1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * VM - Hardware Address Translation management for Spitfire MMU. 30 * 31 * This file implements the machine specific hardware translation 32 * needed by the VM system. The machine independent interface is 33 * described in <vm/hat.h> while the machine dependent interface 34 * and data structures are described in <vm/hat_sfmmu.h>. 35 * 36 * The hat layer manages the address translation hardware as a cache 37 * driven by calls from the higher levels in the VM system. 38 */ 39 40 #include <sys/types.h> 41 #include <sys/kstat.h> 42 #include <vm/hat.h> 43 #include <vm/hat_sfmmu.h> 44 #include <vm/page.h> 45 #include <sys/pte.h> 46 #include <sys/systm.h> 47 #include <sys/mman.h> 48 #include <sys/sysmacros.h> 49 #include <sys/machparam.h> 50 #include <sys/vtrace.h> 51 #include <sys/kmem.h> 52 #include <sys/mmu.h> 53 #include <sys/cmn_err.h> 54 #include <sys/cpu.h> 55 #include <sys/cpuvar.h> 56 #include <sys/debug.h> 57 #include <sys/lgrp.h> 58 #include <sys/archsystm.h> 59 #include <sys/machsystm.h> 60 #include <sys/vmsystm.h> 61 #include <vm/as.h> 62 #include <vm/seg.h> 63 #include <vm/seg_kp.h> 64 #include <vm/seg_kmem.h> 65 #include <vm/seg_kpm.h> 66 #include <vm/rm.h> 67 #include <sys/t_lock.h> 68 #include <sys/obpdefs.h> 69 #include <sys/vm_machparam.h> 70 #include <sys/var.h> 71 #include <sys/trap.h> 72 #include <sys/machtrap.h> 73 #include <sys/scb.h> 74 #include <sys/bitmap.h> 75 #include <sys/machlock.h> 76 #include <sys/membar.h> 77 #include <sys/atomic.h> 78 #include <sys/cpu_module.h> 79 #include <sys/prom_debug.h> 80 #include <sys/ksynch.h> 81 #include <sys/mem_config.h> 82 #include <sys/mem_cage.h> 83 #include <sys/dtrace.h> 84 #include <vm/vm_dep.h> 85 #include <vm/xhat_sfmmu.h> 86 #include <sys/fpu/fpusystm.h> 87 88 #if defined(SF_ERRATA_57) 89 extern caddr_t errata57_limit; 90 #endif 91 92 #define HME8BLK_SZ_RND ((roundup(HME8BLK_SZ, sizeof (int64_t))) / \ 93 (sizeof (int64_t))) 94 #define HBLK_RESERVE ((struct hme_blk *)hblk_reserve) 95 96 #define HBLK_RESERVE_CNT 128 97 #define HBLK_RESERVE_MIN 20 98 99 static struct hme_blk *freehblkp; 100 static kmutex_t freehblkp_lock; 101 static int freehblkcnt; 102 103 static int64_t hblk_reserve[HME8BLK_SZ_RND]; 104 static kmutex_t hblk_reserve_lock; 105 static kthread_t *hblk_reserve_thread; 106 107 static nucleus_hblk8_info_t nucleus_hblk8; 108 static nucleus_hblk1_info_t nucleus_hblk1; 109 110 /* 111 * SFMMU specific hat functions 112 */ 113 void hat_pagecachectl(struct page *, int); 114 115 /* flags for hat_pagecachectl */ 116 #define HAT_CACHE 0x1 117 #define HAT_UNCACHE 0x2 118 #define HAT_TMPNC 0x4 119 120 /* 121 * Flag to allow the creation of non-cacheable translations 122 * to system memory. It is off by default. At the moment this 123 * flag is used by the ecache error injector. The error injector 124 * will turn it on when creating such a translation then shut it 125 * off when it's finished. 126 */ 127 128 int sfmmu_allow_nc_trans = 0; 129 130 /* 131 * Flag to disable large page support. 132 * value of 1 => disable all large pages. 133 * bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively. 134 * 135 * For example, use the value 0x4 to disable 512K pages. 136 * 137 */ 138 #define LARGE_PAGES_OFF 0x1 139 140 /* 141 * WARNING: 512K pages MUST be disabled for ISM/DISM. If not 142 * a process would page fault indefinitely if it tried to 143 * access a 512K page. 144 */ 145 int disable_ism_large_pages = (1 << TTE512K); 146 int disable_large_pages = 0; 147 int disable_auto_large_pages = 0; 148 149 /* 150 * Private sfmmu data structures for hat management 151 */ 152 static struct kmem_cache *sfmmuid_cache; 153 static struct kmem_cache *mmuctxdom_cache; 154 155 /* 156 * Private sfmmu data structures for tsb management 157 */ 158 static struct kmem_cache *sfmmu_tsbinfo_cache; 159 static struct kmem_cache *sfmmu_tsb8k_cache; 160 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX]; 161 static vmem_t *kmem_tsb_arena; 162 163 /* 164 * sfmmu static variables for hmeblk resource management. 165 */ 166 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */ 167 static struct kmem_cache *sfmmu8_cache; 168 static struct kmem_cache *sfmmu1_cache; 169 static struct kmem_cache *pa_hment_cache; 170 171 static kmutex_t ism_mlist_lock; /* mutex for ism mapping list */ 172 /* 173 * private data for ism 174 */ 175 static struct kmem_cache *ism_blk_cache; 176 static struct kmem_cache *ism_ment_cache; 177 #define ISMID_STARTADDR NULL 178 179 /* 180 * Whether to delay TLB flushes and use Cheetah's flush-all support 181 * when removing contexts from the dirty list. 182 */ 183 int delay_tlb_flush; 184 int disable_delay_tlb_flush; 185 186 /* 187 * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists, 188 * HAT flags, synchronizing TLB/TSB coherency, and context management. 189 * The lock is hashed on the sfmmup since the case where we need to lock 190 * all processes is rare but does occur (e.g. we need to unload a shared 191 * mapping from all processes using the mapping). We have a lot of buckets, 192 * and each slab of sfmmu_t's can use about a quarter of them, giving us 193 * a fairly good distribution without wasting too much space and overhead 194 * when we have to grab them all. 195 */ 196 #define SFMMU_NUM_LOCK 128 /* must be power of two */ 197 hatlock_t hat_lock[SFMMU_NUM_LOCK]; 198 199 /* 200 * Hash algorithm optimized for a small number of slabs. 201 * 7 is (highbit((sizeof sfmmu_t)) - 1) 202 * This hash algorithm is based upon the knowledge that sfmmu_t's come from a 203 * kmem_cache, and thus they will be sequential within that cache. In 204 * addition, each new slab will have a different "color" up to cache_maxcolor 205 * which will skew the hashing for each successive slab which is allocated. 206 * If the size of sfmmu_t changed to a larger size, this algorithm may need 207 * to be revisited. 208 */ 209 #define TSB_HASH_SHIFT_BITS (7) 210 #define PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS) 211 212 #ifdef DEBUG 213 int tsb_hash_debug = 0; 214 #define TSB_HASH(sfmmup) \ 215 (tsb_hash_debug ? &hat_lock[0] : \ 216 &hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]) 217 #else /* DEBUG */ 218 #define TSB_HASH(sfmmup) &hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)] 219 #endif /* DEBUG */ 220 221 222 /* sfmmu_replace_tsb() return codes. */ 223 typedef enum tsb_replace_rc { 224 TSB_SUCCESS, 225 TSB_ALLOCFAIL, 226 TSB_LOSTRACE, 227 TSB_ALREADY_SWAPPED, 228 TSB_CANTGROW 229 } tsb_replace_rc_t; 230 231 /* 232 * Flags for TSB allocation routines. 233 */ 234 #define TSB_ALLOC 0x01 235 #define TSB_FORCEALLOC 0x02 236 #define TSB_GROW 0x04 237 #define TSB_SHRINK 0x08 238 #define TSB_SWAPIN 0x10 239 240 /* 241 * Support for HAT callbacks. 242 */ 243 #define SFMMU_MAX_RELOC_CALLBACKS 10 244 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS; 245 static id_t sfmmu_cb_nextid = 0; 246 static id_t sfmmu_tsb_cb_id; 247 struct sfmmu_callback *sfmmu_cb_table; 248 249 /* 250 * Kernel page relocation is enabled by default for non-caged 251 * kernel pages. This has little effect unless segkmem_reloc is 252 * set, since by default kernel memory comes from inside the 253 * kernel cage. 254 */ 255 int hat_kpr_enabled = 1; 256 257 kmutex_t kpr_mutex; 258 kmutex_t kpr_suspendlock; 259 kthread_t *kreloc_thread; 260 261 /* 262 * Enable VA->PA translation sanity checking on DEBUG kernels. 263 * Disabled by default. This is incompatible with some 264 * drivers (error injector, RSM) so if it breaks you get 265 * to keep both pieces. 266 */ 267 int hat_check_vtop = 0; 268 269 /* 270 * Private sfmmu routines (prototypes) 271 */ 272 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t); 273 static struct hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t, 274 struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t); 275 static caddr_t sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t, 276 caddr_t, demap_range_t *, uint_t); 277 static caddr_t sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t, 278 caddr_t, int); 279 static void sfmmu_hblk_free(struct hmehash_bucket *, struct hme_blk *, 280 uint64_t, struct hme_blk **); 281 static void sfmmu_hblks_list_purge(struct hme_blk **); 282 static uint_t sfmmu_get_free_hblk(struct hme_blk **, uint_t); 283 static uint_t sfmmu_put_free_hblk(struct hme_blk *, uint_t); 284 static struct hme_blk *sfmmu_hblk_steal(int); 285 static int sfmmu_steal_this_hblk(struct hmehash_bucket *, 286 struct hme_blk *, uint64_t, uint64_t, 287 struct hme_blk *); 288 static caddr_t sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t); 289 290 static void sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **, 291 uint_t, uint_t, pgcnt_t); 292 void sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *, 293 uint_t); 294 static int sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **, 295 uint_t); 296 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *, 297 caddr_t, int); 298 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *, 299 struct hmehash_bucket *, caddr_t, uint_t, uint_t); 300 static int sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *, 301 caddr_t, page_t **, uint_t); 302 static void sfmmu_tteload_release_hashbucket(struct hmehash_bucket *); 303 304 static int sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int); 305 pfn_t sfmmu_uvatopfn(caddr_t, sfmmu_t *); 306 void sfmmu_memtte(tte_t *, pfn_t, uint_t, int); 307 static void sfmmu_vac_conflict(struct hat *, caddr_t, page_t *); 308 static int sfmmu_vacconflict_array(caddr_t, page_t *, int *); 309 static int tst_tnc(page_t *pp, pgcnt_t); 310 static void conv_tnc(page_t *pp, int); 311 312 static void sfmmu_get_ctx(sfmmu_t *); 313 static void sfmmu_free_sfmmu(sfmmu_t *); 314 315 static void sfmmu_gettte(struct hat *, caddr_t, tte_t *); 316 static void sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *); 317 static void sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int); 318 319 static cpuset_t sfmmu_pageunload(page_t *, struct sf_hment *, int); 320 static void hat_pagereload(struct page *, struct page *); 321 static cpuset_t sfmmu_pagesync(page_t *, struct sf_hment *, uint_t); 322 static void sfmmu_page_cache_array(page_t *, int, int, pgcnt_t); 323 static void sfmmu_page_cache(page_t *, int, int, int); 324 325 static void sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *, 326 pfn_t, int, int, int, int); 327 static void sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *, 328 pfn_t, int); 329 static void sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int); 330 static void sfmmu_tlb_range_demap(demap_range_t *); 331 static void sfmmu_invalidate_ctx(sfmmu_t *); 332 static void sfmmu_sync_mmustate(sfmmu_t *); 333 334 static void sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t); 335 static int sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t, 336 sfmmu_t *); 337 static void sfmmu_tsb_free(struct tsb_info *); 338 static void sfmmu_tsbinfo_free(struct tsb_info *); 339 static int sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t, 340 sfmmu_t *); 341 342 static void sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *); 343 static int sfmmu_select_tsb_szc(pgcnt_t); 344 static void sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int); 345 #define sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \ 346 sfmmu_mod_tsb(sfmmup, vaddr, tte, szc) 347 #define sfmmu_unload_tsb(sfmmup, vaddr, szc) \ 348 sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc) 349 static void sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *); 350 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t, 351 hatlock_t *, uint_t); 352 static void sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int); 353 354 static void sfmmu_cache_flush(pfn_t, int); 355 void sfmmu_cache_flushcolor(int, pfn_t); 356 static caddr_t sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t, 357 caddr_t, demap_range_t *, uint_t, int); 358 359 static uint64_t sfmmu_vtop_attr(uint_t, int mode, tte_t *); 360 static uint_t sfmmu_ptov_attr(tte_t *); 361 static caddr_t sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t, 362 caddr_t, demap_range_t *, uint_t); 363 static uint_t sfmmu_vtop_prot(uint_t, uint_t *); 364 static int sfmmu_idcache_constructor(void *, void *, int); 365 static void sfmmu_idcache_destructor(void *, void *); 366 static int sfmmu_hblkcache_constructor(void *, void *, int); 367 static void sfmmu_hblkcache_destructor(void *, void *); 368 static void sfmmu_hblkcache_reclaim(void *); 369 static void sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *, 370 struct hmehash_bucket *); 371 static void sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int); 372 static void sfmmu_rm_large_mappings(page_t *, int); 373 374 static void hat_lock_init(void); 375 static void hat_kstat_init(void); 376 static int sfmmu_kstat_percpu_update(kstat_t *ksp, int rw); 377 static void sfmmu_check_page_sizes(sfmmu_t *, int); 378 static int fnd_mapping_sz(page_t *); 379 static void iment_add(struct ism_ment *, struct hat *); 380 static void iment_sub(struct ism_ment *, struct hat *); 381 static pgcnt_t ism_tsb_entries(sfmmu_t *, int szc); 382 extern void sfmmu_setup_tsbinfo(sfmmu_t *); 383 extern void sfmmu_clear_utsbinfo(void); 384 385 /* kpm prototypes */ 386 static caddr_t sfmmu_kpm_mapin(page_t *); 387 static void sfmmu_kpm_mapout(page_t *, caddr_t); 388 static int sfmmu_kpme_lookup(struct kpme *, page_t *); 389 static void sfmmu_kpme_add(struct kpme *, page_t *); 390 static void sfmmu_kpme_sub(struct kpme *, page_t *); 391 static caddr_t sfmmu_kpm_getvaddr(page_t *, int *); 392 static int sfmmu_kpm_fault(caddr_t, struct memseg *, page_t *); 393 static int sfmmu_kpm_fault_small(caddr_t, struct memseg *, page_t *); 394 static void sfmmu_kpm_vac_conflict(page_t *, caddr_t); 395 static void sfmmu_kpm_pageunload(page_t *); 396 static void sfmmu_kpm_vac_unload(page_t *, caddr_t); 397 static void sfmmu_kpm_demap_large(caddr_t); 398 static void sfmmu_kpm_demap_small(caddr_t); 399 static void sfmmu_kpm_demap_tlbs(caddr_t); 400 static void sfmmu_kpm_hme_unload(page_t *); 401 static kpm_hlk_t *sfmmu_kpm_kpmp_enter(page_t *, pgcnt_t); 402 static void sfmmu_kpm_kpmp_exit(kpm_hlk_t *kpmp); 403 static void sfmmu_kpm_page_cache(page_t *, int, int); 404 405 static void sfmmu_ctx_wrap_around(mmu_ctx_t *); 406 407 /* kpm globals */ 408 #ifdef DEBUG 409 /* 410 * Enable trap level tsbmiss handling 411 */ 412 int kpm_tsbmtl = 1; 413 414 /* 415 * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the 416 * required TLB shootdowns in this case, so handle w/ care. Off by default. 417 */ 418 int kpm_tlb_flush; 419 #endif /* DEBUG */ 420 421 static void *sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int); 422 423 #ifdef DEBUG 424 static void sfmmu_check_hblk_flist(); 425 #endif 426 427 /* 428 * Semi-private sfmmu data structures. Some of them are initialize in 429 * startup or in hat_init. Some of them are private but accessed by 430 * assembly code or mach_sfmmu.c 431 */ 432 struct hmehash_bucket *uhme_hash; /* user hmeblk hash table */ 433 struct hmehash_bucket *khme_hash; /* kernel hmeblk hash table */ 434 uint64_t uhme_hash_pa; /* PA of uhme_hash */ 435 uint64_t khme_hash_pa; /* PA of khme_hash */ 436 int uhmehash_num; /* # of buckets in user hash table */ 437 int khmehash_num; /* # of buckets in kernel hash table */ 438 439 uint_t max_mmu_ctxdoms = 0; /* max context domains in the system */ 440 mmu_ctx_t **mmu_ctxs_tbl; /* global array of context domains */ 441 uint64_t mmu_saved_gnum = 0; /* to init incoming MMUs' gnums */ 442 443 #define DEFAULT_NUM_CTXS_PER_MMU 8192 444 static uint_t nctxs = DEFAULT_NUM_CTXS_PER_MMU; 445 446 int cache; /* describes system cache */ 447 448 caddr_t ktsb_base; /* kernel 8k-indexed tsb base address */ 449 uint64_t ktsb_pbase; /* kernel 8k-indexed tsb phys address */ 450 int ktsb_szcode; /* kernel 8k-indexed tsb size code */ 451 int ktsb_sz; /* kernel 8k-indexed tsb size */ 452 453 caddr_t ktsb4m_base; /* kernel 4m-indexed tsb base address */ 454 uint64_t ktsb4m_pbase; /* kernel 4m-indexed tsb phys address */ 455 int ktsb4m_szcode; /* kernel 4m-indexed tsb size code */ 456 int ktsb4m_sz; /* kernel 4m-indexed tsb size */ 457 458 uint64_t kpm_tsbbase; /* kernel seg_kpm 4M TSB base address */ 459 int kpm_tsbsz; /* kernel seg_kpm 4M TSB size code */ 460 uint64_t kpmsm_tsbbase; /* kernel seg_kpm 8K TSB base address */ 461 int kpmsm_tsbsz; /* kernel seg_kpm 8K TSB size code */ 462 463 #ifndef sun4v 464 int utsb_dtlb_ttenum = -1; /* index in TLB for utsb locked TTE */ 465 int utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */ 466 int dtlb_resv_ttenum; /* index in TLB of first reserved TTE */ 467 caddr_t utsb_vabase; /* reserved kernel virtual memory */ 468 caddr_t utsb4m_vabase; /* for trap handler TSB accesses */ 469 #endif /* sun4v */ 470 uint64_t tsb_alloc_bytes = 0; /* bytes allocated to TSBs */ 471 vmem_t *kmem_tsb_default_arena[NLGRPS_MAX]; /* For dynamic TSBs */ 472 473 /* 474 * Size to use for TSB slabs. Future platforms that support page sizes 475 * larger than 4M may wish to change these values, and provide their own 476 * assembly macros for building and decoding the TSB base register contents. 477 * Note disable_large_pages will override the value set here. 478 */ 479 uint_t tsb_slab_ttesz = TTE4M; 480 uint_t tsb_slab_size; 481 uint_t tsb_slab_shift; 482 uint_t tsb_slab_mask; /* PFN mask for TTE */ 483 484 /* largest TSB size to grow to, will be smaller on smaller memory systems */ 485 int tsb_max_growsize = UTSB_MAX_SZCODE; 486 487 /* 488 * Tunable parameters dealing with TSB policies. 489 */ 490 491 /* 492 * This undocumented tunable forces all 8K TSBs to be allocated from 493 * the kernel heap rather than from the kmem_tsb_default_arena arenas. 494 */ 495 #ifdef DEBUG 496 int tsb_forceheap = 0; 497 #endif /* DEBUG */ 498 499 /* 500 * Decide whether to use per-lgroup arenas, or one global set of 501 * TSB arenas. The default is not to break up per-lgroup, since 502 * most platforms don't recognize any tangible benefit from it. 503 */ 504 int tsb_lgrp_affinity = 0; 505 506 /* 507 * Used for growing the TSB based on the process RSS. 508 * tsb_rss_factor is based on the smallest TSB, and is 509 * shifted by the TSB size to determine if we need to grow. 510 * The default will grow the TSB if the number of TTEs for 511 * this page size exceeds 75% of the number of TSB entries, 512 * which should _almost_ eliminate all conflict misses 513 * (at the expense of using up lots and lots of memory). 514 */ 515 #define TSB_RSS_FACTOR (TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75) 516 #define SFMMU_RSS_TSBSIZE(tsbszc) (tsb_rss_factor << tsbszc) 517 #define SELECT_TSB_SIZECODE(pgcnt) ( \ 518 (enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \ 519 default_tsb_size) 520 #define TSB_OK_SHRINK() \ 521 (tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree) 522 #define TSB_OK_GROW() \ 523 (tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree) 524 525 int enable_tsb_rss_sizing = 1; 526 int tsb_rss_factor = (int)TSB_RSS_FACTOR; 527 528 /* which TSB size code to use for new address spaces or if rss sizing off */ 529 int default_tsb_size = TSB_8K_SZCODE; 530 531 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */ 532 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */ 533 #define TSB_ALLOC_HIWATER_FACTOR_DEFAULT 32 534 535 #ifdef DEBUG 536 static int tsb_random_size = 0; /* set to 1 to test random tsb sizes on alloc */ 537 static int tsb_grow_stress = 0; /* if set to 1, keep replacing TSB w/ random */ 538 static int tsb_alloc_mtbf = 0; /* fail allocation every n attempts */ 539 static int tsb_alloc_fail_mtbf = 0; 540 static int tsb_alloc_count = 0; 541 #endif /* DEBUG */ 542 543 /* if set to 1, will remap valid TTEs when growing TSB. */ 544 int tsb_remap_ttes = 1; 545 546 /* 547 * If we have more than this many mappings, allocate a second TSB. 548 * This default is chosen because the I/D fully associative TLBs are 549 * assumed to have at least 8 available entries. Platforms with a 550 * larger fully-associative TLB could probably override the default. 551 */ 552 int tsb_sectsb_threshold = 8; 553 554 /* 555 * kstat data 556 */ 557 struct sfmmu_global_stat sfmmu_global_stat; 558 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat; 559 560 /* 561 * Global data 562 */ 563 sfmmu_t *ksfmmup; /* kernel's hat id */ 564 565 #ifdef DEBUG 566 static void chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *); 567 #endif 568 569 /* sfmmu locking operations */ 570 static kmutex_t *sfmmu_mlspl_enter(struct page *, int); 571 static int sfmmu_mlspl_held(struct page *, int); 572 573 static kmutex_t *sfmmu_page_enter(page_t *); 574 static void sfmmu_page_exit(kmutex_t *); 575 static int sfmmu_page_spl_held(struct page *); 576 577 /* sfmmu internal locking operations - accessed directly */ 578 static void sfmmu_mlist_reloc_enter(page_t *, page_t *, 579 kmutex_t **, kmutex_t **); 580 static void sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *); 581 static hatlock_t * 582 sfmmu_hat_enter(sfmmu_t *); 583 static hatlock_t * 584 sfmmu_hat_tryenter(sfmmu_t *); 585 static void sfmmu_hat_exit(hatlock_t *); 586 static void sfmmu_hat_lock_all(void); 587 static void sfmmu_hat_unlock_all(void); 588 static void sfmmu_ismhat_enter(sfmmu_t *, int); 589 static void sfmmu_ismhat_exit(sfmmu_t *, int); 590 591 /* 592 * Array of mutexes protecting a page's mapping list and p_nrm field. 593 * 594 * The hash function looks complicated, but is made up so that: 595 * 596 * "pp" not shifted, so adjacent pp values will hash to different cache lines 597 * (8 byte alignment * 8 bytes/mutes == 64 byte coherency subblock) 598 * 599 * "pp" >> mml_shift, incorporates more source bits into the hash result 600 * 601 * "& (mml_table_size - 1), should be faster than using remainder "%" 602 * 603 * Hopefully, mml_table, mml_table_size and mml_shift are all in the same 604 * cacheline, since they get declared next to each other below. We'll trust 605 * ld not to do something random. 606 */ 607 #ifdef DEBUG 608 int mlist_hash_debug = 0; 609 #define MLIST_HASH(pp) (mlist_hash_debug ? &mml_table[0] : \ 610 &mml_table[((uintptr_t)(pp) + \ 611 ((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)]) 612 #else /* !DEBUG */ 613 #define MLIST_HASH(pp) &mml_table[ \ 614 ((uintptr_t)(pp) + ((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)] 615 #endif /* !DEBUG */ 616 617 kmutex_t *mml_table; 618 uint_t mml_table_sz; /* must be a power of 2 */ 619 uint_t mml_shift; /* log2(mml_table_sz) + 3 for align */ 620 621 /* 622 * kpm_page lock hash. 623 * All slots should be used equally and 2 adjacent kpm_page_t's 624 * shouldn't have their mutexes in the same cache line. 625 */ 626 #ifdef DEBUG 627 int kpmp_hash_debug = 0; 628 #define KPMP_HASH(kpp) (kpmp_hash_debug ? &kpmp_table[0] : &kpmp_table[ \ 629 ((uintptr_t)(kpp) + ((uintptr_t)(kpp) >> kpmp_shift)) \ 630 & (kpmp_table_sz - 1)]) 631 #else /* !DEBUG */ 632 #define KPMP_HASH(kpp) &kpmp_table[ \ 633 ((uintptr_t)(kpp) + ((uintptr_t)(kpp) >> kpmp_shift)) \ 634 & (kpmp_table_sz - 1)] 635 #endif /* DEBUG */ 636 637 kpm_hlk_t *kpmp_table; 638 uint_t kpmp_table_sz; /* must be a power of 2 */ 639 uchar_t kpmp_shift; 640 641 #ifdef DEBUG 642 #define KPMP_SHASH(kpp) (kpmp_hash_debug ? &kpmp_stable[0] : &kpmp_stable[ \ 643 (((uintptr_t)(kpp) << kpmp_shift) + (uintptr_t)(kpp)) \ 644 & (kpmp_stable_sz - 1)]) 645 #else /* !DEBUG */ 646 #define KPMP_SHASH(kpp) &kpmp_stable[ \ 647 (((uintptr_t)(kpp) << kpmp_shift) + (uintptr_t)(kpp)) \ 648 & (kpmp_stable_sz - 1)] 649 #endif /* DEBUG */ 650 651 kpm_shlk_t *kpmp_stable; 652 uint_t kpmp_stable_sz; /* must be a power of 2 */ 653 654 /* 655 * SPL_HASH was improved to avoid false cache line sharing 656 */ 657 #define SPL_TABLE_SIZE 128 658 #define SPL_MASK (SPL_TABLE_SIZE - 1) 659 #define SPL_SHIFT 7 /* log2(SPL_TABLE_SIZE) */ 660 661 #define SPL_INDEX(pp) \ 662 ((((uintptr_t)(pp) >> SPL_SHIFT) ^ \ 663 ((uintptr_t)(pp) >> (SPL_SHIFT << 1))) & \ 664 (SPL_TABLE_SIZE - 1)) 665 666 #define SPL_HASH(pp) \ 667 (&sfmmu_page_lock[SPL_INDEX(pp) & SPL_MASK].pad_mutex) 668 669 static pad_mutex_t sfmmu_page_lock[SPL_TABLE_SIZE]; 670 671 672 /* 673 * hat_unload_callback() will group together callbacks in order 674 * to avoid xt_sync() calls. This is the maximum size of the group. 675 */ 676 #define MAX_CB_ADDR 32 677 678 tte_t hw_tte; 679 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT; 680 681 static char *mmu_ctx_kstat_names[] = { 682 "mmu_ctx_tsb_exceptions", 683 "mmu_ctx_tsb_raise_exception", 684 "mmu_ctx_wrap_around", 685 }; 686 687 /* 688 * kpm virtual address to physical address 689 */ 690 #define SFMMU_KPM_VTOP(vaddr, paddr) { \ 691 uintptr_t r, v; \ 692 \ 693 r = ((vaddr) - kpm_vbase) >> (uintptr_t)kpm_size_shift; \ 694 (paddr) = (vaddr) - kpm_vbase; \ 695 if (r != 0) { \ 696 v = ((uintptr_t)(vaddr) >> MMU_PAGESHIFT) & \ 697 vac_colors_mask; \ 698 (paddr) -= r << kpm_size_shift; \ 699 if (r > v) \ 700 (paddr) += (r - v) << MMU_PAGESHIFT; \ 701 else \ 702 (paddr) -= r << MMU_PAGESHIFT; \ 703 } \ 704 } 705 706 /* 707 * Wrapper for vmem_xalloc since vmem_create only allows limited 708 * parameters for vm_source_alloc functions. This function allows us 709 * to specify alignment consistent with the size of the object being 710 * allocated. 711 */ 712 static void * 713 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag) 714 { 715 return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag)); 716 } 717 718 /* Common code for setting tsb_alloc_hiwater. */ 719 #define SFMMU_SET_TSB_ALLOC_HIWATER(pages) tsb_alloc_hiwater = \ 720 ptob(pages) / tsb_alloc_hiwater_factor 721 722 /* 723 * Set tsb_max_growsize to allow at most all of physical memory to be mapped by 724 * a single TSB. physmem is the number of physical pages so we need physmem 8K 725 * TTEs to represent all those physical pages. We round this up by using 726 * 1<<highbit(). To figure out which size code to use, remember that the size 727 * code is just an amount to shift the smallest TSB size to get the size of 728 * this TSB. So we subtract that size, TSB_START_SIZE, from highbit() (or 729 * highbit() - 1) to get the size code for the smallest TSB that can represent 730 * all of physical memory, while erring on the side of too much. 731 * 732 * If the computed size code is less than the current tsb_max_growsize, we set 733 * tsb_max_growsize to the computed size code. In the case where the computed 734 * size code is greater than tsb_max_growsize, we have these restrictions that 735 * apply to increasing tsb_max_growsize: 736 * 1) TSBs can't grow larger than the TSB slab size 737 * 2) TSBs can't grow larger than UTSB_MAX_SZCODE. 738 */ 739 #define SFMMU_SET_TSB_MAX_GROWSIZE(pages) { \ 740 int i, szc; \ 741 \ 742 i = highbit(pages); \ 743 if ((1 << (i - 1)) == (pages)) \ 744 i--; /* 2^n case, round down */ \ 745 szc = i - TSB_START_SIZE; \ 746 if (szc < tsb_max_growsize) \ 747 tsb_max_growsize = szc; \ 748 else if ((szc > tsb_max_growsize) && \ 749 (szc <= tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT))) \ 750 tsb_max_growsize = MIN(szc, UTSB_MAX_SZCODE); \ 751 } 752 753 /* 754 * Given a pointer to an sfmmu and a TTE size code, return a pointer to the 755 * tsb_info which handles that TTE size. 756 */ 757 #define SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc) \ 758 (tsbinfop) = (sfmmup)->sfmmu_tsb; \ 759 ASSERT(sfmmu_hat_lock_held(sfmmup)); \ 760 if ((tte_szc) >= TTE4M) \ 761 (tsbinfop) = (tsbinfop)->tsb_next; 762 763 /* 764 * Return the number of mappings present in the HAT 765 * for a particular process and page size. 766 */ 767 #define SFMMU_TTE_CNT(sfmmup, szc) \ 768 (sfmmup)->sfmmu_iblk? \ 769 (sfmmup)->sfmmu_ismttecnt[(szc)] + \ 770 (sfmmup)->sfmmu_ttecnt[(szc)] : \ 771 (sfmmup)->sfmmu_ttecnt[(szc)]; 772 773 /* 774 * Macro to use to unload entries from the TSB. 775 * It has knowledge of which page sizes get replicated in the TSB 776 * and will call the appropriate unload routine for the appropriate size. 777 */ 778 #define SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp) \ 779 { \ 780 int ttesz = get_hblk_ttesz(hmeblkp); \ 781 if (ttesz == TTE8K || ttesz == TTE4M) { \ 782 sfmmu_unload_tsb(sfmmup, addr, ttesz); \ 783 } else { \ 784 caddr_t sva = (caddr_t)get_hblk_base(hmeblkp); \ 785 caddr_t eva = sva + get_hblk_span(hmeblkp); \ 786 ASSERT(addr >= sva && addr < eva); \ 787 sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz); \ 788 } \ 789 } 790 791 792 /* Update tsb_alloc_hiwater after memory is configured. */ 793 /*ARGSUSED*/ 794 static void 795 sfmmu_update_tsb_post_add(void *arg, pgcnt_t delta_pages) 796 { 797 /* Assumes physmem has already been updated. */ 798 SFMMU_SET_TSB_ALLOC_HIWATER(physmem); 799 SFMMU_SET_TSB_MAX_GROWSIZE(physmem); 800 } 801 802 /* 803 * Update tsb_alloc_hiwater before memory is deleted. We'll do nothing here 804 * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is 805 * deleted. 806 */ 807 /*ARGSUSED*/ 808 static int 809 sfmmu_update_tsb_pre_del(void *arg, pgcnt_t delta_pages) 810 { 811 return (0); 812 } 813 814 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */ 815 /*ARGSUSED*/ 816 static void 817 sfmmu_update_tsb_post_del(void *arg, pgcnt_t delta_pages, int cancelled) 818 { 819 /* 820 * Whether the delete was cancelled or not, just go ahead and update 821 * tsb_alloc_hiwater and tsb_max_growsize. 822 */ 823 SFMMU_SET_TSB_ALLOC_HIWATER(physmem); 824 SFMMU_SET_TSB_MAX_GROWSIZE(physmem); 825 } 826 827 static kphysm_setup_vector_t sfmmu_update_tsb_vec = { 828 KPHYSM_SETUP_VECTOR_VERSION, /* version */ 829 sfmmu_update_tsb_post_add, /* post_add */ 830 sfmmu_update_tsb_pre_del, /* pre_del */ 831 sfmmu_update_tsb_post_del /* post_del */ 832 }; 833 834 835 /* 836 * HME_BLK HASH PRIMITIVES 837 */ 838 839 /* 840 * Enter a hme on the mapping list for page pp. 841 * When large pages are more prevalent in the system we might want to 842 * keep the mapping list in ascending order by the hment size. For now, 843 * small pages are more frequent, so don't slow it down. 844 */ 845 #define HME_ADD(hme, pp) \ 846 { \ 847 ASSERT(sfmmu_mlist_held(pp)); \ 848 \ 849 hme->hme_prev = NULL; \ 850 hme->hme_next = pp->p_mapping; \ 851 hme->hme_page = pp; \ 852 if (pp->p_mapping) { \ 853 ((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\ 854 ASSERT(pp->p_share > 0); \ 855 } else { \ 856 /* EMPTY */ \ 857 ASSERT(pp->p_share == 0); \ 858 } \ 859 pp->p_mapping = hme; \ 860 pp->p_share++; \ 861 } 862 863 /* 864 * Enter a hme on the mapping list for page pp. 865 * If we are unmapping a large translation, we need to make sure that the 866 * change is reflect in the corresponding bit of the p_index field. 867 */ 868 #define HME_SUB(hme, pp) \ 869 { \ 870 ASSERT(sfmmu_mlist_held(pp)); \ 871 ASSERT(hme->hme_page == pp || IS_PAHME(hme)); \ 872 \ 873 if (pp->p_mapping == NULL) { \ 874 panic("hme_remove - no mappings"); \ 875 } \ 876 \ 877 membar_stst(); /* ensure previous stores finish */ \ 878 \ 879 ASSERT(pp->p_share > 0); \ 880 pp->p_share--; \ 881 \ 882 if (hme->hme_prev) { \ 883 ASSERT(pp->p_mapping != hme); \ 884 ASSERT(hme->hme_prev->hme_page == pp || \ 885 IS_PAHME(hme->hme_prev)); \ 886 hme->hme_prev->hme_next = hme->hme_next; \ 887 } else { \ 888 ASSERT(pp->p_mapping == hme); \ 889 pp->p_mapping = hme->hme_next; \ 890 ASSERT((pp->p_mapping == NULL) ? \ 891 (pp->p_share == 0) : 1); \ 892 } \ 893 \ 894 if (hme->hme_next) { \ 895 ASSERT(hme->hme_next->hme_page == pp || \ 896 IS_PAHME(hme->hme_next)); \ 897 hme->hme_next->hme_prev = hme->hme_prev; \ 898 } \ 899 \ 900 /* zero out the entry */ \ 901 hme->hme_next = NULL; \ 902 hme->hme_prev = NULL; \ 903 hme->hme_page = NULL; \ 904 \ 905 if (hme_size(hme) > TTE8K) { \ 906 /* remove mappings for remainder of large pg */ \ 907 sfmmu_rm_large_mappings(pp, hme_size(hme)); \ 908 } \ 909 } 910 911 /* 912 * This function returns the hment given the hme_blk and a vaddr. 913 * It assumes addr has already been checked to belong to hme_blk's 914 * range. 915 */ 916 #define HBLKTOHME(hment, hmeblkp, addr) \ 917 { \ 918 int index; \ 919 HBLKTOHME_IDX(hment, hmeblkp, addr, index) \ 920 } 921 922 /* 923 * Version of HBLKTOHME that also returns the index in hmeblkp 924 * of the hment. 925 */ 926 #define HBLKTOHME_IDX(hment, hmeblkp, addr, idx) \ 927 { \ 928 ASSERT(in_hblk_range((hmeblkp), (addr))); \ 929 \ 930 if (get_hblk_ttesz(hmeblkp) == TTE8K) { \ 931 idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \ 932 } else \ 933 idx = 0; \ 934 \ 935 (hment) = &(hmeblkp)->hblk_hme[idx]; \ 936 } 937 938 /* 939 * Disable any page sizes not supported by the CPU 940 */ 941 void 942 hat_init_pagesizes() 943 { 944 int i; 945 946 mmu_exported_page_sizes = 0; 947 for (i = TTE8K; i < max_mmu_page_sizes; i++) { 948 extern int disable_text_largepages; 949 extern int disable_initdata_largepages; 950 951 szc_2_userszc[i] = (uint_t)-1; 952 userszc_2_szc[i] = (uint_t)-1; 953 954 if ((mmu_exported_pagesize_mask & (1 << i)) == 0) { 955 disable_large_pages |= (1 << i); 956 disable_ism_large_pages |= (1 << i); 957 disable_text_largepages |= (1 << i); 958 disable_initdata_largepages |= (1 << i); 959 } else { 960 szc_2_userszc[i] = mmu_exported_page_sizes; 961 userszc_2_szc[mmu_exported_page_sizes] = i; 962 mmu_exported_page_sizes++; 963 } 964 } 965 966 disable_auto_large_pages = disable_large_pages; 967 968 /* 969 * Initialize mmu-specific large page sizes. 970 */ 971 if ((mmu_page_sizes == max_mmu_page_sizes) && 972 (&mmu_large_pages_disabled)) { 973 disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD); 974 disable_ism_large_pages |= 975 mmu_large_pages_disabled(HAT_LOAD_SHARE); 976 disable_auto_large_pages |= 977 mmu_large_pages_disabled(HAT_LOAD_AUTOLPG); 978 } 979 980 } 981 982 /* 983 * Initialize the hardware address translation structures. 984 */ 985 void 986 hat_init(void) 987 { 988 int i; 989 uint_t sz; 990 uint_t maxtsb; 991 size_t size; 992 993 hat_lock_init(); 994 hat_kstat_init(); 995 996 /* 997 * Hardware-only bits in a TTE 998 */ 999 MAKE_TTE_MASK(&hw_tte); 1000 1001 hat_init_pagesizes(); 1002 1003 /* Initialize the hash locks */ 1004 for (i = 0; i < khmehash_num; i++) { 1005 mutex_init(&khme_hash[i].hmehash_mutex, NULL, 1006 MUTEX_DEFAULT, NULL); 1007 } 1008 for (i = 0; i < uhmehash_num; i++) { 1009 mutex_init(&uhme_hash[i].hmehash_mutex, NULL, 1010 MUTEX_DEFAULT, NULL); 1011 } 1012 khmehash_num--; /* make sure counter starts from 0 */ 1013 uhmehash_num--; /* make sure counter starts from 0 */ 1014 1015 /* 1016 * Allocate context domain structures. 1017 * 1018 * A platform may choose to modify max_mmu_ctxdoms in 1019 * set_platform_defaults(). If a platform does not define 1020 * a set_platform_defaults() or does not choose to modify 1021 * max_mmu_ctxdoms, it gets one MMU context domain for every CPU. 1022 * 1023 * For sun4v, there will be one global context domain, this is to 1024 * avoid the ldom cpu substitution problem. 1025 * 1026 * For all platforms that have CPUs sharing MMUs, this 1027 * value must be defined. 1028 */ 1029 if (max_mmu_ctxdoms == 0) { 1030 #ifndef sun4v 1031 max_mmu_ctxdoms = max_ncpus; 1032 #else /* sun4v */ 1033 max_mmu_ctxdoms = 1; 1034 #endif /* sun4v */ 1035 } 1036 1037 size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *); 1038 mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP); 1039 1040 /* mmu_ctx_t is 64 bytes aligned */ 1041 mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache", 1042 sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0); 1043 /* 1044 * MMU context domain initialization for the Boot CPU. 1045 * This needs the context domains array allocated above. 1046 */ 1047 mutex_enter(&cpu_lock); 1048 sfmmu_cpu_init(CPU); 1049 mutex_exit(&cpu_lock); 1050 1051 /* 1052 * Intialize ism mapping list lock. 1053 */ 1054 1055 mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL); 1056 1057 /* 1058 * Each sfmmu structure carries an array of MMU context info 1059 * structures, one per context domain. The size of this array depends 1060 * on the maximum number of context domains. So, the size of the 1061 * sfmmu structure varies per platform. 1062 * 1063 * sfmmu is allocated from static arena, because trap 1064 * handler at TL > 0 is not allowed to touch kernel relocatable 1065 * memory. sfmmu's alignment is changed to 64 bytes from 1066 * default 8 bytes, as the lower 6 bits will be used to pass 1067 * pgcnt to vtag_flush_pgcnt_tl1. 1068 */ 1069 size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1); 1070 1071 sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size, 1072 64, sfmmu_idcache_constructor, sfmmu_idcache_destructor, 1073 NULL, NULL, static_arena, 0); 1074 1075 sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache", 1076 sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0); 1077 1078 /* 1079 * Since we only use the tsb8k cache to "borrow" pages for TSBs 1080 * from the heap when low on memory or when TSB_FORCEALLOC is 1081 * specified, don't use magazines to cache them--we want to return 1082 * them to the system as quickly as possible. 1083 */ 1084 sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache", 1085 MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL, 1086 static_arena, KMC_NOMAGAZINE); 1087 1088 /* 1089 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical 1090 * memory, which corresponds to the old static reserve for TSBs. 1091 * tsb_alloc_hiwater_factor defaults to 32. This caps the amount of 1092 * memory we'll allocate for TSB slabs; beyond this point TSB 1093 * allocations will be taken from the kernel heap (via 1094 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem 1095 * consumer. 1096 */ 1097 if (tsb_alloc_hiwater_factor == 0) { 1098 tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT; 1099 } 1100 SFMMU_SET_TSB_ALLOC_HIWATER(physmem); 1101 1102 /* Set tsb_max_growsize. */ 1103 SFMMU_SET_TSB_MAX_GROWSIZE(physmem); 1104 1105 /* 1106 * On smaller memory systems, allocate TSB memory in smaller chunks 1107 * than the default 4M slab size. We also honor disable_large_pages 1108 * here. 1109 * 1110 * The trap handlers need to be patched with the final slab shift, 1111 * since they need to be able to construct the TSB pointer at runtime. 1112 */ 1113 if (tsb_max_growsize <= TSB_512K_SZCODE) 1114 tsb_slab_ttesz = TTE512K; 1115 1116 for (sz = tsb_slab_ttesz; sz > 0; sz--) { 1117 if (!(disable_large_pages & (1 << sz))) 1118 break; 1119 } 1120 1121 tsb_slab_ttesz = sz; 1122 tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz; 1123 tsb_slab_size = 1 << tsb_slab_shift; 1124 tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1; 1125 1126 maxtsb = tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT); 1127 if (tsb_max_growsize > maxtsb) 1128 tsb_max_growsize = maxtsb; 1129 1130 /* 1131 * Set up memory callback to update tsb_alloc_hiwater and 1132 * tsb_max_growsize. 1133 */ 1134 i = kphysm_setup_func_register(&sfmmu_update_tsb_vec, (void *) 0); 1135 ASSERT(i == 0); 1136 1137 /* 1138 * kmem_tsb_arena is the source from which large TSB slabs are 1139 * drawn. The quantum of this arena corresponds to the largest 1140 * TSB size we can dynamically allocate for user processes. 1141 * Currently it must also be a supported page size since we 1142 * use exactly one translation entry to map each slab page. 1143 * 1144 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from 1145 * which most TSBs are allocated. Since most TSB allocations are 1146 * typically 8K we have a kmem cache we stack on top of each 1147 * kmem_tsb_default_arena to speed up those allocations. 1148 * 1149 * Note the two-level scheme of arenas is required only 1150 * because vmem_create doesn't allow us to specify alignment 1151 * requirements. If this ever changes the code could be 1152 * simplified to use only one level of arenas. 1153 */ 1154 kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size, 1155 sfmmu_vmem_xalloc_aligned_wrapper, vmem_xfree, heap_arena, 1156 0, VM_SLEEP); 1157 1158 if (tsb_lgrp_affinity) { 1159 char s[50]; 1160 for (i = 0; i < NLGRPS_MAX; i++) { 1161 (void) sprintf(s, "kmem_tsb_lgrp%d", i); 1162 kmem_tsb_default_arena[i] = 1163 vmem_create(s, NULL, 0, PAGESIZE, 1164 sfmmu_tsb_segkmem_alloc, sfmmu_tsb_segkmem_free, 1165 kmem_tsb_arena, 0, VM_SLEEP | VM_BESTFIT); 1166 (void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i); 1167 sfmmu_tsb_cache[i] = kmem_cache_create(s, PAGESIZE, 1168 PAGESIZE, NULL, NULL, NULL, NULL, 1169 kmem_tsb_default_arena[i], 0); 1170 } 1171 } else { 1172 kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default", 1173 NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc, 1174 sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0, 1175 VM_SLEEP | VM_BESTFIT); 1176 1177 sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache", 1178 PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL, 1179 kmem_tsb_default_arena[0], 0); 1180 } 1181 1182 sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ, 1183 HMEBLK_ALIGN, sfmmu_hblkcache_constructor, 1184 sfmmu_hblkcache_destructor, 1185 sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ, 1186 hat_memload_arena, KMC_NOHASH); 1187 1188 hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE, 1189 segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP); 1190 1191 sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ, 1192 HMEBLK_ALIGN, sfmmu_hblkcache_constructor, 1193 sfmmu_hblkcache_destructor, 1194 NULL, (void *)HME1BLK_SZ, 1195 hat_memload1_arena, KMC_NOHASH); 1196 1197 pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ, 1198 0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH); 1199 1200 ism_blk_cache = kmem_cache_create("ism_blk_cache", 1201 sizeof (ism_blk_t), ecache_alignsize, NULL, NULL, 1202 NULL, NULL, static_arena, KMC_NOHASH); 1203 1204 ism_ment_cache = kmem_cache_create("ism_ment_cache", 1205 sizeof (ism_ment_t), 0, NULL, NULL, 1206 NULL, NULL, NULL, 0); 1207 1208 /* 1209 * We grab the first hat for the kernel, 1210 */ 1211 AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER); 1212 kas.a_hat = hat_alloc(&kas); 1213 AS_LOCK_EXIT(&kas, &kas.a_lock); 1214 1215 /* 1216 * Initialize hblk_reserve. 1217 */ 1218 ((struct hme_blk *)hblk_reserve)->hblk_nextpa = 1219 va_to_pa((caddr_t)hblk_reserve); 1220 1221 #ifndef UTSB_PHYS 1222 /* 1223 * Reserve some kernel virtual address space for the locked TTEs 1224 * that allow us to probe the TSB from TL>0. 1225 */ 1226 utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size, 1227 0, 0, NULL, NULL, VM_SLEEP); 1228 utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size, 1229 0, 0, NULL, NULL, VM_SLEEP); 1230 #endif 1231 1232 /* 1233 * The big page VAC handling code assumes VAC 1234 * will not be bigger than the smallest big 1235 * page- which is 64K. 1236 */ 1237 if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) { 1238 cmn_err(CE_PANIC, "VAC too big!"); 1239 } 1240 1241 (void) xhat_init(); 1242 1243 uhme_hash_pa = va_to_pa(uhme_hash); 1244 khme_hash_pa = va_to_pa(khme_hash); 1245 1246 /* 1247 * Initialize relocation locks. kpr_suspendlock is held 1248 * at PIL_MAX to prevent interrupts from pinning the holder 1249 * of a suspended TTE which may access it leading to a 1250 * deadlock condition. 1251 */ 1252 mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL); 1253 mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX); 1254 } 1255 1256 /* 1257 * Initialize locking for the hat layer, called early during boot. 1258 */ 1259 static void 1260 hat_lock_init() 1261 { 1262 int i; 1263 1264 /* 1265 * initialize the array of mutexes protecting a page's mapping 1266 * list and p_nrm field. 1267 */ 1268 for (i = 0; i < mml_table_sz; i++) 1269 mutex_init(&mml_table[i], NULL, MUTEX_DEFAULT, NULL); 1270 1271 if (kpm_enable) { 1272 for (i = 0; i < kpmp_table_sz; i++) { 1273 mutex_init(&kpmp_table[i].khl_mutex, NULL, 1274 MUTEX_DEFAULT, NULL); 1275 } 1276 } 1277 1278 /* 1279 * Initialize array of mutex locks that protects sfmmu fields and 1280 * TSB lists. 1281 */ 1282 for (i = 0; i < SFMMU_NUM_LOCK; i++) 1283 mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT, 1284 NULL); 1285 } 1286 1287 extern caddr_t kmem64_base, kmem64_end; 1288 1289 #define SFMMU_KERNEL_MAXVA \ 1290 (kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT)) 1291 1292 /* 1293 * Allocate a hat structure. 1294 * Called when an address space first uses a hat. 1295 */ 1296 struct hat * 1297 hat_alloc(struct as *as) 1298 { 1299 sfmmu_t *sfmmup; 1300 int i; 1301 uint64_t cnum; 1302 extern uint_t get_color_start(struct as *); 1303 1304 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 1305 sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP); 1306 sfmmup->sfmmu_as = as; 1307 sfmmup->sfmmu_flags = 0; 1308 LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock); 1309 1310 if (as == &kas) { 1311 ksfmmup = sfmmup; 1312 sfmmup->sfmmu_cext = 0; 1313 cnum = KCONTEXT; 1314 1315 sfmmup->sfmmu_clrstart = 0; 1316 sfmmup->sfmmu_tsb = NULL; 1317 /* 1318 * hat_kern_setup() will call sfmmu_init_ktsbinfo() 1319 * to setup tsb_info for ksfmmup. 1320 */ 1321 } else { 1322 1323 /* 1324 * Just set to invalid ctx. When it faults, it will 1325 * get a valid ctx. This would avoid the situation 1326 * where we get a ctx, but it gets stolen and then 1327 * we fault when we try to run and so have to get 1328 * another ctx. 1329 */ 1330 sfmmup->sfmmu_cext = 0; 1331 cnum = INVALID_CONTEXT; 1332 1333 /* initialize original physical page coloring bin */ 1334 sfmmup->sfmmu_clrstart = get_color_start(as); 1335 #ifdef DEBUG 1336 if (tsb_random_size) { 1337 uint32_t randval = (uint32_t)gettick() >> 4; 1338 int size = randval % (tsb_max_growsize + 1); 1339 1340 /* chose a random tsb size for stress testing */ 1341 (void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size, 1342 TSB8K|TSB64K|TSB512K, 0, sfmmup); 1343 } else 1344 #endif /* DEBUG */ 1345 (void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, 1346 default_tsb_size, 1347 TSB8K|TSB64K|TSB512K, 0, sfmmup); 1348 sfmmup->sfmmu_flags = HAT_SWAPPED; 1349 ASSERT(sfmmup->sfmmu_tsb != NULL); 1350 } 1351 1352 ASSERT(max_mmu_ctxdoms > 0); 1353 for (i = 0; i < max_mmu_ctxdoms; i++) { 1354 sfmmup->sfmmu_ctxs[i].cnum = cnum; 1355 sfmmup->sfmmu_ctxs[i].gnum = 0; 1356 } 1357 1358 sfmmu_setup_tsbinfo(sfmmup); 1359 for (i = 0; i < max_mmu_page_sizes; i++) { 1360 sfmmup->sfmmu_ttecnt[i] = 0; 1361 sfmmup->sfmmu_ismttecnt[i] = 0; 1362 sfmmup->sfmmu_pgsz[i] = TTE8K; 1363 } 1364 1365 sfmmup->sfmmu_iblk = NULL; 1366 sfmmup->sfmmu_ismhat = 0; 1367 sfmmup->sfmmu_ismblkpa = (uint64_t)-1; 1368 if (sfmmup == ksfmmup) { 1369 CPUSET_ALL(sfmmup->sfmmu_cpusran); 1370 } else { 1371 CPUSET_ZERO(sfmmup->sfmmu_cpusran); 1372 } 1373 sfmmup->sfmmu_free = 0; 1374 sfmmup->sfmmu_rmstat = 0; 1375 sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart; 1376 sfmmup->sfmmu_xhat_provider = NULL; 1377 cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL); 1378 return (sfmmup); 1379 } 1380 1381 /* 1382 * Create per-MMU context domain kstats for a given MMU ctx. 1383 */ 1384 static void 1385 sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp) 1386 { 1387 mmu_ctx_stat_t stat; 1388 kstat_t *mmu_kstat; 1389 1390 ASSERT(MUTEX_HELD(&cpu_lock)); 1391 ASSERT(mmu_ctxp->mmu_kstat == NULL); 1392 1393 mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx", 1394 "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL); 1395 1396 if (mmu_kstat == NULL) { 1397 cmn_err(CE_WARN, "kstat_create for MMU %d failed", 1398 mmu_ctxp->mmu_idx); 1399 } else { 1400 mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data; 1401 for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++) 1402 kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat], 1403 mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64); 1404 mmu_ctxp->mmu_kstat = mmu_kstat; 1405 kstat_install(mmu_kstat); 1406 } 1407 } 1408 1409 /* 1410 * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU 1411 * context domain information for a given CPU. If a platform does not 1412 * specify that interface, then the function below is used instead to return 1413 * default information. The defaults are as follows: 1414 * 1415 * - For sun4u systems there's one MMU context domain per CPU. 1416 * This default is used by all sun4u systems except OPL. OPL systems 1417 * provide platform specific interface to map CPU ids to MMU ids 1418 * because on OPL more than 1 CPU shares a single MMU. 1419 * Note that on sun4v, there is one global context domain for 1420 * the entire system. This is to avoid running into potential problem 1421 * with ldom physical cpu substitution feature. 1422 * - The number of MMU context IDs supported on any CPU in the 1423 * system is 8K. 1424 */ 1425 /*ARGSUSED*/ 1426 static void 1427 sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop) 1428 { 1429 infop->mmu_nctxs = nctxs; 1430 #ifndef sun4v 1431 infop->mmu_idx = cpu[cpuid]->cpu_seqid; 1432 #else /* sun4v */ 1433 infop->mmu_idx = 0; 1434 #endif /* sun4v */ 1435 } 1436 1437 /* 1438 * Called during CPU initialization to set the MMU context-related information 1439 * for a CPU. 1440 * 1441 * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum. 1442 */ 1443 void 1444 sfmmu_cpu_init(cpu_t *cp) 1445 { 1446 mmu_ctx_info_t info; 1447 mmu_ctx_t *mmu_ctxp; 1448 1449 ASSERT(MUTEX_HELD(&cpu_lock)); 1450 1451 if (&plat_cpuid_to_mmu_ctx_info == NULL) 1452 sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info); 1453 else 1454 plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info); 1455 1456 ASSERT(info.mmu_idx < max_mmu_ctxdoms); 1457 1458 if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) { 1459 /* Each mmu_ctx is cacheline aligned. */ 1460 mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP); 1461 bzero(mmu_ctxp, sizeof (mmu_ctx_t)); 1462 1463 mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN, 1464 (void *)ipltospl(DISP_LEVEL)); 1465 mmu_ctxp->mmu_idx = info.mmu_idx; 1466 mmu_ctxp->mmu_nctxs = info.mmu_nctxs; 1467 /* 1468 * Globally for lifetime of a system, 1469 * gnum must always increase. 1470 * mmu_saved_gnum is protected by the cpu_lock. 1471 */ 1472 mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1; 1473 mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS; 1474 1475 sfmmu_mmu_kstat_create(mmu_ctxp); 1476 1477 mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp; 1478 } else { 1479 ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx); 1480 } 1481 1482 /* 1483 * The mmu_lock is acquired here to prevent races with 1484 * the wrap-around code. 1485 */ 1486 mutex_enter(&mmu_ctxp->mmu_lock); 1487 1488 1489 mmu_ctxp->mmu_ncpus++; 1490 CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id); 1491 CPU_MMU_IDX(cp) = info.mmu_idx; 1492 CPU_MMU_CTXP(cp) = mmu_ctxp; 1493 1494 mutex_exit(&mmu_ctxp->mmu_lock); 1495 } 1496 1497 /* 1498 * Called to perform MMU context-related cleanup for a CPU. 1499 */ 1500 void 1501 sfmmu_cpu_cleanup(cpu_t *cp) 1502 { 1503 mmu_ctx_t *mmu_ctxp; 1504 1505 ASSERT(MUTEX_HELD(&cpu_lock)); 1506 1507 mmu_ctxp = CPU_MMU_CTXP(cp); 1508 ASSERT(mmu_ctxp != NULL); 1509 1510 /* 1511 * The mmu_lock is acquired here to prevent races with 1512 * the wrap-around code. 1513 */ 1514 mutex_enter(&mmu_ctxp->mmu_lock); 1515 1516 CPU_MMU_CTXP(cp) = NULL; 1517 1518 CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id); 1519 if (--mmu_ctxp->mmu_ncpus == 0) { 1520 mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL; 1521 mutex_exit(&mmu_ctxp->mmu_lock); 1522 mutex_destroy(&mmu_ctxp->mmu_lock); 1523 1524 if (mmu_ctxp->mmu_kstat) 1525 kstat_delete(mmu_ctxp->mmu_kstat); 1526 1527 /* mmu_saved_gnum is protected by the cpu_lock. */ 1528 if (mmu_saved_gnum < mmu_ctxp->mmu_gnum) 1529 mmu_saved_gnum = mmu_ctxp->mmu_gnum; 1530 1531 kmem_cache_free(mmuctxdom_cache, mmu_ctxp); 1532 1533 return; 1534 } 1535 1536 mutex_exit(&mmu_ctxp->mmu_lock); 1537 } 1538 1539 /* 1540 * Hat_setup, makes an address space context the current active one. 1541 * In sfmmu this translates to setting the secondary context with the 1542 * corresponding context. 1543 */ 1544 void 1545 hat_setup(struct hat *sfmmup, int allocflag) 1546 { 1547 hatlock_t *hatlockp; 1548 1549 /* Init needs some special treatment. */ 1550 if (allocflag == HAT_INIT) { 1551 /* 1552 * Make sure that we have 1553 * 1. a TSB 1554 * 2. a valid ctx that doesn't get stolen after this point. 1555 */ 1556 hatlockp = sfmmu_hat_enter(sfmmup); 1557 1558 /* 1559 * Swap in the TSB. hat_init() allocates tsbinfos without 1560 * TSBs, but we need one for init, since the kernel does some 1561 * special things to set up its stack and needs the TSB to 1562 * resolve page faults. 1563 */ 1564 sfmmu_tsb_swapin(sfmmup, hatlockp); 1565 1566 sfmmu_get_ctx(sfmmup); 1567 1568 sfmmu_hat_exit(hatlockp); 1569 } else { 1570 ASSERT(allocflag == HAT_ALLOC); 1571 1572 hatlockp = sfmmu_hat_enter(sfmmup); 1573 kpreempt_disable(); 1574 1575 CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id); 1576 1577 /* 1578 * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter, 1579 * pagesize bits don't matter in this case since we are passing 1580 * INVALID_CONTEXT to it. 1581 */ 1582 sfmmu_setctx_sec(INVALID_CONTEXT); 1583 sfmmu_clear_utsbinfo(); 1584 1585 kpreempt_enable(); 1586 sfmmu_hat_exit(hatlockp); 1587 } 1588 } 1589 1590 /* 1591 * Free all the translation resources for the specified address space. 1592 * Called from as_free when an address space is being destroyed. 1593 */ 1594 void 1595 hat_free_start(struct hat *sfmmup) 1596 { 1597 ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 1598 ASSERT(sfmmup != ksfmmup); 1599 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 1600 1601 sfmmup->sfmmu_free = 1; 1602 } 1603 1604 void 1605 hat_free_end(struct hat *sfmmup) 1606 { 1607 int i; 1608 1609 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 1610 if (sfmmup->sfmmu_ismhat) { 1611 for (i = 0; i < mmu_page_sizes; i++) { 1612 sfmmup->sfmmu_ttecnt[i] = 0; 1613 sfmmup->sfmmu_ismttecnt[i] = 0; 1614 } 1615 } else { 1616 /* EMPTY */ 1617 ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0); 1618 ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0); 1619 ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0); 1620 ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0); 1621 ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0); 1622 ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0); 1623 } 1624 1625 if (sfmmup->sfmmu_rmstat) { 1626 hat_freestat(sfmmup->sfmmu_as, NULL); 1627 } 1628 1629 while (sfmmup->sfmmu_tsb != NULL) { 1630 struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next; 1631 sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb); 1632 sfmmup->sfmmu_tsb = next; 1633 } 1634 sfmmu_free_sfmmu(sfmmup); 1635 1636 kmem_cache_free(sfmmuid_cache, sfmmup); 1637 } 1638 1639 /* 1640 * Set up any translation structures, for the specified address space, 1641 * that are needed or preferred when the process is being swapped in. 1642 */ 1643 /* ARGSUSED */ 1644 void 1645 hat_swapin(struct hat *hat) 1646 { 1647 ASSERT(hat->sfmmu_xhat_provider == NULL); 1648 } 1649 1650 /* 1651 * Free all of the translation resources, for the specified address space, 1652 * that can be freed while the process is swapped out. Called from as_swapout. 1653 * Also, free up the ctx that this process was using. 1654 */ 1655 void 1656 hat_swapout(struct hat *sfmmup) 1657 { 1658 struct hmehash_bucket *hmebp; 1659 struct hme_blk *hmeblkp; 1660 struct hme_blk *pr_hblk = NULL; 1661 struct hme_blk *nx_hblk; 1662 int i; 1663 uint64_t hblkpa, prevpa, nx_pa; 1664 struct hme_blk *list = NULL; 1665 hatlock_t *hatlockp; 1666 struct tsb_info *tsbinfop; 1667 struct free_tsb { 1668 struct free_tsb *next; 1669 struct tsb_info *tsbinfop; 1670 }; /* free list of TSBs */ 1671 struct free_tsb *freelist, *last, *next; 1672 1673 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 1674 SFMMU_STAT(sf_swapout); 1675 1676 /* 1677 * There is no way to go from an as to all its translations in sfmmu. 1678 * Here is one of the times when we take the big hit and traverse 1679 * the hash looking for hme_blks to free up. Not only do we free up 1680 * this as hme_blks but all those that are free. We are obviously 1681 * swapping because we need memory so let's free up as much 1682 * as we can. 1683 * 1684 * Note that we don't flush TLB/TSB here -- it's not necessary 1685 * because: 1686 * 1) we free the ctx we're using and throw away the TSB(s); 1687 * 2) processes aren't runnable while being swapped out. 1688 */ 1689 ASSERT(sfmmup != KHATID); 1690 for (i = 0; i <= UHMEHASH_SZ; i++) { 1691 hmebp = &uhme_hash[i]; 1692 SFMMU_HASH_LOCK(hmebp); 1693 hmeblkp = hmebp->hmeblkp; 1694 hblkpa = hmebp->hmeh_nextpa; 1695 prevpa = 0; 1696 pr_hblk = NULL; 1697 while (hmeblkp) { 1698 1699 ASSERT(!hmeblkp->hblk_xhat_bit); 1700 1701 if ((hmeblkp->hblk_tag.htag_id == sfmmup) && 1702 !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) { 1703 (void) sfmmu_hblk_unload(sfmmup, hmeblkp, 1704 (caddr_t)get_hblk_base(hmeblkp), 1705 get_hblk_endaddr(hmeblkp), 1706 NULL, HAT_UNLOAD); 1707 } 1708 nx_hblk = hmeblkp->hblk_next; 1709 nx_pa = hmeblkp->hblk_nextpa; 1710 if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) { 1711 ASSERT(!hmeblkp->hblk_lckcnt); 1712 sfmmu_hblk_hash_rm(hmebp, hmeblkp, 1713 prevpa, pr_hblk); 1714 sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list); 1715 } else { 1716 pr_hblk = hmeblkp; 1717 prevpa = hblkpa; 1718 } 1719 hmeblkp = nx_hblk; 1720 hblkpa = nx_pa; 1721 } 1722 SFMMU_HASH_UNLOCK(hmebp); 1723 } 1724 1725 sfmmu_hblks_list_purge(&list); 1726 1727 /* 1728 * Now free up the ctx so that others can reuse it. 1729 */ 1730 hatlockp = sfmmu_hat_enter(sfmmup); 1731 1732 sfmmu_invalidate_ctx(sfmmup); 1733 1734 /* 1735 * Free TSBs, but not tsbinfos, and set SWAPPED flag. 1736 * If TSBs were never swapped in, just return. 1737 * This implies that we don't support partial swapping 1738 * of TSBs -- either all are swapped out, or none are. 1739 * 1740 * We must hold the HAT lock here to prevent racing with another 1741 * thread trying to unmap TTEs from the TSB or running the post- 1742 * relocator after relocating the TSB's memory. Unfortunately, we 1743 * can't free memory while holding the HAT lock or we could 1744 * deadlock, so we build a list of TSBs to be freed after marking 1745 * the tsbinfos as swapped out and free them after dropping the 1746 * lock. 1747 */ 1748 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) { 1749 sfmmu_hat_exit(hatlockp); 1750 return; 1751 } 1752 1753 SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED); 1754 last = freelist = NULL; 1755 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; 1756 tsbinfop = tsbinfop->tsb_next) { 1757 ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0); 1758 1759 /* 1760 * Cast the TSB into a struct free_tsb and put it on the free 1761 * list. 1762 */ 1763 if (freelist == NULL) { 1764 last = freelist = (struct free_tsb *)tsbinfop->tsb_va; 1765 } else { 1766 last->next = (struct free_tsb *)tsbinfop->tsb_va; 1767 last = last->next; 1768 } 1769 last->next = NULL; 1770 last->tsbinfop = tsbinfop; 1771 tsbinfop->tsb_flags |= TSB_SWAPPED; 1772 /* 1773 * Zero out the TTE to clear the valid bit. 1774 * Note we can't use a value like 0xbad because we want to 1775 * ensure diagnostic bits are NEVER set on TTEs that might 1776 * be loaded. The intent is to catch any invalid access 1777 * to the swapped TSB, such as a thread running with a valid 1778 * context without first calling sfmmu_tsb_swapin() to 1779 * allocate TSB memory. 1780 */ 1781 tsbinfop->tsb_tte.ll = 0; 1782 } 1783 1784 /* Now we can drop the lock and free the TSB memory. */ 1785 sfmmu_hat_exit(hatlockp); 1786 for (; freelist != NULL; freelist = next) { 1787 next = freelist->next; 1788 sfmmu_tsb_free(freelist->tsbinfop); 1789 } 1790 } 1791 1792 /* 1793 * Duplicate the translations of an as into another newas 1794 */ 1795 /* ARGSUSED */ 1796 int 1797 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len, 1798 uint_t flag) 1799 { 1800 ASSERT(hat->sfmmu_xhat_provider == NULL); 1801 ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW)); 1802 1803 if (flag == HAT_DUP_COW) { 1804 panic("hat_dup: HAT_DUP_COW not supported"); 1805 } 1806 return (0); 1807 } 1808 1809 /* 1810 * Set up addr to map to page pp with protection prot. 1811 * As an optimization we also load the TSB with the 1812 * corresponding tte but it is no big deal if the tte gets kicked out. 1813 */ 1814 void 1815 hat_memload(struct hat *hat, caddr_t addr, struct page *pp, 1816 uint_t attr, uint_t flags) 1817 { 1818 tte_t tte; 1819 1820 1821 ASSERT(hat != NULL); 1822 ASSERT(PAGE_LOCKED(pp)); 1823 ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET)); 1824 ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG)); 1825 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR)); 1826 1827 if (PP_ISFREE(pp)) { 1828 panic("hat_memload: loading a mapping to free page %p", 1829 (void *)pp); 1830 } 1831 1832 if (hat->sfmmu_xhat_provider) { 1833 XHAT_MEMLOAD(hat, addr, pp, attr, flags); 1834 return; 1835 } 1836 1837 ASSERT((hat == ksfmmup) || 1838 AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock)); 1839 1840 if (flags & ~SFMMU_LOAD_ALLFLAG) 1841 cmn_err(CE_NOTE, "hat_memload: unsupported flags %d", 1842 flags & ~SFMMU_LOAD_ALLFLAG); 1843 1844 if (hat->sfmmu_rmstat) 1845 hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr); 1846 1847 #if defined(SF_ERRATA_57) 1848 if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) && 1849 (addr < errata57_limit) && (attr & PROT_EXEC) && 1850 !(flags & HAT_LOAD_SHARE)) { 1851 cmn_err(CE_WARN, "hat_memload: illegal attempt to make user " 1852 " page executable"); 1853 attr &= ~PROT_EXEC; 1854 } 1855 #endif 1856 1857 sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K); 1858 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags); 1859 1860 /* 1861 * Check TSB and TLB page sizes. 1862 */ 1863 if ((flags & HAT_LOAD_SHARE) == 0) { 1864 sfmmu_check_page_sizes(hat, 1); 1865 } 1866 } 1867 1868 /* 1869 * hat_devload can be called to map real memory (e.g. 1870 * /dev/kmem) and even though hat_devload will determine pf is 1871 * for memory, it will be unable to get a shared lock on the 1872 * page (because someone else has it exclusively) and will 1873 * pass dp = NULL. If tteload doesn't get a non-NULL 1874 * page pointer it can't cache memory. 1875 */ 1876 void 1877 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn, 1878 uint_t attr, int flags) 1879 { 1880 tte_t tte; 1881 struct page *pp = NULL; 1882 int use_lgpg = 0; 1883 1884 ASSERT(hat != NULL); 1885 1886 if (hat->sfmmu_xhat_provider) { 1887 XHAT_DEVLOAD(hat, addr, len, pfn, attr, flags); 1888 return; 1889 } 1890 1891 ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG)); 1892 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR)); 1893 ASSERT((hat == ksfmmup) || 1894 AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock)); 1895 if (len == 0) 1896 panic("hat_devload: zero len"); 1897 if (flags & ~SFMMU_LOAD_ALLFLAG) 1898 cmn_err(CE_NOTE, "hat_devload: unsupported flags %d", 1899 flags & ~SFMMU_LOAD_ALLFLAG); 1900 1901 #if defined(SF_ERRATA_57) 1902 if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) && 1903 (addr < errata57_limit) && (attr & PROT_EXEC) && 1904 !(flags & HAT_LOAD_SHARE)) { 1905 cmn_err(CE_WARN, "hat_devload: illegal attempt to make user " 1906 " page executable"); 1907 attr &= ~PROT_EXEC; 1908 } 1909 #endif 1910 1911 /* 1912 * If it's a memory page find its pp 1913 */ 1914 if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) { 1915 pp = page_numtopp_nolock(pfn); 1916 if (pp == NULL) { 1917 flags |= HAT_LOAD_NOCONSIST; 1918 } else { 1919 if (PP_ISFREE(pp)) { 1920 panic("hat_memload: loading " 1921 "a mapping to free page %p", 1922 (void *)pp); 1923 } 1924 if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) { 1925 panic("hat_memload: loading a mapping " 1926 "to unlocked relocatable page %p", 1927 (void *)pp); 1928 } 1929 ASSERT(len == MMU_PAGESIZE); 1930 } 1931 } 1932 1933 if (hat->sfmmu_rmstat) 1934 hat_resvstat(len, hat->sfmmu_as, addr); 1935 1936 if (flags & HAT_LOAD_NOCONSIST) { 1937 attr |= SFMMU_UNCACHEVTTE; 1938 use_lgpg = 1; 1939 } 1940 if (!pf_is_memory(pfn)) { 1941 attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC; 1942 use_lgpg = 1; 1943 switch (attr & HAT_ORDER_MASK) { 1944 case HAT_STRICTORDER: 1945 case HAT_UNORDERED_OK: 1946 /* 1947 * we set the side effect bit for all non 1948 * memory mappings unless merging is ok 1949 */ 1950 attr |= SFMMU_SIDEFFECT; 1951 break; 1952 case HAT_MERGING_OK: 1953 case HAT_LOADCACHING_OK: 1954 case HAT_STORECACHING_OK: 1955 break; 1956 default: 1957 panic("hat_devload: bad attr"); 1958 break; 1959 } 1960 } 1961 while (len) { 1962 if (!use_lgpg) { 1963 sfmmu_memtte(&tte, pfn, attr, TTE8K); 1964 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, 1965 flags); 1966 len -= MMU_PAGESIZE; 1967 addr += MMU_PAGESIZE; 1968 pfn++; 1969 continue; 1970 } 1971 /* 1972 * try to use large pages, check va/pa alignments 1973 * Note that 32M/256M page sizes are not (yet) supported. 1974 */ 1975 if ((len >= MMU_PAGESIZE4M) && 1976 !((uintptr_t)addr & MMU_PAGEOFFSET4M) && 1977 !(disable_large_pages & (1 << TTE4M)) && 1978 !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) { 1979 sfmmu_memtte(&tte, pfn, attr, TTE4M); 1980 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, 1981 flags); 1982 len -= MMU_PAGESIZE4M; 1983 addr += MMU_PAGESIZE4M; 1984 pfn += MMU_PAGESIZE4M / MMU_PAGESIZE; 1985 } else if ((len >= MMU_PAGESIZE512K) && 1986 !((uintptr_t)addr & MMU_PAGEOFFSET512K) && 1987 !(disable_large_pages & (1 << TTE512K)) && 1988 !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) { 1989 sfmmu_memtte(&tte, pfn, attr, TTE512K); 1990 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, 1991 flags); 1992 len -= MMU_PAGESIZE512K; 1993 addr += MMU_PAGESIZE512K; 1994 pfn += MMU_PAGESIZE512K / MMU_PAGESIZE; 1995 } else if ((len >= MMU_PAGESIZE64K) && 1996 !((uintptr_t)addr & MMU_PAGEOFFSET64K) && 1997 !(disable_large_pages & (1 << TTE64K)) && 1998 !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) { 1999 sfmmu_memtte(&tte, pfn, attr, TTE64K); 2000 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, 2001 flags); 2002 len -= MMU_PAGESIZE64K; 2003 addr += MMU_PAGESIZE64K; 2004 pfn += MMU_PAGESIZE64K / MMU_PAGESIZE; 2005 } else { 2006 sfmmu_memtte(&tte, pfn, attr, TTE8K); 2007 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, 2008 flags); 2009 len -= MMU_PAGESIZE; 2010 addr += MMU_PAGESIZE; 2011 pfn++; 2012 } 2013 } 2014 2015 /* 2016 * Check TSB and TLB page sizes. 2017 */ 2018 if ((flags & HAT_LOAD_SHARE) == 0) { 2019 sfmmu_check_page_sizes(hat, 1); 2020 } 2021 } 2022 2023 /* 2024 * Map the largest extend possible out of the page array. The array may NOT 2025 * be in order. The largest possible mapping a page can have 2026 * is specified in the p_szc field. The p_szc field 2027 * cannot change as long as there any mappings (large or small) 2028 * to any of the pages that make up the large page. (ie. any 2029 * promotion/demotion of page size is not up to the hat but up to 2030 * the page free list manager). The array 2031 * should consist of properly aligned contigous pages that are 2032 * part of a big page for a large mapping to be created. 2033 */ 2034 void 2035 hat_memload_array(struct hat *hat, caddr_t addr, size_t len, 2036 struct page **pps, uint_t attr, uint_t flags) 2037 { 2038 int ttesz; 2039 size_t mapsz; 2040 pgcnt_t numpg, npgs; 2041 tte_t tte; 2042 page_t *pp; 2043 int large_pages_disable; 2044 2045 ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET)); 2046 2047 if (hat->sfmmu_xhat_provider) { 2048 XHAT_MEMLOAD_ARRAY(hat, addr, len, pps, attr, flags); 2049 return; 2050 } 2051 2052 if (hat->sfmmu_rmstat) 2053 hat_resvstat(len, hat->sfmmu_as, addr); 2054 2055 #if defined(SF_ERRATA_57) 2056 if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) && 2057 (addr < errata57_limit) && (attr & PROT_EXEC) && 2058 !(flags & HAT_LOAD_SHARE)) { 2059 cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make " 2060 "user page executable"); 2061 attr &= ~PROT_EXEC; 2062 } 2063 #endif 2064 2065 /* Get number of pages */ 2066 npgs = len >> MMU_PAGESHIFT; 2067 2068 if (flags & HAT_LOAD_SHARE) { 2069 large_pages_disable = disable_ism_large_pages; 2070 } else { 2071 large_pages_disable = disable_large_pages; 2072 } 2073 2074 if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) { 2075 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs); 2076 return; 2077 } 2078 2079 while (npgs >= NHMENTS) { 2080 pp = *pps; 2081 for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) { 2082 /* 2083 * Check if this page size is disabled. 2084 */ 2085 if (large_pages_disable & (1 << ttesz)) 2086 continue; 2087 2088 numpg = TTEPAGES(ttesz); 2089 mapsz = numpg << MMU_PAGESHIFT; 2090 if ((npgs >= numpg) && 2091 IS_P2ALIGNED(addr, mapsz) && 2092 IS_P2ALIGNED(pp->p_pagenum, numpg)) { 2093 /* 2094 * At this point we have enough pages and 2095 * we know the virtual address and the pfn 2096 * are properly aligned. We still need 2097 * to check for physical contiguity but since 2098 * it is very likely that this is the case 2099 * we will assume they are so and undo 2100 * the request if necessary. It would 2101 * be great if we could get a hint flag 2102 * like HAT_CONTIG which would tell us 2103 * the pages are contigous for sure. 2104 */ 2105 sfmmu_memtte(&tte, (*pps)->p_pagenum, 2106 attr, ttesz); 2107 if (!sfmmu_tteload_array(hat, &tte, addr, 2108 pps, flags)) { 2109 break; 2110 } 2111 } 2112 } 2113 if (ttesz == TTE8K) { 2114 /* 2115 * We were not able to map array using a large page 2116 * batch a hmeblk or fraction at a time. 2117 */ 2118 numpg = ((uintptr_t)addr >> MMU_PAGESHIFT) 2119 & (NHMENTS-1); 2120 numpg = NHMENTS - numpg; 2121 ASSERT(numpg <= npgs); 2122 mapsz = numpg * MMU_PAGESIZE; 2123 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, 2124 numpg); 2125 } 2126 addr += mapsz; 2127 npgs -= numpg; 2128 pps += numpg; 2129 } 2130 2131 if (npgs) { 2132 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs); 2133 } 2134 2135 /* 2136 * Check TSB and TLB page sizes. 2137 */ 2138 if ((flags & HAT_LOAD_SHARE) == 0) { 2139 sfmmu_check_page_sizes(hat, 1); 2140 } 2141 } 2142 2143 /* 2144 * Function tries to batch 8K pages into the same hme blk. 2145 */ 2146 static void 2147 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps, 2148 uint_t attr, uint_t flags, pgcnt_t npgs) 2149 { 2150 tte_t tte; 2151 page_t *pp; 2152 struct hmehash_bucket *hmebp; 2153 struct hme_blk *hmeblkp; 2154 int index; 2155 2156 while (npgs) { 2157 /* 2158 * Acquire the hash bucket. 2159 */ 2160 hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K); 2161 ASSERT(hmebp); 2162 2163 /* 2164 * Find the hment block. 2165 */ 2166 hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr, 2167 TTE8K, flags); 2168 ASSERT(hmeblkp); 2169 2170 do { 2171 /* 2172 * Make the tte. 2173 */ 2174 pp = *pps; 2175 sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K); 2176 2177 /* 2178 * Add the translation. 2179 */ 2180 (void) sfmmu_tteload_addentry(hat, hmeblkp, &tte, 2181 vaddr, pps, flags); 2182 2183 /* 2184 * Goto next page. 2185 */ 2186 pps++; 2187 npgs--; 2188 2189 /* 2190 * Goto next address. 2191 */ 2192 vaddr += MMU_PAGESIZE; 2193 2194 /* 2195 * Don't crossover into a different hmentblk. 2196 */ 2197 index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) & 2198 (NHMENTS-1)); 2199 2200 } while (index != 0 && npgs != 0); 2201 2202 /* 2203 * Release the hash bucket. 2204 */ 2205 2206 sfmmu_tteload_release_hashbucket(hmebp); 2207 } 2208 } 2209 2210 /* 2211 * Construct a tte for a page: 2212 * 2213 * tte_valid = 1 2214 * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only) 2215 * tte_size = size 2216 * tte_nfo = attr & HAT_NOFAULT 2217 * tte_ie = attr & HAT_STRUCTURE_LE 2218 * tte_hmenum = hmenum 2219 * tte_pahi = pp->p_pagenum >> TTE_PASHIFT; 2220 * tte_palo = pp->p_pagenum & TTE_PALOMASK; 2221 * tte_ref = 1 (optimization) 2222 * tte_wr_perm = attr & PROT_WRITE; 2223 * tte_no_sync = attr & HAT_NOSYNC 2224 * tte_lock = attr & SFMMU_LOCKTTE 2225 * tte_cp = !(attr & SFMMU_UNCACHEPTTE) 2226 * tte_cv = !(attr & SFMMU_UNCACHEVTTE) 2227 * tte_e = attr & SFMMU_SIDEFFECT 2228 * tte_priv = !(attr & PROT_USER) 2229 * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt) 2230 * tte_glb = 0 2231 */ 2232 void 2233 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz) 2234 { 2235 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR)); 2236 2237 ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */); 2238 ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */); 2239 2240 if (TTE_IS_NOSYNC(ttep)) { 2241 TTE_SET_REF(ttep); 2242 if (TTE_IS_WRITABLE(ttep)) { 2243 TTE_SET_MOD(ttep); 2244 } 2245 } 2246 if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) { 2247 panic("sfmmu_memtte: can't set both NFO and EXEC bits"); 2248 } 2249 } 2250 2251 /* 2252 * This function will add a translation to the hme_blk and allocate the 2253 * hme_blk if one does not exist. 2254 * If a page structure is specified then it will add the 2255 * corresponding hment to the mapping list. 2256 * It will also update the hmenum field for the tte. 2257 */ 2258 void 2259 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp, 2260 uint_t flags) 2261 { 2262 (void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags); 2263 } 2264 2265 /* 2266 * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB. 2267 * Assumes that a particular page size may only be resident in one TSB. 2268 */ 2269 static void 2270 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz) 2271 { 2272 struct tsb_info *tsbinfop = NULL; 2273 uint64_t tag; 2274 struct tsbe *tsbe_addr; 2275 uint64_t tsb_base; 2276 uint_t tsb_size; 2277 int vpshift = MMU_PAGESHIFT; 2278 int phys = 0; 2279 2280 if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */ 2281 phys = ktsb_phys; 2282 if (ttesz >= TTE4M) { 2283 #ifndef sun4v 2284 ASSERT((ttesz != TTE32M) && (ttesz != TTE256M)); 2285 #endif 2286 tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base; 2287 tsb_size = ktsb4m_szcode; 2288 } else { 2289 tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base; 2290 tsb_size = ktsb_szcode; 2291 } 2292 } else { 2293 SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz); 2294 2295 /* 2296 * If there isn't a TSB for this page size, or the TSB is 2297 * swapped out, there is nothing to do. Note that the latter 2298 * case seems impossible but can occur if hat_pageunload() 2299 * is called on an ISM mapping while the process is swapped 2300 * out. 2301 */ 2302 if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED)) 2303 return; 2304 2305 /* 2306 * If another thread is in the middle of relocating a TSB 2307 * we can't unload the entry so set a flag so that the 2308 * TSB will be flushed before it can be accessed by the 2309 * process. 2310 */ 2311 if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) { 2312 if (ttep == NULL) 2313 tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED; 2314 return; 2315 } 2316 #if defined(UTSB_PHYS) 2317 phys = 1; 2318 tsb_base = (uint64_t)tsbinfop->tsb_pa; 2319 #else 2320 tsb_base = (uint64_t)tsbinfop->tsb_va; 2321 #endif 2322 tsb_size = tsbinfop->tsb_szc; 2323 } 2324 if (ttesz >= TTE4M) 2325 vpshift = MMU_PAGESHIFT4M; 2326 2327 tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size); 2328 tag = sfmmu_make_tsbtag(vaddr); 2329 2330 if (ttep == NULL) { 2331 sfmmu_unload_tsbe(tsbe_addr, tag, phys); 2332 } else { 2333 if (ttesz >= TTE4M) { 2334 SFMMU_STAT(sf_tsb_load4m); 2335 } else { 2336 SFMMU_STAT(sf_tsb_load8k); 2337 } 2338 2339 sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys); 2340 } 2341 } 2342 2343 /* 2344 * Unmap all entries from [start, end) matching the given page size. 2345 * 2346 * This function is used primarily to unmap replicated 64K or 512K entries 2347 * from the TSB that are inserted using the base page size TSB pointer, but 2348 * it may also be called to unmap a range of addresses from the TSB. 2349 */ 2350 void 2351 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz) 2352 { 2353 struct tsb_info *tsbinfop; 2354 uint64_t tag; 2355 struct tsbe *tsbe_addr; 2356 caddr_t vaddr; 2357 uint64_t tsb_base; 2358 int vpshift, vpgsz; 2359 uint_t tsb_size; 2360 int phys = 0; 2361 2362 /* 2363 * Assumptions: 2364 * If ttesz == 8K, 64K or 512K, we walk through the range 8K 2365 * at a time shooting down any valid entries we encounter. 2366 * 2367 * If ttesz >= 4M we walk the range 4M at a time shooting 2368 * down any valid mappings we find. 2369 */ 2370 if (sfmmup == ksfmmup) { 2371 phys = ktsb_phys; 2372 if (ttesz >= TTE4M) { 2373 #ifndef sun4v 2374 ASSERT((ttesz != TTE32M) && (ttesz != TTE256M)); 2375 #endif 2376 tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base; 2377 tsb_size = ktsb4m_szcode; 2378 } else { 2379 tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base; 2380 tsb_size = ktsb_szcode; 2381 } 2382 } else { 2383 SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz); 2384 2385 /* 2386 * If there isn't a TSB for this page size, or the TSB is 2387 * swapped out, there is nothing to do. Note that the latter 2388 * case seems impossible but can occur if hat_pageunload() 2389 * is called on an ISM mapping while the process is swapped 2390 * out. 2391 */ 2392 if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED)) 2393 return; 2394 2395 /* 2396 * If another thread is in the middle of relocating a TSB 2397 * we can't unload the entry so set a flag so that the 2398 * TSB will be flushed before it can be accessed by the 2399 * process. 2400 */ 2401 if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) { 2402 tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED; 2403 return; 2404 } 2405 #if defined(UTSB_PHYS) 2406 phys = 1; 2407 tsb_base = (uint64_t)tsbinfop->tsb_pa; 2408 #else 2409 tsb_base = (uint64_t)tsbinfop->tsb_va; 2410 #endif 2411 tsb_size = tsbinfop->tsb_szc; 2412 } 2413 if (ttesz >= TTE4M) { 2414 vpshift = MMU_PAGESHIFT4M; 2415 vpgsz = MMU_PAGESIZE4M; 2416 } else { 2417 vpshift = MMU_PAGESHIFT; 2418 vpgsz = MMU_PAGESIZE; 2419 } 2420 2421 for (vaddr = start; vaddr < end; vaddr += vpgsz) { 2422 tag = sfmmu_make_tsbtag(vaddr); 2423 tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size); 2424 sfmmu_unload_tsbe(tsbe_addr, tag, phys); 2425 } 2426 } 2427 2428 /* 2429 * Select the optimum TSB size given the number of mappings 2430 * that need to be cached. 2431 */ 2432 static int 2433 sfmmu_select_tsb_szc(pgcnt_t pgcnt) 2434 { 2435 int szc = 0; 2436 2437 #ifdef DEBUG 2438 if (tsb_grow_stress) { 2439 uint32_t randval = (uint32_t)gettick() >> 4; 2440 return (randval % (tsb_max_growsize + 1)); 2441 } 2442 #endif /* DEBUG */ 2443 2444 while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc))) 2445 szc++; 2446 return (szc); 2447 } 2448 2449 /* 2450 * This function will add a translation to the hme_blk and allocate the 2451 * hme_blk if one does not exist. 2452 * If a page structure is specified then it will add the 2453 * corresponding hment to the mapping list. 2454 * It will also update the hmenum field for the tte. 2455 * Furthermore, it attempts to create a large page translation 2456 * for <addr,hat> at page array pps. It assumes addr and first 2457 * pp is correctly aligned. It returns 0 if successful and 1 otherwise. 2458 */ 2459 static int 2460 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr, 2461 page_t **pps, uint_t flags) 2462 { 2463 struct hmehash_bucket *hmebp; 2464 struct hme_blk *hmeblkp; 2465 int ret; 2466 uint_t size; 2467 2468 /* 2469 * Get mapping size. 2470 */ 2471 size = TTE_CSZ(ttep); 2472 ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size))); 2473 2474 /* 2475 * Acquire the hash bucket. 2476 */ 2477 hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size); 2478 ASSERT(hmebp); 2479 2480 /* 2481 * Find the hment block. 2482 */ 2483 hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags); 2484 ASSERT(hmeblkp); 2485 2486 /* 2487 * Add the translation. 2488 */ 2489 ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags); 2490 2491 /* 2492 * Release the hash bucket. 2493 */ 2494 sfmmu_tteload_release_hashbucket(hmebp); 2495 2496 return (ret); 2497 } 2498 2499 /* 2500 * Function locks and returns a pointer to the hash bucket for vaddr and size. 2501 */ 2502 static struct hmehash_bucket * 2503 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size) 2504 { 2505 struct hmehash_bucket *hmebp; 2506 int hmeshift; 2507 2508 hmeshift = HME_HASH_SHIFT(size); 2509 2510 hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift); 2511 2512 SFMMU_HASH_LOCK(hmebp); 2513 2514 return (hmebp); 2515 } 2516 2517 /* 2518 * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the 2519 * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is 2520 * allocated. 2521 */ 2522 static struct hme_blk * 2523 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp, 2524 caddr_t vaddr, uint_t size, uint_t flags) 2525 { 2526 hmeblk_tag hblktag; 2527 int hmeshift; 2528 struct hme_blk *hmeblkp, *pr_hblk, *list = NULL; 2529 uint64_t hblkpa, prevpa; 2530 struct kmem_cache *sfmmu_cache; 2531 uint_t forcefree; 2532 2533 hblktag.htag_id = sfmmup; 2534 hmeshift = HME_HASH_SHIFT(size); 2535 hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift); 2536 hblktag.htag_rehash = HME_HASH_REHASH(size); 2537 2538 ttearray_realloc: 2539 2540 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, 2541 pr_hblk, prevpa, &list); 2542 2543 /* 2544 * We block until hblk_reserve_lock is released; it's held by 2545 * the thread, temporarily using hblk_reserve, until hblk_reserve is 2546 * replaced by a hblk from sfmmu8_cache. 2547 */ 2548 if (hmeblkp == (struct hme_blk *)hblk_reserve && 2549 hblk_reserve_thread != curthread) { 2550 SFMMU_HASH_UNLOCK(hmebp); 2551 mutex_enter(&hblk_reserve_lock); 2552 mutex_exit(&hblk_reserve_lock); 2553 SFMMU_STAT(sf_hblk_reserve_hit); 2554 SFMMU_HASH_LOCK(hmebp); 2555 goto ttearray_realloc; 2556 } 2557 2558 if (hmeblkp == NULL) { 2559 hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size, 2560 hblktag, flags); 2561 } else { 2562 /* 2563 * It is possible for 8k and 64k hblks to collide since they 2564 * have the same rehash value. This is because we 2565 * lazily free hblks and 8K/64K blks could be lingering. 2566 * If we find size mismatch we free the block and & try again. 2567 */ 2568 if (get_hblk_ttesz(hmeblkp) != size) { 2569 ASSERT(!hmeblkp->hblk_vcnt); 2570 ASSERT(!hmeblkp->hblk_hmecnt); 2571 sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk); 2572 sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list); 2573 goto ttearray_realloc; 2574 } 2575 if (hmeblkp->hblk_shw_bit) { 2576 /* 2577 * if the hblk was previously used as a shadow hblk then 2578 * we will change it to a normal hblk 2579 */ 2580 if (hmeblkp->hblk_shw_mask) { 2581 sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp); 2582 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 2583 goto ttearray_realloc; 2584 } else { 2585 hmeblkp->hblk_shw_bit = 0; 2586 } 2587 } 2588 SFMMU_STAT(sf_hblk_hit); 2589 } 2590 2591 /* 2592 * hat_memload() should never call kmem_cache_free(); see block 2593 * comment showing the stacktrace in sfmmu_hblk_alloc(); 2594 * enqueue each hblk in the list to reserve list if it's created 2595 * from sfmmu8_cache *and* sfmmup == KHATID. 2596 */ 2597 forcefree = (sfmmup == KHATID) ? 1 : 0; 2598 while ((pr_hblk = list) != NULL) { 2599 list = pr_hblk->hblk_next; 2600 sfmmu_cache = get_hblk_cache(pr_hblk); 2601 if ((sfmmu_cache == sfmmu8_cache) && 2602 sfmmu_put_free_hblk(pr_hblk, forcefree)) 2603 continue; 2604 2605 ASSERT(sfmmup != KHATID); 2606 kmem_cache_free(sfmmu_cache, pr_hblk); 2607 } 2608 2609 ASSERT(get_hblk_ttesz(hmeblkp) == size); 2610 ASSERT(!hmeblkp->hblk_shw_bit); 2611 2612 return (hmeblkp); 2613 } 2614 2615 /* 2616 * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1 2617 * otherwise. 2618 */ 2619 static int 2620 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep, 2621 caddr_t vaddr, page_t **pps, uint_t flags) 2622 { 2623 page_t *pp = *pps; 2624 int hmenum, size, remap; 2625 tte_t tteold, flush_tte; 2626 #ifdef DEBUG 2627 tte_t orig_old; 2628 #endif /* DEBUG */ 2629 struct sf_hment *sfhme; 2630 kmutex_t *pml, *pmtx; 2631 hatlock_t *hatlockp; 2632 2633 /* 2634 * remove this panic when we decide to let user virtual address 2635 * space be >= USERLIMIT. 2636 */ 2637 if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT) 2638 panic("user addr %p in kernel space", vaddr); 2639 #if defined(TTE_IS_GLOBAL) 2640 if (TTE_IS_GLOBAL(ttep)) 2641 panic("sfmmu_tteload: creating global tte"); 2642 #endif 2643 2644 #ifdef DEBUG 2645 if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) && 2646 !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans) 2647 panic("sfmmu_tteload: non cacheable memory tte"); 2648 #endif /* DEBUG */ 2649 2650 if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) || 2651 !TTE_IS_MOD(ttep)) { 2652 /* 2653 * Don't load TSB for dummy as in ISM. Also don't preload 2654 * the TSB if the TTE isn't writable since we're likely to 2655 * fault on it again -- preloading can be fairly expensive. 2656 */ 2657 flags |= SFMMU_NO_TSBLOAD; 2658 } 2659 2660 size = TTE_CSZ(ttep); 2661 switch (size) { 2662 case TTE8K: 2663 SFMMU_STAT(sf_tteload8k); 2664 break; 2665 case TTE64K: 2666 SFMMU_STAT(sf_tteload64k); 2667 break; 2668 case TTE512K: 2669 SFMMU_STAT(sf_tteload512k); 2670 break; 2671 case TTE4M: 2672 SFMMU_STAT(sf_tteload4m); 2673 break; 2674 case (TTE32M): 2675 SFMMU_STAT(sf_tteload32m); 2676 ASSERT(mmu_page_sizes == max_mmu_page_sizes); 2677 break; 2678 case (TTE256M): 2679 SFMMU_STAT(sf_tteload256m); 2680 ASSERT(mmu_page_sizes == max_mmu_page_sizes); 2681 break; 2682 } 2683 2684 ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size))); 2685 2686 HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum); 2687 2688 /* 2689 * Need to grab mlist lock here so that pageunload 2690 * will not change tte behind us. 2691 */ 2692 if (pp) { 2693 pml = sfmmu_mlist_enter(pp); 2694 } 2695 2696 sfmmu_copytte(&sfhme->hme_tte, &tteold); 2697 /* 2698 * Look for corresponding hment and if valid verify 2699 * pfns are equal. 2700 */ 2701 remap = TTE_IS_VALID(&tteold); 2702 if (remap) { 2703 pfn_t new_pfn, old_pfn; 2704 2705 old_pfn = TTE_TO_PFN(vaddr, &tteold); 2706 new_pfn = TTE_TO_PFN(vaddr, ttep); 2707 2708 if (flags & HAT_LOAD_REMAP) { 2709 /* make sure we are remapping same type of pages */ 2710 if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) { 2711 panic("sfmmu_tteload - tte remap io<->memory"); 2712 } 2713 if (old_pfn != new_pfn && 2714 (pp != NULL || sfhme->hme_page != NULL)) { 2715 panic("sfmmu_tteload - tte remap pp != NULL"); 2716 } 2717 } else if (old_pfn != new_pfn) { 2718 panic("sfmmu_tteload - tte remap, hmeblkp 0x%p", 2719 (void *)hmeblkp); 2720 } 2721 ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep)); 2722 } 2723 2724 if (pp) { 2725 if (size == TTE8K) { 2726 /* 2727 * Handle VAC consistency 2728 */ 2729 if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) { 2730 sfmmu_vac_conflict(sfmmup, vaddr, pp); 2731 } 2732 2733 if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) { 2734 pmtx = sfmmu_page_enter(pp); 2735 PP_CLRRO(pp); 2736 sfmmu_page_exit(pmtx); 2737 } else if (!PP_ISMAPPED(pp) && 2738 (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) { 2739 pmtx = sfmmu_page_enter(pp); 2740 if (!(PP_ISMOD(pp))) { 2741 PP_SETRO(pp); 2742 } 2743 sfmmu_page_exit(pmtx); 2744 } 2745 2746 } else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) { 2747 /* 2748 * sfmmu_pagearray_setup failed so return 2749 */ 2750 sfmmu_mlist_exit(pml); 2751 return (1); 2752 } 2753 } 2754 2755 /* 2756 * Make sure hment is not on a mapping list. 2757 */ 2758 ASSERT(remap || (sfhme->hme_page == NULL)); 2759 2760 /* if it is not a remap then hme->next better be NULL */ 2761 ASSERT((!remap) ? sfhme->hme_next == NULL : 1); 2762 2763 if (flags & HAT_LOAD_LOCK) { 2764 if (((int)hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) { 2765 panic("too high lckcnt-hmeblk %p", 2766 (void *)hmeblkp); 2767 } 2768 atomic_add_16(&hmeblkp->hblk_lckcnt, 1); 2769 2770 HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK); 2771 } 2772 2773 if (pp && PP_ISNC(pp)) { 2774 /* 2775 * If the physical page is marked to be uncacheable, like 2776 * by a vac conflict, make sure the new mapping is also 2777 * uncacheable. 2778 */ 2779 TTE_CLR_VCACHEABLE(ttep); 2780 ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR); 2781 } 2782 ttep->tte_hmenum = hmenum; 2783 2784 #ifdef DEBUG 2785 orig_old = tteold; 2786 #endif /* DEBUG */ 2787 2788 while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) { 2789 if ((sfmmup == KHATID) && 2790 (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) { 2791 sfmmu_copytte(&sfhme->hme_tte, &tteold); 2792 } 2793 #ifdef DEBUG 2794 chk_tte(&orig_old, &tteold, ttep, hmeblkp); 2795 #endif /* DEBUG */ 2796 } 2797 2798 if (!TTE_IS_VALID(&tteold)) { 2799 2800 atomic_add_16(&hmeblkp->hblk_vcnt, 1); 2801 atomic_add_long(&sfmmup->sfmmu_ttecnt[size], 1); 2802 2803 /* 2804 * HAT_RELOAD_SHARE has been deprecated with lpg DISM. 2805 */ 2806 2807 if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 && 2808 sfmmup != ksfmmup) { 2809 /* 2810 * If this is the first large mapping for the process 2811 * we must force any CPUs running this process to TL=0 2812 * where they will reload the HAT flags from the 2813 * tsbmiss area. This is necessary to make the large 2814 * mappings we are about to load visible to those CPUs; 2815 * otherwise they'll loop forever calling pagefault() 2816 * since we don't search large hash chains by default. 2817 */ 2818 hatlockp = sfmmu_hat_enter(sfmmup); 2819 if (size == TTE512K && 2820 !SFMMU_FLAGS_ISSET(sfmmup, HAT_512K_FLAG)) { 2821 SFMMU_FLAGS_SET(sfmmup, HAT_512K_FLAG); 2822 sfmmu_sync_mmustate(sfmmup); 2823 } else if (size == TTE4M && 2824 !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) { 2825 SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG); 2826 sfmmu_sync_mmustate(sfmmup); 2827 } else if (size == TTE64K && 2828 !SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG)) { 2829 SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG); 2830 /* no sync mmustate; 64K shares 8K hashes */ 2831 } else if (mmu_page_sizes == max_mmu_page_sizes) { 2832 if (size == TTE32M && 2833 !SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) { 2834 SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG); 2835 sfmmu_sync_mmustate(sfmmup); 2836 } else if (size == TTE256M && 2837 !SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) { 2838 SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG); 2839 sfmmu_sync_mmustate(sfmmup); 2840 } 2841 } 2842 if (size >= TTE4M && (flags & HAT_LOAD_TEXT) && 2843 !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) { 2844 SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG); 2845 } 2846 sfmmu_hat_exit(hatlockp); 2847 } 2848 } 2849 ASSERT(TTE_IS_VALID(&sfhme->hme_tte)); 2850 2851 flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) & 2852 hw_tte.tte_intlo; 2853 flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) & 2854 hw_tte.tte_inthi; 2855 2856 if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) { 2857 /* 2858 * If remap and new tte differs from old tte we need 2859 * to sync the mod bit and flush TLB/TSB. We don't 2860 * need to sync ref bit because we currently always set 2861 * ref bit in tteload. 2862 */ 2863 ASSERT(TTE_IS_REF(ttep)); 2864 if (TTE_IS_MOD(&tteold)) { 2865 sfmmu_ttesync(sfmmup, vaddr, &tteold, pp); 2866 } 2867 sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0); 2868 xt_sync(sfmmup->sfmmu_cpusran); 2869 } 2870 2871 if ((flags & SFMMU_NO_TSBLOAD) == 0) { 2872 /* 2873 * We only preload 8K and 4M mappings into the TSB, since 2874 * 64K and 512K mappings are replicated and hence don't 2875 * have a single, unique TSB entry. Ditto for 32M/256M. 2876 */ 2877 if (size == TTE8K || size == TTE4M) { 2878 hatlockp = sfmmu_hat_enter(sfmmup); 2879 sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte, size); 2880 sfmmu_hat_exit(hatlockp); 2881 } 2882 } 2883 if (pp) { 2884 if (!remap) { 2885 HME_ADD(sfhme, pp); 2886 atomic_add_16(&hmeblkp->hblk_hmecnt, 1); 2887 ASSERT(hmeblkp->hblk_hmecnt > 0); 2888 2889 /* 2890 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS) 2891 * see pageunload() for comment. 2892 */ 2893 } 2894 sfmmu_mlist_exit(pml); 2895 } 2896 2897 return (0); 2898 } 2899 /* 2900 * Function unlocks hash bucket. 2901 */ 2902 static void 2903 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp) 2904 { 2905 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 2906 SFMMU_HASH_UNLOCK(hmebp); 2907 } 2908 2909 /* 2910 * function which checks and sets up page array for a large 2911 * translation. Will set p_vcolor, p_index, p_ro fields. 2912 * Assumes addr and pfnum of first page are properly aligned. 2913 * Will check for physical contiguity. If check fails it return 2914 * non null. 2915 */ 2916 static int 2917 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap) 2918 { 2919 int i, index, ttesz, osz; 2920 pfn_t pfnum; 2921 pgcnt_t npgs; 2922 int cflags = 0; 2923 page_t *pp, *pp1; 2924 kmutex_t *pmtx; 2925 int vac_err = 0; 2926 int newidx = 0; 2927 2928 ttesz = TTE_CSZ(ttep); 2929 2930 ASSERT(ttesz > TTE8K); 2931 2932 npgs = TTEPAGES(ttesz); 2933 index = PAGESZ_TO_INDEX(ttesz); 2934 2935 pfnum = (*pps)->p_pagenum; 2936 ASSERT(IS_P2ALIGNED(pfnum, npgs)); 2937 2938 /* 2939 * Save the first pp so we can do HAT_TMPNC at the end. 2940 */ 2941 pp1 = *pps; 2942 osz = fnd_mapping_sz(pp1); 2943 2944 for (i = 0; i < npgs; i++, pps++) { 2945 pp = *pps; 2946 ASSERT(PAGE_LOCKED(pp)); 2947 ASSERT(pp->p_szc >= ttesz); 2948 ASSERT(pp->p_szc == pp1->p_szc); 2949 ASSERT(sfmmu_mlist_held(pp)); 2950 2951 /* 2952 * XXX is it possible to maintain P_RO on the root only? 2953 */ 2954 if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) { 2955 pmtx = sfmmu_page_enter(pp); 2956 PP_CLRRO(pp); 2957 sfmmu_page_exit(pmtx); 2958 } else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) && 2959 !PP_ISMOD(pp)) { 2960 pmtx = sfmmu_page_enter(pp); 2961 if (!(PP_ISMOD(pp))) { 2962 PP_SETRO(pp); 2963 } 2964 sfmmu_page_exit(pmtx); 2965 } 2966 2967 /* 2968 * If this is a remap we skip vac & contiguity checks. 2969 */ 2970 if (remap) 2971 continue; 2972 2973 /* 2974 * set p_vcolor and detect any vac conflicts. 2975 */ 2976 if (vac_err == 0) { 2977 vac_err = sfmmu_vacconflict_array(addr, pp, &cflags); 2978 2979 } 2980 2981 /* 2982 * Save current index in case we need to undo it. 2983 * Note: "PAGESZ_TO_INDEX(sz) (1 << (sz))" 2984 * "SFMMU_INDEX_SHIFT 6" 2985 * "SFMMU_INDEX_MASK ((1 << SFMMU_INDEX_SHIFT) - 1)" 2986 * "PP_MAPINDEX(p_index) (p_index & SFMMU_INDEX_MASK)" 2987 * 2988 * So: index = PAGESZ_TO_INDEX(ttesz); 2989 * if ttesz == 1 then index = 0x2 2990 * 2 then index = 0x4 2991 * 3 then index = 0x8 2992 * 4 then index = 0x10 2993 * 5 then index = 0x20 2994 * The code below checks if it's a new pagesize (ie, newidx) 2995 * in case we need to take it back out of p_index, 2996 * and then or's the new index into the existing index. 2997 */ 2998 if ((PP_MAPINDEX(pp) & index) == 0) 2999 newidx = 1; 3000 pp->p_index = (PP_MAPINDEX(pp) | index); 3001 3002 /* 3003 * contiguity check 3004 */ 3005 if (pp->p_pagenum != pfnum) { 3006 /* 3007 * If we fail the contiguity test then 3008 * the only thing we need to fix is the p_index field. 3009 * We might get a few extra flushes but since this 3010 * path is rare that is ok. The p_ro field will 3011 * get automatically fixed on the next tteload to 3012 * the page. NO TNC bit is set yet. 3013 */ 3014 while (i >= 0) { 3015 pp = *pps; 3016 if (newidx) 3017 pp->p_index = (PP_MAPINDEX(pp) & 3018 ~index); 3019 pps--; 3020 i--; 3021 } 3022 return (1); 3023 } 3024 pfnum++; 3025 addr += MMU_PAGESIZE; 3026 } 3027 3028 if (vac_err) { 3029 if (ttesz > osz) { 3030 /* 3031 * There are some smaller mappings that causes vac 3032 * conflicts. Convert all existing small mappings to 3033 * TNC. 3034 */ 3035 SFMMU_STAT_ADD(sf_uncache_conflict, npgs); 3036 sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH, 3037 npgs); 3038 } else { 3039 /* EMPTY */ 3040 /* 3041 * If there exists an big page mapping, 3042 * that means the whole existing big page 3043 * has TNC setting already. No need to covert to 3044 * TNC again. 3045 */ 3046 ASSERT(PP_ISTNC(pp1)); 3047 } 3048 } 3049 3050 return (0); 3051 } 3052 3053 /* 3054 * Routine that detects vac consistency for a large page. It also 3055 * sets virtual color for all pp's for this big mapping. 3056 */ 3057 static int 3058 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags) 3059 { 3060 int vcolor, ocolor; 3061 3062 ASSERT(sfmmu_mlist_held(pp)); 3063 3064 if (PP_ISNC(pp)) { 3065 return (HAT_TMPNC); 3066 } 3067 3068 vcolor = addr_to_vcolor(addr); 3069 if (PP_NEWPAGE(pp)) { 3070 PP_SET_VCOLOR(pp, vcolor); 3071 return (0); 3072 } 3073 3074 ocolor = PP_GET_VCOLOR(pp); 3075 if (ocolor == vcolor) { 3076 return (0); 3077 } 3078 3079 if (!PP_ISMAPPED(pp)) { 3080 /* 3081 * Previous user of page had a differnet color 3082 * but since there are no current users 3083 * we just flush the cache and change the color. 3084 * As an optimization for large pages we flush the 3085 * entire cache of that color and set a flag. 3086 */ 3087 SFMMU_STAT(sf_pgcolor_conflict); 3088 if (!CacheColor_IsFlushed(*cflags, ocolor)) { 3089 CacheColor_SetFlushed(*cflags, ocolor); 3090 sfmmu_cache_flushcolor(ocolor, pp->p_pagenum); 3091 } 3092 PP_SET_VCOLOR(pp, vcolor); 3093 return (0); 3094 } 3095 3096 /* 3097 * We got a real conflict with a current mapping. 3098 * set flags to start unencaching all mappings 3099 * and return failure so we restart looping 3100 * the pp array from the beginning. 3101 */ 3102 return (HAT_TMPNC); 3103 } 3104 3105 /* 3106 * creates a large page shadow hmeblk for a tte. 3107 * The purpose of this routine is to allow us to do quick unloads because 3108 * the vm layer can easily pass a very large but sparsely populated range. 3109 */ 3110 static struct hme_blk * 3111 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags) 3112 { 3113 struct hmehash_bucket *hmebp; 3114 hmeblk_tag hblktag; 3115 int hmeshift, size, vshift; 3116 uint_t shw_mask, newshw_mask; 3117 struct hme_blk *hmeblkp; 3118 3119 ASSERT(sfmmup != KHATID); 3120 if (mmu_page_sizes == max_mmu_page_sizes) { 3121 ASSERT(ttesz < TTE256M); 3122 } else { 3123 ASSERT(ttesz < TTE4M); 3124 ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0); 3125 ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0); 3126 } 3127 3128 if (ttesz == TTE8K) { 3129 size = TTE512K; 3130 } else { 3131 size = ++ttesz; 3132 } 3133 3134 hblktag.htag_id = sfmmup; 3135 hmeshift = HME_HASH_SHIFT(size); 3136 hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift); 3137 hblktag.htag_rehash = HME_HASH_REHASH(size); 3138 hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift); 3139 3140 SFMMU_HASH_LOCK(hmebp); 3141 3142 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp); 3143 ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve); 3144 if (hmeblkp == NULL) { 3145 hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size, 3146 hblktag, flags); 3147 } 3148 ASSERT(hmeblkp); 3149 if (!hmeblkp->hblk_shw_mask) { 3150 /* 3151 * if this is a unused hblk it was just allocated or could 3152 * potentially be a previous large page hblk so we need to 3153 * set the shadow bit. 3154 */ 3155 hmeblkp->hblk_shw_bit = 1; 3156 } 3157 ASSERT(hmeblkp->hblk_shw_bit == 1); 3158 vshift = vaddr_to_vshift(hblktag, vaddr, size); 3159 ASSERT(vshift < 8); 3160 /* 3161 * Atomically set shw mask bit 3162 */ 3163 do { 3164 shw_mask = hmeblkp->hblk_shw_mask; 3165 newshw_mask = shw_mask | (1 << vshift); 3166 newshw_mask = cas32(&hmeblkp->hblk_shw_mask, shw_mask, 3167 newshw_mask); 3168 } while (newshw_mask != shw_mask); 3169 3170 SFMMU_HASH_UNLOCK(hmebp); 3171 3172 return (hmeblkp); 3173 } 3174 3175 /* 3176 * This routine cleanup a previous shadow hmeblk and changes it to 3177 * a regular hblk. This happens rarely but it is possible 3178 * when a process wants to use large pages and there are hblks still 3179 * lying around from the previous as that used these hmeblks. 3180 * The alternative was to cleanup the shadow hblks at unload time 3181 * but since so few user processes actually use large pages, it is 3182 * better to be lazy and cleanup at this time. 3183 */ 3184 static void 3185 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, 3186 struct hmehash_bucket *hmebp) 3187 { 3188 caddr_t addr, endaddr; 3189 int hashno, size; 3190 3191 ASSERT(hmeblkp->hblk_shw_bit); 3192 3193 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 3194 3195 if (!hmeblkp->hblk_shw_mask) { 3196 hmeblkp->hblk_shw_bit = 0; 3197 return; 3198 } 3199 addr = (caddr_t)get_hblk_base(hmeblkp); 3200 endaddr = get_hblk_endaddr(hmeblkp); 3201 size = get_hblk_ttesz(hmeblkp); 3202 hashno = size - 1; 3203 ASSERT(hashno > 0); 3204 SFMMU_HASH_UNLOCK(hmebp); 3205 3206 sfmmu_free_hblks(sfmmup, addr, endaddr, hashno); 3207 3208 SFMMU_HASH_LOCK(hmebp); 3209 } 3210 3211 static void 3212 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr, 3213 int hashno) 3214 { 3215 int hmeshift, shadow = 0; 3216 hmeblk_tag hblktag; 3217 struct hmehash_bucket *hmebp; 3218 struct hme_blk *hmeblkp; 3219 struct hme_blk *nx_hblk, *pr_hblk, *list = NULL; 3220 uint64_t hblkpa, prevpa, nx_pa; 3221 3222 ASSERT(hashno > 0); 3223 hblktag.htag_id = sfmmup; 3224 hblktag.htag_rehash = hashno; 3225 3226 hmeshift = HME_HASH_SHIFT(hashno); 3227 3228 while (addr < endaddr) { 3229 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 3230 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 3231 SFMMU_HASH_LOCK(hmebp); 3232 /* inline HME_HASH_SEARCH */ 3233 hmeblkp = hmebp->hmeblkp; 3234 hblkpa = hmebp->hmeh_nextpa; 3235 prevpa = 0; 3236 pr_hblk = NULL; 3237 while (hmeblkp) { 3238 ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp)); 3239 if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) { 3240 /* found hme_blk */ 3241 if (hmeblkp->hblk_shw_bit) { 3242 if (hmeblkp->hblk_shw_mask) { 3243 shadow = 1; 3244 sfmmu_shadow_hcleanup(sfmmup, 3245 hmeblkp, hmebp); 3246 break; 3247 } else { 3248 hmeblkp->hblk_shw_bit = 0; 3249 } 3250 } 3251 3252 /* 3253 * Hblk_hmecnt and hblk_vcnt could be non zero 3254 * since hblk_unload() does not gurantee that. 3255 * 3256 * XXX - this could cause tteload() to spin 3257 * where sfmmu_shadow_hcleanup() is called. 3258 */ 3259 } 3260 3261 nx_hblk = hmeblkp->hblk_next; 3262 nx_pa = hmeblkp->hblk_nextpa; 3263 if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) { 3264 sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, 3265 pr_hblk); 3266 sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list); 3267 } else { 3268 pr_hblk = hmeblkp; 3269 prevpa = hblkpa; 3270 } 3271 hmeblkp = nx_hblk; 3272 hblkpa = nx_pa; 3273 } 3274 3275 SFMMU_HASH_UNLOCK(hmebp); 3276 3277 if (shadow) { 3278 /* 3279 * We found another shadow hblk so cleaned its 3280 * children. We need to go back and cleanup 3281 * the original hblk so we don't change the 3282 * addr. 3283 */ 3284 shadow = 0; 3285 } else { 3286 addr = (caddr_t)roundup((uintptr_t)addr + 1, 3287 (1 << hmeshift)); 3288 } 3289 } 3290 sfmmu_hblks_list_purge(&list); 3291 } 3292 3293 /* 3294 * Release one hardware address translation lock on the given address range. 3295 */ 3296 void 3297 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len) 3298 { 3299 struct hmehash_bucket *hmebp; 3300 hmeblk_tag hblktag; 3301 int hmeshift, hashno = 1; 3302 struct hme_blk *hmeblkp, *list = NULL; 3303 caddr_t endaddr; 3304 3305 ASSERT(sfmmup != NULL); 3306 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 3307 3308 ASSERT((sfmmup == ksfmmup) || 3309 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 3310 ASSERT((len & MMU_PAGEOFFSET) == 0); 3311 endaddr = addr + len; 3312 hblktag.htag_id = sfmmup; 3313 3314 /* 3315 * Spitfire supports 4 page sizes. 3316 * Most pages are expected to be of the smallest page size (8K) and 3317 * these will not need to be rehashed. 64K pages also don't need to be 3318 * rehashed because an hmeblk spans 64K of address space. 512K pages 3319 * might need 1 rehash and and 4M pages might need 2 rehashes. 3320 */ 3321 while (addr < endaddr) { 3322 hmeshift = HME_HASH_SHIFT(hashno); 3323 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 3324 hblktag.htag_rehash = hashno; 3325 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 3326 3327 SFMMU_HASH_LOCK(hmebp); 3328 3329 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list); 3330 if (hmeblkp != NULL) { 3331 /* 3332 * If we encounter a shadow hmeblk then 3333 * we know there are no valid hmeblks mapping 3334 * this address at this size or larger. 3335 * Just increment address by the smallest 3336 * page size. 3337 */ 3338 if (hmeblkp->hblk_shw_bit) { 3339 addr += MMU_PAGESIZE; 3340 } else { 3341 addr = sfmmu_hblk_unlock(hmeblkp, addr, 3342 endaddr); 3343 } 3344 SFMMU_HASH_UNLOCK(hmebp); 3345 hashno = 1; 3346 continue; 3347 } 3348 SFMMU_HASH_UNLOCK(hmebp); 3349 3350 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) { 3351 /* 3352 * We have traversed the whole list and rehashed 3353 * if necessary without finding the address to unlock 3354 * which should never happen. 3355 */ 3356 panic("sfmmu_unlock: addr not found. " 3357 "addr %p hat %p", (void *)addr, (void *)sfmmup); 3358 } else { 3359 hashno++; 3360 } 3361 } 3362 3363 sfmmu_hblks_list_purge(&list); 3364 } 3365 3366 /* 3367 * Function to unlock a range of addresses in an hmeblk. It returns the 3368 * next address that needs to be unlocked. 3369 * Should be called with the hash lock held. 3370 */ 3371 static caddr_t 3372 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr) 3373 { 3374 struct sf_hment *sfhme; 3375 tte_t tteold, ttemod; 3376 int ttesz, ret; 3377 3378 ASSERT(in_hblk_range(hmeblkp, addr)); 3379 ASSERT(hmeblkp->hblk_shw_bit == 0); 3380 3381 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp)); 3382 ttesz = get_hblk_ttesz(hmeblkp); 3383 3384 HBLKTOHME(sfhme, hmeblkp, addr); 3385 while (addr < endaddr) { 3386 readtte: 3387 sfmmu_copytte(&sfhme->hme_tte, &tteold); 3388 if (TTE_IS_VALID(&tteold)) { 3389 3390 ttemod = tteold; 3391 3392 ret = sfmmu_modifytte_try(&tteold, &ttemod, 3393 &sfhme->hme_tte); 3394 3395 if (ret < 0) 3396 goto readtte; 3397 3398 if (hmeblkp->hblk_lckcnt == 0) 3399 panic("zero hblk lckcnt"); 3400 3401 if (((uintptr_t)addr + TTEBYTES(ttesz)) > 3402 (uintptr_t)endaddr) 3403 panic("can't unlock large tte"); 3404 3405 ASSERT(hmeblkp->hblk_lckcnt > 0); 3406 atomic_add_16(&hmeblkp->hblk_lckcnt, -1); 3407 HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK); 3408 } else { 3409 panic("sfmmu_hblk_unlock: invalid tte"); 3410 } 3411 addr += TTEBYTES(ttesz); 3412 sfhme++; 3413 } 3414 return (addr); 3415 } 3416 3417 /* 3418 * Physical Address Mapping Framework 3419 * 3420 * General rules: 3421 * 3422 * (1) Applies only to seg_kmem memory pages. To make things easier, 3423 * seg_kpm addresses are also accepted by the routines, but nothing 3424 * is done with them since by definition their PA mappings are static. 3425 * (2) hat_add_callback() may only be called while holding the page lock 3426 * SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()), 3427 * or passing HAC_PAGELOCK flag. 3428 * (3) prehandler() and posthandler() may not call hat_add_callback() or 3429 * hat_delete_callback(), nor should they allocate memory. Post quiesce 3430 * callbacks may not sleep or acquire adaptive mutex locks. 3431 * (4) Either prehandler() or posthandler() (but not both) may be specified 3432 * as being NULL. Specifying an errhandler() is optional. 3433 * 3434 * Details of using the framework: 3435 * 3436 * registering a callback (hat_register_callback()) 3437 * 3438 * Pass prehandler, posthandler, errhandler addresses 3439 * as described below. If capture_cpus argument is nonzero, 3440 * suspend callback to the prehandler will occur with CPUs 3441 * captured and executing xc_loop() and CPUs will remain 3442 * captured until after the posthandler suspend callback 3443 * occurs. 3444 * 3445 * adding a callback (hat_add_callback()) 3446 * 3447 * as_pagelock(); 3448 * hat_add_callback(); 3449 * save returned pfn in private data structures or program registers; 3450 * as_pageunlock(); 3451 * 3452 * prehandler() 3453 * 3454 * Stop all accesses by physical address to this memory page. 3455 * Called twice: the first, PRESUSPEND, is a context safe to acquire 3456 * adaptive locks. The second, SUSPEND, is called at high PIL with 3457 * CPUs captured so adaptive locks may NOT be acquired (and all spin 3458 * locks must be XCALL_PIL or higher locks). 3459 * 3460 * May return the following errors: 3461 * EIO: A fatal error has occurred. This will result in panic. 3462 * EAGAIN: The page cannot be suspended. This will fail the 3463 * relocation. 3464 * 0: Success. 3465 * 3466 * posthandler() 3467 * 3468 * Save new pfn in private data structures or program registers; 3469 * not allowed to fail (non-zero return values will result in panic). 3470 * 3471 * errhandler() 3472 * 3473 * called when an error occurs related to the callback. Currently 3474 * the only such error is HAT_CB_ERR_LEAKED which indicates that 3475 * a page is being freed, but there are still outstanding callback(s) 3476 * registered on the page. 3477 * 3478 * removing a callback (hat_delete_callback(); e.g., prior to freeing memory) 3479 * 3480 * stop using physical address 3481 * hat_delete_callback(); 3482 * 3483 */ 3484 3485 /* 3486 * Register a callback class. Each subsystem should do this once and 3487 * cache the id_t returned for use in setting up and tearing down callbacks. 3488 * 3489 * There is no facility for removing callback IDs once they are created; 3490 * the "key" should be unique for each module, so in case a module is unloaded 3491 * and subsequently re-loaded, we can recycle the module's previous entry. 3492 */ 3493 id_t 3494 hat_register_callback(int key, 3495 int (*prehandler)(caddr_t, uint_t, uint_t, void *), 3496 int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t), 3497 int (*errhandler)(caddr_t, uint_t, uint_t, void *), 3498 int capture_cpus) 3499 { 3500 id_t id; 3501 3502 /* 3503 * Search the table for a pre-existing callback associated with 3504 * the identifier "key". If one exists, we re-use that entry in 3505 * the table for this instance, otherwise we assign the next 3506 * available table slot. 3507 */ 3508 for (id = 0; id < sfmmu_max_cb_id; id++) { 3509 if (sfmmu_cb_table[id].key == key) 3510 break; 3511 } 3512 3513 if (id == sfmmu_max_cb_id) { 3514 id = sfmmu_cb_nextid++; 3515 if (id >= sfmmu_max_cb_id) 3516 panic("hat_register_callback: out of callback IDs"); 3517 } 3518 3519 ASSERT(prehandler != NULL || posthandler != NULL); 3520 3521 sfmmu_cb_table[id].key = key; 3522 sfmmu_cb_table[id].prehandler = prehandler; 3523 sfmmu_cb_table[id].posthandler = posthandler; 3524 sfmmu_cb_table[id].errhandler = errhandler; 3525 sfmmu_cb_table[id].capture_cpus = capture_cpus; 3526 3527 return (id); 3528 } 3529 3530 #define HAC_COOKIE_NONE (void *)-1 3531 3532 /* 3533 * Add relocation callbacks to the specified addr/len which will be called 3534 * when relocating the associated page. See the description of pre and 3535 * posthandler above for more details. 3536 * 3537 * If HAC_PAGELOCK is included in flags, the underlying memory page is 3538 * locked internally so the caller must be able to deal with the callback 3539 * running even before this function has returned. If HAC_PAGELOCK is not 3540 * set, it is assumed that the underlying memory pages are locked. 3541 * 3542 * Since the caller must track the individual page boundaries anyway, 3543 * we only allow a callback to be added to a single page (large 3544 * or small). Thus [addr, addr + len) MUST be contained within a single 3545 * page. 3546 * 3547 * Registering multiple callbacks on the same [addr, addr+len) is supported, 3548 * _provided_that_ a unique parameter is specified for each callback. 3549 * If multiple callbacks are registered on the same range the callback will 3550 * be invoked with each unique parameter. Registering the same callback with 3551 * the same argument more than once will result in corrupted kernel state. 3552 * 3553 * Returns the pfn of the underlying kernel page in *rpfn 3554 * on success, or PFN_INVALID on failure. 3555 * 3556 * cookiep (if passed) provides storage space for an opaque cookie 3557 * to return later to hat_delete_callback(). This cookie makes the callback 3558 * deletion significantly quicker by avoiding a potentially lengthy hash 3559 * search. 3560 * 3561 * Returns values: 3562 * 0: success 3563 * ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP) 3564 * EINVAL: callback ID is not valid 3565 * ENXIO: ["vaddr", "vaddr" + len) is not mapped in the kernel's address 3566 * space 3567 * ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary 3568 */ 3569 int 3570 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags, 3571 void *pvt, pfn_t *rpfn, void **cookiep) 3572 { 3573 struct hmehash_bucket *hmebp; 3574 hmeblk_tag hblktag; 3575 struct hme_blk *hmeblkp; 3576 int hmeshift, hashno; 3577 caddr_t saddr, eaddr, baseaddr; 3578 struct pa_hment *pahmep; 3579 struct sf_hment *sfhmep, *osfhmep; 3580 kmutex_t *pml; 3581 tte_t tte; 3582 page_t *pp; 3583 vnode_t *vp; 3584 u_offset_t off; 3585 pfn_t pfn; 3586 int kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP; 3587 int locked = 0; 3588 3589 /* 3590 * For KPM mappings, just return the physical address since we 3591 * don't need to register any callbacks. 3592 */ 3593 if (IS_KPM_ADDR(vaddr)) { 3594 uint64_t paddr; 3595 SFMMU_KPM_VTOP(vaddr, paddr); 3596 *rpfn = btop(paddr); 3597 if (cookiep != NULL) 3598 *cookiep = HAC_COOKIE_NONE; 3599 return (0); 3600 } 3601 3602 if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) { 3603 *rpfn = PFN_INVALID; 3604 return (EINVAL); 3605 } 3606 3607 if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) { 3608 *rpfn = PFN_INVALID; 3609 return (ENOMEM); 3610 } 3611 3612 sfhmep = &pahmep->sfment; 3613 3614 saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK); 3615 eaddr = saddr + len; 3616 3617 rehash: 3618 /* Find the mapping(s) for this page */ 3619 for (hashno = TTE64K, hmeblkp = NULL; 3620 hmeblkp == NULL && hashno <= mmu_hashcnt; 3621 hashno++) { 3622 hmeshift = HME_HASH_SHIFT(hashno); 3623 hblktag.htag_id = ksfmmup; 3624 hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift); 3625 hblktag.htag_rehash = hashno; 3626 hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift); 3627 3628 SFMMU_HASH_LOCK(hmebp); 3629 3630 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp); 3631 3632 if (hmeblkp == NULL) 3633 SFMMU_HASH_UNLOCK(hmebp); 3634 } 3635 3636 if (hmeblkp == NULL) { 3637 kmem_cache_free(pa_hment_cache, pahmep); 3638 *rpfn = PFN_INVALID; 3639 return (ENXIO); 3640 } 3641 3642 HBLKTOHME(osfhmep, hmeblkp, saddr); 3643 sfmmu_copytte(&osfhmep->hme_tte, &tte); 3644 3645 if (!TTE_IS_VALID(&tte)) { 3646 SFMMU_HASH_UNLOCK(hmebp); 3647 kmem_cache_free(pa_hment_cache, pahmep); 3648 *rpfn = PFN_INVALID; 3649 return (ENXIO); 3650 } 3651 3652 /* 3653 * Make sure the boundaries for the callback fall within this 3654 * single mapping. 3655 */ 3656 baseaddr = (caddr_t)get_hblk_base(hmeblkp); 3657 ASSERT(saddr >= baseaddr); 3658 if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) { 3659 SFMMU_HASH_UNLOCK(hmebp); 3660 kmem_cache_free(pa_hment_cache, pahmep); 3661 *rpfn = PFN_INVALID; 3662 return (ERANGE); 3663 } 3664 3665 pfn = sfmmu_ttetopfn(&tte, vaddr); 3666 3667 /* 3668 * The pfn may not have a page_t underneath in which case we 3669 * just return it. This can happen if we are doing I/O to a 3670 * static portion of the kernel's address space, for instance. 3671 */ 3672 pp = osfhmep->hme_page; 3673 if (pp == NULL) { 3674 SFMMU_HASH_UNLOCK(hmebp); 3675 kmem_cache_free(pa_hment_cache, pahmep); 3676 *rpfn = pfn; 3677 if (cookiep) 3678 *cookiep = HAC_COOKIE_NONE; 3679 return (0); 3680 } 3681 ASSERT(pp == PP_PAGEROOT(pp)); 3682 3683 vp = pp->p_vnode; 3684 off = pp->p_offset; 3685 3686 pml = sfmmu_mlist_enter(pp); 3687 3688 if (flags & HAC_PAGELOCK) { 3689 if (!page_trylock(pp, SE_SHARED)) { 3690 /* 3691 * Somebody is holding SE_EXCL lock. Might 3692 * even be hat_page_relocate(). Drop all 3693 * our locks, lookup the page in &kvp, and 3694 * retry. If it doesn't exist in &kvp, then 3695 * we must be dealing with a kernel mapped 3696 * page which doesn't actually belong to 3697 * segkmem so we punt. 3698 */ 3699 sfmmu_mlist_exit(pml); 3700 SFMMU_HASH_UNLOCK(hmebp); 3701 pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED); 3702 if (pp == NULL) { 3703 kmem_cache_free(pa_hment_cache, pahmep); 3704 *rpfn = pfn; 3705 if (cookiep) 3706 *cookiep = HAC_COOKIE_NONE; 3707 return (0); 3708 } 3709 page_unlock(pp); 3710 goto rehash; 3711 } 3712 locked = 1; 3713 } 3714 3715 if (!PAGE_LOCKED(pp) && !panicstr) 3716 panic("hat_add_callback: page 0x%p not locked", pp); 3717 3718 if (osfhmep->hme_page != pp || pp->p_vnode != vp || 3719 pp->p_offset != off) { 3720 /* 3721 * The page moved before we got our hands on it. Drop 3722 * all the locks and try again. 3723 */ 3724 ASSERT((flags & HAC_PAGELOCK) != 0); 3725 sfmmu_mlist_exit(pml); 3726 SFMMU_HASH_UNLOCK(hmebp); 3727 page_unlock(pp); 3728 locked = 0; 3729 goto rehash; 3730 } 3731 3732 if (vp != &kvp) { 3733 /* 3734 * This is not a segkmem page but another page which 3735 * has been kernel mapped. It had better have at least 3736 * a share lock on it. Return the pfn. 3737 */ 3738 sfmmu_mlist_exit(pml); 3739 SFMMU_HASH_UNLOCK(hmebp); 3740 if (locked) 3741 page_unlock(pp); 3742 kmem_cache_free(pa_hment_cache, pahmep); 3743 ASSERT(PAGE_LOCKED(pp)); 3744 *rpfn = pfn; 3745 if (cookiep) 3746 *cookiep = HAC_COOKIE_NONE; 3747 return (0); 3748 } 3749 3750 /* 3751 * Setup this pa_hment and link its embedded dummy sf_hment into 3752 * the mapping list. 3753 */ 3754 pp->p_share++; 3755 pahmep->cb_id = callback_id; 3756 pahmep->addr = vaddr; 3757 pahmep->len = len; 3758 pahmep->refcnt = 1; 3759 pahmep->flags = 0; 3760 pahmep->pvt = pvt; 3761 3762 sfhmep->hme_tte.ll = 0; 3763 sfhmep->hme_data = pahmep; 3764 sfhmep->hme_prev = osfhmep; 3765 sfhmep->hme_next = osfhmep->hme_next; 3766 3767 if (osfhmep->hme_next) 3768 osfhmep->hme_next->hme_prev = sfhmep; 3769 3770 osfhmep->hme_next = sfhmep; 3771 3772 sfmmu_mlist_exit(pml); 3773 SFMMU_HASH_UNLOCK(hmebp); 3774 3775 if (locked) 3776 page_unlock(pp); 3777 3778 *rpfn = pfn; 3779 if (cookiep) 3780 *cookiep = (void *)pahmep; 3781 3782 return (0); 3783 } 3784 3785 /* 3786 * Remove the relocation callbacks from the specified addr/len. 3787 */ 3788 void 3789 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags, 3790 void *cookie) 3791 { 3792 struct hmehash_bucket *hmebp; 3793 hmeblk_tag hblktag; 3794 struct hme_blk *hmeblkp; 3795 int hmeshift, hashno; 3796 caddr_t saddr; 3797 struct pa_hment *pahmep; 3798 struct sf_hment *sfhmep, *osfhmep; 3799 kmutex_t *pml; 3800 tte_t tte; 3801 page_t *pp; 3802 vnode_t *vp; 3803 u_offset_t off; 3804 int locked = 0; 3805 3806 /* 3807 * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to 3808 * remove so just return. 3809 */ 3810 if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr)) 3811 return; 3812 3813 saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK); 3814 3815 rehash: 3816 /* Find the mapping(s) for this page */ 3817 for (hashno = TTE64K, hmeblkp = NULL; 3818 hmeblkp == NULL && hashno <= mmu_hashcnt; 3819 hashno++) { 3820 hmeshift = HME_HASH_SHIFT(hashno); 3821 hblktag.htag_id = ksfmmup; 3822 hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift); 3823 hblktag.htag_rehash = hashno; 3824 hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift); 3825 3826 SFMMU_HASH_LOCK(hmebp); 3827 3828 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp); 3829 3830 if (hmeblkp == NULL) 3831 SFMMU_HASH_UNLOCK(hmebp); 3832 } 3833 3834 if (hmeblkp == NULL) 3835 return; 3836 3837 HBLKTOHME(osfhmep, hmeblkp, saddr); 3838 3839 sfmmu_copytte(&osfhmep->hme_tte, &tte); 3840 if (!TTE_IS_VALID(&tte)) { 3841 SFMMU_HASH_UNLOCK(hmebp); 3842 return; 3843 } 3844 3845 pp = osfhmep->hme_page; 3846 if (pp == NULL) { 3847 SFMMU_HASH_UNLOCK(hmebp); 3848 ASSERT(cookie == NULL); 3849 return; 3850 } 3851 3852 vp = pp->p_vnode; 3853 off = pp->p_offset; 3854 3855 pml = sfmmu_mlist_enter(pp); 3856 3857 if (flags & HAC_PAGELOCK) { 3858 if (!page_trylock(pp, SE_SHARED)) { 3859 /* 3860 * Somebody is holding SE_EXCL lock. Might 3861 * even be hat_page_relocate(). Drop all 3862 * our locks, lookup the page in &kvp, and 3863 * retry. If it doesn't exist in &kvp, then 3864 * we must be dealing with a kernel mapped 3865 * page which doesn't actually belong to 3866 * segkmem so we punt. 3867 */ 3868 sfmmu_mlist_exit(pml); 3869 SFMMU_HASH_UNLOCK(hmebp); 3870 pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED); 3871 if (pp == NULL) { 3872 ASSERT(cookie == NULL); 3873 return; 3874 } 3875 page_unlock(pp); 3876 goto rehash; 3877 } 3878 locked = 1; 3879 } 3880 3881 ASSERT(PAGE_LOCKED(pp)); 3882 3883 if (osfhmep->hme_page != pp || pp->p_vnode != vp || 3884 pp->p_offset != off) { 3885 /* 3886 * The page moved before we got our hands on it. Drop 3887 * all the locks and try again. 3888 */ 3889 ASSERT((flags & HAC_PAGELOCK) != 0); 3890 sfmmu_mlist_exit(pml); 3891 SFMMU_HASH_UNLOCK(hmebp); 3892 page_unlock(pp); 3893 locked = 0; 3894 goto rehash; 3895 } 3896 3897 if (vp != &kvp) { 3898 /* 3899 * This is not a segkmem page but another page which 3900 * has been kernel mapped. 3901 */ 3902 sfmmu_mlist_exit(pml); 3903 SFMMU_HASH_UNLOCK(hmebp); 3904 if (locked) 3905 page_unlock(pp); 3906 ASSERT(cookie == NULL); 3907 return; 3908 } 3909 3910 if (cookie != NULL) { 3911 pahmep = (struct pa_hment *)cookie; 3912 sfhmep = &pahmep->sfment; 3913 } else { 3914 for (sfhmep = pp->p_mapping; sfhmep != NULL; 3915 sfhmep = sfhmep->hme_next) { 3916 3917 /* 3918 * skip va<->pa mappings 3919 */ 3920 if (!IS_PAHME(sfhmep)) 3921 continue; 3922 3923 pahmep = sfhmep->hme_data; 3924 ASSERT(pahmep != NULL); 3925 3926 /* 3927 * if pa_hment matches, remove it 3928 */ 3929 if ((pahmep->pvt == pvt) && 3930 (pahmep->addr == vaddr) && 3931 (pahmep->len == len)) { 3932 break; 3933 } 3934 } 3935 } 3936 3937 if (sfhmep == NULL) { 3938 if (!panicstr) { 3939 panic("hat_delete_callback: pa_hment not found, pp %p", 3940 (void *)pp); 3941 } 3942 return; 3943 } 3944 3945 /* 3946 * Note: at this point a valid kernel mapping must still be 3947 * present on this page. 3948 */ 3949 pp->p_share--; 3950 if (pp->p_share <= 0) 3951 panic("hat_delete_callback: zero p_share"); 3952 3953 if (--pahmep->refcnt == 0) { 3954 if (pahmep->flags != 0) 3955 panic("hat_delete_callback: pa_hment is busy"); 3956 3957 /* 3958 * Remove sfhmep from the mapping list for the page. 3959 */ 3960 if (sfhmep->hme_prev) { 3961 sfhmep->hme_prev->hme_next = sfhmep->hme_next; 3962 } else { 3963 pp->p_mapping = sfhmep->hme_next; 3964 } 3965 3966 if (sfhmep->hme_next) 3967 sfhmep->hme_next->hme_prev = sfhmep->hme_prev; 3968 3969 sfmmu_mlist_exit(pml); 3970 SFMMU_HASH_UNLOCK(hmebp); 3971 3972 if (locked) 3973 page_unlock(pp); 3974 3975 kmem_cache_free(pa_hment_cache, pahmep); 3976 return; 3977 } 3978 3979 sfmmu_mlist_exit(pml); 3980 SFMMU_HASH_UNLOCK(hmebp); 3981 if (locked) 3982 page_unlock(pp); 3983 } 3984 3985 /* 3986 * hat_probe returns 1 if the translation for the address 'addr' is 3987 * loaded, zero otherwise. 3988 * 3989 * hat_probe should be used only for advisorary purposes because it may 3990 * occasionally return the wrong value. The implementation must guarantee that 3991 * returning the wrong value is a very rare event. hat_probe is used 3992 * to implement optimizations in the segment drivers. 3993 * 3994 */ 3995 int 3996 hat_probe(struct hat *sfmmup, caddr_t addr) 3997 { 3998 pfn_t pfn; 3999 tte_t tte; 4000 4001 ASSERT(sfmmup != NULL); 4002 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 4003 4004 ASSERT((sfmmup == ksfmmup) || 4005 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 4006 4007 if (sfmmup == ksfmmup) { 4008 while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte)) 4009 == PFN_SUSPENDED) { 4010 sfmmu_vatopfn_suspended(addr, sfmmup, &tte); 4011 } 4012 } else { 4013 pfn = sfmmu_uvatopfn(addr, sfmmup); 4014 } 4015 4016 if (pfn != PFN_INVALID) 4017 return (1); 4018 else 4019 return (0); 4020 } 4021 4022 ssize_t 4023 hat_getpagesize(struct hat *sfmmup, caddr_t addr) 4024 { 4025 tte_t tte; 4026 4027 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 4028 4029 sfmmu_gettte(sfmmup, addr, &tte); 4030 if (TTE_IS_VALID(&tte)) { 4031 return (TTEBYTES(TTE_CSZ(&tte))); 4032 } 4033 return (-1); 4034 } 4035 4036 static void 4037 sfmmu_gettte(struct hat *sfmmup, caddr_t addr, tte_t *ttep) 4038 { 4039 struct hmehash_bucket *hmebp; 4040 hmeblk_tag hblktag; 4041 int hmeshift, hashno = 1; 4042 struct hme_blk *hmeblkp, *list = NULL; 4043 struct sf_hment *sfhmep; 4044 4045 /* support for ISM */ 4046 ism_map_t *ism_map; 4047 ism_blk_t *ism_blkp; 4048 int i; 4049 sfmmu_t *ism_hatid = NULL; 4050 sfmmu_t *locked_hatid = NULL; 4051 4052 ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET)); 4053 4054 ism_blkp = sfmmup->sfmmu_iblk; 4055 if (ism_blkp) { 4056 sfmmu_ismhat_enter(sfmmup, 0); 4057 locked_hatid = sfmmup; 4058 } 4059 while (ism_blkp && ism_hatid == NULL) { 4060 ism_map = ism_blkp->iblk_maps; 4061 for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) { 4062 if (addr >= ism_start(ism_map[i]) && 4063 addr < ism_end(ism_map[i])) { 4064 sfmmup = ism_hatid = ism_map[i].imap_ismhat; 4065 addr = (caddr_t)(addr - 4066 ism_start(ism_map[i])); 4067 break; 4068 } 4069 } 4070 ism_blkp = ism_blkp->iblk_next; 4071 } 4072 if (locked_hatid) { 4073 sfmmu_ismhat_exit(locked_hatid, 0); 4074 } 4075 4076 hblktag.htag_id = sfmmup; 4077 ttep->ll = 0; 4078 4079 do { 4080 hmeshift = HME_HASH_SHIFT(hashno); 4081 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 4082 hblktag.htag_rehash = hashno; 4083 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 4084 4085 SFMMU_HASH_LOCK(hmebp); 4086 4087 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list); 4088 if (hmeblkp != NULL) { 4089 HBLKTOHME(sfhmep, hmeblkp, addr); 4090 sfmmu_copytte(&sfhmep->hme_tte, ttep); 4091 SFMMU_HASH_UNLOCK(hmebp); 4092 break; 4093 } 4094 SFMMU_HASH_UNLOCK(hmebp); 4095 hashno++; 4096 } while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt)); 4097 4098 sfmmu_hblks_list_purge(&list); 4099 } 4100 4101 uint_t 4102 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr) 4103 { 4104 tte_t tte; 4105 4106 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 4107 4108 sfmmu_gettte(sfmmup, addr, &tte); 4109 if (TTE_IS_VALID(&tte)) { 4110 *attr = sfmmu_ptov_attr(&tte); 4111 return (0); 4112 } 4113 *attr = 0; 4114 return ((uint_t)0xffffffff); 4115 } 4116 4117 /* 4118 * Enables more attributes on specified address range (ie. logical OR) 4119 */ 4120 void 4121 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr) 4122 { 4123 if (hat->sfmmu_xhat_provider) { 4124 XHAT_SETATTR(hat, addr, len, attr); 4125 return; 4126 } else { 4127 /* 4128 * This must be a CPU HAT. If the address space has 4129 * XHATs attached, change attributes for all of them, 4130 * just in case 4131 */ 4132 ASSERT(hat->sfmmu_as != NULL); 4133 if (hat->sfmmu_as->a_xhat != NULL) 4134 xhat_setattr_all(hat->sfmmu_as, addr, len, attr); 4135 } 4136 4137 sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR); 4138 } 4139 4140 /* 4141 * Assigns attributes to the specified address range. All the attributes 4142 * are specified. 4143 */ 4144 void 4145 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr) 4146 { 4147 if (hat->sfmmu_xhat_provider) { 4148 XHAT_CHGATTR(hat, addr, len, attr); 4149 return; 4150 } else { 4151 /* 4152 * This must be a CPU HAT. If the address space has 4153 * XHATs attached, change attributes for all of them, 4154 * just in case 4155 */ 4156 ASSERT(hat->sfmmu_as != NULL); 4157 if (hat->sfmmu_as->a_xhat != NULL) 4158 xhat_chgattr_all(hat->sfmmu_as, addr, len, attr); 4159 } 4160 4161 sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR); 4162 } 4163 4164 /* 4165 * Remove attributes on the specified address range (ie. loginal NAND) 4166 */ 4167 void 4168 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr) 4169 { 4170 if (hat->sfmmu_xhat_provider) { 4171 XHAT_CLRATTR(hat, addr, len, attr); 4172 return; 4173 } else { 4174 /* 4175 * This must be a CPU HAT. If the address space has 4176 * XHATs attached, change attributes for all of them, 4177 * just in case 4178 */ 4179 ASSERT(hat->sfmmu_as != NULL); 4180 if (hat->sfmmu_as->a_xhat != NULL) 4181 xhat_clrattr_all(hat->sfmmu_as, addr, len, attr); 4182 } 4183 4184 sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR); 4185 } 4186 4187 /* 4188 * Change attributes on an address range to that specified by attr and mode. 4189 */ 4190 static void 4191 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr, 4192 int mode) 4193 { 4194 struct hmehash_bucket *hmebp; 4195 hmeblk_tag hblktag; 4196 int hmeshift, hashno = 1; 4197 struct hme_blk *hmeblkp, *list = NULL; 4198 caddr_t endaddr; 4199 cpuset_t cpuset; 4200 demap_range_t dmr; 4201 4202 CPUSET_ZERO(cpuset); 4203 4204 ASSERT((sfmmup == ksfmmup) || 4205 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 4206 ASSERT((len & MMU_PAGEOFFSET) == 0); 4207 ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0); 4208 4209 if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) && 4210 ((addr + len) > (caddr_t)USERLIMIT)) { 4211 panic("user addr %p in kernel space", 4212 (void *)addr); 4213 } 4214 4215 endaddr = addr + len; 4216 hblktag.htag_id = sfmmup; 4217 DEMAP_RANGE_INIT(sfmmup, &dmr); 4218 4219 while (addr < endaddr) { 4220 hmeshift = HME_HASH_SHIFT(hashno); 4221 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 4222 hblktag.htag_rehash = hashno; 4223 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 4224 4225 SFMMU_HASH_LOCK(hmebp); 4226 4227 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list); 4228 if (hmeblkp != NULL) { 4229 /* 4230 * We've encountered a shadow hmeblk so skip the range 4231 * of the next smaller mapping size. 4232 */ 4233 if (hmeblkp->hblk_shw_bit) { 4234 ASSERT(sfmmup != ksfmmup); 4235 ASSERT(hashno > 1); 4236 addr = (caddr_t)P2END((uintptr_t)addr, 4237 TTEBYTES(hashno - 1)); 4238 } else { 4239 addr = sfmmu_hblk_chgattr(sfmmup, 4240 hmeblkp, addr, endaddr, &dmr, attr, mode); 4241 } 4242 SFMMU_HASH_UNLOCK(hmebp); 4243 hashno = 1; 4244 continue; 4245 } 4246 SFMMU_HASH_UNLOCK(hmebp); 4247 4248 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) { 4249 /* 4250 * We have traversed the whole list and rehashed 4251 * if necessary without finding the address to chgattr. 4252 * This is ok, so we increment the address by the 4253 * smallest hmeblk range for kernel mappings or for 4254 * user mappings with no large pages, and the largest 4255 * hmeblk range, to account for shadow hmeblks, for 4256 * user mappings with large pages and continue. 4257 */ 4258 if (sfmmup == ksfmmup) 4259 addr = (caddr_t)P2END((uintptr_t)addr, 4260 TTEBYTES(1)); 4261 else 4262 addr = (caddr_t)P2END((uintptr_t)addr, 4263 TTEBYTES(hashno)); 4264 hashno = 1; 4265 } else { 4266 hashno++; 4267 } 4268 } 4269 4270 sfmmu_hblks_list_purge(&list); 4271 DEMAP_RANGE_FLUSH(&dmr); 4272 cpuset = sfmmup->sfmmu_cpusran; 4273 xt_sync(cpuset); 4274 } 4275 4276 /* 4277 * This function chgattr on a range of addresses in an hmeblk. It returns the 4278 * next addres that needs to be chgattr. 4279 * It should be called with the hash lock held. 4280 * XXX It should be possible to optimize chgattr by not flushing every time but 4281 * on the other hand: 4282 * 1. do one flush crosscall. 4283 * 2. only flush if we are increasing permissions (make sure this will work) 4284 */ 4285 static caddr_t 4286 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr, 4287 caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode) 4288 { 4289 tte_t tte, tteattr, tteflags, ttemod; 4290 struct sf_hment *sfhmep; 4291 int ttesz; 4292 struct page *pp = NULL; 4293 kmutex_t *pml, *pmtx; 4294 int ret; 4295 int use_demap_range; 4296 #if defined(SF_ERRATA_57) 4297 int check_exec; 4298 #endif 4299 4300 ASSERT(in_hblk_range(hmeblkp, addr)); 4301 ASSERT(hmeblkp->hblk_shw_bit == 0); 4302 4303 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp)); 4304 ttesz = get_hblk_ttesz(hmeblkp); 4305 4306 /* 4307 * Flush the current demap region if addresses have been 4308 * skipped or the page size doesn't match. 4309 */ 4310 use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)); 4311 if (use_demap_range) { 4312 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr); 4313 } else { 4314 DEMAP_RANGE_FLUSH(dmrp); 4315 } 4316 4317 tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags); 4318 #if defined(SF_ERRATA_57) 4319 check_exec = (sfmmup != ksfmmup) && 4320 AS_TYPE_64BIT(sfmmup->sfmmu_as) && 4321 TTE_IS_EXECUTABLE(&tteattr); 4322 #endif 4323 HBLKTOHME(sfhmep, hmeblkp, addr); 4324 while (addr < endaddr) { 4325 sfmmu_copytte(&sfhmep->hme_tte, &tte); 4326 if (TTE_IS_VALID(&tte)) { 4327 if ((tte.ll & tteflags.ll) == tteattr.ll) { 4328 /* 4329 * if the new attr is the same as old 4330 * continue 4331 */ 4332 goto next_addr; 4333 } 4334 if (!TTE_IS_WRITABLE(&tteattr)) { 4335 /* 4336 * make sure we clear hw modify bit if we 4337 * removing write protections 4338 */ 4339 tteflags.tte_intlo |= TTE_HWWR_INT; 4340 } 4341 4342 pml = NULL; 4343 pp = sfhmep->hme_page; 4344 if (pp) { 4345 pml = sfmmu_mlist_enter(pp); 4346 } 4347 4348 if (pp != sfhmep->hme_page) { 4349 /* 4350 * tte must have been unloaded. 4351 */ 4352 ASSERT(pml); 4353 sfmmu_mlist_exit(pml); 4354 continue; 4355 } 4356 4357 ASSERT(pp == NULL || sfmmu_mlist_held(pp)); 4358 4359 ttemod = tte; 4360 ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll; 4361 ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte)); 4362 4363 #if defined(SF_ERRATA_57) 4364 if (check_exec && addr < errata57_limit) 4365 ttemod.tte_exec_perm = 0; 4366 #endif 4367 ret = sfmmu_modifytte_try(&tte, &ttemod, 4368 &sfhmep->hme_tte); 4369 4370 if (ret < 0) { 4371 /* tte changed underneath us */ 4372 if (pml) { 4373 sfmmu_mlist_exit(pml); 4374 } 4375 continue; 4376 } 4377 4378 if (tteflags.tte_intlo & TTE_HWWR_INT) { 4379 /* 4380 * need to sync if we are clearing modify bit. 4381 */ 4382 sfmmu_ttesync(sfmmup, addr, &tte, pp); 4383 } 4384 4385 if (pp && PP_ISRO(pp)) { 4386 if (tteattr.tte_intlo & TTE_WRPRM_INT) { 4387 pmtx = sfmmu_page_enter(pp); 4388 PP_CLRRO(pp); 4389 sfmmu_page_exit(pmtx); 4390 } 4391 } 4392 4393 if (ret > 0 && use_demap_range) { 4394 DEMAP_RANGE_MARKPG(dmrp, addr); 4395 } else if (ret > 0) { 4396 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0); 4397 } 4398 4399 if (pml) { 4400 sfmmu_mlist_exit(pml); 4401 } 4402 } 4403 next_addr: 4404 addr += TTEBYTES(ttesz); 4405 sfhmep++; 4406 DEMAP_RANGE_NEXTPG(dmrp); 4407 } 4408 return (addr); 4409 } 4410 4411 /* 4412 * This routine converts virtual attributes to physical ones. It will 4413 * update the tteflags field with the tte mask corresponding to the attributes 4414 * affected and it returns the new attributes. It will also clear the modify 4415 * bit if we are taking away write permission. This is necessary since the 4416 * modify bit is the hardware permission bit and we need to clear it in order 4417 * to detect write faults. 4418 */ 4419 static uint64_t 4420 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp) 4421 { 4422 tte_t ttevalue; 4423 4424 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR)); 4425 4426 switch (mode) { 4427 case SFMMU_CHGATTR: 4428 /* all attributes specified */ 4429 ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr); 4430 ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr); 4431 ttemaskp->tte_inthi = TTEINTHI_ATTR; 4432 ttemaskp->tte_intlo = TTEINTLO_ATTR; 4433 break; 4434 case SFMMU_SETATTR: 4435 ASSERT(!(attr & ~HAT_PROT_MASK)); 4436 ttemaskp->ll = 0; 4437 ttevalue.ll = 0; 4438 /* 4439 * a valid tte implies exec and read for sfmmu 4440 * so no need to do anything about them. 4441 * since priviledged access implies user access 4442 * PROT_USER doesn't make sense either. 4443 */ 4444 if (attr & PROT_WRITE) { 4445 ttemaskp->tte_intlo |= TTE_WRPRM_INT; 4446 ttevalue.tte_intlo |= TTE_WRPRM_INT; 4447 } 4448 break; 4449 case SFMMU_CLRATTR: 4450 /* attributes will be nand with current ones */ 4451 if (attr & ~(PROT_WRITE | PROT_USER)) { 4452 panic("sfmmu: attr %x not supported", attr); 4453 } 4454 ttemaskp->ll = 0; 4455 ttevalue.ll = 0; 4456 if (attr & PROT_WRITE) { 4457 /* clear both writable and modify bit */ 4458 ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT; 4459 } 4460 if (attr & PROT_USER) { 4461 ttemaskp->tte_intlo |= TTE_PRIV_INT; 4462 ttevalue.tte_intlo |= TTE_PRIV_INT; 4463 } 4464 break; 4465 default: 4466 panic("sfmmu_vtop_attr: bad mode %x", mode); 4467 } 4468 ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0); 4469 return (ttevalue.ll); 4470 } 4471 4472 static uint_t 4473 sfmmu_ptov_attr(tte_t *ttep) 4474 { 4475 uint_t attr; 4476 4477 ASSERT(TTE_IS_VALID(ttep)); 4478 4479 attr = PROT_READ; 4480 4481 if (TTE_IS_WRITABLE(ttep)) { 4482 attr |= PROT_WRITE; 4483 } 4484 if (TTE_IS_EXECUTABLE(ttep)) { 4485 attr |= PROT_EXEC; 4486 } 4487 if (!TTE_IS_PRIVILEGED(ttep)) { 4488 attr |= PROT_USER; 4489 } 4490 if (TTE_IS_NFO(ttep)) { 4491 attr |= HAT_NOFAULT; 4492 } 4493 if (TTE_IS_NOSYNC(ttep)) { 4494 attr |= HAT_NOSYNC; 4495 } 4496 if (TTE_IS_SIDEFFECT(ttep)) { 4497 attr |= SFMMU_SIDEFFECT; 4498 } 4499 if (!TTE_IS_VCACHEABLE(ttep)) { 4500 attr |= SFMMU_UNCACHEVTTE; 4501 } 4502 if (!TTE_IS_PCACHEABLE(ttep)) { 4503 attr |= SFMMU_UNCACHEPTTE; 4504 } 4505 return (attr); 4506 } 4507 4508 /* 4509 * hat_chgprot is a deprecated hat call. New segment drivers 4510 * should store all attributes and use hat_*attr calls. 4511 * 4512 * Change the protections in the virtual address range 4513 * given to the specified virtual protection. If vprot is ~PROT_WRITE, 4514 * then remove write permission, leaving the other 4515 * permissions unchanged. If vprot is ~PROT_USER, remove user permissions. 4516 * 4517 */ 4518 void 4519 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot) 4520 { 4521 struct hmehash_bucket *hmebp; 4522 hmeblk_tag hblktag; 4523 int hmeshift, hashno = 1; 4524 struct hme_blk *hmeblkp, *list = NULL; 4525 caddr_t endaddr; 4526 cpuset_t cpuset; 4527 demap_range_t dmr; 4528 4529 ASSERT((len & MMU_PAGEOFFSET) == 0); 4530 ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0); 4531 4532 if (sfmmup->sfmmu_xhat_provider) { 4533 XHAT_CHGPROT(sfmmup, addr, len, vprot); 4534 return; 4535 } else { 4536 /* 4537 * This must be a CPU HAT. If the address space has 4538 * XHATs attached, change attributes for all of them, 4539 * just in case 4540 */ 4541 ASSERT(sfmmup->sfmmu_as != NULL); 4542 if (sfmmup->sfmmu_as->a_xhat != NULL) 4543 xhat_chgprot_all(sfmmup->sfmmu_as, addr, len, vprot); 4544 } 4545 4546 CPUSET_ZERO(cpuset); 4547 4548 if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) && 4549 ((addr + len) > (caddr_t)USERLIMIT)) { 4550 panic("user addr %p vprot %x in kernel space", 4551 (void *)addr, vprot); 4552 } 4553 endaddr = addr + len; 4554 hblktag.htag_id = sfmmup; 4555 DEMAP_RANGE_INIT(sfmmup, &dmr); 4556 4557 while (addr < endaddr) { 4558 hmeshift = HME_HASH_SHIFT(hashno); 4559 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 4560 hblktag.htag_rehash = hashno; 4561 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 4562 4563 SFMMU_HASH_LOCK(hmebp); 4564 4565 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list); 4566 if (hmeblkp != NULL) { 4567 /* 4568 * We've encountered a shadow hmeblk so skip the range 4569 * of the next smaller mapping size. 4570 */ 4571 if (hmeblkp->hblk_shw_bit) { 4572 ASSERT(sfmmup != ksfmmup); 4573 ASSERT(hashno > 1); 4574 addr = (caddr_t)P2END((uintptr_t)addr, 4575 TTEBYTES(hashno - 1)); 4576 } else { 4577 addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp, 4578 addr, endaddr, &dmr, vprot); 4579 } 4580 SFMMU_HASH_UNLOCK(hmebp); 4581 hashno = 1; 4582 continue; 4583 } 4584 SFMMU_HASH_UNLOCK(hmebp); 4585 4586 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) { 4587 /* 4588 * We have traversed the whole list and rehashed 4589 * if necessary without finding the address to chgprot. 4590 * This is ok so we increment the address by the 4591 * smallest hmeblk range for kernel mappings and the 4592 * largest hmeblk range, to account for shadow hmeblks, 4593 * for user mappings and continue. 4594 */ 4595 if (sfmmup == ksfmmup) 4596 addr = (caddr_t)P2END((uintptr_t)addr, 4597 TTEBYTES(1)); 4598 else 4599 addr = (caddr_t)P2END((uintptr_t)addr, 4600 TTEBYTES(hashno)); 4601 hashno = 1; 4602 } else { 4603 hashno++; 4604 } 4605 } 4606 4607 sfmmu_hblks_list_purge(&list); 4608 DEMAP_RANGE_FLUSH(&dmr); 4609 cpuset = sfmmup->sfmmu_cpusran; 4610 xt_sync(cpuset); 4611 } 4612 4613 /* 4614 * This function chgprots a range of addresses in an hmeblk. It returns the 4615 * next addres that needs to be chgprot. 4616 * It should be called with the hash lock held. 4617 * XXX It shold be possible to optimize chgprot by not flushing every time but 4618 * on the other hand: 4619 * 1. do one flush crosscall. 4620 * 2. only flush if we are increasing permissions (make sure this will work) 4621 */ 4622 static caddr_t 4623 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr, 4624 caddr_t endaddr, demap_range_t *dmrp, uint_t vprot) 4625 { 4626 uint_t pprot; 4627 tte_t tte, ttemod; 4628 struct sf_hment *sfhmep; 4629 uint_t tteflags; 4630 int ttesz; 4631 struct page *pp = NULL; 4632 kmutex_t *pml, *pmtx; 4633 int ret; 4634 int use_demap_range; 4635 #if defined(SF_ERRATA_57) 4636 int check_exec; 4637 #endif 4638 4639 ASSERT(in_hblk_range(hmeblkp, addr)); 4640 ASSERT(hmeblkp->hblk_shw_bit == 0); 4641 4642 #ifdef DEBUG 4643 if (get_hblk_ttesz(hmeblkp) != TTE8K && 4644 (endaddr < get_hblk_endaddr(hmeblkp))) { 4645 panic("sfmmu_hblk_chgprot: partial chgprot of large page"); 4646 } 4647 #endif /* DEBUG */ 4648 4649 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp)); 4650 ttesz = get_hblk_ttesz(hmeblkp); 4651 4652 pprot = sfmmu_vtop_prot(vprot, &tteflags); 4653 #if defined(SF_ERRATA_57) 4654 check_exec = (sfmmup != ksfmmup) && 4655 AS_TYPE_64BIT(sfmmup->sfmmu_as) && 4656 ((vprot & PROT_EXEC) == PROT_EXEC); 4657 #endif 4658 HBLKTOHME(sfhmep, hmeblkp, addr); 4659 4660 /* 4661 * Flush the current demap region if addresses have been 4662 * skipped or the page size doesn't match. 4663 */ 4664 use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE); 4665 if (use_demap_range) { 4666 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr); 4667 } else { 4668 DEMAP_RANGE_FLUSH(dmrp); 4669 } 4670 4671 while (addr < endaddr) { 4672 sfmmu_copytte(&sfhmep->hme_tte, &tte); 4673 if (TTE_IS_VALID(&tte)) { 4674 if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) { 4675 /* 4676 * if the new protection is the same as old 4677 * continue 4678 */ 4679 goto next_addr; 4680 } 4681 pml = NULL; 4682 pp = sfhmep->hme_page; 4683 if (pp) { 4684 pml = sfmmu_mlist_enter(pp); 4685 } 4686 if (pp != sfhmep->hme_page) { 4687 /* 4688 * tte most have been unloaded 4689 * underneath us. Recheck 4690 */ 4691 ASSERT(pml); 4692 sfmmu_mlist_exit(pml); 4693 continue; 4694 } 4695 4696 ASSERT(pp == NULL || sfmmu_mlist_held(pp)); 4697 4698 ttemod = tte; 4699 TTE_SET_LOFLAGS(&ttemod, tteflags, pprot); 4700 #if defined(SF_ERRATA_57) 4701 if (check_exec && addr < errata57_limit) 4702 ttemod.tte_exec_perm = 0; 4703 #endif 4704 ret = sfmmu_modifytte_try(&tte, &ttemod, 4705 &sfhmep->hme_tte); 4706 4707 if (ret < 0) { 4708 /* tte changed underneath us */ 4709 if (pml) { 4710 sfmmu_mlist_exit(pml); 4711 } 4712 continue; 4713 } 4714 4715 if (tteflags & TTE_HWWR_INT) { 4716 /* 4717 * need to sync if we are clearing modify bit. 4718 */ 4719 sfmmu_ttesync(sfmmup, addr, &tte, pp); 4720 } 4721 4722 if (pp && PP_ISRO(pp)) { 4723 if (pprot & TTE_WRPRM_INT) { 4724 pmtx = sfmmu_page_enter(pp); 4725 PP_CLRRO(pp); 4726 sfmmu_page_exit(pmtx); 4727 } 4728 } 4729 4730 if (ret > 0 && use_demap_range) { 4731 DEMAP_RANGE_MARKPG(dmrp, addr); 4732 } else if (ret > 0) { 4733 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0); 4734 } 4735 4736 if (pml) { 4737 sfmmu_mlist_exit(pml); 4738 } 4739 } 4740 next_addr: 4741 addr += TTEBYTES(ttesz); 4742 sfhmep++; 4743 DEMAP_RANGE_NEXTPG(dmrp); 4744 } 4745 return (addr); 4746 } 4747 4748 /* 4749 * This routine is deprecated and should only be used by hat_chgprot. 4750 * The correct routine is sfmmu_vtop_attr. 4751 * This routine converts virtual page protections to physical ones. It will 4752 * update the tteflags field with the tte mask corresponding to the protections 4753 * affected and it returns the new protections. It will also clear the modify 4754 * bit if we are taking away write permission. This is necessary since the 4755 * modify bit is the hardware permission bit and we need to clear it in order 4756 * to detect write faults. 4757 * It accepts the following special protections: 4758 * ~PROT_WRITE = remove write permissions. 4759 * ~PROT_USER = remove user permissions. 4760 */ 4761 static uint_t 4762 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp) 4763 { 4764 if (vprot == (uint_t)~PROT_WRITE) { 4765 *tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT; 4766 return (0); /* will cause wrprm to be cleared */ 4767 } 4768 if (vprot == (uint_t)~PROT_USER) { 4769 *tteflagsp = TTE_PRIV_INT; 4770 return (0); /* will cause privprm to be cleared */ 4771 } 4772 if ((vprot == 0) || (vprot == PROT_USER) || 4773 ((vprot & PROT_ALL) != vprot)) { 4774 panic("sfmmu_vtop_prot -- bad prot %x", vprot); 4775 } 4776 4777 switch (vprot) { 4778 case (PROT_READ): 4779 case (PROT_EXEC): 4780 case (PROT_EXEC | PROT_READ): 4781 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT; 4782 return (TTE_PRIV_INT); /* set prv and clr wrt */ 4783 case (PROT_WRITE): 4784 case (PROT_WRITE | PROT_READ): 4785 case (PROT_EXEC | PROT_WRITE): 4786 case (PROT_EXEC | PROT_WRITE | PROT_READ): 4787 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT; 4788 return (TTE_PRIV_INT | TTE_WRPRM_INT); /* set prv and wrt */ 4789 case (PROT_USER | PROT_READ): 4790 case (PROT_USER | PROT_EXEC): 4791 case (PROT_USER | PROT_EXEC | PROT_READ): 4792 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT; 4793 return (0); /* clr prv and wrt */ 4794 case (PROT_USER | PROT_WRITE): 4795 case (PROT_USER | PROT_WRITE | PROT_READ): 4796 case (PROT_USER | PROT_EXEC | PROT_WRITE): 4797 case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ): 4798 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT; 4799 return (TTE_WRPRM_INT); /* clr prv and set wrt */ 4800 default: 4801 panic("sfmmu_vtop_prot -- bad prot %x", vprot); 4802 } 4803 return (0); 4804 } 4805 4806 /* 4807 * Alternate unload for very large virtual ranges. With a true 64 bit VA, 4808 * the normal algorithm would take too long for a very large VA range with 4809 * few real mappings. This routine just walks thru all HMEs in the global 4810 * hash table to find and remove mappings. 4811 */ 4812 static void 4813 hat_unload_large_virtual( 4814 struct hat *sfmmup, 4815 caddr_t startaddr, 4816 size_t len, 4817 uint_t flags, 4818 hat_callback_t *callback) 4819 { 4820 struct hmehash_bucket *hmebp; 4821 struct hme_blk *hmeblkp; 4822 struct hme_blk *pr_hblk = NULL; 4823 struct hme_blk *nx_hblk; 4824 struct hme_blk *list = NULL; 4825 int i; 4826 uint64_t hblkpa, prevpa, nx_pa; 4827 demap_range_t dmr, *dmrp; 4828 cpuset_t cpuset; 4829 caddr_t endaddr = startaddr + len; 4830 caddr_t sa; 4831 caddr_t ea; 4832 caddr_t cb_sa[MAX_CB_ADDR]; 4833 caddr_t cb_ea[MAX_CB_ADDR]; 4834 int addr_cnt = 0; 4835 int a = 0; 4836 4837 if (sfmmup->sfmmu_free) { 4838 dmrp = NULL; 4839 } else { 4840 dmrp = &dmr; 4841 DEMAP_RANGE_INIT(sfmmup, dmrp); 4842 } 4843 4844 /* 4845 * Loop through all the hash buckets of HME blocks looking for matches. 4846 */ 4847 for (i = 0; i <= UHMEHASH_SZ; i++) { 4848 hmebp = &uhme_hash[i]; 4849 SFMMU_HASH_LOCK(hmebp); 4850 hmeblkp = hmebp->hmeblkp; 4851 hblkpa = hmebp->hmeh_nextpa; 4852 prevpa = 0; 4853 pr_hblk = NULL; 4854 while (hmeblkp) { 4855 nx_hblk = hmeblkp->hblk_next; 4856 nx_pa = hmeblkp->hblk_nextpa; 4857 4858 /* 4859 * skip if not this context, if a shadow block or 4860 * if the mapping is not in the requested range 4861 */ 4862 if (hmeblkp->hblk_tag.htag_id != sfmmup || 4863 hmeblkp->hblk_shw_bit || 4864 (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr || 4865 (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) { 4866 pr_hblk = hmeblkp; 4867 prevpa = hblkpa; 4868 goto next_block; 4869 } 4870 4871 /* 4872 * unload if there are any current valid mappings 4873 */ 4874 if (hmeblkp->hblk_vcnt != 0 || 4875 hmeblkp->hblk_hmecnt != 0) 4876 (void) sfmmu_hblk_unload(sfmmup, hmeblkp, 4877 sa, ea, dmrp, flags); 4878 4879 /* 4880 * on unmap we also release the HME block itself, once 4881 * all mappings are gone. 4882 */ 4883 if ((flags & HAT_UNLOAD_UNMAP) != 0 && 4884 !hmeblkp->hblk_vcnt && 4885 !hmeblkp->hblk_hmecnt) { 4886 ASSERT(!hmeblkp->hblk_lckcnt); 4887 sfmmu_hblk_hash_rm(hmebp, hmeblkp, 4888 prevpa, pr_hblk); 4889 sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list); 4890 } else { 4891 pr_hblk = hmeblkp; 4892 prevpa = hblkpa; 4893 } 4894 4895 if (callback == NULL) 4896 goto next_block; 4897 4898 /* 4899 * HME blocks may span more than one page, but we may be 4900 * unmapping only one page, so check for a smaller range 4901 * for the callback 4902 */ 4903 if (sa < startaddr) 4904 sa = startaddr; 4905 if (--ea > endaddr) 4906 ea = endaddr - 1; 4907 4908 cb_sa[addr_cnt] = sa; 4909 cb_ea[addr_cnt] = ea; 4910 if (++addr_cnt == MAX_CB_ADDR) { 4911 if (dmrp != NULL) { 4912 DEMAP_RANGE_FLUSH(dmrp); 4913 cpuset = sfmmup->sfmmu_cpusran; 4914 xt_sync(cpuset); 4915 } 4916 4917 for (a = 0; a < MAX_CB_ADDR; ++a) { 4918 callback->hcb_start_addr = cb_sa[a]; 4919 callback->hcb_end_addr = cb_ea[a]; 4920 callback->hcb_function(callback); 4921 } 4922 addr_cnt = 0; 4923 } 4924 4925 next_block: 4926 hmeblkp = nx_hblk; 4927 hblkpa = nx_pa; 4928 } 4929 SFMMU_HASH_UNLOCK(hmebp); 4930 } 4931 4932 sfmmu_hblks_list_purge(&list); 4933 if (dmrp != NULL) { 4934 DEMAP_RANGE_FLUSH(dmrp); 4935 cpuset = sfmmup->sfmmu_cpusran; 4936 xt_sync(cpuset); 4937 } 4938 4939 for (a = 0; a < addr_cnt; ++a) { 4940 callback->hcb_start_addr = cb_sa[a]; 4941 callback->hcb_end_addr = cb_ea[a]; 4942 callback->hcb_function(callback); 4943 } 4944 4945 /* 4946 * Check TSB and TLB page sizes if the process isn't exiting. 4947 */ 4948 if (!sfmmup->sfmmu_free) 4949 sfmmu_check_page_sizes(sfmmup, 0); 4950 } 4951 4952 /* 4953 * Unload all the mappings in the range [addr..addr+len). addr and len must 4954 * be MMU_PAGESIZE aligned. 4955 */ 4956 4957 extern struct seg *segkmap; 4958 #define ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \ 4959 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size)) 4960 4961 4962 void 4963 hat_unload_callback( 4964 struct hat *sfmmup, 4965 caddr_t addr, 4966 size_t len, 4967 uint_t flags, 4968 hat_callback_t *callback) 4969 { 4970 struct hmehash_bucket *hmebp; 4971 hmeblk_tag hblktag; 4972 int hmeshift, hashno, iskernel; 4973 struct hme_blk *hmeblkp, *pr_hblk, *list = NULL; 4974 caddr_t endaddr; 4975 cpuset_t cpuset; 4976 uint64_t hblkpa, prevpa; 4977 int addr_count = 0; 4978 int a; 4979 caddr_t cb_start_addr[MAX_CB_ADDR]; 4980 caddr_t cb_end_addr[MAX_CB_ADDR]; 4981 int issegkmap = ISSEGKMAP(sfmmup, addr); 4982 demap_range_t dmr, *dmrp; 4983 4984 if (sfmmup->sfmmu_xhat_provider) { 4985 XHAT_UNLOAD_CALLBACK(sfmmup, addr, len, flags, callback); 4986 return; 4987 } else { 4988 /* 4989 * This must be a CPU HAT. If the address space has 4990 * XHATs attached, unload the mappings for all of them, 4991 * just in case 4992 */ 4993 ASSERT(sfmmup->sfmmu_as != NULL); 4994 if (sfmmup->sfmmu_as->a_xhat != NULL) 4995 xhat_unload_callback_all(sfmmup->sfmmu_as, addr, 4996 len, flags, callback); 4997 } 4998 4999 ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \ 5000 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 5001 5002 ASSERT(sfmmup != NULL); 5003 ASSERT((len & MMU_PAGEOFFSET) == 0); 5004 ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET)); 5005 5006 /* 5007 * Probing through a large VA range (say 63 bits) will be slow, even 5008 * at 4 Meg steps between the probes. So, when the virtual address range 5009 * is very large, search the HME entries for what to unload. 5010 * 5011 * len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need 5012 * 5013 * UHMEHASH_SZ is number of hash buckets to examine 5014 * 5015 */ 5016 if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) { 5017 hat_unload_large_virtual(sfmmup, addr, len, flags, callback); 5018 return; 5019 } 5020 5021 CPUSET_ZERO(cpuset); 5022 5023 /* 5024 * If the process is exiting, we can save a lot of fuss since 5025 * we'll flush the TLB when we free the ctx anyway. 5026 */ 5027 if (sfmmup->sfmmu_free) 5028 dmrp = NULL; 5029 else 5030 dmrp = &dmr; 5031 5032 DEMAP_RANGE_INIT(sfmmup, dmrp); 5033 endaddr = addr + len; 5034 hblktag.htag_id = sfmmup; 5035 5036 /* 5037 * It is likely for the vm to call unload over a wide range of 5038 * addresses that are actually very sparsely populated by 5039 * translations. In order to speed this up the sfmmu hat supports 5040 * the concept of shadow hmeblks. Dummy large page hmeblks that 5041 * correspond to actual small translations are allocated at tteload 5042 * time and are referred to as shadow hmeblks. Now, during unload 5043 * time, we first check if we have a shadow hmeblk for that 5044 * translation. The absence of one means the corresponding address 5045 * range is empty and can be skipped. 5046 * 5047 * The kernel is an exception to above statement and that is why 5048 * we don't use shadow hmeblks and hash starting from the smallest 5049 * page size. 5050 */ 5051 if (sfmmup == KHATID) { 5052 iskernel = 1; 5053 hashno = TTE64K; 5054 } else { 5055 iskernel = 0; 5056 if (mmu_page_sizes == max_mmu_page_sizes) { 5057 hashno = TTE256M; 5058 } else { 5059 hashno = TTE4M; 5060 } 5061 } 5062 while (addr < endaddr) { 5063 hmeshift = HME_HASH_SHIFT(hashno); 5064 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 5065 hblktag.htag_rehash = hashno; 5066 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 5067 5068 SFMMU_HASH_LOCK(hmebp); 5069 5070 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, pr_hblk, 5071 prevpa, &list); 5072 if (hmeblkp == NULL) { 5073 /* 5074 * didn't find an hmeblk. skip the appropiate 5075 * address range. 5076 */ 5077 SFMMU_HASH_UNLOCK(hmebp); 5078 if (iskernel) { 5079 if (hashno < mmu_hashcnt) { 5080 hashno++; 5081 continue; 5082 } else { 5083 hashno = TTE64K; 5084 addr = (caddr_t)roundup((uintptr_t)addr 5085 + 1, MMU_PAGESIZE64K); 5086 continue; 5087 } 5088 } 5089 addr = (caddr_t)roundup((uintptr_t)addr + 1, 5090 (1 << hmeshift)); 5091 if ((uintptr_t)addr & MMU_PAGEOFFSET512K) { 5092 ASSERT(hashno == TTE64K); 5093 continue; 5094 } 5095 if ((uintptr_t)addr & MMU_PAGEOFFSET4M) { 5096 hashno = TTE512K; 5097 continue; 5098 } 5099 if (mmu_page_sizes == max_mmu_page_sizes) { 5100 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) { 5101 hashno = TTE4M; 5102 continue; 5103 } 5104 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) { 5105 hashno = TTE32M; 5106 continue; 5107 } 5108 hashno = TTE256M; 5109 continue; 5110 } else { 5111 hashno = TTE4M; 5112 continue; 5113 } 5114 } 5115 ASSERT(hmeblkp); 5116 if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) { 5117 /* 5118 * If the valid count is zero we can skip the range 5119 * mapped by this hmeblk. 5120 * We free hblks in the case of HAT_UNMAP. HAT_UNMAP 5121 * is used by segment drivers as a hint 5122 * that the mapping resource won't be used any longer. 5123 * The best example of this is during exit(). 5124 */ 5125 addr = (caddr_t)roundup((uintptr_t)addr + 1, 5126 get_hblk_span(hmeblkp)); 5127 if ((flags & HAT_UNLOAD_UNMAP) || 5128 (iskernel && !issegkmap)) { 5129 sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, 5130 pr_hblk); 5131 sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list); 5132 } 5133 SFMMU_HASH_UNLOCK(hmebp); 5134 5135 if (iskernel) { 5136 hashno = TTE64K; 5137 continue; 5138 } 5139 if ((uintptr_t)addr & MMU_PAGEOFFSET512K) { 5140 ASSERT(hashno == TTE64K); 5141 continue; 5142 } 5143 if ((uintptr_t)addr & MMU_PAGEOFFSET4M) { 5144 hashno = TTE512K; 5145 continue; 5146 } 5147 if (mmu_page_sizes == max_mmu_page_sizes) { 5148 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) { 5149 hashno = TTE4M; 5150 continue; 5151 } 5152 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) { 5153 hashno = TTE32M; 5154 continue; 5155 } 5156 hashno = TTE256M; 5157 continue; 5158 } else { 5159 hashno = TTE4M; 5160 continue; 5161 } 5162 } 5163 if (hmeblkp->hblk_shw_bit) { 5164 /* 5165 * If we encounter a shadow hmeblk we know there is 5166 * smaller sized hmeblks mapping the same address space. 5167 * Decrement the hash size and rehash. 5168 */ 5169 ASSERT(sfmmup != KHATID); 5170 hashno--; 5171 SFMMU_HASH_UNLOCK(hmebp); 5172 continue; 5173 } 5174 5175 /* 5176 * track callback address ranges. 5177 * only start a new range when it's not contiguous 5178 */ 5179 if (callback != NULL) { 5180 if (addr_count > 0 && 5181 addr == cb_end_addr[addr_count - 1]) 5182 --addr_count; 5183 else 5184 cb_start_addr[addr_count] = addr; 5185 } 5186 5187 addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr, 5188 dmrp, flags); 5189 5190 if (callback != NULL) 5191 cb_end_addr[addr_count++] = addr; 5192 5193 if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) && 5194 !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) { 5195 sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, 5196 pr_hblk); 5197 sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list); 5198 } 5199 SFMMU_HASH_UNLOCK(hmebp); 5200 5201 /* 5202 * Notify our caller as to exactly which pages 5203 * have been unloaded. We do these in clumps, 5204 * to minimize the number of xt_sync()s that need to occur. 5205 */ 5206 if (callback != NULL && addr_count == MAX_CB_ADDR) { 5207 DEMAP_RANGE_FLUSH(dmrp); 5208 if (dmrp != NULL) { 5209 cpuset = sfmmup->sfmmu_cpusran; 5210 xt_sync(cpuset); 5211 } 5212 5213 for (a = 0; a < MAX_CB_ADDR; ++a) { 5214 callback->hcb_start_addr = cb_start_addr[a]; 5215 callback->hcb_end_addr = cb_end_addr[a]; 5216 callback->hcb_function(callback); 5217 } 5218 addr_count = 0; 5219 } 5220 if (iskernel) { 5221 hashno = TTE64K; 5222 continue; 5223 } 5224 if ((uintptr_t)addr & MMU_PAGEOFFSET512K) { 5225 ASSERT(hashno == TTE64K); 5226 continue; 5227 } 5228 if ((uintptr_t)addr & MMU_PAGEOFFSET4M) { 5229 hashno = TTE512K; 5230 continue; 5231 } 5232 if (mmu_page_sizes == max_mmu_page_sizes) { 5233 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) { 5234 hashno = TTE4M; 5235 continue; 5236 } 5237 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) { 5238 hashno = TTE32M; 5239 continue; 5240 } 5241 hashno = TTE256M; 5242 } else { 5243 hashno = TTE4M; 5244 } 5245 } 5246 5247 sfmmu_hblks_list_purge(&list); 5248 DEMAP_RANGE_FLUSH(dmrp); 5249 if (dmrp != NULL) { 5250 cpuset = sfmmup->sfmmu_cpusran; 5251 xt_sync(cpuset); 5252 } 5253 if (callback && addr_count != 0) { 5254 for (a = 0; a < addr_count; ++a) { 5255 callback->hcb_start_addr = cb_start_addr[a]; 5256 callback->hcb_end_addr = cb_end_addr[a]; 5257 callback->hcb_function(callback); 5258 } 5259 } 5260 5261 /* 5262 * Check TSB and TLB page sizes if the process isn't exiting. 5263 */ 5264 if (!sfmmup->sfmmu_free) 5265 sfmmu_check_page_sizes(sfmmup, 0); 5266 } 5267 5268 /* 5269 * Unload all the mappings in the range [addr..addr+len). addr and len must 5270 * be MMU_PAGESIZE aligned. 5271 */ 5272 void 5273 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags) 5274 { 5275 if (sfmmup->sfmmu_xhat_provider) { 5276 XHAT_UNLOAD(sfmmup, addr, len, flags); 5277 return; 5278 } 5279 hat_unload_callback(sfmmup, addr, len, flags, NULL); 5280 } 5281 5282 5283 /* 5284 * Find the largest mapping size for this page. 5285 */ 5286 static int 5287 fnd_mapping_sz(page_t *pp) 5288 { 5289 int sz; 5290 int p_index; 5291 5292 p_index = PP_MAPINDEX(pp); 5293 5294 sz = 0; 5295 p_index >>= 1; /* don't care about 8K bit */ 5296 for (; p_index; p_index >>= 1) { 5297 sz++; 5298 } 5299 5300 return (sz); 5301 } 5302 5303 /* 5304 * This function unloads a range of addresses for an hmeblk. 5305 * It returns the next address to be unloaded. 5306 * It should be called with the hash lock held. 5307 */ 5308 static caddr_t 5309 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr, 5310 caddr_t endaddr, demap_range_t *dmrp, uint_t flags) 5311 { 5312 tte_t tte, ttemod; 5313 struct sf_hment *sfhmep; 5314 int ttesz; 5315 long ttecnt; 5316 page_t *pp; 5317 kmutex_t *pml; 5318 int ret; 5319 int use_demap_range; 5320 5321 ASSERT(in_hblk_range(hmeblkp, addr)); 5322 ASSERT(!hmeblkp->hblk_shw_bit); 5323 #ifdef DEBUG 5324 if (get_hblk_ttesz(hmeblkp) != TTE8K && 5325 (endaddr < get_hblk_endaddr(hmeblkp))) { 5326 panic("sfmmu_hblk_unload: partial unload of large page"); 5327 } 5328 #endif /* DEBUG */ 5329 5330 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp)); 5331 ttesz = get_hblk_ttesz(hmeblkp); 5332 5333 use_demap_range = (do_virtual_coloring && 5334 ((dmrp == NULL) || TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp))); 5335 if (use_demap_range) { 5336 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr); 5337 } else { 5338 DEMAP_RANGE_FLUSH(dmrp); 5339 } 5340 ttecnt = 0; 5341 HBLKTOHME(sfhmep, hmeblkp, addr); 5342 5343 while (addr < endaddr) { 5344 pml = NULL; 5345 again: 5346 sfmmu_copytte(&sfhmep->hme_tte, &tte); 5347 if (TTE_IS_VALID(&tte)) { 5348 pp = sfhmep->hme_page; 5349 if (pp && pml == NULL) { 5350 pml = sfmmu_mlist_enter(pp); 5351 } 5352 5353 /* 5354 * Verify if hme still points to 'pp' now that 5355 * we have p_mapping lock. 5356 */ 5357 if (sfhmep->hme_page != pp) { 5358 if (pp != NULL && sfhmep->hme_page != NULL) { 5359 if (pml) { 5360 sfmmu_mlist_exit(pml); 5361 } 5362 /* Re-start this iteration. */ 5363 continue; 5364 } 5365 ASSERT((pp != NULL) && 5366 (sfhmep->hme_page == NULL)); 5367 goto tte_unloaded; 5368 } 5369 5370 /* 5371 * This point on we have both HASH and p_mapping 5372 * lock. 5373 */ 5374 ASSERT(pp == sfhmep->hme_page); 5375 ASSERT(pp == NULL || sfmmu_mlist_held(pp)); 5376 5377 /* 5378 * We need to loop on modify tte because it is 5379 * possible for pagesync to come along and 5380 * change the software bits beneath us. 5381 * 5382 * Page_unload can also invalidate the tte after 5383 * we read tte outside of p_mapping lock. 5384 */ 5385 ttemod = tte; 5386 5387 TTE_SET_INVALID(&ttemod); 5388 ret = sfmmu_modifytte_try(&tte, &ttemod, 5389 &sfhmep->hme_tte); 5390 5391 if (ret <= 0) { 5392 if (TTE_IS_VALID(&tte)) { 5393 goto again; 5394 } else { 5395 /* 5396 * We read in a valid pte, but it 5397 * is unloaded by page_unload. 5398 * hme_page has become NULL and 5399 * we hold no p_mapping lock. 5400 */ 5401 ASSERT(pp == NULL && pml == NULL); 5402 goto tte_unloaded; 5403 } 5404 } 5405 5406 if (!(flags & HAT_UNLOAD_NOSYNC)) { 5407 sfmmu_ttesync(sfmmup, addr, &tte, pp); 5408 } 5409 5410 /* 5411 * Ok- we invalidated the tte. Do the rest of the job. 5412 */ 5413 ttecnt++; 5414 5415 if (flags & HAT_UNLOAD_UNLOCK) { 5416 ASSERT(hmeblkp->hblk_lckcnt > 0); 5417 atomic_add_16(&hmeblkp->hblk_lckcnt, -1); 5418 HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK); 5419 } 5420 5421 /* 5422 * Normally we would need to flush the page 5423 * from the virtual cache at this point in 5424 * order to prevent a potential cache alias 5425 * inconsistency. 5426 * The particular scenario we need to worry 5427 * about is: 5428 * Given: va1 and va2 are two virtual address 5429 * that alias and map the same physical 5430 * address. 5431 * 1. mapping exists from va1 to pa and data 5432 * has been read into the cache. 5433 * 2. unload va1. 5434 * 3. load va2 and modify data using va2. 5435 * 4 unload va2. 5436 * 5. load va1 and reference data. Unless we 5437 * flush the data cache when we unload we will 5438 * get stale data. 5439 * Fortunately, page coloring eliminates the 5440 * above scenario by remembering the color a 5441 * physical page was last or is currently 5442 * mapped to. Now, we delay the flush until 5443 * the loading of translations. Only when the 5444 * new translation is of a different color 5445 * are we forced to flush. 5446 */ 5447 if (use_demap_range) { 5448 /* 5449 * Mark this page as needing a demap. 5450 */ 5451 DEMAP_RANGE_MARKPG(dmrp, addr); 5452 } else { 5453 if (do_virtual_coloring) { 5454 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 5455 sfmmup->sfmmu_free, 0); 5456 } else { 5457 pfn_t pfnum; 5458 5459 pfnum = TTE_TO_PFN(addr, &tte); 5460 sfmmu_tlbcache_demap(addr, sfmmup, 5461 hmeblkp, pfnum, sfmmup->sfmmu_free, 5462 FLUSH_NECESSARY_CPUS, 5463 CACHE_FLUSH, 0); 5464 } 5465 } 5466 5467 if (pp) { 5468 /* 5469 * Remove the hment from the mapping list 5470 */ 5471 ASSERT(hmeblkp->hblk_hmecnt > 0); 5472 5473 /* 5474 * Again, we cannot 5475 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS); 5476 */ 5477 HME_SUB(sfhmep, pp); 5478 membar_stst(); 5479 atomic_add_16(&hmeblkp->hblk_hmecnt, -1); 5480 } 5481 5482 ASSERT(hmeblkp->hblk_vcnt > 0); 5483 atomic_add_16(&hmeblkp->hblk_vcnt, -1); 5484 5485 ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt || 5486 !hmeblkp->hblk_lckcnt); 5487 5488 if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) { 5489 if (PP_ISTNC(pp)) { 5490 /* 5491 * If page was temporary 5492 * uncached, try to recache 5493 * it. Note that HME_SUB() was 5494 * called above so p_index and 5495 * mlist had been updated. 5496 */ 5497 conv_tnc(pp, ttesz); 5498 } else if (pp->p_mapping == NULL) { 5499 ASSERT(kpm_enable); 5500 /* 5501 * Page is marked to be in VAC conflict 5502 * to an existing kpm mapping and/or is 5503 * kpm mapped using only the regular 5504 * pagesize. 5505 */ 5506 sfmmu_kpm_hme_unload(pp); 5507 } 5508 } 5509 } else if ((pp = sfhmep->hme_page) != NULL) { 5510 /* 5511 * TTE is invalid but the hme 5512 * still exists. let pageunload 5513 * complete its job. 5514 */ 5515 ASSERT(pml == NULL); 5516 pml = sfmmu_mlist_enter(pp); 5517 if (sfhmep->hme_page != NULL) { 5518 sfmmu_mlist_exit(pml); 5519 pml = NULL; 5520 goto again; 5521 } 5522 ASSERT(sfhmep->hme_page == NULL); 5523 } else if (hmeblkp->hblk_hmecnt != 0) { 5524 /* 5525 * pageunload may have not finished decrementing 5526 * hblk_vcnt and hblk_hmecnt. Find page_t if any and 5527 * wait for pageunload to finish. Rely on pageunload 5528 * to decrement hblk_hmecnt after hblk_vcnt. 5529 */ 5530 pfn_t pfn = TTE_TO_TTEPFN(&tte); 5531 ASSERT(pml == NULL); 5532 if (pf_is_memory(pfn)) { 5533 pp = page_numtopp_nolock(pfn); 5534 if (pp != NULL) { 5535 pml = sfmmu_mlist_enter(pp); 5536 sfmmu_mlist_exit(pml); 5537 pml = NULL; 5538 } 5539 } 5540 } 5541 5542 tte_unloaded: 5543 /* 5544 * At this point, the tte we are looking at 5545 * should be unloaded, and hme has been unlinked 5546 * from page too. This is important because in 5547 * pageunload, it does ttesync() then HME_SUB. 5548 * We need to make sure HME_SUB has been completed 5549 * so we know ttesync() has been completed. Otherwise, 5550 * at exit time, after return from hat layer, VM will 5551 * release as structure which hat_setstat() (called 5552 * by ttesync()) needs. 5553 */ 5554 #ifdef DEBUG 5555 { 5556 tte_t dtte; 5557 5558 ASSERT(sfhmep->hme_page == NULL); 5559 5560 sfmmu_copytte(&sfhmep->hme_tte, &dtte); 5561 ASSERT(!TTE_IS_VALID(&dtte)); 5562 } 5563 #endif 5564 5565 if (pml) { 5566 sfmmu_mlist_exit(pml); 5567 } 5568 5569 addr += TTEBYTES(ttesz); 5570 sfhmep++; 5571 DEMAP_RANGE_NEXTPG(dmrp); 5572 } 5573 if (ttecnt > 0) 5574 atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt); 5575 return (addr); 5576 } 5577 5578 /* 5579 * Synchronize all the mappings in the range [addr..addr+len). 5580 * Can be called with clearflag having two states: 5581 * HAT_SYNC_DONTZERO means just return the rm stats 5582 * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats 5583 */ 5584 void 5585 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag) 5586 { 5587 struct hmehash_bucket *hmebp; 5588 hmeblk_tag hblktag; 5589 int hmeshift, hashno = 1; 5590 struct hme_blk *hmeblkp, *list = NULL; 5591 caddr_t endaddr; 5592 cpuset_t cpuset; 5593 5594 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 5595 ASSERT((sfmmup == ksfmmup) || 5596 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 5597 ASSERT((len & MMU_PAGEOFFSET) == 0); 5598 ASSERT((clearflag == HAT_SYNC_DONTZERO) || 5599 (clearflag == HAT_SYNC_ZERORM)); 5600 5601 CPUSET_ZERO(cpuset); 5602 5603 endaddr = addr + len; 5604 hblktag.htag_id = sfmmup; 5605 /* 5606 * Spitfire supports 4 page sizes. 5607 * Most pages are expected to be of the smallest page 5608 * size (8K) and these will not need to be rehashed. 64K 5609 * pages also don't need to be rehashed because the an hmeblk 5610 * spans 64K of address space. 512K pages might need 1 rehash and 5611 * and 4M pages 2 rehashes. 5612 */ 5613 while (addr < endaddr) { 5614 hmeshift = HME_HASH_SHIFT(hashno); 5615 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 5616 hblktag.htag_rehash = hashno; 5617 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 5618 5619 SFMMU_HASH_LOCK(hmebp); 5620 5621 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list); 5622 if (hmeblkp != NULL) { 5623 /* 5624 * We've encountered a shadow hmeblk so skip the range 5625 * of the next smaller mapping size. 5626 */ 5627 if (hmeblkp->hblk_shw_bit) { 5628 ASSERT(sfmmup != ksfmmup); 5629 ASSERT(hashno > 1); 5630 addr = (caddr_t)P2END((uintptr_t)addr, 5631 TTEBYTES(hashno - 1)); 5632 } else { 5633 addr = sfmmu_hblk_sync(sfmmup, hmeblkp, 5634 addr, endaddr, clearflag); 5635 } 5636 SFMMU_HASH_UNLOCK(hmebp); 5637 hashno = 1; 5638 continue; 5639 } 5640 SFMMU_HASH_UNLOCK(hmebp); 5641 5642 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) { 5643 /* 5644 * We have traversed the whole list and rehashed 5645 * if necessary without finding the address to sync. 5646 * This is ok so we increment the address by the 5647 * smallest hmeblk range for kernel mappings and the 5648 * largest hmeblk range, to account for shadow hmeblks, 5649 * for user mappings and continue. 5650 */ 5651 if (sfmmup == ksfmmup) 5652 addr = (caddr_t)P2END((uintptr_t)addr, 5653 TTEBYTES(1)); 5654 else 5655 addr = (caddr_t)P2END((uintptr_t)addr, 5656 TTEBYTES(hashno)); 5657 hashno = 1; 5658 } else { 5659 hashno++; 5660 } 5661 } 5662 sfmmu_hblks_list_purge(&list); 5663 cpuset = sfmmup->sfmmu_cpusran; 5664 xt_sync(cpuset); 5665 } 5666 5667 static caddr_t 5668 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr, 5669 caddr_t endaddr, int clearflag) 5670 { 5671 tte_t tte, ttemod; 5672 struct sf_hment *sfhmep; 5673 int ttesz; 5674 struct page *pp; 5675 kmutex_t *pml; 5676 int ret; 5677 5678 ASSERT(hmeblkp->hblk_shw_bit == 0); 5679 5680 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp)); 5681 5682 ttesz = get_hblk_ttesz(hmeblkp); 5683 HBLKTOHME(sfhmep, hmeblkp, addr); 5684 5685 while (addr < endaddr) { 5686 sfmmu_copytte(&sfhmep->hme_tte, &tte); 5687 if (TTE_IS_VALID(&tte)) { 5688 pml = NULL; 5689 pp = sfhmep->hme_page; 5690 if (pp) { 5691 pml = sfmmu_mlist_enter(pp); 5692 } 5693 if (pp != sfhmep->hme_page) { 5694 /* 5695 * tte most have been unloaded 5696 * underneath us. Recheck 5697 */ 5698 ASSERT(pml); 5699 sfmmu_mlist_exit(pml); 5700 continue; 5701 } 5702 5703 ASSERT(pp == NULL || sfmmu_mlist_held(pp)); 5704 5705 if (clearflag == HAT_SYNC_ZERORM) { 5706 ttemod = tte; 5707 TTE_CLR_RM(&ttemod); 5708 ret = sfmmu_modifytte_try(&tte, &ttemod, 5709 &sfhmep->hme_tte); 5710 if (ret < 0) { 5711 if (pml) { 5712 sfmmu_mlist_exit(pml); 5713 } 5714 continue; 5715 } 5716 5717 if (ret > 0) { 5718 sfmmu_tlb_demap(addr, sfmmup, 5719 hmeblkp, 0, 0); 5720 } 5721 } 5722 sfmmu_ttesync(sfmmup, addr, &tte, pp); 5723 if (pml) { 5724 sfmmu_mlist_exit(pml); 5725 } 5726 } 5727 addr += TTEBYTES(ttesz); 5728 sfhmep++; 5729 } 5730 return (addr); 5731 } 5732 5733 /* 5734 * This function will sync a tte to the page struct and it will 5735 * update the hat stats. Currently it allows us to pass a NULL pp 5736 * and we will simply update the stats. We may want to change this 5737 * so we only keep stats for pages backed by pp's. 5738 */ 5739 static void 5740 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp) 5741 { 5742 uint_t rm = 0; 5743 int sz; 5744 pgcnt_t npgs; 5745 5746 ASSERT(TTE_IS_VALID(ttep)); 5747 5748 if (TTE_IS_NOSYNC(ttep)) { 5749 return; 5750 } 5751 5752 if (TTE_IS_REF(ttep)) { 5753 rm = P_REF; 5754 } 5755 if (TTE_IS_MOD(ttep)) { 5756 rm |= P_MOD; 5757 } 5758 5759 if (rm == 0) { 5760 return; 5761 } 5762 5763 sz = TTE_CSZ(ttep); 5764 if (sfmmup->sfmmu_rmstat) { 5765 int i; 5766 caddr_t vaddr = addr; 5767 5768 for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) { 5769 hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm); 5770 } 5771 5772 } 5773 5774 /* 5775 * XXX I want to use cas to update nrm bits but they 5776 * currently belong in common/vm and not in hat where 5777 * they should be. 5778 * The nrm bits are protected by the same mutex as 5779 * the one that protects the page's mapping list. 5780 */ 5781 if (!pp) 5782 return; 5783 ASSERT(sfmmu_mlist_held(pp)); 5784 /* 5785 * If the tte is for a large page, we need to sync all the 5786 * pages covered by the tte. 5787 */ 5788 if (sz != TTE8K) { 5789 ASSERT(pp->p_szc != 0); 5790 pp = PP_GROUPLEADER(pp, sz); 5791 ASSERT(sfmmu_mlist_held(pp)); 5792 } 5793 5794 /* Get number of pages from tte size. */ 5795 npgs = TTEPAGES(sz); 5796 5797 do { 5798 ASSERT(pp); 5799 ASSERT(sfmmu_mlist_held(pp)); 5800 if (((rm & P_REF) != 0 && !PP_ISREF(pp)) || 5801 ((rm & P_MOD) != 0 && !PP_ISMOD(pp))) 5802 hat_page_setattr(pp, rm); 5803 5804 /* 5805 * Are we done? If not, we must have a large mapping. 5806 * For large mappings we need to sync the rest of the pages 5807 * covered by this tte; goto the next page. 5808 */ 5809 } while (--npgs > 0 && (pp = PP_PAGENEXT(pp))); 5810 } 5811 5812 /* 5813 * Execute pre-callback handler of each pa_hment linked to pp 5814 * 5815 * Inputs: 5816 * flag: either HAT_PRESUSPEND or HAT_SUSPEND. 5817 * capture_cpus: pointer to return value (below) 5818 * 5819 * Returns: 5820 * Propagates the subsystem callback return values back to the caller; 5821 * returns 0 on success. If capture_cpus is non-NULL, the value returned 5822 * is zero if all of the pa_hments are of a type that do not require 5823 * capturing CPUs prior to suspending the mapping, else it is 1. 5824 */ 5825 static int 5826 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus) 5827 { 5828 struct sf_hment *sfhmep; 5829 struct pa_hment *pahmep; 5830 int (*f)(caddr_t, uint_t, uint_t, void *); 5831 int ret; 5832 id_t id; 5833 int locked = 0; 5834 kmutex_t *pml; 5835 5836 ASSERT(PAGE_EXCL(pp)); 5837 if (!sfmmu_mlist_held(pp)) { 5838 pml = sfmmu_mlist_enter(pp); 5839 locked = 1; 5840 } 5841 5842 if (capture_cpus) 5843 *capture_cpus = 0; 5844 5845 top: 5846 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) { 5847 /* 5848 * skip sf_hments corresponding to VA<->PA mappings; 5849 * for pa_hment's, hme_tte.ll is zero 5850 */ 5851 if (!IS_PAHME(sfhmep)) 5852 continue; 5853 5854 pahmep = sfhmep->hme_data; 5855 ASSERT(pahmep != NULL); 5856 5857 /* 5858 * skip if pre-handler has been called earlier in this loop 5859 */ 5860 if (pahmep->flags & flag) 5861 continue; 5862 5863 id = pahmep->cb_id; 5864 ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid); 5865 if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0) 5866 *capture_cpus = 1; 5867 if ((f = sfmmu_cb_table[id].prehandler) == NULL) { 5868 pahmep->flags |= flag; 5869 continue; 5870 } 5871 5872 /* 5873 * Drop the mapping list lock to avoid locking order issues. 5874 */ 5875 if (locked) 5876 sfmmu_mlist_exit(pml); 5877 5878 ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt); 5879 if (ret != 0) 5880 return (ret); /* caller must do the cleanup */ 5881 5882 if (locked) { 5883 pml = sfmmu_mlist_enter(pp); 5884 pahmep->flags |= flag; 5885 goto top; 5886 } 5887 5888 pahmep->flags |= flag; 5889 } 5890 5891 if (locked) 5892 sfmmu_mlist_exit(pml); 5893 5894 return (0); 5895 } 5896 5897 /* 5898 * Execute post-callback handler of each pa_hment linked to pp 5899 * 5900 * Same overall assumptions and restrictions apply as for 5901 * hat_pageprocess_precallbacks(). 5902 */ 5903 static void 5904 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag) 5905 { 5906 pfn_t pgpfn = pp->p_pagenum; 5907 pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1; 5908 pfn_t newpfn; 5909 struct sf_hment *sfhmep; 5910 struct pa_hment *pahmep; 5911 int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t); 5912 id_t id; 5913 int locked = 0; 5914 kmutex_t *pml; 5915 5916 ASSERT(PAGE_EXCL(pp)); 5917 if (!sfmmu_mlist_held(pp)) { 5918 pml = sfmmu_mlist_enter(pp); 5919 locked = 1; 5920 } 5921 5922 top: 5923 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) { 5924 /* 5925 * skip sf_hments corresponding to VA<->PA mappings; 5926 * for pa_hment's, hme_tte.ll is zero 5927 */ 5928 if (!IS_PAHME(sfhmep)) 5929 continue; 5930 5931 pahmep = sfhmep->hme_data; 5932 ASSERT(pahmep != NULL); 5933 5934 if ((pahmep->flags & flag) == 0) 5935 continue; 5936 5937 pahmep->flags &= ~flag; 5938 5939 id = pahmep->cb_id; 5940 ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid); 5941 if ((f = sfmmu_cb_table[id].posthandler) == NULL) 5942 continue; 5943 5944 /* 5945 * Convert the base page PFN into the constituent PFN 5946 * which is needed by the callback handler. 5947 */ 5948 newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask); 5949 5950 /* 5951 * Drop the mapping list lock to avoid locking order issues. 5952 */ 5953 if (locked) 5954 sfmmu_mlist_exit(pml); 5955 5956 if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn) 5957 != 0) 5958 panic("sfmmu: posthandler failed"); 5959 5960 if (locked) { 5961 pml = sfmmu_mlist_enter(pp); 5962 goto top; 5963 } 5964 } 5965 5966 if (locked) 5967 sfmmu_mlist_exit(pml); 5968 } 5969 5970 /* 5971 * Suspend locked kernel mapping 5972 */ 5973 void 5974 hat_pagesuspend(struct page *pp) 5975 { 5976 struct sf_hment *sfhmep; 5977 sfmmu_t *sfmmup; 5978 tte_t tte, ttemod; 5979 struct hme_blk *hmeblkp; 5980 caddr_t addr; 5981 int index, cons; 5982 cpuset_t cpuset; 5983 5984 ASSERT(PAGE_EXCL(pp)); 5985 ASSERT(sfmmu_mlist_held(pp)); 5986 5987 mutex_enter(&kpr_suspendlock); 5988 5989 /* 5990 * Call into dtrace to tell it we're about to suspend a 5991 * kernel mapping. This prevents us from running into issues 5992 * with probe context trying to touch a suspended page 5993 * in the relocation codepath itself. 5994 */ 5995 if (dtrace_kreloc_init) 5996 (*dtrace_kreloc_init)(); 5997 5998 index = PP_MAPINDEX(pp); 5999 cons = TTE8K; 6000 6001 retry: 6002 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) { 6003 6004 if (IS_PAHME(sfhmep)) 6005 continue; 6006 6007 if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons) 6008 continue; 6009 6010 /* 6011 * Loop until we successfully set the suspend bit in 6012 * the TTE. 6013 */ 6014 again: 6015 sfmmu_copytte(&sfhmep->hme_tte, &tte); 6016 ASSERT(TTE_IS_VALID(&tte)); 6017 6018 ttemod = tte; 6019 TTE_SET_SUSPEND(&ttemod); 6020 if (sfmmu_modifytte_try(&tte, &ttemod, 6021 &sfhmep->hme_tte) < 0) 6022 goto again; 6023 6024 /* 6025 * Invalidate TSB entry 6026 */ 6027 hmeblkp = sfmmu_hmetohblk(sfhmep); 6028 6029 sfmmup = hblktosfmmu(hmeblkp); 6030 ASSERT(sfmmup == ksfmmup); 6031 6032 addr = tte_to_vaddr(hmeblkp, tte); 6033 6034 /* 6035 * No need to make sure that the TSB for this sfmmu is 6036 * not being relocated since it is ksfmmup and thus it 6037 * will never be relocated. 6038 */ 6039 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp); 6040 6041 /* 6042 * Update xcall stats 6043 */ 6044 cpuset = cpu_ready_set; 6045 CPUSET_DEL(cpuset, CPU->cpu_id); 6046 6047 /* LINTED: constant in conditional context */ 6048 SFMMU_XCALL_STATS(ksfmmup); 6049 6050 /* 6051 * Flush TLB entry on remote CPU's 6052 */ 6053 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, 6054 (uint64_t)ksfmmup); 6055 xt_sync(cpuset); 6056 6057 /* 6058 * Flush TLB entry on local CPU 6059 */ 6060 vtag_flushpage(addr, (uint64_t)ksfmmup); 6061 } 6062 6063 while (index != 0) { 6064 index = index >> 1; 6065 if (index != 0) 6066 cons++; 6067 if (index & 0x1) { 6068 pp = PP_GROUPLEADER(pp, cons); 6069 goto retry; 6070 } 6071 } 6072 } 6073 6074 #ifdef DEBUG 6075 6076 #define N_PRLE 1024 6077 struct prle { 6078 page_t *targ; 6079 page_t *repl; 6080 int status; 6081 int pausecpus; 6082 hrtime_t whence; 6083 }; 6084 6085 static struct prle page_relocate_log[N_PRLE]; 6086 static int prl_entry; 6087 static kmutex_t prl_mutex; 6088 6089 #define PAGE_RELOCATE_LOG(t, r, s, p) \ 6090 mutex_enter(&prl_mutex); \ 6091 page_relocate_log[prl_entry].targ = *(t); \ 6092 page_relocate_log[prl_entry].repl = *(r); \ 6093 page_relocate_log[prl_entry].status = (s); \ 6094 page_relocate_log[prl_entry].pausecpus = (p); \ 6095 page_relocate_log[prl_entry].whence = gethrtime(); \ 6096 prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1; \ 6097 mutex_exit(&prl_mutex); 6098 6099 #else /* !DEBUG */ 6100 #define PAGE_RELOCATE_LOG(t, r, s, p) 6101 #endif 6102 6103 /* 6104 * Core Kernel Page Relocation Algorithm 6105 * 6106 * Input: 6107 * 6108 * target : constituent pages are SE_EXCL locked. 6109 * replacement: constituent pages are SE_EXCL locked. 6110 * 6111 * Output: 6112 * 6113 * nrelocp: number of pages relocated 6114 */ 6115 int 6116 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp) 6117 { 6118 page_t *targ, *repl; 6119 page_t *tpp, *rpp; 6120 kmutex_t *low, *high; 6121 spgcnt_t npages, i; 6122 page_t *pl = NULL; 6123 int old_pil; 6124 cpuset_t cpuset; 6125 int cap_cpus; 6126 int ret; 6127 6128 if (hat_kpr_enabled == 0 || !kcage_on || PP_ISNORELOC(*target)) { 6129 PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1); 6130 return (EAGAIN); 6131 } 6132 6133 mutex_enter(&kpr_mutex); 6134 kreloc_thread = curthread; 6135 6136 targ = *target; 6137 repl = *replacement; 6138 ASSERT(repl != NULL); 6139 ASSERT(targ->p_szc == repl->p_szc); 6140 6141 npages = page_get_pagecnt(targ->p_szc); 6142 6143 /* 6144 * unload VA<->PA mappings that are not locked 6145 */ 6146 tpp = targ; 6147 for (i = 0; i < npages; i++) { 6148 (void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC); 6149 tpp++; 6150 } 6151 6152 /* 6153 * Do "presuspend" callbacks, in a context from which we can still 6154 * block as needed. Note that we don't hold the mapping list lock 6155 * of "targ" at this point due to potential locking order issues; 6156 * we assume that between the hat_pageunload() above and holding 6157 * the SE_EXCL lock that the mapping list *cannot* change at this 6158 * point. 6159 */ 6160 ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus); 6161 if (ret != 0) { 6162 /* 6163 * EIO translates to fatal error, for all others cleanup 6164 * and return EAGAIN. 6165 */ 6166 ASSERT(ret != EIO); 6167 hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND); 6168 PAGE_RELOCATE_LOG(target, replacement, ret, -1); 6169 kreloc_thread = NULL; 6170 mutex_exit(&kpr_mutex); 6171 return (EAGAIN); 6172 } 6173 6174 /* 6175 * acquire p_mapping list lock for both the target and replacement 6176 * root pages. 6177 * 6178 * low and high refer to the need to grab the mlist locks in a 6179 * specific order in order to prevent race conditions. Thus the 6180 * lower lock must be grabbed before the higher lock. 6181 * 6182 * This will block hat_unload's accessing p_mapping list. Since 6183 * we have SE_EXCL lock, hat_memload and hat_pageunload will be 6184 * blocked. Thus, no one else will be accessing the p_mapping list 6185 * while we suspend and reload the locked mapping below. 6186 */ 6187 tpp = targ; 6188 rpp = repl; 6189 sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high); 6190 6191 kpreempt_disable(); 6192 6193 /* 6194 * If the replacement page is of a different virtual color 6195 * than the page it is replacing, we need to handle the VAC 6196 * consistency for it just as we would if we were setting up 6197 * a new mapping to a page. 6198 */ 6199 if ((tpp->p_szc == 0) && (PP_GET_VCOLOR(rpp) != NO_VCOLOR)) { 6200 if (tpp->p_vcolor != rpp->p_vcolor) { 6201 sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp), 6202 rpp->p_pagenum); 6203 } 6204 } 6205 6206 /* 6207 * We raise our PIL to 13 so that we don't get captured by 6208 * another CPU or pinned by an interrupt thread. We can't go to 6209 * PIL 14 since the nexus driver(s) may need to interrupt at 6210 * that level in the case of IOMMU pseudo mappings. 6211 */ 6212 cpuset = cpu_ready_set; 6213 CPUSET_DEL(cpuset, CPU->cpu_id); 6214 if (!cap_cpus || CPUSET_ISNULL(cpuset)) { 6215 old_pil = splr(XCALL_PIL); 6216 } else { 6217 old_pil = -1; 6218 xc_attention(cpuset); 6219 } 6220 ASSERT(getpil() == XCALL_PIL); 6221 6222 /* 6223 * Now do suspend callbacks. In the case of an IOMMU mapping 6224 * this will suspend all DMA activity to the page while it is 6225 * being relocated. Since we are well above LOCK_LEVEL and CPUs 6226 * may be captured at this point we should have acquired any needed 6227 * locks in the presuspend callback. 6228 */ 6229 ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL); 6230 if (ret != 0) { 6231 repl = targ; 6232 goto suspend_fail; 6233 } 6234 6235 /* 6236 * Raise the PIL yet again, this time to block all high-level 6237 * interrupts on this CPU. This is necessary to prevent an 6238 * interrupt routine from pinning the thread which holds the 6239 * mapping suspended and then touching the suspended page. 6240 * 6241 * Once the page is suspended we also need to be careful to 6242 * avoid calling any functions which touch any seg_kmem memory 6243 * since that memory may be backed by the very page we are 6244 * relocating in here! 6245 */ 6246 hat_pagesuspend(targ); 6247 6248 /* 6249 * Now that we are confident everybody has stopped using this page, 6250 * copy the page contents. Note we use a physical copy to prevent 6251 * locking issues and to avoid fpRAS because we can't handle it in 6252 * this context. 6253 */ 6254 for (i = 0; i < npages; i++, tpp++, rpp++) { 6255 /* 6256 * Copy the contents of the page. 6257 */ 6258 ppcopy_kernel(tpp, rpp); 6259 } 6260 6261 tpp = targ; 6262 rpp = repl; 6263 for (i = 0; i < npages; i++, tpp++, rpp++) { 6264 /* 6265 * Copy attributes. VAC consistency was handled above, 6266 * if required. 6267 */ 6268 rpp->p_nrm = tpp->p_nrm; 6269 tpp->p_nrm = 0; 6270 rpp->p_index = tpp->p_index; 6271 tpp->p_index = 0; 6272 rpp->p_vcolor = tpp->p_vcolor; 6273 } 6274 6275 /* 6276 * First, unsuspend the page, if we set the suspend bit, and transfer 6277 * the mapping list from the target page to the replacement page. 6278 * Next process postcallbacks; since pa_hment's are linked only to the 6279 * p_mapping list of root page, we don't iterate over the constituent 6280 * pages. 6281 */ 6282 hat_pagereload(targ, repl); 6283 6284 suspend_fail: 6285 hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND); 6286 6287 /* 6288 * Now lower our PIL and release any captured CPUs since we 6289 * are out of the "danger zone". After this it will again be 6290 * safe to acquire adaptive mutex locks, or to drop them... 6291 */ 6292 if (old_pil != -1) { 6293 splx(old_pil); 6294 } else { 6295 xc_dismissed(cpuset); 6296 } 6297 6298 kpreempt_enable(); 6299 6300 sfmmu_mlist_reloc_exit(low, high); 6301 6302 /* 6303 * Postsuspend callbacks should drop any locks held across 6304 * the suspend callbacks. As before, we don't hold the mapping 6305 * list lock at this point.. our assumption is that the mapping 6306 * list still can't change due to our holding SE_EXCL lock and 6307 * there being no unlocked mappings left. Hence the restriction 6308 * on calling context to hat_delete_callback() 6309 */ 6310 hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND); 6311 if (ret != 0) { 6312 /* 6313 * The second presuspend call failed: we got here through 6314 * the suspend_fail label above. 6315 */ 6316 ASSERT(ret != EIO); 6317 PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus); 6318 kreloc_thread = NULL; 6319 mutex_exit(&kpr_mutex); 6320 return (EAGAIN); 6321 } 6322 6323 /* 6324 * Now that we're out of the performance critical section we can 6325 * take care of updating the hash table, since we still 6326 * hold all the pages locked SE_EXCL at this point we 6327 * needn't worry about things changing out from under us. 6328 */ 6329 tpp = targ; 6330 rpp = repl; 6331 for (i = 0; i < npages; i++, tpp++, rpp++) { 6332 6333 /* 6334 * replace targ with replacement in page_hash table 6335 */ 6336 targ = tpp; 6337 page_relocate_hash(rpp, targ); 6338 6339 /* 6340 * concatenate target; caller of platform_page_relocate() 6341 * expects target to be concatenated after returning. 6342 */ 6343 ASSERT(targ->p_next == targ); 6344 ASSERT(targ->p_prev == targ); 6345 page_list_concat(&pl, &targ); 6346 } 6347 6348 ASSERT(*target == pl); 6349 *nrelocp = npages; 6350 PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus); 6351 kreloc_thread = NULL; 6352 mutex_exit(&kpr_mutex); 6353 return (0); 6354 } 6355 6356 /* 6357 * Called when stray pa_hments are found attached to a page which is 6358 * being freed. Notify the subsystem which attached the pa_hment of 6359 * the error if it registered a suitable handler, else panic. 6360 */ 6361 static void 6362 sfmmu_pahment_leaked(struct pa_hment *pahmep) 6363 { 6364 id_t cb_id = pahmep->cb_id; 6365 6366 ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid); 6367 if (sfmmu_cb_table[cb_id].errhandler != NULL) { 6368 if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len, 6369 HAT_CB_ERR_LEAKED, pahmep->pvt) == 0) 6370 return; /* non-fatal */ 6371 } 6372 panic("pa_hment leaked: 0x%p", pahmep); 6373 } 6374 6375 /* 6376 * Remove all mappings to page 'pp'. 6377 */ 6378 int 6379 hat_pageunload(struct page *pp, uint_t forceflag) 6380 { 6381 struct page *origpp = pp; 6382 struct sf_hment *sfhme, *tmphme; 6383 struct hme_blk *hmeblkp; 6384 kmutex_t *pml, *pmtx; 6385 cpuset_t cpuset, tset; 6386 int index, cons; 6387 int xhme_blks; 6388 int pa_hments; 6389 6390 ASSERT(PAGE_EXCL(pp)); 6391 6392 retry_xhat: 6393 tmphme = NULL; 6394 xhme_blks = 0; 6395 pa_hments = 0; 6396 CPUSET_ZERO(cpuset); 6397 6398 pml = sfmmu_mlist_enter(pp); 6399 6400 if (pp->p_kpmref) 6401 sfmmu_kpm_pageunload(pp); 6402 ASSERT(!PP_ISMAPPED_KPM(pp)); 6403 6404 index = PP_MAPINDEX(pp); 6405 cons = TTE8K; 6406 retry: 6407 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) { 6408 tmphme = sfhme->hme_next; 6409 6410 if (IS_PAHME(sfhme)) { 6411 ASSERT(sfhme->hme_data != NULL); 6412 pa_hments++; 6413 continue; 6414 } 6415 6416 hmeblkp = sfmmu_hmetohblk(sfhme); 6417 if (hmeblkp->hblk_xhat_bit) { 6418 struct xhat_hme_blk *xblk = 6419 (struct xhat_hme_blk *)hmeblkp; 6420 6421 (void) XHAT_PAGEUNLOAD(xblk->xhat_hme_blk_hat, 6422 pp, forceflag, XBLK2PROVBLK(xblk)); 6423 6424 xhme_blks = 1; 6425 continue; 6426 } 6427 6428 /* 6429 * If there are kernel mappings don't unload them, they will 6430 * be suspended. 6431 */ 6432 if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt && 6433 hmeblkp->hblk_tag.htag_id == ksfmmup) 6434 continue; 6435 6436 tset = sfmmu_pageunload(pp, sfhme, cons); 6437 CPUSET_OR(cpuset, tset); 6438 } 6439 6440 while (index != 0) { 6441 index = index >> 1; 6442 if (index != 0) 6443 cons++; 6444 if (index & 0x1) { 6445 /* Go to leading page */ 6446 pp = PP_GROUPLEADER(pp, cons); 6447 ASSERT(sfmmu_mlist_held(pp)); 6448 goto retry; 6449 } 6450 } 6451 6452 /* 6453 * cpuset may be empty if the page was only mapped by segkpm, 6454 * in which case we won't actually cross-trap. 6455 */ 6456 xt_sync(cpuset); 6457 6458 /* 6459 * The page should have no mappings at this point, unless 6460 * we were called from hat_page_relocate() in which case we 6461 * leave the locked mappings which will be suspended later. 6462 */ 6463 ASSERT(!PP_ISMAPPED(origpp) || xhme_blks || pa_hments || 6464 (forceflag == SFMMU_KERNEL_RELOC)); 6465 6466 if (PP_ISTNC(pp)) { 6467 if (cons == TTE8K) { 6468 pmtx = sfmmu_page_enter(pp); 6469 PP_CLRTNC(pp); 6470 sfmmu_page_exit(pmtx); 6471 } else { 6472 conv_tnc(pp, cons); 6473 } 6474 } 6475 6476 if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) { 6477 /* 6478 * Unlink any pa_hments and free them, calling back 6479 * the responsible subsystem to notify it of the error. 6480 * This can occur in situations such as drivers leaking 6481 * DMA handles: naughty, but common enough that we'd like 6482 * to keep the system running rather than bringing it 6483 * down with an obscure error like "pa_hment leaked" 6484 * which doesn't aid the user in debugging their driver. 6485 */ 6486 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) { 6487 tmphme = sfhme->hme_next; 6488 if (IS_PAHME(sfhme)) { 6489 struct pa_hment *pahmep = sfhme->hme_data; 6490 sfmmu_pahment_leaked(pahmep); 6491 HME_SUB(sfhme, pp); 6492 kmem_cache_free(pa_hment_cache, pahmep); 6493 } 6494 } 6495 6496 ASSERT(!PP_ISMAPPED(origpp) || xhme_blks); 6497 } 6498 6499 sfmmu_mlist_exit(pml); 6500 6501 /* 6502 * XHAT may not have finished unloading pages 6503 * because some other thread was waiting for 6504 * mlist lock and XHAT_PAGEUNLOAD let it do 6505 * the job. 6506 */ 6507 if (xhme_blks) { 6508 pp = origpp; 6509 goto retry_xhat; 6510 } 6511 6512 return (0); 6513 } 6514 6515 static cpuset_t 6516 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons) 6517 { 6518 struct hme_blk *hmeblkp; 6519 sfmmu_t *sfmmup; 6520 tte_t tte, ttemod; 6521 #ifdef DEBUG 6522 tte_t orig_old; 6523 #endif /* DEBUG */ 6524 caddr_t addr; 6525 int ttesz; 6526 int ret; 6527 cpuset_t cpuset; 6528 6529 ASSERT(pp != NULL); 6530 ASSERT(sfmmu_mlist_held(pp)); 6531 ASSERT(pp->p_vnode != &kvp); 6532 6533 CPUSET_ZERO(cpuset); 6534 6535 hmeblkp = sfmmu_hmetohblk(sfhme); 6536 6537 readtte: 6538 sfmmu_copytte(&sfhme->hme_tte, &tte); 6539 if (TTE_IS_VALID(&tte)) { 6540 sfmmup = hblktosfmmu(hmeblkp); 6541 ttesz = get_hblk_ttesz(hmeblkp); 6542 /* 6543 * Only unload mappings of 'cons' size. 6544 */ 6545 if (ttesz != cons) 6546 return (cpuset); 6547 6548 /* 6549 * Note that we have p_mapping lock, but no hash lock here. 6550 * hblk_unload() has to have both hash lock AND p_mapping 6551 * lock before it tries to modify tte. So, the tte could 6552 * not become invalid in the sfmmu_modifytte_try() below. 6553 */ 6554 ttemod = tte; 6555 #ifdef DEBUG 6556 orig_old = tte; 6557 #endif /* DEBUG */ 6558 6559 TTE_SET_INVALID(&ttemod); 6560 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte); 6561 if (ret < 0) { 6562 #ifdef DEBUG 6563 /* only R/M bits can change. */ 6564 chk_tte(&orig_old, &tte, &ttemod, hmeblkp); 6565 #endif /* DEBUG */ 6566 goto readtte; 6567 } 6568 6569 if (ret == 0) { 6570 panic("pageunload: cas failed?"); 6571 } 6572 6573 addr = tte_to_vaddr(hmeblkp, tte); 6574 6575 sfmmu_ttesync(sfmmup, addr, &tte, pp); 6576 6577 atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -1); 6578 6579 /* 6580 * We need to flush the page from the virtual cache 6581 * in order to prevent a virtual cache alias 6582 * inconsistency. The particular scenario we need 6583 * to worry about is: 6584 * Given: va1 and va2 are two virtual address that 6585 * alias and will map the same physical address. 6586 * 1. mapping exists from va1 to pa and data has 6587 * been read into the cache. 6588 * 2. unload va1. 6589 * 3. load va2 and modify data using va2. 6590 * 4 unload va2. 6591 * 5. load va1 and reference data. Unless we flush 6592 * the data cache when we unload we will get 6593 * stale data. 6594 * This scenario is taken care of by using virtual 6595 * page coloring. 6596 */ 6597 if (sfmmup->sfmmu_ismhat) { 6598 /* 6599 * Flush TSBs, TLBs and caches 6600 * of every process 6601 * sharing this ism segment. 6602 */ 6603 sfmmu_hat_lock_all(); 6604 mutex_enter(&ism_mlist_lock); 6605 kpreempt_disable(); 6606 if (do_virtual_coloring) 6607 sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp, 6608 pp->p_pagenum, CACHE_NO_FLUSH); 6609 else 6610 sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp, 6611 pp->p_pagenum, CACHE_FLUSH); 6612 kpreempt_enable(); 6613 mutex_exit(&ism_mlist_lock); 6614 sfmmu_hat_unlock_all(); 6615 cpuset = cpu_ready_set; 6616 } else if (do_virtual_coloring) { 6617 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0); 6618 cpuset = sfmmup->sfmmu_cpusran; 6619 } else { 6620 sfmmu_tlbcache_demap(addr, sfmmup, hmeblkp, 6621 pp->p_pagenum, 0, FLUSH_NECESSARY_CPUS, 6622 CACHE_FLUSH, 0); 6623 cpuset = sfmmup->sfmmu_cpusran; 6624 } 6625 6626 /* 6627 * Hme_sub has to run after ttesync() and a_rss update. 6628 * See hblk_unload(). 6629 */ 6630 HME_SUB(sfhme, pp); 6631 membar_stst(); 6632 6633 /* 6634 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS) 6635 * since pteload may have done a HME_ADD() right after 6636 * we did the HME_SUB() above. Hmecnt is now maintained 6637 * by cas only. no lock guranteed its value. The only 6638 * gurantee we have is the hmecnt should not be less than 6639 * what it should be so the hblk will not be taken away. 6640 * It's also important that we decremented the hmecnt after 6641 * we are done with hmeblkp so that this hmeblk won't be 6642 * stolen. 6643 */ 6644 ASSERT(hmeblkp->hblk_hmecnt > 0); 6645 ASSERT(hmeblkp->hblk_vcnt > 0); 6646 atomic_add_16(&hmeblkp->hblk_vcnt, -1); 6647 atomic_add_16(&hmeblkp->hblk_hmecnt, -1); 6648 /* 6649 * This is bug 4063182. 6650 * XXX: fixme 6651 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt || 6652 * !hmeblkp->hblk_lckcnt); 6653 */ 6654 } else { 6655 panic("invalid tte? pp %p &tte %p", 6656 (void *)pp, (void *)&tte); 6657 } 6658 6659 return (cpuset); 6660 } 6661 6662 /* 6663 * While relocating a kernel page, this function will move the mappings 6664 * from tpp to dpp and modify any associated data with these mappings. 6665 * It also unsuspends the suspended kernel mapping. 6666 */ 6667 static void 6668 hat_pagereload(struct page *tpp, struct page *dpp) 6669 { 6670 struct sf_hment *sfhme; 6671 tte_t tte, ttemod; 6672 int index, cons; 6673 6674 ASSERT(getpil() == PIL_MAX); 6675 ASSERT(sfmmu_mlist_held(tpp)); 6676 ASSERT(sfmmu_mlist_held(dpp)); 6677 6678 index = PP_MAPINDEX(tpp); 6679 cons = TTE8K; 6680 6681 /* Update real mappings to the page */ 6682 retry: 6683 for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) { 6684 if (IS_PAHME(sfhme)) 6685 continue; 6686 sfmmu_copytte(&sfhme->hme_tte, &tte); 6687 ttemod = tte; 6688 6689 /* 6690 * replace old pfn with new pfn in TTE 6691 */ 6692 PFN_TO_TTE(ttemod, dpp->p_pagenum); 6693 6694 /* 6695 * clear suspend bit 6696 */ 6697 ASSERT(TTE_IS_SUSPEND(&ttemod)); 6698 TTE_CLR_SUSPEND(&ttemod); 6699 6700 if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0) 6701 panic("hat_pagereload(): sfmmu_modifytte_try() failed"); 6702 6703 /* 6704 * set hme_page point to new page 6705 */ 6706 sfhme->hme_page = dpp; 6707 } 6708 6709 /* 6710 * move p_mapping list from old page to new page 6711 */ 6712 dpp->p_mapping = tpp->p_mapping; 6713 tpp->p_mapping = NULL; 6714 dpp->p_share = tpp->p_share; 6715 tpp->p_share = 0; 6716 6717 while (index != 0) { 6718 index = index >> 1; 6719 if (index != 0) 6720 cons++; 6721 if (index & 0x1) { 6722 tpp = PP_GROUPLEADER(tpp, cons); 6723 dpp = PP_GROUPLEADER(dpp, cons); 6724 goto retry; 6725 } 6726 } 6727 6728 if (dtrace_kreloc_fini) 6729 (*dtrace_kreloc_fini)(); 6730 mutex_exit(&kpr_suspendlock); 6731 } 6732 6733 uint_t 6734 hat_pagesync(struct page *pp, uint_t clearflag) 6735 { 6736 struct sf_hment *sfhme, *tmphme = NULL; 6737 struct hme_blk *hmeblkp; 6738 kmutex_t *pml; 6739 cpuset_t cpuset, tset; 6740 int index, cons; 6741 extern ulong_t po_share; 6742 page_t *save_pp = pp; 6743 6744 CPUSET_ZERO(cpuset); 6745 6746 if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) { 6747 return (PP_GENERIC_ATTR(pp)); 6748 } 6749 6750 if ((clearflag == (HAT_SYNC_STOPON_REF | HAT_SYNC_DONTZERO)) && 6751 PP_ISREF(pp)) { 6752 return (PP_GENERIC_ATTR(pp)); 6753 } 6754 6755 if ((clearflag == (HAT_SYNC_STOPON_MOD | HAT_SYNC_DONTZERO)) && 6756 PP_ISMOD(pp)) { 6757 return (PP_GENERIC_ATTR(pp)); 6758 } 6759 6760 if ((clearflag & HAT_SYNC_STOPON_SHARED) != 0 && 6761 (pp->p_share > po_share) && 6762 !(clearflag & HAT_SYNC_ZERORM)) { 6763 if (PP_ISRO(pp)) 6764 hat_page_setattr(pp, P_REF); 6765 return (PP_GENERIC_ATTR(pp)); 6766 } 6767 6768 clearflag &= ~HAT_SYNC_STOPON_SHARED; 6769 pml = sfmmu_mlist_enter(pp); 6770 index = PP_MAPINDEX(pp); 6771 cons = TTE8K; 6772 retry: 6773 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) { 6774 /* 6775 * We need to save the next hment on the list since 6776 * it is possible for pagesync to remove an invalid hment 6777 * from the list. 6778 */ 6779 tmphme = sfhme->hme_next; 6780 /* 6781 * If we are looking for large mappings and this hme doesn't 6782 * reach the range we are seeking, just ignore its. 6783 */ 6784 hmeblkp = sfmmu_hmetohblk(sfhme); 6785 if (hmeblkp->hblk_xhat_bit) 6786 continue; 6787 6788 if (hme_size(sfhme) < cons) 6789 continue; 6790 tset = sfmmu_pagesync(pp, sfhme, 6791 clearflag & ~HAT_SYNC_STOPON_RM); 6792 CPUSET_OR(cpuset, tset); 6793 /* 6794 * If clearflag is HAT_SYNC_DONTZERO, break out as soon 6795 * as the "ref" or "mod" is set. 6796 */ 6797 if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO && 6798 ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) || 6799 ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp))) { 6800 index = 0; 6801 break; 6802 } 6803 } 6804 6805 while (index) { 6806 index = index >> 1; 6807 cons++; 6808 if (index & 0x1) { 6809 /* Go to leading page */ 6810 pp = PP_GROUPLEADER(pp, cons); 6811 goto retry; 6812 } 6813 } 6814 6815 xt_sync(cpuset); 6816 sfmmu_mlist_exit(pml); 6817 return (PP_GENERIC_ATTR(save_pp)); 6818 } 6819 6820 /* 6821 * Get all the hardware dependent attributes for a page struct 6822 */ 6823 static cpuset_t 6824 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme, 6825 uint_t clearflag) 6826 { 6827 caddr_t addr; 6828 tte_t tte, ttemod; 6829 struct hme_blk *hmeblkp; 6830 int ret; 6831 sfmmu_t *sfmmup; 6832 cpuset_t cpuset; 6833 6834 ASSERT(pp != NULL); 6835 ASSERT(sfmmu_mlist_held(pp)); 6836 ASSERT((clearflag == HAT_SYNC_DONTZERO) || 6837 (clearflag == HAT_SYNC_ZERORM)); 6838 6839 SFMMU_STAT(sf_pagesync); 6840 6841 CPUSET_ZERO(cpuset); 6842 6843 sfmmu_pagesync_retry: 6844 6845 sfmmu_copytte(&sfhme->hme_tte, &tte); 6846 if (TTE_IS_VALID(&tte)) { 6847 hmeblkp = sfmmu_hmetohblk(sfhme); 6848 sfmmup = hblktosfmmu(hmeblkp); 6849 addr = tte_to_vaddr(hmeblkp, tte); 6850 if (clearflag == HAT_SYNC_ZERORM) { 6851 ttemod = tte; 6852 TTE_CLR_RM(&ttemod); 6853 ret = sfmmu_modifytte_try(&tte, &ttemod, 6854 &sfhme->hme_tte); 6855 if (ret < 0) { 6856 /* 6857 * cas failed and the new value is not what 6858 * we want. 6859 */ 6860 goto sfmmu_pagesync_retry; 6861 } 6862 6863 if (ret > 0) { 6864 /* we win the cas */ 6865 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0); 6866 cpuset = sfmmup->sfmmu_cpusran; 6867 } 6868 } 6869 6870 sfmmu_ttesync(sfmmup, addr, &tte, pp); 6871 } 6872 return (cpuset); 6873 } 6874 6875 /* 6876 * Remove write permission from a mappings to a page, so that 6877 * we can detect the next modification of it. This requires modifying 6878 * the TTE then invalidating (demap) any TLB entry using that TTE. 6879 * This code is similar to sfmmu_pagesync(). 6880 */ 6881 static cpuset_t 6882 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme) 6883 { 6884 caddr_t addr; 6885 tte_t tte; 6886 tte_t ttemod; 6887 struct hme_blk *hmeblkp; 6888 int ret; 6889 sfmmu_t *sfmmup; 6890 cpuset_t cpuset; 6891 6892 ASSERT(pp != NULL); 6893 ASSERT(sfmmu_mlist_held(pp)); 6894 6895 CPUSET_ZERO(cpuset); 6896 SFMMU_STAT(sf_clrwrt); 6897 6898 retry: 6899 6900 sfmmu_copytte(&sfhme->hme_tte, &tte); 6901 if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) { 6902 hmeblkp = sfmmu_hmetohblk(sfhme); 6903 6904 /* 6905 * xhat mappings should never be to a VMODSORT page. 6906 */ 6907 ASSERT(hmeblkp->hblk_xhat_bit == 0); 6908 6909 sfmmup = hblktosfmmu(hmeblkp); 6910 addr = tte_to_vaddr(hmeblkp, tte); 6911 6912 ttemod = tte; 6913 TTE_CLR_WRT(&ttemod); 6914 TTE_CLR_MOD(&ttemod); 6915 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte); 6916 6917 /* 6918 * if cas failed and the new value is not what 6919 * we want retry 6920 */ 6921 if (ret < 0) 6922 goto retry; 6923 6924 /* we win the cas */ 6925 if (ret > 0) { 6926 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0); 6927 cpuset = sfmmup->sfmmu_cpusran; 6928 } 6929 } 6930 6931 return (cpuset); 6932 } 6933 6934 /* 6935 * Walk all mappings of a page, removing write permission and clearing the 6936 * ref/mod bits. This code is similar to hat_pagesync() 6937 */ 6938 static void 6939 hat_page_clrwrt(page_t *pp) 6940 { 6941 struct sf_hment *sfhme; 6942 struct sf_hment *tmphme = NULL; 6943 kmutex_t *pml; 6944 cpuset_t cpuset; 6945 cpuset_t tset; 6946 int index; 6947 int cons; 6948 6949 CPUSET_ZERO(cpuset); 6950 6951 pml = sfmmu_mlist_enter(pp); 6952 index = PP_MAPINDEX(pp); 6953 cons = TTE8K; 6954 retry: 6955 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) { 6956 tmphme = sfhme->hme_next; 6957 6958 /* 6959 * If we are looking for large mappings and this hme doesn't 6960 * reach the range we are seeking, just ignore its. 6961 */ 6962 6963 if (hme_size(sfhme) < cons) 6964 continue; 6965 6966 tset = sfmmu_pageclrwrt(pp, sfhme); 6967 CPUSET_OR(cpuset, tset); 6968 } 6969 6970 while (index) { 6971 index = index >> 1; 6972 cons++; 6973 if (index & 0x1) { 6974 /* Go to leading page */ 6975 pp = PP_GROUPLEADER(pp, cons); 6976 goto retry; 6977 } 6978 } 6979 6980 xt_sync(cpuset); 6981 sfmmu_mlist_exit(pml); 6982 } 6983 6984 /* 6985 * Set the given REF/MOD/RO bits for the given page. 6986 * For a vnode with a sorted v_pages list, we need to change 6987 * the attributes and the v_pages list together under page_vnode_mutex. 6988 */ 6989 void 6990 hat_page_setattr(page_t *pp, uint_t flag) 6991 { 6992 vnode_t *vp = pp->p_vnode; 6993 page_t **listp; 6994 kmutex_t *pmtx; 6995 kmutex_t *vphm = NULL; 6996 6997 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 6998 6999 /* 7000 * nothing to do if attribute already set 7001 */ 7002 if ((pp->p_nrm & flag) == flag) 7003 return; 7004 7005 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { 7006 vphm = page_vnode_mutex(vp); 7007 mutex_enter(vphm); 7008 } 7009 7010 pmtx = sfmmu_page_enter(pp); 7011 pp->p_nrm |= flag; 7012 sfmmu_page_exit(pmtx); 7013 7014 if (vphm != NULL) { 7015 /* 7016 * Some File Systems examine v_pages for NULL w/o 7017 * grabbing the vphm mutex. Must not let it become NULL when 7018 * pp is the only page on the list. 7019 */ 7020 if (pp->p_vpnext != pp) { 7021 page_vpsub(&vp->v_pages, pp); 7022 if (vp->v_pages != NULL) 7023 listp = &vp->v_pages->p_vpprev->p_vpnext; 7024 else 7025 listp = &vp->v_pages; 7026 page_vpadd(listp, pp); 7027 } 7028 mutex_exit(vphm); 7029 } 7030 } 7031 7032 void 7033 hat_page_clrattr(page_t *pp, uint_t flag) 7034 { 7035 vnode_t *vp = pp->p_vnode; 7036 kmutex_t *vphm = NULL; 7037 kmutex_t *pmtx; 7038 7039 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 7040 7041 /* 7042 * For vnode with a sorted v_pages list, we need to change 7043 * the attributes and the v_pages list together under page_vnode_mutex. 7044 */ 7045 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { 7046 vphm = page_vnode_mutex(vp); 7047 mutex_enter(vphm); 7048 } 7049 7050 pmtx = sfmmu_page_enter(pp); 7051 pp->p_nrm &= ~flag; 7052 sfmmu_page_exit(pmtx); 7053 7054 if (vphm != NULL) { 7055 /* 7056 * Some File Systems examine v_pages for NULL w/o 7057 * grabbing the vphm mutex. Must not let it become NULL when 7058 * pp is the only page on the list. 7059 */ 7060 if (pp->p_vpnext != pp) { 7061 page_vpsub(&vp->v_pages, pp); 7062 page_vpadd(&vp->v_pages, pp); 7063 } 7064 mutex_exit(vphm); 7065 7066 /* 7067 * VMODSORT works by removing write permissions and getting 7068 * a fault when a page is made dirty. At this point 7069 * we need to remove write permission from all mappings 7070 * to this page. 7071 */ 7072 hat_page_clrwrt(pp); 7073 } 7074 } 7075 7076 7077 uint_t 7078 hat_page_getattr(page_t *pp, uint_t flag) 7079 { 7080 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 7081 return ((uint_t)(pp->p_nrm & flag)); 7082 } 7083 7084 /* 7085 * DEBUG kernels: verify that a kernel va<->pa translation 7086 * is safe by checking the underlying page_t is in a page 7087 * relocation-safe state. 7088 */ 7089 #ifdef DEBUG 7090 void 7091 sfmmu_check_kpfn(pfn_t pfn) 7092 { 7093 page_t *pp; 7094 int index, cons; 7095 7096 if (hat_check_vtop == 0) 7097 return; 7098 7099 if (hat_kpr_enabled == 0 || kvseg.s_base == NULL || panicstr) 7100 return; 7101 7102 pp = page_numtopp_nolock(pfn); 7103 if (!pp) 7104 return; 7105 7106 if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp)) 7107 return; 7108 7109 /* 7110 * Handed a large kernel page, we dig up the root page since we 7111 * know the root page might have the lock also. 7112 */ 7113 if (pp->p_szc != 0) { 7114 index = PP_MAPINDEX(pp); 7115 cons = TTE8K; 7116 again: 7117 while (index != 0) { 7118 index >>= 1; 7119 if (index != 0) 7120 cons++; 7121 if (index & 0x1) { 7122 pp = PP_GROUPLEADER(pp, cons); 7123 goto again; 7124 } 7125 } 7126 } 7127 7128 if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp)) 7129 return; 7130 7131 /* 7132 * Pages need to be locked or allocated "permanent" (either from 7133 * static_arena arena or explicitly setting PG_NORELOC when calling 7134 * page_create_va()) for VA->PA translations to be valid. 7135 */ 7136 if (!PP_ISNORELOC(pp)) 7137 panic("Illegal VA->PA translation, pp 0x%p not permanent", pp); 7138 else 7139 panic("Illegal VA->PA translation, pp 0x%p not locked", pp); 7140 } 7141 #endif /* DEBUG */ 7142 7143 /* 7144 * Returns a page frame number for a given virtual address. 7145 * Returns PFN_INVALID to indicate an invalid mapping 7146 */ 7147 pfn_t 7148 hat_getpfnum(struct hat *hat, caddr_t addr) 7149 { 7150 pfn_t pfn; 7151 tte_t tte; 7152 7153 /* 7154 * We would like to 7155 * ASSERT(AS_LOCK_HELD(as, &as->a_lock)); 7156 * but we can't because the iommu driver will call this 7157 * routine at interrupt time and it can't grab the as lock 7158 * or it will deadlock: A thread could have the as lock 7159 * and be waiting for io. The io can't complete 7160 * because the interrupt thread is blocked trying to grab 7161 * the as lock. 7162 */ 7163 7164 ASSERT(hat->sfmmu_xhat_provider == NULL); 7165 7166 if (hat == ksfmmup) { 7167 if (segkpm && IS_KPM_ADDR(addr)) 7168 return (sfmmu_kpm_vatopfn(addr)); 7169 while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte)) 7170 == PFN_SUSPENDED) { 7171 sfmmu_vatopfn_suspended(addr, ksfmmup, &tte); 7172 } 7173 sfmmu_check_kpfn(pfn); 7174 return (pfn); 7175 } else { 7176 return (sfmmu_uvatopfn(addr, hat)); 7177 } 7178 } 7179 7180 /* 7181 * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged. 7182 * Use hat_getpfnum(kas.a_hat, ...) instead. 7183 * 7184 * We'd like to return PFN_INVALID if the mappings have underlying page_t's 7185 * but can't right now due to the fact that some software has grown to use 7186 * this interface incorrectly. So for now when the interface is misused, 7187 * return a warning to the user that in the future it won't work in the 7188 * way they're abusing it, and carry on (after disabling page relocation). 7189 */ 7190 pfn_t 7191 hat_getkpfnum(caddr_t addr) 7192 { 7193 pfn_t pfn; 7194 tte_t tte; 7195 int badcaller = 0; 7196 extern int segkmem_reloc; 7197 7198 if (segkpm && IS_KPM_ADDR(addr)) { 7199 badcaller = 1; 7200 pfn = sfmmu_kpm_vatopfn(addr); 7201 } else { 7202 while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte)) 7203 == PFN_SUSPENDED) { 7204 sfmmu_vatopfn_suspended(addr, ksfmmup, &tte); 7205 } 7206 badcaller = pf_is_memory(pfn); 7207 } 7208 7209 if (badcaller) { 7210 /* 7211 * We can't return PFN_INVALID or the caller may panic 7212 * or corrupt the system. The only alternative is to 7213 * disable page relocation at this point for all kernel 7214 * memory. This will impact any callers of page_relocate() 7215 * such as FMA or DR. 7216 * 7217 * RFE: Add junk here to spit out an ereport so the sysadmin 7218 * can be advised that he should upgrade his device driver 7219 * so that this doesn't happen. 7220 */ 7221 hat_getkpfnum_badcall(caller()); 7222 if (hat_kpr_enabled && segkmem_reloc) { 7223 hat_kpr_enabled = 0; 7224 segkmem_reloc = 0; 7225 cmn_err(CE_WARN, "Kernel Page Relocation is DISABLED"); 7226 } 7227 } 7228 return (pfn); 7229 } 7230 7231 pfn_t 7232 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup) 7233 { 7234 struct hmehash_bucket *hmebp; 7235 hmeblk_tag hblktag; 7236 int hmeshift, hashno = 1; 7237 struct hme_blk *hmeblkp = NULL; 7238 7239 struct sf_hment *sfhmep; 7240 tte_t tte; 7241 pfn_t pfn; 7242 7243 /* support for ISM */ 7244 ism_map_t *ism_map; 7245 ism_blk_t *ism_blkp; 7246 int i; 7247 sfmmu_t *ism_hatid = NULL; 7248 sfmmu_t *locked_hatid = NULL; 7249 7250 7251 ASSERT(sfmmup != ksfmmup); 7252 SFMMU_STAT(sf_user_vtop); 7253 /* 7254 * Set ism_hatid if vaddr falls in a ISM segment. 7255 */ 7256 ism_blkp = sfmmup->sfmmu_iblk; 7257 if (ism_blkp) { 7258 sfmmu_ismhat_enter(sfmmup, 0); 7259 locked_hatid = sfmmup; 7260 } 7261 while (ism_blkp && ism_hatid == NULL) { 7262 ism_map = ism_blkp->iblk_maps; 7263 for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) { 7264 if (vaddr >= ism_start(ism_map[i]) && 7265 vaddr < ism_end(ism_map[i])) { 7266 sfmmup = ism_hatid = ism_map[i].imap_ismhat; 7267 vaddr = (caddr_t)(vaddr - 7268 ism_start(ism_map[i])); 7269 break; 7270 } 7271 } 7272 ism_blkp = ism_blkp->iblk_next; 7273 } 7274 if (locked_hatid) { 7275 sfmmu_ismhat_exit(locked_hatid, 0); 7276 } 7277 7278 hblktag.htag_id = sfmmup; 7279 do { 7280 hmeshift = HME_HASH_SHIFT(hashno); 7281 hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift); 7282 hblktag.htag_rehash = hashno; 7283 hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift); 7284 7285 SFMMU_HASH_LOCK(hmebp); 7286 7287 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp); 7288 if (hmeblkp != NULL) { 7289 HBLKTOHME(sfhmep, hmeblkp, vaddr); 7290 sfmmu_copytte(&sfhmep->hme_tte, &tte); 7291 if (TTE_IS_VALID(&tte)) { 7292 pfn = TTE_TO_PFN(vaddr, &tte); 7293 } else { 7294 pfn = PFN_INVALID; 7295 } 7296 SFMMU_HASH_UNLOCK(hmebp); 7297 return (pfn); 7298 } 7299 SFMMU_HASH_UNLOCK(hmebp); 7300 hashno++; 7301 } while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt)); 7302 return (PFN_INVALID); 7303 } 7304 7305 7306 /* 7307 * For compatability with AT&T and later optimizations 7308 */ 7309 /* ARGSUSED */ 7310 void 7311 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags) 7312 { 7313 ASSERT(hat != NULL); 7314 ASSERT(hat->sfmmu_xhat_provider == NULL); 7315 } 7316 7317 /* 7318 * Return the number of mappings to a particular page. 7319 * This number is an approximation of the number of 7320 * number of people sharing the page. 7321 */ 7322 ulong_t 7323 hat_page_getshare(page_t *pp) 7324 { 7325 page_t *spp = pp; /* start page */ 7326 kmutex_t *pml; 7327 ulong_t cnt; 7328 int index, sz = TTE64K; 7329 7330 /* 7331 * We need to grab the mlist lock to make sure any outstanding 7332 * load/unloads complete. Otherwise we could return zero 7333 * even though the unload(s) hasn't finished yet. 7334 */ 7335 pml = sfmmu_mlist_enter(spp); 7336 cnt = spp->p_share; 7337 7338 if (kpm_enable) 7339 cnt += spp->p_kpmref; 7340 7341 /* 7342 * If we have any large mappings, we count the number of 7343 * mappings that this large page is part of. 7344 */ 7345 index = PP_MAPINDEX(spp); 7346 index >>= 1; 7347 while (index) { 7348 pp = PP_GROUPLEADER(spp, sz); 7349 if ((index & 0x1) && pp != spp) { 7350 cnt += pp->p_share; 7351 spp = pp; 7352 } 7353 index >>= 1; 7354 sz++; 7355 } 7356 sfmmu_mlist_exit(pml); 7357 return (cnt); 7358 } 7359 7360 /* 7361 * Unload all large mappings to the pp and reset the p_szc field of every 7362 * constituent page according to the remaining mappings. 7363 * 7364 * pp must be locked SE_EXCL. Even though no other constituent pages are 7365 * locked it's legal to unload the large mappings to the pp because all 7366 * constituent pages of large locked mappings have to be locked SE_SHARED. 7367 * This means if we have SE_EXCL lock on one of constituent pages none of the 7368 * large mappings to pp are locked. 7369 * 7370 * Decrease p_szc field starting from the last constituent page and ending 7371 * with the root page. This method is used because other threads rely on the 7372 * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc 7373 * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This 7374 * ensures that p_szc changes of the constituent pages appears atomic for all 7375 * threads that use sfmmu_mlspl_enter() to examine p_szc field. 7376 * 7377 * This mechanism is only used for file system pages where it's not always 7378 * possible to get SE_EXCL locks on all constituent pages to demote the size 7379 * code (as is done for anonymous or kernel large pages). 7380 * 7381 * See more comments in front of sfmmu_mlspl_enter(). 7382 */ 7383 void 7384 hat_page_demote(page_t *pp) 7385 { 7386 int index; 7387 int sz; 7388 cpuset_t cpuset; 7389 int sync = 0; 7390 page_t *rootpp; 7391 struct sf_hment *sfhme; 7392 struct sf_hment *tmphme = NULL; 7393 struct hme_blk *hmeblkp; 7394 uint_t pszc; 7395 page_t *lastpp; 7396 cpuset_t tset; 7397 pgcnt_t npgs; 7398 kmutex_t *pml; 7399 kmutex_t *pmtx = NULL; 7400 7401 ASSERT(PAGE_EXCL(pp)); 7402 ASSERT(!PP_ISFREE(pp)); 7403 ASSERT(page_szc_lock_assert(pp)); 7404 pml = sfmmu_mlist_enter(pp); 7405 7406 pszc = pp->p_szc; 7407 if (pszc == 0) { 7408 goto out; 7409 } 7410 7411 index = PP_MAPINDEX(pp) >> 1; 7412 7413 if (index) { 7414 CPUSET_ZERO(cpuset); 7415 sz = TTE64K; 7416 sync = 1; 7417 } 7418 7419 while (index) { 7420 if (!(index & 0x1)) { 7421 index >>= 1; 7422 sz++; 7423 continue; 7424 } 7425 ASSERT(sz <= pszc); 7426 rootpp = PP_GROUPLEADER(pp, sz); 7427 for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) { 7428 tmphme = sfhme->hme_next; 7429 hmeblkp = sfmmu_hmetohblk(sfhme); 7430 if (hme_size(sfhme) != sz) { 7431 continue; 7432 } 7433 if (hmeblkp->hblk_xhat_bit) { 7434 cmn_err(CE_PANIC, 7435 "hat_page_demote: xhat hmeblk"); 7436 } 7437 tset = sfmmu_pageunload(rootpp, sfhme, sz); 7438 CPUSET_OR(cpuset, tset); 7439 } 7440 if (index >>= 1) { 7441 sz++; 7442 } 7443 } 7444 7445 ASSERT(!PP_ISMAPPED_LARGE(pp)); 7446 7447 if (sync) { 7448 xt_sync(cpuset); 7449 if (PP_ISTNC(pp)) { 7450 conv_tnc(rootpp, sz); 7451 } 7452 } 7453 7454 pmtx = sfmmu_page_enter(pp); 7455 7456 ASSERT(pp->p_szc == pszc); 7457 rootpp = PP_PAGEROOT(pp); 7458 ASSERT(rootpp->p_szc == pszc); 7459 lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1); 7460 7461 while (lastpp != rootpp) { 7462 sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0; 7463 ASSERT(sz < pszc); 7464 npgs = (sz == 0) ? 1 : TTEPAGES(sz); 7465 ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1); 7466 while (--npgs > 0) { 7467 lastpp->p_szc = (uchar_t)sz; 7468 lastpp = PP_PAGEPREV(lastpp); 7469 } 7470 if (sz) { 7471 /* 7472 * make sure before current root's pszc 7473 * is updated all updates to constituent pages pszc 7474 * fields are globally visible. 7475 */ 7476 membar_producer(); 7477 } 7478 lastpp->p_szc = sz; 7479 ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz))); 7480 if (lastpp != rootpp) { 7481 lastpp = PP_PAGEPREV(lastpp); 7482 } 7483 } 7484 if (sz == 0) { 7485 /* the loop above doesn't cover this case */ 7486 rootpp->p_szc = 0; 7487 } 7488 out: 7489 ASSERT(pp->p_szc == 0); 7490 if (pmtx != NULL) { 7491 sfmmu_page_exit(pmtx); 7492 } 7493 sfmmu_mlist_exit(pml); 7494 } 7495 7496 /* 7497 * Refresh the HAT ismttecnt[] element for size szc. 7498 * Caller must have set ISM busy flag to prevent mapping 7499 * lists from changing while we're traversing them. 7500 */ 7501 pgcnt_t 7502 ism_tsb_entries(sfmmu_t *sfmmup, int szc) 7503 { 7504 ism_blk_t *ism_blkp = sfmmup->sfmmu_iblk; 7505 ism_map_t *ism_map; 7506 pgcnt_t npgs = 0; 7507 int j; 7508 7509 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)); 7510 for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) { 7511 ism_map = ism_blkp->iblk_maps; 7512 for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++) 7513 npgs += ism_map[j].imap_ismhat->sfmmu_ttecnt[szc]; 7514 } 7515 sfmmup->sfmmu_ismttecnt[szc] = npgs; 7516 return (npgs); 7517 } 7518 7519 /* 7520 * Yield the memory claim requirement for an address space. 7521 * 7522 * This is currently implemented as the number of bytes that have active 7523 * hardware translations that have page structures. Therefore, it can 7524 * underestimate the traditional resident set size, eg, if the 7525 * physical page is present and the hardware translation is missing; 7526 * and it can overestimate the rss, eg, if there are active 7527 * translations to a frame buffer with page structs. 7528 * Also, it does not take sharing into account. 7529 * 7530 * Note that we don't acquire locks here since this function is most often 7531 * called from the clock thread. 7532 */ 7533 size_t 7534 hat_get_mapped_size(struct hat *hat) 7535 { 7536 size_t assize = 0; 7537 int i; 7538 7539 if (hat == NULL) 7540 return (0); 7541 7542 ASSERT(hat->sfmmu_xhat_provider == NULL); 7543 7544 for (i = 0; i < mmu_page_sizes; i++) 7545 assize += (pgcnt_t)hat->sfmmu_ttecnt[i] * TTEBYTES(i); 7546 7547 if (hat->sfmmu_iblk == NULL) 7548 return (assize); 7549 7550 for (i = 0; i < mmu_page_sizes; i++) 7551 assize += (pgcnt_t)hat->sfmmu_ismttecnt[i] * TTEBYTES(i); 7552 7553 return (assize); 7554 } 7555 7556 int 7557 hat_stats_enable(struct hat *hat) 7558 { 7559 hatlock_t *hatlockp; 7560 7561 ASSERT(hat->sfmmu_xhat_provider == NULL); 7562 7563 hatlockp = sfmmu_hat_enter(hat); 7564 hat->sfmmu_rmstat++; 7565 sfmmu_hat_exit(hatlockp); 7566 return (1); 7567 } 7568 7569 void 7570 hat_stats_disable(struct hat *hat) 7571 { 7572 hatlock_t *hatlockp; 7573 7574 ASSERT(hat->sfmmu_xhat_provider == NULL); 7575 7576 hatlockp = sfmmu_hat_enter(hat); 7577 hat->sfmmu_rmstat--; 7578 sfmmu_hat_exit(hatlockp); 7579 } 7580 7581 /* 7582 * Routines for entering or removing ourselves from the 7583 * ism_hat's mapping list. 7584 */ 7585 static void 7586 iment_add(struct ism_ment *iment, struct hat *ism_hat) 7587 { 7588 ASSERT(MUTEX_HELD(&ism_mlist_lock)); 7589 7590 iment->iment_prev = NULL; 7591 iment->iment_next = ism_hat->sfmmu_iment; 7592 if (ism_hat->sfmmu_iment) { 7593 ism_hat->sfmmu_iment->iment_prev = iment; 7594 } 7595 ism_hat->sfmmu_iment = iment; 7596 } 7597 7598 static void 7599 iment_sub(struct ism_ment *iment, struct hat *ism_hat) 7600 { 7601 ASSERT(MUTEX_HELD(&ism_mlist_lock)); 7602 7603 if (ism_hat->sfmmu_iment == NULL) { 7604 panic("ism map entry remove - no entries"); 7605 } 7606 7607 if (iment->iment_prev) { 7608 ASSERT(ism_hat->sfmmu_iment != iment); 7609 iment->iment_prev->iment_next = iment->iment_next; 7610 } else { 7611 ASSERT(ism_hat->sfmmu_iment == iment); 7612 ism_hat->sfmmu_iment = iment->iment_next; 7613 } 7614 7615 if (iment->iment_next) { 7616 iment->iment_next->iment_prev = iment->iment_prev; 7617 } 7618 7619 /* 7620 * zero out the entry 7621 */ 7622 iment->iment_next = NULL; 7623 iment->iment_prev = NULL; 7624 iment->iment_hat = NULL; 7625 } 7626 7627 /* 7628 * Hat_share()/unshare() return an (non-zero) error 7629 * when saddr and daddr are not properly aligned. 7630 * 7631 * The top level mapping element determines the alignment 7632 * requirement for saddr and daddr, depending on different 7633 * architectures. 7634 * 7635 * When hat_share()/unshare() are not supported, 7636 * HATOP_SHARE()/UNSHARE() return 0 7637 */ 7638 int 7639 hat_share(struct hat *sfmmup, caddr_t addr, 7640 struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc) 7641 { 7642 ism_blk_t *ism_blkp; 7643 ism_blk_t *new_iblk; 7644 ism_map_t *ism_map; 7645 ism_ment_t *ism_ment; 7646 int i, added; 7647 hatlock_t *hatlockp; 7648 int reload_mmu = 0; 7649 uint_t ismshift = page_get_shift(ismszc); 7650 size_t ismpgsz = page_get_pagesize(ismszc); 7651 uint_t ismmask = (uint_t)ismpgsz - 1; 7652 size_t sh_size = ISM_SHIFT(ismshift, len); 7653 ushort_t ismhatflag; 7654 7655 #ifdef DEBUG 7656 caddr_t eaddr = addr + len; 7657 #endif /* DEBUG */ 7658 7659 ASSERT(ism_hatid != NULL && sfmmup != NULL); 7660 ASSERT(sptaddr == ISMID_STARTADDR); 7661 /* 7662 * Check the alignment. 7663 */ 7664 if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr)) 7665 return (EINVAL); 7666 7667 /* 7668 * Check size alignment. 7669 */ 7670 if (!ISM_ALIGNED(ismshift, len)) 7671 return (EINVAL); 7672 7673 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 7674 7675 /* 7676 * Allocate ism_ment for the ism_hat's mapping list, and an 7677 * ism map blk in case we need one. We must do our 7678 * allocations before acquiring locks to prevent a deadlock 7679 * in the kmem allocator on the mapping list lock. 7680 */ 7681 new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP); 7682 ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP); 7683 7684 /* 7685 * Serialize ISM mappings with the ISM busy flag, and also the 7686 * trap handlers. 7687 */ 7688 sfmmu_ismhat_enter(sfmmup, 0); 7689 7690 /* 7691 * Allocate an ism map blk if necessary. 7692 */ 7693 if (sfmmup->sfmmu_iblk == NULL) { 7694 sfmmup->sfmmu_iblk = new_iblk; 7695 bzero(new_iblk, sizeof (*new_iblk)); 7696 new_iblk->iblk_nextpa = (uint64_t)-1; 7697 membar_stst(); /* make sure next ptr visible to all CPUs */ 7698 sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk); 7699 reload_mmu = 1; 7700 new_iblk = NULL; 7701 } 7702 7703 #ifdef DEBUG 7704 /* 7705 * Make sure mapping does not already exist. 7706 */ 7707 ism_blkp = sfmmup->sfmmu_iblk; 7708 while (ism_blkp) { 7709 ism_map = ism_blkp->iblk_maps; 7710 for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) { 7711 if ((addr >= ism_start(ism_map[i]) && 7712 addr < ism_end(ism_map[i])) || 7713 eaddr > ism_start(ism_map[i]) && 7714 eaddr <= ism_end(ism_map[i])) { 7715 panic("sfmmu_share: Already mapped!"); 7716 } 7717 } 7718 ism_blkp = ism_blkp->iblk_next; 7719 } 7720 #endif /* DEBUG */ 7721 7722 ASSERT(ismszc >= TTE4M); 7723 if (ismszc == TTE4M) { 7724 ismhatflag = HAT_4M_FLAG; 7725 } else if (ismszc == TTE32M) { 7726 ismhatflag = HAT_32M_FLAG; 7727 } else if (ismszc == TTE256M) { 7728 ismhatflag = HAT_256M_FLAG; 7729 } 7730 /* 7731 * Add mapping to first available mapping slot. 7732 */ 7733 ism_blkp = sfmmup->sfmmu_iblk; 7734 added = 0; 7735 while (!added) { 7736 ism_map = ism_blkp->iblk_maps; 7737 for (i = 0; i < ISM_MAP_SLOTS; i++) { 7738 if (ism_map[i].imap_ismhat == NULL) { 7739 7740 ism_map[i].imap_ismhat = ism_hatid; 7741 ism_map[i].imap_vb_shift = (ushort_t)ismshift; 7742 ism_map[i].imap_hatflags = ismhatflag; 7743 ism_map[i].imap_sz_mask = ismmask; 7744 /* 7745 * imap_seg is checked in ISM_CHECK to see if 7746 * non-NULL, then other info assumed valid. 7747 */ 7748 membar_stst(); 7749 ism_map[i].imap_seg = (uintptr_t)addr | sh_size; 7750 ism_map[i].imap_ment = ism_ment; 7751 7752 /* 7753 * Now add ourselves to the ism_hat's 7754 * mapping list. 7755 */ 7756 ism_ment->iment_hat = sfmmup; 7757 ism_ment->iment_base_va = addr; 7758 ism_hatid->sfmmu_ismhat = 1; 7759 ism_hatid->sfmmu_flags = 0; 7760 mutex_enter(&ism_mlist_lock); 7761 iment_add(ism_ment, ism_hatid); 7762 mutex_exit(&ism_mlist_lock); 7763 added = 1; 7764 break; 7765 } 7766 } 7767 if (!added && ism_blkp->iblk_next == NULL) { 7768 ism_blkp->iblk_next = new_iblk; 7769 new_iblk = NULL; 7770 bzero(ism_blkp->iblk_next, 7771 sizeof (*ism_blkp->iblk_next)); 7772 ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1; 7773 membar_stst(); 7774 ism_blkp->iblk_nextpa = 7775 va_to_pa((caddr_t)ism_blkp->iblk_next); 7776 } 7777 ism_blkp = ism_blkp->iblk_next; 7778 } 7779 7780 /* 7781 * Update our counters for this sfmmup's ism mappings. 7782 */ 7783 for (i = 0; i <= ismszc; i++) { 7784 if (!(disable_ism_large_pages & (1 << i))) 7785 (void) ism_tsb_entries(sfmmup, i); 7786 } 7787 7788 hatlockp = sfmmu_hat_enter(sfmmup); 7789 7790 /* 7791 * For ISM and DISM we do not support 512K pages, so we only 7792 * only search the 4M and 8K/64K hashes for 4 pagesize cpus, and search 7793 * the 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus. 7794 */ 7795 ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0); 7796 7797 if (ismszc > TTE4M && !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) 7798 SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG); 7799 7800 if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG)) 7801 SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG); 7802 7803 /* 7804 * If we updated the ismblkpa for this HAT or we need 7805 * to start searching the 256M or 32M or 4M hash, we must 7806 * make sure all CPUs running this process reload their 7807 * tsbmiss area. Otherwise they will fail to load the mappings 7808 * in the tsbmiss handler and will loop calling pagefault(). 7809 */ 7810 switch (ismszc) { 7811 case TTE256M: 7812 if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) { 7813 SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG); 7814 sfmmu_sync_mmustate(sfmmup); 7815 } 7816 break; 7817 case TTE32M: 7818 if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) { 7819 SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG); 7820 sfmmu_sync_mmustate(sfmmup); 7821 } 7822 break; 7823 case TTE4M: 7824 if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) { 7825 SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG); 7826 sfmmu_sync_mmustate(sfmmup); 7827 } 7828 break; 7829 default: 7830 break; 7831 } 7832 7833 /* 7834 * Now we can drop the locks. 7835 */ 7836 sfmmu_ismhat_exit(sfmmup, 1); 7837 sfmmu_hat_exit(hatlockp); 7838 7839 /* 7840 * Free up ismblk if we didn't use it. 7841 */ 7842 if (new_iblk != NULL) 7843 kmem_cache_free(ism_blk_cache, new_iblk); 7844 7845 /* 7846 * Check TSB and TLB page sizes. 7847 */ 7848 sfmmu_check_page_sizes(sfmmup, 1); 7849 7850 return (0); 7851 } 7852 7853 /* 7854 * hat_unshare removes exactly one ism_map from 7855 * this process's as. It expects multiple calls 7856 * to hat_unshare for multiple shm segments. 7857 */ 7858 void 7859 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc) 7860 { 7861 ism_map_t *ism_map; 7862 ism_ment_t *free_ment = NULL; 7863 ism_blk_t *ism_blkp; 7864 struct hat *ism_hatid; 7865 int found, i; 7866 hatlock_t *hatlockp; 7867 struct tsb_info *tsbinfo; 7868 uint_t ismshift = page_get_shift(ismszc); 7869 size_t sh_size = ISM_SHIFT(ismshift, len); 7870 7871 ASSERT(ISM_ALIGNED(ismshift, addr)); 7872 ASSERT(ISM_ALIGNED(ismshift, len)); 7873 ASSERT(sfmmup != NULL); 7874 ASSERT(sfmmup != ksfmmup); 7875 7876 if (sfmmup->sfmmu_xhat_provider) { 7877 XHAT_UNSHARE(sfmmup, addr, len); 7878 return; 7879 } else { 7880 /* 7881 * This must be a CPU HAT. If the address space has 7882 * XHATs attached, inform all XHATs that ISM segment 7883 * is going away 7884 */ 7885 ASSERT(sfmmup->sfmmu_as != NULL); 7886 if (sfmmup->sfmmu_as->a_xhat != NULL) 7887 xhat_unshare_all(sfmmup->sfmmu_as, addr, len); 7888 } 7889 7890 /* 7891 * Make sure that during the entire time ISM mappings are removed, 7892 * the trap handlers serialize behind us, and that no one else 7893 * can be mucking with ISM mappings. This also lets us get away 7894 * with not doing expensive cross calls to flush the TLB -- we 7895 * just discard the context, flush the entire TSB, and call it 7896 * a day. 7897 */ 7898 sfmmu_ismhat_enter(sfmmup, 0); 7899 7900 /* 7901 * Remove the mapping. 7902 * 7903 * We can't have any holes in the ism map. 7904 * The tsb miss code while searching the ism map will 7905 * stop on an empty map slot. So we must move 7906 * everyone past the hole up 1 if any. 7907 * 7908 * Also empty ism map blks are not freed until the 7909 * process exits. This is to prevent a MT race condition 7910 * between sfmmu_unshare() and sfmmu_tsbmiss_exception(). 7911 */ 7912 found = 0; 7913 ism_blkp = sfmmup->sfmmu_iblk; 7914 while (!found && ism_blkp) { 7915 ism_map = ism_blkp->iblk_maps; 7916 for (i = 0; i < ISM_MAP_SLOTS; i++) { 7917 if (addr == ism_start(ism_map[i]) && 7918 sh_size == (size_t)(ism_size(ism_map[i]))) { 7919 found = 1; 7920 break; 7921 } 7922 } 7923 if (!found) 7924 ism_blkp = ism_blkp->iblk_next; 7925 } 7926 7927 if (found) { 7928 ism_hatid = ism_map[i].imap_ismhat; 7929 ASSERT(ism_hatid != NULL); 7930 ASSERT(ism_hatid->sfmmu_ismhat == 1); 7931 7932 /* 7933 * First remove ourselves from the ism mapping list. 7934 */ 7935 mutex_enter(&ism_mlist_lock); 7936 iment_sub(ism_map[i].imap_ment, ism_hatid); 7937 mutex_exit(&ism_mlist_lock); 7938 free_ment = ism_map[i].imap_ment; 7939 7940 /* 7941 * Now gurantee that any other cpu 7942 * that tries to process an ISM miss 7943 * will go to tl=0. 7944 */ 7945 hatlockp = sfmmu_hat_enter(sfmmup); 7946 7947 sfmmu_invalidate_ctx(sfmmup); 7948 7949 sfmmu_hat_exit(hatlockp); 7950 7951 /* 7952 * We delete the ism map by copying 7953 * the next map over the current one. 7954 * We will take the next one in the maps 7955 * array or from the next ism_blk. 7956 */ 7957 while (ism_blkp) { 7958 ism_map = ism_blkp->iblk_maps; 7959 while (i < (ISM_MAP_SLOTS - 1)) { 7960 ism_map[i] = ism_map[i + 1]; 7961 i++; 7962 } 7963 /* i == (ISM_MAP_SLOTS - 1) */ 7964 ism_blkp = ism_blkp->iblk_next; 7965 if (ism_blkp) { 7966 ism_map[i] = ism_blkp->iblk_maps[0]; 7967 i = 0; 7968 } else { 7969 ism_map[i].imap_seg = 0; 7970 ism_map[i].imap_vb_shift = 0; 7971 ism_map[i].imap_hatflags = 0; 7972 ism_map[i].imap_sz_mask = 0; 7973 ism_map[i].imap_ismhat = NULL; 7974 ism_map[i].imap_ment = NULL; 7975 } 7976 } 7977 7978 /* 7979 * Now flush entire TSB for the process, since 7980 * demapping page by page can be too expensive. 7981 * We don't have to flush the TLB here anymore 7982 * since we switch to a new TLB ctx instead. 7983 * Also, there is no need to flush if the process 7984 * is exiting since the TSB will be freed later. 7985 */ 7986 if (!sfmmup->sfmmu_free) { 7987 hatlockp = sfmmu_hat_enter(sfmmup); 7988 for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL; 7989 tsbinfo = tsbinfo->tsb_next) { 7990 if (tsbinfo->tsb_flags & TSB_SWAPPED) 7991 continue; 7992 sfmmu_inv_tsb(tsbinfo->tsb_va, 7993 TSB_BYTES(tsbinfo->tsb_szc)); 7994 } 7995 sfmmu_hat_exit(hatlockp); 7996 } 7997 } 7998 7999 /* 8000 * Update our counters for this sfmmup's ism mappings. 8001 */ 8002 for (i = 0; i <= ismszc; i++) { 8003 if (!(disable_ism_large_pages & (1 << i))) 8004 (void) ism_tsb_entries(sfmmup, i); 8005 } 8006 8007 sfmmu_ismhat_exit(sfmmup, 0); 8008 8009 /* 8010 * We must do our freeing here after dropping locks 8011 * to prevent a deadlock in the kmem allocator on the 8012 * mapping list lock. 8013 */ 8014 if (free_ment != NULL) 8015 kmem_cache_free(ism_ment_cache, free_ment); 8016 8017 /* 8018 * Check TSB and TLB page sizes if the process isn't exiting. 8019 */ 8020 if (!sfmmup->sfmmu_free) 8021 sfmmu_check_page_sizes(sfmmup, 0); 8022 } 8023 8024 /* ARGSUSED */ 8025 static int 8026 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags) 8027 { 8028 /* void *buf is sfmmu_t pointer */ 8029 return (0); 8030 } 8031 8032 /* ARGSUSED */ 8033 static void 8034 sfmmu_idcache_destructor(void *buf, void *cdrarg) 8035 { 8036 /* void *buf is sfmmu_t pointer */ 8037 } 8038 8039 /* 8040 * setup kmem hmeblks by bzeroing all members and initializing the nextpa 8041 * field to be the pa of this hmeblk 8042 */ 8043 /* ARGSUSED */ 8044 static int 8045 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags) 8046 { 8047 struct hme_blk *hmeblkp; 8048 8049 bzero(buf, (size_t)cdrarg); 8050 hmeblkp = (struct hme_blk *)buf; 8051 hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp); 8052 8053 #ifdef HBLK_TRACE 8054 mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL); 8055 #endif /* HBLK_TRACE */ 8056 8057 return (0); 8058 } 8059 8060 /* ARGSUSED */ 8061 static void 8062 sfmmu_hblkcache_destructor(void *buf, void *cdrarg) 8063 { 8064 8065 #ifdef HBLK_TRACE 8066 8067 struct hme_blk *hmeblkp; 8068 8069 hmeblkp = (struct hme_blk *)buf; 8070 mutex_destroy(&hmeblkp->hblk_audit_lock); 8071 8072 #endif /* HBLK_TRACE */ 8073 } 8074 8075 #define SFMMU_CACHE_RECLAIM_SCAN_RATIO 8 8076 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO; 8077 /* 8078 * The kmem allocator will callback into our reclaim routine when the system 8079 * is running low in memory. We traverse the hash and free up all unused but 8080 * still cached hme_blks. We also traverse the free list and free them up 8081 * as well. 8082 */ 8083 /*ARGSUSED*/ 8084 static void 8085 sfmmu_hblkcache_reclaim(void *cdrarg) 8086 { 8087 int i; 8088 uint64_t hblkpa, prevpa, nx_pa; 8089 struct hmehash_bucket *hmebp; 8090 struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL; 8091 static struct hmehash_bucket *uhmehash_reclaim_hand; 8092 static struct hmehash_bucket *khmehash_reclaim_hand; 8093 struct hme_blk *list = NULL; 8094 8095 hmebp = uhmehash_reclaim_hand; 8096 if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ]) 8097 uhmehash_reclaim_hand = hmebp = uhme_hash; 8098 uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; 8099 8100 for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) { 8101 if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) { 8102 hmeblkp = hmebp->hmeblkp; 8103 hblkpa = hmebp->hmeh_nextpa; 8104 prevpa = 0; 8105 pr_hblk = NULL; 8106 while (hmeblkp) { 8107 nx_hblk = hmeblkp->hblk_next; 8108 nx_pa = hmeblkp->hblk_nextpa; 8109 if (!hmeblkp->hblk_vcnt && 8110 !hmeblkp->hblk_hmecnt) { 8111 sfmmu_hblk_hash_rm(hmebp, hmeblkp, 8112 prevpa, pr_hblk); 8113 sfmmu_hblk_free(hmebp, hmeblkp, 8114 hblkpa, &list); 8115 } else { 8116 pr_hblk = hmeblkp; 8117 prevpa = hblkpa; 8118 } 8119 hmeblkp = nx_hblk; 8120 hblkpa = nx_pa; 8121 } 8122 SFMMU_HASH_UNLOCK(hmebp); 8123 } 8124 if (hmebp++ == &uhme_hash[UHMEHASH_SZ]) 8125 hmebp = uhme_hash; 8126 } 8127 8128 hmebp = khmehash_reclaim_hand; 8129 if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ]) 8130 khmehash_reclaim_hand = hmebp = khme_hash; 8131 khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; 8132 8133 for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) { 8134 if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) { 8135 hmeblkp = hmebp->hmeblkp; 8136 hblkpa = hmebp->hmeh_nextpa; 8137 prevpa = 0; 8138 pr_hblk = NULL; 8139 while (hmeblkp) { 8140 nx_hblk = hmeblkp->hblk_next; 8141 nx_pa = hmeblkp->hblk_nextpa; 8142 if (!hmeblkp->hblk_vcnt && 8143 !hmeblkp->hblk_hmecnt) { 8144 sfmmu_hblk_hash_rm(hmebp, hmeblkp, 8145 prevpa, pr_hblk); 8146 sfmmu_hblk_free(hmebp, hmeblkp, 8147 hblkpa, &list); 8148 } else { 8149 pr_hblk = hmeblkp; 8150 prevpa = hblkpa; 8151 } 8152 hmeblkp = nx_hblk; 8153 hblkpa = nx_pa; 8154 } 8155 SFMMU_HASH_UNLOCK(hmebp); 8156 } 8157 if (hmebp++ == &khme_hash[KHMEHASH_SZ]) 8158 hmebp = khme_hash; 8159 } 8160 sfmmu_hblks_list_purge(&list); 8161 } 8162 8163 /* 8164 * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface. 8165 * same goes for sfmmu_get_addrvcolor(). 8166 * 8167 * This function will return the virtual color for the specified page. The 8168 * virtual color corresponds to this page current mapping or its last mapping. 8169 * It is used by memory allocators to choose addresses with the correct 8170 * alignment so vac consistency is automatically maintained. If the page 8171 * has no color it returns -1. 8172 */ 8173 int 8174 sfmmu_get_ppvcolor(struct page *pp) 8175 { 8176 int color; 8177 8178 if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) { 8179 return (-1); 8180 } 8181 color = PP_GET_VCOLOR(pp); 8182 ASSERT(color < mmu_btop(shm_alignment)); 8183 return (color); 8184 } 8185 8186 /* 8187 * This function will return the desired alignment for vac consistency 8188 * (vac color) given a virtual address. If no vac is present it returns -1. 8189 */ 8190 int 8191 sfmmu_get_addrvcolor(caddr_t vaddr) 8192 { 8193 if (cache & CACHE_VAC) { 8194 return (addr_to_vcolor(vaddr)); 8195 } else { 8196 return (-1); 8197 } 8198 8199 } 8200 8201 /* 8202 * Check for conflicts. 8203 * A conflict exists if the new and existent mappings do not match in 8204 * their "shm_alignment fields. If conflicts exist, the existant mappings 8205 * are flushed unless one of them is locked. If one of them is locked, then 8206 * the mappings are flushed and converted to non-cacheable mappings. 8207 */ 8208 static void 8209 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp) 8210 { 8211 struct hat *tmphat; 8212 struct sf_hment *sfhmep, *tmphme = NULL; 8213 struct hme_blk *hmeblkp; 8214 int vcolor; 8215 tte_t tte; 8216 8217 ASSERT(sfmmu_mlist_held(pp)); 8218 ASSERT(!PP_ISNC(pp)); /* page better be cacheable */ 8219 8220 vcolor = addr_to_vcolor(addr); 8221 if (PP_NEWPAGE(pp)) { 8222 PP_SET_VCOLOR(pp, vcolor); 8223 return; 8224 } 8225 8226 if (PP_GET_VCOLOR(pp) == vcolor) { 8227 return; 8228 } 8229 8230 if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) { 8231 /* 8232 * Previous user of page had a different color 8233 * but since there are no current users 8234 * we just flush the cache and change the color. 8235 */ 8236 SFMMU_STAT(sf_pgcolor_conflict); 8237 sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp)); 8238 PP_SET_VCOLOR(pp, vcolor); 8239 return; 8240 } 8241 8242 /* 8243 * If we get here we have a vac conflict with a current 8244 * mapping. VAC conflict policy is as follows. 8245 * - The default is to unload the other mappings unless: 8246 * - If we have a large mapping we uncache the page. 8247 * We need to uncache the rest of the large page too. 8248 * - If any of the mappings are locked we uncache the page. 8249 * - If the requested mapping is inconsistent 8250 * with another mapping and that mapping 8251 * is in the same address space we have to 8252 * make it non-cached. The default thing 8253 * to do is unload the inconsistent mapping 8254 * but if they are in the same address space 8255 * we run the risk of unmapping the pc or the 8256 * stack which we will use as we return to the user, 8257 * in which case we can then fault on the thing 8258 * we just unloaded and get into an infinite loop. 8259 */ 8260 if (PP_ISMAPPED_LARGE(pp)) { 8261 int sz; 8262 8263 /* 8264 * Existing mapping is for big pages. We don't unload 8265 * existing big mappings to satisfy new mappings. 8266 * Always convert all mappings to TNC. 8267 */ 8268 sz = fnd_mapping_sz(pp); 8269 pp = PP_GROUPLEADER(pp, sz); 8270 SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz)); 8271 sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 8272 TTEPAGES(sz)); 8273 8274 return; 8275 } 8276 8277 /* 8278 * check if any mapping is in same as or if it is locked 8279 * since in that case we need to uncache. 8280 */ 8281 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) { 8282 tmphme = sfhmep->hme_next; 8283 hmeblkp = sfmmu_hmetohblk(sfhmep); 8284 if (hmeblkp->hblk_xhat_bit) 8285 continue; 8286 tmphat = hblktosfmmu(hmeblkp); 8287 sfmmu_copytte(&sfhmep->hme_tte, &tte); 8288 ASSERT(TTE_IS_VALID(&tte)); 8289 if ((tmphat == hat) || hmeblkp->hblk_lckcnt) { 8290 /* 8291 * We have an uncache conflict 8292 */ 8293 SFMMU_STAT(sf_uncache_conflict); 8294 sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1); 8295 return; 8296 } 8297 } 8298 8299 /* 8300 * We have an unload conflict 8301 * We have already checked for LARGE mappings, therefore 8302 * the remaining mapping(s) must be TTE8K. 8303 */ 8304 SFMMU_STAT(sf_unload_conflict); 8305 8306 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) { 8307 tmphme = sfhmep->hme_next; 8308 hmeblkp = sfmmu_hmetohblk(sfhmep); 8309 if (hmeblkp->hblk_xhat_bit) 8310 continue; 8311 (void) sfmmu_pageunload(pp, sfhmep, TTE8K); 8312 } 8313 8314 if (PP_ISMAPPED_KPM(pp)) 8315 sfmmu_kpm_vac_unload(pp, addr); 8316 8317 /* 8318 * Unloads only do TLB flushes so we need to flush the 8319 * cache here. 8320 */ 8321 sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp)); 8322 PP_SET_VCOLOR(pp, vcolor); 8323 } 8324 8325 /* 8326 * Whenever a mapping is unloaded and the page is in TNC state, 8327 * we see if the page can be made cacheable again. 'pp' is 8328 * the page that we just unloaded a mapping from, the size 8329 * of mapping that was unloaded is 'ottesz'. 8330 * Remark: 8331 * The recache policy for mpss pages can leave a performance problem 8332 * under the following circumstances: 8333 * . A large page in uncached mode has just been unmapped. 8334 * . All constituent pages are TNC due to a conflicting small mapping. 8335 * . There are many other, non conflicting, small mappings around for 8336 * a lot of the constituent pages. 8337 * . We're called w/ the "old" groupleader page and the old ottesz, 8338 * but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so 8339 * we end up w/ TTE8K or npages == 1. 8340 * . We call tst_tnc w/ the old groupleader only, and if there is no 8341 * conflict, we re-cache only this page. 8342 * . All other small mappings are not checked and will be left in TNC mode. 8343 * The problem is not very serious because: 8344 * . mpss is actually only defined for heap and stack, so the probability 8345 * is not very high that a large page mapping exists in parallel to a small 8346 * one (this is possible, but seems to be bad programming style in the 8347 * appl). 8348 * . The problem gets a little bit more serious, when those TNC pages 8349 * have to be mapped into kernel space, e.g. for networking. 8350 * . When VAC alias conflicts occur in applications, this is regarded 8351 * as an application bug. So if kstat's show them, the appl should 8352 * be changed anyway. 8353 */ 8354 static void 8355 conv_tnc(page_t *pp, int ottesz) 8356 { 8357 int cursz, dosz; 8358 pgcnt_t curnpgs, dopgs; 8359 pgcnt_t pg64k; 8360 page_t *pp2; 8361 8362 /* 8363 * Determine how big a range we check for TNC and find 8364 * leader page. cursz is the size of the biggest 8365 * mapping that still exist on 'pp'. 8366 */ 8367 if (PP_ISMAPPED_LARGE(pp)) { 8368 cursz = fnd_mapping_sz(pp); 8369 } else { 8370 cursz = TTE8K; 8371 } 8372 8373 if (ottesz >= cursz) { 8374 dosz = ottesz; 8375 pp2 = pp; 8376 } else { 8377 dosz = cursz; 8378 pp2 = PP_GROUPLEADER(pp, dosz); 8379 } 8380 8381 pg64k = TTEPAGES(TTE64K); 8382 dopgs = TTEPAGES(dosz); 8383 8384 ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0)); 8385 8386 while (dopgs != 0) { 8387 curnpgs = TTEPAGES(cursz); 8388 if (tst_tnc(pp2, curnpgs)) { 8389 SFMMU_STAT_ADD(sf_recache, curnpgs); 8390 sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH, 8391 curnpgs); 8392 } 8393 8394 ASSERT(dopgs >= curnpgs); 8395 dopgs -= curnpgs; 8396 8397 if (dopgs == 0) { 8398 break; 8399 } 8400 8401 pp2 = PP_PAGENEXT_N(pp2, curnpgs); 8402 if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) { 8403 cursz = fnd_mapping_sz(pp2); 8404 } else { 8405 cursz = TTE8K; 8406 } 8407 } 8408 } 8409 8410 /* 8411 * Returns 1 if page(s) can be converted from TNC to cacheable setting, 8412 * returns 0 otherwise. Note that oaddr argument is valid for only 8413 * 8k pages. 8414 */ 8415 static int 8416 tst_tnc(page_t *pp, pgcnt_t npages) 8417 { 8418 struct sf_hment *sfhme; 8419 struct hme_blk *hmeblkp; 8420 tte_t tte; 8421 caddr_t vaddr; 8422 int clr_valid = 0; 8423 int color, color1, bcolor; 8424 int i, ncolors; 8425 8426 ASSERT(pp != NULL); 8427 ASSERT(!(cache & CACHE_WRITEBACK)); 8428 8429 if (npages > 1) { 8430 ncolors = CACHE_NUM_COLOR; 8431 } 8432 8433 for (i = 0; i < npages; i++) { 8434 ASSERT(sfmmu_mlist_held(pp)); 8435 ASSERT(PP_ISTNC(pp)); 8436 ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR); 8437 8438 if (PP_ISPNC(pp)) { 8439 return (0); 8440 } 8441 8442 clr_valid = 0; 8443 if (PP_ISMAPPED_KPM(pp)) { 8444 caddr_t kpmvaddr; 8445 8446 ASSERT(kpm_enable); 8447 kpmvaddr = hat_kpm_page2va(pp, 1); 8448 ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr))); 8449 color1 = addr_to_vcolor(kpmvaddr); 8450 clr_valid = 1; 8451 } 8452 8453 for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) { 8454 hmeblkp = sfmmu_hmetohblk(sfhme); 8455 if (hmeblkp->hblk_xhat_bit) 8456 continue; 8457 8458 sfmmu_copytte(&sfhme->hme_tte, &tte); 8459 ASSERT(TTE_IS_VALID(&tte)); 8460 8461 vaddr = tte_to_vaddr(hmeblkp, tte); 8462 color = addr_to_vcolor(vaddr); 8463 8464 if (npages > 1) { 8465 /* 8466 * If there is a big mapping, make sure 8467 * 8K mapping is consistent with the big 8468 * mapping. 8469 */ 8470 bcolor = i % ncolors; 8471 if (color != bcolor) { 8472 return (0); 8473 } 8474 } 8475 if (!clr_valid) { 8476 clr_valid = 1; 8477 color1 = color; 8478 } 8479 8480 if (color1 != color) { 8481 return (0); 8482 } 8483 } 8484 8485 pp = PP_PAGENEXT(pp); 8486 } 8487 8488 return (1); 8489 } 8490 8491 static void 8492 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag, 8493 pgcnt_t npages) 8494 { 8495 kmutex_t *pmtx; 8496 int i, ncolors, bcolor; 8497 kpm_hlk_t *kpmp; 8498 cpuset_t cpuset; 8499 8500 ASSERT(pp != NULL); 8501 ASSERT(!(cache & CACHE_WRITEBACK)); 8502 8503 kpmp = sfmmu_kpm_kpmp_enter(pp, npages); 8504 pmtx = sfmmu_page_enter(pp); 8505 8506 /* 8507 * Fast path caching single unmapped page 8508 */ 8509 if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) && 8510 flags == HAT_CACHE) { 8511 PP_CLRTNC(pp); 8512 PP_CLRPNC(pp); 8513 sfmmu_page_exit(pmtx); 8514 sfmmu_kpm_kpmp_exit(kpmp); 8515 return; 8516 } 8517 8518 /* 8519 * We need to capture all cpus in order to change cacheability 8520 * because we can't allow one cpu to access the same physical 8521 * page using a cacheable and a non-cachebale mapping at the same 8522 * time. Since we may end up walking the ism mapping list 8523 * have to grab it's lock now since we can't after all the 8524 * cpus have been captured. 8525 */ 8526 sfmmu_hat_lock_all(); 8527 mutex_enter(&ism_mlist_lock); 8528 kpreempt_disable(); 8529 cpuset = cpu_ready_set; 8530 xc_attention(cpuset); 8531 8532 if (npages > 1) { 8533 /* 8534 * Make sure all colors are flushed since the 8535 * sfmmu_page_cache() only flushes one color- 8536 * it does not know big pages. 8537 */ 8538 ncolors = CACHE_NUM_COLOR; 8539 if (flags & HAT_TMPNC) { 8540 for (i = 0; i < ncolors; i++) { 8541 sfmmu_cache_flushcolor(i, pp->p_pagenum); 8542 } 8543 cache_flush_flag = CACHE_NO_FLUSH; 8544 } 8545 } 8546 8547 for (i = 0; i < npages; i++) { 8548 8549 ASSERT(sfmmu_mlist_held(pp)); 8550 8551 if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) { 8552 8553 if (npages > 1) { 8554 bcolor = i % ncolors; 8555 } else { 8556 bcolor = NO_VCOLOR; 8557 } 8558 8559 sfmmu_page_cache(pp, flags, cache_flush_flag, 8560 bcolor); 8561 } 8562 8563 pp = PP_PAGENEXT(pp); 8564 } 8565 8566 xt_sync(cpuset); 8567 xc_dismissed(cpuset); 8568 mutex_exit(&ism_mlist_lock); 8569 sfmmu_hat_unlock_all(); 8570 sfmmu_page_exit(pmtx); 8571 sfmmu_kpm_kpmp_exit(kpmp); 8572 kpreempt_enable(); 8573 } 8574 8575 /* 8576 * This function changes the virtual cacheability of all mappings to a 8577 * particular page. When changing from uncache to cacheable the mappings will 8578 * only be changed if all of them have the same virtual color. 8579 * We need to flush the cache in all cpus. It is possible that 8580 * a process referenced a page as cacheable but has sinced exited 8581 * and cleared the mapping list. We still to flush it but have no 8582 * state so all cpus is the only alternative. 8583 */ 8584 static void 8585 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor) 8586 { 8587 struct sf_hment *sfhme; 8588 struct hme_blk *hmeblkp; 8589 sfmmu_t *sfmmup; 8590 tte_t tte, ttemod; 8591 caddr_t vaddr; 8592 int ret, color; 8593 pfn_t pfn; 8594 8595 color = bcolor; 8596 pfn = pp->p_pagenum; 8597 8598 for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) { 8599 8600 hmeblkp = sfmmu_hmetohblk(sfhme); 8601 8602 if (hmeblkp->hblk_xhat_bit) 8603 continue; 8604 8605 sfmmu_copytte(&sfhme->hme_tte, &tte); 8606 ASSERT(TTE_IS_VALID(&tte)); 8607 vaddr = tte_to_vaddr(hmeblkp, tte); 8608 color = addr_to_vcolor(vaddr); 8609 8610 #ifdef DEBUG 8611 if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) { 8612 ASSERT(color == bcolor); 8613 } 8614 #endif 8615 8616 ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp)); 8617 8618 ttemod = tte; 8619 if (flags & (HAT_UNCACHE | HAT_TMPNC)) { 8620 TTE_CLR_VCACHEABLE(&ttemod); 8621 } else { /* flags & HAT_CACHE */ 8622 TTE_SET_VCACHEABLE(&ttemod); 8623 } 8624 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte); 8625 if (ret < 0) { 8626 /* 8627 * Since all cpus are captured modifytte should not 8628 * fail. 8629 */ 8630 panic("sfmmu_page_cache: write to tte failed"); 8631 } 8632 8633 sfmmup = hblktosfmmu(hmeblkp); 8634 if (cache_flush_flag == CACHE_FLUSH) { 8635 /* 8636 * Flush TSBs, TLBs and caches 8637 */ 8638 if (sfmmup->sfmmu_ismhat) { 8639 if (flags & HAT_CACHE) { 8640 SFMMU_STAT(sf_ism_recache); 8641 } else { 8642 SFMMU_STAT(sf_ism_uncache); 8643 } 8644 sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp, 8645 pfn, CACHE_FLUSH); 8646 } else { 8647 sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp, 8648 pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1); 8649 } 8650 8651 /* 8652 * all cache entries belonging to this pfn are 8653 * now flushed. 8654 */ 8655 cache_flush_flag = CACHE_NO_FLUSH; 8656 } else { 8657 8658 /* 8659 * Flush only TSBs and TLBs. 8660 */ 8661 if (sfmmup->sfmmu_ismhat) { 8662 if (flags & HAT_CACHE) { 8663 SFMMU_STAT(sf_ism_recache); 8664 } else { 8665 SFMMU_STAT(sf_ism_uncache); 8666 } 8667 sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp, 8668 pfn, CACHE_NO_FLUSH); 8669 } else { 8670 sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1); 8671 } 8672 } 8673 } 8674 8675 if (PP_ISMAPPED_KPM(pp)) 8676 sfmmu_kpm_page_cache(pp, flags, cache_flush_flag); 8677 8678 switch (flags) { 8679 8680 default: 8681 panic("sfmmu_pagecache: unknown flags"); 8682 break; 8683 8684 case HAT_CACHE: 8685 PP_CLRTNC(pp); 8686 PP_CLRPNC(pp); 8687 PP_SET_VCOLOR(pp, color); 8688 break; 8689 8690 case HAT_TMPNC: 8691 PP_SETTNC(pp); 8692 PP_SET_VCOLOR(pp, NO_VCOLOR); 8693 break; 8694 8695 case HAT_UNCACHE: 8696 PP_SETPNC(pp); 8697 PP_CLRTNC(pp); 8698 PP_SET_VCOLOR(pp, NO_VCOLOR); 8699 break; 8700 } 8701 } 8702 8703 8704 /* 8705 * Wrapper routine used to return a context. 8706 * 8707 * It's the responsibility of the caller to guarantee that the 8708 * process serializes on calls here by taking the HAT lock for 8709 * the hat. 8710 * 8711 */ 8712 static void 8713 sfmmu_get_ctx(sfmmu_t *sfmmup) 8714 { 8715 mmu_ctx_t *mmu_ctxp; 8716 uint_t pstate_save; 8717 8718 ASSERT(sfmmu_hat_lock_held(sfmmup)); 8719 ASSERT(sfmmup != ksfmmup); 8720 8721 kpreempt_disable(); 8722 8723 mmu_ctxp = CPU_MMU_CTXP(CPU); 8724 ASSERT(mmu_ctxp); 8725 ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms); 8726 ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]); 8727 8728 /* 8729 * Do a wrap-around if cnum reaches the max # cnum supported by a MMU. 8730 */ 8731 if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs) 8732 sfmmu_ctx_wrap_around(mmu_ctxp); 8733 8734 /* 8735 * Let the MMU set up the page sizes to use for 8736 * this context in the TLB. Don't program 2nd dtlb for ism hat. 8737 */ 8738 if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) { 8739 mmu_set_ctx_page_sizes(sfmmup); 8740 } 8741 8742 /* 8743 * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with 8744 * interrupts disabled to prevent race condition with wrap-around 8745 * ctx invalidatation. In sun4v, ctx invalidation also involves 8746 * a HV call to set the number of TSBs to 0. If interrupts are not 8747 * disabled until after sfmmu_load_mmustate is complete TSBs may 8748 * become assigned to INVALID_CONTEXT. This is not allowed. 8749 */ 8750 pstate_save = sfmmu_disable_intrs(); 8751 8752 sfmmu_alloc_ctx(sfmmup, 1, CPU); 8753 sfmmu_load_mmustate(sfmmup); 8754 8755 sfmmu_enable_intrs(pstate_save); 8756 8757 kpreempt_enable(); 8758 } 8759 8760 /* 8761 * When all cnums are used up in a MMU, cnum will wrap around to the 8762 * next generation and start from 2. 8763 */ 8764 static void 8765 sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp) 8766 { 8767 8768 /* caller must have disabled the preemption */ 8769 ASSERT(curthread->t_preempt >= 1); 8770 ASSERT(mmu_ctxp != NULL); 8771 8772 /* acquire Per-MMU (PM) spin lock */ 8773 mutex_enter(&mmu_ctxp->mmu_lock); 8774 8775 /* re-check to see if wrap-around is needed */ 8776 if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs) 8777 goto done; 8778 8779 SFMMU_MMU_STAT(mmu_wrap_around); 8780 8781 /* update gnum */ 8782 ASSERT(mmu_ctxp->mmu_gnum != 0); 8783 mmu_ctxp->mmu_gnum++; 8784 if (mmu_ctxp->mmu_gnum == 0 || 8785 mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) { 8786 cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.", 8787 (void *)mmu_ctxp); 8788 } 8789 8790 if (mmu_ctxp->mmu_ncpus > 1) { 8791 cpuset_t cpuset; 8792 8793 membar_enter(); /* make sure updated gnum visible */ 8794 8795 SFMMU_XCALL_STATS(NULL); 8796 8797 /* xcall to others on the same MMU to invalidate ctx */ 8798 cpuset = mmu_ctxp->mmu_cpuset; 8799 ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id)); 8800 CPUSET_DEL(cpuset, CPU->cpu_id); 8801 CPUSET_AND(cpuset, cpu_ready_set); 8802 8803 /* 8804 * Pass in INVALID_CONTEXT as the first parameter to 8805 * sfmmu_raise_tsb_exception, which invalidates the context 8806 * of any process running on the CPUs in the MMU. 8807 */ 8808 xt_some(cpuset, sfmmu_raise_tsb_exception, 8809 INVALID_CONTEXT, INVALID_CONTEXT); 8810 xt_sync(cpuset); 8811 8812 SFMMU_MMU_STAT(mmu_tsb_raise_exception); 8813 } 8814 8815 if (sfmmu_getctx_sec() != INVALID_CONTEXT) { 8816 sfmmu_setctx_sec(INVALID_CONTEXT); 8817 sfmmu_clear_utsbinfo(); 8818 } 8819 8820 /* 8821 * No xcall is needed here. For sun4u systems all CPUs in context 8822 * domain share a single physical MMU therefore it's enough to flush 8823 * TLB on local CPU. On sun4v systems we use 1 global context 8824 * domain and flush all remote TLBs in sfmmu_raise_tsb_exception 8825 * handler. Note that vtag_flushall_uctxs() is called 8826 * for Ultra II machine, where the equivalent flushall functionality 8827 * is implemented in SW, and only user ctx TLB entries are flushed. 8828 */ 8829 if (&vtag_flushall_uctxs != NULL) { 8830 vtag_flushall_uctxs(); 8831 } else { 8832 vtag_flushall(); 8833 } 8834 8835 /* reset mmu cnum, skips cnum 0 and 1 */ 8836 mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS; 8837 8838 done: 8839 mutex_exit(&mmu_ctxp->mmu_lock); 8840 } 8841 8842 8843 /* 8844 * For multi-threaded process, set the process context to INVALID_CONTEXT 8845 * so that it faults and reloads the MMU state from TL=0. For single-threaded 8846 * process, we can just load the MMU state directly without having to 8847 * set context invalid. Caller must hold the hat lock since we don't 8848 * acquire it here. 8849 */ 8850 static void 8851 sfmmu_sync_mmustate(sfmmu_t *sfmmup) 8852 { 8853 uint_t cnum; 8854 uint_t pstate_save; 8855 8856 ASSERT(sfmmup != ksfmmup); 8857 ASSERT(sfmmu_hat_lock_held(sfmmup)); 8858 8859 kpreempt_disable(); 8860 8861 /* 8862 * We check whether the pass'ed-in sfmmup is the same as the 8863 * current running proc. This is to makes sure the current proc 8864 * stays single-threaded if it already is. 8865 */ 8866 if ((sfmmup == curthread->t_procp->p_as->a_hat) && 8867 (curthread->t_procp->p_lwpcnt == 1)) { 8868 /* single-thread */ 8869 cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum; 8870 if (cnum != INVALID_CONTEXT) { 8871 uint_t curcnum; 8872 /* 8873 * Disable interrupts to prevent race condition 8874 * with sfmmu_ctx_wrap_around ctx invalidation. 8875 * In sun4v, ctx invalidation involves setting 8876 * TSB to NULL, hence, interrupts should be disabled 8877 * untill after sfmmu_load_mmustate is completed. 8878 */ 8879 pstate_save = sfmmu_disable_intrs(); 8880 curcnum = sfmmu_getctx_sec(); 8881 if (curcnum == cnum) 8882 sfmmu_load_mmustate(sfmmup); 8883 sfmmu_enable_intrs(pstate_save); 8884 ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT); 8885 } 8886 } else { 8887 /* 8888 * multi-thread 8889 * or when sfmmup is not the same as the curproc. 8890 */ 8891 sfmmu_invalidate_ctx(sfmmup); 8892 } 8893 8894 kpreempt_enable(); 8895 } 8896 8897 8898 /* 8899 * Replace the specified TSB with a new TSB. This function gets called when 8900 * we grow, shrink or swapin a TSB. When swapping in a TSB (TSB_SWAPIN), the 8901 * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB 8902 * (8K). 8903 * 8904 * Caller must hold the HAT lock, but should assume any tsb_info 8905 * pointers it has are no longer valid after calling this function. 8906 * 8907 * Return values: 8908 * TSB_ALLOCFAIL Failed to allocate a TSB, due to memory constraints 8909 * TSB_LOSTRACE HAT is busy, i.e. another thread is already doing 8910 * something to this tsbinfo/TSB 8911 * TSB_SUCCESS Operation succeeded 8912 */ 8913 static tsb_replace_rc_t 8914 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc, 8915 hatlock_t *hatlockp, uint_t flags) 8916 { 8917 struct tsb_info *new_tsbinfo = NULL; 8918 struct tsb_info *curtsb, *prevtsb; 8919 uint_t tte_sz_mask; 8920 int i; 8921 8922 ASSERT(sfmmup != ksfmmup); 8923 ASSERT(sfmmup->sfmmu_ismhat == 0); 8924 ASSERT(sfmmu_hat_lock_held(sfmmup)); 8925 ASSERT(szc <= tsb_max_growsize); 8926 8927 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY)) 8928 return (TSB_LOSTRACE); 8929 8930 /* 8931 * Find the tsb_info ahead of this one in the list, and 8932 * also make sure that the tsb_info passed in really 8933 * exists! 8934 */ 8935 for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb; 8936 curtsb != old_tsbinfo && curtsb != NULL; 8937 prevtsb = curtsb, curtsb = curtsb->tsb_next); 8938 ASSERT(curtsb != NULL); 8939 8940 if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) { 8941 /* 8942 * The process is swapped out, so just set the new size 8943 * code. When it swaps back in, we'll allocate a new one 8944 * of the new chosen size. 8945 */ 8946 curtsb->tsb_szc = szc; 8947 return (TSB_SUCCESS); 8948 } 8949 SFMMU_FLAGS_SET(sfmmup, HAT_BUSY); 8950 8951 tte_sz_mask = old_tsbinfo->tsb_ttesz_mask; 8952 8953 /* 8954 * All initialization is done inside of sfmmu_tsbinfo_alloc(). 8955 * If we fail to allocate a TSB, exit. 8956 */ 8957 sfmmu_hat_exit(hatlockp); 8958 if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc, tte_sz_mask, 8959 flags, sfmmup)) { 8960 (void) sfmmu_hat_enter(sfmmup); 8961 if (!(flags & TSB_SWAPIN)) 8962 SFMMU_STAT(sf_tsb_resize_failures); 8963 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY); 8964 return (TSB_ALLOCFAIL); 8965 } 8966 (void) sfmmu_hat_enter(sfmmup); 8967 8968 /* 8969 * Re-check to make sure somebody else didn't muck with us while we 8970 * didn't hold the HAT lock. If the process swapped out, fine, just 8971 * exit; this can happen if we try to shrink the TSB from the context 8972 * of another process (such as on an ISM unmap), though it is rare. 8973 */ 8974 if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) { 8975 SFMMU_STAT(sf_tsb_resize_failures); 8976 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY); 8977 sfmmu_hat_exit(hatlockp); 8978 sfmmu_tsbinfo_free(new_tsbinfo); 8979 (void) sfmmu_hat_enter(sfmmup); 8980 return (TSB_LOSTRACE); 8981 } 8982 8983 #ifdef DEBUG 8984 /* Reverify that the tsb_info still exists.. for debugging only */ 8985 for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb; 8986 curtsb != old_tsbinfo && curtsb != NULL; 8987 prevtsb = curtsb, curtsb = curtsb->tsb_next); 8988 ASSERT(curtsb != NULL); 8989 #endif /* DEBUG */ 8990 8991 /* 8992 * Quiesce any CPUs running this process on their next TLB miss 8993 * so they atomically see the new tsb_info. We temporarily set the 8994 * context to invalid context so new threads that come on processor 8995 * after we do the xcall to cpusran will also serialize behind the 8996 * HAT lock on TLB miss and will see the new TSB. Since this short 8997 * race with a new thread coming on processor is relatively rare, 8998 * this synchronization mechanism should be cheaper than always 8999 * pausing all CPUs for the duration of the setup, which is what 9000 * the old implementation did. This is particuarly true if we are 9001 * copying a huge chunk of memory around during that window. 9002 * 9003 * The memory barriers are to make sure things stay consistent 9004 * with resume() since it does not hold the HAT lock while 9005 * walking the list of tsb_info structures. 9006 */ 9007 if ((flags & TSB_SWAPIN) != TSB_SWAPIN) { 9008 /* The TSB is either growing or shrinking. */ 9009 sfmmu_invalidate_ctx(sfmmup); 9010 } else { 9011 /* 9012 * It is illegal to swap in TSBs from a process other 9013 * than a process being swapped in. This in turn 9014 * implies we do not have a valid MMU context here 9015 * since a process needs one to resolve translation 9016 * misses. 9017 */ 9018 ASSERT(curthread->t_procp->p_as->a_hat == sfmmup); 9019 } 9020 9021 #ifdef DEBUG 9022 ASSERT(max_mmu_ctxdoms > 0); 9023 9024 /* 9025 * Process should have INVALID_CONTEXT on all MMUs 9026 */ 9027 for (i = 0; i < max_mmu_ctxdoms; i++) { 9028 9029 ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT); 9030 } 9031 #endif 9032 9033 new_tsbinfo->tsb_next = old_tsbinfo->tsb_next; 9034 membar_stst(); /* strict ordering required */ 9035 if (prevtsb) 9036 prevtsb->tsb_next = new_tsbinfo; 9037 else 9038 sfmmup->sfmmu_tsb = new_tsbinfo; 9039 membar_enter(); /* make sure new TSB globally visible */ 9040 sfmmu_setup_tsbinfo(sfmmup); 9041 9042 /* 9043 * We need to migrate TSB entries from the old TSB to the new TSB 9044 * if tsb_remap_ttes is set and the TSB is growing. 9045 */ 9046 if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW)) 9047 sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo); 9048 9049 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY); 9050 9051 /* 9052 * Drop the HAT lock to free our old tsb_info. 9053 */ 9054 sfmmu_hat_exit(hatlockp); 9055 9056 if ((flags & TSB_GROW) == TSB_GROW) { 9057 SFMMU_STAT(sf_tsb_grow); 9058 } else if ((flags & TSB_SHRINK) == TSB_SHRINK) { 9059 SFMMU_STAT(sf_tsb_shrink); 9060 } 9061 9062 sfmmu_tsbinfo_free(old_tsbinfo); 9063 9064 (void) sfmmu_hat_enter(sfmmup); 9065 return (TSB_SUCCESS); 9066 } 9067 9068 /* 9069 * This function will re-program hat pgsz array, and invalidate the 9070 * process' context, forcing the process to switch to another 9071 * context on the next TLB miss, and therefore start using the 9072 * TLB that is reprogrammed for the new page sizes. 9073 */ 9074 void 9075 sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz) 9076 { 9077 int i; 9078 hatlock_t *hatlockp = NULL; 9079 9080 hatlockp = sfmmu_hat_enter(sfmmup); 9081 /* USIII+-IV+ optimization, requires hat lock */ 9082 if (tmp_pgsz) { 9083 for (i = 0; i < mmu_page_sizes; i++) 9084 sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i]; 9085 } 9086 SFMMU_STAT(sf_tlb_reprog_pgsz); 9087 9088 sfmmu_invalidate_ctx(sfmmup); 9089 9090 sfmmu_hat_exit(hatlockp); 9091 } 9092 9093 /* 9094 * This function assumes that there are either four or six supported page 9095 * sizes and at most two programmable TLBs, so we need to decide which 9096 * page sizes are most important and then tell the MMU layer so it 9097 * can adjust the TLB page sizes accordingly (if supported). 9098 * 9099 * If these assumptions change, this function will need to be 9100 * updated to support whatever the new limits are. 9101 * 9102 * The growing flag is nonzero if we are growing the address space, 9103 * and zero if it is shrinking. This allows us to decide whether 9104 * to grow or shrink our TSB, depending upon available memory 9105 * conditions. 9106 */ 9107 static void 9108 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing) 9109 { 9110 uint64_t ttecnt[MMU_PAGE_SIZES]; 9111 uint64_t tte8k_cnt, tte4m_cnt; 9112 uint8_t i; 9113 int sectsb_thresh; 9114 9115 /* 9116 * Kernel threads, processes with small address spaces not using 9117 * large pages, and dummy ISM HATs need not apply. 9118 */ 9119 if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL) 9120 return; 9121 9122 if ((sfmmup->sfmmu_flags & HAT_LGPG_FLAGS) == 0 && 9123 sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor) 9124 return; 9125 9126 for (i = 0; i < mmu_page_sizes; i++) { 9127 ttecnt[i] = SFMMU_TTE_CNT(sfmmup, i); 9128 } 9129 9130 /* Check pagesizes in use, and possibly reprogram DTLB. */ 9131 if (&mmu_check_page_sizes) 9132 mmu_check_page_sizes(sfmmup, ttecnt); 9133 9134 /* 9135 * Calculate the number of 8k ttes to represent the span of these 9136 * pages. 9137 */ 9138 tte8k_cnt = ttecnt[TTE8K] + 9139 (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) + 9140 (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT)); 9141 if (mmu_page_sizes == max_mmu_page_sizes) { 9142 tte4m_cnt = ttecnt[TTE4M] + 9143 (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) + 9144 (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M)); 9145 } else { 9146 tte4m_cnt = ttecnt[TTE4M]; 9147 } 9148 9149 /* 9150 * Inflate TSB sizes by a factor of 2 if this process 9151 * uses 4M text pages to minimize extra conflict misses 9152 * in the first TSB since without counting text pages 9153 * 8K TSB may become too small. 9154 * 9155 * Also double the size of the second TSB to minimize 9156 * extra conflict misses due to competition between 4M text pages 9157 * and data pages. 9158 * 9159 * We need to adjust the second TSB allocation threshold by the 9160 * inflation factor, since there is no point in creating a second 9161 * TSB when we know all the mappings can fit in the I/D TLBs. 9162 */ 9163 sectsb_thresh = tsb_sectsb_threshold; 9164 if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) { 9165 tte8k_cnt <<= 1; 9166 tte4m_cnt <<= 1; 9167 sectsb_thresh <<= 1; 9168 } 9169 9170 /* 9171 * Check to see if our TSB is the right size; we may need to 9172 * grow or shrink it. If the process is small, our work is 9173 * finished at this point. 9174 */ 9175 if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) { 9176 return; 9177 } 9178 sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh); 9179 } 9180 9181 static void 9182 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt, 9183 uint64_t tte4m_cnt, int sectsb_thresh) 9184 { 9185 int tsb_bits; 9186 uint_t tsb_szc; 9187 struct tsb_info *tsbinfop; 9188 hatlock_t *hatlockp = NULL; 9189 9190 hatlockp = sfmmu_hat_enter(sfmmup); 9191 ASSERT(hatlockp != NULL); 9192 tsbinfop = sfmmup->sfmmu_tsb; 9193 ASSERT(tsbinfop != NULL); 9194 9195 /* 9196 * If we're growing, select the size based on RSS. If we're 9197 * shrinking, leave some room so we don't have to turn around and 9198 * grow again immediately. 9199 */ 9200 if (growing) 9201 tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt); 9202 else 9203 tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1); 9204 9205 if (!growing && (tsb_szc < tsbinfop->tsb_szc) && 9206 (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) { 9207 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc, 9208 hatlockp, TSB_SHRINK); 9209 } else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) { 9210 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc, 9211 hatlockp, TSB_GROW); 9212 } 9213 tsbinfop = sfmmup->sfmmu_tsb; 9214 9215 /* 9216 * With the TLB and first TSB out of the way, we need to see if 9217 * we need a second TSB for 4M pages. If we managed to reprogram 9218 * the TLB page sizes above, the process will start using this new 9219 * TSB right away; otherwise, it will start using it on the next 9220 * context switch. Either way, it's no big deal so there's no 9221 * synchronization with the trap handlers here unless we grow the 9222 * TSB (in which case it's required to prevent using the old one 9223 * after it's freed). Note: second tsb is required for 32M/256M 9224 * page sizes. 9225 */ 9226 if (tte4m_cnt > sectsb_thresh) { 9227 /* 9228 * If we're growing, select the size based on RSS. If we're 9229 * shrinking, leave some room so we don't have to turn 9230 * around and grow again immediately. 9231 */ 9232 if (growing) 9233 tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt); 9234 else 9235 tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1); 9236 if (tsbinfop->tsb_next == NULL) { 9237 struct tsb_info *newtsb; 9238 int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)? 9239 0 : TSB_ALLOC; 9240 9241 sfmmu_hat_exit(hatlockp); 9242 9243 /* 9244 * Try to allocate a TSB for 4[32|256]M pages. If we 9245 * can't get the size we want, retry w/a minimum sized 9246 * TSB. If that still didn't work, give up; we can 9247 * still run without one. 9248 */ 9249 tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)? 9250 TSB4M|TSB32M|TSB256M:TSB4M; 9251 if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits, 9252 allocflags, sfmmup) != 0) && 9253 (sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE, 9254 tsb_bits, allocflags, sfmmup) != 0)) { 9255 return; 9256 } 9257 9258 hatlockp = sfmmu_hat_enter(sfmmup); 9259 9260 if (sfmmup->sfmmu_tsb->tsb_next == NULL) { 9261 sfmmup->sfmmu_tsb->tsb_next = newtsb; 9262 SFMMU_STAT(sf_tsb_sectsb_create); 9263 sfmmu_setup_tsbinfo(sfmmup); 9264 sfmmu_hat_exit(hatlockp); 9265 return; 9266 } else { 9267 /* 9268 * It's annoying, but possible for us 9269 * to get here.. we dropped the HAT lock 9270 * because of locking order in the kmem 9271 * allocator, and while we were off getting 9272 * our memory, some other thread decided to 9273 * do us a favor and won the race to get a 9274 * second TSB for this process. Sigh. 9275 */ 9276 sfmmu_hat_exit(hatlockp); 9277 sfmmu_tsbinfo_free(newtsb); 9278 return; 9279 } 9280 } 9281 9282 /* 9283 * We have a second TSB, see if it's big enough. 9284 */ 9285 tsbinfop = tsbinfop->tsb_next; 9286 9287 /* 9288 * Check to see if our second TSB is the right size; 9289 * we may need to grow or shrink it. 9290 * To prevent thrashing (e.g. growing the TSB on a 9291 * subsequent map operation), only try to shrink if 9292 * the TSB reach exceeds twice the virtual address 9293 * space size. 9294 */ 9295 if (!growing && (tsb_szc < tsbinfop->tsb_szc) && 9296 (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) { 9297 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, 9298 tsb_szc, hatlockp, TSB_SHRINK); 9299 } else if (growing && tsb_szc > tsbinfop->tsb_szc && 9300 TSB_OK_GROW()) { 9301 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, 9302 tsb_szc, hatlockp, TSB_GROW); 9303 } 9304 } 9305 9306 sfmmu_hat_exit(hatlockp); 9307 } 9308 9309 /* 9310 * Get the preferred page size code for a hat. 9311 * This is only advice, so locking is not done; 9312 * this transitory information could change 9313 * following the call anyway. This interface is 9314 * sun4 private. 9315 */ 9316 /*ARGSUSED*/ 9317 uint_t 9318 hat_preferred_pgsz(struct hat *hat, caddr_t vaddr, size_t maplen, int maptype) 9319 { 9320 sfmmu_t *sfmmup = (sfmmu_t *)hat; 9321 uint_t szc, maxszc = mmu_page_sizes - 1; 9322 size_t pgsz; 9323 9324 if (maptype == MAPPGSZ_ISM) { 9325 for (szc = maxszc; szc >= TTE4M; szc--) { 9326 if (disable_ism_large_pages & (1 << szc)) 9327 continue; 9328 9329 pgsz = hw_page_array[szc].hp_size; 9330 if ((maplen >= pgsz) && IS_P2ALIGNED(vaddr, pgsz)) 9331 return (szc); 9332 } 9333 return (TTE4M); 9334 } else if (&mmu_preferred_pgsz) { /* USIII+-USIV+ */ 9335 return (mmu_preferred_pgsz(sfmmup, vaddr, maplen)); 9336 } else { /* USIII, USII, Niagara */ 9337 for (szc = maxszc; szc > TTE8K; szc--) { 9338 if (disable_large_pages & (1 << szc)) 9339 continue; 9340 9341 pgsz = hw_page_array[szc].hp_size; 9342 if ((maplen >= pgsz) && IS_P2ALIGNED(vaddr, pgsz)) 9343 return (szc); 9344 } 9345 return (TTE8K); 9346 } 9347 } 9348 9349 /* 9350 * Free up a sfmmu 9351 * Since the sfmmu is currently embedded in the hat struct we simply zero 9352 * out our fields and free up the ism map blk list if any. 9353 */ 9354 static void 9355 sfmmu_free_sfmmu(sfmmu_t *sfmmup) 9356 { 9357 ism_blk_t *blkp, *nx_blkp; 9358 #ifdef DEBUG 9359 ism_map_t *map; 9360 int i; 9361 #endif 9362 9363 ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0); 9364 ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0); 9365 ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0); 9366 ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0); 9367 ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0); 9368 ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0); 9369 9370 sfmmup->sfmmu_free = 0; 9371 sfmmup->sfmmu_ismhat = 0; 9372 9373 blkp = sfmmup->sfmmu_iblk; 9374 sfmmup->sfmmu_iblk = NULL; 9375 9376 while (blkp) { 9377 #ifdef DEBUG 9378 map = blkp->iblk_maps; 9379 for (i = 0; i < ISM_MAP_SLOTS; i++) { 9380 ASSERT(map[i].imap_seg == 0); 9381 ASSERT(map[i].imap_ismhat == NULL); 9382 ASSERT(map[i].imap_ment == NULL); 9383 } 9384 #endif 9385 nx_blkp = blkp->iblk_next; 9386 blkp->iblk_next = NULL; 9387 blkp->iblk_nextpa = (uint64_t)-1; 9388 kmem_cache_free(ism_blk_cache, blkp); 9389 blkp = nx_blkp; 9390 } 9391 } 9392 9393 /* 9394 * Locking primitves accessed by HATLOCK macros 9395 */ 9396 9397 #define SFMMU_SPL_MTX (0x0) 9398 #define SFMMU_ML_MTX (0x1) 9399 9400 #define SFMMU_MLSPL_MTX(type, pg) (((type) == SFMMU_SPL_MTX) ? \ 9401 SPL_HASH(pg) : MLIST_HASH(pg)) 9402 9403 kmutex_t * 9404 sfmmu_page_enter(struct page *pp) 9405 { 9406 return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX)); 9407 } 9408 9409 static void 9410 sfmmu_page_exit(kmutex_t *spl) 9411 { 9412 mutex_exit(spl); 9413 } 9414 9415 static int 9416 sfmmu_page_spl_held(struct page *pp) 9417 { 9418 return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX)); 9419 } 9420 9421 kmutex_t * 9422 sfmmu_mlist_enter(struct page *pp) 9423 { 9424 return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX)); 9425 } 9426 9427 void 9428 sfmmu_mlist_exit(kmutex_t *mml) 9429 { 9430 mutex_exit(mml); 9431 } 9432 9433 int 9434 sfmmu_mlist_held(struct page *pp) 9435 { 9436 9437 return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX)); 9438 } 9439 9440 /* 9441 * Common code for sfmmu_mlist_enter() and sfmmu_page_enter(). For 9442 * sfmmu_mlist_enter() case mml_table lock array is used and for 9443 * sfmmu_page_enter() sfmmu_page_lock lock array is used. 9444 * 9445 * The lock is taken on a root page so that it protects an operation on all 9446 * constituent pages of a large page pp belongs to. 9447 * 9448 * The routine takes a lock from the appropriate array. The lock is determined 9449 * by hashing the root page. After taking the lock this routine checks if the 9450 * root page has the same size code that was used to determine the root (i.e 9451 * that root hasn't changed). If root page has the expected p_szc field we 9452 * have the right lock and it's returned to the caller. If root's p_szc 9453 * decreased we release the lock and retry from the beginning. This case can 9454 * happen due to hat_page_demote() decreasing p_szc between our load of p_szc 9455 * value and taking the lock. The number of retries due to p_szc decrease is 9456 * limited by the maximum p_szc value. If p_szc is 0 we return the lock 9457 * determined by hashing pp itself. 9458 * 9459 * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also 9460 * possible that p_szc can increase. To increase p_szc a thread has to lock 9461 * all constituent pages EXCL and do hat_pageunload() on all of them. All the 9462 * callers that don't hold a page locked recheck if hmeblk through which pp 9463 * was found still maps this pp. If it doesn't map it anymore returned lock 9464 * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of 9465 * p_szc increase after taking the lock it returns this lock without further 9466 * retries because in this case the caller doesn't care about which lock was 9467 * taken. The caller will drop it right away. 9468 * 9469 * After the routine returns it's guaranteed that hat_page_demote() can't 9470 * change p_szc field of any of constituent pages of a large page pp belongs 9471 * to as long as pp was either locked at least SHARED prior to this call or 9472 * the caller finds that hment that pointed to this pp still references this 9473 * pp (this also assumes that the caller holds hme hash bucket lock so that 9474 * the same pp can't be remapped into the same hmeblk after it was unmapped by 9475 * hat_pageunload()). 9476 */ 9477 static kmutex_t * 9478 sfmmu_mlspl_enter(struct page *pp, int type) 9479 { 9480 kmutex_t *mtx; 9481 uint_t prev_rszc = UINT_MAX; 9482 page_t *rootpp; 9483 uint_t szc; 9484 uint_t rszc; 9485 uint_t pszc = pp->p_szc; 9486 9487 ASSERT(pp != NULL); 9488 9489 again: 9490 if (pszc == 0) { 9491 mtx = SFMMU_MLSPL_MTX(type, pp); 9492 mutex_enter(mtx); 9493 return (mtx); 9494 } 9495 9496 /* The lock lives in the root page */ 9497 rootpp = PP_GROUPLEADER(pp, pszc); 9498 mtx = SFMMU_MLSPL_MTX(type, rootpp); 9499 mutex_enter(mtx); 9500 9501 /* 9502 * Return mml in the following 3 cases: 9503 * 9504 * 1) If pp itself is root since if its p_szc decreased before we took 9505 * the lock pp is still the root of smaller szc page. And if its p_szc 9506 * increased it doesn't matter what lock we return (see comment in 9507 * front of this routine). 9508 * 9509 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size 9510 * large page we have the right lock since any previous potential 9511 * hat_page_demote() is done demoting from greater than current root's 9512 * p_szc because hat_page_demote() changes root's p_szc last. No 9513 * further hat_page_demote() can start or be in progress since it 9514 * would need the same lock we currently hold. 9515 * 9516 * 3) If rootpp's p_szc increased since previous iteration it doesn't 9517 * matter what lock we return (see comment in front of this routine). 9518 */ 9519 if (pp == rootpp || (rszc = rootpp->p_szc) == pszc || 9520 rszc >= prev_rszc) { 9521 return (mtx); 9522 } 9523 9524 /* 9525 * hat_page_demote() could have decreased root's p_szc. 9526 * In this case pp's p_szc must also be smaller than pszc. 9527 * Retry. 9528 */ 9529 if (rszc < pszc) { 9530 szc = pp->p_szc; 9531 if (szc < pszc) { 9532 mutex_exit(mtx); 9533 pszc = szc; 9534 goto again; 9535 } 9536 /* 9537 * pp's p_szc increased after it was decreased. 9538 * page cannot be mapped. Return current lock. The caller 9539 * will drop it right away. 9540 */ 9541 return (mtx); 9542 } 9543 9544 /* 9545 * root's p_szc is greater than pp's p_szc. 9546 * hat_page_demote() is not done with all pages 9547 * yet. Wait for it to complete. 9548 */ 9549 mutex_exit(mtx); 9550 rootpp = PP_GROUPLEADER(rootpp, rszc); 9551 mtx = SFMMU_MLSPL_MTX(type, rootpp); 9552 mutex_enter(mtx); 9553 mutex_exit(mtx); 9554 prev_rszc = rszc; 9555 goto again; 9556 } 9557 9558 static int 9559 sfmmu_mlspl_held(struct page *pp, int type) 9560 { 9561 kmutex_t *mtx; 9562 9563 ASSERT(pp != NULL); 9564 /* The lock lives in the root page */ 9565 pp = PP_PAGEROOT(pp); 9566 ASSERT(pp != NULL); 9567 9568 mtx = SFMMU_MLSPL_MTX(type, pp); 9569 return (MUTEX_HELD(mtx)); 9570 } 9571 9572 static uint_t 9573 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical) 9574 { 9575 struct hme_blk *hblkp; 9576 9577 if (freehblkp != NULL) { 9578 mutex_enter(&freehblkp_lock); 9579 if (freehblkp != NULL) { 9580 /* 9581 * If the current thread is owning hblk_reserve, 9582 * let it succede even if freehblkcnt is really low. 9583 */ 9584 if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) { 9585 SFMMU_STAT(sf_get_free_throttle); 9586 mutex_exit(&freehblkp_lock); 9587 return (0); 9588 } 9589 freehblkcnt--; 9590 *hmeblkpp = freehblkp; 9591 hblkp = *hmeblkpp; 9592 freehblkp = hblkp->hblk_next; 9593 mutex_exit(&freehblkp_lock); 9594 hblkp->hblk_next = NULL; 9595 SFMMU_STAT(sf_get_free_success); 9596 return (1); 9597 } 9598 mutex_exit(&freehblkp_lock); 9599 } 9600 SFMMU_STAT(sf_get_free_fail); 9601 return (0); 9602 } 9603 9604 static uint_t 9605 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical) 9606 { 9607 struct hme_blk *hblkp; 9608 9609 /* 9610 * If the current thread is mapping into kernel space, 9611 * let it succede even if freehblkcnt is max 9612 * so that it will avoid freeing it to kmem. 9613 * This will prevent stack overflow due to 9614 * possible recursion since kmem_cache_free() 9615 * might require creation of a slab which 9616 * in turn needs an hmeblk to map that slab; 9617 * let's break this vicious chain at the first 9618 * opportunity. 9619 */ 9620 if (freehblkcnt < HBLK_RESERVE_CNT || critical) { 9621 mutex_enter(&freehblkp_lock); 9622 if (freehblkcnt < HBLK_RESERVE_CNT || critical) { 9623 SFMMU_STAT(sf_put_free_success); 9624 freehblkcnt++; 9625 hmeblkp->hblk_next = freehblkp; 9626 freehblkp = hmeblkp; 9627 mutex_exit(&freehblkp_lock); 9628 return (1); 9629 } 9630 mutex_exit(&freehblkp_lock); 9631 } 9632 9633 /* 9634 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here 9635 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and* 9636 * we are not in the process of mapping into kernel space. 9637 */ 9638 ASSERT(!critical); 9639 while (freehblkcnt > HBLK_RESERVE_CNT) { 9640 mutex_enter(&freehblkp_lock); 9641 if (freehblkcnt > HBLK_RESERVE_CNT) { 9642 freehblkcnt--; 9643 hblkp = freehblkp; 9644 freehblkp = hblkp->hblk_next; 9645 mutex_exit(&freehblkp_lock); 9646 ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache); 9647 kmem_cache_free(sfmmu8_cache, hblkp); 9648 continue; 9649 } 9650 mutex_exit(&freehblkp_lock); 9651 } 9652 SFMMU_STAT(sf_put_free_fail); 9653 return (0); 9654 } 9655 9656 static void 9657 sfmmu_hblk_swap(struct hme_blk *new) 9658 { 9659 struct hme_blk *old, *hblkp, *prev; 9660 uint64_t hblkpa, prevpa, newpa; 9661 caddr_t base, vaddr, endaddr; 9662 struct hmehash_bucket *hmebp; 9663 struct sf_hment *osfhme, *nsfhme; 9664 page_t *pp; 9665 kmutex_t *pml; 9666 tte_t tte; 9667 9668 #ifdef DEBUG 9669 hmeblk_tag hblktag; 9670 struct hme_blk *found; 9671 #endif 9672 old = HBLK_RESERVE; 9673 9674 /* 9675 * save pa before bcopy clobbers it 9676 */ 9677 newpa = new->hblk_nextpa; 9678 9679 base = (caddr_t)get_hblk_base(old); 9680 endaddr = base + get_hblk_span(old); 9681 9682 /* 9683 * acquire hash bucket lock. 9684 */ 9685 hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K); 9686 9687 /* 9688 * copy contents from old to new 9689 */ 9690 bcopy((void *)old, (void *)new, HME8BLK_SZ); 9691 9692 /* 9693 * add new to hash chain 9694 */ 9695 sfmmu_hblk_hash_add(hmebp, new, newpa); 9696 9697 /* 9698 * search hash chain for hblk_reserve; this needs to be performed 9699 * after adding new, otherwise prevpa and prev won't correspond 9700 * to the hblk which is prior to old in hash chain when we call 9701 * sfmmu_hblk_hash_rm to remove old later. 9702 */ 9703 for (prevpa = 0, prev = NULL, 9704 hblkpa = hmebp->hmeh_nextpa, hblkp = hmebp->hmeblkp; 9705 hblkp != NULL && hblkp != old; 9706 prevpa = hblkpa, prev = hblkp, 9707 hblkpa = hblkp->hblk_nextpa, hblkp = hblkp->hblk_next); 9708 9709 if (hblkp != old) 9710 panic("sfmmu_hblk_swap: hblk_reserve not found"); 9711 9712 /* 9713 * p_mapping list is still pointing to hments in hblk_reserve; 9714 * fix up p_mapping list so that they point to hments in new. 9715 * 9716 * Since all these mappings are created by hblk_reserve_thread 9717 * on the way and it's using at least one of the buffers from each of 9718 * the newly minted slabs, there is no danger of any of these 9719 * mappings getting unloaded by another thread. 9720 * 9721 * tsbmiss could only modify ref/mod bits of hments in old/new. 9722 * Since all of these hments hold mappings established by segkmem 9723 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits 9724 * have no meaning for the mappings in hblk_reserve. hments in 9725 * old and new are identical except for ref/mod bits. 9726 */ 9727 for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) { 9728 9729 HBLKTOHME(osfhme, old, vaddr); 9730 sfmmu_copytte(&osfhme->hme_tte, &tte); 9731 9732 if (TTE_IS_VALID(&tte)) { 9733 if ((pp = osfhme->hme_page) == NULL) 9734 panic("sfmmu_hblk_swap: page not mapped"); 9735 9736 pml = sfmmu_mlist_enter(pp); 9737 9738 if (pp != osfhme->hme_page) 9739 panic("sfmmu_hblk_swap: mapping changed"); 9740 9741 HBLKTOHME(nsfhme, new, vaddr); 9742 9743 HME_ADD(nsfhme, pp); 9744 HME_SUB(osfhme, pp); 9745 9746 sfmmu_mlist_exit(pml); 9747 } 9748 } 9749 9750 /* 9751 * remove old from hash chain 9752 */ 9753 sfmmu_hblk_hash_rm(hmebp, old, prevpa, prev); 9754 9755 #ifdef DEBUG 9756 9757 hblktag.htag_id = ksfmmup; 9758 hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K)); 9759 hblktag.htag_rehash = HME_HASH_REHASH(TTE8K); 9760 HME_HASH_FAST_SEARCH(hmebp, hblktag, found); 9761 9762 if (found != new) 9763 panic("sfmmu_hblk_swap: new hblk not found"); 9764 #endif 9765 9766 SFMMU_HASH_UNLOCK(hmebp); 9767 9768 /* 9769 * Reset hblk_reserve 9770 */ 9771 bzero((void *)old, HME8BLK_SZ); 9772 old->hblk_nextpa = va_to_pa((caddr_t)old); 9773 } 9774 9775 /* 9776 * Grab the mlist mutex for both pages passed in. 9777 * 9778 * low and high will be returned as pointers to the mutexes for these pages. 9779 * low refers to the mutex residing in the lower bin of the mlist hash, while 9780 * high refers to the mutex residing in the higher bin of the mlist hash. This 9781 * is due to the locking order restrictions on the same thread grabbing 9782 * multiple mlist mutexes. The low lock must be acquired before the high lock. 9783 * 9784 * If both pages hash to the same mutex, only grab that single mutex, and 9785 * high will be returned as NULL 9786 * If the pages hash to different bins in the hash, grab the lower addressed 9787 * lock first and then the higher addressed lock in order to follow the locking 9788 * rules involved with the same thread grabbing multiple mlist mutexes. 9789 * low and high will both have non-NULL values. 9790 */ 9791 static void 9792 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl, 9793 kmutex_t **low, kmutex_t **high) 9794 { 9795 kmutex_t *mml_targ, *mml_repl; 9796 9797 /* 9798 * no need to do the dance around szc as in sfmmu_mlist_enter() 9799 * because this routine is only called by hat_page_relocate() and all 9800 * targ and repl pages are already locked EXCL so szc can't change. 9801 */ 9802 9803 mml_targ = MLIST_HASH(PP_PAGEROOT(targ)); 9804 mml_repl = MLIST_HASH(PP_PAGEROOT(repl)); 9805 9806 if (mml_targ == mml_repl) { 9807 *low = mml_targ; 9808 *high = NULL; 9809 } else { 9810 if (mml_targ < mml_repl) { 9811 *low = mml_targ; 9812 *high = mml_repl; 9813 } else { 9814 *low = mml_repl; 9815 *high = mml_targ; 9816 } 9817 } 9818 9819 mutex_enter(*low); 9820 if (*high) 9821 mutex_enter(*high); 9822 } 9823 9824 static void 9825 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high) 9826 { 9827 if (high) 9828 mutex_exit(high); 9829 mutex_exit(low); 9830 } 9831 9832 static hatlock_t * 9833 sfmmu_hat_enter(sfmmu_t *sfmmup) 9834 { 9835 hatlock_t *hatlockp; 9836 9837 if (sfmmup != ksfmmup) { 9838 hatlockp = TSB_HASH(sfmmup); 9839 mutex_enter(HATLOCK_MUTEXP(hatlockp)); 9840 return (hatlockp); 9841 } 9842 return (NULL); 9843 } 9844 9845 static hatlock_t * 9846 sfmmu_hat_tryenter(sfmmu_t *sfmmup) 9847 { 9848 hatlock_t *hatlockp; 9849 9850 if (sfmmup != ksfmmup) { 9851 hatlockp = TSB_HASH(sfmmup); 9852 if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0) 9853 return (NULL); 9854 return (hatlockp); 9855 } 9856 return (NULL); 9857 } 9858 9859 static void 9860 sfmmu_hat_exit(hatlock_t *hatlockp) 9861 { 9862 if (hatlockp != NULL) 9863 mutex_exit(HATLOCK_MUTEXP(hatlockp)); 9864 } 9865 9866 static void 9867 sfmmu_hat_lock_all(void) 9868 { 9869 int i; 9870 for (i = 0; i < SFMMU_NUM_LOCK; i++) 9871 mutex_enter(HATLOCK_MUTEXP(&hat_lock[i])); 9872 } 9873 9874 static void 9875 sfmmu_hat_unlock_all(void) 9876 { 9877 int i; 9878 for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--) 9879 mutex_exit(HATLOCK_MUTEXP(&hat_lock[i])); 9880 } 9881 9882 int 9883 sfmmu_hat_lock_held(sfmmu_t *sfmmup) 9884 { 9885 ASSERT(sfmmup != ksfmmup); 9886 return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup)))); 9887 } 9888 9889 /* 9890 * Locking primitives to provide consistency between ISM unmap 9891 * and other operations. Since ISM unmap can take a long time, we 9892 * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating 9893 * contention on the hatlock buckets while ISM segments are being 9894 * unmapped. The tradeoff is that the flags don't prevent priority 9895 * inversion from occurring, so we must request kernel priority in 9896 * case we have to sleep to keep from getting buried while holding 9897 * the HAT_ISMBUSY flag set, which in turn could block other kernel 9898 * threads from running (for example, in sfmmu_uvatopfn()). 9899 */ 9900 static void 9901 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held) 9902 { 9903 hatlock_t *hatlockp; 9904 9905 THREAD_KPRI_REQUEST(); 9906 if (!hatlock_held) 9907 hatlockp = sfmmu_hat_enter(sfmmup); 9908 while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) 9909 cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp)); 9910 SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY); 9911 if (!hatlock_held) 9912 sfmmu_hat_exit(hatlockp); 9913 } 9914 9915 static void 9916 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held) 9917 { 9918 hatlock_t *hatlockp; 9919 9920 if (!hatlock_held) 9921 hatlockp = sfmmu_hat_enter(sfmmup); 9922 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)); 9923 SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY); 9924 cv_broadcast(&sfmmup->sfmmu_tsb_cv); 9925 if (!hatlock_held) 9926 sfmmu_hat_exit(hatlockp); 9927 THREAD_KPRI_RELEASE(); 9928 } 9929 9930 /* 9931 * 9932 * Algorithm: 9933 * 9934 * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed 9935 * hblks. 9936 * 9937 * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache, 9938 * 9939 * (a) try to return an hblk from reserve pool of free hblks; 9940 * (b) if the reserve pool is empty, acquire hblk_reserve_lock 9941 * and return hblk_reserve. 9942 * 9943 * (3) call kmem_cache_alloc() to allocate hblk; 9944 * 9945 * (a) if hblk_reserve_lock is held by the current thread, 9946 * atomically replace hblk_reserve by the hblk that is 9947 * returned by kmem_cache_alloc; release hblk_reserve_lock 9948 * and call kmem_cache_alloc() again. 9949 * (b) if reserve pool is not full, add the hblk that is 9950 * returned by kmem_cache_alloc to reserve pool and 9951 * call kmem_cache_alloc again. 9952 * 9953 */ 9954 static struct hme_blk * 9955 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr, 9956 struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag, 9957 uint_t flags) 9958 { 9959 struct hme_blk *hmeblkp = NULL; 9960 struct hme_blk *newhblkp; 9961 struct hme_blk *shw_hblkp = NULL; 9962 struct kmem_cache *sfmmu_cache = NULL; 9963 uint64_t hblkpa; 9964 ulong_t index; 9965 uint_t owner; /* set to 1 if using hblk_reserve */ 9966 uint_t forcefree; 9967 int sleep; 9968 9969 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 9970 9971 /* 9972 * If segkmem is not created yet, allocate from static hmeblks 9973 * created at the end of startup_modules(). See the block comment 9974 * in startup_modules() describing how we estimate the number of 9975 * static hmeblks that will be needed during re-map. 9976 */ 9977 if (!hblk_alloc_dynamic) { 9978 9979 if (size == TTE8K) { 9980 index = nucleus_hblk8.index; 9981 if (index >= nucleus_hblk8.len) { 9982 /* 9983 * If we panic here, see startup_modules() to 9984 * make sure that we are calculating the 9985 * number of hblk8's that we need correctly. 9986 */ 9987 panic("no nucleus hblk8 to allocate"); 9988 } 9989 hmeblkp = 9990 (struct hme_blk *)&nucleus_hblk8.list[index]; 9991 nucleus_hblk8.index++; 9992 SFMMU_STAT(sf_hblk8_nalloc); 9993 } else { 9994 index = nucleus_hblk1.index; 9995 if (nucleus_hblk1.index >= nucleus_hblk1.len) { 9996 /* 9997 * If we panic here, see startup_modules() 9998 * and H8TOH1; most likely you need to 9999 * update the calculation of the number 10000 * of hblk1's the kernel needs to boot. 10001 */ 10002 panic("no nucleus hblk1 to allocate"); 10003 } 10004 hmeblkp = 10005 (struct hme_blk *)&nucleus_hblk1.list[index]; 10006 nucleus_hblk1.index++; 10007 SFMMU_STAT(sf_hblk1_nalloc); 10008 } 10009 10010 goto hblk_init; 10011 } 10012 10013 SFMMU_HASH_UNLOCK(hmebp); 10014 10015 if (sfmmup != KHATID) { 10016 if (mmu_page_sizes == max_mmu_page_sizes) { 10017 if (size < TTE256M) 10018 shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr, 10019 size, flags); 10020 } else { 10021 if (size < TTE4M) 10022 shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr, 10023 size, flags); 10024 } 10025 } 10026 10027 fill_hblk: 10028 owner = (hblk_reserve_thread == curthread) ? 1 : 0; 10029 10030 if (owner && size == TTE8K) { 10031 10032 /* 10033 * We are really in a tight spot. We already own 10034 * hblk_reserve and we need another hblk. In anticipation 10035 * of this kind of scenario, we specifically set aside 10036 * HBLK_RESERVE_MIN number of hblks to be used exclusively 10037 * by owner of hblk_reserve. 10038 */ 10039 SFMMU_STAT(sf_hblk_recurse_cnt); 10040 10041 if (!sfmmu_get_free_hblk(&hmeblkp, 1)) 10042 panic("sfmmu_hblk_alloc: reserve list is empty"); 10043 10044 goto hblk_verify; 10045 } 10046 10047 ASSERT(!owner); 10048 10049 if ((flags & HAT_NO_KALLOC) == 0) { 10050 10051 sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache); 10052 sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP); 10053 10054 if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) { 10055 hmeblkp = sfmmu_hblk_steal(size); 10056 } else { 10057 /* 10058 * if we are the owner of hblk_reserve, 10059 * swap hblk_reserve with hmeblkp and 10060 * start a fresh life. Hope things go 10061 * better this time. 10062 */ 10063 if (hblk_reserve_thread == curthread) { 10064 ASSERT(sfmmu_cache == sfmmu8_cache); 10065 sfmmu_hblk_swap(hmeblkp); 10066 hblk_reserve_thread = NULL; 10067 mutex_exit(&hblk_reserve_lock); 10068 goto fill_hblk; 10069 } 10070 /* 10071 * let's donate this hblk to our reserve list if 10072 * we are not mapping kernel range 10073 */ 10074 if (size == TTE8K && sfmmup != KHATID) 10075 if (sfmmu_put_free_hblk(hmeblkp, 0)) 10076 goto fill_hblk; 10077 } 10078 } else { 10079 /* 10080 * We are here to map the slab in sfmmu8_cache; let's 10081 * check if we could tap our reserve list; if successful, 10082 * this will avoid the pain of going thru sfmmu_hblk_swap 10083 */ 10084 SFMMU_STAT(sf_hblk_slab_cnt); 10085 if (!sfmmu_get_free_hblk(&hmeblkp, 0)) { 10086 /* 10087 * let's start hblk_reserve dance 10088 */ 10089 SFMMU_STAT(sf_hblk_reserve_cnt); 10090 owner = 1; 10091 mutex_enter(&hblk_reserve_lock); 10092 hmeblkp = HBLK_RESERVE; 10093 hblk_reserve_thread = curthread; 10094 } 10095 } 10096 10097 hblk_verify: 10098 ASSERT(hmeblkp != NULL); 10099 set_hblk_sz(hmeblkp, size); 10100 ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp)); 10101 SFMMU_HASH_LOCK(hmebp); 10102 HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp); 10103 if (newhblkp != NULL) { 10104 SFMMU_HASH_UNLOCK(hmebp); 10105 if (hmeblkp != HBLK_RESERVE) { 10106 /* 10107 * This is really tricky! 10108 * 10109 * vmem_alloc(vmem_seg_arena) 10110 * vmem_alloc(vmem_internal_arena) 10111 * segkmem_alloc(heap_arena) 10112 * vmem_alloc(heap_arena) 10113 * page_create() 10114 * hat_memload() 10115 * kmem_cache_free() 10116 * kmem_cache_alloc() 10117 * kmem_slab_create() 10118 * vmem_alloc(kmem_internal_arena) 10119 * segkmem_alloc(heap_arena) 10120 * vmem_alloc(heap_arena) 10121 * page_create() 10122 * hat_memload() 10123 * kmem_cache_free() 10124 * ... 10125 * 10126 * Thus, hat_memload() could call kmem_cache_free 10127 * for enough number of times that we could easily 10128 * hit the bottom of the stack or run out of reserve 10129 * list of vmem_seg structs. So, we must donate 10130 * this hblk to reserve list if it's allocated 10131 * from sfmmu8_cache *and* mapping kernel range. 10132 * We don't need to worry about freeing hmeblk1's 10133 * to kmem since they don't map any kmem slabs. 10134 * 10135 * Note: When segkmem supports largepages, we must 10136 * free hmeblk1's to reserve list as well. 10137 */ 10138 forcefree = (sfmmup == KHATID) ? 1 : 0; 10139 if (size == TTE8K && 10140 sfmmu_put_free_hblk(hmeblkp, forcefree)) { 10141 goto re_verify; 10142 } 10143 ASSERT(sfmmup != KHATID); 10144 kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp); 10145 } else { 10146 /* 10147 * Hey! we don't need hblk_reserve any more. 10148 */ 10149 ASSERT(owner); 10150 hblk_reserve_thread = NULL; 10151 mutex_exit(&hblk_reserve_lock); 10152 owner = 0; 10153 } 10154 re_verify: 10155 /* 10156 * let's check if the goodies are still present 10157 */ 10158 SFMMU_HASH_LOCK(hmebp); 10159 HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp); 10160 if (newhblkp != NULL) { 10161 /* 10162 * return newhblkp if it's not hblk_reserve; 10163 * if newhblkp is hblk_reserve, return it 10164 * _only if_ we are the owner of hblk_reserve. 10165 */ 10166 if (newhblkp != HBLK_RESERVE || owner) { 10167 return (newhblkp); 10168 } else { 10169 /* 10170 * we just hit hblk_reserve in the hash and 10171 * we are not the owner of that; 10172 * 10173 * block until hblk_reserve_thread completes 10174 * swapping hblk_reserve and try the dance 10175 * once again. 10176 */ 10177 SFMMU_HASH_UNLOCK(hmebp); 10178 mutex_enter(&hblk_reserve_lock); 10179 mutex_exit(&hblk_reserve_lock); 10180 SFMMU_STAT(sf_hblk_reserve_hit); 10181 goto fill_hblk; 10182 } 10183 } else { 10184 /* 10185 * it's no more! try the dance once again. 10186 */ 10187 SFMMU_HASH_UNLOCK(hmebp); 10188 goto fill_hblk; 10189 } 10190 } 10191 10192 hblk_init: 10193 set_hblk_sz(hmeblkp, size); 10194 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 10195 hmeblkp->hblk_next = (struct hme_blk *)NULL; 10196 hmeblkp->hblk_tag = hblktag; 10197 hmeblkp->hblk_shadow = shw_hblkp; 10198 hblkpa = hmeblkp->hblk_nextpa; 10199 hmeblkp->hblk_nextpa = 0; 10200 10201 ASSERT(get_hblk_ttesz(hmeblkp) == size); 10202 ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size)); 10203 ASSERT(hmeblkp->hblk_hmecnt == 0); 10204 ASSERT(hmeblkp->hblk_vcnt == 0); 10205 ASSERT(hmeblkp->hblk_lckcnt == 0); 10206 ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp)); 10207 sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa); 10208 return (hmeblkp); 10209 } 10210 10211 /* 10212 * This function performs any cleanup required on the hme_blk 10213 * and returns it to the free list. 10214 */ 10215 /* ARGSUSED */ 10216 static void 10217 sfmmu_hblk_free(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp, 10218 uint64_t hblkpa, struct hme_blk **listp) 10219 { 10220 int shw_size, vshift; 10221 struct hme_blk *shw_hblkp; 10222 uint_t shw_mask, newshw_mask; 10223 uintptr_t vaddr; 10224 int size; 10225 uint_t critical; 10226 10227 ASSERT(hmeblkp); 10228 ASSERT(!hmeblkp->hblk_hmecnt); 10229 ASSERT(!hmeblkp->hblk_vcnt); 10230 ASSERT(!hmeblkp->hblk_lckcnt); 10231 ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp)); 10232 ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve); 10233 10234 critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0; 10235 10236 size = get_hblk_ttesz(hmeblkp); 10237 shw_hblkp = hmeblkp->hblk_shadow; 10238 if (shw_hblkp) { 10239 ASSERT(hblktosfmmu(hmeblkp) != KHATID); 10240 if (mmu_page_sizes == max_mmu_page_sizes) { 10241 ASSERT(size < TTE256M); 10242 } else { 10243 ASSERT(size < TTE4M); 10244 } 10245 10246 shw_size = get_hblk_ttesz(shw_hblkp); 10247 vaddr = get_hblk_base(hmeblkp); 10248 vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size); 10249 ASSERT(vshift < 8); 10250 /* 10251 * Atomically clear shadow mask bit 10252 */ 10253 do { 10254 shw_mask = shw_hblkp->hblk_shw_mask; 10255 ASSERT(shw_mask & (1 << vshift)); 10256 newshw_mask = shw_mask & ~(1 << vshift); 10257 newshw_mask = cas32(&shw_hblkp->hblk_shw_mask, 10258 shw_mask, newshw_mask); 10259 } while (newshw_mask != shw_mask); 10260 hmeblkp->hblk_shadow = NULL; 10261 } 10262 hmeblkp->hblk_next = NULL; 10263 hmeblkp->hblk_nextpa = hblkpa; 10264 hmeblkp->hblk_shw_bit = 0; 10265 10266 if (hmeblkp->hblk_nuc_bit == 0) { 10267 10268 if (size == TTE8K && sfmmu_put_free_hblk(hmeblkp, critical)) 10269 return; 10270 10271 hmeblkp->hblk_next = *listp; 10272 *listp = hmeblkp; 10273 } 10274 } 10275 10276 static void 10277 sfmmu_hblks_list_purge(struct hme_blk **listp) 10278 { 10279 struct hme_blk *hmeblkp; 10280 10281 while ((hmeblkp = *listp) != NULL) { 10282 *listp = hmeblkp->hblk_next; 10283 kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp); 10284 } 10285 } 10286 10287 #define BUCKETS_TO_SEARCH_BEFORE_UNLOAD 30 10288 10289 static uint_t sfmmu_hblk_steal_twice; 10290 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count; 10291 10292 /* 10293 * Steal a hmeblk 10294 * Enough hmeblks were allocated at startup (nucleus hmeblks) and also 10295 * hmeblks were added dynamically. We should never ever not be able to 10296 * find one. Look for an unused/unlocked hmeblk in user hash table. 10297 */ 10298 static struct hme_blk * 10299 sfmmu_hblk_steal(int size) 10300 { 10301 static struct hmehash_bucket *uhmehash_steal_hand = NULL; 10302 struct hmehash_bucket *hmebp; 10303 struct hme_blk *hmeblkp = NULL, *pr_hblk; 10304 uint64_t hblkpa, prevpa; 10305 int i; 10306 10307 for (;;) { 10308 hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash : 10309 uhmehash_steal_hand; 10310 ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]); 10311 10312 for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ + 10313 BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) { 10314 SFMMU_HASH_LOCK(hmebp); 10315 hmeblkp = hmebp->hmeblkp; 10316 hblkpa = hmebp->hmeh_nextpa; 10317 prevpa = 0; 10318 pr_hblk = NULL; 10319 while (hmeblkp) { 10320 /* 10321 * check if it is a hmeblk that is not locked 10322 * and not shared. skip shadow hmeblks with 10323 * shadow_mask set i.e valid count non zero. 10324 */ 10325 if ((get_hblk_ttesz(hmeblkp) == size) && 10326 (hmeblkp->hblk_shw_bit == 0 || 10327 hmeblkp->hblk_vcnt == 0) && 10328 (hmeblkp->hblk_lckcnt == 0)) { 10329 /* 10330 * there is a high probability that we 10331 * will find a free one. search some 10332 * buckets for a free hmeblk initially 10333 * before unloading a valid hmeblk. 10334 */ 10335 if ((hmeblkp->hblk_vcnt == 0 && 10336 hmeblkp->hblk_hmecnt == 0) || (i >= 10337 BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) { 10338 if (sfmmu_steal_this_hblk(hmebp, 10339 hmeblkp, hblkpa, prevpa, 10340 pr_hblk)) { 10341 /* 10342 * Hblk is unloaded 10343 * successfully 10344 */ 10345 break; 10346 } 10347 } 10348 } 10349 pr_hblk = hmeblkp; 10350 prevpa = hblkpa; 10351 hblkpa = hmeblkp->hblk_nextpa; 10352 hmeblkp = hmeblkp->hblk_next; 10353 } 10354 10355 SFMMU_HASH_UNLOCK(hmebp); 10356 if (hmebp++ == &uhme_hash[UHMEHASH_SZ]) 10357 hmebp = uhme_hash; 10358 } 10359 uhmehash_steal_hand = hmebp; 10360 10361 if (hmeblkp != NULL) 10362 break; 10363 10364 /* 10365 * in the worst case, look for a free one in the kernel 10366 * hash table. 10367 */ 10368 for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) { 10369 SFMMU_HASH_LOCK(hmebp); 10370 hmeblkp = hmebp->hmeblkp; 10371 hblkpa = hmebp->hmeh_nextpa; 10372 prevpa = 0; 10373 pr_hblk = NULL; 10374 while (hmeblkp) { 10375 /* 10376 * check if it is free hmeblk 10377 */ 10378 if ((get_hblk_ttesz(hmeblkp) == size) && 10379 (hmeblkp->hblk_lckcnt == 0) && 10380 (hmeblkp->hblk_vcnt == 0) && 10381 (hmeblkp->hblk_hmecnt == 0)) { 10382 if (sfmmu_steal_this_hblk(hmebp, 10383 hmeblkp, hblkpa, prevpa, pr_hblk)) { 10384 break; 10385 } else { 10386 /* 10387 * Cannot fail since we have 10388 * hash lock. 10389 */ 10390 panic("fail to steal?"); 10391 } 10392 } 10393 10394 pr_hblk = hmeblkp; 10395 prevpa = hblkpa; 10396 hblkpa = hmeblkp->hblk_nextpa; 10397 hmeblkp = hmeblkp->hblk_next; 10398 } 10399 10400 SFMMU_HASH_UNLOCK(hmebp); 10401 if (hmebp++ == &khme_hash[KHMEHASH_SZ]) 10402 hmebp = khme_hash; 10403 } 10404 10405 if (hmeblkp != NULL) 10406 break; 10407 sfmmu_hblk_steal_twice++; 10408 } 10409 return (hmeblkp); 10410 } 10411 10412 /* 10413 * This routine does real work to prepare a hblk to be "stolen" by 10414 * unloading the mappings, updating shadow counts .... 10415 * It returns 1 if the block is ready to be reused (stolen), or 0 10416 * means the block cannot be stolen yet- pageunload is still working 10417 * on this hblk. 10418 */ 10419 static int 10420 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp, 10421 uint64_t hblkpa, uint64_t prevpa, struct hme_blk *pr_hblk) 10422 { 10423 int shw_size, vshift; 10424 struct hme_blk *shw_hblkp; 10425 uintptr_t vaddr; 10426 uint_t shw_mask, newshw_mask; 10427 10428 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 10429 10430 /* 10431 * check if the hmeblk is free, unload if necessary 10432 */ 10433 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) { 10434 sfmmu_t *sfmmup; 10435 demap_range_t dmr; 10436 10437 sfmmup = hblktosfmmu(hmeblkp); 10438 DEMAP_RANGE_INIT(sfmmup, &dmr); 10439 (void) sfmmu_hblk_unload(sfmmup, hmeblkp, 10440 (caddr_t)get_hblk_base(hmeblkp), 10441 get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD); 10442 DEMAP_RANGE_FLUSH(&dmr); 10443 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) { 10444 /* 10445 * Pageunload is working on the same hblk. 10446 */ 10447 return (0); 10448 } 10449 10450 sfmmu_hblk_steal_unload_count++; 10451 } 10452 10453 ASSERT(hmeblkp->hblk_lckcnt == 0); 10454 ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0); 10455 10456 sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk); 10457 hmeblkp->hblk_nextpa = hblkpa; 10458 10459 shw_hblkp = hmeblkp->hblk_shadow; 10460 if (shw_hblkp) { 10461 shw_size = get_hblk_ttesz(shw_hblkp); 10462 vaddr = get_hblk_base(hmeblkp); 10463 vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size); 10464 ASSERT(vshift < 8); 10465 /* 10466 * Atomically clear shadow mask bit 10467 */ 10468 do { 10469 shw_mask = shw_hblkp->hblk_shw_mask; 10470 ASSERT(shw_mask & (1 << vshift)); 10471 newshw_mask = shw_mask & ~(1 << vshift); 10472 newshw_mask = cas32(&shw_hblkp->hblk_shw_mask, 10473 shw_mask, newshw_mask); 10474 } while (newshw_mask != shw_mask); 10475 hmeblkp->hblk_shadow = NULL; 10476 } 10477 10478 /* 10479 * remove shadow bit if we are stealing an unused shadow hmeblk. 10480 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if 10481 * we are indeed allocating a shadow hmeblk. 10482 */ 10483 hmeblkp->hblk_shw_bit = 0; 10484 10485 sfmmu_hblk_steal_count++; 10486 SFMMU_STAT(sf_steal_count); 10487 10488 return (1); 10489 } 10490 10491 struct hme_blk * 10492 sfmmu_hmetohblk(struct sf_hment *sfhme) 10493 { 10494 struct hme_blk *hmeblkp; 10495 struct sf_hment *sfhme0; 10496 struct hme_blk *hblk_dummy = 0; 10497 10498 /* 10499 * No dummy sf_hments, please. 10500 */ 10501 ASSERT(sfhme->hme_tte.ll != 0); 10502 10503 sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum; 10504 hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 - 10505 (uintptr_t)&hblk_dummy->hblk_hme[0]); 10506 10507 return (hmeblkp); 10508 } 10509 10510 /* 10511 * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag. 10512 * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using 10513 * KM_SLEEP allocation. 10514 * 10515 * Return 0 on success, -1 otherwise. 10516 */ 10517 static void 10518 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp) 10519 { 10520 struct tsb_info *tsbinfop, *next; 10521 tsb_replace_rc_t rc; 10522 boolean_t gotfirst = B_FALSE; 10523 10524 ASSERT(sfmmup != ksfmmup); 10525 ASSERT(sfmmu_hat_lock_held(sfmmup)); 10526 10527 while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) { 10528 cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp)); 10529 } 10530 10531 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) { 10532 SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN); 10533 } else { 10534 return; 10535 } 10536 10537 ASSERT(sfmmup->sfmmu_tsb != NULL); 10538 10539 /* 10540 * Loop over all tsbinfo's replacing them with ones that actually have 10541 * a TSB. If any of the replacements ever fail, bail out of the loop. 10542 */ 10543 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) { 10544 ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED); 10545 next = tsbinfop->tsb_next; 10546 rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc, 10547 hatlockp, TSB_SWAPIN); 10548 if (rc != TSB_SUCCESS) { 10549 break; 10550 } 10551 gotfirst = B_TRUE; 10552 } 10553 10554 switch (rc) { 10555 case TSB_SUCCESS: 10556 SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN); 10557 cv_broadcast(&sfmmup->sfmmu_tsb_cv); 10558 return; 10559 case TSB_ALLOCFAIL: 10560 break; 10561 default: 10562 panic("sfmmu_replace_tsb returned unrecognized failure code " 10563 "%d", rc); 10564 } 10565 10566 /* 10567 * In this case, we failed to get one of our TSBs. If we failed to 10568 * get the first TSB, get one of minimum size (8KB). Walk the list 10569 * and throw away the tsbinfos, starting where the allocation failed; 10570 * we can get by with just one TSB as long as we don't leave the 10571 * SWAPPED tsbinfo structures lying around. 10572 */ 10573 tsbinfop = sfmmup->sfmmu_tsb; 10574 next = tsbinfop->tsb_next; 10575 tsbinfop->tsb_next = NULL; 10576 10577 sfmmu_hat_exit(hatlockp); 10578 for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) { 10579 next = tsbinfop->tsb_next; 10580 sfmmu_tsbinfo_free(tsbinfop); 10581 } 10582 hatlockp = sfmmu_hat_enter(sfmmup); 10583 10584 /* 10585 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K 10586 * pages. 10587 */ 10588 if (!gotfirst) { 10589 tsbinfop = sfmmup->sfmmu_tsb; 10590 rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE, 10591 hatlockp, TSB_SWAPIN | TSB_FORCEALLOC); 10592 ASSERT(rc == TSB_SUCCESS); 10593 } 10594 10595 SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN); 10596 cv_broadcast(&sfmmup->sfmmu_tsb_cv); 10597 } 10598 10599 /* 10600 * Handle exceptions for low level tsb_handler. 10601 * 10602 * There are many scenarios that could land us here: 10603 * 10604 * If the context is invalid we land here. The context can be invalid 10605 * for 3 reasons: 1) we couldn't allocate a new context and now need to 10606 * perform a wrap around operation in order to allocate a new context. 10607 * 2) Context was invalidated to change pagesize programming 3) ISMs or 10608 * TSBs configuration is changeing for this process and we are forced into 10609 * here to do a syncronization operation. If the context is valid we can 10610 * be here from window trap hanlder. In this case just call trap to handle 10611 * the fault. 10612 * 10613 * Note that the process will run in INVALID_CONTEXT before 10614 * faulting into here and subsequently loading the MMU registers 10615 * (including the TSB base register) associated with this process. 10616 * For this reason, the trap handlers must all test for 10617 * INVALID_CONTEXT before attempting to access any registers other 10618 * than the context registers. 10619 */ 10620 void 10621 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype) 10622 { 10623 sfmmu_t *sfmmup; 10624 uint_t ctxnum; 10625 klwp_id_t lwp; 10626 char lwp_save_state; 10627 hatlock_t *hatlockp; 10628 struct tsb_info *tsbinfop; 10629 10630 SFMMU_STAT(sf_tsb_exceptions); 10631 SFMMU_MMU_STAT(mmu_tsb_exceptions); 10632 sfmmup = astosfmmu(curthread->t_procp->p_as); 10633 ctxnum = tagaccess & TAGACC_CTX_MASK; 10634 10635 ASSERT(sfmmup != ksfmmup && ctxnum != KCONTEXT); 10636 ASSERT(sfmmup->sfmmu_ismhat == 0); 10637 /* 10638 * First, make sure we come out of here with a valid ctx, 10639 * since if we don't get one we'll simply loop on the 10640 * faulting instruction. 10641 * 10642 * If the ISM mappings are changing, the TSB is being relocated, or 10643 * the process is swapped out we serialize behind the controlling 10644 * thread with the sfmmu_flags and sfmmu_tsb_cv condition variable. 10645 * Otherwise we synchronize with the context stealer or the thread 10646 * that required us to change out our MMU registers (such 10647 * as a thread changing out our TSB while we were running) by 10648 * locking the HAT and grabbing the rwlock on the context as a 10649 * reader temporarily. 10650 */ 10651 ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) || 10652 ctxnum == INVALID_CONTEXT); 10653 10654 if (ctxnum == INVALID_CONTEXT) { 10655 /* 10656 * Must set lwp state to LWP_SYS before 10657 * trying to acquire any adaptive lock 10658 */ 10659 lwp = ttolwp(curthread); 10660 ASSERT(lwp); 10661 lwp_save_state = lwp->lwp_state; 10662 lwp->lwp_state = LWP_SYS; 10663 10664 hatlockp = sfmmu_hat_enter(sfmmup); 10665 retry: 10666 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; 10667 tsbinfop = tsbinfop->tsb_next) { 10668 if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) { 10669 cv_wait(&sfmmup->sfmmu_tsb_cv, 10670 HATLOCK_MUTEXP(hatlockp)); 10671 goto retry; 10672 } 10673 } 10674 10675 /* 10676 * Wait for ISM maps to be updated. 10677 */ 10678 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) { 10679 cv_wait(&sfmmup->sfmmu_tsb_cv, 10680 HATLOCK_MUTEXP(hatlockp)); 10681 goto retry; 10682 } 10683 10684 /* 10685 * If we're swapping in, get TSB(s). Note that we must do 10686 * this before we get a ctx or load the MMU state. Once 10687 * we swap in we have to recheck to make sure the TSB(s) and 10688 * ISM mappings didn't change while we slept. 10689 */ 10690 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) { 10691 sfmmu_tsb_swapin(sfmmup, hatlockp); 10692 goto retry; 10693 } 10694 10695 sfmmu_get_ctx(sfmmup); 10696 10697 sfmmu_hat_exit(hatlockp); 10698 /* 10699 * Must restore lwp_state if not calling 10700 * trap() for further processing. Restore 10701 * it anyway. 10702 */ 10703 lwp->lwp_state = lwp_save_state; 10704 if (sfmmup->sfmmu_ttecnt[TTE8K] != 0 || 10705 sfmmup->sfmmu_ttecnt[TTE64K] != 0 || 10706 sfmmup->sfmmu_ttecnt[TTE512K] != 0 || 10707 sfmmup->sfmmu_ttecnt[TTE4M] != 0 || 10708 sfmmup->sfmmu_ttecnt[TTE32M] != 0 || 10709 sfmmup->sfmmu_ttecnt[TTE256M] != 0) { 10710 return; 10711 } 10712 if (traptype == T_DATA_PROT) { 10713 traptype = T_DATA_MMU_MISS; 10714 } 10715 } 10716 trap(rp, (caddr_t)tagaccess, traptype, 0); 10717 } 10718 10719 /* 10720 * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and 10721 * TTE_SUSPENDED bit set in tte we block on aquiring a page lock 10722 * rather than spinning to avoid send mondo timeouts with 10723 * interrupts enabled. When the lock is acquired it is immediately 10724 * released and we return back to sfmmu_vatopfn just after 10725 * the GET_TTE call. 10726 */ 10727 void 10728 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep) 10729 { 10730 struct page **pp; 10731 10732 (void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE); 10733 as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE); 10734 } 10735 10736 /* 10737 * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and 10738 * TTE_SUSPENDED bit set in tte. We do this so that we can handle 10739 * cross traps which cannot be handled while spinning in the 10740 * trap handlers. Simply enter and exit the kpr_suspendlock spin 10741 * mutex, which is held by the holder of the suspend bit, and then 10742 * retry the trapped instruction after unwinding. 10743 */ 10744 /*ARGSUSED*/ 10745 void 10746 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype) 10747 { 10748 ASSERT(curthread != kreloc_thread); 10749 mutex_enter(&kpr_suspendlock); 10750 mutex_exit(&kpr_suspendlock); 10751 } 10752 10753 /* 10754 * Special routine to flush out ism mappings- TSBs, TLBs and D-caches. 10755 * This routine may be called with all cpu's captured. Therefore, the 10756 * caller is responsible for holding all locks and disabling kernel 10757 * preemption. 10758 */ 10759 /* ARGSUSED */ 10760 static void 10761 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup, 10762 struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag) 10763 { 10764 cpuset_t cpuset; 10765 caddr_t va; 10766 ism_ment_t *ment; 10767 sfmmu_t *sfmmup; 10768 int vcolor; 10769 int ttesz; 10770 10771 /* 10772 * Walk the ism_hat's mapping list and flush the page 10773 * from every hat sharing this ism_hat. This routine 10774 * may be called while all cpu's have been captured. 10775 * Therefore we can't attempt to grab any locks. For now 10776 * this means we will protect the ism mapping list under 10777 * a single lock which will be grabbed by the caller. 10778 * If hat_share/unshare scalibility becomes a performance 10779 * problem then we may need to re-think ism mapping list locking. 10780 */ 10781 ASSERT(ism_sfmmup->sfmmu_ismhat); 10782 ASSERT(MUTEX_HELD(&ism_mlist_lock)); 10783 addr = addr - ISMID_STARTADDR; 10784 for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) { 10785 10786 sfmmup = ment->iment_hat; 10787 10788 va = ment->iment_base_va; 10789 va = (caddr_t)((uintptr_t)va + (uintptr_t)addr); 10790 10791 /* 10792 * Flush TSB of ISM mappings. 10793 */ 10794 ttesz = get_hblk_ttesz(hmeblkp); 10795 if (ttesz == TTE8K || ttesz == TTE4M) { 10796 sfmmu_unload_tsb(sfmmup, va, ttesz); 10797 } else { 10798 caddr_t sva = va; 10799 caddr_t eva; 10800 ASSERT(addr == (caddr_t)get_hblk_base(hmeblkp)); 10801 eva = sva + get_hblk_span(hmeblkp); 10802 sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz); 10803 } 10804 10805 cpuset = sfmmup->sfmmu_cpusran; 10806 CPUSET_AND(cpuset, cpu_ready_set); 10807 CPUSET_DEL(cpuset, CPU->cpu_id); 10808 10809 SFMMU_XCALL_STATS(sfmmup); 10810 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va, 10811 (uint64_t)sfmmup); 10812 10813 vtag_flushpage(va, (uint64_t)sfmmup); 10814 10815 /* 10816 * Flush D$ 10817 * When flushing D$ we must flush all 10818 * cpu's. See sfmmu_cache_flush(). 10819 */ 10820 if (cache_flush_flag == CACHE_FLUSH) { 10821 cpuset = cpu_ready_set; 10822 CPUSET_DEL(cpuset, CPU->cpu_id); 10823 10824 SFMMU_XCALL_STATS(sfmmup); 10825 vcolor = addr_to_vcolor(va); 10826 xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor); 10827 vac_flushpage(pfnum, vcolor); 10828 } 10829 } 10830 } 10831 10832 /* 10833 * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of 10834 * a particular virtual address and ctx. If noflush is set we do not 10835 * flush the TLB/TSB. This function may or may not be called with the 10836 * HAT lock held. 10837 */ 10838 static void 10839 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp, 10840 pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag, 10841 int hat_lock_held) 10842 { 10843 int vcolor; 10844 cpuset_t cpuset; 10845 hatlock_t *hatlockp; 10846 10847 /* 10848 * There is no longer a need to protect against ctx being 10849 * stolen here since we don't store the ctx in the TSB anymore. 10850 */ 10851 vcolor = addr_to_vcolor(addr); 10852 10853 /* 10854 * We must hold the hat lock during the flush of TLB, 10855 * to avoid a race with sfmmu_invalidate_ctx(), where 10856 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT, 10857 * causing TLB demap routine to skip flush on that MMU. 10858 * If the context on a MMU has already been set to 10859 * INVALID_CONTEXT, we just get an extra flush on 10860 * that MMU. 10861 */ 10862 if (!hat_lock_held && !tlb_noflush) 10863 hatlockp = sfmmu_hat_enter(sfmmup); 10864 10865 kpreempt_disable(); 10866 if (!tlb_noflush) { 10867 /* 10868 * Flush the TSB and TLB. 10869 */ 10870 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp); 10871 10872 cpuset = sfmmup->sfmmu_cpusran; 10873 CPUSET_AND(cpuset, cpu_ready_set); 10874 CPUSET_DEL(cpuset, CPU->cpu_id); 10875 10876 SFMMU_XCALL_STATS(sfmmup); 10877 10878 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, 10879 (uint64_t)sfmmup); 10880 10881 vtag_flushpage(addr, (uint64_t)sfmmup); 10882 10883 } 10884 10885 if (!hat_lock_held && !tlb_noflush) 10886 sfmmu_hat_exit(hatlockp); 10887 10888 10889 /* 10890 * Flush the D$ 10891 * 10892 * Even if the ctx is stolen, we need to flush the 10893 * cache. Our ctx stealer only flushes the TLBs. 10894 */ 10895 if (cache_flush_flag == CACHE_FLUSH) { 10896 if (cpu_flag & FLUSH_ALL_CPUS) { 10897 cpuset = cpu_ready_set; 10898 } else { 10899 cpuset = sfmmup->sfmmu_cpusran; 10900 CPUSET_AND(cpuset, cpu_ready_set); 10901 } 10902 CPUSET_DEL(cpuset, CPU->cpu_id); 10903 SFMMU_XCALL_STATS(sfmmup); 10904 xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor); 10905 vac_flushpage(pfnum, vcolor); 10906 } 10907 kpreempt_enable(); 10908 } 10909 10910 /* 10911 * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual 10912 * address and ctx. If noflush is set we do not currently do anything. 10913 * This function may or may not be called with the HAT lock held. 10914 */ 10915 static void 10916 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp, 10917 int tlb_noflush, int hat_lock_held) 10918 { 10919 cpuset_t cpuset; 10920 hatlock_t *hatlockp; 10921 10922 /* 10923 * If the process is exiting we have nothing to do. 10924 */ 10925 if (tlb_noflush) 10926 return; 10927 10928 /* 10929 * Flush TSB. 10930 */ 10931 if (!hat_lock_held) 10932 hatlockp = sfmmu_hat_enter(sfmmup); 10933 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp); 10934 10935 kpreempt_disable(); 10936 10937 cpuset = sfmmup->sfmmu_cpusran; 10938 CPUSET_AND(cpuset, cpu_ready_set); 10939 CPUSET_DEL(cpuset, CPU->cpu_id); 10940 10941 SFMMU_XCALL_STATS(sfmmup); 10942 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup); 10943 10944 vtag_flushpage(addr, (uint64_t)sfmmup); 10945 10946 if (!hat_lock_held) 10947 sfmmu_hat_exit(hatlockp); 10948 10949 kpreempt_enable(); 10950 10951 } 10952 10953 /* 10954 * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall 10955 * call handler that can flush a range of pages to save on xcalls. 10956 */ 10957 static int sfmmu_xcall_save; 10958 10959 static void 10960 sfmmu_tlb_range_demap(demap_range_t *dmrp) 10961 { 10962 sfmmu_t *sfmmup = dmrp->dmr_sfmmup; 10963 hatlock_t *hatlockp; 10964 cpuset_t cpuset; 10965 uint64_t sfmmu_pgcnt; 10966 pgcnt_t pgcnt = 0; 10967 int pgunload = 0; 10968 int dirtypg = 0; 10969 caddr_t addr = dmrp->dmr_addr; 10970 caddr_t eaddr; 10971 uint64_t bitvec = dmrp->dmr_bitvec; 10972 10973 ASSERT(bitvec & 1); 10974 10975 /* 10976 * Flush TSB and calculate number of pages to flush. 10977 */ 10978 while (bitvec != 0) { 10979 dirtypg = 0; 10980 /* 10981 * Find the first page to flush and then count how many 10982 * pages there are after it that also need to be flushed. 10983 * This way the number of TSB flushes is minimized. 10984 */ 10985 while ((bitvec & 1) == 0) { 10986 pgcnt++; 10987 addr += MMU_PAGESIZE; 10988 bitvec >>= 1; 10989 } 10990 while (bitvec & 1) { 10991 dirtypg++; 10992 bitvec >>= 1; 10993 } 10994 eaddr = addr + ptob(dirtypg); 10995 hatlockp = sfmmu_hat_enter(sfmmup); 10996 sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K); 10997 sfmmu_hat_exit(hatlockp); 10998 pgunload += dirtypg; 10999 addr = eaddr; 11000 pgcnt += dirtypg; 11001 } 11002 11003 ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr); 11004 if (sfmmup->sfmmu_free == 0) { 11005 addr = dmrp->dmr_addr; 11006 bitvec = dmrp->dmr_bitvec; 11007 11008 /* 11009 * make sure it has SFMMU_PGCNT_SHIFT bits only, 11010 * as it will be used to pack argument for xt_some 11011 */ 11012 ASSERT((pgcnt > 0) && 11013 (pgcnt <= (1 << SFMMU_PGCNT_SHIFT))); 11014 11015 /* 11016 * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in 11017 * the low 6 bits of sfmmup. This is doable since pgcnt 11018 * always >= 1. 11019 */ 11020 ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK)); 11021 sfmmu_pgcnt = (uint64_t)sfmmup | 11022 ((pgcnt - 1) & SFMMU_PGCNT_MASK); 11023 11024 /* 11025 * We must hold the hat lock during the flush of TLB, 11026 * to avoid a race with sfmmu_invalidate_ctx(), where 11027 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT, 11028 * causing TLB demap routine to skip flush on that MMU. 11029 * If the context on a MMU has already been set to 11030 * INVALID_CONTEXT, we just get an extra flush on 11031 * that MMU. 11032 */ 11033 hatlockp = sfmmu_hat_enter(sfmmup); 11034 kpreempt_disable(); 11035 11036 cpuset = sfmmup->sfmmu_cpusran; 11037 CPUSET_AND(cpuset, cpu_ready_set); 11038 CPUSET_DEL(cpuset, CPU->cpu_id); 11039 11040 SFMMU_XCALL_STATS(sfmmup); 11041 xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr, 11042 sfmmu_pgcnt); 11043 11044 for (; bitvec != 0; bitvec >>= 1) { 11045 if (bitvec & 1) 11046 vtag_flushpage(addr, (uint64_t)sfmmup); 11047 addr += MMU_PAGESIZE; 11048 } 11049 kpreempt_enable(); 11050 sfmmu_hat_exit(hatlockp); 11051 11052 sfmmu_xcall_save += (pgunload-1); 11053 } 11054 dmrp->dmr_bitvec = 0; 11055 } 11056 11057 /* 11058 * In cases where we need to synchronize with TLB/TSB miss trap 11059 * handlers, _and_ need to flush the TLB, it's a lot easier to 11060 * throw away the context from the process than to do a 11061 * special song and dance to keep things consistent for the 11062 * handlers. 11063 * 11064 * Since the process suddenly ends up without a context and our caller 11065 * holds the hat lock, threads that fault after this function is called 11066 * will pile up on the lock. We can then do whatever we need to 11067 * atomically from the context of the caller. The first blocked thread 11068 * to resume executing will get the process a new context, and the 11069 * process will resume executing. 11070 * 11071 * One added advantage of this approach is that on MMUs that 11072 * support a "flush all" operation, we will delay the flush until 11073 * cnum wrap-around, and then flush the TLB one time. This 11074 * is rather rare, so it's a lot less expensive than making 8000 11075 * x-calls to flush the TLB 8000 times. 11076 * 11077 * A per-process (PP) lock is used to synchronize ctx allocations in 11078 * resume() and ctx invalidations here. 11079 */ 11080 static void 11081 sfmmu_invalidate_ctx(sfmmu_t *sfmmup) 11082 { 11083 cpuset_t cpuset; 11084 int cnum, currcnum; 11085 mmu_ctx_t *mmu_ctxp; 11086 int i; 11087 uint_t pstate_save; 11088 11089 SFMMU_STAT(sf_ctx_inv); 11090 11091 ASSERT(sfmmu_hat_lock_held(sfmmup)); 11092 ASSERT(sfmmup != ksfmmup); 11093 11094 kpreempt_disable(); 11095 11096 mmu_ctxp = CPU_MMU_CTXP(CPU); 11097 ASSERT(mmu_ctxp); 11098 ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms); 11099 ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]); 11100 11101 currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum; 11102 11103 pstate_save = sfmmu_disable_intrs(); 11104 11105 lock_set(&sfmmup->sfmmu_ctx_lock); /* acquire PP lock */ 11106 /* set HAT cnum invalid across all context domains. */ 11107 for (i = 0; i < max_mmu_ctxdoms; i++) { 11108 11109 cnum = sfmmup->sfmmu_ctxs[i].cnum; 11110 if (cnum == INVALID_CONTEXT) { 11111 continue; 11112 } 11113 11114 sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT; 11115 } 11116 membar_enter(); /* make sure globally visible to all CPUs */ 11117 lock_clear(&sfmmup->sfmmu_ctx_lock); /* release PP lock */ 11118 11119 sfmmu_enable_intrs(pstate_save); 11120 11121 cpuset = sfmmup->sfmmu_cpusran; 11122 CPUSET_DEL(cpuset, CPU->cpu_id); 11123 CPUSET_AND(cpuset, cpu_ready_set); 11124 if (!CPUSET_ISNULL(cpuset)) { 11125 SFMMU_XCALL_STATS(sfmmup); 11126 xt_some(cpuset, sfmmu_raise_tsb_exception, 11127 (uint64_t)sfmmup, INVALID_CONTEXT); 11128 xt_sync(cpuset); 11129 SFMMU_STAT(sf_tsb_raise_exception); 11130 SFMMU_MMU_STAT(mmu_tsb_raise_exception); 11131 } 11132 11133 /* 11134 * If the hat to-be-invalidated is the same as the current 11135 * process on local CPU we need to invalidate 11136 * this CPU context as well. 11137 */ 11138 if ((sfmmu_getctx_sec() == currcnum) && 11139 (currcnum != INVALID_CONTEXT)) { 11140 sfmmu_setctx_sec(INVALID_CONTEXT); 11141 sfmmu_clear_utsbinfo(); 11142 } 11143 11144 kpreempt_enable(); 11145 11146 /* 11147 * we hold the hat lock, so nobody should allocate a context 11148 * for us yet 11149 */ 11150 ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT); 11151 } 11152 11153 /* 11154 * We need to flush the cache in all cpus. It is possible that 11155 * a process referenced a page as cacheable but has sinced exited 11156 * and cleared the mapping list. We still to flush it but have no 11157 * state so all cpus is the only alternative. 11158 */ 11159 void 11160 sfmmu_cache_flush(pfn_t pfnum, int vcolor) 11161 { 11162 cpuset_t cpuset; 11163 11164 kpreempt_disable(); 11165 cpuset = cpu_ready_set; 11166 CPUSET_DEL(cpuset, CPU->cpu_id); 11167 SFMMU_XCALL_STATS(NULL); /* account to any ctx */ 11168 xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor); 11169 xt_sync(cpuset); 11170 vac_flushpage(pfnum, vcolor); 11171 kpreempt_enable(); 11172 } 11173 11174 void 11175 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum) 11176 { 11177 cpuset_t cpuset; 11178 11179 ASSERT(vcolor >= 0); 11180 11181 kpreempt_disable(); 11182 cpuset = cpu_ready_set; 11183 CPUSET_DEL(cpuset, CPU->cpu_id); 11184 SFMMU_XCALL_STATS(NULL); /* account to any ctx */ 11185 xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum); 11186 xt_sync(cpuset); 11187 vac_flushcolor(vcolor, pfnum); 11188 kpreempt_enable(); 11189 } 11190 11191 /* 11192 * We need to prevent processes from accessing the TSB using a cached physical 11193 * address. It's alright if they try to access the TSB via virtual address 11194 * since they will just fault on that virtual address once the mapping has 11195 * been suspended. 11196 */ 11197 #pragma weak sendmondo_in_recover 11198 11199 /* ARGSUSED */ 11200 static int 11201 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo) 11202 { 11203 hatlock_t *hatlockp; 11204 struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo; 11205 sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu; 11206 extern uint32_t sendmondo_in_recover; 11207 11208 if (flags != HAT_PRESUSPEND) 11209 return (0); 11210 11211 hatlockp = sfmmu_hat_enter(sfmmup); 11212 11213 tsbinfop->tsb_flags |= TSB_RELOC_FLAG; 11214 11215 /* 11216 * For Cheetah+ Erratum 25: 11217 * Wait for any active recovery to finish. We can't risk 11218 * relocating the TSB of the thread running mondo_recover_proc() 11219 * since, if we did that, we would deadlock. The scenario we are 11220 * trying to avoid is as follows: 11221 * 11222 * THIS CPU RECOVER CPU 11223 * -------- ----------- 11224 * Begins recovery, walking through TSB 11225 * hat_pagesuspend() TSB TTE 11226 * TLB miss on TSB TTE, spins at TL1 11227 * xt_sync() 11228 * send_mondo_timeout() 11229 * mondo_recover_proc() 11230 * ((deadlocked)) 11231 * 11232 * The second half of the workaround is that mondo_recover_proc() 11233 * checks to see if the tsb_info has the RELOC flag set, and if it 11234 * does, it skips over that TSB without ever touching tsbinfop->tsb_va 11235 * and hence avoiding the TLB miss that could result in a deadlock. 11236 */ 11237 if (&sendmondo_in_recover) { 11238 membar_enter(); /* make sure RELOC flag visible */ 11239 while (sendmondo_in_recover) { 11240 drv_usecwait(1); 11241 membar_consumer(); 11242 } 11243 } 11244 11245 sfmmu_invalidate_ctx(sfmmup); 11246 sfmmu_hat_exit(hatlockp); 11247 11248 return (0); 11249 } 11250 11251 /* ARGSUSED */ 11252 static int 11253 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags, 11254 void *tsbinfo, pfn_t newpfn) 11255 { 11256 hatlock_t *hatlockp; 11257 struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo; 11258 sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu; 11259 11260 if (flags != HAT_POSTUNSUSPEND) 11261 return (0); 11262 11263 hatlockp = sfmmu_hat_enter(sfmmup); 11264 11265 SFMMU_STAT(sf_tsb_reloc); 11266 11267 /* 11268 * The process may have swapped out while we were relocating one 11269 * of its TSBs. If so, don't bother doing the setup since the 11270 * process can't be using the memory anymore. 11271 */ 11272 if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) { 11273 ASSERT(va == tsbinfop->tsb_va); 11274 sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn); 11275 sfmmu_setup_tsbinfo(sfmmup); 11276 11277 if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) { 11278 sfmmu_inv_tsb(tsbinfop->tsb_va, 11279 TSB_BYTES(tsbinfop->tsb_szc)); 11280 tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED; 11281 } 11282 } 11283 11284 membar_exit(); 11285 tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG; 11286 cv_broadcast(&sfmmup->sfmmu_tsb_cv); 11287 11288 sfmmu_hat_exit(hatlockp); 11289 11290 return (0); 11291 } 11292 11293 /* 11294 * Allocate and initialize a tsb_info structure. Note that we may or may not 11295 * allocate a TSB here, depending on the flags passed in. 11296 */ 11297 static int 11298 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask, 11299 uint_t flags, sfmmu_t *sfmmup) 11300 { 11301 int err; 11302 11303 *tsbinfopp = (struct tsb_info *)kmem_cache_alloc( 11304 sfmmu_tsbinfo_cache, KM_SLEEP); 11305 11306 if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask, 11307 tsb_szc, flags, sfmmup)) != 0) { 11308 kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp); 11309 SFMMU_STAT(sf_tsb_allocfail); 11310 *tsbinfopp = NULL; 11311 return (err); 11312 } 11313 SFMMU_STAT(sf_tsb_alloc); 11314 11315 /* 11316 * Bump the TSB size counters for this TSB size. 11317 */ 11318 (*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++; 11319 return (0); 11320 } 11321 11322 static void 11323 sfmmu_tsb_free(struct tsb_info *tsbinfo) 11324 { 11325 caddr_t tsbva = tsbinfo->tsb_va; 11326 uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc); 11327 struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache; 11328 vmem_t *vmp = tsbinfo->tsb_vmp; 11329 11330 /* 11331 * If we allocated this TSB from relocatable kernel memory, then we 11332 * need to uninstall the callback handler. 11333 */ 11334 if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) { 11335 uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT; 11336 caddr_t slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask); 11337 page_t **ppl; 11338 int ret; 11339 11340 ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE); 11341 ASSERT(ret == 0); 11342 hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo, 11343 0, NULL); 11344 as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE); 11345 } 11346 11347 if (kmem_cachep != NULL) { 11348 kmem_cache_free(kmem_cachep, tsbva); 11349 } else { 11350 vmem_xfree(vmp, (void *)tsbva, tsb_size); 11351 } 11352 tsbinfo->tsb_va = (caddr_t)0xbad00bad; 11353 atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size); 11354 } 11355 11356 static void 11357 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo) 11358 { 11359 if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) { 11360 sfmmu_tsb_free(tsbinfo); 11361 } 11362 kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo); 11363 11364 } 11365 11366 /* 11367 * Setup all the references to physical memory for this tsbinfo. 11368 * The underlying page(s) must be locked. 11369 */ 11370 static void 11371 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn) 11372 { 11373 ASSERT(pfn != PFN_INVALID); 11374 ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va)); 11375 11376 #ifndef sun4v 11377 if (tsbinfo->tsb_szc == 0) { 11378 sfmmu_memtte(&tsbinfo->tsb_tte, pfn, 11379 PROT_WRITE|PROT_READ, TTE8K); 11380 } else { 11381 /* 11382 * Round down PA and use a large mapping; the handlers will 11383 * compute the TSB pointer at the correct offset into the 11384 * big virtual page. NOTE: this assumes all TSBs larger 11385 * than 8K must come from physically contiguous slabs of 11386 * size tsb_slab_size. 11387 */ 11388 sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask, 11389 PROT_WRITE|PROT_READ, tsb_slab_ttesz); 11390 } 11391 tsbinfo->tsb_pa = ptob(pfn); 11392 11393 TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */ 11394 TTE_SET_MOD(&tsbinfo->tsb_tte); /* enable writes */ 11395 11396 ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte)); 11397 ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte)); 11398 #else /* sun4v */ 11399 tsbinfo->tsb_pa = ptob(pfn); 11400 #endif /* sun4v */ 11401 } 11402 11403 11404 /* 11405 * Returns zero on success, ENOMEM if over the high water mark, 11406 * or EAGAIN if the caller needs to retry with a smaller TSB 11407 * size (or specify TSB_FORCEALLOC if the allocation can't fail). 11408 * 11409 * This call cannot fail to allocate a TSB if TSB_FORCEALLOC 11410 * is specified and the TSB requested is PAGESIZE, though it 11411 * may sleep waiting for memory if sufficient memory is not 11412 * available. 11413 */ 11414 static int 11415 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask, 11416 int tsbcode, uint_t flags, sfmmu_t *sfmmup) 11417 { 11418 caddr_t vaddr = NULL; 11419 caddr_t slab_vaddr; 11420 uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT; 11421 int tsbbytes = TSB_BYTES(tsbcode); 11422 int lowmem = 0; 11423 struct kmem_cache *kmem_cachep = NULL; 11424 vmem_t *vmp = NULL; 11425 lgrp_id_t lgrpid = LGRP_NONE; 11426 pfn_t pfn; 11427 uint_t cbflags = HAC_SLEEP; 11428 page_t **pplist; 11429 int ret; 11430 11431 if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK)) 11432 flags |= TSB_ALLOC; 11433 11434 ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE); 11435 11436 tsbinfo->tsb_sfmmu = sfmmup; 11437 11438 /* 11439 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and 11440 * return. 11441 */ 11442 if ((flags & TSB_ALLOC) == 0) { 11443 tsbinfo->tsb_szc = tsbcode; 11444 tsbinfo->tsb_ttesz_mask = tteszmask; 11445 tsbinfo->tsb_va = (caddr_t)0xbadbadbeef; 11446 tsbinfo->tsb_pa = -1; 11447 tsbinfo->tsb_tte.ll = 0; 11448 tsbinfo->tsb_next = NULL; 11449 tsbinfo->tsb_flags = TSB_SWAPPED; 11450 tsbinfo->tsb_cache = NULL; 11451 tsbinfo->tsb_vmp = NULL; 11452 return (0); 11453 } 11454 11455 #ifdef DEBUG 11456 /* 11457 * For debugging: 11458 * Randomly force allocation failures every tsb_alloc_mtbf 11459 * tries if TSB_FORCEALLOC is not specified. This will 11460 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if 11461 * it is even, to allow testing of both failure paths... 11462 */ 11463 if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) && 11464 (tsb_alloc_count++ == tsb_alloc_mtbf)) { 11465 tsb_alloc_count = 0; 11466 tsb_alloc_fail_mtbf++; 11467 return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN); 11468 } 11469 #endif /* DEBUG */ 11470 11471 /* 11472 * Enforce high water mark if we are not doing a forced allocation 11473 * and are not shrinking a process' TSB. 11474 */ 11475 if ((flags & TSB_SHRINK) == 0 && 11476 (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) { 11477 if ((flags & TSB_FORCEALLOC) == 0) 11478 return (ENOMEM); 11479 lowmem = 1; 11480 } 11481 11482 /* 11483 * Allocate from the correct location based upon the size of the TSB 11484 * compared to the base page size, and what memory conditions dictate. 11485 * Note we always do nonblocking allocations from the TSB arena since 11486 * we don't want memory fragmentation to cause processes to block 11487 * indefinitely waiting for memory; until the kernel algorithms that 11488 * coalesce large pages are improved this is our best option. 11489 * 11490 * Algorithm: 11491 * If allocating a "large" TSB (>8K), allocate from the 11492 * appropriate kmem_tsb_default_arena vmem arena 11493 * else if low on memory or the TSB_FORCEALLOC flag is set or 11494 * tsb_forceheap is set 11495 * Allocate from kernel heap via sfmmu_tsb8k_cache with 11496 * KM_SLEEP (never fails) 11497 * else 11498 * Allocate from appropriate sfmmu_tsb_cache with 11499 * KM_NOSLEEP 11500 * endif 11501 */ 11502 if (tsb_lgrp_affinity) 11503 lgrpid = lgrp_home_id(curthread); 11504 if (lgrpid == LGRP_NONE) 11505 lgrpid = 0; /* use lgrp of boot CPU */ 11506 11507 if (tsbbytes > MMU_PAGESIZE) { 11508 vmp = kmem_tsb_default_arena[lgrpid]; 11509 vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes, 0, 0, 11510 NULL, NULL, VM_NOSLEEP); 11511 #ifdef DEBUG 11512 } else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) { 11513 #else /* !DEBUG */ 11514 } else if (lowmem || (flags & TSB_FORCEALLOC)) { 11515 #endif /* DEBUG */ 11516 kmem_cachep = sfmmu_tsb8k_cache; 11517 vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP); 11518 ASSERT(vaddr != NULL); 11519 } else { 11520 kmem_cachep = sfmmu_tsb_cache[lgrpid]; 11521 vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP); 11522 } 11523 11524 tsbinfo->tsb_cache = kmem_cachep; 11525 tsbinfo->tsb_vmp = vmp; 11526 11527 if (vaddr == NULL) { 11528 return (EAGAIN); 11529 } 11530 11531 atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes); 11532 kmem_cachep = tsbinfo->tsb_cache; 11533 11534 /* 11535 * If we are allocating from outside the cage, then we need to 11536 * register a relocation callback handler. Note that for now 11537 * since pseudo mappings always hang off of the slab's root page, 11538 * we need only lock the first 8K of the TSB slab. This is a bit 11539 * hacky but it is good for performance. 11540 */ 11541 if (kmem_cachep != sfmmu_tsb8k_cache) { 11542 slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask); 11543 ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE); 11544 ASSERT(ret == 0); 11545 ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes, 11546 cbflags, (void *)tsbinfo, &pfn, NULL); 11547 11548 /* 11549 * Need to free up resources if we could not successfully 11550 * add the callback function and return an error condition. 11551 */ 11552 if (ret != 0) { 11553 if (kmem_cachep) { 11554 kmem_cache_free(kmem_cachep, vaddr); 11555 } else { 11556 vmem_xfree(vmp, (void *)vaddr, tsbbytes); 11557 } 11558 as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, 11559 S_WRITE); 11560 return (EAGAIN); 11561 } 11562 } else { 11563 /* 11564 * Since allocation of 8K TSBs from heap is rare and occurs 11565 * during memory pressure we allocate them from permanent 11566 * memory rather than using callbacks to get the PFN. 11567 */ 11568 pfn = hat_getpfnum(kas.a_hat, vaddr); 11569 } 11570 11571 tsbinfo->tsb_va = vaddr; 11572 tsbinfo->tsb_szc = tsbcode; 11573 tsbinfo->tsb_ttesz_mask = tteszmask; 11574 tsbinfo->tsb_next = NULL; 11575 tsbinfo->tsb_flags = 0; 11576 11577 sfmmu_tsbinfo_setup_phys(tsbinfo, pfn); 11578 11579 if (kmem_cachep != sfmmu_tsb8k_cache) { 11580 as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE); 11581 } 11582 11583 sfmmu_inv_tsb(vaddr, tsbbytes); 11584 return (0); 11585 } 11586 11587 /* 11588 * Initialize per cpu tsb and per cpu tsbmiss_area 11589 */ 11590 void 11591 sfmmu_init_tsbs(void) 11592 { 11593 int i; 11594 struct tsbmiss *tsbmissp; 11595 struct kpmtsbm *kpmtsbmp; 11596 #ifndef sun4v 11597 extern int dcache_line_mask; 11598 #endif /* sun4v */ 11599 extern uint_t vac_colors; 11600 11601 /* 11602 * Init. tsb miss area. 11603 */ 11604 tsbmissp = tsbmiss_area; 11605 11606 for (i = 0; i < NCPU; tsbmissp++, i++) { 11607 /* 11608 * initialize the tsbmiss area. 11609 * Do this for all possible CPUs as some may be added 11610 * while the system is running. There is no cost to this. 11611 */ 11612 tsbmissp->ksfmmup = ksfmmup; 11613 #ifndef sun4v 11614 tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask; 11615 #endif /* sun4v */ 11616 tsbmissp->khashstart = 11617 (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash); 11618 tsbmissp->uhashstart = 11619 (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash); 11620 tsbmissp->khashsz = khmehash_num; 11621 tsbmissp->uhashsz = uhmehash_num; 11622 } 11623 11624 sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B', 11625 sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0); 11626 11627 if (kpm_enable == 0) 11628 return; 11629 11630 /* -- Begin KPM specific init -- */ 11631 11632 if (kpm_smallpages) { 11633 /* 11634 * If we're using base pagesize pages for seg_kpm 11635 * mappings, we use the kernel TSB since we can't afford 11636 * to allocate a second huge TSB for these mappings. 11637 */ 11638 kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base; 11639 kpm_tsbsz = ktsb_szcode; 11640 kpmsm_tsbbase = kpm_tsbbase; 11641 kpmsm_tsbsz = kpm_tsbsz; 11642 } else { 11643 /* 11644 * In VAC conflict case, just put the entries in the 11645 * kernel 8K indexed TSB for now so we can find them. 11646 * This could really be changed in the future if we feel 11647 * the need... 11648 */ 11649 kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base; 11650 kpmsm_tsbsz = ktsb_szcode; 11651 kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base; 11652 kpm_tsbsz = ktsb4m_szcode; 11653 } 11654 11655 kpmtsbmp = kpmtsbm_area; 11656 for (i = 0; i < NCPU; kpmtsbmp++, i++) { 11657 /* 11658 * Initialize the kpmtsbm area. 11659 * Do this for all possible CPUs as some may be added 11660 * while the system is running. There is no cost to this. 11661 */ 11662 kpmtsbmp->vbase = kpm_vbase; 11663 kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors; 11664 kpmtsbmp->sz_shift = kpm_size_shift; 11665 kpmtsbmp->kpmp_shift = kpmp_shift; 11666 kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft; 11667 if (kpm_smallpages == 0) { 11668 kpmtsbmp->kpmp_table_sz = kpmp_table_sz; 11669 kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table); 11670 } else { 11671 kpmtsbmp->kpmp_table_sz = kpmp_stable_sz; 11672 kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable); 11673 } 11674 kpmtsbmp->msegphashpa = va_to_pa(memseg_phash); 11675 kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG; 11676 #ifdef DEBUG 11677 kpmtsbmp->flags |= (kpm_tsbmtl) ? KPMTSBM_TLTSBM_FLAG : 0; 11678 #endif /* DEBUG */ 11679 if (ktsb_phys) 11680 kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG; 11681 } 11682 11683 /* -- End KPM specific init -- */ 11684 } 11685 11686 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */ 11687 struct tsb_info ktsb_info[2]; 11688 11689 /* 11690 * Called from hat_kern_setup() to setup the tsb_info for ksfmmup. 11691 */ 11692 void 11693 sfmmu_init_ktsbinfo() 11694 { 11695 ASSERT(ksfmmup != NULL); 11696 ASSERT(ksfmmup->sfmmu_tsb == NULL); 11697 /* 11698 * Allocate tsbinfos for kernel and copy in data 11699 * to make debug easier and sun4v setup easier. 11700 */ 11701 ktsb_info[0].tsb_sfmmu = ksfmmup; 11702 ktsb_info[0].tsb_szc = ktsb_szcode; 11703 ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K; 11704 ktsb_info[0].tsb_va = ktsb_base; 11705 ktsb_info[0].tsb_pa = ktsb_pbase; 11706 ktsb_info[0].tsb_flags = 0; 11707 ktsb_info[0].tsb_tte.ll = 0; 11708 ktsb_info[0].tsb_cache = NULL; 11709 11710 ktsb_info[1].tsb_sfmmu = ksfmmup; 11711 ktsb_info[1].tsb_szc = ktsb4m_szcode; 11712 ktsb_info[1].tsb_ttesz_mask = TSB4M; 11713 ktsb_info[1].tsb_va = ktsb4m_base; 11714 ktsb_info[1].tsb_pa = ktsb4m_pbase; 11715 ktsb_info[1].tsb_flags = 0; 11716 ktsb_info[1].tsb_tte.ll = 0; 11717 ktsb_info[1].tsb_cache = NULL; 11718 11719 /* Link them into ksfmmup. */ 11720 ktsb_info[0].tsb_next = &ktsb_info[1]; 11721 ktsb_info[1].tsb_next = NULL; 11722 ksfmmup->sfmmu_tsb = &ktsb_info[0]; 11723 11724 sfmmu_setup_tsbinfo(ksfmmup); 11725 } 11726 11727 /* 11728 * Cache the last value returned from va_to_pa(). If the VA specified 11729 * in the current call to cached_va_to_pa() maps to the same Page (as the 11730 * previous call to cached_va_to_pa()), then compute the PA using 11731 * cached info, else call va_to_pa(). 11732 * 11733 * Note: this function is neither MT-safe nor consistent in the presence 11734 * of multiple, interleaved threads. This function was created to enable 11735 * an optimization used during boot (at a point when there's only one thread 11736 * executing on the "boot CPU", and before startup_vm() has been called). 11737 */ 11738 static uint64_t 11739 cached_va_to_pa(void *vaddr) 11740 { 11741 static uint64_t prev_vaddr_base = 0; 11742 static uint64_t prev_pfn = 0; 11743 11744 if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) { 11745 return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET)); 11746 } else { 11747 uint64_t pa = va_to_pa(vaddr); 11748 11749 if (pa != ((uint64_t)-1)) { 11750 /* 11751 * Computed physical address is valid. Cache its 11752 * related info for the next cached_va_to_pa() call. 11753 */ 11754 prev_pfn = pa & MMU_PAGEMASK; 11755 prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK; 11756 } 11757 11758 return (pa); 11759 } 11760 } 11761 11762 /* 11763 * Carve up our nucleus hblk region. We may allocate more hblks than 11764 * asked due to rounding errors but we are guaranteed to have at least 11765 * enough space to allocate the requested number of hblk8's and hblk1's. 11766 */ 11767 void 11768 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1) 11769 { 11770 struct hme_blk *hmeblkp; 11771 size_t hme8blk_sz, hme1blk_sz; 11772 size_t i; 11773 size_t hblk8_bound; 11774 ulong_t j = 0, k = 0; 11775 11776 ASSERT(addr != NULL && size != 0); 11777 11778 /* Need to use proper structure alignment */ 11779 hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t)); 11780 hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t)); 11781 11782 nucleus_hblk8.list = (void *)addr; 11783 nucleus_hblk8.index = 0; 11784 11785 /* 11786 * Use as much memory as possible for hblk8's since we 11787 * expect all bop_alloc'ed memory to be allocated in 8k chunks. 11788 * We need to hold back enough space for the hblk1's which 11789 * we'll allocate next. 11790 */ 11791 hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz; 11792 for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) { 11793 hmeblkp = (struct hme_blk *)addr; 11794 addr += hme8blk_sz; 11795 hmeblkp->hblk_nuc_bit = 1; 11796 hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp); 11797 } 11798 nucleus_hblk8.len = j; 11799 ASSERT(j >= nhblk8); 11800 SFMMU_STAT_ADD(sf_hblk8_ncreate, j); 11801 11802 nucleus_hblk1.list = (void *)addr; 11803 nucleus_hblk1.index = 0; 11804 for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) { 11805 hmeblkp = (struct hme_blk *)addr; 11806 addr += hme1blk_sz; 11807 hmeblkp->hblk_nuc_bit = 1; 11808 hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp); 11809 } 11810 ASSERT(k >= nhblk1); 11811 nucleus_hblk1.len = k; 11812 SFMMU_STAT_ADD(sf_hblk1_ncreate, k); 11813 } 11814 11815 /* 11816 * This function is currently not supported on this platform. For what 11817 * it's supposed to do, see hat.c and hat_srmmu.c 11818 */ 11819 /* ARGSUSED */ 11820 faultcode_t 11821 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp, 11822 uint_t flags) 11823 { 11824 ASSERT(hat->sfmmu_xhat_provider == NULL); 11825 return (FC_NOSUPPORT); 11826 } 11827 11828 /* 11829 * Searchs the mapping list of the page for a mapping of the same size. If not 11830 * found the corresponding bit is cleared in the p_index field. When large 11831 * pages are more prevalent in the system, we can maintain the mapping list 11832 * in order and we don't have to traverse the list each time. Just check the 11833 * next and prev entries, and if both are of different size, we clear the bit. 11834 */ 11835 static void 11836 sfmmu_rm_large_mappings(page_t *pp, int ttesz) 11837 { 11838 struct sf_hment *sfhmep; 11839 struct hme_blk *hmeblkp; 11840 int index; 11841 pgcnt_t npgs; 11842 11843 ASSERT(ttesz > TTE8K); 11844 11845 ASSERT(sfmmu_mlist_held(pp)); 11846 11847 ASSERT(PP_ISMAPPED_LARGE(pp)); 11848 11849 /* 11850 * Traverse mapping list looking for another mapping of same size. 11851 * since we only want to clear index field if all mappings of 11852 * that size are gone. 11853 */ 11854 11855 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) { 11856 hmeblkp = sfmmu_hmetohblk(sfhmep); 11857 if (hmeblkp->hblk_xhat_bit) 11858 continue; 11859 if (hme_size(sfhmep) == ttesz) { 11860 /* 11861 * another mapping of the same size. don't clear index. 11862 */ 11863 return; 11864 } 11865 } 11866 11867 /* 11868 * Clear the p_index bit for large page. 11869 */ 11870 index = PAGESZ_TO_INDEX(ttesz); 11871 npgs = TTEPAGES(ttesz); 11872 while (npgs-- > 0) { 11873 ASSERT(pp->p_index & index); 11874 pp->p_index &= ~index; 11875 pp = PP_PAGENEXT(pp); 11876 } 11877 } 11878 11879 /* 11880 * return supported features 11881 */ 11882 /* ARGSUSED */ 11883 int 11884 hat_supported(enum hat_features feature, void *arg) 11885 { 11886 switch (feature) { 11887 case HAT_SHARED_PT: 11888 case HAT_DYNAMIC_ISM_UNMAP: 11889 case HAT_VMODSORT: 11890 return (1); 11891 default: 11892 return (0); 11893 } 11894 } 11895 11896 void 11897 hat_enter(struct hat *hat) 11898 { 11899 hatlock_t *hatlockp; 11900 11901 if (hat != ksfmmup) { 11902 hatlockp = TSB_HASH(hat); 11903 mutex_enter(HATLOCK_MUTEXP(hatlockp)); 11904 } 11905 } 11906 11907 void 11908 hat_exit(struct hat *hat) 11909 { 11910 hatlock_t *hatlockp; 11911 11912 if (hat != ksfmmup) { 11913 hatlockp = TSB_HASH(hat); 11914 mutex_exit(HATLOCK_MUTEXP(hatlockp)); 11915 } 11916 } 11917 11918 /*ARGSUSED*/ 11919 void 11920 hat_reserve(struct as *as, caddr_t addr, size_t len) 11921 { 11922 } 11923 11924 static void 11925 hat_kstat_init(void) 11926 { 11927 kstat_t *ksp; 11928 11929 ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat", 11930 KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat), 11931 KSTAT_FLAG_VIRTUAL); 11932 if (ksp) { 11933 ksp->ks_data = (void *) &sfmmu_global_stat; 11934 kstat_install(ksp); 11935 } 11936 ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat", 11937 KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat), 11938 KSTAT_FLAG_VIRTUAL); 11939 if (ksp) { 11940 ksp->ks_data = (void *) &sfmmu_tsbsize_stat; 11941 kstat_install(ksp); 11942 } 11943 ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat", 11944 KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU, 11945 KSTAT_FLAG_WRITABLE); 11946 if (ksp) { 11947 ksp->ks_update = sfmmu_kstat_percpu_update; 11948 kstat_install(ksp); 11949 } 11950 } 11951 11952 /* ARGSUSED */ 11953 static int 11954 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw) 11955 { 11956 struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data; 11957 struct tsbmiss *tsbm = tsbmiss_area; 11958 struct kpmtsbm *kpmtsbm = kpmtsbm_area; 11959 int i; 11960 11961 ASSERT(cpu_kstat); 11962 if (rw == KSTAT_READ) { 11963 for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) { 11964 cpu_kstat->sf_itlb_misses = tsbm->itlb_misses; 11965 cpu_kstat->sf_dtlb_misses = tsbm->dtlb_misses; 11966 cpu_kstat->sf_utsb_misses = tsbm->utsb_misses - 11967 tsbm->uprot_traps; 11968 cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses + 11969 kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps; 11970 11971 if (tsbm->itlb_misses > 0 && tsbm->dtlb_misses > 0) { 11972 cpu_kstat->sf_tsb_hits = 11973 (tsbm->itlb_misses + tsbm->dtlb_misses) - 11974 (tsbm->utsb_misses + tsbm->ktsb_misses + 11975 kpmtsbm->kpm_tsb_misses); 11976 } else { 11977 cpu_kstat->sf_tsb_hits = 0; 11978 } 11979 cpu_kstat->sf_umod_faults = tsbm->uprot_traps; 11980 cpu_kstat->sf_kmod_faults = tsbm->kprot_traps; 11981 } 11982 } else { 11983 /* KSTAT_WRITE is used to clear stats */ 11984 for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) { 11985 tsbm->itlb_misses = 0; 11986 tsbm->dtlb_misses = 0; 11987 tsbm->utsb_misses = 0; 11988 tsbm->ktsb_misses = 0; 11989 tsbm->uprot_traps = 0; 11990 tsbm->kprot_traps = 0; 11991 kpmtsbm->kpm_dtlb_misses = 0; 11992 kpmtsbm->kpm_tsb_misses = 0; 11993 } 11994 } 11995 return (0); 11996 } 11997 11998 #ifdef DEBUG 11999 12000 tte_t *gorig[NCPU], *gcur[NCPU], *gnew[NCPU]; 12001 12002 /* 12003 * A tte checker. *orig_old is the value we read before cas. 12004 * *cur is the value returned by cas. 12005 * *new is the desired value when we do the cas. 12006 * 12007 * *hmeblkp is currently unused. 12008 */ 12009 12010 /* ARGSUSED */ 12011 void 12012 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp) 12013 { 12014 pfn_t i, j, k; 12015 int cpuid = CPU->cpu_id; 12016 12017 gorig[cpuid] = orig_old; 12018 gcur[cpuid] = cur; 12019 gnew[cpuid] = new; 12020 12021 #ifdef lint 12022 hmeblkp = hmeblkp; 12023 #endif 12024 12025 if (TTE_IS_VALID(orig_old)) { 12026 if (TTE_IS_VALID(cur)) { 12027 i = TTE_TO_TTEPFN(orig_old); 12028 j = TTE_TO_TTEPFN(cur); 12029 k = TTE_TO_TTEPFN(new); 12030 if (i != j) { 12031 /* remap error? */ 12032 panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j); 12033 } 12034 12035 if (i != k) { 12036 /* remap error? */ 12037 panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k); 12038 } 12039 } else { 12040 if (TTE_IS_VALID(new)) { 12041 panic("chk_tte: invalid cur? "); 12042 } 12043 12044 i = TTE_TO_TTEPFN(orig_old); 12045 k = TTE_TO_TTEPFN(new); 12046 if (i != k) { 12047 panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k); 12048 } 12049 } 12050 } else { 12051 if (TTE_IS_VALID(cur)) { 12052 j = TTE_TO_TTEPFN(cur); 12053 if (TTE_IS_VALID(new)) { 12054 k = TTE_TO_TTEPFN(new); 12055 if (j != k) { 12056 panic("chk_tte: bad pfn4, 0x%lx, 0x%lx", 12057 j, k); 12058 } 12059 } else { 12060 panic("chk_tte: why here?"); 12061 } 12062 } else { 12063 if (!TTE_IS_VALID(new)) { 12064 panic("chk_tte: why here2 ?"); 12065 } 12066 } 12067 } 12068 } 12069 12070 #endif /* DEBUG */ 12071 12072 extern void prefetch_tsbe_read(struct tsbe *); 12073 extern void prefetch_tsbe_write(struct tsbe *); 12074 12075 12076 /* 12077 * We want to prefetch 7 cache lines ahead for our read prefetch. This gives 12078 * us optimal performance on Cheetah+. You can only have 8 outstanding 12079 * prefetches at any one time, so we opted for 7 read prefetches and 1 write 12080 * prefetch to make the most utilization of the prefetch capability. 12081 */ 12082 #define TSBE_PREFETCH_STRIDE (7) 12083 12084 void 12085 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo) 12086 { 12087 int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc); 12088 int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc); 12089 int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc); 12090 int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc); 12091 struct tsbe *old; 12092 struct tsbe *new; 12093 struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va; 12094 uint64_t va; 12095 int new_offset; 12096 int i; 12097 int vpshift; 12098 int last_prefetch; 12099 12100 if (old_bytes == new_bytes) { 12101 bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes); 12102 } else { 12103 12104 /* 12105 * A TSBE is 16 bytes which means there are four TSBE's per 12106 * P$ line (64 bytes), thus every 4 TSBE's we prefetch. 12107 */ 12108 old = (struct tsbe *)old_tsbinfo->tsb_va; 12109 last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1)); 12110 for (i = 0; i < old_entries; i++, old++) { 12111 if (((i & (4-1)) == 0) && (i < last_prefetch)) 12112 prefetch_tsbe_read(old); 12113 if (!old->tte_tag.tag_invalid) { 12114 /* 12115 * We have a valid TTE to remap. Check the 12116 * size. We won't remap 64K or 512K TTEs 12117 * because they span more than one TSB entry 12118 * and are indexed using an 8K virt. page. 12119 * Ditto for 32M and 256M TTEs. 12120 */ 12121 if (TTE_CSZ(&old->tte_data) == TTE64K || 12122 TTE_CSZ(&old->tte_data) == TTE512K) 12123 continue; 12124 if (mmu_page_sizes == max_mmu_page_sizes) { 12125 if (TTE_CSZ(&old->tte_data) == TTE32M || 12126 TTE_CSZ(&old->tte_data) == TTE256M) 12127 continue; 12128 } 12129 12130 /* clear the lower 22 bits of the va */ 12131 va = *(uint64_t *)old << 22; 12132 /* turn va into a virtual pfn */ 12133 va >>= 22 - TSB_START_SIZE; 12134 /* 12135 * or in bits from the offset in the tsb 12136 * to get the real virtual pfn. These 12137 * correspond to bits [21:13] in the va 12138 */ 12139 vpshift = 12140 TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) & 12141 0x1ff; 12142 va |= (i << vpshift); 12143 va >>= vpshift; 12144 new_offset = va & (new_entries - 1); 12145 new = new_base + new_offset; 12146 prefetch_tsbe_write(new); 12147 *new = *old; 12148 } 12149 } 12150 } 12151 } 12152 12153 /* 12154 * Kernel Physical Mapping (kpm) facility 12155 */ 12156 12157 /* -- hat_kpm interface section -- */ 12158 12159 /* 12160 * Mapin a locked page and return the vaddr. 12161 * When a kpme is provided by the caller it is added to 12162 * the page p_kpmelist. The page to be mapped in must 12163 * be at least read locked (p_selock). 12164 */ 12165 caddr_t 12166 hat_kpm_mapin(struct page *pp, struct kpme *kpme) 12167 { 12168 kmutex_t *pml; 12169 caddr_t vaddr; 12170 12171 if (kpm_enable == 0) { 12172 cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set"); 12173 return ((caddr_t)NULL); 12174 } 12175 12176 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 12177 cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked"); 12178 return ((caddr_t)NULL); 12179 } 12180 12181 pml = sfmmu_mlist_enter(pp); 12182 ASSERT(pp->p_kpmref >= 0); 12183 12184 vaddr = (pp->p_kpmref == 0) ? 12185 sfmmu_kpm_mapin(pp) : hat_kpm_page2va(pp, 1); 12186 12187 if (kpme != NULL) { 12188 /* 12189 * Tolerate multiple mapins for the same kpme to avoid 12190 * the need for an extra serialization. 12191 */ 12192 if ((sfmmu_kpme_lookup(kpme, pp)) == 0) 12193 sfmmu_kpme_add(kpme, pp); 12194 12195 ASSERT(pp->p_kpmref > 0); 12196 12197 } else { 12198 pp->p_kpmref++; 12199 } 12200 12201 sfmmu_mlist_exit(pml); 12202 return (vaddr); 12203 } 12204 12205 /* 12206 * Mapout a locked page. 12207 * When a kpme is provided by the caller it is removed from 12208 * the page p_kpmelist. The page to be mapped out must be at 12209 * least read locked (p_selock). 12210 * Note: The seg_kpm layer provides a mapout interface for the 12211 * case that a kpme is used and the underlying page is unlocked. 12212 * This can be used instead of calling this function directly. 12213 */ 12214 void 12215 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr) 12216 { 12217 kmutex_t *pml; 12218 12219 if (kpm_enable == 0) { 12220 cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set"); 12221 return; 12222 } 12223 12224 if (IS_KPM_ADDR(vaddr) == 0) { 12225 cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address"); 12226 return; 12227 } 12228 12229 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 12230 cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked"); 12231 return; 12232 } 12233 12234 if (kpme != NULL) { 12235 ASSERT(pp == kpme->kpe_page); 12236 pp = kpme->kpe_page; 12237 pml = sfmmu_mlist_enter(pp); 12238 12239 if (sfmmu_kpme_lookup(kpme, pp) == 0) 12240 panic("hat_kpm_mapout: kpme not found pp=%p", 12241 (void *)pp); 12242 12243 ASSERT(pp->p_kpmref > 0); 12244 sfmmu_kpme_sub(kpme, pp); 12245 12246 } else { 12247 pml = sfmmu_mlist_enter(pp); 12248 pp->p_kpmref--; 12249 } 12250 12251 ASSERT(pp->p_kpmref >= 0); 12252 if (pp->p_kpmref == 0) 12253 sfmmu_kpm_mapout(pp, vaddr); 12254 12255 sfmmu_mlist_exit(pml); 12256 } 12257 12258 /* 12259 * Return the kpm virtual address for the page at pp. 12260 * If checkswap is non zero and the page is backed by a 12261 * swap vnode the physical address is used rather than 12262 * p_offset to determine the kpm region. 12263 * Note: The function has to be used w/ extreme care. The 12264 * stability of the page identity is in the responsibility 12265 * of the caller. 12266 */ 12267 caddr_t 12268 hat_kpm_page2va(struct page *pp, int checkswap) 12269 { 12270 int vcolor, vcolor_pa; 12271 uintptr_t paddr, vaddr; 12272 12273 ASSERT(kpm_enable); 12274 12275 paddr = ptob(pp->p_pagenum); 12276 vcolor_pa = addr_to_vcolor(paddr); 12277 12278 if (checkswap && pp->p_vnode && IS_SWAPFSVP(pp->p_vnode)) 12279 vcolor = (PP_ISNC(pp)) ? vcolor_pa : PP_GET_VCOLOR(pp); 12280 else 12281 vcolor = addr_to_vcolor(pp->p_offset); 12282 12283 vaddr = (uintptr_t)kpm_vbase + paddr; 12284 12285 if (vcolor_pa != vcolor) { 12286 vaddr += ((uintptr_t)(vcolor - vcolor_pa) << MMU_PAGESHIFT); 12287 vaddr += (vcolor_pa > vcolor) ? 12288 ((uintptr_t)vcolor_pa << kpm_size_shift) : 12289 ((uintptr_t)(vcolor - vcolor_pa) << kpm_size_shift); 12290 } 12291 12292 return ((caddr_t)vaddr); 12293 } 12294 12295 /* 12296 * Return the page for the kpm virtual address vaddr. 12297 * Caller is responsible for the kpm mapping and lock 12298 * state of the page. 12299 */ 12300 page_t * 12301 hat_kpm_vaddr2page(caddr_t vaddr) 12302 { 12303 uintptr_t paddr; 12304 pfn_t pfn; 12305 12306 ASSERT(IS_KPM_ADDR(vaddr)); 12307 12308 SFMMU_KPM_VTOP(vaddr, paddr); 12309 pfn = (pfn_t)btop(paddr); 12310 12311 return (page_numtopp_nolock(pfn)); 12312 } 12313 12314 /* page to kpm_page */ 12315 #define PP2KPMPG(pp, kp) { \ 12316 struct memseg *mseg; \ 12317 pgcnt_t inx; \ 12318 pfn_t pfn; \ 12319 \ 12320 pfn = pp->p_pagenum; \ 12321 mseg = page_numtomemseg_nolock(pfn); \ 12322 ASSERT(mseg); \ 12323 inx = ptokpmp(kpmptop(ptokpmp(pfn)) - mseg->kpm_pbase); \ 12324 ASSERT(inx < mseg->kpm_nkpmpgs); \ 12325 kp = &mseg->kpm_pages[inx]; \ 12326 } 12327 12328 /* page to kpm_spage */ 12329 #define PP2KPMSPG(pp, ksp) { \ 12330 struct memseg *mseg; \ 12331 pgcnt_t inx; \ 12332 pfn_t pfn; \ 12333 \ 12334 pfn = pp->p_pagenum; \ 12335 mseg = page_numtomemseg_nolock(pfn); \ 12336 ASSERT(mseg); \ 12337 inx = pfn - mseg->kpm_pbase; \ 12338 ksp = &mseg->kpm_spages[inx]; \ 12339 } 12340 12341 /* 12342 * hat_kpm_fault is called from segkpm_fault when a kpm tsbmiss occurred 12343 * which could not be resolved by the trap level tsbmiss handler for the 12344 * following reasons: 12345 * . The vaddr is in VAC alias range (always PAGESIZE mapping size). 12346 * . The kpm (s)page range of vaddr is in a VAC alias prevention state. 12347 * . tsbmiss handling at trap level is not desired (DEBUG kernel only, 12348 * kpm_tsbmtl == 0). 12349 */ 12350 int 12351 hat_kpm_fault(struct hat *hat, caddr_t vaddr) 12352 { 12353 int error; 12354 uintptr_t paddr; 12355 pfn_t pfn; 12356 struct memseg *mseg; 12357 page_t *pp; 12358 12359 if (kpm_enable == 0) { 12360 cmn_err(CE_WARN, "hat_kpm_fault: kpm_enable not set"); 12361 return (ENOTSUP); 12362 } 12363 12364 ASSERT(hat == ksfmmup); 12365 ASSERT(IS_KPM_ADDR(vaddr)); 12366 12367 SFMMU_KPM_VTOP(vaddr, paddr); 12368 pfn = (pfn_t)btop(paddr); 12369 mseg = page_numtomemseg_nolock(pfn); 12370 if (mseg == NULL) 12371 return (EFAULT); 12372 12373 pp = &mseg->pages[(pgcnt_t)(pfn - mseg->pages_base)]; 12374 ASSERT((pfn_t)pp->p_pagenum == pfn); 12375 12376 if (!PAGE_LOCKED(pp)) 12377 return (EFAULT); 12378 12379 if (kpm_smallpages == 0) 12380 error = sfmmu_kpm_fault(vaddr, mseg, pp); 12381 else 12382 error = sfmmu_kpm_fault_small(vaddr, mseg, pp); 12383 12384 return (error); 12385 } 12386 12387 extern krwlock_t memsegslock; 12388 12389 /* 12390 * memseg_hash[] was cleared, need to clear memseg_phash[] too. 12391 */ 12392 void 12393 hat_kpm_mseghash_clear(int nentries) 12394 { 12395 pgcnt_t i; 12396 12397 if (kpm_enable == 0) 12398 return; 12399 12400 for (i = 0; i < nentries; i++) 12401 memseg_phash[i] = MSEG_NULLPTR_PA; 12402 } 12403 12404 /* 12405 * Update memseg_phash[inx] when memseg_hash[inx] was changed. 12406 */ 12407 void 12408 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp) 12409 { 12410 if (kpm_enable == 0) 12411 return; 12412 12413 memseg_phash[inx] = (msp) ? va_to_pa(msp) : MSEG_NULLPTR_PA; 12414 } 12415 12416 /* 12417 * Update kpm memseg members from basic memseg info. 12418 */ 12419 void 12420 hat_kpm_addmem_mseg_update(struct memseg *msp, pgcnt_t nkpmpgs, 12421 offset_t kpm_pages_off) 12422 { 12423 if (kpm_enable == 0) 12424 return; 12425 12426 msp->kpm_pages = (kpm_page_t *)((caddr_t)msp->pages + kpm_pages_off); 12427 msp->kpm_nkpmpgs = nkpmpgs; 12428 msp->kpm_pbase = kpmptop(ptokpmp(msp->pages_base)); 12429 msp->pagespa = va_to_pa(msp->pages); 12430 msp->epagespa = va_to_pa(msp->epages); 12431 msp->kpm_pagespa = va_to_pa(msp->kpm_pages); 12432 } 12433 12434 /* 12435 * Setup nextpa when a memseg is inserted. 12436 * Assumes that the memsegslock is already held. 12437 */ 12438 void 12439 hat_kpm_addmem_mseg_insert(struct memseg *msp) 12440 { 12441 if (kpm_enable == 0) 12442 return; 12443 12444 ASSERT(RW_LOCK_HELD(&memsegslock)); 12445 msp->nextpa = (memsegs) ? va_to_pa(memsegs) : MSEG_NULLPTR_PA; 12446 } 12447 12448 /* 12449 * Setup memsegspa when a memseg is (head) inserted. 12450 * Called before memsegs is updated to complete a 12451 * memseg insert operation. 12452 * Assumes that the memsegslock is already held. 12453 */ 12454 void 12455 hat_kpm_addmem_memsegs_update(struct memseg *msp) 12456 { 12457 if (kpm_enable == 0) 12458 return; 12459 12460 ASSERT(RW_LOCK_HELD(&memsegslock)); 12461 ASSERT(memsegs); 12462 memsegspa = va_to_pa(msp); 12463 } 12464 12465 /* 12466 * Return end of metadata for an already setup memseg. 12467 * 12468 * Note: kpm_pages and kpm_spages are aliases and the underlying 12469 * member of struct memseg is a union, therefore they always have 12470 * the same address within a memseg. They must be differentiated 12471 * when pointer arithmetic is used with them. 12472 */ 12473 caddr_t 12474 hat_kpm_mseg_reuse(struct memseg *msp) 12475 { 12476 caddr_t end; 12477 12478 if (kpm_smallpages == 0) 12479 end = (caddr_t)(msp->kpm_pages + msp->kpm_nkpmpgs); 12480 else 12481 end = (caddr_t)(msp->kpm_spages + msp->kpm_nkpmpgs); 12482 12483 return (end); 12484 } 12485 12486 /* 12487 * Update memsegspa (when first memseg in list 12488 * is deleted) or nextpa when a memseg deleted. 12489 * Assumes that the memsegslock is already held. 12490 */ 12491 void 12492 hat_kpm_delmem_mseg_update(struct memseg *msp, struct memseg **mspp) 12493 { 12494 struct memseg *lmsp; 12495 12496 if (kpm_enable == 0) 12497 return; 12498 12499 ASSERT(RW_LOCK_HELD(&memsegslock)); 12500 12501 if (mspp == &memsegs) { 12502 memsegspa = (msp->next) ? 12503 va_to_pa(msp->next) : MSEG_NULLPTR_PA; 12504 } else { 12505 lmsp = (struct memseg *) 12506 ((uint64_t)mspp - offsetof(struct memseg, next)); 12507 lmsp->nextpa = (msp->next) ? 12508 va_to_pa(msp->next) : MSEG_NULLPTR_PA; 12509 } 12510 } 12511 12512 /* 12513 * Update kpm members for all memseg's involved in a split operation 12514 * and do the atomic update of the physical memseg chain. 12515 * 12516 * Note: kpm_pages and kpm_spages are aliases and the underlying member 12517 * of struct memseg is a union, therefore they always have the same 12518 * address within a memseg. With that the direct assignments and 12519 * va_to_pa conversions below don't have to be distinguished wrt. to 12520 * kpm_smallpages. They must be differentiated when pointer arithmetic 12521 * is used with them. 12522 * 12523 * Assumes that the memsegslock is already held. 12524 */ 12525 void 12526 hat_kpm_split_mseg_update(struct memseg *msp, struct memseg **mspp, 12527 struct memseg *lo, struct memseg *mid, struct memseg *hi) 12528 { 12529 pgcnt_t start, end, kbase, kstart, num; 12530 struct memseg *lmsp; 12531 12532 if (kpm_enable == 0) 12533 return; 12534 12535 ASSERT(RW_LOCK_HELD(&memsegslock)); 12536 ASSERT(msp && mid && msp->kpm_pages); 12537 12538 kbase = ptokpmp(msp->kpm_pbase); 12539 12540 if (lo) { 12541 num = lo->pages_end - lo->pages_base; 12542 start = kpmptop(ptokpmp(lo->pages_base)); 12543 /* align end to kpm page size granularity */ 12544 end = kpmptop(ptokpmp(start + num - 1)) + kpmpnpgs; 12545 lo->kpm_pbase = start; 12546 lo->kpm_nkpmpgs = ptokpmp(end - start); 12547 lo->kpm_pages = msp->kpm_pages; 12548 lo->kpm_pagespa = va_to_pa(lo->kpm_pages); 12549 lo->pagespa = va_to_pa(lo->pages); 12550 lo->epagespa = va_to_pa(lo->epages); 12551 lo->nextpa = va_to_pa(lo->next); 12552 } 12553 12554 /* mid */ 12555 num = mid->pages_end - mid->pages_base; 12556 kstart = ptokpmp(mid->pages_base); 12557 start = kpmptop(kstart); 12558 /* align end to kpm page size granularity */ 12559 end = kpmptop(ptokpmp(start + num - 1)) + kpmpnpgs; 12560 mid->kpm_pbase = start; 12561 mid->kpm_nkpmpgs = ptokpmp(end - start); 12562 if (kpm_smallpages == 0) { 12563 mid->kpm_pages = msp->kpm_pages + (kstart - kbase); 12564 } else { 12565 mid->kpm_spages = msp->kpm_spages + (kstart - kbase); 12566 } 12567 mid->kpm_pagespa = va_to_pa(mid->kpm_pages); 12568 mid->pagespa = va_to_pa(mid->pages); 12569 mid->epagespa = va_to_pa(mid->epages); 12570 mid->nextpa = (mid->next) ? va_to_pa(mid->next) : MSEG_NULLPTR_PA; 12571 12572 if (hi) { 12573 num = hi->pages_end - hi->pages_base; 12574 kstart = ptokpmp(hi->pages_base); 12575 start = kpmptop(kstart); 12576 /* align end to kpm page size granularity */ 12577 end = kpmptop(ptokpmp(start + num - 1)) + kpmpnpgs; 12578 hi->kpm_pbase = start; 12579 hi->kpm_nkpmpgs = ptokpmp(end - start); 12580 if (kpm_smallpages == 0) { 12581 hi->kpm_pages = msp->kpm_pages + (kstart - kbase); 12582 } else { 12583 hi->kpm_spages = msp->kpm_spages + (kstart - kbase); 12584 } 12585 hi->kpm_pagespa = va_to_pa(hi->kpm_pages); 12586 hi->pagespa = va_to_pa(hi->pages); 12587 hi->epagespa = va_to_pa(hi->epages); 12588 hi->nextpa = (hi->next) ? va_to_pa(hi->next) : MSEG_NULLPTR_PA; 12589 } 12590 12591 /* 12592 * Atomic update of the physical memseg chain 12593 */ 12594 if (mspp == &memsegs) { 12595 memsegspa = (lo) ? va_to_pa(lo) : va_to_pa(mid); 12596 } else { 12597 lmsp = (struct memseg *) 12598 ((uint64_t)mspp - offsetof(struct memseg, next)); 12599 lmsp->nextpa = (lo) ? va_to_pa(lo) : va_to_pa(mid); 12600 } 12601 } 12602 12603 /* 12604 * Walk the memsegs chain, applying func to each memseg span and vcolor. 12605 */ 12606 void 12607 hat_kpm_walk(void (*func)(void *, void *, size_t), void *arg) 12608 { 12609 pfn_t pbase, pend; 12610 int vcolor; 12611 void *base; 12612 size_t size; 12613 struct memseg *msp; 12614 extern uint_t vac_colors; 12615 12616 for (msp = memsegs; msp; msp = msp->next) { 12617 pbase = msp->pages_base; 12618 pend = msp->pages_end; 12619 for (vcolor = 0; vcolor < vac_colors; vcolor++) { 12620 base = ptob(pbase) + kpm_vbase + kpm_size * vcolor; 12621 size = ptob(pend - pbase); 12622 func(arg, base, size); 12623 } 12624 } 12625 } 12626 12627 12628 /* -- sfmmu_kpm internal section -- */ 12629 12630 /* 12631 * Return the page frame number if a valid segkpm mapping exists 12632 * for vaddr, otherwise return PFN_INVALID. No locks are grabbed. 12633 * Should only be used by other sfmmu routines. 12634 */ 12635 pfn_t 12636 sfmmu_kpm_vatopfn(caddr_t vaddr) 12637 { 12638 uintptr_t paddr; 12639 pfn_t pfn; 12640 page_t *pp; 12641 12642 ASSERT(kpm_enable && IS_KPM_ADDR(vaddr)); 12643 12644 SFMMU_KPM_VTOP(vaddr, paddr); 12645 pfn = (pfn_t)btop(paddr); 12646 pp = page_numtopp_nolock(pfn); 12647 if (pp && pp->p_kpmref) 12648 return (pfn); 12649 else 12650 return ((pfn_t)PFN_INVALID); 12651 } 12652 12653 /* 12654 * Lookup a kpme in the p_kpmelist. 12655 */ 12656 static int 12657 sfmmu_kpme_lookup(struct kpme *kpme, page_t *pp) 12658 { 12659 struct kpme *p; 12660 12661 for (p = pp->p_kpmelist; p; p = p->kpe_next) { 12662 if (p == kpme) 12663 return (1); 12664 } 12665 return (0); 12666 } 12667 12668 /* 12669 * Insert a kpme into the p_kpmelist and increment 12670 * the per page kpm reference count. 12671 */ 12672 static void 12673 sfmmu_kpme_add(struct kpme *kpme, page_t *pp) 12674 { 12675 ASSERT(pp->p_kpmref >= 0); 12676 12677 /* head insert */ 12678 kpme->kpe_prev = NULL; 12679 kpme->kpe_next = pp->p_kpmelist; 12680 12681 if (pp->p_kpmelist) 12682 pp->p_kpmelist->kpe_prev = kpme; 12683 12684 pp->p_kpmelist = kpme; 12685 kpme->kpe_page = pp; 12686 pp->p_kpmref++; 12687 } 12688 12689 /* 12690 * Remove a kpme from the p_kpmelist and decrement 12691 * the per page kpm reference count. 12692 */ 12693 static void 12694 sfmmu_kpme_sub(struct kpme *kpme, page_t *pp) 12695 { 12696 ASSERT(pp->p_kpmref > 0); 12697 12698 if (kpme->kpe_prev) { 12699 ASSERT(pp->p_kpmelist != kpme); 12700 ASSERT(kpme->kpe_prev->kpe_page == pp); 12701 kpme->kpe_prev->kpe_next = kpme->kpe_next; 12702 } else { 12703 ASSERT(pp->p_kpmelist == kpme); 12704 pp->p_kpmelist = kpme->kpe_next; 12705 } 12706 12707 if (kpme->kpe_next) { 12708 ASSERT(kpme->kpe_next->kpe_page == pp); 12709 kpme->kpe_next->kpe_prev = kpme->kpe_prev; 12710 } 12711 12712 kpme->kpe_next = kpme->kpe_prev = NULL; 12713 kpme->kpe_page = NULL; 12714 pp->p_kpmref--; 12715 } 12716 12717 /* 12718 * Mapin a single page, it is called every time a page changes it's state 12719 * from kpm-unmapped to kpm-mapped. It may not be called, when only a new 12720 * kpm instance does a mapin and wants to share the mapping. 12721 * Assumes that the mlist mutex is already grabbed. 12722 */ 12723 static caddr_t 12724 sfmmu_kpm_mapin(page_t *pp) 12725 { 12726 kpm_page_t *kp; 12727 kpm_hlk_t *kpmp; 12728 caddr_t vaddr; 12729 int kpm_vac_range; 12730 pfn_t pfn; 12731 tte_t tte; 12732 kmutex_t *pmtx; 12733 int uncached; 12734 kpm_spage_t *ksp; 12735 kpm_shlk_t *kpmsp; 12736 int oldval; 12737 12738 ASSERT(sfmmu_mlist_held(pp)); 12739 ASSERT(pp->p_kpmref == 0); 12740 12741 vaddr = sfmmu_kpm_getvaddr(pp, &kpm_vac_range); 12742 12743 ASSERT(IS_KPM_ADDR(vaddr)); 12744 uncached = PP_ISNC(pp); 12745 pfn = pp->p_pagenum; 12746 12747 if (kpm_smallpages) 12748 goto smallpages_mapin; 12749 12750 PP2KPMPG(pp, kp); 12751 12752 kpmp = KPMP_HASH(kp); 12753 mutex_enter(&kpmp->khl_mutex); 12754 12755 ASSERT(PP_ISKPMC(pp) == 0); 12756 ASSERT(PP_ISKPMS(pp) == 0); 12757 12758 if (uncached) { 12759 /* ASSERT(pp->p_share); XXX use hat_page_getshare */ 12760 if (kpm_vac_range == 0) { 12761 if (kp->kp_refcnts == 0) { 12762 /* 12763 * Must remove large page mapping if it exists. 12764 * Pages in uncached state can only be mapped 12765 * small (PAGESIZE) within the regular kpm 12766 * range. 12767 */ 12768 if (kp->kp_refcntc == -1) { 12769 /* remove go indication */ 12770 sfmmu_kpm_tsbmtl(&kp->kp_refcntc, 12771 &kpmp->khl_lock, KPMTSBM_STOP); 12772 } 12773 if (kp->kp_refcnt > 0 && kp->kp_refcntc == 0) 12774 sfmmu_kpm_demap_large(vaddr); 12775 } 12776 ASSERT(kp->kp_refcntc >= 0); 12777 kp->kp_refcntc++; 12778 } 12779 pmtx = sfmmu_page_enter(pp); 12780 PP_SETKPMC(pp); 12781 sfmmu_page_exit(pmtx); 12782 } 12783 12784 if ((kp->kp_refcntc > 0 || kp->kp_refcnts > 0) && kpm_vac_range == 0) { 12785 /* 12786 * Have to do a small (PAGESIZE) mapin within this kpm_page 12787 * range since it is marked to be in VAC conflict mode or 12788 * when there are still other small mappings around. 12789 */ 12790 12791 /* tte assembly */ 12792 if (uncached == 0) 12793 KPM_TTE_VCACHED(tte.ll, pfn, TTE8K); 12794 else 12795 KPM_TTE_VUNCACHED(tte.ll, pfn, TTE8K); 12796 12797 /* tsb dropin */ 12798 sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT); 12799 12800 pmtx = sfmmu_page_enter(pp); 12801 PP_SETKPMS(pp); 12802 sfmmu_page_exit(pmtx); 12803 12804 kp->kp_refcnts++; 12805 ASSERT(kp->kp_refcnts > 0); 12806 goto exit; 12807 } 12808 12809 if (kpm_vac_range == 0) { 12810 /* 12811 * Fast path / regular case, no VAC conflict handling 12812 * in progress within this kpm_page range. 12813 */ 12814 if (kp->kp_refcnt == 0) { 12815 12816 /* tte assembly */ 12817 KPM_TTE_VCACHED(tte.ll, pfn, TTE4M); 12818 12819 /* tsb dropin */ 12820 sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT4M); 12821 12822 /* Set go flag for TL tsbmiss handler */ 12823 if (kp->kp_refcntc == 0) 12824 sfmmu_kpm_tsbmtl(&kp->kp_refcntc, 12825 &kpmp->khl_lock, KPMTSBM_START); 12826 12827 ASSERT(kp->kp_refcntc == -1); 12828 } 12829 kp->kp_refcnt++; 12830 ASSERT(kp->kp_refcnt); 12831 12832 } else { 12833 /* 12834 * The page is not setup according to the common VAC 12835 * prevention rules for the regular and kpm mapping layer 12836 * E.g. the page layer was not able to deliver a right 12837 * vcolor'ed page for a given vaddr corresponding to 12838 * the wanted p_offset. It has to be mapped in small in 12839 * within the corresponding kpm vac range in order to 12840 * prevent VAC alias conflicts. 12841 */ 12842 12843 /* tte assembly */ 12844 if (uncached == 0) { 12845 KPM_TTE_VCACHED(tte.ll, pfn, TTE8K); 12846 } else { 12847 KPM_TTE_VUNCACHED(tte.ll, pfn, TTE8K); 12848 } 12849 12850 /* tsb dropin */ 12851 sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT); 12852 12853 kp->kp_refcnta++; 12854 if (kp->kp_refcntc == -1) { 12855 ASSERT(kp->kp_refcnt > 0); 12856 12857 /* remove go indication */ 12858 sfmmu_kpm_tsbmtl(&kp->kp_refcntc, &kpmp->khl_lock, 12859 KPMTSBM_STOP); 12860 } 12861 ASSERT(kp->kp_refcntc >= 0); 12862 } 12863 exit: 12864 mutex_exit(&kpmp->khl_mutex); 12865 return (vaddr); 12866 12867 smallpages_mapin: 12868 if (uncached == 0) { 12869 /* tte assembly */ 12870 KPM_TTE_VCACHED(tte.ll, pfn, TTE8K); 12871 } else { 12872 /* ASSERT(pp->p_share); XXX use hat_page_getshare */ 12873 pmtx = sfmmu_page_enter(pp); 12874 PP_SETKPMC(pp); 12875 sfmmu_page_exit(pmtx); 12876 /* tte assembly */ 12877 KPM_TTE_VUNCACHED(tte.ll, pfn, TTE8K); 12878 } 12879 12880 /* tsb dropin */ 12881 sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT); 12882 12883 PP2KPMSPG(pp, ksp); 12884 kpmsp = KPMP_SHASH(ksp); 12885 12886 oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped, &kpmsp->kshl_lock, 12887 (uncached) ? KPM_MAPPEDSC : KPM_MAPPEDS); 12888 12889 if (oldval != 0) 12890 panic("sfmmu_kpm_mapin: stale smallpages mapping"); 12891 12892 return (vaddr); 12893 } 12894 12895 /* 12896 * Mapout a single page, it is called every time a page changes it's state 12897 * from kpm-mapped to kpm-unmapped. It may not be called, when only a kpm 12898 * instance calls mapout and there are still other instances mapping the 12899 * page. Assumes that the mlist mutex is already grabbed. 12900 * 12901 * Note: In normal mode (no VAC conflict prevention pending) TLB's are 12902 * not flushed. This is the core segkpm behavior to avoid xcalls. It is 12903 * no problem because a translation from a segkpm virtual address to a 12904 * physical address is always the same. The only downside is a slighty 12905 * increased window of vulnerability for misbehaving _kernel_ modules. 12906 */ 12907 static void 12908 sfmmu_kpm_mapout(page_t *pp, caddr_t vaddr) 12909 { 12910 kpm_page_t *kp; 12911 kpm_hlk_t *kpmp; 12912 int alias_range; 12913 kmutex_t *pmtx; 12914 kpm_spage_t *ksp; 12915 kpm_shlk_t *kpmsp; 12916 int oldval; 12917 12918 ASSERT(sfmmu_mlist_held(pp)); 12919 ASSERT(pp->p_kpmref == 0); 12920 12921 alias_range = IS_KPM_ALIAS_RANGE(vaddr); 12922 12923 if (kpm_smallpages) 12924 goto smallpages_mapout; 12925 12926 PP2KPMPG(pp, kp); 12927 kpmp = KPMP_HASH(kp); 12928 mutex_enter(&kpmp->khl_mutex); 12929 12930 if (alias_range) { 12931 ASSERT(PP_ISKPMS(pp) == 0); 12932 if (kp->kp_refcnta <= 0) { 12933 panic("sfmmu_kpm_mapout: bad refcnta kp=%p", 12934 (void *)kp); 12935 } 12936 12937 if (PP_ISTNC(pp)) { 12938 if (PP_ISKPMC(pp) == 0) { 12939 /* 12940 * Uncached kpm mappings must always have 12941 * forced "small page" mode. 12942 */ 12943 panic("sfmmu_kpm_mapout: uncached page not " 12944 "kpm marked"); 12945 } 12946 sfmmu_kpm_demap_small(vaddr); 12947 12948 pmtx = sfmmu_page_enter(pp); 12949 PP_CLRKPMC(pp); 12950 sfmmu_page_exit(pmtx); 12951 12952 /* 12953 * Check if we can resume cached mode. This might 12954 * be the case if the kpm mapping was the only 12955 * mapping in conflict with other non rule 12956 * compliant mappings. The page is no more marked 12957 * as kpm mapped, so the conv_tnc path will not 12958 * change kpm state. 12959 */ 12960 conv_tnc(pp, TTE8K); 12961 12962 } else if (PP_ISKPMC(pp) == 0) { 12963 /* remove TSB entry only */ 12964 sfmmu_kpm_unload_tsb(vaddr, MMU_PAGESHIFT); 12965 12966 } else { 12967 /* already demapped */ 12968 pmtx = sfmmu_page_enter(pp); 12969 PP_CLRKPMC(pp); 12970 sfmmu_page_exit(pmtx); 12971 } 12972 kp->kp_refcnta--; 12973 goto exit; 12974 } 12975 12976 if (kp->kp_refcntc <= 0 && kp->kp_refcnts == 0) { 12977 /* 12978 * Fast path / regular case. 12979 */ 12980 ASSERT(kp->kp_refcntc >= -1); 12981 ASSERT(!(pp->p_nrm & (P_KPMC | P_KPMS | P_TNC | P_PNC))); 12982 12983 if (kp->kp_refcnt <= 0) 12984 panic("sfmmu_kpm_mapout: bad refcnt kp=%p", (void *)kp); 12985 12986 if (--kp->kp_refcnt == 0) { 12987 /* remove go indication */ 12988 if (kp->kp_refcntc == -1) { 12989 sfmmu_kpm_tsbmtl(&kp->kp_refcntc, 12990 &kpmp->khl_lock, KPMTSBM_STOP); 12991 } 12992 ASSERT(kp->kp_refcntc == 0); 12993 12994 /* remove TSB entry */ 12995 sfmmu_kpm_unload_tsb(vaddr, MMU_PAGESHIFT4M); 12996 #ifdef DEBUG 12997 if (kpm_tlb_flush) 12998 sfmmu_kpm_demap_tlbs(vaddr); 12999 #endif 13000 } 13001 13002 } else { 13003 /* 13004 * The VAC alias path. 13005 * We come here if the kpm vaddr is not in any alias_range 13006 * and we are unmapping a page within the regular kpm_page 13007 * range. The kpm_page either holds conflict pages and/or 13008 * is in "small page" mode. If the page is not marked 13009 * P_KPMS it couldn't have a valid PAGESIZE sized TSB 13010 * entry. Dcache flushing is done lazy and follows the 13011 * rules of the regular virtual page coloring scheme. 13012 * 13013 * Per page states and required actions: 13014 * P_KPMC: remove a kpm mapping that is conflicting. 13015 * P_KPMS: remove a small kpm mapping within a kpm_page. 13016 * P_TNC: check if we can re-cache the page. 13017 * P_PNC: we cannot re-cache, sorry. 13018 * Per kpm_page: 13019 * kp_refcntc > 0: page is part of a kpm_page with conflicts. 13020 * kp_refcnts > 0: rm a small mapped page within a kpm_page. 13021 */ 13022 13023 if (PP_ISKPMS(pp)) { 13024 if (kp->kp_refcnts < 1) { 13025 panic("sfmmu_kpm_mapout: bad refcnts kp=%p", 13026 (void *)kp); 13027 } 13028 sfmmu_kpm_demap_small(vaddr); 13029 13030 /* 13031 * Check if we can resume cached mode. This might 13032 * be the case if the kpm mapping was the only 13033 * mapping in conflict with other non rule 13034 * compliant mappings. The page is no more marked 13035 * as kpm mapped, so the conv_tnc path will not 13036 * change kpm state. 13037 */ 13038 if (PP_ISTNC(pp)) { 13039 if (!PP_ISKPMC(pp)) { 13040 /* 13041 * Uncached kpm mappings must always 13042 * have forced "small page" mode. 13043 */ 13044 panic("sfmmu_kpm_mapout: uncached " 13045 "page not kpm marked"); 13046 } 13047 conv_tnc(pp, TTE8K); 13048 } 13049 kp->kp_refcnts--; 13050 kp->kp_refcnt++; 13051 pmtx = sfmmu_page_enter(pp); 13052 PP_CLRKPMS(pp); 13053 sfmmu_page_exit(pmtx); 13054 } 13055 13056 if (PP_ISKPMC(pp)) { 13057 if (kp->kp_refcntc < 1) { 13058 panic("sfmmu_kpm_mapout: bad refcntc kp=%p", 13059 (void *)kp); 13060 } 13061 pmtx = sfmmu_page_enter(pp); 13062 PP_CLRKPMC(pp); 13063 sfmmu_page_exit(pmtx); 13064 kp->kp_refcntc--; 13065 } 13066 13067 if (kp->kp_refcnt-- < 1) 13068 panic("sfmmu_kpm_mapout: bad refcnt kp=%p", (void *)kp); 13069 } 13070 exit: 13071 mutex_exit(&kpmp->khl_mutex); 13072 return; 13073 13074 smallpages_mapout: 13075 PP2KPMSPG(pp, ksp); 13076 kpmsp = KPMP_SHASH(ksp); 13077 13078 if (PP_ISKPMC(pp) == 0) { 13079 oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped, 13080 &kpmsp->kshl_lock, 0); 13081 13082 if (oldval != KPM_MAPPEDS) { 13083 /* 13084 * When we're called after sfmmu_kpm_hme_unload, 13085 * KPM_MAPPEDSC is valid too. 13086 */ 13087 if (oldval != KPM_MAPPEDSC) 13088 panic("sfmmu_kpm_mapout: incorrect mapping"); 13089 } 13090 13091 /* remove TSB entry */ 13092 sfmmu_kpm_unload_tsb(vaddr, MMU_PAGESHIFT); 13093 #ifdef DEBUG 13094 if (kpm_tlb_flush) 13095 sfmmu_kpm_demap_tlbs(vaddr); 13096 #endif 13097 13098 } else if (PP_ISTNC(pp)) { 13099 oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped, 13100 &kpmsp->kshl_lock, 0); 13101 13102 if (oldval != KPM_MAPPEDSC || PP_ISKPMC(pp) == 0) 13103 panic("sfmmu_kpm_mapout: inconsistent TNC mapping"); 13104 13105 sfmmu_kpm_demap_small(vaddr); 13106 13107 pmtx = sfmmu_page_enter(pp); 13108 PP_CLRKPMC(pp); 13109 sfmmu_page_exit(pmtx); 13110 13111 /* 13112 * Check if we can resume cached mode. This might be 13113 * the case if the kpm mapping was the only mapping 13114 * in conflict with other non rule compliant mappings. 13115 * The page is no more marked as kpm mapped, so the 13116 * conv_tnc path will not change the kpm state. 13117 */ 13118 conv_tnc(pp, TTE8K); 13119 13120 } else { 13121 oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped, 13122 &kpmsp->kshl_lock, 0); 13123 13124 if (oldval != KPM_MAPPEDSC) 13125 panic("sfmmu_kpm_mapout: inconsistent mapping"); 13126 13127 pmtx = sfmmu_page_enter(pp); 13128 PP_CLRKPMC(pp); 13129 sfmmu_page_exit(pmtx); 13130 } 13131 } 13132 13133 #define abs(x) ((x) < 0 ? -(x) : (x)) 13134 13135 /* 13136 * Determine appropriate kpm mapping address and handle any kpm/hme 13137 * conflicts. Page mapping list and its vcolor parts must be protected. 13138 */ 13139 static caddr_t 13140 sfmmu_kpm_getvaddr(page_t *pp, int *kpm_vac_rangep) 13141 { 13142 int vcolor, vcolor_pa; 13143 caddr_t vaddr; 13144 uintptr_t paddr; 13145 13146 13147 ASSERT(sfmmu_mlist_held(pp)); 13148 13149 paddr = ptob(pp->p_pagenum); 13150 vcolor_pa = addr_to_vcolor(paddr); 13151 13152 if (pp->p_vnode && IS_SWAPFSVP(pp->p_vnode)) { 13153 vcolor = (PP_NEWPAGE(pp) || PP_ISNC(pp)) ? 13154 vcolor_pa : PP_GET_VCOLOR(pp); 13155 } else { 13156 vcolor = addr_to_vcolor(pp->p_offset); 13157 } 13158 13159 vaddr = kpm_vbase + paddr; 13160 *kpm_vac_rangep = 0; 13161 13162 if (vcolor_pa != vcolor) { 13163 *kpm_vac_rangep = abs(vcolor - vcolor_pa); 13164 vaddr += ((uintptr_t)(vcolor - vcolor_pa) << MMU_PAGESHIFT); 13165 vaddr += (vcolor_pa > vcolor) ? 13166 ((uintptr_t)vcolor_pa << kpm_size_shift) : 13167 ((uintptr_t)(vcolor - vcolor_pa) << kpm_size_shift); 13168 13169 ASSERT(!PP_ISMAPPED_LARGE(pp)); 13170 } 13171 13172 if (PP_ISNC(pp)) 13173 return (vaddr); 13174 13175 if (PP_NEWPAGE(pp)) { 13176 PP_SET_VCOLOR(pp, vcolor); 13177 return (vaddr); 13178 } 13179 13180 if (PP_GET_VCOLOR(pp) == vcolor) 13181 return (vaddr); 13182 13183 ASSERT(!PP_ISMAPPED_KPM(pp)); 13184 sfmmu_kpm_vac_conflict(pp, vaddr); 13185 13186 return (vaddr); 13187 } 13188 13189 /* 13190 * VAC conflict state bit values. 13191 * The following defines are used to make the handling of the 13192 * various input states more concise. For that the kpm states 13193 * per kpm_page and per page are combined in a summary state. 13194 * Each single state has a corresponding bit value in the 13195 * summary state. These defines only apply for kpm large page 13196 * mappings. Within comments the abbreviations "kc, c, ks, s" 13197 * are used as short form of the actual state, e.g. "kc" for 13198 * "kp_refcntc > 0", etc. 13199 */ 13200 #define KPM_KC 0x00000008 /* kpm_page: kp_refcntc > 0 */ 13201 #define KPM_C 0x00000004 /* page: P_KPMC set */ 13202 #define KPM_KS 0x00000002 /* kpm_page: kp_refcnts > 0 */ 13203 #define KPM_S 0x00000001 /* page: P_KPMS set */ 13204 13205 /* 13206 * Summary states used in sfmmu_kpm_fault (KPM_TSBM_*). 13207 * See also more detailed comments within in the sfmmu_kpm_fault switch. 13208 * Abbreviations used: 13209 * CONFL: VAC conflict(s) within a kpm_page. 13210 * MAPS: Mapped small: Page mapped in using a regular page size kpm mapping. 13211 * RASM: Re-assembling of a large page mapping possible. 13212 * RPLS: Replace: TSB miss due to TSB replacement only. 13213 * BRKO: Breakup Other: A large kpm mapping has to be broken because another 13214 * page within the kpm_page is already involved in a VAC conflict. 13215 * BRKT: Breakup This: A large kpm mapping has to be broken, this page is 13216 * is involved in a VAC conflict. 13217 */ 13218 #define KPM_TSBM_CONFL_GONE (0) 13219 #define KPM_TSBM_MAPS_RASM (KPM_KS) 13220 #define KPM_TSBM_RPLS_RASM (KPM_KS | KPM_S) 13221 #define KPM_TSBM_MAPS_BRKO (KPM_KC) 13222 #define KPM_TSBM_MAPS (KPM_KC | KPM_KS) 13223 #define KPM_TSBM_RPLS (KPM_KC | KPM_KS | KPM_S) 13224 #define KPM_TSBM_MAPS_BRKT (KPM_KC | KPM_C) 13225 #define KPM_TSBM_MAPS_CONFL (KPM_KC | KPM_C | KPM_KS) 13226 #define KPM_TSBM_RPLS_CONFL (KPM_KC | KPM_C | KPM_KS | KPM_S) 13227 13228 /* 13229 * kpm fault handler for mappings with large page size. 13230 */ 13231 int 13232 sfmmu_kpm_fault(caddr_t vaddr, struct memseg *mseg, page_t *pp) 13233 { 13234 int error; 13235 pgcnt_t inx; 13236 kpm_page_t *kp; 13237 tte_t tte; 13238 pfn_t pfn = pp->p_pagenum; 13239 kpm_hlk_t *kpmp; 13240 kmutex_t *pml; 13241 int alias_range; 13242 int uncached = 0; 13243 kmutex_t *pmtx; 13244 int badstate; 13245 uint_t tsbmcase; 13246 13247 alias_range = IS_KPM_ALIAS_RANGE(vaddr); 13248 13249 inx = ptokpmp(kpmptop(ptokpmp(pfn)) - mseg->kpm_pbase); 13250 if (inx >= mseg->kpm_nkpmpgs) { 13251 cmn_err(CE_PANIC, "sfmmu_kpm_fault: kpm overflow in memseg " 13252 "0x%p pp 0x%p", (void *)mseg, (void *)pp); 13253 } 13254 13255 kp = &mseg->kpm_pages[inx]; 13256 kpmp = KPMP_HASH(kp); 13257 13258 pml = sfmmu_mlist_enter(pp); 13259 13260 if (!PP_ISMAPPED_KPM(pp)) { 13261 sfmmu_mlist_exit(pml); 13262 return (EFAULT); 13263 } 13264 13265 mutex_enter(&kpmp->khl_mutex); 13266 13267 if (alias_range) { 13268 ASSERT(!PP_ISMAPPED_LARGE(pp)); 13269 if (kp->kp_refcnta > 0) { 13270 if (PP_ISKPMC(pp)) { 13271 pmtx = sfmmu_page_enter(pp); 13272 PP_CLRKPMC(pp); 13273 sfmmu_page_exit(pmtx); 13274 } 13275 /* 13276 * Check for vcolor conflicts. Return here 13277 * w/ either no conflict (fast path), removed hme 13278 * mapping chains (unload conflict) or uncached 13279 * (uncache conflict). VACaches are cleaned and 13280 * p_vcolor and PP_TNC are set accordingly for the 13281 * conflict cases. Drop kpmp for uncache conflict 13282 * cases since it will be grabbed within 13283 * sfmmu_kpm_page_cache in case of an uncache 13284 * conflict. 13285 */ 13286 mutex_exit(&kpmp->khl_mutex); 13287 sfmmu_kpm_vac_conflict(pp, vaddr); 13288 mutex_enter(&kpmp->khl_mutex); 13289 13290 if (PP_ISNC(pp)) { 13291 uncached = 1; 13292 pmtx = sfmmu_page_enter(pp); 13293 PP_SETKPMC(pp); 13294 sfmmu_page_exit(pmtx); 13295 } 13296 goto smallexit; 13297 13298 } else { 13299 /* 13300 * We got a tsbmiss on a not active kpm_page range. 13301 * Let segkpm_fault decide how to panic. 13302 */ 13303 error = EFAULT; 13304 } 13305 goto exit; 13306 } 13307 13308 badstate = (kp->kp_refcnt < 0 || kp->kp_refcnts < 0); 13309 if (kp->kp_refcntc == -1) { 13310 /* 13311 * We should come here only if trap level tsb miss 13312 * handler is disabled. 13313 */ 13314 badstate |= (kp->kp_refcnt == 0 || kp->kp_refcnts > 0 || 13315 PP_ISKPMC(pp) || PP_ISKPMS(pp) || PP_ISNC(pp)); 13316 13317 if (badstate == 0) 13318 goto largeexit; 13319 } 13320 13321 if (badstate || kp->kp_refcntc < 0) 13322 goto badstate_exit; 13323 13324 /* 13325 * Combine the per kpm_page and per page kpm VAC states to 13326 * a summary state in order to make the kpm fault handling 13327 * more concise. 13328 */ 13329 tsbmcase = (((kp->kp_refcntc > 0) ? KPM_KC : 0) | 13330 ((kp->kp_refcnts > 0) ? KPM_KS : 0) | 13331 (PP_ISKPMC(pp) ? KPM_C : 0) | 13332 (PP_ISKPMS(pp) ? KPM_S : 0)); 13333 13334 switch (tsbmcase) { 13335 case KPM_TSBM_CONFL_GONE: /* - - - - */ 13336 /* 13337 * That's fine, we either have no more vac conflict in 13338 * this kpm page or someone raced in and has solved the 13339 * vac conflict for us -- call sfmmu_kpm_vac_conflict 13340 * to take care for correcting the vcolor and flushing 13341 * the dcache if required. 13342 */ 13343 mutex_exit(&kpmp->khl_mutex); 13344 sfmmu_kpm_vac_conflict(pp, vaddr); 13345 mutex_enter(&kpmp->khl_mutex); 13346 13347 if (PP_ISNC(pp) || kp->kp_refcnt <= 0 || 13348 addr_to_vcolor(vaddr) != PP_GET_VCOLOR(pp)) { 13349 panic("sfmmu_kpm_fault: inconsistent CONFL_GONE " 13350 "state, pp=%p", (void *)pp); 13351 } 13352 goto largeexit; 13353 13354 case KPM_TSBM_MAPS_RASM: /* - - ks - */ 13355 /* 13356 * All conflicts in this kpm page are gone but there are 13357 * already small mappings around, so we also map this 13358 * page small. This could be the trigger case for a 13359 * small mapping reaper, if this is really needed. 13360 * For now fall thru to the KPM_TSBM_MAPS handling. 13361 */ 13362 13363 case KPM_TSBM_MAPS: /* kc - ks - */ 13364 /* 13365 * Large page mapping is already broken, this page is not 13366 * conflicting, so map it small. Call sfmmu_kpm_vac_conflict 13367 * to take care for correcting the vcolor and flushing 13368 * the dcache if required. 13369 */ 13370 mutex_exit(&kpmp->khl_mutex); 13371 sfmmu_kpm_vac_conflict(pp, vaddr); 13372 mutex_enter(&kpmp->khl_mutex); 13373 13374 if (PP_ISNC(pp) || kp->kp_refcnt <= 0 || 13375 addr_to_vcolor(vaddr) != PP_GET_VCOLOR(pp)) { 13376 panic("sfmmu_kpm_fault: inconsistent MAPS state, " 13377 "pp=%p", (void *)pp); 13378 } 13379 kp->kp_refcnt--; 13380 kp->kp_refcnts++; 13381 pmtx = sfmmu_page_enter(pp); 13382 PP_SETKPMS(pp); 13383 sfmmu_page_exit(pmtx); 13384 goto smallexit; 13385 13386 case KPM_TSBM_RPLS_RASM: /* - - ks s */ 13387 /* 13388 * All conflicts in this kpm page are gone but this page 13389 * is mapped small. This could be the trigger case for a 13390 * small mapping reaper, if this is really needed. 13391 * For now we drop it in small again. Fall thru to the 13392 * KPM_TSBM_RPLS handling. 13393 */ 13394 13395 case KPM_TSBM_RPLS: /* kc - ks s */ 13396 /* 13397 * Large page mapping is already broken, this page is not 13398 * conflicting but already mapped small, so drop it in 13399 * small again. 13400 */ 13401 if (PP_ISNC(pp) || 13402 addr_to_vcolor(vaddr) != PP_GET_VCOLOR(pp)) { 13403 panic("sfmmu_kpm_fault: inconsistent RPLS state, " 13404 "pp=%p", (void *)pp); 13405 } 13406 goto smallexit; 13407 13408 case KPM_TSBM_MAPS_BRKO: /* kc - - - */ 13409 /* 13410 * The kpm page where we live in is marked conflicting 13411 * but this page is not conflicting. So we have to map it 13412 * in small. Call sfmmu_kpm_vac_conflict to take care for 13413 * correcting the vcolor and flushing the dcache if required. 13414 */ 13415 mutex_exit(&kpmp->khl_mutex); 13416 sfmmu_kpm_vac_conflict(pp, vaddr); 13417 mutex_enter(&kpmp->khl_mutex); 13418 13419 if (PP_ISNC(pp) || kp->kp_refcnt <= 0 || 13420 addr_to_vcolor(vaddr) != PP_GET_VCOLOR(pp)) { 13421 panic("sfmmu_kpm_fault: inconsistent MAPS_BRKO state, " 13422 "pp=%p", (void *)pp); 13423 } 13424 kp->kp_refcnt--; 13425 kp->kp_refcnts++; 13426 pmtx = sfmmu_page_enter(pp); 13427 PP_SETKPMS(pp); 13428 sfmmu_page_exit(pmtx); 13429 goto smallexit; 13430 13431 case KPM_TSBM_MAPS_BRKT: /* kc c - - */ 13432 case KPM_TSBM_MAPS_CONFL: /* kc c ks - */ 13433 if (!PP_ISMAPPED(pp)) { 13434 /* 13435 * We got a tsbmiss on kpm large page range that is 13436 * marked to contain vac conflicting pages introduced 13437 * by hme mappings. The hme mappings are all gone and 13438 * must have bypassed the kpm alias prevention logic. 13439 */ 13440 panic("sfmmu_kpm_fault: stale VAC conflict, pp=%p", 13441 (void *)pp); 13442 } 13443 13444 /* 13445 * Check for vcolor conflicts. Return here w/ either no 13446 * conflict (fast path), removed hme mapping chains 13447 * (unload conflict) or uncached (uncache conflict). 13448 * Dcache is cleaned and p_vcolor and P_TNC are set 13449 * accordingly. Drop kpmp for uncache conflict cases 13450 * since it will be grabbed within sfmmu_kpm_page_cache 13451 * in case of an uncache conflict. 13452 */ 13453 mutex_exit(&kpmp->khl_mutex); 13454 sfmmu_kpm_vac_conflict(pp, vaddr); 13455 mutex_enter(&kpmp->khl_mutex); 13456 13457 if (kp->kp_refcnt <= 0) 13458 panic("sfmmu_kpm_fault: bad refcnt kp=%p", (void *)kp); 13459 13460 if (PP_ISNC(pp)) { 13461 uncached = 1; 13462 } else { 13463 /* 13464 * When an unload conflict is solved and there are 13465 * no other small mappings around, we can resume 13466 * largepage mode. Otherwise we have to map or drop 13467 * in small. This could be a trigger for a small 13468 * mapping reaper when this was the last conflict 13469 * within the kpm page and when there are only 13470 * other small mappings around. 13471 */ 13472 ASSERT(addr_to_vcolor(vaddr) == PP_GET_VCOLOR(pp)); 13473 ASSERT(kp->kp_refcntc > 0); 13474 kp->kp_refcntc--; 13475 pmtx = sfmmu_page_enter(pp); 13476 PP_CLRKPMC(pp); 13477 sfmmu_page_exit(pmtx); 13478 ASSERT(PP_ISKPMS(pp) == 0); 13479 if (kp->kp_refcntc == 0 && kp->kp_refcnts == 0) 13480 goto largeexit; 13481 } 13482 13483 kp->kp_refcnt--; 13484 kp->kp_refcnts++; 13485 pmtx = sfmmu_page_enter(pp); 13486 PP_SETKPMS(pp); 13487 sfmmu_page_exit(pmtx); 13488 goto smallexit; 13489 13490 case KPM_TSBM_RPLS_CONFL: /* kc c ks s */ 13491 if (!PP_ISMAPPED(pp)) { 13492 /* 13493 * We got a tsbmiss on kpm large page range that is 13494 * marked to contain vac conflicting pages introduced 13495 * by hme mappings. They are all gone and must have 13496 * somehow bypassed the kpm alias prevention logic. 13497 */ 13498 panic("sfmmu_kpm_fault: stale VAC conflict, pp=%p", 13499 (void *)pp); 13500 } 13501 13502 /* 13503 * This state is only possible for an uncached mapping. 13504 */ 13505 if (!PP_ISNC(pp)) { 13506 panic("sfmmu_kpm_fault: page not uncached, pp=%p", 13507 (void *)pp); 13508 } 13509 uncached = 1; 13510 goto smallexit; 13511 13512 default: 13513 badstate_exit: 13514 panic("sfmmu_kpm_fault: inconsistent VAC state, vaddr=%p kp=%p " 13515 "pp=%p", (void *)vaddr, (void *)kp, (void *)pp); 13516 } 13517 13518 smallexit: 13519 /* tte assembly */ 13520 if (uncached == 0) 13521 KPM_TTE_VCACHED(tte.ll, pfn, TTE8K); 13522 else 13523 KPM_TTE_VUNCACHED(tte.ll, pfn, TTE8K); 13524 13525 /* tsb dropin */ 13526 sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT); 13527 13528 error = 0; 13529 goto exit; 13530 13531 largeexit: 13532 if (kp->kp_refcnt > 0) { 13533 13534 /* tte assembly */ 13535 KPM_TTE_VCACHED(tte.ll, pfn, TTE4M); 13536 13537 /* tsb dropin */ 13538 sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT4M); 13539 13540 if (kp->kp_refcntc == 0) { 13541 /* Set "go" flag for TL tsbmiss handler */ 13542 sfmmu_kpm_tsbmtl(&kp->kp_refcntc, &kpmp->khl_lock, 13543 KPMTSBM_START); 13544 } 13545 ASSERT(kp->kp_refcntc == -1); 13546 error = 0; 13547 13548 } else 13549 error = EFAULT; 13550 exit: 13551 mutex_exit(&kpmp->khl_mutex); 13552 sfmmu_mlist_exit(pml); 13553 return (error); 13554 } 13555 13556 /* 13557 * kpm fault handler for mappings with small page size. 13558 */ 13559 int 13560 sfmmu_kpm_fault_small(caddr_t vaddr, struct memseg *mseg, page_t *pp) 13561 { 13562 int error = 0; 13563 pgcnt_t inx; 13564 kpm_spage_t *ksp; 13565 kpm_shlk_t *kpmsp; 13566 kmutex_t *pml; 13567 pfn_t pfn = pp->p_pagenum; 13568 tte_t tte; 13569 kmutex_t *pmtx; 13570 int oldval; 13571 13572 inx = pfn - mseg->kpm_pbase; 13573 ksp = &mseg->kpm_spages[inx]; 13574 kpmsp = KPMP_SHASH(ksp); 13575 13576 pml = sfmmu_mlist_enter(pp); 13577 13578 if (!PP_ISMAPPED_KPM(pp)) { 13579 sfmmu_mlist_exit(pml); 13580 return (EFAULT); 13581 } 13582 13583 /* 13584 * kp_mapped lookup protected by mlist mutex 13585 */ 13586 if (ksp->kp_mapped == KPM_MAPPEDS) { 13587 /* 13588 * Fast path tsbmiss 13589 */ 13590 ASSERT(!PP_ISKPMC(pp)); 13591 ASSERT(!PP_ISNC(pp)); 13592 13593 /* tte assembly */ 13594 KPM_TTE_VCACHED(tte.ll, pfn, TTE8K); 13595 13596 /* tsb dropin */ 13597 sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT); 13598 13599 } else if (ksp->kp_mapped == KPM_MAPPEDSC) { 13600 /* 13601 * Got here due to existing or gone kpm/hme VAC conflict. 13602 * Recheck for vcolor conflicts. Return here w/ either 13603 * no conflict, removed hme mapping chain (unload 13604 * conflict) or uncached (uncache conflict). VACaches 13605 * are cleaned and p_vcolor and PP_TNC are set accordingly 13606 * for the conflict cases. 13607 */ 13608 sfmmu_kpm_vac_conflict(pp, vaddr); 13609 13610 if (PP_ISNC(pp)) { 13611 /* ASSERT(pp->p_share); XXX use hat_page_getshare */ 13612 13613 /* tte assembly */ 13614 KPM_TTE_VUNCACHED(tte.ll, pfn, TTE8K); 13615 13616 /* tsb dropin */ 13617 sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT); 13618 13619 } else { 13620 if (PP_ISKPMC(pp)) { 13621 pmtx = sfmmu_page_enter(pp); 13622 PP_CLRKPMC(pp); 13623 sfmmu_page_exit(pmtx); 13624 } 13625 13626 /* tte assembly */ 13627 KPM_TTE_VCACHED(tte.ll, pfn, TTE8K); 13628 13629 /* tsb dropin */ 13630 sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT); 13631 13632 oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped, 13633 &kpmsp->kshl_lock, KPM_MAPPEDS); 13634 13635 if (oldval != KPM_MAPPEDSC) 13636 panic("sfmmu_kpm_fault_small: " 13637 "stale smallpages mapping"); 13638 } 13639 13640 } else { 13641 /* 13642 * We got a tsbmiss on a not active kpm_page range. 13643 * Let decide segkpm_fault how to panic. 13644 */ 13645 error = EFAULT; 13646 } 13647 13648 sfmmu_mlist_exit(pml); 13649 return (error); 13650 } 13651 13652 /* 13653 * Check/handle potential hme/kpm mapping conflicts 13654 */ 13655 static void 13656 sfmmu_kpm_vac_conflict(page_t *pp, caddr_t vaddr) 13657 { 13658 int vcolor; 13659 struct sf_hment *sfhmep; 13660 struct hat *tmphat; 13661 struct sf_hment *tmphme = NULL; 13662 struct hme_blk *hmeblkp; 13663 tte_t tte; 13664 13665 ASSERT(sfmmu_mlist_held(pp)); 13666 13667 if (PP_ISNC(pp)) 13668 return; 13669 13670 vcolor = addr_to_vcolor(vaddr); 13671 if (PP_GET_VCOLOR(pp) == vcolor) 13672 return; 13673 13674 /* 13675 * There could be no vcolor conflict between a large cached 13676 * hme page and a non alias range kpm page (neither large nor 13677 * small mapped). So if a hme conflict already exists between 13678 * a constituent page of a large hme mapping and a shared small 13679 * conflicting hme mapping, both mappings must be already 13680 * uncached at this point. 13681 */ 13682 ASSERT(!PP_ISMAPPED_LARGE(pp)); 13683 13684 if (!PP_ISMAPPED(pp)) { 13685 /* 13686 * Previous hme user of page had a different color 13687 * but since there are no current users 13688 * we just flush the cache and change the color. 13689 */ 13690 SFMMU_STAT(sf_pgcolor_conflict); 13691 sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp)); 13692 PP_SET_VCOLOR(pp, vcolor); 13693 return; 13694 } 13695 13696 /* 13697 * If we get here we have a vac conflict with a current hme 13698 * mapping. This must have been established by forcing a wrong 13699 * colored mapping, e.g. by using mmap(2) with MAP_FIXED. 13700 */ 13701 13702 /* 13703 * Check if any mapping is in same as or if it is locked 13704 * since in that case we need to uncache. 13705 */ 13706 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) { 13707 tmphme = sfhmep->hme_next; 13708 hmeblkp = sfmmu_hmetohblk(sfhmep); 13709 if (hmeblkp->hblk_xhat_bit) 13710 continue; 13711 tmphat = hblktosfmmu(hmeblkp); 13712 sfmmu_copytte(&sfhmep->hme_tte, &tte); 13713 ASSERT(TTE_IS_VALID(&tte)); 13714 if ((tmphat == ksfmmup) || hmeblkp->hblk_lckcnt) { 13715 /* 13716 * We have an uncache conflict 13717 */ 13718 SFMMU_STAT(sf_uncache_conflict); 13719 sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1); 13720 return; 13721 } 13722 } 13723 13724 /* 13725 * We have an unload conflict 13726 */ 13727 SFMMU_STAT(sf_unload_conflict); 13728 13729 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) { 13730 tmphme = sfhmep->hme_next; 13731 hmeblkp = sfmmu_hmetohblk(sfhmep); 13732 if (hmeblkp->hblk_xhat_bit) 13733 continue; 13734 (void) sfmmu_pageunload(pp, sfhmep, TTE8K); 13735 } 13736 13737 /* 13738 * Unloads only does tlb flushes so we need to flush the 13739 * dcache vcolor here. 13740 */ 13741 sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp)); 13742 PP_SET_VCOLOR(pp, vcolor); 13743 } 13744 13745 /* 13746 * Remove all kpm mappings using kpme's for pp and check that 13747 * all kpm mappings (w/ and w/o kpme's) are gone. 13748 */ 13749 static void 13750 sfmmu_kpm_pageunload(page_t *pp) 13751 { 13752 caddr_t vaddr; 13753 struct kpme *kpme, *nkpme; 13754 13755 ASSERT(pp != NULL); 13756 ASSERT(pp->p_kpmref); 13757 ASSERT(sfmmu_mlist_held(pp)); 13758 13759 vaddr = hat_kpm_page2va(pp, 1); 13760 13761 for (kpme = pp->p_kpmelist; kpme; kpme = nkpme) { 13762 ASSERT(kpme->kpe_page == pp); 13763 13764 if (pp->p_kpmref == 0) 13765 panic("sfmmu_kpm_pageunload: stale p_kpmref pp=%p " 13766 "kpme=%p", (void *)pp, (void *)kpme); 13767 13768 nkpme = kpme->kpe_next; 13769 13770 /* Add instance callback here here if needed later */ 13771 sfmmu_kpme_sub(kpme, pp); 13772 } 13773 13774 /* 13775 * Also correct after mixed kpme/nonkpme mappings. If nonkpme 13776 * segkpm clients have unlocked the page and forgot to mapout 13777 * we panic here. 13778 */ 13779 if (pp->p_kpmref != 0) 13780 panic("sfmmu_kpm_pageunload: bad refcnt pp=%p", (void *)pp); 13781 13782 sfmmu_kpm_mapout(pp, vaddr); 13783 } 13784 13785 /* 13786 * Remove a large kpm mapping from kernel TSB and all TLB's. 13787 */ 13788 static void 13789 sfmmu_kpm_demap_large(caddr_t vaddr) 13790 { 13791 sfmmu_kpm_unload_tsb(vaddr, MMU_PAGESHIFT4M); 13792 sfmmu_kpm_demap_tlbs(vaddr); 13793 } 13794 13795 /* 13796 * Remove a small kpm mapping from kernel TSB and all TLB's. 13797 */ 13798 static void 13799 sfmmu_kpm_demap_small(caddr_t vaddr) 13800 { 13801 sfmmu_kpm_unload_tsb(vaddr, MMU_PAGESHIFT); 13802 sfmmu_kpm_demap_tlbs(vaddr); 13803 } 13804 13805 /* 13806 * Demap a kpm mapping in all TLB's. 13807 */ 13808 static void 13809 sfmmu_kpm_demap_tlbs(caddr_t vaddr) 13810 { 13811 cpuset_t cpuset; 13812 13813 kpreempt_disable(); 13814 cpuset = ksfmmup->sfmmu_cpusran; 13815 CPUSET_AND(cpuset, cpu_ready_set); 13816 CPUSET_DEL(cpuset, CPU->cpu_id); 13817 SFMMU_XCALL_STATS(ksfmmup); 13818 13819 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)vaddr, 13820 (uint64_t)ksfmmup); 13821 vtag_flushpage(vaddr, (uint64_t)ksfmmup); 13822 13823 kpreempt_enable(); 13824 } 13825 13826 /* 13827 * Summary states used in sfmmu_kpm_vac_unload (KPM_VUL__*). 13828 * See also more detailed comments within in the sfmmu_kpm_vac_unload switch. 13829 * Abbreviations used: 13830 * BIG: Large page kpm mapping in use. 13831 * CONFL: VAC conflict(s) within a kpm_page. 13832 * INCR: Count of conflicts within a kpm_page is going to be incremented. 13833 * DECR: Count of conflicts within a kpm_page is going to be decremented. 13834 * UNMAP_SMALL: A small (regular page size) mapping is going to be unmapped. 13835 * TNC: Temporary non cached: a kpm mapped page is mapped in TNC state. 13836 */ 13837 #define KPM_VUL_BIG (0) 13838 #define KPM_VUL_CONFL_INCR1 (KPM_KS) 13839 #define KPM_VUL_UNMAP_SMALL1 (KPM_KS | KPM_S) 13840 #define KPM_VUL_CONFL_INCR2 (KPM_KC) 13841 #define KPM_VUL_CONFL_INCR3 (KPM_KC | KPM_KS) 13842 #define KPM_VUL_UNMAP_SMALL2 (KPM_KC | KPM_KS | KPM_S) 13843 #define KPM_VUL_CONFL_DECR1 (KPM_KC | KPM_C) 13844 #define KPM_VUL_CONFL_DECR2 (KPM_KC | KPM_C | KPM_KS) 13845 #define KPM_VUL_TNC (KPM_KC | KPM_C | KPM_KS | KPM_S) 13846 13847 /* 13848 * Handle VAC unload conflicts introduced by hme mappings or vice 13849 * versa when a hme conflict mapping is replaced by a non conflict 13850 * one. Perform actions and state transitions according to the 13851 * various page and kpm_page entry states. VACache flushes are in 13852 * the responsibiliy of the caller. We still hold the mlist lock. 13853 */ 13854 static void 13855 sfmmu_kpm_vac_unload(page_t *pp, caddr_t vaddr) 13856 { 13857 kpm_page_t *kp; 13858 kpm_hlk_t *kpmp; 13859 caddr_t kpmvaddr = hat_kpm_page2va(pp, 1); 13860 int newcolor; 13861 kmutex_t *pmtx; 13862 uint_t vacunlcase; 13863 int badstate = 0; 13864 kpm_spage_t *ksp; 13865 kpm_shlk_t *kpmsp; 13866 13867 ASSERT(PAGE_LOCKED(pp)); 13868 ASSERT(sfmmu_mlist_held(pp)); 13869 ASSERT(!PP_ISNC(pp)); 13870 13871 newcolor = addr_to_vcolor(kpmvaddr) != addr_to_vcolor(vaddr); 13872 if (kpm_smallpages) 13873 goto smallpages_vac_unload; 13874 13875 PP2KPMPG(pp, kp); 13876 kpmp = KPMP_HASH(kp); 13877 mutex_enter(&kpmp->khl_mutex); 13878 13879 if (IS_KPM_ALIAS_RANGE(kpmvaddr)) { 13880 if (kp->kp_refcnta < 1) { 13881 panic("sfmmu_kpm_vac_unload: bad refcnta kpm_page=%p\n", 13882 (void *)kp); 13883 } 13884 13885 if (PP_ISKPMC(pp) == 0) { 13886 if (newcolor == 0) 13887 goto exit; 13888 sfmmu_kpm_demap_small(kpmvaddr); 13889 pmtx = sfmmu_page_enter(pp); 13890 PP_SETKPMC(pp); 13891 sfmmu_page_exit(pmtx); 13892 13893 } else if (newcolor == 0) { 13894 pmtx = sfmmu_page_enter(pp); 13895 PP_CLRKPMC(pp); 13896 sfmmu_page_exit(pmtx); 13897 13898 } else { 13899 badstate++; 13900 } 13901 13902 goto exit; 13903 } 13904 13905 badstate = (kp->kp_refcnt < 0 || kp->kp_refcnts < 0); 13906 if (kp->kp_refcntc == -1) { 13907 /* 13908 * We should come here only if trap level tsb miss 13909 * handler is disabled. 13910 */ 13911 badstate |= (kp->kp_refcnt == 0 || kp->kp_refcnts > 0 || 13912 PP_ISKPMC(pp) || PP_ISKPMS(pp) || PP_ISNC(pp)); 13913 } else { 13914 badstate |= (kp->kp_refcntc < 0); 13915 } 13916 13917 if (badstate) 13918 goto exit; 13919 13920 if (PP_ISKPMC(pp) == 0 && newcolor == 0) { 13921 ASSERT(PP_ISKPMS(pp) == 0); 13922 goto exit; 13923 } 13924 13925 /* 13926 * Combine the per kpm_page and per page kpm VAC states 13927 * to a summary state in order to make the vac unload 13928 * handling more concise. 13929 */ 13930 vacunlcase = (((kp->kp_refcntc > 0) ? KPM_KC : 0) | 13931 ((kp->kp_refcnts > 0) ? KPM_KS : 0) | 13932 (PP_ISKPMC(pp) ? KPM_C : 0) | 13933 (PP_ISKPMS(pp) ? KPM_S : 0)); 13934 13935 switch (vacunlcase) { 13936 case KPM_VUL_BIG: /* - - - - */ 13937 /* 13938 * Have to breakup the large page mapping to be 13939 * able to handle the conflicting hme vaddr. 13940 */ 13941 if (kp->kp_refcntc == -1) { 13942 /* remove go indication */ 13943 sfmmu_kpm_tsbmtl(&kp->kp_refcntc, 13944 &kpmp->khl_lock, KPMTSBM_STOP); 13945 } 13946 sfmmu_kpm_demap_large(kpmvaddr); 13947 13948 ASSERT(kp->kp_refcntc == 0); 13949 kp->kp_refcntc++; 13950 pmtx = sfmmu_page_enter(pp); 13951 PP_SETKPMC(pp); 13952 sfmmu_page_exit(pmtx); 13953 break; 13954 13955 case KPM_VUL_UNMAP_SMALL1: /* - - ks s */ 13956 case KPM_VUL_UNMAP_SMALL2: /* kc - ks s */ 13957 /* 13958 * New conflict w/ an active kpm page, actually mapped 13959 * in by small TSB/TLB entries. Remove the mapping and 13960 * update states. 13961 */ 13962 ASSERT(newcolor); 13963 sfmmu_kpm_demap_small(kpmvaddr); 13964 kp->kp_refcnts--; 13965 kp->kp_refcnt++; 13966 kp->kp_refcntc++; 13967 pmtx = sfmmu_page_enter(pp); 13968 PP_CLRKPMS(pp); 13969 PP_SETKPMC(pp); 13970 sfmmu_page_exit(pmtx); 13971 break; 13972 13973 case KPM_VUL_CONFL_INCR1: /* - - ks - */ 13974 case KPM_VUL_CONFL_INCR2: /* kc - - - */ 13975 case KPM_VUL_CONFL_INCR3: /* kc - ks - */ 13976 /* 13977 * New conflict on a active kpm mapped page not yet in 13978 * TSB/TLB. Mark page and increment the kpm_page conflict 13979 * count. 13980 */ 13981 ASSERT(newcolor); 13982 kp->kp_refcntc++; 13983 pmtx = sfmmu_page_enter(pp); 13984 PP_SETKPMC(pp); 13985 sfmmu_page_exit(pmtx); 13986 break; 13987 13988 case KPM_VUL_CONFL_DECR1: /* kc c - - */ 13989 case KPM_VUL_CONFL_DECR2: /* kc c ks - */ 13990 /* 13991 * A conflicting hme mapping is removed for an active 13992 * kpm page not yet in TSB/TLB. Unmark page and decrement 13993 * the kpm_page conflict count. 13994 */ 13995 ASSERT(newcolor == 0); 13996 kp->kp_refcntc--; 13997 pmtx = sfmmu_page_enter(pp); 13998 PP_CLRKPMC(pp); 13999 sfmmu_page_exit(pmtx); 14000 break; 14001 14002 case KPM_VUL_TNC: /* kc c ks s */ 14003 cmn_err(CE_NOTE, "sfmmu_kpm_vac_unload: " 14004 "page not in NC state"); 14005 /* FALLTHRU */ 14006 14007 default: 14008 badstate++; 14009 } 14010 exit: 14011 if (badstate) { 14012 panic("sfmmu_kpm_vac_unload: inconsistent VAC state, " 14013 "kpmvaddr=%p kp=%p pp=%p", 14014 (void *)kpmvaddr, (void *)kp, (void *)pp); 14015 } 14016 mutex_exit(&kpmp->khl_mutex); 14017 14018 return; 14019 14020 smallpages_vac_unload: 14021 if (newcolor == 0) 14022 return; 14023 14024 PP2KPMSPG(pp, ksp); 14025 kpmsp = KPMP_SHASH(ksp); 14026 14027 if (PP_ISKPMC(pp) == 0) { 14028 if (ksp->kp_mapped == KPM_MAPPEDS) { 14029 /* 14030 * Stop TL tsbmiss handling 14031 */ 14032 (void) sfmmu_kpm_stsbmtl(&ksp->kp_mapped, 14033 &kpmsp->kshl_lock, KPM_MAPPEDSC); 14034 14035 sfmmu_kpm_demap_small(kpmvaddr); 14036 14037 } else if (ksp->kp_mapped != KPM_MAPPEDSC) { 14038 panic("sfmmu_kpm_vac_unload: inconsistent mapping"); 14039 } 14040 14041 pmtx = sfmmu_page_enter(pp); 14042 PP_SETKPMC(pp); 14043 sfmmu_page_exit(pmtx); 14044 14045 } else { 14046 if (ksp->kp_mapped != KPM_MAPPEDSC) 14047 panic("sfmmu_kpm_vac_unload: inconsistent mapping"); 14048 } 14049 } 14050 14051 /* 14052 * Page is marked to be in VAC conflict to an existing kpm mapping 14053 * or is kpm mapped using only the regular pagesize. Called from 14054 * sfmmu_hblk_unload when a mlist is completely removed. 14055 */ 14056 static void 14057 sfmmu_kpm_hme_unload(page_t *pp) 14058 { 14059 /* tte assembly */ 14060 kpm_page_t *kp; 14061 kpm_hlk_t *kpmp; 14062 caddr_t vaddr; 14063 kmutex_t *pmtx; 14064 uint_t flags; 14065 kpm_spage_t *ksp; 14066 14067 ASSERT(sfmmu_mlist_held(pp)); 14068 ASSERT(PP_ISMAPPED_KPM(pp)); 14069 14070 flags = pp->p_nrm & (P_KPMC | P_KPMS); 14071 if (kpm_smallpages) 14072 goto smallpages_hme_unload; 14073 14074 if (flags == (P_KPMC | P_KPMS)) { 14075 panic("sfmmu_kpm_hme_unload: page should be uncached"); 14076 14077 } else if (flags == P_KPMS) { 14078 /* 14079 * Page mapped small but not involved in VAC conflict 14080 */ 14081 return; 14082 } 14083 14084 vaddr = hat_kpm_page2va(pp, 1); 14085 14086 PP2KPMPG(pp, kp); 14087 kpmp = KPMP_HASH(kp); 14088 mutex_enter(&kpmp->khl_mutex); 14089 14090 if (IS_KPM_ALIAS_RANGE(vaddr)) { 14091 if (kp->kp_refcnta < 1) { 14092 panic("sfmmu_kpm_hme_unload: bad refcnta kpm_page=%p\n", 14093 (void *)kp); 14094 } 14095 14096 } else { 14097 if (kp->kp_refcntc < 1) { 14098 panic("sfmmu_kpm_hme_unload: bad refcntc kpm_page=%p\n", 14099 (void *)kp); 14100 } 14101 kp->kp_refcntc--; 14102 } 14103 14104 pmtx = sfmmu_page_enter(pp); 14105 PP_CLRKPMC(pp); 14106 sfmmu_page_exit(pmtx); 14107 14108 mutex_exit(&kpmp->khl_mutex); 14109 return; 14110 14111 smallpages_hme_unload: 14112 if (flags != P_KPMC) 14113 panic("sfmmu_kpm_hme_unload: page should be uncached"); 14114 14115 vaddr = hat_kpm_page2va(pp, 1); 14116 PP2KPMSPG(pp, ksp); 14117 14118 if (ksp->kp_mapped != KPM_MAPPEDSC) 14119 panic("sfmmu_kpm_hme_unload: inconsistent mapping"); 14120 14121 /* 14122 * Keep KPM_MAPPEDSC until the next kpm tsbmiss where it 14123 * prevents TL tsbmiss handling and force a hat_kpm_fault. 14124 * There we can start over again. 14125 */ 14126 14127 pmtx = sfmmu_page_enter(pp); 14128 PP_CLRKPMC(pp); 14129 sfmmu_page_exit(pmtx); 14130 } 14131 14132 /* 14133 * Special hooks for sfmmu_page_cache_array() when changing the 14134 * cacheability of a page. It is used to obey the hat_kpm lock 14135 * ordering (mlist -> kpmp -> spl, and back). 14136 */ 14137 static kpm_hlk_t * 14138 sfmmu_kpm_kpmp_enter(page_t *pp, pgcnt_t npages) 14139 { 14140 kpm_page_t *kp; 14141 kpm_hlk_t *kpmp; 14142 14143 ASSERT(sfmmu_mlist_held(pp)); 14144 14145 if (kpm_smallpages || PP_ISMAPPED_KPM(pp) == 0) 14146 return (NULL); 14147 14148 ASSERT(npages <= kpmpnpgs); 14149 14150 PP2KPMPG(pp, kp); 14151 kpmp = KPMP_HASH(kp); 14152 mutex_enter(&kpmp->khl_mutex); 14153 14154 return (kpmp); 14155 } 14156 14157 static void 14158 sfmmu_kpm_kpmp_exit(kpm_hlk_t *kpmp) 14159 { 14160 if (kpm_smallpages || kpmp == NULL) 14161 return; 14162 14163 mutex_exit(&kpmp->khl_mutex); 14164 } 14165 14166 /* 14167 * Summary states used in sfmmu_kpm_page_cache (KPM_*). 14168 * See also more detailed comments within in the sfmmu_kpm_page_cache switch. 14169 * Abbreviations used: 14170 * UNC: Input state for an uncache request. 14171 * BIG: Large page kpm mapping in use. 14172 * SMALL: Page has a small kpm mapping within a kpm_page range. 14173 * NODEMAP: No demap needed. 14174 * NOP: No operation needed on this input state. 14175 * CACHE: Input state for a re-cache request. 14176 * MAPS: Page is in TNC and kpm VAC conflict state and kpm mapped small. 14177 * NOMAP: Page is in TNC and kpm VAC conflict state, but not small kpm 14178 * mapped. 14179 * NOMAPO: Page is in TNC and kpm VAC conflict state, but not small kpm 14180 * mapped. There are also other small kpm mappings within this 14181 * kpm_page. 14182 */ 14183 #define KPM_UNC_BIG (0) 14184 #define KPM_UNC_NODEMAP1 (KPM_KS) 14185 #define KPM_UNC_SMALL1 (KPM_KS | KPM_S) 14186 #define KPM_UNC_NODEMAP2 (KPM_KC) 14187 #define KPM_UNC_NODEMAP3 (KPM_KC | KPM_KS) 14188 #define KPM_UNC_SMALL2 (KPM_KC | KPM_KS | KPM_S) 14189 #define KPM_UNC_NOP1 (KPM_KC | KPM_C) 14190 #define KPM_UNC_NOP2 (KPM_KC | KPM_C | KPM_KS) 14191 #define KPM_CACHE_NOMAP (KPM_KC | KPM_C) 14192 #define KPM_CACHE_NOMAPO (KPM_KC | KPM_C | KPM_KS) 14193 #define KPM_CACHE_MAPS (KPM_KC | KPM_C | KPM_KS | KPM_S) 14194 14195 /* 14196 * This function is called when the virtual cacheability of a page 14197 * is changed and the page has an actice kpm mapping. The mlist mutex, 14198 * the spl hash lock and the kpmp mutex (if needed) are already grabbed. 14199 */ 14200 static void 14201 sfmmu_kpm_page_cache(page_t *pp, int flags, int cache_flush_tag) 14202 { 14203 kpm_page_t *kp; 14204 kpm_hlk_t *kpmp; 14205 caddr_t kpmvaddr; 14206 int badstate = 0; 14207 uint_t pgcacase; 14208 kpm_spage_t *ksp; 14209 kpm_shlk_t *kpmsp; 14210 int oldval; 14211 14212 ASSERT(PP_ISMAPPED_KPM(pp)); 14213 ASSERT(sfmmu_mlist_held(pp)); 14214 ASSERT(sfmmu_page_spl_held(pp)); 14215 14216 if (flags != HAT_TMPNC && flags != HAT_CACHE) 14217 panic("sfmmu_kpm_page_cache: bad flags"); 14218 14219 kpmvaddr = hat_kpm_page2va(pp, 1); 14220 14221 if (flags == HAT_TMPNC && cache_flush_tag == CACHE_FLUSH) { 14222 pfn_t pfn = pp->p_pagenum; 14223 int vcolor = addr_to_vcolor(kpmvaddr); 14224 cpuset_t cpuset = cpu_ready_set; 14225 14226 /* Flush vcolor in DCache */ 14227 CPUSET_DEL(cpuset, CPU->cpu_id); 14228 SFMMU_XCALL_STATS(ksfmmup); 14229 xt_some(cpuset, vac_flushpage_tl1, pfn, vcolor); 14230 vac_flushpage(pfn, vcolor); 14231 } 14232 14233 if (kpm_smallpages) 14234 goto smallpages_page_cache; 14235 14236 PP2KPMPG(pp, kp); 14237 kpmp = KPMP_HASH(kp); 14238 ASSERT(MUTEX_HELD(&kpmp->khl_mutex)); 14239 14240 if (IS_KPM_ALIAS_RANGE(kpmvaddr)) { 14241 if (kp->kp_refcnta < 1) { 14242 panic("sfmmu_kpm_page_cache: bad refcnta " 14243 "kpm_page=%p\n", (void *)kp); 14244 } 14245 sfmmu_kpm_demap_small(kpmvaddr); 14246 if (flags == HAT_TMPNC) { 14247 PP_SETKPMC(pp); 14248 ASSERT(!PP_ISKPMS(pp)); 14249 } else { 14250 ASSERT(PP_ISKPMC(pp)); 14251 PP_CLRKPMC(pp); 14252 } 14253 goto exit; 14254 } 14255 14256 badstate = (kp->kp_refcnt < 0 || kp->kp_refcnts < 0); 14257 if (kp->kp_refcntc == -1) { 14258 /* 14259 * We should come here only if trap level tsb miss 14260 * handler is disabled. 14261 */ 14262 badstate |= (kp->kp_refcnt == 0 || kp->kp_refcnts > 0 || 14263 PP_ISKPMC(pp) || PP_ISKPMS(pp) || PP_ISNC(pp)); 14264 } else { 14265 badstate |= (kp->kp_refcntc < 0); 14266 } 14267 14268 if (badstate) 14269 goto exit; 14270 14271 /* 14272 * Combine the per kpm_page and per page kpm VAC states to 14273 * a summary state in order to make the VAC cache/uncache 14274 * handling more concise. 14275 */ 14276 pgcacase = (((kp->kp_refcntc > 0) ? KPM_KC : 0) | 14277 ((kp->kp_refcnts > 0) ? KPM_KS : 0) | 14278 (PP_ISKPMC(pp) ? KPM_C : 0) | 14279 (PP_ISKPMS(pp) ? KPM_S : 0)); 14280 14281 if (flags == HAT_CACHE) { 14282 switch (pgcacase) { 14283 case KPM_CACHE_MAPS: /* kc c ks s */ 14284 sfmmu_kpm_demap_small(kpmvaddr); 14285 if (kp->kp_refcnts < 1) { 14286 panic("sfmmu_kpm_page_cache: bad refcnts " 14287 "kpm_page=%p\n", (void *)kp); 14288 } 14289 kp->kp_refcnts--; 14290 kp->kp_refcnt++; 14291 PP_CLRKPMS(pp); 14292 /* FALLTHRU */ 14293 14294 case KPM_CACHE_NOMAP: /* kc c - - */ 14295 case KPM_CACHE_NOMAPO: /* kc c ks - */ 14296 kp->kp_refcntc--; 14297 PP_CLRKPMC(pp); 14298 break; 14299 14300 default: 14301 badstate++; 14302 } 14303 goto exit; 14304 } 14305 14306 switch (pgcacase) { 14307 case KPM_UNC_BIG: /* - - - - */ 14308 if (kp->kp_refcnt < 1) { 14309 panic("sfmmu_kpm_page_cache: bad refcnt " 14310 "kpm_page=%p\n", (void *)kp); 14311 } 14312 14313 /* 14314 * Have to breakup the large page mapping in preparation 14315 * to the upcoming TNC mode handled by small mappings. 14316 * The demap can already be done due to another conflict 14317 * within the kpm_page. 14318 */ 14319 if (kp->kp_refcntc == -1) { 14320 /* remove go indication */ 14321 sfmmu_kpm_tsbmtl(&kp->kp_refcntc, 14322 &kpmp->khl_lock, KPMTSBM_STOP); 14323 } 14324 ASSERT(kp->kp_refcntc == 0); 14325 sfmmu_kpm_demap_large(kpmvaddr); 14326 kp->kp_refcntc++; 14327 PP_SETKPMC(pp); 14328 break; 14329 14330 case KPM_UNC_SMALL1: /* - - ks s */ 14331 case KPM_UNC_SMALL2: /* kc - ks s */ 14332 /* 14333 * Have to demap an already small kpm mapping in preparation 14334 * to the upcoming TNC mode. The demap can already be done 14335 * due to another conflict within the kpm_page. 14336 */ 14337 sfmmu_kpm_demap_small(kpmvaddr); 14338 kp->kp_refcntc++; 14339 kp->kp_refcnts--; 14340 kp->kp_refcnt++; 14341 PP_CLRKPMS(pp); 14342 PP_SETKPMC(pp); 14343 break; 14344 14345 case KPM_UNC_NODEMAP1: /* - - ks - */ 14346 /* fallthru */ 14347 14348 case KPM_UNC_NODEMAP2: /* kc - - - */ 14349 case KPM_UNC_NODEMAP3: /* kc - ks - */ 14350 kp->kp_refcntc++; 14351 PP_SETKPMC(pp); 14352 break; 14353 14354 case KPM_UNC_NOP1: /* kc c - - */ 14355 case KPM_UNC_NOP2: /* kc c ks - */ 14356 break; 14357 14358 default: 14359 badstate++; 14360 } 14361 exit: 14362 if (badstate) { 14363 panic("sfmmu_kpm_page_cache: inconsistent VAC state " 14364 "kpmvaddr=%p kp=%p pp=%p", (void *)kpmvaddr, 14365 (void *)kp, (void *)pp); 14366 } 14367 return; 14368 14369 smallpages_page_cache: 14370 PP2KPMSPG(pp, ksp); 14371 kpmsp = KPMP_SHASH(ksp); 14372 14373 oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped, 14374 &kpmsp->kshl_lock, KPM_MAPPEDSC); 14375 14376 if (!(oldval == KPM_MAPPEDS || oldval == KPM_MAPPEDSC)) 14377 panic("smallpages_page_cache: inconsistent mapping"); 14378 14379 sfmmu_kpm_demap_small(kpmvaddr); 14380 14381 if (flags == HAT_TMPNC) { 14382 PP_SETKPMC(pp); 14383 ASSERT(!PP_ISKPMS(pp)); 14384 14385 } else { 14386 ASSERT(PP_ISKPMC(pp)); 14387 PP_CLRKPMC(pp); 14388 } 14389 14390 /* 14391 * Keep KPM_MAPPEDSC until the next kpm tsbmiss where it 14392 * prevents TL tsbmiss handling and force a hat_kpm_fault. 14393 * There we can start over again. 14394 */ 14395 } 14396 14397 /* 14398 * unused in sfmmu 14399 */ 14400 void 14401 hat_dump(void) 14402 { 14403 } 14404 14405 /* 14406 * Called when a thread is exiting and we have switched to the kernel address 14407 * space. Perform the same VM initialization resume() uses when switching 14408 * processes. 14409 * 14410 * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but 14411 * we call it anyway in case the semantics change in the future. 14412 */ 14413 /*ARGSUSED*/ 14414 void 14415 hat_thread_exit(kthread_t *thd) 14416 { 14417 uint64_t pgsz_cnum; 14418 uint_t pstate_save; 14419 14420 ASSERT(thd->t_procp->p_as == &kas); 14421 14422 pgsz_cnum = KCONTEXT; 14423 #ifdef sun4u 14424 pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT); 14425 #endif 14426 /* 14427 * Note that sfmmu_load_mmustate() is currently a no-op for 14428 * kernel threads. We need to disable interrupts here, 14429 * simply because otherwise sfmmu_load_mmustate() would panic 14430 * if the caller does not disable interrupts. 14431 */ 14432 pstate_save = sfmmu_disable_intrs(); 14433 sfmmu_setctx_sec(pgsz_cnum); 14434 sfmmu_load_mmustate(ksfmmup); 14435 sfmmu_enable_intrs(pstate_save); 14436 } 14437