + len;
5035 	hblktag.htag_id = sfmmup;
5036 
5037 	/*
5038 	 * It is likely for the vm to call unload over a wide range of
5039 	 * addresses that are actually very sparsely populated by
5040 	 * translations.  In order to speed this up the sfmmu hat supports
5041 	 * the concept of shadow hmeblks. Dummy large page hmeblks that
5042 	 * correspond to actual small translations are allocated at tteload
5043 	 * time and are referred to as shadow hmeblks.  Now, during unload
5044 	 * time, we first check if we have a shadow hmeblk for that
5045 	 * translation.  The absence of one means the corresponding address
5046 	 * range is empty and can be skipped.
5047 	 *
5048 	 * The kernel is an exception to above statement and that is why
5049 	 * we don't use shadow hmeblks and hash starting from the smallest
5050 	 * page size.
5051 	 */
5052 	if (sfmmup == KHATID) {
5053 		iskernel = 1;
5054 		hashno = TTE64K;
5055 	} else {
5056 		iskernel = 0;
5057 		if (mmu_page_sizes == max_mmu_page_sizes) {
5058 			hashno = TTE256M;
5059 		} else {
5060 			hashno = TTE4M;
5061 		}
5062 	}
5063 	while (addr < endaddr) {
5064 		hmeshift = HME_HASH_SHIFT(hashno);
5065 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5066 		hblktag.htag_rehash = hashno;
5067 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5068 
5069 		SFMMU_HASH_LOCK(hmebp);
5070 
5071 		HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, pr_hblk,
5072 			prevpa, &list);
5073 		if (hmeblkp == NULL) {
5074 			/*
5075 			 * didn't find an hmeblk. skip the appropiate
5076 			 * address range.
5077 			 */
5078 			SFMMU_HASH_UNLOCK(hmebp);
5079 			if (iskernel) {
5080 				if (hashno < mmu_hashcnt) {
5081 					hashno++;
5082 					continue;
5083 				} else {
5084 					hashno = TTE64K;
5085 					addr = (caddr_t)roundup((uintptr_t)addr
5086 						+ 1, MMU_PAGESIZE64K);
5087 					continue;
5088 				}
5089 			}
5090 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5091 				(1 << hmeshift));
5092 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5093 				ASSERT(hashno == TTE64K);
5094 				continue;
5095 			}
5096 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5097 				hashno = TTE512K;
5098 				continue;
5099 			}
5100 			if (mmu_page_sizes == max_mmu_page_sizes) {
5101 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5102 					hashno = TTE4M;
5103 					continue;
5104 				}
5105 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5106 					hashno = TTE32M;
5107 					continue;
5108 				}
5109 				hashno = TTE256M;
5110 				continue;
5111 			} else {
5112 				hashno = TTE4M;
5113 				continue;
5114 			}
5115 		}
5116 		ASSERT(hmeblkp);
5117 		if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5118 			/*
5119 			 * If the valid count is zero we can skip the range
5120 			 * mapped by this hmeblk.
5121 			 * We free hblks in the case of HAT_UNMAP.  HAT_UNMAP
5122 			 * is used by segment drivers as a hint
5123 			 * that the mapping resource won't be used any longer.
5124 			 * The best example of this is during exit().
5125 			 */
5126 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5127 				get_hblk_span(hmeblkp));
5128 			if ((flags & HAT_UNLOAD_UNMAP) ||
5129 			    (iskernel && !issegkmap)) {
5130 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5131 				    pr_hblk);
5132 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5133 			}
5134 			SFMMU_HASH_UNLOCK(hmebp);
5135 
5136 			if (iskernel) {
5137 				hashno = TTE64K;
5138 				continue;
5139 			}
5140 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5141 				ASSERT(hashno == TTE64K);
5142 				continue;
5143 			}
5144 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5145 				hashno = TTE512K;
5146 				continue;
5147 			}
5148 			if (mmu_page_sizes == max_mmu_page_sizes) {
5149 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5150 					hashno = TTE4M;
5151 					continue;
5152 				}
5153 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5154 					hashno = TTE32M;
5155 					continue;
5156 				}
5157 				hashno = TTE256M;
5158 				continue;
5159 			} else {
5160 				hashno = TTE4M;
5161 				continue;
5162 			}
5163 		}
5164 		if (hmeblkp->hblk_shw_bit) {
5165 			/*
5166 			 * If we encounter a shadow hmeblk we know there is
5167 			 * smaller sized hmeblks mapping the same address space.
5168 			 * Decrement the hash size and rehash.
5169 			 */
5170 			ASSERT(sfmmup != KHATID);
5171 			hashno--;
5172 			SFMMU_HASH_UNLOCK(hmebp);
5173 			continue;
5174 		}
5175 
5176 		/*
5177 		 * track callback address ranges.
5178 		 * only start a new range when it's not contiguous
5179 		 */
5180 		if (callback != NULL) {
5181 			if (addr_count > 0 &&
5182 			    addr == cb_end_addr[addr_count - 1])
5183 				--addr_count;
5184 			else
5185 				cb_start_addr[addr_count] = addr;
5186 		}
5187 
5188 		addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
5189 				dmrp, flags);
5190 
5191 		if (callback != NULL)
5192 			cb_end_addr[addr_count++] = addr;
5193 
5194 		if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
5195 		    !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5196 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5197 			    pr_hblk);
5198 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5199 		}
5200 		SFMMU_HASH_UNLOCK(hmebp);
5201 
5202 		/*
5203 		 * Notify our caller as to exactly which pages
5204 		 * have been unloaded. We do these in clumps,
5205 		 * to minimize the number of xt_sync()s that need to occur.
5206 		 */
5207 		if (callback != NULL && addr_count == MAX_CB_ADDR) {
5208 			DEMAP_RANGE_FLUSH(dmrp);
5209 			if (dmrp != NULL) {
5210 				cpuset = sfmmup->sfmmu_cpusran;
5211 				xt_sync(cpuset);
5212 			}
5213 
5214 			for (a = 0; a < MAX_CB_ADDR; ++a) {
5215 				callback->hcb_start_addr = cb_start_addr[a];
5216 				callback->hcb_end_addr = cb_end_addr[a];
5217 				callback->hcb_function(callback);
5218 			}
5219 			addr_count = 0;
5220 		}
5221 		if (iskernel) {
5222 			hashno = TTE64K;
5223 			continue;
5224 		}
5225 		if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5226 			ASSERT(hashno == TTE64K);
5227 			continue;
5228 		}
5229 		if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5230 			hashno = TTE512K;
5231 			continue;
5232 		}
5233 		if (mmu_page_sizes == max_mmu_page_sizes) {
5234 			if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5235 				hashno = TTE4M;
5236 				continue;
5237 			}
5238 			if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5239 				hashno = TTE32M;
5240 				continue;
5241 			}
5242 			hashno = TTE256M;
5243 		} else {
5244 			hashno = TTE4M;
5245 		}
5246 	}
5247 
5248 	sfmmu_hblks_list_purge(&list);
5249 	DEMAP_RANGE_FLUSH(dmrp);
5250 	if (dmrp != NULL) {
5251 		cpuset = sfmmup->sfmmu_cpusran;
5252 		xt_sync(cpuset);
5253 	}
5254 	if (callback && addr_count != 0) {
5255 		for (a = 0; a < addr_count; ++a) {
5256 			callback->hcb_start_addr = cb_start_addr[a];
5257 			callback->hcb_end_addr = cb_end_addr[a];
5258 			callback->hcb_function(callback);
5259 		}
5260 	}
5261 
5262 	/*
5263 	 * Check TSB and TLB page sizes if the process isn't exiting.
5264 	 */
5265 	if (!sfmmup->sfmmu_free)
5266 		sfmmu_check_page_sizes(sfmmup, 0);
5267 }
5268 
5269 /*
5270  * Unload all the mappings in the range [addr..addr+len). addr and len must
5271  * be MMU_PAGESIZE aligned.
5272  */
5273 void
5274 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
5275 {
5276 	if (sfmmup->sfmmu_xhat_provider) {
5277 		XHAT_UNLOAD(sfmmup, addr, len, flags);
5278 		return;
5279 	}
5280 	hat_unload_callback(sfmmup, addr, len, flags, NULL);
5281 }
5282 
5283 
5284 /*
5285  * Find the largest mapping size for this page.
5286  */
5287 int
5288 fnd_mapping_sz(page_t *pp)
5289 {
5290 	int sz;
5291 	int p_index;
5292 
5293 	p_index = PP_MAPINDEX(pp);
5294 
5295 	sz = 0;
5296 	p_index >>= 1;	/* don't care about 8K bit */
5297 	for (; p_index; p_index >>= 1) {
5298 		sz++;
5299 	}
5300 
5301 	return (sz);
5302 }
5303 
5304 /*
5305  * This function unloads a range of addresses for an hmeblk.
5306  * It returns the next address to be unloaded.
5307  * It should be called with the hash lock held.
5308  */
5309 static caddr_t
5310 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5311 	caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
5312 {
5313 	tte_t	tte, ttemod;
5314 	struct	sf_hment *sfhmep;
5315 	int	ttesz;
5316 	long	ttecnt;
5317 	page_t *pp;
5318 	kmutex_t *pml;
5319 	int ret;
5320 	int use_demap_range;
5321 
5322 	ASSERT(in_hblk_range(hmeblkp, addr));
5323 	ASSERT(!hmeblkp->hblk_shw_bit);
5324 #ifdef DEBUG
5325 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5326 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
5327 		panic("sfmmu_hblk_unload: partial unload of large page");
5328 	}
5329 #endif /* DEBUG */
5330 
5331 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5332 	ttesz = get_hblk_ttesz(hmeblkp);
5333 
5334 	use_demap_range = (do_virtual_coloring &&
5335 	    ((dmrp == NULL) || TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)));
5336 	if (use_demap_range) {
5337 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5338 	} else {
5339 		DEMAP_RANGE_FLUSH(dmrp);
5340 	}
5341 	ttecnt = 0;
5342 	HBLKTOHME(sfhmep, hmeblkp, addr);
5343 
5344 	while (addr < endaddr) {
5345 		pml = NULL;
5346 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5347 		if (TTE_IS_VALID(&tte)) {
5348 			pp = sfhmep->hme_page;
5349 			if (pp != NULL) {
5350 				pml = sfmmu_mlist_enter(pp);
5351 			}
5352 
5353 			/*
5354 			 * Verify if hme still points to 'pp' now that
5355 			 * we have p_mapping lock.
5356 			 */
5357 			if (sfhmep->hme_page != pp) {
5358 				if (pp != NULL && sfhmep->hme_page != NULL) {
5359 					ASSERT(pml != NULL);
5360 					sfmmu_mlist_exit(pml);
5361 					/* Re-start this iteration. */
5362 					continue;
5363 				}
5364 				ASSERT((pp != NULL) &&
5365 				    (sfhmep->hme_page == NULL));
5366 				goto tte_unloaded;
5367 			}
5368 
5369 			/*
5370 			 * This point on we have both HASH and p_mapping
5371 			 * lock.
5372 			 */
5373 			ASSERT(pp == sfhmep->hme_page);
5374 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5375 
5376 			/*
5377 			 * We need to loop on modify tte because it is
5378 			 * possible for pagesync to come along and
5379 			 * change the software bits beneath us.
5380 			 *
5381 			 * Page_unload can also invalidate the tte after
5382 			 * we read tte outside of p_mapping lock.
5383 			 */
5384 again:
5385 			ttemod = tte;
5386 
5387 			TTE_SET_INVALID(&ttemod);
5388 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5389 			    &sfhmep->hme_tte);
5390 
5391 			if (ret <= 0) {
5392 				if (TTE_IS_VALID(&tte)) {
5393 					ASSERT(ret < 0);
5394 					goto again;
5395 				}
5396 				if (pp != NULL) {
5397 					panic("sfmmu_hblk_unload: pp = 0x%p "
5398 					    "tte became invalid under mlist"
5399 					    " lock = 0x%p", pp, pml);
5400 				}
5401 				continue;
5402 			}
5403 
5404 			if (!(flags & HAT_UNLOAD_NOSYNC)) {
5405 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
5406 			}
5407 
5408 			/*
5409 			 * Ok- we invalidated the tte. Do the rest of the job.
5410 			 */
5411 			ttecnt++;
5412 
5413 			if (flags & HAT_UNLOAD_UNLOCK) {
5414 				ASSERT(hmeblkp->hblk_lckcnt > 0);
5415 				atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
5416 				HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
5417 			}
5418 
5419 			/*
5420 			 * Normally we would need to flush the page
5421 			 * from the virtual cache at this point in
5422 			 * order to prevent a potential cache alias
5423 			 * inconsistency.
5424 			 * The particular scenario we need to worry
5425 			 * about is:
5426 			 * Given:  va1 and va2 are two virtual address
5427 			 * that alias and map the same physical
5428 			 * address.
5429 			 * 1.	mapping exists from va1 to pa and data
5430 			 * has been read into the cache.
5431 			 * 2.	unload va1.
5432 			 * 3.	load va2 and modify data using va2.
5433 			 * 4	unload va2.
5434 			 * 5.	load va1 and reference data.  Unless we
5435 			 * flush the data cache when we unload we will
5436 			 * get stale data.
5437 			 * Fortunately, page coloring eliminates the
5438 			 * above scenario by remembering the color a
5439 			 * physical page was last or is currently
5440 			 * mapped to.  Now, we delay the flush until
5441 			 * the loading of translations.  Only when the
5442 			 * new translation is of a different color
5443 			 * are we forced to flush.
5444 			 */
5445 			if (use_demap_range) {
5446 				/*
5447 				 * Mark this page as needing a demap.
5448 				 */
5449 				DEMAP_RANGE_MARKPG(dmrp, addr);
5450 			} else {
5451 				if (do_virtual_coloring) {
5452 					sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
5453 					    sfmmup->sfmmu_free, 0);
5454 				} else {
5455 					pfn_t pfnum;
5456 
5457 					pfnum = TTE_TO_PFN(addr, &tte);
5458 					sfmmu_tlbcache_demap(addr, sfmmup,
5459 					    hmeblkp, pfnum, sfmmup->sfmmu_free,
5460 					    FLUSH_NECESSARY_CPUS,
5461 					    CACHE_FLUSH, 0);
5462 				}
5463 			}
5464 
5465 			if (pp) {
5466 				/*
5467 				 * Remove the hment from the mapping list
5468 				 */
5469 				ASSERT(hmeblkp->hblk_hmecnt > 0);
5470 
5471 				/*
5472 				 * Again, we cannot
5473 				 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
5474 				 */
5475 				HME_SUB(sfhmep, pp);
5476 				membar_stst();
5477 				atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
5478 			}
5479 
5480 			ASSERT(hmeblkp->hblk_vcnt > 0);
5481 			atomic_add_16(&hmeblkp->hblk_vcnt, -1);
5482 
5483 			ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
5484 			    !hmeblkp->hblk_lckcnt);
5485 
5486 #ifdef VAC
5487 			if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
5488 				if (PP_ISTNC(pp)) {
5489 					/*
5490 					 * If page was temporary
5491 					 * uncached, try to recache
5492 					 * it. Note that HME_SUB() was
5493 					 * called above so p_index and
5494 					 * mlist had been updated.
5495 					 */
5496 					conv_tnc(pp, ttesz);
5497 				} else if (pp->p_mapping == NULL) {
5498 					ASSERT(kpm_enable);
5499 					/*
5500 					 * Page is marked to be in VAC conflict
5501 					 * to an existing kpm mapping and/or is
5502 					 * kpm mapped using only the regular
5503 					 * pagesize.
5504 					 */
5505 					sfmmu_kpm_hme_unload(pp);
5506 				}
5507 			}
5508 #endif	/* VAC */
5509 		} else if ((pp = sfhmep->hme_page) != NULL) {
5510 				/*
5511 				 * TTE is invalid but the hme
5512 				 * still exists. let pageunload
5513 				 * complete its job.
5514 				 */
5515 				ASSERT(pml == NULL);
5516 				pml = sfmmu_mlist_enter(pp);
5517 				if (sfhmep->hme_page != NULL) {
5518 					sfmmu_mlist_exit(pml);
5519 					continue;
5520 				}
5521 				ASSERT(sfhmep->hme_page == NULL);
5522 		} else if (hmeblkp->hblk_hmecnt != 0) {
5523 			/*
5524 			 * pageunload may have not finished decrementing
5525 			 * hblk_vcnt and hblk_hmecnt. Find page_t if any and
5526 			 * wait for pageunload to finish. Rely on pageunload
5527 			 * to decrement hblk_hmecnt after hblk_vcnt.
5528 			 */
5529 			pfn_t pfn = TTE_TO_TTEPFN(&tte);
5530 			ASSERT(pml == NULL);
5531 			if (pf_is_memory(pfn)) {
5532 				pp = page_numtopp_nolock(pfn);
5533 				if (pp != NULL) {
5534 					pml = sfmmu_mlist_enter(pp);
5535 					sfmmu_mlist_exit(pml);
5536 					pml = NULL;
5537 				}
5538 			}
5539 		}
5540 
5541 tte_unloaded:
5542 		/*
5543 		 * At this point, the tte we are looking at
5544 		 * should be unloaded, and hme has been unlinked
5545 		 * from page too. This is important because in
5546 		 * pageunload, it does ttesync() then HME_SUB.
5547 		 * We need to make sure HME_SUB has been completed
5548 		 * so we know ttesync() has been completed. Otherwise,
5549 		 * at exit time, after return from hat layer, VM will
5550 		 * release as structure which hat_setstat() (called
5551 		 * by ttesync()) needs.
5552 		 */
5553 #ifdef DEBUG
5554 		{
5555 			tte_t	dtte;
5556 
5557 			ASSERT(sfhmep->hme_page == NULL);
5558 
5559 			sfmmu_copytte(&sfhmep->hme_tte, &dtte);
5560 			ASSERT(!TTE_IS_VALID(&dtte));
5561 		}
5562 #endif
5563 
5564 		if (pml) {
5565 			sfmmu_mlist_exit(pml);
5566 		}
5567 
5568 		addr += TTEBYTES(ttesz);
5569 		sfhmep++;
5570 		DEMAP_RANGE_NEXTPG(dmrp);
5571 	}
5572 	if (ttecnt > 0)
5573 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
5574 	return (addr);
5575 }
5576 
5577 /*
5578  * Synchronize all the mappings in the range [addr..addr+len).
5579  * Can be called with clearflag having two states:
5580  * HAT_SYNC_DONTZERO means just return the rm stats
5581  * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
5582  */
5583 void
5584 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
5585 {
5586 	struct hmehash_bucket *hmebp;
5587 	hmeblk_tag hblktag;
5588 	int hmeshift, hashno = 1;
5589 	struct hme_blk *hmeblkp, *list = NULL;
5590 	caddr_t endaddr;
5591 	cpuset_t cpuset;
5592 
5593 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
5594 	ASSERT((sfmmup == ksfmmup) ||
5595 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
5596 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5597 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
5598 		(clearflag == HAT_SYNC_ZERORM));
5599 
5600 	CPUSET_ZERO(cpuset);
5601 
5602 	endaddr = addr + len;
5603 	hblktag.htag_id = sfmmup;
5604 	/*
5605 	 * Spitfire supports 4 page sizes.
5606 	 * Most pages are expected to be of the smallest page
5607 	 * size (8K) and these will not need to be rehashed. 64K
5608 	 * pages also don't need to be rehashed because the an hmeblk
5609 	 * spans 64K of address space. 512K pages might need 1 rehash and
5610 	 * and 4M pages 2 rehashes.
5611 	 */
5612 	while (addr < endaddr) {
5613 		hmeshift = HME_HASH_SHIFT(hashno);
5614 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5615 		hblktag.htag_rehash = hashno;
5616 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5617 
5618 		SFMMU_HASH_LOCK(hmebp);
5619 
5620 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
5621 		if (hmeblkp != NULL) {
5622 			/*
5623 			 * We've encountered a shadow hmeblk so skip the range
5624 			 * of the next smaller mapping size.
5625 			 */
5626 			if (hmeblkp->hblk_shw_bit) {
5627 				ASSERT(sfmmup != ksfmmup);
5628 				ASSERT(hashno > 1);
5629 				addr = (caddr_t)P2END((uintptr_t)addr,
5630 					    TTEBYTES(hashno - 1));
5631 			} else {
5632 				addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
5633 				    addr, endaddr, clearflag);
5634 			}
5635 			SFMMU_HASH_UNLOCK(hmebp);
5636 			hashno = 1;
5637 			continue;
5638 		}
5639 		SFMMU_HASH_UNLOCK(hmebp);
5640 
5641 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
5642 			/*
5643 			 * We have traversed the whole list and rehashed
5644 			 * if necessary without finding the address to sync.
5645 			 * This is ok so we increment the address by the
5646 			 * smallest hmeblk range for kernel mappings and the
5647 			 * largest hmeblk range, to account for shadow hmeblks,
5648 			 * for user mappings and continue.
5649 			 */
5650 			if (sfmmup == ksfmmup)
5651 				addr = (caddr_t)P2END((uintptr_t)addr,
5652 					    TTEBYTES(1));
5653 			else
5654 				addr = (caddr_t)P2END((uintptr_t)addr,
5655 					    TTEBYTES(hashno));
5656 			hashno = 1;
5657 		} else {
5658 			hashno++;
5659 		}
5660 	}
5661 	sfmmu_hblks_list_purge(&list);
5662 	cpuset = sfmmup->sfmmu_cpusran;
5663 	xt_sync(cpuset);
5664 }
5665 
5666 static caddr_t
5667 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5668 	caddr_t endaddr, int clearflag)
5669 {
5670 	tte_t	tte, ttemod;
5671 	struct sf_hment *sfhmep;
5672 	int ttesz;
5673 	struct page *pp;
5674 	kmutex_t *pml;
5675 	int ret;
5676 
5677 	ASSERT(hmeblkp->hblk_shw_bit == 0);
5678 
5679 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5680 
5681 	ttesz = get_hblk_ttesz(hmeblkp);
5682 	HBLKTOHME(sfhmep, hmeblkp, addr);
5683 
5684 	while (addr < endaddr) {
5685 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5686 		if (TTE_IS_VALID(&tte)) {
5687 			pml = NULL;
5688 			pp = sfhmep->hme_page;
5689 			if (pp) {
5690 				pml = sfmmu_mlist_enter(pp);
5691 			}
5692 			if (pp != sfhmep->hme_page) {
5693 				/*
5694 				 * tte most have been unloaded
5695 				 * underneath us.  Recheck
5696 				 */
5697 				ASSERT(pml);
5698 				sfmmu_mlist_exit(pml);
5699 				continue;
5700 			}
5701 
5702 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5703 
5704 			if (clearflag == HAT_SYNC_ZERORM) {
5705 				ttemod = tte;
5706 				TTE_CLR_RM(&ttemod);
5707 				ret = sfmmu_modifytte_try(&tte, &ttemod,
5708 				    &sfhmep->hme_tte);
5709 				if (ret < 0) {
5710 					if (pml) {
5711 						sfmmu_mlist_exit(pml);
5712 					}
5713 					continue;
5714 				}
5715 
5716 				if (ret > 0) {
5717 					sfmmu_tlb_demap(addr, sfmmup,
5718 						hmeblkp, 0, 0);
5719 				}
5720 			}
5721 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
5722 			if (pml) {
5723 				sfmmu_mlist_exit(pml);
5724 			}
5725 		}
5726 		addr += TTEBYTES(ttesz);
5727 		sfhmep++;
5728 	}
5729 	return (addr);
5730 }
5731 
5732 /*
5733  * This function will sync a tte to the page struct and it will
5734  * update the hat stats. Currently it allows us to pass a NULL pp
5735  * and we will simply update the stats.  We may want to change this
5736  * so we only keep stats for pages backed by pp's.
5737  */
5738 static void
5739 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
5740 {
5741 	uint_t rm = 0;
5742 	int   	sz;
5743 	pgcnt_t	npgs;
5744 
5745 	ASSERT(TTE_IS_VALID(ttep));
5746 
5747 	if (TTE_IS_NOSYNC(ttep)) {
5748 		return;
5749 	}
5750 
5751 	if (TTE_IS_REF(ttep))  {
5752 		rm = P_REF;
5753 	}
5754 	if (TTE_IS_MOD(ttep))  {
5755 		rm |= P_MOD;
5756 	}
5757 
5758 	if (rm == 0) {
5759 		return;
5760 	}
5761 
5762 	sz = TTE_CSZ(ttep);
5763 	if (sfmmup->sfmmu_rmstat) {
5764 		int i;
5765 		caddr_t	vaddr = addr;
5766 
5767 		for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) {
5768 			hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm);
5769 		}
5770 
5771 	}
5772 
5773 	/*
5774 	 * XXX I want to use cas to update nrm bits but they
5775 	 * currently belong in common/vm and not in hat where
5776 	 * they should be.
5777 	 * The nrm bits are protected by the same mutex as
5778 	 * the one that protects the page's mapping list.
5779 	 */
5780 	if (!pp)
5781 		return;
5782 	ASSERT(sfmmu_mlist_held(pp));
5783 	/*
5784 	 * If the tte is for a large page, we need to sync all the
5785 	 * pages covered by the tte.
5786 	 */
5787 	if (sz != TTE8K) {
5788 		ASSERT(pp->p_szc != 0);
5789 		pp = PP_GROUPLEADER(pp, sz);
5790 		ASSERT(sfmmu_mlist_held(pp));
5791 	}
5792 
5793 	/* Get number of pages from tte size. */
5794 	npgs = TTEPAGES(sz);
5795 
5796 	do {
5797 		ASSERT(pp);
5798 		ASSERT(sfmmu_mlist_held(pp));
5799 		if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
5800 		    ((rm & P_MOD) != 0 && !PP_ISMOD(pp)))
5801 			hat_page_setattr(pp, rm);
5802 
5803 		/*
5804 		 * Are we done? If not, we must have a large mapping.
5805 		 * For large mappings we need to sync the rest of the pages
5806 		 * covered by this tte; goto the next page.
5807 		 */
5808 	} while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
5809 }
5810 
5811 /*
5812  * Execute pre-callback handler of each pa_hment linked to pp
5813  *
5814  * Inputs:
5815  *   flag: either HAT_PRESUSPEND or HAT_SUSPEND.
5816  *   capture_cpus: pointer to return value (below)
5817  *
5818  * Returns:
5819  *   Propagates the subsystem callback return values back to the caller;
5820  *   returns 0 on success.  If capture_cpus is non-NULL, the value returned
5821  *   is zero if all of the pa_hments are of a type that do not require
5822  *   capturing CPUs prior to suspending the mapping, else it is 1.
5823  */
5824 static int
5825 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
5826 {
5827 	struct sf_hment	*sfhmep;
5828 	struct pa_hment *pahmep;
5829 	int (*f)(caddr_t, uint_t, uint_t, void *);
5830 	int		ret;
5831 	id_t		id;
5832 	int		locked = 0;
5833 	kmutex_t	*pml;
5834 
5835 	ASSERT(PAGE_EXCL(pp));
5836 	if (!sfmmu_mlist_held(pp)) {
5837 		pml = sfmmu_mlist_enter(pp);
5838 		locked = 1;
5839 	}
5840 
5841 	if (capture_cpus)
5842 		*capture_cpus = 0;
5843 
5844 top:
5845 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5846 		/*
5847 		 * skip sf_hments corresponding to VA<->PA mappings;
5848 		 * for pa_hment's, hme_tte.ll is zero
5849 		 */
5850 		if (!IS_PAHME(sfhmep))
5851 			continue;
5852 
5853 		pahmep = sfhmep->hme_data;
5854 		ASSERT(pahmep != NULL);
5855 
5856 		/*
5857 		 * skip if pre-handler has been called earlier in this loop
5858 		 */
5859 		if (pahmep->flags & flag)
5860 			continue;
5861 
5862 		id = pahmep->cb_id;
5863 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
5864 		if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
5865 			*capture_cpus = 1;
5866 		if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
5867 			pahmep->flags |= flag;
5868 			continue;
5869 		}
5870 
5871 		/*
5872 		 * Drop the mapping list lock to avoid locking order issues.
5873 		 */
5874 		if (locked)
5875 			sfmmu_mlist_exit(pml);
5876 
5877 		ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
5878 		if (ret != 0)
5879 			return (ret);	/* caller must do the cleanup */
5880 
5881 		if (locked) {
5882 			pml = sfmmu_mlist_enter(pp);
5883 			pahmep->flags |= flag;
5884 			goto top;
5885 		}
5886 
5887 		pahmep->flags |= flag;
5888 	}
5889 
5890 	if (locked)
5891 		sfmmu_mlist_exit(pml);
5892 
5893 	return (0);
5894 }
5895 
5896 /*
5897  * Execute post-callback handler of each pa_hment linked to pp
5898  *
5899  * Same overall assumptions and restrictions apply as for
5900  * hat_pageprocess_precallbacks().
5901  */
5902 static void
5903 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
5904 {
5905 	pfn_t pgpfn = pp->p_pagenum;
5906 	pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
5907 	pfn_t newpfn;
5908 	struct sf_hment *sfhmep;
5909 	struct pa_hment *pahmep;
5910 	int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
5911 	id_t	id;
5912 	int	locked = 0;
5913 	kmutex_t *pml;
5914 
5915 	ASSERT(PAGE_EXCL(pp));
5916 	if (!sfmmu_mlist_held(pp)) {
5917 		pml = sfmmu_mlist_enter(pp);
5918 		locked = 1;
5919 	}
5920 
5921 top:
5922 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5923 		/*
5924 		 * skip sf_hments corresponding to VA<->PA mappings;
5925 		 * for pa_hment's, hme_tte.ll is zero
5926 		 */
5927 		if (!IS_PAHME(sfhmep))
5928 			continue;
5929 
5930 		pahmep = sfhmep->hme_data;
5931 		ASSERT(pahmep != NULL);
5932 
5933 		if ((pahmep->flags & flag) == 0)
5934 			continue;
5935 
5936 		pahmep->flags &= ~flag;
5937 
5938 		id = pahmep->cb_id;
5939 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
5940 		if ((f = sfmmu_cb_table[id].posthandler) == NULL)
5941 			continue;
5942 
5943 		/*
5944 		 * Convert the base page PFN into the constituent PFN
5945 		 * which is needed by the callback handler.
5946 		 */
5947 		newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
5948 
5949 		/*
5950 		 * Drop the mapping list lock to avoid locking order issues.
5951 		 */
5952 		if (locked)
5953 			sfmmu_mlist_exit(pml);
5954 
5955 		if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
5956 		    != 0)
5957 			panic("sfmmu: posthandler failed");
5958 
5959 		if (locked) {
5960 			pml = sfmmu_mlist_enter(pp);
5961 			goto top;
5962 		}
5963 	}
5964 
5965 	if (locked)
5966 		sfmmu_mlist_exit(pml);
5967 }
5968 
5969 /*
5970  * Suspend locked kernel mapping
5971  */
5972 void
5973 hat_pagesuspend(struct page *pp)
5974 {
5975 	struct sf_hment *sfhmep;
5976 	sfmmu_t *sfmmup;
5977 	tte_t tte, ttemod;
5978 	struct hme_blk *hmeblkp;
5979 	caddr_t addr;
5980 	int index, cons;
5981 	cpuset_t cpuset;
5982 
5983 	ASSERT(PAGE_EXCL(pp));
5984 	ASSERT(sfmmu_mlist_held(pp));
5985 
5986 	mutex_enter(&kpr_suspendlock);
5987 
5988 	/*
5989 	 * Call into dtrace to tell it we're about to suspend a
5990 	 * kernel mapping. This prevents us from running into issues
5991 	 * with probe context trying to touch a suspended page
5992 	 * in the relocation codepath itself.
5993 	 */
5994 	if (dtrace_kreloc_init)
5995 		(*dtrace_kreloc_init)();
5996 
5997 	index = PP_MAPINDEX(pp);
5998 	cons = TTE8K;
5999 
6000 retry:
6001 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6002 
6003 		if (IS_PAHME(sfhmep))
6004 			continue;
6005 
6006 		if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
6007 			continue;
6008 
6009 		/*
6010 		 * Loop until we successfully set the suspend bit in
6011 		 * the TTE.
6012 		 */
6013 again:
6014 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
6015 		ASSERT(TTE_IS_VALID(&tte));
6016 
6017 		ttemod = tte;
6018 		TTE_SET_SUSPEND(&ttemod);
6019 		if (sfmmu_modifytte_try(&tte, &ttemod,
6020 		    &sfhmep->hme_tte) < 0)
6021 			goto again;
6022 
6023 		/*
6024 		 * Invalidate TSB entry
6025 		 */
6026 		hmeblkp = sfmmu_hmetohblk(sfhmep);
6027 
6028 		sfmmup = hblktosfmmu(hmeblkp);
6029 		ASSERT(sfmmup == ksfmmup);
6030 
6031 		addr = tte_to_vaddr(hmeblkp, tte);
6032 
6033 		/*
6034 		 * No need to make sure that the TSB for this sfmmu is
6035 		 * not being relocated since it is ksfmmup and thus it
6036 		 * will never be relocated.
6037 		 */
6038 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
6039 
6040 		/*
6041 		 * Update xcall stats
6042 		 */
6043 		cpuset = cpu_ready_set;
6044 		CPUSET_DEL(cpuset, CPU->cpu_id);
6045 
6046 		/* LINTED: constant in conditional context */
6047 		SFMMU_XCALL_STATS(ksfmmup);
6048 
6049 		/*
6050 		 * Flush TLB entry on remote CPU's
6051 		 */
6052 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
6053 		    (uint64_t)ksfmmup);
6054 		xt_sync(cpuset);
6055 
6056 		/*
6057 		 * Flush TLB entry on local CPU
6058 		 */
6059 		vtag_flushpage(addr, (uint64_t)ksfmmup);
6060 	}
6061 
6062 	while (index != 0) {
6063 		index = index >> 1;
6064 		if (index != 0)
6065 			cons++;
6066 		if (index & 0x1) {
6067 			pp = PP_GROUPLEADER(pp, cons);
6068 			goto retry;
6069 		}
6070 	}
6071 }
6072 
6073 #ifdef	DEBUG
6074 
6075 #define	N_PRLE	1024
6076 struct prle {
6077 	page_t *targ;
6078 	page_t *repl;
6079 	int status;
6080 	int pausecpus;
6081 	hrtime_t whence;
6082 };
6083 
6084 static struct prle page_relocate_log[N_PRLE];
6085 static int prl_entry;
6086 static kmutex_t prl_mutex;
6087 
6088 #define	PAGE_RELOCATE_LOG(t, r, s, p)					\
6089 	mutex_enter(&prl_mutex);					\
6090 	page_relocate_log[prl_entry].targ = *(t);			\
6091 	page_relocate_log[prl_entry].repl = *(r);			\
6092 	page_relocate_log[prl_entry].status = (s);			\
6093 	page_relocate_log[prl_entry].pausecpus = (p);			\
6094 	page_relocate_log[prl_entry].whence = gethrtime();		\
6095 	prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1;	\
6096 	mutex_exit(&prl_mutex);
6097 
6098 #else	/* !DEBUG */
6099 #define	PAGE_RELOCATE_LOG(t, r, s, p)
6100 #endif
6101 
6102 /*
6103  * Core Kernel Page Relocation Algorithm
6104  *
6105  * Input:
6106  *
6107  * target : 	constituent pages are SE_EXCL locked.
6108  * replacement:	constituent pages are SE_EXCL locked.
6109  *
6110  * Output:
6111  *
6112  * nrelocp:	number of pages relocated
6113  */
6114 int
6115 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
6116 {
6117 	page_t		*targ, *repl;
6118 	page_t		*tpp, *rpp;
6119 	kmutex_t	*low, *high;
6120 	spgcnt_t	npages, i;
6121 	page_t		*pl = NULL;
6122 	int		old_pil;
6123 	cpuset_t	cpuset;
6124 	int		cap_cpus;
6125 	int		ret;
6126 
6127 	if (hat_kpr_enabled == 0 || !kcage_on || PP_ISNORELOC(*target)) {
6128 		PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
6129 		return (EAGAIN);
6130 	}
6131 
6132 	mutex_enter(&kpr_mutex);
6133 	kreloc_thread = curthread;
6134 
6135 	targ = *target;
6136 	repl = *replacement;
6137 	ASSERT(repl != NULL);
6138 	ASSERT(targ->p_szc == repl->p_szc);
6139 
6140 	npages = page_get_pagecnt(targ->p_szc);
6141 
6142 	/*
6143 	 * unload VA<->PA mappings that are not locked
6144 	 */
6145 	tpp = targ;
6146 	for (i = 0; i < npages; i++) {
6147 		(void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
6148 		tpp++;
6149 	}
6150 
6151 	/*
6152 	 * Do "presuspend" callbacks, in a context from which we can still
6153 	 * block as needed. Note that we don't hold the mapping list lock
6154 	 * of "targ" at this point due to potential locking order issues;
6155 	 * we assume that between the hat_pageunload() above and holding
6156 	 * the SE_EXCL lock that the mapping list *cannot* change at this
6157 	 * point.
6158 	 */
6159 	ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
6160 	if (ret != 0) {
6161 		/*
6162 		 * EIO translates to fatal error, for all others cleanup
6163 		 * and return EAGAIN.
6164 		 */
6165 		ASSERT(ret != EIO);
6166 		hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
6167 		PAGE_RELOCATE_LOG(target, replacement, ret, -1);
6168 		kreloc_thread = NULL;
6169 		mutex_exit(&kpr_mutex);
6170 		return (EAGAIN);
6171 	}
6172 
6173 	/*
6174 	 * acquire p_mapping list lock for both the target and replacement
6175 	 * root pages.
6176 	 *
6177 	 * low and high refer to the need to grab the mlist locks in a
6178 	 * specific order in order to prevent race conditions.  Thus the
6179 	 * lower lock must be grabbed before the higher lock.
6180 	 *
6181 	 * This will block hat_unload's accessing p_mapping list.  Since
6182 	 * we have SE_EXCL lock, hat_memload and hat_pageunload will be
6183 	 * blocked.  Thus, no one else will be accessing the p_mapping list
6184 	 * while we suspend and reload the locked mapping below.
6185 	 */
6186 	tpp = targ;
6187 	rpp = repl;
6188 	sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
6189 
6190 	kpreempt_disable();
6191 
6192 #ifdef VAC
6193 	/*
6194 	 * If the replacement page is of a different virtual color
6195 	 * than the page it is replacing, we need to handle the VAC
6196 	 * consistency for it just as we would if we were setting up
6197 	 * a new mapping to a page.
6198 	 */
6199 	if ((tpp->p_szc == 0) && (PP_GET_VCOLOR(rpp) != NO_VCOLOR)) {
6200 		if (tpp->p_vcolor != rpp->p_vcolor) {
6201 			sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
6202 			    rpp->p_pagenum);
6203 		}
6204 	}
6205 #endif
6206 
6207 	/*
6208 	 * We raise our PIL to 13 so that we don't get captured by
6209 	 * another CPU or pinned by an interrupt thread.  We can't go to
6210 	 * PIL 14 since the nexus driver(s) may need to interrupt at
6211 	 * that level in the case of IOMMU pseudo mappings.
6212 	 */
6213 	cpuset = cpu_ready_set;
6214 	CPUSET_DEL(cpuset, CPU->cpu_id);
6215 	if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
6216 		old_pil = splr(XCALL_PIL);
6217 	} else {
6218 		old_pil = -1;
6219 		xc_attention(cpuset);
6220 	}
6221 	ASSERT(getpil() == XCALL_PIL);
6222 
6223 	/*
6224 	 * Now do suspend callbacks. In the case of an IOMMU mapping
6225 	 * this will suspend all DMA activity to the page while it is
6226 	 * being relocated. Since we are well above LOCK_LEVEL and CPUs
6227 	 * may be captured at this point we should have acquired any needed
6228 	 * locks in the presuspend callback.
6229 	 */
6230 	ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
6231 	if (ret != 0) {
6232 		repl = targ;
6233 		goto suspend_fail;
6234 	}
6235 
6236 	/*
6237 	 * Raise the PIL yet again, this time to block all high-level
6238 	 * interrupts on this CPU. This is necessary to prevent an
6239 	 * interrupt routine from pinning the thread which holds the
6240 	 * mapping suspended and then touching the suspended page.
6241 	 *
6242 	 * Once the page is suspended we also need to be careful to
6243 	 * avoid calling any functions which touch any seg_kmem memory
6244 	 * since that memory may be backed by the very page we are
6245 	 * relocating in here!
6246 	 */
6247 	hat_pagesuspend(targ);
6248 
6249 	/*
6250 	 * Now that we are confident everybody has stopped using this page,
6251 	 * copy the page contents.  Note we use a physical copy to prevent
6252 	 * locking issues and to avoid fpRAS because we can't handle it in
6253 	 * this context.
6254 	 */
6255 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6256 		/*
6257 		 * Copy the contents of the page.
6258 		 */
6259 		ppcopy_kernel(tpp, rpp);
6260 	}
6261 
6262 	tpp = targ;
6263 	rpp = repl;
6264 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6265 		/*
6266 		 * Copy attributes.  VAC consistency was handled above,
6267 		 * if required.
6268 		 */
6269 		rpp->p_nrm = tpp->p_nrm;
6270 		tpp->p_nrm = 0;
6271 		rpp->p_index = tpp->p_index;
6272 		tpp->p_index = 0;
6273 #ifdef VAC
6274 		rpp->p_vcolor = tpp->p_vcolor;
6275 #endif
6276 	}
6277 
6278 	/*
6279 	 * First, unsuspend the page, if we set the suspend bit, and transfer
6280 	 * the mapping list from the target page to the replacement page.
6281 	 * Next process postcallbacks; since pa_hment's are linked only to the
6282 	 * p_mapping list of root page, we don't iterate over the constituent
6283 	 * pages.
6284 	 */
6285 	hat_pagereload(targ, repl);
6286 
6287 suspend_fail:
6288 	hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
6289 
6290 	/*
6291 	 * Now lower our PIL and release any captured CPUs since we
6292 	 * are out of the "danger zone".  After this it will again be
6293 	 * safe to acquire adaptive mutex locks, or to drop them...
6294 	 */
6295 	if (old_pil != -1) {
6296 		splx(old_pil);
6297 	} else {
6298 		xc_dismissed(cpuset);
6299 	}
6300 
6301 	kpreempt_enable();
6302 
6303 	sfmmu_mlist_reloc_exit(low, high);
6304 
6305 	/*
6306 	 * Postsuspend callbacks should drop any locks held across
6307 	 * the suspend callbacks.  As before, we don't hold the mapping
6308 	 * list lock at this point.. our assumption is that the mapping
6309 	 * list still can't change due to our holding SE_EXCL lock and
6310 	 * there being no unlocked mappings left. Hence the restriction
6311 	 * on calling context to hat_delete_callback()
6312 	 */
6313 	hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
6314 	if (ret != 0) {
6315 		/*
6316 		 * The second presuspend call failed: we got here through
6317 		 * the suspend_fail label above.
6318 		 */
6319 		ASSERT(ret != EIO);
6320 		PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
6321 		kreloc_thread = NULL;
6322 		mutex_exit(&kpr_mutex);
6323 		return (EAGAIN);
6324 	}
6325 
6326 	/*
6327 	 * Now that we're out of the performance critical section we can
6328 	 * take care of updating the hash table, since we still
6329 	 * hold all the pages locked SE_EXCL at this point we
6330 	 * needn't worry about things changing out from under us.
6331 	 */
6332 	tpp = targ;
6333 	rpp = repl;
6334 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6335 
6336 		/*
6337 		 * replace targ with replacement in page_hash table
6338 		 */
6339 		targ = tpp;
6340 		page_relocate_hash(rpp, targ);
6341 
6342 		/*
6343 		 * concatenate target; caller of platform_page_relocate()
6344 		 * expects target to be concatenated after returning.
6345 		 */
6346 		ASSERT(targ->p_next == targ);
6347 		ASSERT(targ->p_prev == targ);
6348 		page_list_concat(&pl, &targ);
6349 	}
6350 
6351 	ASSERT(*target == pl);
6352 	*nrelocp = npages;
6353 	PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
6354 	kreloc_thread = NULL;
6355 	mutex_exit(&kpr_mutex);
6356 	return (0);
6357 }
6358 
6359 /*
6360  * Called when stray pa_hments are found attached to a page which is
6361  * being freed.  Notify the subsystem which attached the pa_hment of
6362  * the error if it registered a suitable handler, else panic.
6363  */
6364 static void
6365 sfmmu_pahment_leaked(struct pa_hment *pahmep)
6366 {
6367 	id_t cb_id = pahmep->cb_id;
6368 
6369 	ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
6370 	if (sfmmu_cb_table[cb_id].errhandler != NULL) {
6371 		if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
6372 		    HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
6373 			return;		/* non-fatal */
6374 	}
6375 	panic("pa_hment leaked: 0x%p", pahmep);
6376 }
6377 
6378 /*
6379  * Remove all mappings to page 'pp'.
6380  */
6381 int
6382 hat_pageunload(struct page *pp, uint_t forceflag)
6383 {
6384 	struct page *origpp = pp;
6385 	struct sf_hment *sfhme, *tmphme;
6386 	struct hme_blk *hmeblkp;
6387 	kmutex_t *pml;
6388 #ifdef VAC
6389 	kmutex_t *pmtx;
6390 #endif
6391 	cpuset_t cpuset, tset;
6392 	int index, cons;
6393 	int xhme_blks;
6394 	int pa_hments;
6395 
6396 	ASSERT(PAGE_EXCL(pp));
6397 
6398 retry_xhat:
6399 	tmphme = NULL;
6400 	xhme_blks = 0;
6401 	pa_hments = 0;
6402 	CPUSET_ZERO(cpuset);
6403 
6404 	pml = sfmmu_mlist_enter(pp);
6405 
6406 #ifdef VAC
6407 	if (pp->p_kpmref)
6408 		sfmmu_kpm_pageunload(pp);
6409 	ASSERT(!PP_ISMAPPED_KPM(pp));
6410 #endif
6411 
6412 	index = PP_MAPINDEX(pp);
6413 	cons = TTE8K;
6414 retry:
6415 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6416 		tmphme = sfhme->hme_next;
6417 
6418 		if (IS_PAHME(sfhme)) {
6419 			ASSERT(sfhme->hme_data != NULL);
6420 			pa_hments++;
6421 			continue;
6422 		}
6423 
6424 		hmeblkp = sfmmu_hmetohblk(sfhme);
6425 		if (hmeblkp->hblk_xhat_bit) {
6426 			struct xhat_hme_blk *xblk =
6427 			    (struct xhat_hme_blk *)hmeblkp;
6428 
6429 			(void) XHAT_PAGEUNLOAD(xblk->xhat_hme_blk_hat,
6430 			    pp, forceflag, XBLK2PROVBLK(xblk));
6431 
6432 			xhme_blks = 1;
6433 			continue;
6434 		}
6435 
6436 		/*
6437 		 * If there are kernel mappings don't unload them, they will
6438 		 * be suspended.
6439 		 */
6440 		if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
6441 		    hmeblkp->hblk_tag.htag_id == ksfmmup)
6442 			continue;
6443 
6444 		tset = sfmmu_pageunload(pp, sfhme, cons);
6445 		CPUSET_OR(cpuset, tset);
6446 	}
6447 
6448 	while (index != 0) {
6449 		index = index >> 1;
6450 		if (index != 0)
6451 			cons++;
6452 		if (index & 0x1) {
6453 			/* Go to leading page */
6454 			pp = PP_GROUPLEADER(pp, cons);
6455 			ASSERT(sfmmu_mlist_held(pp));
6456 			goto retry;
6457 		}
6458 	}
6459 
6460 	/*
6461 	 * cpuset may be empty if the page was only mapped by segkpm,
6462 	 * in which case we won't actually cross-trap.
6463 	 */
6464 	xt_sync(cpuset);
6465 
6466 	/*
6467 	 * The page should have no mappings at this point, unless
6468 	 * we were called from hat_page_relocate() in which case we
6469 	 * leave the locked mappings which will be suspended later.
6470 	 */
6471 	ASSERT(!PP_ISMAPPED(origpp) || xhme_blks || pa_hments ||
6472 	    (forceflag == SFMMU_KERNEL_RELOC));
6473 
6474 #ifdef VAC
6475 	if (PP_ISTNC(pp)) {
6476 		if (cons == TTE8K) {
6477 			pmtx = sfmmu_page_enter(pp);
6478 			PP_CLRTNC(pp);
6479 			sfmmu_page_exit(pmtx);
6480 		} else {
6481 			conv_tnc(pp, cons);
6482 		}
6483 	}
6484 #endif	/* VAC */
6485 
6486 	if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
6487 		/*
6488 		 * Unlink any pa_hments and free them, calling back
6489 		 * the responsible subsystem to notify it of the error.
6490 		 * This can occur in situations such as drivers leaking
6491 		 * DMA handles: naughty, but common enough that we'd like
6492 		 * to keep the system running rather than bringing it
6493 		 * down with an obscure error like "pa_hment leaked"
6494 		 * which doesn't aid the user in debugging their driver.
6495 		 */
6496 		for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6497 			tmphme = sfhme->hme_next;
6498 			if (IS_PAHME(sfhme)) {
6499 				struct pa_hment *pahmep = sfhme->hme_data;
6500 				sfmmu_pahment_leaked(pahmep);
6501 				HME_SUB(sfhme, pp);
6502 				kmem_cache_free(pa_hment_cache, pahmep);
6503 			}
6504 		}
6505 
6506 		ASSERT(!PP_ISMAPPED(origpp) || xhme_blks);
6507 	}
6508 
6509 	sfmmu_mlist_exit(pml);
6510 
6511 	/*
6512 	 * XHAT may not have finished unloading pages
6513 	 * because some other thread was waiting for
6514 	 * mlist lock and XHAT_PAGEUNLOAD let it do
6515 	 * the job.
6516 	 */
6517 	if (xhme_blks) {
6518 		pp = origpp;
6519 		goto retry_xhat;
6520 	}
6521 
6522 	return (0);
6523 }
6524 
6525 cpuset_t
6526 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
6527 {
6528 	struct hme_blk *hmeblkp;
6529 	sfmmu_t *sfmmup;
6530 	tte_t tte, ttemod;
6531 #ifdef DEBUG
6532 	tte_t orig_old;
6533 #endif /* DEBUG */
6534 	caddr_t addr;
6535 	int ttesz;
6536 	int ret;
6537 	cpuset_t cpuset;
6538 
6539 	ASSERT(pp != NULL);
6540 	ASSERT(sfmmu_mlist_held(pp));
6541 	ASSERT(!PP_ISKAS(pp));
6542 
6543 	CPUSET_ZERO(cpuset);
6544 
6545 	hmeblkp = sfmmu_hmetohblk(sfhme);
6546 
6547 readtte:
6548 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6549 	if (TTE_IS_VALID(&tte)) {
6550 		sfmmup = hblktosfmmu(hmeblkp);
6551 		ttesz = get_hblk_ttesz(hmeblkp);
6552 		/*
6553 		 * Only unload mappings of 'cons' size.
6554 		 */
6555 		if (ttesz != cons)
6556 			return (cpuset);
6557 
6558 		/*
6559 		 * Note that we have p_mapping lock, but no hash lock here.
6560 		 * hblk_unload() has to have both hash lock AND p_mapping
6561 		 * lock before it tries to modify tte. So, the tte could
6562 		 * not become invalid in the sfmmu_modifytte_try() below.
6563 		 */
6564 		ttemod = tte;
6565 #ifdef DEBUG
6566 		orig_old = tte;
6567 #endif /* DEBUG */
6568 
6569 		TTE_SET_INVALID(&ttemod);
6570 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
6571 		if (ret < 0) {
6572 #ifdef DEBUG
6573 			/* only R/M bits can change. */
6574 			chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
6575 #endif /* DEBUG */
6576 			goto readtte;
6577 		}
6578 
6579 		if (ret == 0) {
6580 			panic("pageunload: cas failed?");
6581 		}
6582 
6583 		addr = tte_to_vaddr(hmeblkp, tte);
6584 
6585 		sfmmu_ttesync(sfmmup, addr, &tte, pp);
6586 
6587 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -1);
6588 
6589 		/*
6590 		 * We need to flush the page from the virtual cache
6591 		 * in order to prevent a virtual cache alias
6592 		 * inconsistency. The particular scenario we need
6593 		 * to worry about is:
6594 		 * Given:  va1 and va2 are two virtual address that
6595 		 * alias and will map the same physical address.
6596 		 * 1.	mapping exists from va1 to pa and data has
6597 		 *	been read into the cache.
6598 		 * 2.	unload va1.
6599 		 * 3.	load va2 and modify data using va2.
6600 		 * 4	unload va2.
6601 		 * 5.	load va1 and reference data.  Unless we flush
6602 		 *	the data cache when we unload we will get
6603 		 *	stale data.
6604 		 * This scenario is taken care of by using virtual
6605 		 * page coloring.
6606 		 */
6607 		if (sfmmup->sfmmu_ismhat) {
6608 			/*
6609 			 * Flush TSBs, TLBs and caches
6610 			 * of every process
6611 			 * sharing this ism segment.
6612 			 */
6613 			sfmmu_hat_lock_all();
6614 			mutex_enter(&ism_mlist_lock);
6615 			kpreempt_disable();
6616 			if (do_virtual_coloring)
6617 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
6618 					pp->p_pagenum, CACHE_NO_FLUSH);
6619 			else
6620 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
6621 					pp->p_pagenum, CACHE_FLUSH);
6622 			kpreempt_enable();
6623 			mutex_exit(&ism_mlist_lock);
6624 			sfmmu_hat_unlock_all();
6625 			cpuset = cpu_ready_set;
6626 		} else if (do_virtual_coloring) {
6627 			sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6628 			cpuset = sfmmup->sfmmu_cpusran;
6629 		} else {
6630 			sfmmu_tlbcache_demap(addr, sfmmup, hmeblkp,
6631 				pp->p_pagenum, 0, FLUSH_NECESSARY_CPUS,
6632 				CACHE_FLUSH, 0);
6633 			cpuset = sfmmup->sfmmu_cpusran;
6634 		}
6635 
6636 		/*
6637 		 * Hme_sub has to run after ttesync() and a_rss update.
6638 		 * See hblk_unload().
6639 		 */
6640 		HME_SUB(sfhme, pp);
6641 		membar_stst();
6642 
6643 		/*
6644 		 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
6645 		 * since pteload may have done a HME_ADD() right after
6646 		 * we did the HME_SUB() above. Hmecnt is now maintained
6647 		 * by cas only. no lock guranteed its value. The only
6648 		 * gurantee we have is the hmecnt should not be less than
6649 		 * what it should be so the hblk will not be taken away.
6650 		 * It's also important that we decremented the hmecnt after
6651 		 * we are done with hmeblkp so that this hmeblk won't be
6652 		 * stolen.
6653 		 */
6654 		ASSERT(hmeblkp->hblk_hmecnt > 0);
6655 		ASSERT(hmeblkp->hblk_vcnt > 0);
6656 		atomic_add_16(&hmeblkp->hblk_vcnt, -1);
6657 		atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
6658 		/*
6659 		 * This is bug 4063182.
6660 		 * XXX: fixme
6661 		 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
6662 		 *	!hmeblkp->hblk_lckcnt);
6663 		 */
6664 	} else {
6665 		panic("invalid tte? pp %p &tte %p",
6666 		    (void *)pp, (void *)&tte);
6667 	}
6668 
6669 	return (cpuset);
6670 }
6671 
6672 /*
6673  * While relocating a kernel page, this function will move the mappings
6674  * from tpp to dpp and modify any associated data with these mappings.
6675  * It also unsuspends the suspended kernel mapping.
6676  */
6677 static void
6678 hat_pagereload(struct page *tpp, struct page *dpp)
6679 {
6680 	struct sf_hment *sfhme;
6681 	tte_t tte, ttemod;
6682 	int index, cons;
6683 
6684 	ASSERT(getpil() == PIL_MAX);
6685 	ASSERT(sfmmu_mlist_held(tpp));
6686 	ASSERT(sfmmu_mlist_held(dpp));
6687 
6688 	index = PP_MAPINDEX(tpp);
6689 	cons = TTE8K;
6690 
6691 	/* Update real mappings to the page */
6692 retry:
6693 	for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
6694 		if (IS_PAHME(sfhme))
6695 			continue;
6696 		sfmmu_copytte(&sfhme->hme_tte, &tte);
6697 		ttemod = tte;
6698 
6699 		/*
6700 		 * replace old pfn with new pfn in TTE
6701 		 */
6702 		PFN_TO_TTE(ttemod, dpp->p_pagenum);
6703 
6704 		/*
6705 		 * clear suspend bit
6706 		 */
6707 		ASSERT(TTE_IS_SUSPEND(&ttemod));
6708 		TTE_CLR_SUSPEND(&ttemod);
6709 
6710 		if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
6711 			panic("hat_pagereload(): sfmmu_modifytte_try() failed");
6712 
6713 		/*
6714 		 * set hme_page point to new page
6715 		 */
6716 		sfhme->hme_page = dpp;
6717 	}
6718 
6719 	/*
6720 	 * move p_mapping list from old page to new page
6721 	 */
6722 	dpp->p_mapping = tpp->p_mapping;
6723 	tpp->p_mapping = NULL;
6724 	dpp->p_share = tpp->p_share;
6725 	tpp->p_share = 0;
6726 
6727 	while (index != 0) {
6728 		index = index >> 1;
6729 		if (index != 0)
6730 			cons++;
6731 		if (index & 0x1) {
6732 			tpp = PP_GROUPLEADER(tpp, cons);
6733 			dpp = PP_GROUPLEADER(dpp, cons);
6734 			goto retry;
6735 		}
6736 	}
6737 
6738 	if (dtrace_kreloc_fini)
6739 		(*dtrace_kreloc_fini)();
6740 	mutex_exit(&kpr_suspendlock);
6741 }
6742 
6743 uint_t
6744 hat_pagesync(struct page *pp, uint_t clearflag)
6745 {
6746 	struct sf_hment *sfhme, *tmphme = NULL;
6747 	struct hme_blk *hmeblkp;
6748 	kmutex_t *pml;
6749 	cpuset_t cpuset, tset;
6750 	int	index, cons;
6751 	extern	ulong_t po_share;
6752 	page_t	*save_pp = pp;
6753 
6754 	CPUSET_ZERO(cpuset);
6755 
6756 	if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
6757 		return (PP_GENERIC_ATTR(pp));
6758 	}
6759 
6760 	if ((clearflag == (HAT_SYNC_STOPON_REF | HAT_SYNC_DONTZERO)) &&
6761 	    PP_ISREF(pp)) {
6762 		return (PP_GENERIC_ATTR(pp));
6763 	}
6764 
6765 	if ((clearflag == (HAT_SYNC_STOPON_MOD | HAT_SYNC_DONTZERO)) &&
6766 	    PP_ISMOD(pp)) {
6767 		return (PP_GENERIC_ATTR(pp));
6768 	}
6769 
6770 	if ((clearflag & HAT_SYNC_STOPON_SHARED) != 0 &&
6771 	    (pp->p_share > po_share) &&
6772 	    !(clearflag & HAT_SYNC_ZERORM)) {
6773 		if (PP_ISRO(pp))
6774 			hat_page_setattr(pp, P_REF);
6775 		return (PP_GENERIC_ATTR(pp));
6776 	}
6777 
6778 	clearflag &= ~HAT_SYNC_STOPON_SHARED;
6779 	pml = sfmmu_mlist_enter(pp);
6780 	index = PP_MAPINDEX(pp);
6781 	cons = TTE8K;
6782 retry:
6783 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6784 		/*
6785 		 * We need to save the next hment on the list since
6786 		 * it is possible for pagesync to remove an invalid hment
6787 		 * from the list.
6788 		 */
6789 		tmphme = sfhme->hme_next;
6790 		/*
6791 		 * If we are looking for large mappings and this hme doesn't
6792 		 * reach the range we are seeking, just ignore its.
6793 		 */
6794 		hmeblkp = sfmmu_hmetohblk(sfhme);
6795 		if (hmeblkp->hblk_xhat_bit)
6796 			continue;
6797 
6798 		if (hme_size(sfhme) < cons)
6799 			continue;
6800 		tset = sfmmu_pagesync(pp, sfhme,
6801 			clearflag & ~HAT_SYNC_STOPON_RM);
6802 		CPUSET_OR(cpuset, tset);
6803 		/*
6804 		 * If clearflag is HAT_SYNC_DONTZERO, break out as soon
6805 		 * as the "ref" or "mod" is set.
6806 		 */
6807 		if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
6808 		    ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
6809 		    ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp))) {
6810 			index = 0;
6811 			break;
6812 		}
6813 	}
6814 
6815 	while (index) {
6816 		index = index >> 1;
6817 		cons++;
6818 		if (index & 0x1) {
6819 			/* Go to leading page */
6820 			pp = PP_GROUPLEADER(pp, cons);
6821 			goto retry;
6822 		}
6823 	}
6824 
6825 	xt_sync(cpuset);
6826 	sfmmu_mlist_exit(pml);
6827 	return (PP_GENERIC_ATTR(save_pp));
6828 }
6829 
6830 /*
6831  * Get all the hardware dependent attributes for a page struct
6832  */
6833 static cpuset_t
6834 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
6835 	uint_t clearflag)
6836 {
6837 	caddr_t addr;
6838 	tte_t tte, ttemod;
6839 	struct hme_blk *hmeblkp;
6840 	int ret;
6841 	sfmmu_t *sfmmup;
6842 	cpuset_t cpuset;
6843 
6844 	ASSERT(pp != NULL);
6845 	ASSERT(sfmmu_mlist_held(pp));
6846 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
6847 		(clearflag == HAT_SYNC_ZERORM));
6848 
6849 	SFMMU_STAT(sf_pagesync);
6850 
6851 	CPUSET_ZERO(cpuset);
6852 
6853 sfmmu_pagesync_retry:
6854 
6855 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6856 	if (TTE_IS_VALID(&tte)) {
6857 		hmeblkp = sfmmu_hmetohblk(sfhme);
6858 		sfmmup = hblktosfmmu(hmeblkp);
6859 		addr = tte_to_vaddr(hmeblkp, tte);
6860 		if (clearflag == HAT_SYNC_ZERORM) {
6861 			ttemod = tte;
6862 			TTE_CLR_RM(&ttemod);
6863 			ret = sfmmu_modifytte_try(&tte, &ttemod,
6864 				&sfhme->hme_tte);
6865 			if (ret < 0) {
6866 				/*
6867 				 * cas failed and the new value is not what
6868 				 * we want.
6869 				 */
6870 				goto sfmmu_pagesync_retry;
6871 			}
6872 
6873 			if (ret > 0) {
6874 				/* we win the cas */
6875 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6876 				cpuset = sfmmup->sfmmu_cpusran;
6877 			}
6878 		}
6879 
6880 		sfmmu_ttesync(sfmmup, addr, &tte, pp);
6881 	}
6882 	return (cpuset);
6883 }
6884 
6885 /*
6886  * Remove write permission from a mappings to a page, so that
6887  * we can detect the next modification of it. This requires modifying
6888  * the TTE then invalidating (demap) any TLB entry using that TTE.
6889  * This code is similar to sfmmu_pagesync().
6890  */
6891 static cpuset_t
6892 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
6893 {
6894 	caddr_t addr;
6895 	tte_t tte;
6896 	tte_t ttemod;
6897 	struct hme_blk *hmeblkp;
6898 	int ret;
6899 	sfmmu_t *sfmmup;
6900 	cpuset_t cpuset;
6901 
6902 	ASSERT(pp != NULL);
6903 	ASSERT(sfmmu_mlist_held(pp));
6904 
6905 	CPUSET_ZERO(cpuset);
6906 	SFMMU_STAT(sf_clrwrt);
6907 
6908 retry:
6909 
6910 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6911 	if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
6912 		hmeblkp = sfmmu_hmetohblk(sfhme);
6913 
6914 		/*
6915 		 * xhat mappings should never be to a VMODSORT page.
6916 		 */
6917 		ASSERT(hmeblkp->hblk_xhat_bit == 0);
6918 
6919 		sfmmup = hblktosfmmu(hmeblkp);
6920 		addr = tte_to_vaddr(hmeblkp, tte);
6921 
6922 		ttemod = tte;
6923 		TTE_CLR_WRT(&ttemod);
6924 		TTE_CLR_MOD(&ttemod);
6925 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
6926 
6927 		/*
6928 		 * if cas failed and the new value is not what
6929 		 * we want retry
6930 		 */
6931 		if (ret < 0)
6932 			goto retry;
6933 
6934 		/* we win the cas */
6935 		if (ret > 0) {
6936 			sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6937 			cpuset = sfmmup->sfmmu_cpusran;
6938 		}
6939 	}
6940 
6941 	return (cpuset);
6942 }
6943 
6944 /*
6945  * Walk all mappings of a page, removing write permission and clearing the
6946  * ref/mod bits. This code is similar to hat_pagesync()
6947  */
6948 static void
6949 hat_page_clrwrt(page_t *pp)
6950 {
6951 	struct sf_hment *sfhme;
6952 	struct sf_hment *tmphme = NULL;
6953 	kmutex_t *pml;
6954 	cpuset_t cpuset;
6955 	cpuset_t tset;
6956 	int	index;
6957 	int	 cons;
6958 
6959 	CPUSET_ZERO(cpuset);
6960 
6961 	pml = sfmmu_mlist_enter(pp);
6962 	index = PP_MAPINDEX(pp);
6963 	cons = TTE8K;
6964 retry:
6965 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6966 		tmphme = sfhme->hme_next;
6967 
6968 		/*
6969 		 * If we are looking for large mappings and this hme doesn't
6970 		 * reach the range we are seeking, just ignore its.
6971 		 */
6972 
6973 		if (hme_size(sfhme) < cons)
6974 			continue;
6975 
6976 		tset = sfmmu_pageclrwrt(pp, sfhme);
6977 		CPUSET_OR(cpuset, tset);
6978 	}
6979 
6980 	while (index) {
6981 		index = index >> 1;
6982 		cons++;
6983 		if (index & 0x1) {
6984 			/* Go to leading page */
6985 			pp = PP_GROUPLEADER(pp, cons);
6986 			goto retry;
6987 		}
6988 	}
6989 
6990 	xt_sync(cpuset);
6991 	sfmmu_mlist_exit(pml);
6992 }
6993 
6994 /*
6995  * Set the given REF/MOD/RO bits for the given page.
6996  * For a vnode with a sorted v_pages list, we need to change
6997  * the attributes and the v_pages list together under page_vnode_mutex.
6998  */
6999 void
7000 hat_page_setattr(page_t *pp, uint_t flag)
7001 {
7002 	vnode_t		*vp = pp->p_vnode;
7003 	page_t		**listp;
7004 	kmutex_t	*pmtx;
7005 	kmutex_t	*vphm = NULL;
7006 	int		noshuffle;
7007 
7008 	noshuffle = flag & P_NSH;
7009 	flag &= ~P_NSH;
7010 
7011 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7012 
7013 	/*
7014 	 * nothing to do if attribute already set
7015 	 */
7016 	if ((pp->p_nrm & flag) == flag)
7017 		return;
7018 
7019 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
7020 	    !noshuffle) {
7021 		vphm = page_vnode_mutex(vp);
7022 		mutex_enter(vphm);
7023 	}
7024 
7025 	pmtx = sfmmu_page_enter(pp);
7026 	pp->p_nrm |= flag;
7027 	sfmmu_page_exit(pmtx);
7028 
7029 	if (vphm != NULL) {
7030 		/*
7031 		 * Some File Systems examine v_pages for NULL w/o
7032 		 * grabbing the vphm mutex. Must not let it become NULL when
7033 		 * pp is the only page on the list.
7034 		 */
7035 		if (pp->p_vpnext != pp) {
7036 			page_vpsub(&vp->v_pages, pp);
7037 			if (vp->v_pages != NULL)
7038 				listp = &vp->v_pages->p_vpprev->p_vpnext;
7039 			else
7040 				listp = &vp->v_pages;
7041 			page_vpadd(listp, pp);
7042 		}
7043 		mutex_exit(vphm);
7044 	}
7045 }
7046 
7047 void
7048 hat_page_clrattr(page_t *pp, uint_t flag)
7049 {
7050 	vnode_t		*vp = pp->p_vnode;
7051 	kmutex_t	*pmtx;
7052 
7053 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7054 
7055 	pmtx = sfmmu_page_enter(pp);
7056 
7057 	/*
7058 	 * Caller is expected to hold page's io lock for VMODSORT to work
7059 	 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
7060 	 * bit is cleared.
7061 	 * We don't have assert to avoid tripping some existing third party
7062 	 * code. The dirty page is moved back to top of the v_page list
7063 	 * after IO is done in pvn_write_done().
7064 	 */
7065 	pp->p_nrm &= ~flag;
7066 	sfmmu_page_exit(pmtx);
7067 
7068 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
7069 
7070 		/*
7071 		 * VMODSORT works by removing write permissions and getting
7072 		 * a fault when a page is made dirty. At this point
7073 		 * we need to remove write permission from all mappings
7074 		 * to this page.
7075 		 */
7076 		hat_page_clrwrt(pp);
7077 	}
7078 }
7079 
7080 uint_t
7081 hat_page_getattr(page_t *pp, uint_t flag)
7082 {
7083 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7084 	return ((uint_t)(pp->p_nrm & flag));
7085 }
7086 
7087 /*
7088  * DEBUG kernels: verify that a kernel va<->pa translation
7089  * is safe by checking the underlying page_t is in a page
7090  * relocation-safe state.
7091  */
7092 #ifdef	DEBUG
7093 void
7094 sfmmu_check_kpfn(pfn_t pfn)
7095 {
7096 	page_t *pp;
7097 	int index, cons;
7098 
7099 	if (hat_check_vtop == 0)
7100 		return;
7101 
7102 	if (hat_kpr_enabled == 0 || kvseg.s_base == NULL || panicstr)
7103 		return;
7104 
7105 	pp = page_numtopp_nolock(pfn);
7106 	if (!pp)
7107 		return;
7108 
7109 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7110 		return;
7111 
7112 	/*
7113 	 * Handed a large kernel page, we dig up the root page since we
7114 	 * know the root page might have the lock also.
7115 	 */
7116 	if (pp->p_szc != 0) {
7117 		index = PP_MAPINDEX(pp);
7118 		cons = TTE8K;
7119 again:
7120 		while (index != 0) {
7121 			index >>= 1;
7122 			if (index != 0)
7123 				cons++;
7124 			if (index & 0x1) {
7125 				pp = PP_GROUPLEADER(pp, cons);
7126 				goto again;
7127 			}
7128 		}
7129 	}
7130 
7131 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7132 		return;
7133 
7134 	/*
7135 	 * Pages need to be locked or allocated "permanent" (either from
7136 	 * static_arena arena or explicitly setting PG_NORELOC when calling
7137 	 * page_create_va()) for VA->PA translations to be valid.
7138 	 */
7139 	if (!PP_ISNORELOC(pp))
7140 		panic("Illegal VA->PA translation, pp 0x%p not permanent", pp);
7141 	else
7142 		panic("Illegal VA->PA translation, pp 0x%p not locked", pp);
7143 }
7144 #endif	/* DEBUG */
7145 
7146 /*
7147  * Returns a page frame number for a given virtual address.
7148  * Returns PFN_INVALID to indicate an invalid mapping
7149  */
7150 pfn_t
7151 hat_getpfnum(struct hat *hat, caddr_t addr)
7152 {
7153 	pfn_t pfn;
7154 	tte_t tte;
7155 
7156 	/*
7157 	 * We would like to
7158 	 * ASSERT(AS_LOCK_HELD(as, &as->a_lock));
7159 	 * but we can't because the iommu driver will call this
7160 	 * routine at interrupt time and it can't grab the as lock
7161 	 * or it will deadlock: A thread could have the as lock
7162 	 * and be waiting for io.  The io can't complete
7163 	 * because the interrupt thread is blocked trying to grab
7164 	 * the as lock.
7165 	 */
7166 
7167 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7168 
7169 	if (hat == ksfmmup) {
7170 		if (IS_KMEM_VA_LARGEPAGE(addr)) {
7171 			ASSERT(segkmem_lpszc > 0);
7172 			pfn = sfmmu_kvaszc2pfn(addr, segkmem_lpszc);
7173 			if (pfn != PFN_INVALID) {
7174 				sfmmu_check_kpfn(pfn);
7175 				return (pfn);
7176 			}
7177 		} else if (segkpm && IS_KPM_ADDR(addr)) {
7178 			return (sfmmu_kpm_vatopfn(addr));
7179 		}
7180 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7181 		    == PFN_SUSPENDED) {
7182 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7183 		}
7184 		sfmmu_check_kpfn(pfn);
7185 		return (pfn);
7186 	} else {
7187 		return (sfmmu_uvatopfn(addr, hat));
7188 	}
7189 }
7190 
7191 /*
7192  * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
7193  * Use hat_getpfnum(kas.a_hat, ...) instead.
7194  *
7195  * We'd like to return PFN_INVALID if the mappings have underlying page_t's
7196  * but can't right now due to the fact that some software has grown to use
7197  * this interface incorrectly. So for now when the interface is misused,
7198  * return a warning to the user that in the future it won't work in the
7199  * way they're abusing it, and carry on (after disabling page relocation).
7200  */
7201 pfn_t
7202 hat_getkpfnum(caddr_t addr)
7203 {
7204 	pfn_t pfn;
7205 	tte_t tte;
7206 	int badcaller = 0;
7207 	extern int segkmem_reloc;
7208 
7209 	if (segkpm && IS_KPM_ADDR(addr)) {
7210 		badcaller = 1;
7211 		pfn = sfmmu_kpm_vatopfn(addr);
7212 	} else {
7213 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7214 		    == PFN_SUSPENDED) {
7215 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7216 		}
7217 		badcaller = pf_is_memory(pfn);
7218 	}
7219 
7220 	if (badcaller) {
7221 		/*
7222 		 * We can't return PFN_INVALID or the caller may panic
7223 		 * or corrupt the system.  The only alternative is to
7224 		 * disable page relocation at this point for all kernel
7225 		 * memory.  This will impact any callers of page_relocate()
7226 		 * such as FMA or DR.
7227 		 *
7228 		 * RFE: Add junk here to spit out an ereport so the sysadmin
7229 		 * can be advised that he should upgrade his device driver
7230 		 * so that this doesn't happen.
7231 		 */
7232 		hat_getkpfnum_badcall(caller());
7233 		if (hat_kpr_enabled && segkmem_reloc) {
7234 			hat_kpr_enabled = 0;
7235 			segkmem_reloc = 0;
7236 			cmn_err(CE_WARN, "Kernel Page Relocation is DISABLED");
7237 		}
7238 	}
7239 	return (pfn);
7240 }
7241 
7242 pfn_t
7243 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup)
7244 {
7245 	struct hmehash_bucket *hmebp;
7246 	hmeblk_tag hblktag;
7247 	int hmeshift, hashno = 1;
7248 	struct hme_blk *hmeblkp = NULL;
7249 
7250 	struct sf_hment *sfhmep;
7251 	tte_t tte;
7252 	pfn_t pfn;
7253 
7254 	/* support for ISM */
7255 	ism_map_t	*ism_map;
7256 	ism_blk_t	*ism_blkp;
7257 	int		i;
7258 	sfmmu_t *ism_hatid = NULL;
7259 	sfmmu_t *locked_hatid = NULL;
7260 
7261 
7262 	ASSERT(sfmmup != ksfmmup);
7263 	SFMMU_STAT(sf_user_vtop);
7264 	/*
7265 	 * Set ism_hatid if vaddr falls in a ISM segment.
7266 	 */
7267 	ism_blkp = sfmmup->sfmmu_iblk;
7268 	if (ism_blkp) {
7269 		sfmmu_ismhat_enter(sfmmup, 0);
7270 		locked_hatid = sfmmup;
7271 	}
7272 	while (ism_blkp && ism_hatid == NULL) {
7273 		ism_map = ism_blkp->iblk_maps;
7274 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
7275 			if (vaddr >= ism_start(ism_map[i]) &&
7276 			    vaddr < ism_end(ism_map[i])) {
7277 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
7278 				vaddr = (caddr_t)(vaddr -
7279 					ism_start(ism_map[i]));
7280 				break;
7281 			}
7282 		}
7283 		ism_blkp = ism_blkp->iblk_next;
7284 	}
7285 	if (locked_hatid) {
7286 		sfmmu_ismhat_exit(locked_hatid, 0);
7287 	}
7288 
7289 	hblktag.htag_id = sfmmup;
7290 	do {
7291 		hmeshift = HME_HASH_SHIFT(hashno);
7292 		hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
7293 		hblktag.htag_rehash = hashno;
7294 		hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
7295 
7296 		SFMMU_HASH_LOCK(hmebp);
7297 
7298 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
7299 		if (hmeblkp != NULL) {
7300 			HBLKTOHME(sfhmep, hmeblkp, vaddr);
7301 			sfmmu_copytte(&sfhmep->hme_tte, &tte);
7302 			if (TTE_IS_VALID(&tte)) {
7303 				pfn = TTE_TO_PFN(vaddr, &tte);
7304 			} else {
7305 				pfn = PFN_INVALID;
7306 			}
7307 			SFMMU_HASH_UNLOCK(hmebp);
7308 			return (pfn);
7309 		}
7310 		SFMMU_HASH_UNLOCK(hmebp);
7311 		hashno++;
7312 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
7313 	return (PFN_INVALID);
7314 }
7315 
7316 
7317 /*
7318  * For compatability with AT&T and later optimizations
7319  */
7320 /* ARGSUSED */
7321 void
7322 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
7323 {
7324 	ASSERT(hat != NULL);
7325 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7326 }
7327 
7328 /*
7329  * Return the number of mappings to a particular page.
7330  * This number is an approximation of the number of
7331  * number of people sharing the page.
7332  */
7333 ulong_t
7334 hat_page_getshare(page_t *pp)
7335 {
7336 	page_t *spp = pp;	/* start page */
7337 	kmutex_t *pml;
7338 	ulong_t	cnt;
7339 	int index, sz = TTE64K;
7340 
7341 	/*
7342 	 * We need to grab the mlist lock to make sure any outstanding
7343 	 * load/unloads complete.  Otherwise we could return zero
7344 	 * even though the unload(s) hasn't finished yet.
7345 	 */
7346 	pml = sfmmu_mlist_enter(spp);
7347 	cnt = spp->p_share;
7348 
7349 #ifdef VAC
7350 	if (kpm_enable)
7351 		cnt += spp->p_kpmref;
7352 #endif
7353 
7354 	/*
7355 	 * If we have any large mappings, we count the number of
7356 	 * mappings that this large page is part of.
7357 	 */
7358 	index = PP_MAPINDEX(spp);
7359 	index >>= 1;
7360 	while (index) {
7361 		pp = PP_GROUPLEADER(spp, sz);
7362 		if ((index & 0x1) && pp != spp) {
7363 			cnt += pp->p_share;
7364 			spp = pp;
7365 		}
7366 		index >>= 1;
7367 		sz++;
7368 	}
7369 	sfmmu_mlist_exit(pml);
7370 	return (cnt);
7371 }
7372 
7373 /*
7374  * Unload all large mappings to the pp and reset the p_szc field of every
7375  * constituent page according to the remaining mappings.
7376  *
7377  * pp must be locked SE_EXCL. Even though no other constituent pages are
7378  * locked it's legal to unload the large mappings to the pp because all
7379  * constituent pages of large locked mappings have to be locked SE_SHARED.
7380  * This means if we have SE_EXCL lock on one of constituent pages none of the
7381  * large mappings to pp are locked.
7382  *
7383  * Decrease p_szc field starting from the last constituent page and ending
7384  * with the root page. This method is used because other threads rely on the
7385  * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
7386  * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
7387  * ensures that p_szc changes of the constituent pages appears atomic for all
7388  * threads that use sfmmu_mlspl_enter() to examine p_szc field.
7389  *
7390  * This mechanism is only used for file system pages where it's not always
7391  * possible to get SE_EXCL locks on all constituent pages to demote the size
7392  * code (as is done for anonymous or kernel large pages).
7393  *
7394  * See more comments in front of sfmmu_mlspl_enter().
7395  */
7396 void
7397 hat_page_demote(page_t *pp)
7398 {
7399 	int index;
7400 	int sz;
7401 	cpuset_t cpuset;
7402 	int sync = 0;
7403 	page_t *rootpp;
7404 	struct sf_hment *sfhme;
7405 	struct sf_hment *tmphme = NULL;
7406 	struct hme_blk *hmeblkp;
7407 	uint_t pszc;
7408 	page_t *lastpp;
7409 	cpuset_t tset;
7410 	pgcnt_t npgs;
7411 	kmutex_t *pml;
7412 	kmutex_t *pmtx = NULL;
7413 
7414 	ASSERT(PAGE_EXCL(pp));
7415 	ASSERT(!PP_ISFREE(pp));
7416 	ASSERT(page_szc_lock_assert(pp));
7417 	pml = sfmmu_mlist_enter(pp);
7418 
7419 	pszc = pp->p_szc;
7420 	if (pszc == 0) {
7421 		goto out;
7422 	}
7423 
7424 	index = PP_MAPINDEX(pp) >> 1;
7425 
7426 	if (index) {
7427 		CPUSET_ZERO(cpuset);
7428 		sz = TTE64K;
7429 		sync = 1;
7430 	}
7431 
7432 	while (index) {
7433 		if (!(index & 0x1)) {
7434 			index >>= 1;
7435 			sz++;
7436 			continue;
7437 		}
7438 		ASSERT(sz <= pszc);
7439 		rootpp = PP_GROUPLEADER(pp, sz);
7440 		for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
7441 			tmphme = sfhme->hme_next;
7442 			hmeblkp = sfmmu_hmetohblk(sfhme);
7443 			if (hme_size(sfhme) != sz) {
7444 				continue;
7445 			}
7446 			if (hmeblkp->hblk_xhat_bit) {
7447 				cmn_err(CE_PANIC,
7448 				    "hat_page_demote: xhat hmeblk");
7449 			}
7450 			tset = sfmmu_pageunload(rootpp, sfhme, sz);
7451 			CPUSET_OR(cpuset, tset);
7452 		}
7453 		if (index >>= 1) {
7454 			sz++;
7455 		}
7456 	}
7457 
7458 	ASSERT(!PP_ISMAPPED_LARGE(pp));
7459 
7460 	if (sync) {
7461 		xt_sync(cpuset);
7462 #ifdef VAC
7463 		if (PP_ISTNC(pp)) {
7464 			conv_tnc(rootpp, sz);
7465 		}
7466 #endif	/* VAC */
7467 	}
7468 
7469 	pmtx = sfmmu_page_enter(pp);
7470 
7471 	ASSERT(pp->p_szc == pszc);
7472 	rootpp = PP_PAGEROOT(pp);
7473 	ASSERT(rootpp->p_szc == pszc);
7474 	lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
7475 
7476 	while (lastpp != rootpp) {
7477 		sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
7478 		ASSERT(sz < pszc);
7479 		npgs = (sz == 0) ? 1 : TTEPAGES(sz);
7480 		ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
7481 		while (--npgs > 0) {
7482 			lastpp->p_szc = (uchar_t)sz;
7483 			lastpp = PP_PAGEPREV(lastpp);
7484 		}
7485 		if (sz) {
7486 			/*
7487 			 * make sure before current root's pszc
7488 			 * is updated all updates to constituent pages pszc
7489 			 * fields are globally visible.
7490 			 */
7491 			membar_producer();
7492 		}
7493 		lastpp->p_szc = sz;
7494 		ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
7495 		if (lastpp != rootpp) {
7496 			lastpp = PP_PAGEPREV(lastpp);
7497 		}
7498 	}
7499 	if (sz == 0) {
7500 		/* the loop above doesn't cover this case */
7501 		rootpp->p_szc = 0;
7502 	}
7503 out:
7504 	ASSERT(pp->p_szc == 0);
7505 	if (pmtx != NULL) {
7506 		sfmmu_page_exit(pmtx);
7507 	}
7508 	sfmmu_mlist_exit(pml);
7509 }
7510 
7511 /*
7512  * Refresh the HAT ismttecnt[] element for size szc.
7513  * Caller must have set ISM busy flag to prevent mapping
7514  * lists from changing while we're traversing them.
7515  */
7516 pgcnt_t
7517 ism_tsb_entries(sfmmu_t *sfmmup, int szc)
7518 {
7519 	ism_blk_t	*ism_blkp = sfmmup->sfmmu_iblk;
7520 	ism_map_t	*ism_map;
7521 	pgcnt_t		npgs = 0;
7522 	int		j;
7523 
7524 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
7525 	for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
7526 		ism_map = ism_blkp->iblk_maps;
7527 		for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++)
7528 			npgs += ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
7529 	}
7530 	sfmmup->sfmmu_ismttecnt[szc] = npgs;
7531 	return (npgs);
7532 }
7533 
7534 /*
7535  * Yield the memory claim requirement for an address space.
7536  *
7537  * This is currently implemented as the number of bytes that have active
7538  * hardware translations that have page structures.  Therefore, it can
7539  * underestimate the traditional resident set size, eg, if the
7540  * physical page is present and the hardware translation is missing;
7541  * and it can overestimate the rss, eg, if there are active
7542  * translations to a frame buffer with page structs.
7543  * Also, it does not take sharing into account.
7544  *
7545  * Note that we don't acquire locks here since this function is most often
7546  * called from the clock thread.
7547  */
7548 size_t
7549 hat_get_mapped_size(struct hat *hat)
7550 {
7551 	size_t		assize = 0;
7552 	int 		i;
7553 
7554 	if (hat == NULL)
7555 		return (0);
7556 
7557 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7558 
7559 	for (i = 0; i < mmu_page_sizes; i++)
7560 		assize += (pgcnt_t)hat->sfmmu_ttecnt[i] * TTEBYTES(i);
7561 
7562 	if (hat->sfmmu_iblk == NULL)
7563 		return (assize);
7564 
7565 	for (i = 0; i < mmu_page_sizes; i++)
7566 		assize += (pgcnt_t)hat->sfmmu_ismttecnt[i] * TTEBYTES(i);
7567 
7568 	return (assize);
7569 }
7570 
7571 int
7572 hat_stats_enable(struct hat *hat)
7573 {
7574 	hatlock_t	*hatlockp;
7575 
7576 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7577 
7578 	hatlockp = sfmmu_hat_enter(hat);
7579 	hat->sfmmu_rmstat++;
7580 	sfmmu_hat_exit(hatlockp);
7581 	return (1);
7582 }
7583 
7584 void
7585 hat_stats_disable(struct hat *hat)
7586 {
7587 	hatlock_t	*hatlockp;
7588 
7589 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7590 
7591 	hatlockp = sfmmu_hat_enter(hat);
7592 	hat->sfmmu_rmstat--;
7593 	sfmmu_hat_exit(hatlockp);
7594 }
7595 
7596 /*
7597  * Routines for entering or removing  ourselves from the
7598  * ism_hat's mapping list.
7599  */
7600 static void
7601 iment_add(struct ism_ment *iment,  struct hat *ism_hat)
7602 {
7603 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
7604 
7605 	iment->iment_prev = NULL;
7606 	iment->iment_next = ism_hat->sfmmu_iment;
7607 	if (ism_hat->sfmmu_iment) {
7608 		ism_hat->sfmmu_iment->iment_prev = iment;
7609 	}
7610 	ism_hat->sfmmu_iment = iment;
7611 }
7612 
7613 static void
7614 iment_sub(struct ism_ment *iment, struct hat *ism_hat)
7615 {
7616 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
7617 
7618 	if (ism_hat->sfmmu_iment == NULL) {
7619 		panic("ism map entry remove - no entries");
7620 	}
7621 
7622 	if (iment->iment_prev) {
7623 		ASSERT(ism_hat->sfmmu_iment != iment);
7624 		iment->iment_prev->iment_next = iment->iment_next;
7625 	} else {
7626 		ASSERT(ism_hat->sfmmu_iment == iment);
7627 		ism_hat->sfmmu_iment = iment->iment_next;
7628 	}
7629 
7630 	if (iment->iment_next) {
7631 		iment->iment_next->iment_prev = iment->iment_prev;
7632 	}
7633 
7634 	/*
7635 	 * zero out the entry
7636 	 */
7637 	iment->iment_next = NULL;
7638 	iment->iment_prev = NULL;
7639 	iment->iment_hat =  NULL;
7640 }
7641 
7642 /*
7643  * Hat_share()/unshare() return an (non-zero) error
7644  * when saddr and daddr are not properly aligned.
7645  *
7646  * The top level mapping element determines the alignment
7647  * requirement for saddr and daddr, depending on different
7648  * architectures.
7649  *
7650  * When hat_share()/unshare() are not supported,
7651  * HATOP_SHARE()/UNSHARE() return 0
7652  */
7653 int
7654 hat_share(struct hat *sfmmup, caddr_t addr,
7655 	struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc)
7656 {
7657 	ism_blk_t	*ism_blkp;
7658 	ism_blk_t	*new_iblk;
7659 	ism_map_t 	*ism_map;
7660 	ism_ment_t	*ism_ment;
7661 	int		i, added;
7662 	hatlock_t	*hatlockp;
7663 	int		reload_mmu = 0;
7664 	uint_t		ismshift = page_get_shift(ismszc);
7665 	size_t		ismpgsz = page_get_pagesize(ismszc);
7666 	uint_t		ismmask = (uint_t)ismpgsz - 1;
7667 	size_t		sh_size = ISM_SHIFT(ismshift, len);
7668 	ushort_t	ismhatflag;
7669 
7670 #ifdef DEBUG
7671 	caddr_t		eaddr = addr + len;
7672 #endif /* DEBUG */
7673 
7674 	ASSERT(ism_hatid != NULL && sfmmup != NULL);
7675 	ASSERT(sptaddr == ISMID_STARTADDR);
7676 	/*
7677 	 * Check the alignment.
7678 	 */
7679 	if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
7680 		return (EINVAL);
7681 
7682 	/*
7683 	 * Check size alignment.
7684 	 */
7685 	if (!ISM_ALIGNED(ismshift, len))
7686 		return (EINVAL);
7687 
7688 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
7689 
7690 	/*
7691 	 * Allocate ism_ment for the ism_hat's mapping list, and an
7692 	 * ism map blk in case we need one.  We must do our
7693 	 * allocations before acquiring locks to prevent a deadlock
7694 	 * in the kmem allocator on the mapping list lock.
7695 	 */
7696 	new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
7697 	ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
7698 
7699 	/*
7700 	 * Serialize ISM mappings with the ISM busy flag, and also the
7701 	 * trap handlers.
7702 	 */
7703 	sfmmu_ismhat_enter(sfmmup, 0);
7704 
7705 	/*
7706 	 * Allocate an ism map blk if necessary.
7707 	 */
7708 	if (sfmmup->sfmmu_iblk == NULL) {
7709 		sfmmup->sfmmu_iblk = new_iblk;
7710 		bzero(new_iblk, sizeof (*new_iblk));
7711 		new_iblk->iblk_nextpa = (uint64_t)-1;
7712 		membar_stst();	/* make sure next ptr visible to all CPUs */
7713 		sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
7714 		reload_mmu = 1;
7715 		new_iblk = NULL;
7716 	}
7717 
7718 #ifdef DEBUG
7719 	/*
7720 	 * Make sure mapping does not already exist.
7721 	 */
7722 	ism_blkp = sfmmup->sfmmu_iblk;
7723 	while (ism_blkp) {
7724 		ism_map = ism_blkp->iblk_maps;
7725 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
7726 			if ((addr >= ism_start(ism_map[i]) &&
7727 			    addr < ism_end(ism_map[i])) ||
7728 			    eaddr > ism_start(ism_map[i]) &&
7729 			    eaddr <= ism_end(ism_map[i])) {
7730 				panic("sfmmu_share: Already mapped!");
7731 			}
7732 		}
7733 		ism_blkp = ism_blkp->iblk_next;
7734 	}
7735 #endif /* DEBUG */
7736 
7737 	ASSERT(ismszc >= TTE4M);
7738 	if (ismszc == TTE4M) {
7739 		ismhatflag = HAT_4M_FLAG;
7740 	} else if (ismszc == TTE32M) {
7741 		ismhatflag = HAT_32M_FLAG;
7742 	} else if (ismszc == TTE256M) {
7743 		ismhatflag = HAT_256M_FLAG;
7744 	}
7745 	/*
7746 	 * Add mapping to first available mapping slot.
7747 	 */
7748 	ism_blkp = sfmmup->sfmmu_iblk;
7749 	added = 0;
7750 	while (!added) {
7751 		ism_map = ism_blkp->iblk_maps;
7752 		for (i = 0; i < ISM_MAP_SLOTS; i++)  {
7753 			if (ism_map[i].imap_ismhat == NULL) {
7754 
7755 				ism_map[i].imap_ismhat = ism_hatid;
7756 				ism_map[i].imap_vb_shift = (ushort_t)ismshift;
7757 				ism_map[i].imap_hatflags = ismhatflag;
7758 				ism_map[i].imap_sz_mask = ismmask;
7759 				/*
7760 				 * imap_seg is checked in ISM_CHECK to see if
7761 				 * non-NULL, then other info assumed valid.
7762 				 */
7763 				membar_stst();
7764 				ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
7765 				ism_map[i].imap_ment = ism_ment;
7766 
7767 				/*
7768 				 * Now add ourselves to the ism_hat's
7769 				 * mapping list.
7770 				 */
7771 				ism_ment->iment_hat = sfmmup;
7772 				ism_ment->iment_base_va = addr;
7773 				ism_hatid->sfmmu_ismhat = 1;
7774 				ism_hatid->sfmmu_flags = 0;
7775 				mutex_enter(&ism_mlist_lock);
7776 				iment_add(ism_ment, ism_hatid);
7777 				mutex_exit(&ism_mlist_lock);
7778 				added = 1;
7779 				break;
7780 			}
7781 		}
7782 		if (!added && ism_blkp->iblk_next == NULL) {
7783 			ism_blkp->iblk_next = new_iblk;
7784 			new_iblk = NULL;
7785 			bzero(ism_blkp->iblk_next,
7786 			    sizeof (*ism_blkp->iblk_next));
7787 			ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
7788 			membar_stst();
7789 			ism_blkp->iblk_nextpa =
7790 				va_to_pa((caddr_t)ism_blkp->iblk_next);
7791 		}
7792 		ism_blkp = ism_blkp->iblk_next;
7793 	}
7794 
7795 	/*
7796 	 * Update our counters for this sfmmup's ism mappings.
7797 	 */
7798 	for (i = 0; i <= ismszc; i++) {
7799 		if (!(disable_ism_large_pages & (1 << i)))
7800 			(void) ism_tsb_entries(sfmmup, i);
7801 	}
7802 
7803 	hatlockp = sfmmu_hat_enter(sfmmup);
7804 
7805 	/*
7806 	 * For ISM and DISM we do not support 512K pages, so we only
7807 	 * only search the 4M and 8K/64K hashes for 4 pagesize cpus, and search
7808 	 * the 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
7809 	 */
7810 	ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
7811 
7812 	if (ismszc > TTE4M && !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG))
7813 		SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
7814 
7815 	if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG))
7816 		SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
7817 
7818 	/*
7819 	 * If we updated the ismblkpa for this HAT or we need
7820 	 * to start searching the 256M or 32M or 4M hash, we must
7821 	 * make sure all CPUs running this process reload their
7822 	 * tsbmiss area.  Otherwise they will fail to load the mappings
7823 	 * in the tsbmiss handler and will loop calling pagefault().
7824 	 */
7825 	switch (ismszc) {
7826 	case TTE256M:
7827 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
7828 			SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
7829 			sfmmu_sync_mmustate(sfmmup);
7830 		}
7831 		break;
7832 	case TTE32M:
7833 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
7834 			SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
7835 			sfmmu_sync_mmustate(sfmmup);
7836 		}
7837 		break;
7838 	case TTE4M:
7839 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
7840 			SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
7841 			sfmmu_sync_mmustate(sfmmup);
7842 		}
7843 		break;
7844 	default:
7845 		break;
7846 	}
7847 
7848 	/*
7849 	 * Now we can drop the locks.
7850 	 */
7851 	sfmmu_ismhat_exit(sfmmup, 1);
7852 	sfmmu_hat_exit(hatlockp);
7853 
7854 	/*
7855 	 * Free up ismblk if we didn't use it.
7856 	 */
7857 	if (new_iblk != NULL)
7858 		kmem_cache_free(ism_blk_cache, new_iblk);
7859 
7860 	/*
7861 	 * Check TSB and TLB page sizes.
7862 	 */
7863 	sfmmu_check_page_sizes(sfmmup, 1);
7864 
7865 	return (0);
7866 }
7867 
7868 /*
7869  * hat_unshare removes exactly one ism_map from
7870  * this process's as.  It expects multiple calls
7871  * to hat_unshare for multiple shm segments.
7872  */
7873 void
7874 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
7875 {
7876 	ism_map_t 	*ism_map;
7877 	ism_ment_t	*free_ment = NULL;
7878 	ism_blk_t	*ism_blkp;
7879 	struct hat	*ism_hatid;
7880 	int 		found, i;
7881 	hatlock_t	*hatlockp;
7882 	struct tsb_info	*tsbinfo;
7883 	uint_t		ismshift = page_get_shift(ismszc);
7884 	size_t		sh_size = ISM_SHIFT(ismshift, len);
7885 
7886 	ASSERT(ISM_ALIGNED(ismshift, addr));
7887 	ASSERT(ISM_ALIGNED(ismshift, len));
7888 	ASSERT(sfmmup != NULL);
7889 	ASSERT(sfmmup != ksfmmup);
7890 
7891 	if (sfmmup->sfmmu_xhat_provider) {
7892 		XHAT_UNSHARE(sfmmup, addr, len);
7893 		return;
7894 	} else {
7895 		/*
7896 		 * This must be a CPU HAT. If the address space has
7897 		 * XHATs attached, inform all XHATs that ISM segment
7898 		 * is going away
7899 		 */
7900 		ASSERT(sfmmup->sfmmu_as != NULL);
7901 		if (sfmmup->sfmmu_as->a_xhat != NULL)
7902 			xhat_unshare_all(sfmmup->sfmmu_as, addr, len);
7903 	}
7904 
7905 	/*
7906 	 * Make sure that during the entire time ISM mappings are removed,
7907 	 * the trap handlers serialize behind us, and that no one else
7908 	 * can be mucking with ISM mappings.  This also lets us get away
7909 	 * with not doing expensive cross calls to flush the TLB -- we
7910 	 * just discard the context, flush the entire TSB, and call it
7911 	 * a day.
7912 	 */
7913 	sfmmu_ismhat_enter(sfmmup, 0);
7914 
7915 	/*
7916 	 * Remove the mapping.
7917 	 *
7918 	 * We can't have any holes in the ism map.
7919 	 * The tsb miss code while searching the ism map will
7920 	 * stop on an empty map slot.  So we must move
7921 	 * everyone past the hole up 1 if any.
7922 	 *
7923 	 * Also empty ism map blks are not freed until the
7924 	 * process exits. This is to prevent a MT race condition
7925 	 * between sfmmu_unshare() and sfmmu_tsbmiss_exception().
7926 	 */
7927 	found = 0;
7928 	ism_blkp = sfmmup->sfmmu_iblk;
7929 	while (!found && ism_blkp) {
7930 		ism_map = ism_blkp->iblk_maps;
7931 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
7932 			if (addr == ism_start(ism_map[i]) &&
7933 			    sh_size == (size_t)(ism_size(ism_map[i]))) {
7934 				found = 1;
7935 				break;
7936 			}
7937 		}
7938 		if (!found)
7939 			ism_blkp = ism_blkp->iblk_next;
7940 	}
7941 
7942 	if (found) {
7943 		ism_hatid = ism_map[i].imap_ismhat;
7944 		ASSERT(ism_hatid != NULL);
7945 		ASSERT(ism_hatid->sfmmu_ismhat == 1);
7946 
7947 		/*
7948 		 * First remove ourselves from the ism mapping list.
7949 		 */
7950 		mutex_enter(&ism_mlist_lock);
7951 		iment_sub(ism_map[i].imap_ment, ism_hatid);
7952 		mutex_exit(&ism_mlist_lock);
7953 		free_ment = ism_map[i].imap_ment;
7954 
7955 		/*
7956 		 * Now gurantee that any other cpu
7957 		 * that tries to process an ISM miss
7958 		 * will go to tl=0.
7959 		 */
7960 		hatlockp = sfmmu_hat_enter(sfmmup);
7961 
7962 		sfmmu_invalidate_ctx(sfmmup);
7963 
7964 		sfmmu_hat_exit(hatlockp);
7965 
7966 		/*
7967 		 * We delete the ism map by copying
7968 		 * the next map over the current one.
7969 		 * We will take the next one in the maps
7970 		 * array or from the next ism_blk.
7971 		 */
7972 		while (ism_blkp) {
7973 			ism_map = ism_blkp->iblk_maps;
7974 			while (i < (ISM_MAP_SLOTS - 1)) {
7975 				ism_map[i] = ism_map[i + 1];
7976 				i++;
7977 			}
7978 			/* i == (ISM_MAP_SLOTS - 1) */
7979 			ism_blkp = ism_blkp->iblk_next;
7980 			if (ism_blkp) {
7981 				ism_map[i] = ism_blkp->iblk_maps[0];
7982 				i = 0;
7983 			} else {
7984 				ism_map[i].imap_seg = 0;
7985 				ism_map[i].imap_vb_shift = 0;
7986 				ism_map[i].imap_hatflags = 0;
7987 				ism_map[i].imap_sz_mask = 0;
7988 				ism_map[i].imap_ismhat = NULL;
7989 				ism_map[i].imap_ment = NULL;
7990 			}
7991 		}
7992 
7993 		/*
7994 		 * Now flush entire TSB for the process, since
7995 		 * demapping page by page can be too expensive.
7996 		 * We don't have to flush the TLB here anymore
7997 		 * since we switch to a new TLB ctx instead.
7998 		 * Also, there is no need to flush if the process
7999 		 * is exiting since the TSB will be freed later.
8000 		 */
8001 		if (!sfmmup->sfmmu_free) {
8002 			hatlockp = sfmmu_hat_enter(sfmmup);
8003 			for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
8004 			    tsbinfo = tsbinfo->tsb_next) {
8005 				if (tsbinfo->tsb_flags & TSB_SWAPPED)
8006 					continue;
8007 				sfmmu_inv_tsb(tsbinfo->tsb_va,
8008 				    TSB_BYTES(tsbinfo->tsb_szc));
8009 			}
8010 			sfmmu_hat_exit(hatlockp);
8011 		}
8012 	}
8013 
8014 	/*
8015 	 * Update our counters for this sfmmup's ism mappings.
8016 	 */
8017 	for (i = 0; i <= ismszc; i++) {
8018 		if (!(disable_ism_large_pages & (1 << i)))
8019 			(void) ism_tsb_entries(sfmmup, i);
8020 	}
8021 
8022 	sfmmu_ismhat_exit(sfmmup, 0);
8023 
8024 	/*
8025 	 * We must do our freeing here after dropping locks
8026 	 * to prevent a deadlock in the kmem allocator on the
8027 	 * mapping list lock.
8028 	 */
8029 	if (free_ment != NULL)
8030 		kmem_cache_free(ism_ment_cache, free_ment);
8031 
8032 	/*
8033 	 * Check TSB and TLB page sizes if the process isn't exiting.
8034 	 */
8035 	if (!sfmmup->sfmmu_free)
8036 		sfmmu_check_page_sizes(sfmmup, 0);
8037 }
8038 
8039 /* ARGSUSED */
8040 static int
8041 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
8042 {
8043 	/* void *buf is sfmmu_t pointer */
8044 	return (0);
8045 }
8046 
8047 /* ARGSUSED */
8048 static void
8049 sfmmu_idcache_destructor(void *buf, void *cdrarg)
8050 {
8051 	/* void *buf is sfmmu_t pointer */
8052 }
8053 
8054 /*
8055  * setup kmem hmeblks by bzeroing all members and initializing the nextpa
8056  * field to be the pa of this hmeblk
8057  */
8058 /* ARGSUSED */
8059 static int
8060 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
8061 {
8062 	struct hme_blk *hmeblkp;
8063 
8064 	bzero(buf, (size_t)cdrarg);
8065 	hmeblkp = (struct hme_blk *)buf;
8066 	hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
8067 
8068 #ifdef	HBLK_TRACE
8069 	mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
8070 #endif	/* HBLK_TRACE */
8071 
8072 	return (0);
8073 }
8074 
8075 /* ARGSUSED */
8076 static void
8077 sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
8078 {
8079 
8080 #ifdef	HBLK_TRACE
8081 
8082 	struct hme_blk *hmeblkp;
8083 
8084 	hmeblkp = (struct hme_blk *)buf;
8085 	mutex_destroy(&hmeblkp->hblk_audit_lock);
8086 
8087 #endif	/* HBLK_TRACE */
8088 }
8089 
8090 #define	SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
8091 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
8092 /*
8093  * The kmem allocator will callback into our reclaim routine when the system
8094  * is running low in memory.  We traverse the hash and free up all unused but
8095  * still cached hme_blks.  We also traverse the free list and free them up
8096  * as well.
8097  */
8098 /*ARGSUSED*/
8099 static void
8100 sfmmu_hblkcache_reclaim(void *cdrarg)
8101 {
8102 	int i;
8103 	uint64_t hblkpa, prevpa, nx_pa;
8104 	struct hmehash_bucket *hmebp;
8105 	struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
8106 	static struct hmehash_bucket *uhmehash_reclaim_hand;
8107 	static struct hmehash_bucket *khmehash_reclaim_hand;
8108 	struct hme_blk *list = NULL;
8109 
8110 	hmebp = uhmehash_reclaim_hand;
8111 	if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
8112 		uhmehash_reclaim_hand = hmebp = uhme_hash;
8113 	uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8114 
8115 	for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8116 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8117 			hmeblkp = hmebp->hmeblkp;
8118 			hblkpa = hmebp->hmeh_nextpa;
8119 			prevpa = 0;
8120 			pr_hblk = NULL;
8121 			while (hmeblkp) {
8122 				nx_hblk = hmeblkp->hblk_next;
8123 				nx_pa = hmeblkp->hblk_nextpa;
8124 				if (!hmeblkp->hblk_vcnt &&
8125 				    !hmeblkp->hblk_hmecnt) {
8126 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8127 						prevpa, pr_hblk);
8128 					sfmmu_hblk_free(hmebp, hmeblkp,
8129 					    hblkpa, &list);
8130 				} else {
8131 					pr_hblk = hmeblkp;
8132 					prevpa = hblkpa;
8133 				}
8134 				hmeblkp = nx_hblk;
8135 				hblkpa = nx_pa;
8136 			}
8137 			SFMMU_HASH_UNLOCK(hmebp);
8138 		}
8139 		if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
8140 			hmebp = uhme_hash;
8141 	}
8142 
8143 	hmebp = khmehash_reclaim_hand;
8144 	if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
8145 		khmehash_reclaim_hand = hmebp = khme_hash;
8146 	khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8147 
8148 	for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8149 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8150 			hmeblkp = hmebp->hmeblkp;
8151 			hblkpa = hmebp->hmeh_nextpa;
8152 			prevpa = 0;
8153 			pr_hblk = NULL;
8154 			while (hmeblkp) {
8155 				nx_hblk = hmeblkp->hblk_next;
8156 				nx_pa = hmeblkp->hblk_nextpa;
8157 				if (!hmeblkp->hblk_vcnt &&
8158 				    !hmeblkp->hblk_hmecnt) {
8159 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8160 						prevpa, pr_hblk);
8161 					sfmmu_hblk_free(hmebp, hmeblkp,
8162 					    hblkpa, &list);
8163 				} else {
8164 					pr_hblk = hmeblkp;
8165 					prevpa = hblkpa;
8166 				}
8167 				hmeblkp = nx_hblk;
8168 				hblkpa = nx_pa;
8169 			}
8170 			SFMMU_HASH_UNLOCK(hmebp);
8171 		}
8172 		if (hmebp++ == &khme_hash[KHMEHASH_SZ])
8173 			hmebp = khme_hash;
8174 	}
8175 	sfmmu_hblks_list_purge(&list);
8176 }
8177 
8178 /*
8179  * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
8180  * same goes for sfmmu_get_addrvcolor().
8181  *
8182  * This function will return the virtual color for the specified page. The
8183  * virtual color corresponds to this page current mapping or its last mapping.
8184  * It is used by memory allocators to choose addresses with the correct
8185  * alignment so vac consistency is automatically maintained.  If the page
8186  * has no color it returns -1.
8187  */
8188 /*ARGSUSED*/
8189 int
8190 sfmmu_get_ppvcolor(struct page *pp)
8191 {
8192 #ifdef VAC
8193 	int color;
8194 
8195 	if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
8196 		return (-1);
8197 	}
8198 	color = PP_GET_VCOLOR(pp);
8199 	ASSERT(color < mmu_btop(shm_alignment));
8200 	return (color);
8201 #else
8202 	return (-1);
8203 #endif	/* VAC */
8204 }
8205 
8206 /*
8207  * This function will return the desired alignment for vac consistency
8208  * (vac color) given a virtual address.  If no vac is present it returns -1.
8209  */
8210 /*ARGSUSED*/
8211 int
8212 sfmmu_get_addrvcolor(caddr_t vaddr)
8213 {
8214 #ifdef VAC
8215 	if (cache & CACHE_VAC) {
8216 		return (addr_to_vcolor(vaddr));
8217 	} else {
8218 		return (-1);
8219 	}
8220 #else
8221 	return (-1);
8222 #endif	/* VAC */
8223 }
8224 
8225 #ifdef VAC
8226 /*
8227  * Check for conflicts.
8228  * A conflict exists if the new and existent mappings do not match in
8229  * their "shm_alignment fields. If conflicts exist, the existant mappings
8230  * are flushed unless one of them is locked. If one of them is locked, then
8231  * the mappings are flushed and converted to non-cacheable mappings.
8232  */
8233 static void
8234 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
8235 {
8236 	struct hat *tmphat;
8237 	struct sf_hment *sfhmep, *tmphme = NULL;
8238 	struct hme_blk *hmeblkp;
8239 	int vcolor;
8240 	tte_t tte;
8241 
8242 	ASSERT(sfmmu_mlist_held(pp));
8243 	ASSERT(!PP_ISNC(pp));		/* page better be cacheable */
8244 
8245 	vcolor = addr_to_vcolor(addr);
8246 	if (PP_NEWPAGE(pp)) {
8247 		PP_SET_VCOLOR(pp, vcolor);
8248 		return;
8249 	}
8250 
8251 	if (PP_GET_VCOLOR(pp) == vcolor) {
8252 		return;
8253 	}
8254 
8255 	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
8256 		/*
8257 		 * Previous user of page had a different color
8258 		 * but since there are no current users
8259 		 * we just flush the cache and change the color.
8260 		 */
8261 		SFMMU_STAT(sf_pgcolor_conflict);
8262 		sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
8263 		PP_SET_VCOLOR(pp, vcolor);
8264 		return;
8265 	}
8266 
8267 	/*
8268 	 * If we get here we have a vac conflict with a current
8269 	 * mapping.  VAC conflict policy is as follows.
8270 	 * - The default is to unload the other mappings unless:
8271 	 * - If we have a large mapping we uncache the page.
8272 	 * We need to uncache the rest of the large page too.
8273 	 * - If any of the mappings are locked we uncache the page.
8274 	 * - If the requested mapping is inconsistent
8275 	 * with another mapping and that mapping
8276 	 * is in the same address space we have to
8277 	 * make it non-cached.  The default thing
8278 	 * to do is unload the inconsistent mapping
8279 	 * but if they are in the same address space
8280 	 * we run the risk of unmapping the pc or the
8281 	 * stack which we will use as we return to the user,
8282 	 * in which case we can then fault on the thing
8283 	 * we just unloaded and get into an infinite loop.
8284 	 */
8285 	if (PP_ISMAPPED_LARGE(pp)) {
8286 		int sz;
8287 
8288 		/*
8289 		 * Existing mapping is for big pages. We don't unload
8290 		 * existing big mappings to satisfy new mappings.
8291 		 * Always convert all mappings to TNC.
8292 		 */
8293 		sz = fnd_mapping_sz(pp);
8294 		pp = PP_GROUPLEADER(pp, sz);
8295 		SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
8296 		sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
8297 			TTEPAGES(sz));
8298 
8299 		return;
8300 	}
8301 
8302 	/*
8303 	 * check if any mapping is in same as or if it is locked
8304 	 * since in that case we need to uncache.
8305 	 */
8306 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
8307 		tmphme = sfhmep->hme_next;
8308 		hmeblkp = sfmmu_hmetohblk(sfhmep);
8309 		if (hmeblkp->hblk_xhat_bit)
8310 			continue;
8311 		tmphat = hblktosfmmu(hmeblkp);
8312 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
8313 		ASSERT(TTE_IS_VALID(&tte));
8314 		if ((tmphat == hat) || hmeblkp->hblk_lckcnt) {
8315 			/*
8316 			 * We have an uncache conflict
8317 			 */
8318 			SFMMU_STAT(sf_uncache_conflict);
8319 			sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
8320 			return;
8321 		}
8322 	}
8323 
8324 	/*
8325 	 * We have an unload conflict
8326 	 * We have already checked for LARGE mappings, therefore
8327 	 * the remaining mapping(s) must be TTE8K.
8328 	 */
8329 	SFMMU_STAT(sf_unload_conflict);
8330 
8331 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
8332 		tmphme = sfhmep->hme_next;
8333 		hmeblkp = sfmmu_hmetohblk(sfhmep);
8334 		if (hmeblkp->hblk_xhat_bit)
8335 			continue;
8336 		(void) sfmmu_pageunload(pp, sfhmep, TTE8K);
8337 	}
8338 
8339 	if (PP_ISMAPPED_KPM(pp))
8340 		sfmmu_kpm_vac_unload(pp, addr);
8341 
8342 	/*
8343 	 * Unloads only do TLB flushes so we need to flush the
8344 	 * cache here.
8345 	 */
8346 	sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
8347 	PP_SET_VCOLOR(pp, vcolor);
8348 }
8349 
8350 /*
8351  * Whenever a mapping is unloaded and the page is in TNC state,
8352  * we see if the page can be made cacheable again. 'pp' is
8353  * the page that we just unloaded a mapping from, the size
8354  * of mapping that was unloaded is 'ottesz'.
8355  * Remark:
8356  * The recache policy for mpss pages can leave a performance problem
8357  * under the following circumstances:
8358  * . A large page in uncached mode has just been unmapped.
8359  * . All constituent pages are TNC due to a conflicting small mapping.
8360  * . There are many other, non conflicting, small mappings around for
8361  *   a lot of the constituent pages.
8362  * . We're called w/ the "old" groupleader page and the old ottesz,
8363  *   but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
8364  *   we end up w/ TTE8K or npages == 1.
8365  * . We call tst_tnc w/ the old groupleader only, and if there is no
8366  *   conflict, we re-cache only this page.
8367  * . All other small mappings are not checked and will be left in TNC mode.
8368  * The problem is not very serious because:
8369  * . mpss is actually only defined for heap and stack, so the probability
8370  *   is not very high that a large page mapping exists in parallel to a small
8371  *   one (this is possible, but seems to be bad programming style in the
8372  *   appl).
8373  * . The problem gets a little bit more serious, when those TNC pages
8374  *   have to be mapped into kernel space, e.g. for networking.
8375  * . When VAC alias conflicts occur in applications, this is regarded
8376  *   as an application bug. So if kstat's show them, the appl should
8377  *   be changed anyway.
8378  */
8379 void
8380 conv_tnc(page_t *pp, int ottesz)
8381 {
8382 	int cursz, dosz;
8383 	pgcnt_t curnpgs, dopgs;
8384 	pgcnt_t pg64k;
8385 	page_t *pp2;
8386 
8387 	/*
8388 	 * Determine how big a range we check for TNC and find
8389 	 * leader page. cursz is the size of the biggest
8390 	 * mapping that still exist on 'pp'.
8391 	 */
8392 	if (PP_ISMAPPED_LARGE(pp)) {
8393 		cursz = fnd_mapping_sz(pp);
8394 	} else {
8395 		cursz = TTE8K;
8396 	}
8397 
8398 	if (ottesz >= cursz) {
8399 		dosz = ottesz;
8400 		pp2 = pp;
8401 	} else {
8402 		dosz = cursz;
8403 		pp2 = PP_GROUPLEADER(pp, dosz);
8404 	}
8405 
8406 	pg64k = TTEPAGES(TTE64K);
8407 	dopgs = TTEPAGES(dosz);
8408 
8409 	ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
8410 
8411 	while (dopgs != 0) {
8412 		curnpgs = TTEPAGES(cursz);
8413 		if (tst_tnc(pp2, curnpgs)) {
8414 			SFMMU_STAT_ADD(sf_recache, curnpgs);
8415 			sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
8416 				curnpgs);
8417 		}
8418 
8419 		ASSERT(dopgs >= curnpgs);
8420 		dopgs -= curnpgs;
8421 
8422 		if (dopgs == 0) {
8423 			break;
8424 		}
8425 
8426 		pp2 = PP_PAGENEXT_N(pp2, curnpgs);
8427 		if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
8428 			cursz = fnd_mapping_sz(pp2);
8429 		} else {
8430 			cursz = TTE8K;
8431 		}
8432 	}
8433 }
8434 
8435 /*
8436  * Returns 1 if page(s) can be converted from TNC to cacheable setting,
8437  * returns 0 otherwise. Note that oaddr argument is valid for only
8438  * 8k pages.
8439  */
8440 int
8441 tst_tnc(page_t *pp, pgcnt_t npages)
8442 {
8443 	struct	sf_hment *sfhme;
8444 	struct	hme_blk *hmeblkp;
8445 	tte_t	tte;
8446 	caddr_t	vaddr;
8447 	int	clr_valid = 0;
8448 	int 	color, color1, bcolor;
8449 	int	i, ncolors;
8450 
8451 	ASSERT(pp != NULL);
8452 	ASSERT(!(cache & CACHE_WRITEBACK));
8453 
8454 	if (npages > 1) {
8455 		ncolors = CACHE_NUM_COLOR;
8456 	}
8457 
8458 	for (i = 0; i < npages; i++) {
8459 		ASSERT(sfmmu_mlist_held(pp));
8460 		ASSERT(PP_ISTNC(pp));
8461 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
8462 
8463 		if (PP_ISPNC(pp)) {
8464 			return (0);
8465 		}
8466 
8467 		clr_valid = 0;
8468 		if (PP_ISMAPPED_KPM(pp)) {
8469 			caddr_t kpmvaddr;
8470 
8471 			ASSERT(kpm_enable);
8472 			kpmvaddr = hat_kpm_page2va(pp, 1);
8473 			ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
8474 			color1 = addr_to_vcolor(kpmvaddr);
8475 			clr_valid = 1;
8476 		}
8477 
8478 		for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
8479 			hmeblkp = sfmmu_hmetohblk(sfhme);
8480 			if (hmeblkp->hblk_xhat_bit)
8481 				continue;
8482 
8483 			sfmmu_copytte(&sfhme->hme_tte, &tte);
8484 			ASSERT(TTE_IS_VALID(&tte));
8485 
8486 			vaddr = tte_to_vaddr(hmeblkp, tte);
8487 			color = addr_to_vcolor(vaddr);
8488 
8489 			if (npages > 1) {
8490 				/*
8491 				 * If there is a big mapping, make sure
8492 				 * 8K mapping is consistent with the big
8493 				 * mapping.
8494 				 */
8495 				bcolor = i % ncolors;
8496 				if (color != bcolor) {
8497 					return (0);
8498 				}
8499 			}
8500 			if (!clr_valid) {
8501 				clr_valid = 1;
8502 				color1 = color;
8503 			}
8504 
8505 			if (color1 != color) {
8506 				return (0);
8507 			}
8508 		}
8509 
8510 		pp = PP_PAGENEXT(pp);
8511 	}
8512 
8513 	return (1);
8514 }
8515 
8516 void
8517 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
8518 	pgcnt_t npages)
8519 {
8520 	kmutex_t *pmtx;
8521 	int i, ncolors, bcolor;
8522 	kpm_hlk_t *kpmp;
8523 	cpuset_t cpuset;
8524 
8525 	ASSERT(pp != NULL);
8526 	ASSERT(!(cache & CACHE_WRITEBACK));
8527 
8528 	kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
8529 	pmtx = sfmmu_page_enter(pp);
8530 
8531 	/*
8532 	 * Fast path caching single unmapped page
8533 	 */
8534 	if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
8535 	    flags == HAT_CACHE) {
8536 		PP_CLRTNC(pp);
8537 		PP_CLRPNC(pp);
8538 		sfmmu_page_exit(pmtx);
8539 		sfmmu_kpm_kpmp_exit(kpmp);
8540 		return;
8541 	}
8542 
8543 	/*
8544 	 * We need to capture all cpus in order to change cacheability
8545 	 * because we can't allow one cpu to access the same physical
8546 	 * page using a cacheable and a non-cachebale mapping at the same
8547 	 * time. Since we may end up walking the ism mapping list
8548 	 * have to grab it's lock now since we can't after all the
8549 	 * cpus have been captured.
8550 	 */
8551 	sfmmu_hat_lock_all();
8552 	mutex_enter(&ism_mlist_lock);
8553 	kpreempt_disable();
8554 	cpuset = cpu_ready_set;
8555 	xc_attention(cpuset);
8556 
8557 	if (npages > 1) {
8558 		/*
8559 		 * Make sure all colors are flushed since the
8560 		 * sfmmu_page_cache() only flushes one color-
8561 		 * it does not know big pages.
8562 		 */
8563 		ncolors = CACHE_NUM_COLOR;
8564 		if (flags & HAT_TMPNC) {
8565 			for (i = 0; i < ncolors; i++) {
8566 				sfmmu_cache_flushcolor(i, pp->p_pagenum);
8567 			}
8568 			cache_flush_flag = CACHE_NO_FLUSH;
8569 		}
8570 	}
8571 
8572 	for (i = 0; i < npages; i++) {
8573 
8574 		ASSERT(sfmmu_mlist_held(pp));
8575 
8576 		if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
8577 
8578 			if (npages > 1) {
8579 				bcolor = i % ncolors;
8580 			} else {
8581 				bcolor = NO_VCOLOR;
8582 			}
8583 
8584 			sfmmu_page_cache(pp, flags, cache_flush_flag,
8585 			    bcolor);
8586 		}
8587 
8588 		pp = PP_PAGENEXT(pp);
8589 	}
8590 
8591 	xt_sync(cpuset);
8592 	xc_dismissed(cpuset);
8593 	mutex_exit(&ism_mlist_lock);
8594 	sfmmu_hat_unlock_all();
8595 	sfmmu_page_exit(pmtx);
8596 	sfmmu_kpm_kpmp_exit(kpmp);
8597 	kpreempt_enable();
8598 }
8599 
8600 /*
8601  * This function changes the virtual cacheability of all mappings to a
8602  * particular page.  When changing from uncache to cacheable the mappings will
8603  * only be changed if all of them have the same virtual color.
8604  * We need to flush the cache in all cpus.  It is possible that
8605  * a process referenced a page as cacheable but has sinced exited
8606  * and cleared the mapping list.  We still to flush it but have no
8607  * state so all cpus is the only alternative.
8608  */
8609 static void
8610 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
8611 {
8612 	struct	sf_hment *sfhme;
8613 	struct	hme_blk *hmeblkp;
8614 	sfmmu_t *sfmmup;
8615 	tte_t	tte, ttemod;
8616 	caddr_t	vaddr;
8617 	int	ret, color;
8618 	pfn_t	pfn;
8619 
8620 	color = bcolor;
8621 	pfn = pp->p_pagenum;
8622 
8623 	for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
8624 
8625 		hmeblkp = sfmmu_hmetohblk(sfhme);
8626 
8627 		if (hmeblkp->hblk_xhat_bit)
8628 			continue;
8629 
8630 		sfmmu_copytte(&sfhme->hme_tte, &tte);
8631 		ASSERT(TTE_IS_VALID(&tte));
8632 		vaddr = tte_to_vaddr(hmeblkp, tte);
8633 		color = addr_to_vcolor(vaddr);
8634 
8635 #ifdef DEBUG
8636 		if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
8637 			ASSERT(color == bcolor);
8638 		}
8639 #endif
8640 
8641 		ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
8642 
8643 		ttemod = tte;
8644 		if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
8645 			TTE_CLR_VCACHEABLE(&ttemod);
8646 		} else {	/* flags & HAT_CACHE */
8647 			TTE_SET_VCACHEABLE(&ttemod);
8648 		}
8649 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
8650 		if (ret < 0) {
8651 			/*
8652 			 * Since all cpus are captured modifytte should not
8653 			 * fail.
8654 			 */
8655 			panic("sfmmu_page_cache: write to tte failed");
8656 		}
8657 
8658 		sfmmup = hblktosfmmu(hmeblkp);
8659 		if (cache_flush_flag == CACHE_FLUSH) {
8660 			/*
8661 			 * Flush TSBs, TLBs and caches
8662 			 */
8663 			if (sfmmup->sfmmu_ismhat) {
8664 				if (flags & HAT_CACHE) {
8665 					SFMMU_STAT(sf_ism_recache);
8666 				} else {
8667 					SFMMU_STAT(sf_ism_uncache);
8668 				}
8669 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
8670 				    pfn, CACHE_FLUSH);
8671 			} else {
8672 				sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
8673 				    pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
8674 			}
8675 
8676 			/*
8677 			 * all cache entries belonging to this pfn are
8678 			 * now flushed.
8679 			 */
8680 			cache_flush_flag = CACHE_NO_FLUSH;
8681 		} else {
8682 
8683 			/*
8684 			 * Flush only TSBs and TLBs.
8685 			 */
8686 			if (sfmmup->sfmmu_ismhat) {
8687 				if (flags & HAT_CACHE) {
8688 					SFMMU_STAT(sf_ism_recache);
8689 				} else {
8690 					SFMMU_STAT(sf_ism_uncache);
8691 				}
8692 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
8693 				    pfn, CACHE_NO_FLUSH);
8694 			} else {
8695 				sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
8696 			}
8697 		}
8698 	}
8699 
8700 	if (PP_ISMAPPED_KPM(pp))
8701 		sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
8702 
8703 	switch (flags) {
8704 
8705 		default:
8706 			panic("sfmmu_pagecache: unknown flags");
8707 			break;
8708 
8709 		case HAT_CACHE:
8710 			PP_CLRTNC(pp);
8711 			PP_CLRPNC(pp);
8712 			PP_SET_VCOLOR(pp, color);
8713 			break;
8714 
8715 		case HAT_TMPNC:
8716 			PP_SETTNC(pp);
8717 			PP_SET_VCOLOR(pp, NO_VCOLOR);
8718 			break;
8719 
8720 		case HAT_UNCACHE:
8721 			PP_SETPNC(pp);
8722 			PP_CLRTNC(pp);
8723 			PP_SET_VCOLOR(pp, NO_VCOLOR);
8724 			break;
8725 	}
8726 }
8727 #endif	/* VAC */
8728 
8729 
8730 /*
8731  * Wrapper routine used to return a context.
8732  *
8733  * It's the responsibility of the caller to guarantee that the
8734  * process serializes on calls here by taking the HAT lock for
8735  * the hat.
8736  *
8737  */
8738 static void
8739 sfmmu_get_ctx(sfmmu_t *sfmmup)
8740 {
8741 	mmu_ctx_t *mmu_ctxp;
8742 	uint_t pstate_save;
8743 
8744 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8745 	ASSERT(sfmmup != ksfmmup);
8746 
8747 	kpreempt_disable();
8748 
8749 	mmu_ctxp = CPU_MMU_CTXP(CPU);
8750 	ASSERT(mmu_ctxp);
8751 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
8752 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
8753 
8754 	/*
8755 	 * Do a wrap-around if cnum reaches the max # cnum supported by a MMU.
8756 	 */
8757 	if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs)
8758 		sfmmu_ctx_wrap_around(mmu_ctxp);
8759 
8760 	/*
8761 	 * Let the MMU set up the page sizes to use for
8762 	 * this context in the TLB. Don't program 2nd dtlb for ism hat.
8763 	 */
8764 	if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) {
8765 		mmu_set_ctx_page_sizes(sfmmup);
8766 	}
8767 
8768 	/*
8769 	 * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with
8770 	 * interrupts disabled to prevent race condition with wrap-around
8771 	 * ctx invalidatation. In sun4v, ctx invalidation also involves
8772 	 * a HV call to set the number of TSBs to 0. If interrupts are not
8773 	 * disabled until after sfmmu_load_mmustate is complete TSBs may
8774 	 * become assigned to INVALID_CONTEXT. This is not allowed.
8775 	 */
8776 	pstate_save = sfmmu_disable_intrs();
8777 
8778 	sfmmu_alloc_ctx(sfmmup, 1, CPU);
8779 	sfmmu_load_mmustate(sfmmup);
8780 
8781 	sfmmu_enable_intrs(pstate_save);
8782 
8783 	kpreempt_enable();
8784 }
8785 
8786 /*
8787  * When all cnums are used up in a MMU, cnum will wrap around to the
8788  * next generation and start from 2.
8789  */
8790 static void
8791 sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp)
8792 {
8793 
8794 	/* caller must have disabled the preemption */
8795 	ASSERT(curthread->t_preempt >= 1);
8796 	ASSERT(mmu_ctxp != NULL);
8797 
8798 	/* acquire Per-MMU (PM) spin lock */
8799 	mutex_enter(&mmu_ctxp->mmu_lock);
8800 
8801 	/* re-check to see if wrap-around is needed */
8802 	if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs)
8803 		goto done;
8804 
8805 	SFMMU_MMU_STAT(mmu_wrap_around);
8806 
8807 	/* update gnum */
8808 	ASSERT(mmu_ctxp->mmu_gnum != 0);
8809 	mmu_ctxp->mmu_gnum++;
8810 	if (mmu_ctxp->mmu_gnum == 0 ||
8811 	    mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) {
8812 		cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.",
8813 		    (void *)mmu_ctxp);
8814 	}
8815 
8816 	if (mmu_ctxp->mmu_ncpus > 1) {
8817 		cpuset_t cpuset;
8818 
8819 		membar_enter(); /* make sure updated gnum visible */
8820 
8821 		SFMMU_XCALL_STATS(NULL);
8822 
8823 		/* xcall to others on the same MMU to invalidate ctx */
8824 		cpuset = mmu_ctxp->mmu_cpuset;
8825 		ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id));
8826 		CPUSET_DEL(cpuset, CPU->cpu_id);
8827 		CPUSET_AND(cpuset, cpu_ready_set);
8828 
8829 		/*
8830 		 * Pass in INVALID_CONTEXT as the first parameter to
8831 		 * sfmmu_raise_tsb_exception, which invalidates the context
8832 		 * of any process running on the CPUs in the MMU.
8833 		 */
8834 		xt_some(cpuset, sfmmu_raise_tsb_exception,
8835 		    INVALID_CONTEXT, INVALID_CONTEXT);
8836 		xt_sync(cpuset);
8837 
8838 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
8839 	}
8840 
8841 	if (sfmmu_getctx_sec() != INVALID_CONTEXT) {
8842 		sfmmu_setctx_sec(INVALID_CONTEXT);
8843 		sfmmu_clear_utsbinfo();
8844 	}
8845 
8846 	/*
8847 	 * No xcall is needed here. For sun4u systems all CPUs in context
8848 	 * domain share a single physical MMU therefore it's enough to flush
8849 	 * TLB on local CPU. On sun4v systems we use 1 global context
8850 	 * domain and flush all remote TLBs in sfmmu_raise_tsb_exception
8851 	 * handler. Note that vtag_flushall_uctxs() is called
8852 	 * for Ultra II machine, where the equivalent flushall functionality
8853 	 * is implemented in SW, and only user ctx TLB entries are flushed.
8854 	 */
8855 	if (&vtag_flushall_uctxs != NULL) {
8856 		vtag_flushall_uctxs();
8857 	} else {
8858 		vtag_flushall();
8859 	}
8860 
8861 	/* reset mmu cnum, skips cnum 0 and 1 */
8862 	mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
8863 
8864 done:
8865 	mutex_exit(&mmu_ctxp->mmu_lock);
8866 }
8867 
8868 
8869 /*
8870  * For multi-threaded process, set the process context to INVALID_CONTEXT
8871  * so that it faults and reloads the MMU state from TL=0. For single-threaded
8872  * process, we can just load the MMU state directly without having to
8873  * set context invalid. Caller must hold the hat lock since we don't
8874  * acquire it here.
8875  */
8876 static void
8877 sfmmu_sync_mmustate(sfmmu_t *sfmmup)
8878 {
8879 	uint_t cnum;
8880 	uint_t pstate_save;
8881 
8882 	ASSERT(sfmmup != ksfmmup);
8883 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8884 
8885 	kpreempt_disable();
8886 
8887 	/*
8888 	 * We check whether the pass'ed-in sfmmup is the same as the
8889 	 * current running proc. This is to makes sure the current proc
8890 	 * stays single-threaded if it already is.
8891 	 */
8892 	if ((sfmmup == curthread->t_procp->p_as->a_hat) &&
8893 	    (curthread->t_procp->p_lwpcnt == 1)) {
8894 		/* single-thread */
8895 		cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum;
8896 		if (cnum != INVALID_CONTEXT) {
8897 			uint_t curcnum;
8898 			/*
8899 			 * Disable interrupts to prevent race condition
8900 			 * with sfmmu_ctx_wrap_around ctx invalidation.
8901 			 * In sun4v, ctx invalidation involves setting
8902 			 * TSB to NULL, hence, interrupts should be disabled
8903 			 * untill after sfmmu_load_mmustate is completed.
8904 			 */
8905 			pstate_save = sfmmu_disable_intrs();
8906 			curcnum = sfmmu_getctx_sec();
8907 			if (curcnum == cnum)
8908 				sfmmu_load_mmustate(sfmmup);
8909 			sfmmu_enable_intrs(pstate_save);
8910 			ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT);
8911 		}
8912 	} else {
8913 		/*
8914 		 * multi-thread
8915 		 * or when sfmmup is not the same as the curproc.
8916 		 */
8917 		sfmmu_invalidate_ctx(sfmmup);
8918 	}
8919 
8920 	kpreempt_enable();
8921 }
8922 
8923 
8924 /*
8925  * Replace the specified TSB with a new TSB.  This function gets called when
8926  * we grow, shrink or swapin a TSB.  When swapping in a TSB (TSB_SWAPIN), the
8927  * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
8928  * (8K).
8929  *
8930  * Caller must hold the HAT lock, but should assume any tsb_info
8931  * pointers it has are no longer valid after calling this function.
8932  *
8933  * Return values:
8934  *	TSB_ALLOCFAIL	Failed to allocate a TSB, due to memory constraints
8935  *	TSB_LOSTRACE	HAT is busy, i.e. another thread is already doing
8936  *			something to this tsbinfo/TSB
8937  *	TSB_SUCCESS	Operation succeeded
8938  */
8939 static tsb_replace_rc_t
8940 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
8941     hatlock_t *hatlockp, uint_t flags)
8942 {
8943 	struct tsb_info *new_tsbinfo = NULL;
8944 	struct tsb_info *curtsb, *prevtsb;
8945 	uint_t tte_sz_mask;
8946 	int i;
8947 
8948 	ASSERT(sfmmup != ksfmmup);
8949 	ASSERT(sfmmup->sfmmu_ismhat == 0);
8950 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8951 	ASSERT(szc <= tsb_max_growsize);
8952 
8953 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
8954 		return (TSB_LOSTRACE);
8955 
8956 	/*
8957 	 * Find the tsb_info ahead of this one in the list, and
8958 	 * also make sure that the tsb_info passed in really
8959 	 * exists!
8960 	 */
8961 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
8962 	    curtsb != old_tsbinfo && curtsb != NULL;
8963 	    prevtsb = curtsb, curtsb = curtsb->tsb_next);
8964 	ASSERT(curtsb != NULL);
8965 
8966 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
8967 		/*
8968 		 * The process is swapped out, so just set the new size
8969 		 * code.  When it swaps back in, we'll allocate a new one
8970 		 * of the new chosen size.
8971 		 */
8972 		curtsb->tsb_szc = szc;
8973 		return (TSB_SUCCESS);
8974 	}
8975 	SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
8976 
8977 	tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
8978 
8979 	/*
8980 	 * All initialization is done inside of sfmmu_tsbinfo_alloc().
8981 	 * If we fail to allocate a TSB, exit.
8982 	 */
8983 	sfmmu_hat_exit(hatlockp);
8984 	if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc, tte_sz_mask,
8985 	    flags, sfmmup)) {
8986 		(void) sfmmu_hat_enter(sfmmup);
8987 		if (!(flags & TSB_SWAPIN))
8988 			SFMMU_STAT(sf_tsb_resize_failures);
8989 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
8990 		return (TSB_ALLOCFAIL);
8991 	}
8992 	(void) sfmmu_hat_enter(sfmmup);
8993 
8994 	/*
8995 	 * Re-check to make sure somebody else didn't muck with us while we
8996 	 * didn't hold the HAT lock.  If the process swapped out, fine, just
8997 	 * exit; this can happen if we try to shrink the TSB from the context
8998 	 * of another process (such as on an ISM unmap), though it is rare.
8999 	 */
9000 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
9001 		SFMMU_STAT(sf_tsb_resize_failures);
9002 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9003 		sfmmu_hat_exit(hatlockp);
9004 		sfmmu_tsbinfo_free(new_tsbinfo);
9005 		(void) sfmmu_hat_enter(sfmmup);
9006 		return (TSB_LOSTRACE);
9007 	}
9008 
9009 #ifdef	DEBUG
9010 	/* Reverify that the tsb_info still exists.. for debugging only */
9011 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
9012 	    curtsb != old_tsbinfo && curtsb != NULL;
9013 	    prevtsb = curtsb, curtsb = curtsb->tsb_next);
9014 	ASSERT(curtsb != NULL);
9015 #endif	/* DEBUG */
9016 
9017 	/*
9018 	 * Quiesce any CPUs running this process on their next TLB miss
9019 	 * so they atomically see the new tsb_info.  We temporarily set the
9020 	 * context to invalid context so new threads that come on processor
9021 	 * after we do the xcall to cpusran will also serialize behind the
9022 	 * HAT lock on TLB miss and will see the new TSB.  Since this short
9023 	 * race with a new thread coming on processor is relatively rare,
9024 	 * this synchronization mechanism should be cheaper than always
9025 	 * pausing all CPUs for the duration of the setup, which is what
9026 	 * the old implementation did.  This is particuarly true if we are
9027 	 * copying a huge chunk of memory around during that window.
9028 	 *
9029 	 * The memory barriers are to make sure things stay consistent
9030 	 * with resume() since it does not hold the HAT lock while
9031 	 * walking the list of tsb_info structures.
9032 	 */
9033 	if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
9034 		/* The TSB is either growing or shrinking. */
9035 		sfmmu_invalidate_ctx(sfmmup);
9036 	} else {
9037 		/*
9038 		 * It is illegal to swap in TSBs from a process other
9039 		 * than a process being swapped in.  This in turn
9040 		 * implies we do not have a valid MMU context here
9041 		 * since a process needs one to resolve translation
9042 		 * misses.
9043 		 */
9044 		ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
9045 	}
9046 
9047 #ifdef DEBUG
9048 	ASSERT(max_mmu_ctxdoms > 0);
9049 
9050 	/*
9051 	 * Process should have INVALID_CONTEXT on all MMUs
9052 	 */
9053 	for (i = 0; i < max_mmu_ctxdoms; i++) {
9054 
9055 		ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
9056 	}
9057 #endif
9058 
9059 	new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
9060 	membar_stst();	/* strict ordering required */
9061 	if (prevtsb)
9062 		prevtsb->tsb_next = new_tsbinfo;
9063 	else
9064 		sfmmup->sfmmu_tsb = new_tsbinfo;
9065 	membar_enter();	/* make sure new TSB globally visible */
9066 	sfmmu_setup_tsbinfo(sfmmup);
9067 
9068 	/*
9069 	 * We need to migrate TSB entries from the old TSB to the new TSB
9070 	 * if tsb_remap_ttes is set and the TSB is growing.
9071 	 */
9072 	if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
9073 		sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
9074 
9075 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9076 
9077 	/*
9078 	 * Drop the HAT lock to free our old tsb_info.
9079 	 */
9080 	sfmmu_hat_exit(hatlockp);
9081 
9082 	if ((flags & TSB_GROW) == TSB_GROW) {
9083 		SFMMU_STAT(sf_tsb_grow);
9084 	} else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
9085 		SFMMU_STAT(sf_tsb_shrink);
9086 	}
9087 
9088 	sfmmu_tsbinfo_free(old_tsbinfo);
9089 
9090 	(void) sfmmu_hat_enter(sfmmup);
9091 	return (TSB_SUCCESS);
9092 }
9093 
9094 /*
9095  * This function will re-program hat pgsz array, and invalidate the
9096  * process' context, forcing the process to switch to another
9097  * context on the next TLB miss, and therefore start using the
9098  * TLB that is reprogrammed for the new page sizes.
9099  */
9100 void
9101 sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
9102 {
9103 	int i;
9104 	hatlock_t *hatlockp = NULL;
9105 
9106 	hatlockp = sfmmu_hat_enter(sfmmup);
9107 	/* USIII+-IV+ optimization, requires hat lock */
9108 	if (tmp_pgsz) {
9109 		for (i = 0; i < mmu_page_sizes; i++)
9110 			sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
9111 	}
9112 	SFMMU_STAT(sf_tlb_reprog_pgsz);
9113 
9114 	sfmmu_invalidate_ctx(sfmmup);
9115 
9116 	sfmmu_hat_exit(hatlockp);
9117 }
9118 
9119 /*
9120  * This function assumes that there are either four or six supported page
9121  * sizes and at most two programmable TLBs, so we need to decide which
9122  * page sizes are most important and then tell the MMU layer so it
9123  * can adjust the TLB page sizes accordingly (if supported).
9124  *
9125  * If these assumptions change, this function will need to be
9126  * updated to support whatever the new limits are.
9127  *
9128  * The growing flag is nonzero if we are growing the address space,
9129  * and zero if it is shrinking.  This allows us to decide whether
9130  * to grow or shrink our TSB, depending upon available memory
9131  * conditions.
9132  */
9133 static void
9134 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
9135 {
9136 	uint64_t ttecnt[MMU_PAGE_SIZES];
9137 	uint64_t tte8k_cnt, tte4m_cnt;
9138 	uint8_t i;
9139 	int sectsb_thresh;
9140 
9141 	/*
9142 	 * Kernel threads, processes with small address spaces not using
9143 	 * large pages, and dummy ISM HATs need not apply.
9144 	 */
9145 	if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL)
9146 		return;
9147 
9148 	if ((sfmmup->sfmmu_flags & HAT_LGPG_FLAGS) == 0 &&
9149 	    sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
9150 		return;
9151 
9152 	for (i = 0; i < mmu_page_sizes; i++) {
9153 		ttecnt[i] = SFMMU_TTE_CNT(sfmmup, i);
9154 	}
9155 
9156 	/* Check pagesizes in use, and possibly reprogram DTLB. */
9157 	if (&mmu_check_page_sizes)
9158 		mmu_check_page_sizes(sfmmup, ttecnt);
9159 
9160 	/*
9161 	 * Calculate the number of 8k ttes to represent the span of these
9162 	 * pages.
9163 	 */
9164 	tte8k_cnt = ttecnt[TTE8K] +
9165 	    (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
9166 	    (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
9167 	if (mmu_page_sizes == max_mmu_page_sizes) {
9168 		tte4m_cnt = ttecnt[TTE4M] +
9169 		    (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
9170 		    (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
9171 	} else {
9172 		tte4m_cnt = ttecnt[TTE4M];
9173 	}
9174 
9175 	/*
9176 	 * Inflate TSB sizes by a factor of 2 if this process
9177 	 * uses 4M text pages to minimize extra conflict misses
9178 	 * in the first TSB since without counting text pages
9179 	 * 8K TSB may become too small.
9180 	 *
9181 	 * Also double the size of the second TSB to minimize
9182 	 * extra conflict misses due to competition between 4M text pages
9183 	 * and data pages.
9184 	 *
9185 	 * We need to adjust the second TSB allocation threshold by the
9186 	 * inflation factor, since there is no point in creating a second
9187 	 * TSB when we know all the mappings can fit in the I/D TLBs.
9188 	 */
9189 	sectsb_thresh = tsb_sectsb_threshold;
9190 	if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
9191 		tte8k_cnt <<= 1;
9192 		tte4m_cnt <<= 1;
9193 		sectsb_thresh <<= 1;
9194 	}
9195 
9196 	/*
9197 	 * Check to see if our TSB is the right size; we may need to
9198 	 * grow or shrink it.  If the process is small, our work is
9199 	 * finished at this point.
9200 	 */
9201 	if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
9202 		return;
9203 	}
9204 	sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
9205 }
9206 
9207 static void
9208 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
9209 	uint64_t tte4m_cnt, int sectsb_thresh)
9210 {
9211 	int tsb_bits;
9212 	uint_t tsb_szc;
9213 	struct tsb_info *tsbinfop;
9214 	hatlock_t *hatlockp = NULL;
9215 
9216 	hatlockp = sfmmu_hat_enter(sfmmup);
9217 	ASSERT(hatlockp != NULL);
9218 	tsbinfop = sfmmup->sfmmu_tsb;
9219 	ASSERT(tsbinfop != NULL);
9220 
9221 	/*
9222 	 * If we're growing, select the size based on RSS.  If we're
9223 	 * shrinking, leave some room so we don't have to turn around and
9224 	 * grow again immediately.
9225 	 */
9226 	if (growing)
9227 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
9228 	else
9229 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
9230 
9231 	if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
9232 	    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
9233 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
9234 		    hatlockp, TSB_SHRINK);
9235 	} else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
9236 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
9237 		    hatlockp, TSB_GROW);
9238 	}
9239 	tsbinfop = sfmmup->sfmmu_tsb;
9240 
9241 	/*
9242 	 * With the TLB and first TSB out of the way, we need to see if
9243 	 * we need a second TSB for 4M pages.  If we managed to reprogram
9244 	 * the TLB page sizes above, the process will start using this new
9245 	 * TSB right away; otherwise, it will start using it on the next
9246 	 * context switch.  Either way, it's no big deal so there's no
9247 	 * synchronization with the trap handlers here unless we grow the
9248 	 * TSB (in which case it's required to prevent using the old one
9249 	 * after it's freed). Note: second tsb is required for 32M/256M
9250 	 * page sizes.
9251 	 */
9252 	if (tte4m_cnt > sectsb_thresh) {
9253 		/*
9254 		 * If we're growing, select the size based on RSS.  If we're
9255 		 * shrinking, leave some room so we don't have to turn
9256 		 * around and grow again immediately.
9257 		 */
9258 		if (growing)
9259 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
9260 		else
9261 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
9262 		if (tsbinfop->tsb_next == NULL) {
9263 			struct tsb_info *newtsb;
9264 			int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
9265 			    0 : TSB_ALLOC;
9266 
9267 			sfmmu_hat_exit(hatlockp);
9268 
9269 			/*
9270 			 * Try to allocate a TSB for 4[32|256]M pages.  If we
9271 			 * can't get the size we want, retry w/a minimum sized
9272 			 * TSB.  If that still didn't work, give up; we can
9273 			 * still run without one.
9274 			 */
9275 			tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
9276 			    TSB4M|TSB32M|TSB256M:TSB4M;
9277 			if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
9278 			    allocflags, sfmmup) != 0) &&
9279 			    (sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
9280 			    tsb_bits, allocflags, sfmmup) != 0)) {
9281 				return;
9282 			}
9283 
9284 			hatlockp = sfmmu_hat_enter(sfmmup);
9285 
9286 			if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
9287 				sfmmup->sfmmu_tsb->tsb_next = newtsb;
9288 				SFMMU_STAT(sf_tsb_sectsb_create);
9289 				sfmmu_setup_tsbinfo(sfmmup);
9290 				sfmmu_hat_exit(hatlockp);
9291 				return;
9292 			} else {
9293 				/*
9294 				 * It's annoying, but possible for us
9295 				 * to get here.. we dropped the HAT lock
9296 				 * because of locking order in the kmem
9297 				 * allocator, and while we were off getting
9298 				 * our memory, some other thread decided to
9299 				 * do us a favor and won the race to get a
9300 				 * second TSB for this process.  Sigh.
9301 				 */
9302 				sfmmu_hat_exit(hatlockp);
9303 				sfmmu_tsbinfo_free(newtsb);
9304 				return;
9305 			}
9306 		}
9307 
9308 		/*
9309 		 * We have a second TSB, see if it's big enough.
9310 		 */
9311 		tsbinfop = tsbinfop->tsb_next;
9312 
9313 		/*
9314 		 * Check to see if our second TSB is the right size;
9315 		 * we may need to grow or shrink it.
9316 		 * To prevent thrashing (e.g. growing the TSB on a
9317 		 * subsequent map operation), only try to shrink if
9318 		 * the TSB reach exceeds twice the virtual address
9319 		 * space size.
9320 		 */
9321 		if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
9322 		    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
9323 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
9324 			    tsb_szc, hatlockp, TSB_SHRINK);
9325 		} else if (growing && tsb_szc > tsbinfop->tsb_szc &&
9326 		    TSB_OK_GROW()) {
9327 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
9328 			    tsb_szc, hatlockp, TSB_GROW);
9329 		}
9330 	}
9331 
9332 	sfmmu_hat_exit(hatlockp);
9333 }
9334 
9335 /*
9336  * Free up a sfmmu
9337  * Since the sfmmu is currently embedded in the hat struct we simply zero
9338  * out our fields and free up the ism map blk list if any.
9339  */
9340 static void
9341 sfmmu_free_sfmmu(sfmmu_t *sfmmup)
9342 {
9343 	ism_blk_t	*blkp, *nx_blkp;
9344 #ifdef	DEBUG
9345 	ism_map_t	*map;
9346 	int 		i;
9347 #endif
9348 
9349 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
9350 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
9351 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
9352 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
9353 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
9354 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
9355 
9356 	sfmmup->sfmmu_free = 0;
9357 	sfmmup->sfmmu_ismhat = 0;
9358 
9359 	blkp = sfmmup->sfmmu_iblk;
9360 	sfmmup->sfmmu_iblk = NULL;
9361 
9362 	while (blkp) {
9363 #ifdef	DEBUG
9364 		map = blkp->iblk_maps;
9365 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
9366 			ASSERT(map[i].imap_seg == 0);
9367 			ASSERT(map[i].imap_ismhat == NULL);
9368 			ASSERT(map[i].imap_ment == NULL);
9369 		}
9370 #endif
9371 		nx_blkp = blkp->iblk_next;
9372 		blkp->iblk_next = NULL;
9373 		blkp->iblk_nextpa = (uint64_t)-1;
9374 		kmem_cache_free(ism_blk_cache, blkp);
9375 		blkp = nx_blkp;
9376 	}
9377 }
9378 
9379 /*
9380  * Locking primitves accessed by HATLOCK macros
9381  */
9382 
9383 #define	SFMMU_SPL_MTX	(0x0)
9384 #define	SFMMU_ML_MTX	(0x1)
9385 
9386 #define	SFMMU_MLSPL_MTX(type, pg)	(((type) == SFMMU_SPL_MTX) ? \
9387 					    SPL_HASH(pg) : MLIST_HASH(pg))
9388 
9389 kmutex_t *
9390 sfmmu_page_enter(struct page *pp)
9391 {
9392 	return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
9393 }
9394 
9395 void
9396 sfmmu_page_exit(kmutex_t *spl)
9397 {
9398 	mutex_exit(spl);
9399 }
9400 
9401 int
9402 sfmmu_page_spl_held(struct page *pp)
9403 {
9404 	return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
9405 }
9406 
9407 kmutex_t *
9408 sfmmu_mlist_enter(struct page *pp)
9409 {
9410 	return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
9411 }
9412 
9413 void
9414 sfmmu_mlist_exit(kmutex_t *mml)
9415 {
9416 	mutex_exit(mml);
9417 }
9418 
9419 int
9420 sfmmu_mlist_held(struct page *pp)
9421 {
9422 
9423 	return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
9424 }
9425 
9426 /*
9427  * Common code for sfmmu_mlist_enter() and sfmmu_page_enter().  For
9428  * sfmmu_mlist_enter() case mml_table lock array is used and for
9429  * sfmmu_page_enter() sfmmu_page_lock lock array is used.
9430  *
9431  * The lock is taken on a root page so that it protects an operation on all
9432  * constituent pages of a large page pp belongs to.
9433  *
9434  * The routine takes a lock from the appropriate array. The lock is determined
9435  * by hashing the root page. After taking the lock this routine checks if the
9436  * root page has the same size code that was used to determine the root (i.e
9437  * that root hasn't changed).  If root page has the expected p_szc field we
9438  * have the right lock and it's returned to the caller. If root's p_szc
9439  * decreased we release the lock and retry from the beginning.  This case can
9440  * happen due to hat_page_demote() decreasing p_szc between our load of p_szc
9441  * value and taking the lock. The number of retries due to p_szc decrease is
9442  * limited by the maximum p_szc value. If p_szc is 0 we return the lock
9443  * determined by hashing pp itself.
9444  *
9445  * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
9446  * possible that p_szc can increase. To increase p_szc a thread has to lock
9447  * all constituent pages EXCL and do hat_pageunload() on all of them. All the
9448  * callers that don't hold a page locked recheck if hmeblk through which pp
9449  * was found still maps this pp.  If it doesn't map it anymore returned lock
9450  * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
9451  * p_szc increase after taking the lock it returns this lock without further
9452  * retries because in this case the caller doesn't care about which lock was
9453  * taken. The caller will drop it right away.
9454  *
9455  * After the routine returns it's guaranteed that hat_page_demote() can't
9456  * change p_szc field of any of constituent pages of a large page pp belongs
9457  * to as long as pp was either locked at least SHARED prior to this call or
9458  * the caller finds that hment that pointed to this pp still references this
9459  * pp (this also assumes that the caller holds hme hash bucket lock so that
9460  * the same pp can't be remapped into the same hmeblk after it was unmapped by
9461  * hat_pageunload()).
9462  */
9463 static kmutex_t *
9464 sfmmu_mlspl_enter(struct page *pp, int type)
9465 {
9466 	kmutex_t	*mtx;
9467 	uint_t		prev_rszc = UINT_MAX;
9468 	page_t		*rootpp;
9469 	uint_t		szc;
9470 	uint_t		rszc;
9471 	uint_t		pszc = pp->p_szc;
9472 
9473 	ASSERT(pp != NULL);
9474 
9475 again:
9476 	if (pszc == 0) {
9477 		mtx = SFMMU_MLSPL_MTX(type, pp);
9478 		mutex_enter(mtx);
9479 		return (mtx);
9480 	}
9481 
9482 	/* The lock lives in the root page */
9483 	rootpp = PP_GROUPLEADER(pp, pszc);
9484 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
9485 	mutex_enter(mtx);
9486 
9487 	/*
9488 	 * Return mml in the following 3 cases:
9489 	 *
9490 	 * 1) If pp itself is root since if its p_szc decreased before we took
9491 	 * the lock pp is still the root of smaller szc page. And if its p_szc
9492 	 * increased it doesn't matter what lock we return (see comment in
9493 	 * front of this routine).
9494 	 *
9495 	 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
9496 	 * large page we have the right lock since any previous potential
9497 	 * hat_page_demote() is done demoting from greater than current root's
9498 	 * p_szc because hat_page_demote() changes root's p_szc last. No
9499 	 * further hat_page_demote() can start or be in progress since it
9500 	 * would need the same lock we currently hold.
9501 	 *
9502 	 * 3) If rootpp's p_szc increased since previous iteration it doesn't
9503 	 * matter what lock we return (see comment in front of this routine).
9504 	 */
9505 	if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
9506 	    rszc >= prev_rszc) {
9507 		return (mtx);
9508 	}
9509 
9510 	/*
9511 	 * hat_page_demote() could have decreased root's p_szc.
9512 	 * In this case pp's p_szc must also be smaller than pszc.
9513 	 * Retry.
9514 	 */
9515 	if (rszc < pszc) {
9516 		szc = pp->p_szc;
9517 		if (szc < pszc) {
9518 			mutex_exit(mtx);
9519 			pszc = szc;
9520 			goto again;
9521 		}
9522 		/*
9523 		 * pp's p_szc increased after it was decreased.
9524 		 * page cannot be mapped. Return current lock. The caller
9525 		 * will drop it right away.
9526 		 */
9527 		return (mtx);
9528 	}
9529 
9530 	/*
9531 	 * root's p_szc is greater than pp's p_szc.
9532 	 * hat_page_demote() is not done with all pages
9533 	 * yet. Wait for it to complete.
9534 	 */
9535 	mutex_exit(mtx);
9536 	rootpp = PP_GROUPLEADER(rootpp, rszc);
9537 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
9538 	mutex_enter(mtx);
9539 	mutex_exit(mtx);
9540 	prev_rszc = rszc;
9541 	goto again;
9542 }
9543 
9544 static int
9545 sfmmu_mlspl_held(struct page *pp, int type)
9546 {
9547 	kmutex_t	*mtx;
9548 
9549 	ASSERT(pp != NULL);
9550 	/* The lock lives in the root page */
9551 	pp = PP_PAGEROOT(pp);
9552 	ASSERT(pp != NULL);
9553 
9554 	mtx = SFMMU_MLSPL_MTX(type, pp);
9555 	return (MUTEX_HELD(mtx));
9556 }
9557 
9558 static uint_t
9559 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
9560 {
9561 	struct  hme_blk *hblkp;
9562 
9563 	if (freehblkp != NULL) {
9564 		mutex_enter(&freehblkp_lock);
9565 		if (freehblkp != NULL) {
9566 			/*
9567 			 * If the current thread is owning hblk_reserve OR
9568 			 * critical request from sfmmu_hblk_steal()
9569 			 * let it succeed even if freehblkcnt is really low.
9570 			 */
9571 			if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
9572 				SFMMU_STAT(sf_get_free_throttle);
9573 				mutex_exit(&freehblkp_lock);
9574 				return (0);
9575 			}
9576 			freehblkcnt--;
9577 			*hmeblkpp = freehblkp;
9578 			hblkp = *hmeblkpp;
9579 			freehblkp = hblkp->hblk_next;
9580 			mutex_exit(&freehblkp_lock);
9581 			hblkp->hblk_next = NULL;
9582 			SFMMU_STAT(sf_get_free_success);
9583 			return (1);
9584 		}
9585 		mutex_exit(&freehblkp_lock);
9586 	}
9587 	SFMMU_STAT(sf_get_free_fail);
9588 	return (0);
9589 }
9590 
9591 static uint_t
9592 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
9593 {
9594 	struct  hme_blk *hblkp;
9595 
9596 	/*
9597 	 * If the current thread is mapping into kernel space,
9598 	 * let it succede even if freehblkcnt is max
9599 	 * so that it will avoid freeing it to kmem.
9600 	 * This will prevent stack overflow due to
9601 	 * possible recursion since kmem_cache_free()
9602 	 * might require creation of a slab which
9603 	 * in turn needs an hmeblk to map that slab;
9604 	 * let's break this vicious chain at the first
9605 	 * opportunity.
9606 	 */
9607 	if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
9608 		mutex_enter(&freehblkp_lock);
9609 		if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
9610 			SFMMU_STAT(sf_put_free_success);
9611 			freehblkcnt++;
9612 			hmeblkp->hblk_next = freehblkp;
9613 			freehblkp = hmeblkp;
9614 			mutex_exit(&freehblkp_lock);
9615 			return (1);
9616 		}
9617 		mutex_exit(&freehblkp_lock);
9618 	}
9619 
9620 	/*
9621 	 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
9622 	 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
9623 	 * we are not in the process of mapping into kernel space.
9624 	 */
9625 	ASSERT(!critical);
9626 	while (freehblkcnt > HBLK_RESERVE_CNT) {
9627 		mutex_enter(&freehblkp_lock);
9628 		if (freehblkcnt > HBLK_RESERVE_CNT) {
9629 			freehblkcnt--;
9630 			hblkp = freehblkp;
9631 			freehblkp = hblkp->hblk_next;
9632 			mutex_exit(&freehblkp_lock);
9633 			ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
9634 			kmem_cache_free(sfmmu8_cache, hblkp);
9635 			continue;
9636 		}
9637 		mutex_exit(&freehblkp_lock);
9638 	}
9639 	SFMMU_STAT(sf_put_free_fail);
9640 	return (0);
9641 }
9642 
9643 static void
9644 sfmmu_hblk_swap(struct hme_blk *new)
9645 {
9646 	struct hme_blk *old, *hblkp, *prev;
9647 	uint64_t hblkpa, prevpa, newpa;
9648 	caddr_t	base, vaddr, endaddr;
9649 	struct hmehash_bucket *hmebp;
9650 	struct sf_hment *osfhme, *nsfhme;
9651 	page_t *pp;
9652 	kmutex_t *pml;
9653 	tte_t tte;
9654 
9655 #ifdef	DEBUG
9656 	hmeblk_tag		hblktag;
9657 	struct hme_blk		*found;
9658 #endif
9659 	old = HBLK_RESERVE;
9660 
9661 	/*
9662 	 * save pa before bcopy clobbers it
9663 	 */
9664 	newpa = new->hblk_nextpa;
9665 
9666 	base = (caddr_t)get_hblk_base(old);
9667 	endaddr = base + get_hblk_span(old);
9668 
9669 	/*
9670 	 * acquire hash bucket lock.
9671 	 */
9672 	hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K);
9673 
9674 	/*
9675 	 * copy contents from old to new
9676 	 */
9677 	bcopy((void *)old, (void *)new, HME8BLK_SZ);
9678 
9679 	/*
9680 	 * add new to hash chain
9681 	 */
9682 	sfmmu_hblk_hash_add(hmebp, new, newpa);
9683 
9684 	/*
9685 	 * search hash chain for hblk_reserve; this needs to be performed
9686 	 * after adding new, otherwise prevpa and prev won't correspond
9687 	 * to the hblk which is prior to old in hash chain when we call
9688 	 * sfmmu_hblk_hash_rm to remove old later.
9689 	 */
9690 	for (prevpa = 0, prev = NULL,
9691 	    hblkpa = hmebp->hmeh_nextpa, hblkp = hmebp->hmeblkp;
9692 	    hblkp != NULL && hblkp != old;
9693 	    prevpa = hblkpa, prev = hblkp,
9694 	    hblkpa = hblkp->hblk_nextpa, hblkp = hblkp->hblk_next);
9695 
9696 	if (hblkp != old)
9697 		panic("sfmmu_hblk_swap: hblk_reserve not found");
9698 
9699 	/*
9700 	 * p_mapping list is still pointing to hments in hblk_reserve;
9701 	 * fix up p_mapping list so that they point to hments in new.
9702 	 *
9703 	 * Since all these mappings are created by hblk_reserve_thread
9704 	 * on the way and it's using at least one of the buffers from each of
9705 	 * the newly minted slabs, there is no danger of any of these
9706 	 * mappings getting unloaded by another thread.
9707 	 *
9708 	 * tsbmiss could only modify ref/mod bits of hments in old/new.
9709 	 * Since all of these hments hold mappings established by segkmem
9710 	 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
9711 	 * have no meaning for the mappings in hblk_reserve.  hments in
9712 	 * old and new are identical except for ref/mod bits.
9713 	 */
9714 	for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
9715 
9716 		HBLKTOHME(osfhme, old, vaddr);
9717 		sfmmu_copytte(&osfhme->hme_tte, &tte);
9718 
9719 		if (TTE_IS_VALID(&tte)) {
9720 			if ((pp = osfhme->hme_page) == NULL)
9721 				panic("sfmmu_hblk_swap: page not mapped");
9722 
9723 			pml = sfmmu_mlist_enter(pp);
9724 
9725 			if (pp != osfhme->hme_page)
9726 				panic("sfmmu_hblk_swap: mapping changed");
9727 
9728 			HBLKTOHME(nsfhme, new, vaddr);
9729 
9730 			HME_ADD(nsfhme, pp);
9731 			HME_SUB(osfhme, pp);
9732 
9733 			sfmmu_mlist_exit(pml);
9734 		}
9735 	}
9736 
9737 	/*
9738 	 * remove old from hash chain
9739 	 */
9740 	sfmmu_hblk_hash_rm(hmebp, old, prevpa, prev);
9741 
9742 #ifdef	DEBUG
9743 
9744 	hblktag.htag_id = ksfmmup;
9745 	hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
9746 	hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
9747 	HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
9748 
9749 	if (found != new)
9750 		panic("sfmmu_hblk_swap: new hblk not found");
9751 #endif
9752 
9753 	SFMMU_HASH_UNLOCK(hmebp);
9754 
9755 	/*
9756 	 * Reset hblk_reserve
9757 	 */
9758 	bzero((void *)old, HME8BLK_SZ);
9759 	old->hblk_nextpa = va_to_pa((caddr_t)old);
9760 }
9761 
9762 /*
9763  * Grab the mlist mutex for both pages passed in.
9764  *
9765  * low and high will be returned as pointers to the mutexes for these pages.
9766  * low refers to the mutex residing in the lower bin of the mlist hash, while
9767  * high refers to the mutex residing in the higher bin of the mlist hash.  This
9768  * is due to the locking order restrictions on the same thread grabbing
9769  * multiple mlist mutexes.  The low lock must be acquired before the high lock.
9770  *
9771  * If both pages hash to the same mutex, only grab that single mutex, and
9772  * high will be returned as NULL
9773  * If the pages hash to different bins in the hash, grab the lower addressed
9774  * lock first and then the higher addressed lock in order to follow the locking
9775  * rules involved with the same thread grabbing multiple mlist mutexes.
9776  * low and high will both have non-NULL values.
9777  */
9778 static void
9779 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
9780     kmutex_t **low, kmutex_t **high)
9781 {
9782 	kmutex_t	*mml_targ, *mml_repl;
9783 
9784 	/*
9785 	 * no need to do the dance around szc as in sfmmu_mlist_enter()
9786 	 * because this routine is only called by hat_page_relocate() and all
9787 	 * targ and repl pages are already locked EXCL so szc can't change.
9788 	 */
9789 
9790 	mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
9791 	mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
9792 
9793 	if (mml_targ == mml_repl) {
9794 		*low = mml_targ;
9795 		*high = NULL;
9796 	} else {
9797 		if (mml_targ < mml_repl) {
9798 			*low = mml_targ;
9799 			*high = mml_repl;
9800 		} else {
9801 			*low = mml_repl;
9802 			*high = mml_targ;
9803 		}
9804 	}
9805 
9806 	mutex_enter(*low);
9807 	if (*high)
9808 		mutex_enter(*high);
9809 }
9810 
9811 static void
9812 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
9813 {
9814 	if (high)
9815 		mutex_exit(high);
9816 	mutex_exit(low);
9817 }
9818 
9819 static hatlock_t *
9820 sfmmu_hat_enter(sfmmu_t *sfmmup)
9821 {
9822 	hatlock_t	*hatlockp;
9823 
9824 	if (sfmmup != ksfmmup) {
9825 		hatlockp = TSB_HASH(sfmmup);
9826 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
9827 		return (hatlockp);
9828 	}
9829 	return (NULL);
9830 }
9831 
9832 static hatlock_t *
9833 sfmmu_hat_tryenter(sfmmu_t *sfmmup)
9834 {
9835 	hatlock_t	*hatlockp;
9836 
9837 	if (sfmmup != ksfmmup) {
9838 		hatlockp = TSB_HASH(sfmmup);
9839 		if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
9840 			return (NULL);
9841 		return (hatlockp);
9842 	}
9843 	return (NULL);
9844 }
9845 
9846 static void
9847 sfmmu_hat_exit(hatlock_t *hatlockp)
9848 {
9849 	if (hatlockp != NULL)
9850 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
9851 }
9852 
9853 static void
9854 sfmmu_hat_lock_all(void)
9855 {
9856 	int i;
9857 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
9858 		mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
9859 }
9860 
9861 static void
9862 sfmmu_hat_unlock_all(void)
9863 {
9864 	int i;
9865 	for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
9866 		mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
9867 }
9868 
9869 int
9870 sfmmu_hat_lock_held(sfmmu_t *sfmmup)
9871 {
9872 	ASSERT(sfmmup != ksfmmup);
9873 	return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
9874 }
9875 
9876 /*
9877  * Locking primitives to provide consistency between ISM unmap
9878  * and other operations.  Since ISM unmap can take a long time, we
9879  * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
9880  * contention on the hatlock buckets while ISM segments are being
9881  * unmapped.  The tradeoff is that the flags don't prevent priority
9882  * inversion from occurring, so we must request kernel priority in
9883  * case we have to sleep to keep from getting buried while holding
9884  * the HAT_ISMBUSY flag set, which in turn could block other kernel
9885  * threads from running (for example, in sfmmu_uvatopfn()).
9886  */
9887 static void
9888 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
9889 {
9890 	hatlock_t *hatlockp;
9891 
9892 	THREAD_KPRI_REQUEST();
9893 	if (!hatlock_held)
9894 		hatlockp = sfmmu_hat_enter(sfmmup);
9895 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
9896 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
9897 	SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
9898 	if (!hatlock_held)
9899 		sfmmu_hat_exit(hatlockp);
9900 }
9901 
9902 static void
9903 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
9904 {
9905 	hatlock_t *hatlockp;
9906 
9907 	if (!hatlock_held)
9908 		hatlockp = sfmmu_hat_enter(sfmmup);
9909 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
9910 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
9911 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
9912 	if (!hatlock_held)
9913 		sfmmu_hat_exit(hatlockp);
9914 	THREAD_KPRI_RELEASE();
9915 }
9916 
9917 /*
9918  *
9919  * Algorithm:
9920  *
9921  * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
9922  *	hblks.
9923  *
9924  * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
9925  *
9926  * 		(a) try to return an hblk from reserve pool of free hblks;
9927  *		(b) if the reserve pool is empty, acquire hblk_reserve_lock
9928  *		    and return hblk_reserve.
9929  *
9930  * (3) call kmem_cache_alloc() to allocate hblk;
9931  *
9932  *		(a) if hblk_reserve_lock is held by the current thread,
9933  *		    atomically replace hblk_reserve by the hblk that is
9934  *		    returned by kmem_cache_alloc; release hblk_reserve_lock
9935  *		    and call kmem_cache_alloc() again.
9936  *		(b) if reserve pool is not full, add the hblk that is
9937  *		    returned by kmem_cache_alloc to reserve pool and
9938  *		    call kmem_cache_alloc again.
9939  *
9940  */
9941 static struct hme_blk *
9942 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
9943 	struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
9944 	uint_t flags)
9945 {
9946 	struct hme_blk *hmeblkp = NULL;
9947 	struct hme_blk *newhblkp;
9948 	struct hme_blk *shw_hblkp = NULL;
9949 	struct kmem_cache *sfmmu_cache = NULL;
9950 	uint64_t hblkpa;
9951 	ulong_t index;
9952 	uint_t owner;		/* set to 1 if using hblk_reserve */
9953 	uint_t forcefree;
9954 	int sleep;
9955 
9956 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
9957 
9958 	/*
9959 	 * If segkmem is not created yet, allocate from static hmeblks
9960 	 * created at the end of startup_modules().  See the block comment
9961 	 * in startup_modules() describing how we estimate the number of
9962 	 * static hmeblks that will be needed during re-map.
9963 	 */
9964 	if (!hblk_alloc_dynamic) {
9965 
9966 		if (size == TTE8K) {
9967 			index = nucleus_hblk8.index;
9968 			if (index >= nucleus_hblk8.len) {
9969 				/*
9970 				 * If we panic here, see startup_modules() to
9971 				 * make sure that we are calculating the
9972 				 * number of hblk8's that we need correctly.
9973 				 */
9974 				prom_panic("no nucleus hblk8 to allocate");
9975 			}
9976 			hmeblkp =
9977 			    (struct hme_blk *)&nucleus_hblk8.list[index];
9978 			nucleus_hblk8.index++;
9979 			SFMMU_STAT(sf_hblk8_nalloc);
9980 		} else {
9981 			index = nucleus_hblk1.index;
9982 			if (nucleus_hblk1.index >= nucleus_hblk1.len) {
9983 				/*
9984 				 * If we panic here, see startup_modules().
9985 				 * Most likely you need to update the
9986 				 * calculation of the number of hblk1 elements
9987 				 * that the kernel needs to boot.
9988 				 */
9989 				prom_panic("no nucleus hblk1 to allocate");
9990 			}
9991 			hmeblkp =
9992 			    (struct hme_blk *)&nucleus_hblk1.list[index];
9993 			nucleus_hblk1.index++;
9994 			SFMMU_STAT(sf_hblk1_nalloc);
9995 		}
9996 
9997 		goto hblk_init;
9998 	}
9999 
10000 	SFMMU_HASH_UNLOCK(hmebp);
10001 
10002 	if (sfmmup != KHATID) {
10003 		if (mmu_page_sizes == max_mmu_page_sizes) {
10004 			if (size < TTE256M)
10005 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
10006 				    size, flags);
10007 		} else {
10008 			if (size < TTE4M)
10009 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
10010 				    size, flags);
10011 		}
10012 	}
10013 
10014 fill_hblk:
10015 	owner = (hblk_reserve_thread == curthread) ? 1 : 0;
10016 
10017 	if (owner && size == TTE8K) {
10018 
10019 		/*
10020 		 * We are really in a tight spot. We already own
10021 		 * hblk_reserve and we need another hblk.  In anticipation
10022 		 * of this kind of scenario, we specifically set aside
10023 		 * HBLK_RESERVE_MIN number of hblks to be used exclusively
10024 		 * by owner of hblk_reserve.
10025 		 */
10026 		SFMMU_STAT(sf_hblk_recurse_cnt);
10027 
10028 		if (!sfmmu_get_free_hblk(&hmeblkp, 1))
10029 			panic("sfmmu_hblk_alloc: reserve list is empty");
10030 
10031 		goto hblk_verify;
10032 	}
10033 
10034 	ASSERT(!owner);
10035 
10036 	if ((flags & HAT_NO_KALLOC) == 0) {
10037 
10038 		sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
10039 		sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
10040 
10041 		if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
10042 			hmeblkp = sfmmu_hblk_steal(size);
10043 		} else {
10044 			/*
10045 			 * if we are the owner of hblk_reserve,
10046 			 * swap hblk_reserve with hmeblkp and
10047 			 * start a fresh life.  Hope things go
10048 			 * better this time.
10049 			 */
10050 			if (hblk_reserve_thread == curthread) {
10051 				ASSERT(sfmmu_cache == sfmmu8_cache);
10052 				sfmmu_hblk_swap(hmeblkp);
10053 				hblk_reserve_thread = NULL;
10054 				mutex_exit(&hblk_reserve_lock);
10055 				goto fill_hblk;
10056 			}
10057 			/*
10058 			 * let's donate this hblk to our reserve list if
10059 			 * we are not mapping kernel range
10060 			 */
10061 			if (size == TTE8K && sfmmup != KHATID)
10062 				if (sfmmu_put_free_hblk(hmeblkp, 0))
10063 					goto fill_hblk;
10064 		}
10065 	} else {
10066 		/*
10067 		 * We are here to map the slab in sfmmu8_cache; let's
10068 		 * check if we could tap our reserve list; if successful,
10069 		 * this will avoid the pain of going thru sfmmu_hblk_swap
10070 		 */
10071 		SFMMU_STAT(sf_hblk_slab_cnt);
10072 		if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
10073 			/*
10074 			 * let's start hblk_reserve dance
10075 			 */
10076 			SFMMU_STAT(sf_hblk_reserve_cnt);
10077 			owner = 1;
10078 			mutex_enter(&hblk_reserve_lock);
10079 			hmeblkp = HBLK_RESERVE;
10080 			hblk_reserve_thread = curthread;
10081 		}
10082 	}
10083 
10084 hblk_verify:
10085 	ASSERT(hmeblkp != NULL);
10086 	set_hblk_sz(hmeblkp, size);
10087 	ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
10088 	SFMMU_HASH_LOCK(hmebp);
10089 	HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
10090 	if (newhblkp != NULL) {
10091 		SFMMU_HASH_UNLOCK(hmebp);
10092 		if (hmeblkp != HBLK_RESERVE) {
10093 			/*
10094 			 * This is really tricky!
10095 			 *
10096 			 * vmem_alloc(vmem_seg_arena)
10097 			 *  vmem_alloc(vmem_internal_arena)
10098 			 *   segkmem_alloc(heap_arena)
10099 			 *    vmem_alloc(heap_arena)
10100 			 *    page_create()
10101 			 *    hat_memload()
10102 			 *	kmem_cache_free()
10103 			 *	 kmem_cache_alloc()
10104 			 *	  kmem_slab_create()
10105 			 *	   vmem_alloc(kmem_internal_arena)
10106 			 *	    segkmem_alloc(heap_arena)
10107 			 *		vmem_alloc(heap_arena)
10108 			 *		page_create()
10109 			 *		hat_memload()
10110 			 *		  kmem_cache_free()
10111 			 *		...
10112 			 *
10113 			 * Thus, hat_memload() could call kmem_cache_free
10114 			 * for enough number of times that we could easily
10115 			 * hit the bottom of the stack or run out of reserve
10116 			 * list of vmem_seg structs.  So, we must donate
10117 			 * this hblk to reserve list if it's allocated
10118 			 * from sfmmu8_cache *and* mapping kernel range.
10119 			 * We don't need to worry about freeing hmeblk1's
10120 			 * to kmem since they don't map any kmem slabs.
10121 			 *
10122 			 * Note: When segkmem supports largepages, we must
10123 			 * free hmeblk1's to reserve list as well.
10124 			 */
10125 			forcefree = (sfmmup == KHATID) ? 1 : 0;
10126 			if (size == TTE8K &&
10127 			    sfmmu_put_free_hblk(hmeblkp, forcefree)) {
10128 				goto re_verify;
10129 			}
10130 			ASSERT(sfmmup != KHATID);
10131 			kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
10132 		} else {
10133 			/*
10134 			 * Hey! we don't need hblk_reserve any more.
10135 			 */
10136 			ASSERT(owner);
10137 			hblk_reserve_thread = NULL;
10138 			mutex_exit(&hblk_reserve_lock);
10139 			owner = 0;
10140 		}
10141 re_verify:
10142 		/*
10143 		 * let's check if the goodies are still present
10144 		 */
10145 		SFMMU_HASH_LOCK(hmebp);
10146 		HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
10147 		if (newhblkp != NULL) {
10148 			/*
10149 			 * return newhblkp if it's not hblk_reserve;
10150 			 * if newhblkp is hblk_reserve, return it
10151 			 * _only if_ we are the owner of hblk_reserve.
10152 			 */
10153 			if (newhblkp != HBLK_RESERVE || owner) {
10154 				return (newhblkp);
10155 			} else {
10156 				/*
10157 				 * we just hit hblk_reserve in the hash and
10158 				 * we are not the owner of that;
10159 				 *
10160 				 * block until hblk_reserve_thread completes
10161 				 * swapping hblk_reserve and try the dance
10162 				 * once again.
10163 				 */
10164 				SFMMU_HASH_UNLOCK(hmebp);
10165 				mutex_enter(&hblk_reserve_lock);
10166 				mutex_exit(&hblk_reserve_lock);
10167 				SFMMU_STAT(sf_hblk_reserve_hit);
10168 				goto fill_hblk;
10169 			}
10170 		} else {
10171 			/*
10172 			 * it's no more! try the dance once again.
10173 			 */
10174 			SFMMU_HASH_UNLOCK(hmebp);
10175 			goto fill_hblk;
10176 		}
10177 	}
10178 
10179 hblk_init:
10180 	set_hblk_sz(hmeblkp, size);
10181 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10182 	hmeblkp->hblk_next = (struct hme_blk *)NULL;
10183 	hmeblkp->hblk_tag = hblktag;
10184 	hmeblkp->hblk_shadow = shw_hblkp;
10185 	hblkpa = hmeblkp->hblk_nextpa;
10186 	hmeblkp->hblk_nextpa = 0;
10187 
10188 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
10189 	ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
10190 	ASSERT(hmeblkp->hblk_hmecnt == 0);
10191 	ASSERT(hmeblkp->hblk_vcnt == 0);
10192 	ASSERT(hmeblkp->hblk_lckcnt == 0);
10193 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
10194 	sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
10195 	return (hmeblkp);
10196 }
10197 
10198 /*
10199  * This function performs any cleanup required on the hme_blk
10200  * and returns it to the free list.
10201  */
10202 /* ARGSUSED */
10203 static void
10204 sfmmu_hblk_free(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
10205 	uint64_t hblkpa, struct hme_blk **listp)
10206 {
10207 	int shw_size, vshift;
10208 	struct hme_blk *shw_hblkp;
10209 	uint_t		shw_mask, newshw_mask;
10210 	uintptr_t	vaddr;
10211 	int		size;
10212 	uint_t		critical;
10213 
10214 	ASSERT(hmeblkp);
10215 	ASSERT(!hmeblkp->hblk_hmecnt);
10216 	ASSERT(!hmeblkp->hblk_vcnt);
10217 	ASSERT(!hmeblkp->hblk_lckcnt);
10218 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
10219 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
10220 
10221 	critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
10222 
10223 	size = get_hblk_ttesz(hmeblkp);
10224 	shw_hblkp = hmeblkp->hblk_shadow;
10225 	if (shw_hblkp) {
10226 		ASSERT(hblktosfmmu(hmeblkp) != KHATID);
10227 		if (mmu_page_sizes == max_mmu_page_sizes) {
10228 			ASSERT(size < TTE256M);
10229 		} else {
10230 			ASSERT(size < TTE4M);
10231 		}
10232 
10233 		shw_size = get_hblk_ttesz(shw_hblkp);
10234 		vaddr = get_hblk_base(hmeblkp);
10235 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
10236 		ASSERT(vshift < 8);
10237 		/*
10238 		 * Atomically clear shadow mask bit
10239 		 */
10240 		do {
10241 			shw_mask = shw_hblkp->hblk_shw_mask;
10242 			ASSERT(shw_mask & (1 << vshift));
10243 			newshw_mask = shw_mask & ~(1 << vshift);
10244 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
10245 				shw_mask, newshw_mask);
10246 		} while (newshw_mask != shw_mask);
10247 		hmeblkp->hblk_shadow = NULL;
10248 	}
10249 	hmeblkp->hblk_next = NULL;
10250 	hmeblkp->hblk_nextpa = hblkpa;
10251 	hmeblkp->hblk_shw_bit = 0;
10252 
10253 	if (hmeblkp->hblk_nuc_bit == 0) {
10254 
10255 		if (size == TTE8K && sfmmu_put_free_hblk(hmeblkp, critical))
10256 			return;
10257 
10258 		hmeblkp->hblk_next = *listp;
10259 		*listp = hmeblkp;
10260 	}
10261 }
10262 
10263 static void
10264 sfmmu_hblks_list_purge(struct hme_blk **listp)
10265 {
10266 	struct hme_blk	*hmeblkp;
10267 
10268 	while ((hmeblkp = *listp) != NULL) {
10269 		*listp = hmeblkp->hblk_next;
10270 		kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
10271 	}
10272 }
10273 
10274 #define	BUCKETS_TO_SEARCH_BEFORE_UNLOAD	30
10275 #define	SFMMU_HBLK_STEAL_THRESHOLD 5
10276 
10277 static uint_t sfmmu_hblk_steal_twice;
10278 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
10279 
10280 /*
10281  * Steal a hmeblk from user or kernel hme hash lists.
10282  * For 8K tte grab one from reserve pool (freehblkp) before proceeding to
10283  * steal and if we fail to steal after SFMMU_HBLK_STEAL_THRESHOLD attempts
10284  * tap into critical reserve of freehblkp.
10285  * Note: We remain looping in this routine until we find one.
10286  */
10287 static struct hme_blk *
10288 sfmmu_hblk_steal(int size)
10289 {
10290 	static struct hmehash_bucket *uhmehash_steal_hand = NULL;
10291 	struct hmehash_bucket *hmebp;
10292 	struct hme_blk *hmeblkp = NULL, *pr_hblk;
10293 	uint64_t hblkpa, prevpa;
10294 	int i;
10295 	uint_t loop_cnt = 0, critical;
10296 
10297 	for (;;) {
10298 		if (size == TTE8K) {
10299 			critical =
10300 			    (++loop_cnt > SFMMU_HBLK_STEAL_THRESHOLD) ? 1 : 0;
10301 			if (sfmmu_get_free_hblk(&hmeblkp, critical))
10302 				return (hmeblkp);
10303 		}
10304 
10305 		hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
10306 			uhmehash_steal_hand;
10307 		ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
10308 
10309 		for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
10310 		    BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
10311 			SFMMU_HASH_LOCK(hmebp);
10312 			hmeblkp = hmebp->hmeblkp;
10313 			hblkpa = hmebp->hmeh_nextpa;
10314 			prevpa = 0;
10315 			pr_hblk = NULL;
10316 			while (hmeblkp) {
10317 				/*
10318 				 * check if it is a hmeblk that is not locked
10319 				 * and not shared. skip shadow hmeblks with
10320 				 * shadow_mask set i.e valid count non zero.
10321 				 */
10322 				if ((get_hblk_ttesz(hmeblkp) == size) &&
10323 				    (hmeblkp->hblk_shw_bit == 0 ||
10324 					hmeblkp->hblk_vcnt == 0) &&
10325 				    (hmeblkp->hblk_lckcnt == 0)) {
10326 					/*
10327 					 * there is a high probability that we
10328 					 * will find a free one. search some
10329 					 * buckets for a free hmeblk initially
10330 					 * before unloading a valid hmeblk.
10331 					 */
10332 					if ((hmeblkp->hblk_vcnt == 0 &&
10333 					    hmeblkp->hblk_hmecnt == 0) || (i >=
10334 					    BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
10335 						if (sfmmu_steal_this_hblk(hmebp,
10336 						    hmeblkp, hblkpa, prevpa,
10337 						    pr_hblk)) {
10338 							/*
10339 							 * Hblk is unloaded
10340 							 * successfully
10341 							 */
10342 							break;
10343 						}
10344 					}
10345 				}
10346 				pr_hblk = hmeblkp;
10347 				prevpa = hblkpa;
10348 				hblkpa = hmeblkp->hblk_nextpa;
10349 				hmeblkp = hmeblkp->hblk_next;
10350 			}
10351 
10352 			SFMMU_HASH_UNLOCK(hmebp);
10353 			if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
10354 				hmebp = uhme_hash;
10355 		}
10356 		uhmehash_steal_hand = hmebp;
10357 
10358 		if (hmeblkp != NULL)
10359 			break;
10360 
10361 		/*
10362 		 * in the worst case, look for a free one in the kernel
10363 		 * hash table.
10364 		 */
10365 		for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
10366 			SFMMU_HASH_LOCK(hmebp);
10367 			hmeblkp = hmebp->hmeblkp;
10368 			hblkpa = hmebp->hmeh_nextpa;
10369 			prevpa = 0;
10370 			pr_hblk = NULL;
10371 			while (hmeblkp) {
10372 				/*
10373 				 * check if it is free hmeblk
10374 				 */
10375 				if ((get_hblk_ttesz(hmeblkp) == size) &&
10376 				    (hmeblkp->hblk_lckcnt == 0) &&
10377 				    (hmeblkp->hblk_vcnt == 0) &&
10378 				    (hmeblkp->hblk_hmecnt == 0)) {
10379 					if (sfmmu_steal_this_hblk(hmebp,
10380 					    hmeblkp, hblkpa, prevpa, pr_hblk)) {
10381 						break;
10382 					} else {
10383 						/*
10384 						 * Cannot fail since we have
10385 						 * hash lock.
10386 						 */
10387 						panic("fail to steal?");
10388 					}
10389 				}
10390 
10391 				pr_hblk = hmeblkp;
10392 				prevpa = hblkpa;
10393 				hblkpa = hmeblkp->hblk_nextpa;
10394 				hmeblkp = hmeblkp->hblk_next;
10395 			}
10396 
10397 			SFMMU_HASH_UNLOCK(hmebp);
10398 			if (hmebp++ == &khme_hash[KHMEHASH_SZ])
10399 				hmebp = khme_hash;
10400 		}
10401 
10402 		if (hmeblkp != NULL)
10403 			break;
10404 		sfmmu_hblk_steal_twice++;
10405 	}
10406 	return (hmeblkp);
10407 }
10408 
10409 /*
10410  * This routine does real work to prepare a hblk to be "stolen" by
10411  * unloading the mappings, updating shadow counts ....
10412  * It returns 1 if the block is ready to be reused (stolen), or 0
10413  * means the block cannot be stolen yet- pageunload is still working
10414  * on this hblk.
10415  */
10416 static int
10417 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
10418 	uint64_t hblkpa, uint64_t prevpa, struct hme_blk *pr_hblk)
10419 {
10420 	int shw_size, vshift;
10421 	struct hme_blk *shw_hblkp;
10422 	uintptr_t vaddr;
10423 	uint_t shw_mask, newshw_mask;
10424 
10425 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10426 
10427 	/*
10428 	 * check if the hmeblk is free, unload if necessary
10429 	 */
10430 	if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
10431 		sfmmu_t *sfmmup;
10432 		demap_range_t dmr;
10433 
10434 		sfmmup = hblktosfmmu(hmeblkp);
10435 		DEMAP_RANGE_INIT(sfmmup, &dmr);
10436 		(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
10437 		    (caddr_t)get_hblk_base(hmeblkp),
10438 		    get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
10439 		DEMAP_RANGE_FLUSH(&dmr);
10440 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
10441 			/*
10442 			 * Pageunload is working on the same hblk.
10443 			 */
10444 			return (0);
10445 		}
10446 
10447 		sfmmu_hblk_steal_unload_count++;
10448 	}
10449 
10450 	ASSERT(hmeblkp->hblk_lckcnt == 0);
10451 	ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
10452 
10453 	sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
10454 	hmeblkp->hblk_nextpa = hblkpa;
10455 
10456 	shw_hblkp = hmeblkp->hblk_shadow;
10457 	if (shw_hblkp) {
10458 		shw_size = get_hblk_ttesz(shw_hblkp);
10459 		vaddr = get_hblk_base(hmeblkp);
10460 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
10461 		ASSERT(vshift < 8);
10462 		/*
10463 		 * Atomically clear shadow mask bit
10464 		 */
10465 		do {
10466 			shw_mask = shw_hblkp->hblk_shw_mask;
10467 			ASSERT(shw_mask & (1 << vshift));
10468 			newshw_mask = shw_mask & ~(1 << vshift);
10469 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
10470 				shw_mask, newshw_mask);
10471 		} while (newshw_mask != shw_mask);
10472 		hmeblkp->hblk_shadow = NULL;
10473 	}
10474 
10475 	/*
10476 	 * remove shadow bit if we are stealing an unused shadow hmeblk.
10477 	 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if
10478 	 * we are indeed allocating a shadow hmeblk.
10479 	 */
10480 	hmeblkp->hblk_shw_bit = 0;
10481 
10482 	sfmmu_hblk_steal_count++;
10483 	SFMMU_STAT(sf_steal_count);
10484 
10485 	return (1);
10486 }
10487 
10488 struct hme_blk *
10489 sfmmu_hmetohblk(struct sf_hment *sfhme)
10490 {
10491 	struct hme_blk *hmeblkp;
10492 	struct sf_hment *sfhme0;
10493 	struct hme_blk *hblk_dummy = 0;
10494 
10495 	/*
10496 	 * No dummy sf_hments, please.
10497 	 */
10498 	ASSERT(sfhme->hme_tte.ll != 0);
10499 
10500 	sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
10501 	hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
10502 		(uintptr_t)&hblk_dummy->hblk_hme[0]);
10503 
10504 	return (hmeblkp);
10505 }
10506 
10507 /*
10508  * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
10509  * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
10510  * KM_SLEEP allocation.
10511  *
10512  * Return 0 on success, -1 otherwise.
10513  */
10514 static void
10515 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
10516 {
10517 	struct tsb_info *tsbinfop, *next;
10518 	tsb_replace_rc_t rc;
10519 	boolean_t gotfirst = B_FALSE;
10520 
10521 	ASSERT(sfmmup != ksfmmup);
10522 	ASSERT(sfmmu_hat_lock_held(sfmmup));
10523 
10524 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
10525 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
10526 	}
10527 
10528 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10529 		SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
10530 	} else {
10531 		return;
10532 	}
10533 
10534 	ASSERT(sfmmup->sfmmu_tsb != NULL);
10535 
10536 	/*
10537 	 * Loop over all tsbinfo's replacing them with ones that actually have
10538 	 * a TSB.  If any of the replacements ever fail, bail out of the loop.
10539 	 */
10540 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
10541 		ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
10542 		next = tsbinfop->tsb_next;
10543 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
10544 		    hatlockp, TSB_SWAPIN);
10545 		if (rc != TSB_SUCCESS) {
10546 			break;
10547 		}
10548 		gotfirst = B_TRUE;
10549 	}
10550 
10551 	switch (rc) {
10552 	case TSB_SUCCESS:
10553 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
10554 		cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10555 		return;
10556 	case TSB_ALLOCFAIL:
10557 		break;
10558 	default:
10559 		panic("sfmmu_replace_tsb returned unrecognized failure code "
10560 		    "%d", rc);
10561 	}
10562 
10563 	/*
10564 	 * In this case, we failed to get one of our TSBs.  If we failed to
10565 	 * get the first TSB, get one of minimum size (8KB).  Walk the list
10566 	 * and throw away the tsbinfos, starting where the allocation failed;
10567 	 * we can get by with just one TSB as long as we don't leave the
10568 	 * SWAPPED tsbinfo structures lying around.
10569 	 */
10570 	tsbinfop = sfmmup->sfmmu_tsb;
10571 	next = tsbinfop->tsb_next;
10572 	tsbinfop->tsb_next = NULL;
10573 
10574 	sfmmu_hat_exit(hatlockp);
10575 	for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
10576 		next = tsbinfop->tsb_next;
10577 		sfmmu_tsbinfo_free(tsbinfop);
10578 	}
10579 	hatlockp = sfmmu_hat_enter(sfmmup);
10580 
10581 	/*
10582 	 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
10583 	 * pages.
10584 	 */
10585 	if (!gotfirst) {
10586 		tsbinfop = sfmmup->sfmmu_tsb;
10587 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
10588 		    hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
10589 		ASSERT(rc == TSB_SUCCESS);
10590 	} else {
10591 		/* update machine specific tsbinfo */
10592 		sfmmu_setup_tsbinfo(sfmmup);
10593 	}
10594 
10595 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
10596 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10597 }
10598 
10599 /*
10600  * Handle exceptions for low level tsb_handler.
10601  *
10602  * There are many scenarios that could land us here:
10603  *
10604  * If the context is invalid we land here. The context can be invalid
10605  * for 3 reasons: 1) we couldn't allocate a new context and now need to
10606  * perform a wrap around operation in order to allocate a new context.
10607  * 2) Context was invalidated to change pagesize programming 3) ISMs or
10608  * TSBs configuration is changeing for this process and we are forced into
10609  * here to do a syncronization operation. If the context is valid we can
10610  * be here from window trap hanlder. In this case just call trap to handle
10611  * the fault.
10612  *
10613  * Note that the process will run in INVALID_CONTEXT before
10614  * faulting into here and subsequently loading the MMU registers
10615  * (including the TSB base register) associated with this process.
10616  * For this reason, the trap handlers must all test for
10617  * INVALID_CONTEXT before attempting to access any registers other
10618  * than the context registers.
10619  */
10620 void
10621 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
10622 {
10623 	sfmmu_t *sfmmup;
10624 	uint_t ctxtype;
10625 	klwp_id_t lwp;
10626 	char lwp_save_state;
10627 	hatlock_t *hatlockp;
10628 	struct tsb_info *tsbinfop;
10629 
10630 	SFMMU_STAT(sf_tsb_exceptions);
10631 	SFMMU_MMU_STAT(mmu_tsb_exceptions);
10632 	sfmmup = astosfmmu(curthread->t_procp->p_as);
10633 	/*
10634 	 * note that in sun4u, tagacces register contains ctxnum
10635 	 * while sun4v passes ctxtype in the tagaccess register.
10636 	 */
10637 	ctxtype = tagaccess & TAGACC_CTX_MASK;
10638 
10639 	ASSERT(sfmmup != ksfmmup && ctxtype != KCONTEXT);
10640 	ASSERT(sfmmup->sfmmu_ismhat == 0);
10641 	/*
10642 	 * First, make sure we come out of here with a valid ctx,
10643 	 * since if we don't get one we'll simply loop on the
10644 	 * faulting instruction.
10645 	 *
10646 	 * If the ISM mappings are changing, the TSB is being relocated, or
10647 	 * the process is swapped out we serialize behind the controlling
10648 	 * thread with the sfmmu_flags and sfmmu_tsb_cv condition variable.
10649 	 * Otherwise we synchronize with the context stealer or the thread
10650 	 * that required us to change out our MMU registers (such
10651 	 * as a thread changing out our TSB while we were running) by
10652 	 * locking the HAT and grabbing the rwlock on the context as a
10653 	 * reader temporarily.
10654 	 */
10655 	ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) ||
10656 	    ctxtype == INVALID_CONTEXT);
10657 
10658 	if (ctxtype == INVALID_CONTEXT) {
10659 		/*
10660 		 * Must set lwp state to LWP_SYS before
10661 		 * trying to acquire any adaptive lock
10662 		 */
10663 		lwp = ttolwp(curthread);
10664 		ASSERT(lwp);
10665 		lwp_save_state = lwp->lwp_state;
10666 		lwp->lwp_state = LWP_SYS;
10667 
10668 		hatlockp = sfmmu_hat_enter(sfmmup);
10669 retry:
10670 		for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
10671 		    tsbinfop = tsbinfop->tsb_next) {
10672 			if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
10673 				cv_wait(&sfmmup->sfmmu_tsb_cv,
10674 				    HATLOCK_MUTEXP(hatlockp));
10675 				goto retry;
10676 			}
10677 		}
10678 
10679 		/*
10680 		 * Wait for ISM maps to be updated.
10681 		 */
10682 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
10683 			cv_wait(&sfmmup->sfmmu_tsb_cv,
10684 			    HATLOCK_MUTEXP(hatlockp));
10685 			goto retry;
10686 		}
10687 
10688 		/*
10689 		 * If we're swapping in, get TSB(s).  Note that we must do
10690 		 * this before we get a ctx or load the MMU state.  Once
10691 		 * we swap in we have to recheck to make sure the TSB(s) and
10692 		 * ISM mappings didn't change while we slept.
10693 		 */
10694 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10695 			sfmmu_tsb_swapin(sfmmup, hatlockp);
10696 			goto retry;
10697 		}
10698 
10699 		sfmmu_get_ctx(sfmmup);
10700 
10701 		sfmmu_hat_exit(hatlockp);
10702 		/*
10703 		 * Must restore lwp_state if not calling
10704 		 * trap() for further processing. Restore
10705 		 * it anyway.
10706 		 */
10707 		lwp->lwp_state = lwp_save_state;
10708 		if (sfmmup->sfmmu_ttecnt[TTE8K] != 0 ||
10709 		    sfmmup->sfmmu_ttecnt[TTE64K] != 0 ||
10710 		    sfmmup->sfmmu_ttecnt[TTE512K] != 0 ||
10711 		    sfmmup->sfmmu_ttecnt[TTE4M] != 0 ||
10712 		    sfmmup->sfmmu_ttecnt[TTE32M] != 0 ||
10713 		    sfmmup->sfmmu_ttecnt[TTE256M] != 0) {
10714 			return;
10715 		}
10716 		if (traptype == T_DATA_PROT) {
10717 			traptype = T_DATA_MMU_MISS;
10718 		}
10719 	}
10720 	trap(rp, (caddr_t)tagaccess, traptype, 0);
10721 }
10722 
10723 /*
10724  * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
10725  * TTE_SUSPENDED bit set in tte we block on aquiring a page lock
10726  * rather than spinning to avoid send mondo timeouts with
10727  * interrupts enabled. When the lock is acquired it is immediately
10728  * released and we return back to sfmmu_vatopfn just after
10729  * the GET_TTE call.
10730  */
10731 void
10732 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
10733 {
10734 	struct page	**pp;
10735 
10736 	(void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
10737 	as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
10738 }
10739 
10740 /*
10741  * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
10742  * TTE_SUSPENDED bit set in tte. We do this so that we can handle
10743  * cross traps which cannot be handled while spinning in the
10744  * trap handlers. Simply enter and exit the kpr_suspendlock spin
10745  * mutex, which is held by the holder of the suspend bit, and then
10746  * retry the trapped instruction after unwinding.
10747  */
10748 /*ARGSUSED*/
10749 void
10750 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
10751 {
10752 	ASSERT(curthread != kreloc_thread);
10753 	mutex_enter(&kpr_suspendlock);
10754 	mutex_exit(&kpr_suspendlock);
10755 }
10756 
10757 /*
10758  * Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
10759  * This routine may be called with all cpu's captured. Therefore, the
10760  * caller is responsible for holding all locks and disabling kernel
10761  * preemption.
10762  */
10763 /* ARGSUSED */
10764 static void
10765 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
10766 	struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
10767 {
10768 	cpuset_t 	cpuset;
10769 	caddr_t 	va;
10770 	ism_ment_t	*ment;
10771 	sfmmu_t		*sfmmup;
10772 #ifdef VAC
10773 	int 		vcolor;
10774 #endif
10775 	int		ttesz;
10776 
10777 	/*
10778 	 * Walk the ism_hat's mapping list and flush the page
10779 	 * from every hat sharing this ism_hat. This routine
10780 	 * may be called while all cpu's have been captured.
10781 	 * Therefore we can't attempt to grab any locks. For now
10782 	 * this means we will protect the ism mapping list under
10783 	 * a single lock which will be grabbed by the caller.
10784 	 * If hat_share/unshare scalibility becomes a performance
10785 	 * problem then we may need to re-think ism mapping list locking.
10786 	 */
10787 	ASSERT(ism_sfmmup->sfmmu_ismhat);
10788 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
10789 	addr = addr - ISMID_STARTADDR;
10790 	for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
10791 
10792 		sfmmup = ment->iment_hat;
10793 
10794 		va = ment->iment_base_va;
10795 		va = (caddr_t)((uintptr_t)va  + (uintptr_t)addr);
10796 
10797 		/*
10798 		 * Flush TSB of ISM mappings.
10799 		 */
10800 		ttesz = get_hblk_ttesz(hmeblkp);
10801 		if (ttesz == TTE8K || ttesz == TTE4M) {
10802 			sfmmu_unload_tsb(sfmmup, va, ttesz);
10803 		} else {
10804 			caddr_t sva = va;
10805 			caddr_t eva;
10806 			ASSERT(addr == (caddr_t)get_hblk_base(hmeblkp));
10807 			eva = sva + get_hblk_span(hmeblkp);
10808 			sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);
10809 		}
10810 
10811 		cpuset = sfmmup->sfmmu_cpusran;
10812 		CPUSET_AND(cpuset, cpu_ready_set);
10813 		CPUSET_DEL(cpuset, CPU->cpu_id);
10814 
10815 		SFMMU_XCALL_STATS(sfmmup);
10816 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
10817 		    (uint64_t)sfmmup);
10818 
10819 		vtag_flushpage(va, (uint64_t)sfmmup);
10820 
10821 #ifdef VAC
10822 		/*
10823 		 * Flush D$
10824 		 * When flushing D$ we must flush all
10825 		 * cpu's. See sfmmu_cache_flush().
10826 		 */
10827 		if (cache_flush_flag == CACHE_FLUSH) {
10828 			cpuset = cpu_ready_set;
10829 			CPUSET_DEL(cpuset, CPU->cpu_id);
10830 
10831 			SFMMU_XCALL_STATS(sfmmup);
10832 			vcolor = addr_to_vcolor(va);
10833 			xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
10834 			vac_flushpage(pfnum, vcolor);
10835 		}
10836 #endif	/* VAC */
10837 	}
10838 }
10839 
10840 /*
10841  * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
10842  * a particular virtual address and ctx.  If noflush is set we do not
10843  * flush the TLB/TSB.  This function may or may not be called with the
10844  * HAT lock held.
10845  */
10846 static void
10847 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
10848 	pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
10849 	int hat_lock_held)
10850 {
10851 #ifdef VAC
10852 	int vcolor;
10853 #endif
10854 	cpuset_t cpuset;
10855 	hatlock_t *hatlockp;
10856 
10857 #if defined(lint) && !defined(VAC)
10858 	pfnum = pfnum;
10859 	cpu_flag = cpu_flag;
10860 	cache_flush_flag = cache_flush_flag;
10861 #endif
10862 	/*
10863 	 * There is no longer a need to protect against ctx being
10864 	 * stolen here since we don't store the ctx in the TSB anymore.
10865 	 */
10866 #ifdef VAC
10867 	vcolor = addr_to_vcolor(addr);
10868 #endif
10869 
10870 	/*
10871 	 * We must hold the hat lock during the flush of TLB,
10872 	 * to avoid a race with sfmmu_invalidate_ctx(), where
10873 	 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
10874 	 * causing TLB demap routine to skip flush on that MMU.
10875 	 * If the context on a MMU has already been set to
10876 	 * INVALID_CONTEXT, we just get an extra flush on
10877 	 * that MMU.
10878 	 */
10879 	if (!hat_lock_held && !tlb_noflush)
10880 		hatlockp = sfmmu_hat_enter(sfmmup);
10881 
10882 	kpreempt_disable();
10883 	if (!tlb_noflush) {
10884 		/*
10885 		 * Flush the TSB and TLB.
10886 		 */
10887 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
10888 
10889 		cpuset = sfmmup->sfmmu_cpusran;
10890 		CPUSET_AND(cpuset, cpu_ready_set);
10891 		CPUSET_DEL(cpuset, CPU->cpu_id);
10892 
10893 		SFMMU_XCALL_STATS(sfmmup);
10894 
10895 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
10896 		    (uint64_t)sfmmup);
10897 
10898 		vtag_flushpage(addr, (uint64_t)sfmmup);
10899 	}
10900 
10901 	if (!hat_lock_held && !tlb_noflush)
10902 		sfmmu_hat_exit(hatlockp);
10903 
10904 #ifdef VAC
10905 	/*
10906 	 * Flush the D$
10907 	 *
10908 	 * Even if the ctx is stolen, we need to flush the
10909 	 * cache. Our ctx stealer only flushes the TLBs.
10910 	 */
10911 	if (cache_flush_flag == CACHE_FLUSH) {
10912 		if (cpu_flag & FLUSH_ALL_CPUS) {
10913 			cpuset = cpu_ready_set;
10914 		} else {
10915 			cpuset = sfmmup->sfmmu_cpusran;
10916 			CPUSET_AND(cpuset, cpu_ready_set);
10917 		}
10918 		CPUSET_DEL(cpuset, CPU->cpu_id);
10919 		SFMMU_XCALL_STATS(sfmmup);
10920 		xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
10921 		vac_flushpage(pfnum, vcolor);
10922 	}
10923 #endif	/* VAC */
10924 	kpreempt_enable();
10925 }
10926 
10927 /*
10928  * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
10929  * address and ctx.  If noflush is set we do not currently do anything.
10930  * This function may or may not be called with the HAT lock held.
10931  */
10932 static void
10933 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
10934 	int tlb_noflush, int hat_lock_held)
10935 {
10936 	cpuset_t cpuset;
10937 	hatlock_t *hatlockp;
10938 
10939 	/*
10940 	 * If the process is exiting we have nothing to do.
10941 	 */
10942 	if (tlb_noflush)
10943 		return;
10944 
10945 	/*
10946 	 * Flush TSB.
10947 	 */
10948 	if (!hat_lock_held)
10949 		hatlockp = sfmmu_hat_enter(sfmmup);
10950 	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
10951 
10952 	kpreempt_disable();
10953 
10954 	cpuset = sfmmup->sfmmu_cpusran;
10955 	CPUSET_AND(cpuset, cpu_ready_set);
10956 	CPUSET_DEL(cpuset, CPU->cpu_id);
10957 
10958 	SFMMU_XCALL_STATS(sfmmup);
10959 	xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup);
10960 
10961 	vtag_flushpage(addr, (uint64_t)sfmmup);
10962 
10963 	if (!hat_lock_held)
10964 		sfmmu_hat_exit(hatlockp);
10965 
10966 	kpreempt_enable();
10967 
10968 }
10969 
10970 /*
10971  * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
10972  * call handler that can flush a range of pages to save on xcalls.
10973  */
10974 static int sfmmu_xcall_save;
10975 
10976 static void
10977 sfmmu_tlb_range_demap(demap_range_t *dmrp)
10978 {
10979 	sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
10980 	hatlock_t *hatlockp;
10981 	cpuset_t cpuset;
10982 	uint64_t sfmmu_pgcnt;
10983 	pgcnt_t pgcnt = 0;
10984 	int pgunload = 0;
10985 	int dirtypg = 0;
10986 	caddr_t addr = dmrp->dmr_addr;
10987 	caddr_t eaddr;
10988 	uint64_t bitvec = dmrp->dmr_bitvec;
10989 
10990 	ASSERT(bitvec & 1);
10991 
10992 	/*
10993 	 * Flush TSB and calculate number of pages to flush.
10994 	 */
10995 	while (bitvec != 0) {
10996 		dirtypg = 0;
10997 		/*
10998 		 * Find the first page to flush and then count how many
10999 		 * pages there are after it that also need to be flushed.
11000 		 * This way the number of TSB flushes is minimized.
11001 		 */
11002 		while ((bitvec & 1) == 0) {
11003 			pgcnt++;
11004 			addr += MMU_PAGESIZE;
11005 			bitvec >>= 1;
11006 		}
11007 		while (bitvec & 1) {
11008 			dirtypg++;
11009 			bitvec >>= 1;
11010 		}
11011 		eaddr = addr + ptob(dirtypg);
11012 		hatlockp = sfmmu_hat_enter(sfmmup);
11013 		sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
11014 		sfmmu_hat_exit(hatlockp);
11015 		pgunload += dirtypg;
11016 		addr = eaddr;
11017 		pgcnt += dirtypg;
11018 	}
11019 
11020 	ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
11021 	if (sfmmup->sfmmu_free == 0) {
11022 		addr = dmrp->dmr_addr;
11023 		bitvec = dmrp->dmr_bitvec;
11024 
11025 		/*
11026 		 * make sure it has SFMMU_PGCNT_SHIFT bits only,
11027 		 * as it will be used to pack argument for xt_some
11028 		 */
11029 		ASSERT((pgcnt > 0) &&
11030 		    (pgcnt <= (1 << SFMMU_PGCNT_SHIFT)));
11031 
11032 		/*
11033 		 * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in
11034 		 * the low 6 bits of sfmmup. This is doable since pgcnt
11035 		 * always >= 1.
11036 		 */
11037 		ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK));
11038 		sfmmu_pgcnt = (uint64_t)sfmmup |
11039 		    ((pgcnt - 1) & SFMMU_PGCNT_MASK);
11040 
11041 		/*
11042 		 * We must hold the hat lock during the flush of TLB,
11043 		 * to avoid a race with sfmmu_invalidate_ctx(), where
11044 		 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
11045 		 * causing TLB demap routine to skip flush on that MMU.
11046 		 * If the context on a MMU has already been set to
11047 		 * INVALID_CONTEXT, we just get an extra flush on
11048 		 * that MMU.
11049 		 */
11050 		hatlockp = sfmmu_hat_enter(sfmmup);
11051 		kpreempt_disable();
11052 
11053 		cpuset = sfmmup->sfmmu_cpusran;
11054 		CPUSET_AND(cpuset, cpu_ready_set);
11055 		CPUSET_DEL(cpuset, CPU->cpu_id);
11056 
11057 		SFMMU_XCALL_STATS(sfmmup);
11058 		xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
11059 		    sfmmu_pgcnt);
11060 
11061 		for (; bitvec != 0; bitvec >>= 1) {
11062 			if (bitvec & 1)
11063 				vtag_flushpage(addr, (uint64_t)sfmmup);
11064 			addr += MMU_PAGESIZE;
11065 		}
11066 		kpreempt_enable();
11067 		sfmmu_hat_exit(hatlockp);
11068 
11069 		sfmmu_xcall_save += (pgunload-1);
11070 	}
11071 	dmrp->dmr_bitvec = 0;
11072 }
11073 
11074 /*
11075  * In cases where we need to synchronize with TLB/TSB miss trap
11076  * handlers, _and_ need to flush the TLB, it's a lot easier to
11077  * throw away the context from the process than to do a
11078  * special song and dance to keep things consistent for the
11079  * handlers.
11080  *
11081  * Since the process suddenly ends up without a context and our caller
11082  * holds the hat lock, threads that fault after this function is called
11083  * will pile up on the lock.  We can then do whatever we need to
11084  * atomically from the context of the caller.  The first blocked thread
11085  * to resume executing will get the process a new context, and the
11086  * process will resume executing.
11087  *
11088  * One added advantage of this approach is that on MMUs that
11089  * support a "flush all" operation, we will delay the flush until
11090  * cnum wrap-around, and then flush the TLB one time.  This
11091  * is rather rare, so it's a lot less expensive than making 8000
11092  * x-calls to flush the TLB 8000 times.
11093  *
11094  * A per-process (PP) lock is used to synchronize ctx allocations in
11095  * resume() and ctx invalidations here.
11096  */
11097 static void
11098 sfmmu_invalidate_ctx(sfmmu_t *sfmmup)
11099 {
11100 	cpuset_t cpuset;
11101 	int cnum, currcnum;
11102 	mmu_ctx_t *mmu_ctxp;
11103 	int i;
11104 	uint_t pstate_save;
11105 
11106 	SFMMU_STAT(sf_ctx_inv);
11107 
11108 	ASSERT(sfmmu_hat_lock_held(sfmmup));
11109 	ASSERT(sfmmup != ksfmmup);
11110 
11111 	kpreempt_disable();
11112 
11113 	mmu_ctxp = CPU_MMU_CTXP(CPU);
11114 	ASSERT(mmu_ctxp);
11115 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
11116 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
11117 
11118 	currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum;
11119 
11120 	pstate_save = sfmmu_disable_intrs();
11121 
11122 	lock_set(&sfmmup->sfmmu_ctx_lock);	/* acquire PP lock */
11123 	/* set HAT cnum invalid across all context domains. */
11124 	for (i = 0; i < max_mmu_ctxdoms; i++) {
11125 
11126 		cnum = 	sfmmup->sfmmu_ctxs[i].cnum;
11127 		if (cnum == INVALID_CONTEXT) {
11128 			continue;
11129 		}
11130 
11131 		sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
11132 	}
11133 	membar_enter();	/* make sure globally visible to all CPUs */
11134 	lock_clear(&sfmmup->sfmmu_ctx_lock);	/* release PP lock */
11135 
11136 	sfmmu_enable_intrs(pstate_save);
11137 
11138 	cpuset = sfmmup->sfmmu_cpusran;
11139 	CPUSET_DEL(cpuset, CPU->cpu_id);
11140 	CPUSET_AND(cpuset, cpu_ready_set);
11141 	if (!CPUSET_ISNULL(cpuset)) {
11142 		SFMMU_XCALL_STATS(sfmmup);
11143 		xt_some(cpuset, sfmmu_raise_tsb_exception,
11144 		    (uint64_t)sfmmup, INVALID_CONTEXT);
11145 		xt_sync(cpuset);
11146 		SFMMU_STAT(sf_tsb_raise_exception);
11147 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
11148 	}
11149 
11150 	/*
11151 	 * If the hat to-be-invalidated is the same as the current
11152 	 * process on local CPU we need to invalidate
11153 	 * this CPU context as well.
11154 	 */
11155 	if ((sfmmu_getctx_sec() == currcnum) &&
11156 	    (currcnum != INVALID_CONTEXT)) {
11157 		sfmmu_setctx_sec(INVALID_CONTEXT);
11158 		sfmmu_clear_utsbinfo();
11159 	}
11160 
11161 	kpreempt_enable();
11162 
11163 	/*
11164 	 * we hold the hat lock, so nobody should allocate a context
11165 	 * for us yet
11166 	 */
11167 	ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT);
11168 }
11169 
11170 #ifdef VAC
11171 /*
11172  * We need to flush the cache in all cpus.  It is possible that
11173  * a process referenced a page as cacheable but has sinced exited
11174  * and cleared the mapping list.  We still to flush it but have no
11175  * state so all cpus is the only alternative.
11176  */
11177 void
11178 sfmmu_cache_flush(pfn_t pfnum, int vcolor)
11179 {
11180 	cpuset_t cpuset;
11181 
11182 	kpreempt_disable();
11183 	cpuset = cpu_ready_set;
11184 	CPUSET_DEL(cpuset, CPU->cpu_id);
11185 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
11186 	xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
11187 	xt_sync(cpuset);
11188 	vac_flushpage(pfnum, vcolor);
11189 	kpreempt_enable();
11190 }
11191 
11192 void
11193 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
11194 {
11195 	cpuset_t cpuset;
11196 
11197 	ASSERT(vcolor >= 0);
11198 
11199 	kpreempt_disable();
11200 	cpuset = cpu_ready_set;
11201 	CPUSET_DEL(cpuset, CPU->cpu_id);
11202 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
11203 	xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
11204 	xt_sync(cpuset);
11205 	vac_flushcolor(vcolor, pfnum);
11206 	kpreempt_enable();
11207 }
11208 #endif	/* VAC */
11209 
11210 /*
11211  * We need to prevent processes from accessing the TSB using a cached physical
11212  * address.  It's alright if they try to access the TSB via virtual address
11213  * since they will just fault on that virtual address once the mapping has
11214  * been suspended.
11215  */
11216 #pragma weak sendmondo_in_recover
11217 
11218 /* ARGSUSED */
11219 static int
11220 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
11221 {
11222 	hatlock_t *hatlockp;
11223 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
11224 	sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
11225 	extern uint32_t sendmondo_in_recover;
11226 
11227 	if (flags != HAT_PRESUSPEND)
11228 		return (0);
11229 
11230 	hatlockp = sfmmu_hat_enter(sfmmup);
11231 
11232 	tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
11233 
11234 	/*
11235 	 * For Cheetah+ Erratum 25:
11236 	 * Wait for any active recovery to finish.  We can't risk
11237 	 * relocating the TSB of the thread running mondo_recover_proc()
11238 	 * since, if we did that, we would deadlock.  The scenario we are
11239 	 * trying to avoid is as follows:
11240 	 *
11241 	 * THIS CPU			RECOVER CPU
11242 	 * --------			-----------
11243 	 *				Begins recovery, walking through TSB
11244 	 * hat_pagesuspend() TSB TTE
11245 	 *				TLB miss on TSB TTE, spins at TL1
11246 	 * xt_sync()
11247 	 *	send_mondo_timeout()
11248 	 *	mondo_recover_proc()
11249 	 *	((deadlocked))
11250 	 *
11251 	 * The second half of the workaround is that mondo_recover_proc()
11252 	 * checks to see if the tsb_info has the RELOC flag set, and if it
11253 	 * does, it skips over that TSB without ever touching tsbinfop->tsb_va
11254 	 * and hence avoiding the TLB miss that could result in a deadlock.
11255 	 */
11256 	if (&sendmondo_in_recover) {
11257 		membar_enter();	/* make sure RELOC flag visible */
11258 		while (sendmondo_in_recover) {
11259 			drv_usecwait(1);
11260 			membar_consumer();
11261 		}
11262 	}
11263 
11264 	sfmmu_invalidate_ctx(sfmmup);
11265 	sfmmu_hat_exit(hatlockp);
11266 
11267 	return (0);
11268 }
11269 
11270 /* ARGSUSED */
11271 static int
11272 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
11273 	void *tsbinfo, pfn_t newpfn)
11274 {
11275 	hatlock_t *hatlockp;
11276 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
11277 	sfmmu_t	*sfmmup = tsbinfop->tsb_sfmmu;
11278 
11279 	if (flags != HAT_POSTUNSUSPEND)
11280 		return (0);
11281 
11282 	hatlockp = sfmmu_hat_enter(sfmmup);
11283 
11284 	SFMMU_STAT(sf_tsb_reloc);
11285 
11286 	/*
11287 	 * The process may have swapped out while we were relocating one
11288 	 * of its TSBs.  If so, don't bother doing the setup since the
11289 	 * process can't be using the memory anymore.
11290 	 */
11291 	if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
11292 		ASSERT(va == tsbinfop->tsb_va);
11293 		sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
11294 		sfmmu_setup_tsbinfo(sfmmup);
11295 
11296 		if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
11297 			sfmmu_inv_tsb(tsbinfop->tsb_va,
11298 			    TSB_BYTES(tsbinfop->tsb_szc));
11299 			tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
11300 		}
11301 	}
11302 
11303 	membar_exit();
11304 	tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
11305 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11306 
11307 	sfmmu_hat_exit(hatlockp);
11308 
11309 	return (0);
11310 }
11311 
11312 /*
11313  * Allocate and initialize a tsb_info structure.  Note that we may or may not
11314  * allocate a TSB here, depending on the flags passed in.
11315  */
11316 static int
11317 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
11318 	uint_t flags, sfmmu_t *sfmmup)
11319 {
11320 	int err;
11321 
11322 	*tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
11323 	    sfmmu_tsbinfo_cache, KM_SLEEP);
11324 
11325 	if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
11326 	    tsb_szc, flags, sfmmup)) != 0) {
11327 		kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
11328 		SFMMU_STAT(sf_tsb_allocfail);
11329 		*tsbinfopp = NULL;
11330 		return (err);
11331 	}
11332 	SFMMU_STAT(sf_tsb_alloc);
11333 
11334 	/*
11335 	 * Bump the TSB size counters for this TSB size.
11336 	 */
11337 	(*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
11338 	return (0);
11339 }
11340 
11341 static void
11342 sfmmu_tsb_free(struct tsb_info *tsbinfo)
11343 {
11344 	caddr_t tsbva = tsbinfo->tsb_va;
11345 	uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
11346 	struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
11347 	vmem_t	*vmp = tsbinfo->tsb_vmp;
11348 
11349 	/*
11350 	 * If we allocated this TSB from relocatable kernel memory, then we
11351 	 * need to uninstall the callback handler.
11352 	 */
11353 	if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
11354 		uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
11355 		caddr_t slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
11356 		page_t **ppl;
11357 		int ret;
11358 
11359 		ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
11360 		ASSERT(ret == 0);
11361 		hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
11362 		    0, NULL);
11363 		as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
11364 	}
11365 
11366 	if (kmem_cachep != NULL) {
11367 		kmem_cache_free(kmem_cachep, tsbva);
11368 	} else {
11369 		vmem_xfree(vmp, (void *)tsbva, tsb_size);
11370 	}
11371 	tsbinfo->tsb_va = (caddr_t)0xbad00bad;
11372 	atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
11373 }
11374 
11375 static void
11376 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
11377 {
11378 	if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
11379 		sfmmu_tsb_free(tsbinfo);
11380 	}
11381 	kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
11382 
11383 }
11384 
11385 /*
11386  * Setup all the references to physical memory for this tsbinfo.
11387  * The underlying page(s) must be locked.
11388  */
11389 static void
11390 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
11391 {
11392 	ASSERT(pfn != PFN_INVALID);
11393 	ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
11394 
11395 #ifndef sun4v
11396 	if (tsbinfo->tsb_szc == 0) {
11397 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
11398 		    PROT_WRITE|PROT_READ, TTE8K);
11399 	} else {
11400 		/*
11401 		 * Round down PA and use a large mapping; the handlers will
11402 		 * compute the TSB pointer at the correct offset into the
11403 		 * big virtual page.  NOTE: this assumes all TSBs larger
11404 		 * than 8K must come from physically contiguous slabs of
11405 		 * size tsb_slab_size.
11406 		 */
11407 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
11408 		    PROT_WRITE|PROT_READ, tsb_slab_ttesz);
11409 	}
11410 	tsbinfo->tsb_pa = ptob(pfn);
11411 
11412 	TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
11413 	TTE_SET_MOD(&tsbinfo->tsb_tte);    /* enable writes */
11414 
11415 	ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
11416 	ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
11417 #else /* sun4v */
11418 	tsbinfo->tsb_pa = ptob(pfn);
11419 #endif /* sun4v */
11420 }
11421 
11422 
11423 /*
11424  * Returns zero on success, ENOMEM if over the high water mark,
11425  * or EAGAIN if the caller needs to retry with a smaller TSB
11426  * size (or specify TSB_FORCEALLOC if the allocation can't fail).
11427  *
11428  * This call cannot fail to allocate a TSB if TSB_FORCEALLOC
11429  * is specified and the TSB requested is PAGESIZE, though it
11430  * may sleep waiting for memory if sufficient memory is not
11431  * available.
11432  */
11433 static int
11434 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
11435     int tsbcode, uint_t flags, sfmmu_t *sfmmup)
11436 {
11437 	caddr_t vaddr = NULL;
11438 	caddr_t slab_vaddr;
11439 	uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
11440 	int tsbbytes = TSB_BYTES(tsbcode);
11441 	int lowmem = 0;
11442 	struct kmem_cache *kmem_cachep = NULL;
11443 	vmem_t *vmp = NULL;
11444 	lgrp_id_t lgrpid = LGRP_NONE;
11445 	pfn_t pfn;
11446 	uint_t cbflags = HAC_SLEEP;
11447 	page_t **pplist;
11448 	int ret;
11449 
11450 	if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
11451 		flags |= TSB_ALLOC;
11452 
11453 	ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
11454 
11455 	tsbinfo->tsb_sfmmu = sfmmup;
11456 
11457 	/*
11458 	 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
11459 	 * return.
11460 	 */
11461 	if ((flags & TSB_ALLOC) == 0) {
11462 		tsbinfo->tsb_szc = tsbcode;
11463 		tsbinfo->tsb_ttesz_mask = tteszmask;
11464 		tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
11465 		tsbinfo->tsb_pa = -1;
11466 		tsbinfo->tsb_tte.ll = 0;
11467 		tsbinfo->tsb_next = NULL;
11468 		tsbinfo->tsb_flags = TSB_SWAPPED;
11469 		tsbinfo->tsb_cache = NULL;
11470 		tsbinfo->tsb_vmp = NULL;
11471 		return (0);
11472 	}
11473 
11474 #ifdef DEBUG
11475 	/*
11476 	 * For debugging:
11477 	 * Randomly force allocation failures every tsb_alloc_mtbf
11478 	 * tries if TSB_FORCEALLOC is not specified.  This will
11479 	 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
11480 	 * it is even, to allow testing of both failure paths...
11481 	 */
11482 	if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
11483 	    (tsb_alloc_count++ == tsb_alloc_mtbf)) {
11484 		tsb_alloc_count = 0;
11485 		tsb_alloc_fail_mtbf++;
11486 		return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
11487 	}
11488 #endif	/* DEBUG */
11489 
11490 	/*
11491 	 * Enforce high water mark if we are not doing a forced allocation
11492 	 * and are not shrinking a process' TSB.
11493 	 */
11494 	if ((flags & TSB_SHRINK) == 0 &&
11495 	    (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
11496 		if ((flags & TSB_FORCEALLOC) == 0)
11497 			return (ENOMEM);
11498 		lowmem = 1;
11499 	}
11500 
11501 	/*
11502 	 * Allocate from the correct location based upon the size of the TSB
11503 	 * compared to the base page size, and what memory conditions dictate.
11504 	 * Note we always do nonblocking allocations from the TSB arena since
11505 	 * we don't want memory fragmentation to cause processes to block
11506 	 * indefinitely waiting for memory; until the kernel algorithms that
11507 	 * coalesce large pages are improved this is our best option.
11508 	 *
11509 	 * Algorithm:
11510 	 *	If allocating a "large" TSB (>8K), allocate from the
11511 	 *		appropriate kmem_tsb_default_arena vmem arena
11512 	 *	else if low on memory or the TSB_FORCEALLOC flag is set or
11513 	 *	tsb_forceheap is set
11514 	 *		Allocate from kernel heap via sfmmu_tsb8k_cache with
11515 	 *		KM_SLEEP (never fails)
11516 	 *	else
11517 	 *		Allocate from appropriate sfmmu_tsb_cache with
11518 	 *		KM_NOSLEEP
11519 	 *	endif
11520 	 */
11521 	if (tsb_lgrp_affinity)
11522 		lgrpid = lgrp_home_id(curthread);
11523 	if (lgrpid == LGRP_NONE)
11524 		lgrpid = 0;	/* use lgrp of boot CPU */
11525 
11526 	if (tsbbytes > MMU_PAGESIZE) {
11527 		vmp = kmem_tsb_default_arena[lgrpid];
11528 		vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes, 0, 0,
11529 		    NULL, NULL, VM_NOSLEEP);
11530 #ifdef	DEBUG
11531 	} else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
11532 #else	/* !DEBUG */
11533 	} else if (lowmem || (flags & TSB_FORCEALLOC)) {
11534 #endif	/* DEBUG */
11535 		kmem_cachep = sfmmu_tsb8k_cache;
11536 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
11537 		ASSERT(vaddr != NULL);
11538 	} else {
11539 		kmem_cachep = sfmmu_tsb_cache[lgrpid];
11540 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
11541 	}
11542 
11543 	tsbinfo->tsb_cache = kmem_cachep;
11544 	tsbinfo->tsb_vmp = vmp;
11545 
11546 	if (vaddr == NULL) {
11547 		return (EAGAIN);
11548 	}
11549 
11550 	atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
11551 	kmem_cachep = tsbinfo->tsb_cache;
11552 
11553 	/*
11554 	 * If we are allocating from outside the cage, then we need to
11555 	 * register a relocation callback handler.  Note that for now
11556 	 * since pseudo mappings always hang off of the slab's root page,
11557 	 * we need only lock the first 8K of the TSB slab.  This is a bit
11558 	 * hacky but it is good for performance.
11559 	 */
11560 	if (kmem_cachep != sfmmu_tsb8k_cache) {
11561 		slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
11562 		ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
11563 		ASSERT(ret == 0);
11564 		ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
11565 		    cbflags, (void *)tsbinfo, &pfn, NULL);
11566 
11567 		/*
11568 		 * Need to free up resources if we could not successfully
11569 		 * add the callback function and return an error condition.
11570 		 */
11571 		if (ret != 0) {
11572 			if (kmem_cachep) {
11573 				kmem_cache_free(kmem_cachep, vaddr);
11574 			} else {
11575 				vmem_xfree(vmp, (void *)vaddr, tsbbytes);
11576 			}
11577 			as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
11578 			    S_WRITE);
11579 			return (EAGAIN);
11580 		}
11581 	} else {
11582 		/*
11583 		 * Since allocation of 8K TSBs from heap is rare and occurs
11584 		 * during memory pressure we allocate them from permanent
11585 		 * memory rather than using callbacks to get the PFN.
11586 		 */
11587 		pfn = hat_getpfnum(kas.a_hat, vaddr);
11588 	}
11589 
11590 	tsbinfo->tsb_va = vaddr;
11591 	tsbinfo->tsb_szc = tsbcode;
11592 	tsbinfo->tsb_ttesz_mask = tteszmask;
11593 	tsbinfo->tsb_next = NULL;
11594 	tsbinfo->tsb_flags = 0;
11595 
11596 	sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
11597 
11598 	if (kmem_cachep != sfmmu_tsb8k_cache) {
11599 		as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
11600 	}
11601 
11602 	sfmmu_inv_tsb(vaddr, tsbbytes);
11603 	return (0);
11604 }
11605 
11606 /*
11607  * Initialize per cpu tsb and per cpu tsbmiss_area
11608  */
11609 void
11610 sfmmu_init_tsbs(void)
11611 {
11612 	int i;
11613 	struct tsbmiss	*tsbmissp;
11614 	struct kpmtsbm	*kpmtsbmp;
11615 #ifndef sun4v
11616 	extern int	dcache_line_mask;
11617 #endif /* sun4v */
11618 	extern uint_t	vac_colors;
11619 
11620 	/*
11621 	 * Init. tsb miss area.
11622 	 */
11623 	tsbmissp = tsbmiss_area;
11624 
11625 	for (i = 0; i < NCPU; tsbmissp++, i++) {
11626 		/*
11627 		 * initialize the tsbmiss area.
11628 		 * Do this for all possible CPUs as some may be added
11629 		 * while the system is running. There is no cost to this.
11630 		 */
11631 		tsbmissp->ksfmmup = ksfmmup;
11632 #ifndef sun4v
11633 		tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
11634 #endif /* sun4v */
11635 		tsbmissp->khashstart =
11636 		    (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
11637 		tsbmissp->uhashstart =
11638 		    (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
11639 		tsbmissp->khashsz = khmehash_num;
11640 		tsbmissp->uhashsz = uhmehash_num;
11641 	}
11642 
11643 	sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
11644 	    sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
11645 
11646 	if (kpm_enable == 0)
11647 		return;
11648 
11649 	/* -- Begin KPM specific init -- */
11650 
11651 	if (kpm_smallpages) {
11652 		/*
11653 		 * If we're using base pagesize pages for seg_kpm
11654 		 * mappings, we use the kernel TSB since we can't afford
11655 		 * to allocate a second huge TSB for these mappings.
11656 		 */
11657 		kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
11658 		kpm_tsbsz = ktsb_szcode;
11659 		kpmsm_tsbbase = kpm_tsbbase;
11660 		kpmsm_tsbsz = kpm_tsbsz;
11661 	} else {
11662 		/*
11663 		 * In VAC conflict case, just put the entries in the
11664 		 * kernel 8K indexed TSB for now so we can find them.
11665 		 * This could really be changed in the future if we feel
11666 		 * the need...
11667 		 */
11668 		kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
11669 		kpmsm_tsbsz = ktsb_szcode;
11670 		kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
11671 		kpm_tsbsz = ktsb4m_szcode;
11672 	}
11673 
11674 	kpmtsbmp = kpmtsbm_area;
11675 	for (i = 0; i < NCPU; kpmtsbmp++, i++) {
11676 		/*
11677 		 * Initialize the kpmtsbm area.
11678 		 * Do this for all possible CPUs as some may be added
11679 		 * while the system is running. There is no cost to this.
11680 		 */
11681 		kpmtsbmp->vbase = kpm_vbase;
11682 		kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
11683 		kpmtsbmp->sz_shift = kpm_size_shift;
11684 		kpmtsbmp->kpmp_shift = kpmp_shift;
11685 		kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
11686 		if (kpm_smallpages == 0) {
11687 			kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
11688 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
11689 		} else {
11690 			kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
11691 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
11692 		}
11693 		kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
11694 		kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
11695 #ifdef	DEBUG
11696 		kpmtsbmp->flags |= (kpm_tsbmtl) ?  KPMTSBM_TLTSBM_FLAG : 0;
11697 #endif	/* DEBUG */
11698 		if (ktsb_phys)
11699 			kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
11700 	}
11701 
11702 	/* -- End KPM specific init -- */
11703 }
11704 
11705 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
11706 struct tsb_info ktsb_info[2];
11707 
11708 /*
11709  * Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
11710  */
11711 void
11712 sfmmu_init_ktsbinfo()
11713 {
11714 	ASSERT(ksfmmup != NULL);
11715 	ASSERT(ksfmmup->sfmmu_tsb == NULL);
11716 	/*
11717 	 * Allocate tsbinfos for kernel and copy in data
11718 	 * to make debug easier and sun4v setup easier.
11719 	 */
11720 	ktsb_info[0].tsb_sfmmu = ksfmmup;
11721 	ktsb_info[0].tsb_szc = ktsb_szcode;
11722 	ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
11723 	ktsb_info[0].tsb_va = ktsb_base;
11724 	ktsb_info[0].tsb_pa = ktsb_pbase;
11725 	ktsb_info[0].tsb_flags = 0;
11726 	ktsb_info[0].tsb_tte.ll = 0;
11727 	ktsb_info[0].tsb_cache = NULL;
11728 
11729 	ktsb_info[1].tsb_sfmmu = ksfmmup;
11730 	ktsb_info[1].tsb_szc = ktsb4m_szcode;
11731 	ktsb_info[1].tsb_ttesz_mask = TSB4M;
11732 	ktsb_info[1].tsb_va = ktsb4m_base;
11733 	ktsb_info[1].tsb_pa = ktsb4m_pbase;
11734 	ktsb_info[1].tsb_flags = 0;
11735 	ktsb_info[1].tsb_tte.ll = 0;
11736 	ktsb_info[1].tsb_cache = NULL;
11737 
11738 	/* Link them into ksfmmup. */
11739 	ktsb_info[0].tsb_next = &ktsb_info[1];
11740 	ktsb_info[1].tsb_next = NULL;
11741 	ksfmmup->sfmmu_tsb = &ktsb_info[0];
11742 
11743 	sfmmu_setup_tsbinfo(ksfmmup);
11744 }
11745 
11746 /*
11747  * Cache the last value returned from va_to_pa().  If the VA specified
11748  * in the current call to cached_va_to_pa() maps to the same Page (as the
11749  * previous call to cached_va_to_pa()), then compute the PA using
11750  * cached info, else call va_to_pa().
11751  *
11752  * Note: this function is neither MT-safe nor consistent in the presence
11753  * of multiple, interleaved threads.  This function was created to enable
11754  * an optimization used during boot (at a point when there's only one thread
11755  * executing on the "boot CPU", and before startup_vm() has been called).
11756  */
11757 static uint64_t
11758 cached_va_to_pa(void *vaddr)
11759 {
11760 	static uint64_t prev_vaddr_base = 0;
11761 	static uint64_t prev_pfn = 0;
11762 
11763 	if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
11764 		return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
11765 	} else {
11766 		uint64_t pa = va_to_pa(vaddr);
11767 
11768 		if (pa != ((uint64_t)-1)) {
11769 			/*
11770 			 * Computed physical address is valid.  Cache its
11771 			 * related info for the next cached_va_to_pa() call.
11772 			 */
11773 			prev_pfn = pa & MMU_PAGEMASK;
11774 			prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
11775 		}
11776 
11777 		return (pa);
11778 	}
11779 }
11780 
11781 /*
11782  * Carve up our nucleus hblk region.  We may allocate more hblks than
11783  * asked due to rounding errors but we are guaranteed to have at least
11784  * enough space to allocate the requested number of hblk8's and hblk1's.
11785  */
11786 void
11787 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
11788 {
11789 	struct hme_blk *hmeblkp;
11790 	size_t hme8blk_sz, hme1blk_sz;
11791 	size_t i;
11792 	size_t hblk8_bound;
11793 	ulong_t j = 0, k = 0;
11794 
11795 	ASSERT(addr != NULL && size != 0);
11796 
11797 	/* Need to use proper structure alignment */
11798 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
11799 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
11800 
11801 	nucleus_hblk8.list = (void *)addr;
11802 	nucleus_hblk8.index = 0;
11803 
11804 	/*
11805 	 * Use as much memory as possible for hblk8's since we
11806 	 * expect all bop_alloc'ed memory to be allocated in 8k chunks.
11807 	 * We need to hold back enough space for the hblk1's which
11808 	 * we'll allocate next.
11809 	 */
11810 	hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
11811 	for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
11812 		hmeblkp = (struct hme_blk *)addr;
11813 		addr += hme8blk_sz;
11814 		hmeblkp->hblk_nuc_bit = 1;
11815 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
11816 	}
11817 	nucleus_hblk8.len = j;
11818 	ASSERT(j >= nhblk8);
11819 	SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
11820 
11821 	nucleus_hblk1.list = (void *)addr;
11822 	nucleus_hblk1.index = 0;
11823 	for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
11824 		hmeblkp = (struct hme_blk *)addr;
11825 		addr += hme1blk_sz;
11826 		hmeblkp->hblk_nuc_bit = 1;
11827 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
11828 	}
11829 	ASSERT(k >= nhblk1);
11830 	nucleus_hblk1.len = k;
11831 	SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
11832 }
11833 
11834 /*
11835  * This function is currently not supported on this platform. For what
11836  * it's supposed to do, see hat.c and hat_srmmu.c
11837  */
11838 /* ARGSUSED */
11839 faultcode_t
11840 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
11841     uint_t flags)
11842 {
11843 	ASSERT(hat->sfmmu_xhat_provider == NULL);
11844 	return (FC_NOSUPPORT);
11845 }
11846 
11847 /*
11848  * Searchs the mapping list of the page for a mapping of the same size. If not
11849  * found the corresponding bit is cleared in the p_index field. When large
11850  * pages are more prevalent in the system, we can maintain the mapping list
11851  * in order and we don't have to traverse the list each time. Just check the
11852  * next and prev entries, and if both are of different size, we clear the bit.
11853  */
11854 static void
11855 sfmmu_rm_large_mappings(page_t *pp, int ttesz)
11856 {
11857 	struct sf_hment *sfhmep;
11858 	struct hme_blk *hmeblkp;
11859 	int	index;
11860 	pgcnt_t	npgs;
11861 
11862 	ASSERT(ttesz > TTE8K);
11863 
11864 	ASSERT(sfmmu_mlist_held(pp));
11865 
11866 	ASSERT(PP_ISMAPPED_LARGE(pp));
11867 
11868 	/*
11869 	 * Traverse mapping list looking for another mapping of same size.
11870 	 * since we only want to clear index field if all mappings of
11871 	 * that size are gone.
11872 	 */
11873 
11874 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
11875 		hmeblkp = sfmmu_hmetohblk(sfhmep);
11876 		if (hmeblkp->hblk_xhat_bit)
11877 			continue;
11878 		if (hme_size(sfhmep) == ttesz) {
11879 			/*
11880 			 * another mapping of the same size. don't clear index.
11881 			 */
11882 			return;
11883 		}
11884 	}
11885 
11886 	/*
11887 	 * Clear the p_index bit for large page.
11888 	 */
11889 	index = PAGESZ_TO_INDEX(ttesz);
11890 	npgs = TTEPAGES(ttesz);
11891 	while (npgs-- > 0) {
11892 		ASSERT(pp->p_index & index);
11893 		pp->p_index &= ~index;
11894 		pp = PP_PAGENEXT(pp);
11895 	}
11896 }
11897 
11898 /*
11899  * return supported features
11900  */
11901 /* ARGSUSED */
11902 int
11903 hat_supported(enum hat_features feature, void *arg)
11904 {
11905 	switch (feature) {
11906 	case    HAT_SHARED_PT:
11907 	case	HAT_DYNAMIC_ISM_UNMAP:
11908 	case	HAT_VMODSORT:
11909 		return (1);
11910 	default:
11911 		return (0);
11912 	}
11913 }
11914 
11915 void
11916 hat_enter(struct hat *hat)
11917 {
11918 	hatlock_t	*hatlockp;
11919 
11920 	if (hat != ksfmmup) {
11921 		hatlockp = TSB_HASH(hat);
11922 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
11923 	}
11924 }
11925 
11926 void
11927 hat_exit(struct hat *hat)
11928 {
11929 	hatlock_t	*hatlockp;
11930 
11931 	if (hat != ksfmmup) {
11932 		hatlockp = TSB_HASH(hat);
11933 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
11934 	}
11935 }
11936 
11937 /*ARGSUSED*/
11938 void
11939 hat_reserve(struct as *as, caddr_t addr, size_t len)
11940 {
11941 }
11942 
11943 static void
11944 hat_kstat_init(void)
11945 {
11946 	kstat_t *ksp;
11947 
11948 	ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
11949 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
11950 		KSTAT_FLAG_VIRTUAL);
11951 	if (ksp) {
11952 		ksp->ks_data = (void *) &sfmmu_global_stat;
11953 		kstat_install(ksp);
11954 	}
11955 	ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
11956 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
11957 		KSTAT_FLAG_VIRTUAL);
11958 	if (ksp) {
11959 		ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
11960 		kstat_install(ksp);
11961 	}
11962 	ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
11963 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
11964 		KSTAT_FLAG_WRITABLE);
11965 	if (ksp) {
11966 		ksp->ks_update = sfmmu_kstat_percpu_update;
11967 		kstat_install(ksp);
11968 	}
11969 }
11970 
11971 /* ARGSUSED */
11972 static int
11973 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
11974 {
11975 	struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
11976 	struct tsbmiss *tsbm = tsbmiss_area;
11977 	struct kpmtsbm *kpmtsbm = kpmtsbm_area;
11978 	int i;
11979 
11980 	ASSERT(cpu_kstat);
11981 	if (rw == KSTAT_READ) {
11982 		for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
11983 			cpu_kstat->sf_itlb_misses = tsbm->itlb_misses;
11984 			cpu_kstat->sf_dtlb_misses = tsbm->dtlb_misses;
11985 			cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
11986 				tsbm->uprot_traps;
11987 			cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
11988 				kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
11989 
11990 			if (tsbm->itlb_misses > 0 && tsbm->dtlb_misses > 0) {
11991 				cpu_kstat->sf_tsb_hits =
11992 				(tsbm->itlb_misses + tsbm->dtlb_misses) -
11993 				(tsbm->utsb_misses + tsbm->ktsb_misses +
11994 				kpmtsbm->kpm_tsb_misses);
11995 			} else {
11996 				cpu_kstat->sf_tsb_hits = 0;
11997 			}
11998 			cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
11999 			cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
12000 		}
12001 	} else {
12002 		/* KSTAT_WRITE is used to clear stats */
12003 		for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
12004 			tsbm->itlb_misses = 0;
12005 			tsbm->dtlb_misses = 0;
12006 			tsbm->utsb_misses = 0;
12007 			tsbm->ktsb_misses = 0;
12008 			tsbm->uprot_traps = 0;
12009 			tsbm->kprot_traps = 0;
12010 			kpmtsbm->kpm_dtlb_misses = 0;
12011 			kpmtsbm->kpm_tsb_misses = 0;
12012 		}
12013 	}
12014 	return (0);
12015 }
12016 
12017 #ifdef	DEBUG
12018 
12019 tte_t  *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
12020 
12021 /*
12022  * A tte checker. *orig_old is the value we read before cas.
12023  *	*cur is the value returned by cas.
12024  *	*new is the desired value when we do the cas.
12025  *
12026  *	*hmeblkp is currently unused.
12027  */
12028 
12029 /* ARGSUSED */
12030 void
12031 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
12032 {
12033 	pfn_t i, j, k;
12034 	int cpuid = CPU->cpu_id;
12035 
12036 	gorig[cpuid] = orig_old;
12037 	gcur[cpuid] = cur;
12038 	gnew[cpuid] = new;
12039 
12040 #ifdef lint
12041 	hmeblkp = hmeblkp;
12042 #endif
12043 
12044 	if (TTE_IS_VALID(orig_old)) {
12045 		if (TTE_IS_VALID(cur)) {
12046 			i = TTE_TO_TTEPFN(orig_old);
12047 			j = TTE_TO_TTEPFN(cur);
12048 			k = TTE_TO_TTEPFN(new);
12049 			if (i != j) {
12050 				/* remap error? */
12051 				panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j);
12052 			}
12053 
12054 			if (i != k) {
12055 				/* remap error? */
12056 				panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k);
12057 			}
12058 		} else {
12059 			if (TTE_IS_VALID(new)) {
12060 				panic("chk_tte: invalid cur? ");
12061 			}
12062 
12063 			i = TTE_TO_TTEPFN(orig_old);
12064 			k = TTE_TO_TTEPFN(new);
12065 			if (i != k) {
12066 				panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k);
12067 			}
12068 		}
12069 	} else {
12070 		if (TTE_IS_VALID(cur)) {
12071 			j = TTE_TO_TTEPFN(cur);
12072 			if (TTE_IS_VALID(new)) {
12073 				k = TTE_TO_TTEPFN(new);
12074 				if (j != k) {
12075 					panic("chk_tte: bad pfn4, 0x%lx, 0x%lx",
12076 					    j, k);
12077 				}
12078 			} else {
12079 				panic("chk_tte: why here?");
12080 			}
12081 		} else {
12082 			if (!TTE_IS_VALID(new)) {
12083 				panic("chk_tte: why here2 ?");
12084 			}
12085 		}
12086 	}
12087 }
12088 
12089 #endif /* DEBUG */
12090 
12091 extern void prefetch_tsbe_read(struct tsbe *);
12092 extern void prefetch_tsbe_write(struct tsbe *);
12093 
12094 
12095 /*
12096  * We want to prefetch 7 cache lines ahead for our read prefetch.  This gives
12097  * us optimal performance on Cheetah+.  You can only have 8 outstanding
12098  * prefetches at any one time, so we opted for 7 read prefetches and 1 write
12099  * prefetch to make the most utilization of the prefetch capability.
12100  */
12101 #define	TSBE_PREFETCH_STRIDE (7)
12102 
12103 void
12104 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
12105 {
12106 	int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
12107 	int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
12108 	int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
12109 	int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
12110 	struct tsbe *old;
12111 	struct tsbe *new;
12112 	struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
12113 	uint64_t va;
12114 	int new_offset;
12115 	int i;
12116 	int vpshift;
12117 	int last_prefetch;
12118 
12119 	if (old_bytes == new_bytes) {
12120 		bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
12121 	} else {
12122 
12123 		/*
12124 		 * A TSBE is 16 bytes which means there are four TSBE's per
12125 		 * P$ line (64 bytes), thus every 4 TSBE's we prefetch.
12126 		 */
12127 		old = (struct tsbe *)old_tsbinfo->tsb_va;
12128 		last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
12129 		for (i = 0; i < old_entries; i++, old++) {
12130 			if (((i & (4-1)) == 0) && (i < last_prefetch))
12131 				prefetch_tsbe_read(old);
12132 			if (!old->tte_tag.tag_invalid) {
12133 				/*
12134 				 * We have a valid TTE to remap.  Check the
12135 				 * size.  We won't remap 64K or 512K TTEs
12136 				 * because they span more than one TSB entry
12137 				 * and are indexed using an 8K virt. page.
12138 				 * Ditto for 32M and 256M TTEs.
12139 				 */
12140 				if (TTE_CSZ(&old->tte_data) == TTE64K ||
12141 				    TTE_CSZ(&old->tte_data) == TTE512K)
12142 					continue;
12143 				if (mmu_page_sizes == max_mmu_page_sizes) {
12144 				    if (TTE_CSZ(&old->tte_data) == TTE32M ||
12145 					TTE_CSZ(&old->tte_data) == TTE256M)
12146 					    continue;
12147 				}
12148 
12149 				/* clear the lower 22 bits of the va */
12150 				va = *(uint64_t *)old << 22;
12151 				/* turn va into a virtual pfn */
12152 				va >>= 22 - TSB_START_SIZE;
12153 				/*
12154 				 * or in bits from the offset in the tsb
12155 				 * to get the real virtual pfn. These
12156 				 * correspond to bits [21:13] in the va
12157 				 */
12158 				vpshift =
12159 				    TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
12160 				    0x1ff;
12161 				va |= (i << vpshift);
12162 				va >>= vpshift;
12163 				new_offset = va & (new_entries - 1);
12164 				new = new_base + new_offset;
12165 				prefetch_tsbe_write(new);
12166 				*new = *old;
12167 			}
12168 		}
12169 	}
12170 }
12171 
12172 /*
12173  * unused in sfmmu
12174  */
12175 void
12176 hat_dump(void)
12177 {
12178 }
12179 
12180 /*
12181  * Called when a thread is exiting and we have switched to the kernel address
12182  * space.  Perform the same VM initialization resume() uses when switching
12183  * processes.
12184  *
12185  * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
12186  * we call it anyway in case the semantics change in the future.
12187  */
12188 /*ARGSUSED*/
12189 void
12190 hat_thread_exit(kthread_t *thd)
12191 {
12192 	uint64_t pgsz_cnum;
12193 	uint_t pstate_save;
12194 
12195 	ASSERT(thd->t_procp->p_as == &kas);
12196 
12197 	pgsz_cnum = KCONTEXT;
12198 #ifdef sun4u
12199 	pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT);
12200 #endif
12201 	/*
12202 	 * Note that sfmmu_load_mmustate() is currently a no-op for
12203 	 * kernel threads. We need to disable interrupts here,
12204 	 * simply because otherwise sfmmu_load_mmustate() would panic
12205 	 * if the caller does not disable interrupts.
12206 	 */
12207 	pstate_save = sfmmu_disable_intrs();
12208 	sfmmu_setctx_sec(pgsz_cnum);
12209 	sfmmu_load_mmustate(ksfmmup);
12210 	sfmmu_enable_intrs(pstate_save);
12211 }
12212