xref: /titanic_50/usr/src/uts/sfmmu/vm/hat_sfmmu.c (revision 0b1b4412cfd6c4ac5467dbe6f4088dcec4f55fe8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * VM - Hardware Address Translation management for Spitfire MMU.
28  *
29  * This file implements the machine specific hardware translation
30  * needed by the VM system.  The machine independent interface is
31  * described in <vm/hat.h> while the machine dependent interface
32  * and data structures are described in <vm/hat_sfmmu.h>.
33  *
34  * The hat layer manages the address translation hardware as a cache
35  * driven by calls from the higher levels in the VM system.
36  */
37 
38 #include <sys/types.h>
39 #include <sys/kstat.h>
40 #include <vm/hat.h>
41 #include <vm/hat_sfmmu.h>
42 #include <vm/page.h>
43 #include <sys/pte.h>
44 #include <sys/systm.h>
45 #include <sys/mman.h>
46 #include <sys/sysmacros.h>
47 #include <sys/machparam.h>
48 #include <sys/vtrace.h>
49 #include <sys/kmem.h>
50 #include <sys/mmu.h>
51 #include <sys/cmn_err.h>
52 #include <sys/cpu.h>
53 #include <sys/cpuvar.h>
54 #include <sys/debug.h>
55 #include <sys/lgrp.h>
56 #include <sys/archsystm.h>
57 #include <sys/machsystm.h>
58 #include <sys/vmsystm.h>
59 #include <vm/as.h>
60 #include <vm/seg.h>
61 #include <vm/seg_kp.h>
62 #include <vm/seg_kmem.h>
63 #include <vm/seg_kpm.h>
64 #include <vm/rm.h>
65 #include <sys/t_lock.h>
66 #include <sys/obpdefs.h>
67 #include <sys/vm_machparam.h>
68 #include <sys/var.h>
69 #include <sys/trap.h>
70 #include <sys/machtrap.h>
71 #include <sys/scb.h>
72 #include <sys/bitmap.h>
73 #include <sys/machlock.h>
74 #include <sys/membar.h>
75 #include <sys/atomic.h>
76 #include <sys/cpu_module.h>
77 #include <sys/prom_debug.h>
78 #include <sys/ksynch.h>
79 #include <sys/mem_config.h>
80 #include <sys/mem_cage.h>
81 #include <vm/vm_dep.h>
82 #include <vm/xhat_sfmmu.h>
83 #include <sys/fpu/fpusystm.h>
84 #include <vm/mach_kpm.h>
85 #include <sys/callb.h>
86 
87 #ifdef	DEBUG
88 #define	SFMMU_VALIDATE_HMERID(hat, rid, saddr, len)			\
89 	if (SFMMU_IS_SHMERID_VALID(rid)) {				\
90 		caddr_t _eaddr = (saddr) + (len);			\
91 		sf_srd_t *_srdp;					\
92 		sf_region_t *_rgnp;					\
93 		ASSERT((rid) < SFMMU_MAX_HME_REGIONS);			\
94 		ASSERT(SF_RGNMAP_TEST(hat->sfmmu_hmeregion_map, rid));	\
95 		ASSERT((hat) != ksfmmup);				\
96 		_srdp = (hat)->sfmmu_srdp;				\
97 		ASSERT(_srdp != NULL);					\
98 		ASSERT(_srdp->srd_refcnt != 0);				\
99 		_rgnp = _srdp->srd_hmergnp[(rid)];			\
100 		ASSERT(_rgnp != NULL && _rgnp->rgn_id == rid);		\
101 		ASSERT(_rgnp->rgn_refcnt != 0);				\
102 		ASSERT(!(_rgnp->rgn_flags & SFMMU_REGION_FREE));	\
103 		ASSERT((_rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) ==	\
104 		    SFMMU_REGION_HME);					\
105 		ASSERT((saddr) >= _rgnp->rgn_saddr);			\
106 		ASSERT((saddr) < _rgnp->rgn_saddr + _rgnp->rgn_size);	\
107 		ASSERT(_eaddr > _rgnp->rgn_saddr);			\
108 		ASSERT(_eaddr <= _rgnp->rgn_saddr + _rgnp->rgn_size);	\
109 	}
110 
111 #define	SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid) 	 	 \
112 {						 			 \
113 		caddr_t _hsva;						 \
114 		caddr_t _heva;						 \
115 		caddr_t _rsva;					 	 \
116 		caddr_t _reva;					 	 \
117 		int	_ttesz = get_hblk_ttesz(hmeblkp);		 \
118 		int	_flagtte;					 \
119 		ASSERT((srdp)->srd_refcnt != 0);			 \
120 		ASSERT((rid) < SFMMU_MAX_HME_REGIONS);			 \
121 		ASSERT((rgnp)->rgn_id == rid);				 \
122 		ASSERT(!((rgnp)->rgn_flags & SFMMU_REGION_FREE));	 \
123 		ASSERT(((rgnp)->rgn_flags & SFMMU_REGION_TYPE_MASK) ==	 \
124 		    SFMMU_REGION_HME);					 \
125 		ASSERT(_ttesz <= (rgnp)->rgn_pgszc);			 \
126 		_hsva = (caddr_t)get_hblk_base(hmeblkp);		 \
127 		_heva = get_hblk_endaddr(hmeblkp);			 \
128 		_rsva = (caddr_t)P2ALIGN(				 \
129 		    (uintptr_t)(rgnp)->rgn_saddr, HBLK_MIN_BYTES);	 \
130 		_reva = (caddr_t)P2ROUNDUP(				 \
131 		    (uintptr_t)((rgnp)->rgn_saddr + (rgnp)->rgn_size),	 \
132 		    HBLK_MIN_BYTES);					 \
133 		ASSERT(_hsva >= _rsva);				 	 \
134 		ASSERT(_hsva < _reva);				 	 \
135 		ASSERT(_heva > _rsva);				 	 \
136 		ASSERT(_heva <= _reva);				 	 \
137 		_flagtte = (_ttesz < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ :  \
138 			_ttesz;						 \
139 		ASSERT(rgnp->rgn_hmeflags & (0x1 << _flagtte));		 \
140 }
141 
142 #else /* DEBUG */
143 #define	SFMMU_VALIDATE_HMERID(hat, rid, addr, len)
144 #define	SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid)
145 #endif /* DEBUG */
146 
147 #if defined(SF_ERRATA_57)
148 extern caddr_t errata57_limit;
149 #endif
150 
151 #define	HME8BLK_SZ_RND		((roundup(HME8BLK_SZ, sizeof (int64_t))) /  \
152 				(sizeof (int64_t)))
153 #define	HBLK_RESERVE		((struct hme_blk *)hblk_reserve)
154 
155 #define	HBLK_RESERVE_CNT	128
156 #define	HBLK_RESERVE_MIN	20
157 
158 static struct hme_blk		*freehblkp;
159 static kmutex_t			freehblkp_lock;
160 static int			freehblkcnt;
161 
162 static int64_t			hblk_reserve[HME8BLK_SZ_RND];
163 static kmutex_t			hblk_reserve_lock;
164 static kthread_t		*hblk_reserve_thread;
165 
166 static nucleus_hblk8_info_t	nucleus_hblk8;
167 static nucleus_hblk1_info_t	nucleus_hblk1;
168 
169 /*
170  * SFMMU specific hat functions
171  */
172 void	hat_pagecachectl(struct page *, int);
173 
174 /* flags for hat_pagecachectl */
175 #define	HAT_CACHE	0x1
176 #define	HAT_UNCACHE	0x2
177 #define	HAT_TMPNC	0x4
178 
179 /*
180  * Flag to allow the creation of non-cacheable translations
181  * to system memory. It is off by default. At the moment this
182  * flag is used by the ecache error injector. The error injector
183  * will turn it on when creating such a translation then shut it
184  * off when it's finished.
185  */
186 
187 int	sfmmu_allow_nc_trans = 0;
188 
189 /*
190  * Flag to disable large page support.
191  * 	value of 1 => disable all large pages.
192  *	bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
193  *
194  * For example, use the value 0x4 to disable 512K pages.
195  *
196  */
197 #define	LARGE_PAGES_OFF		0x1
198 
199 /*
200  * The disable_large_pages and disable_ism_large_pages variables control
201  * hat_memload_array and the page sizes to be used by ISM and the kernel.
202  *
203  * The disable_auto_data_large_pages and disable_auto_text_large_pages variables
204  * are only used to control which OOB pages to use at upper VM segment creation
205  * time, and are set in hat_init_pagesizes and used in the map_pgsz* routines.
206  * Their values may come from platform or CPU specific code to disable page
207  * sizes that should not be used.
208  *
209  * WARNING: 512K pages are currently not supported for ISM/DISM.
210  */
211 uint_t	disable_large_pages = 0;
212 uint_t	disable_ism_large_pages = (1 << TTE512K);
213 uint_t	disable_auto_data_large_pages = 0;
214 uint_t	disable_auto_text_large_pages = 0;
215 
216 /*
217  * Private sfmmu data structures for hat management
218  */
219 static struct kmem_cache *sfmmuid_cache;
220 static struct kmem_cache *mmuctxdom_cache;
221 
222 /*
223  * Private sfmmu data structures for tsb management
224  */
225 static struct kmem_cache *sfmmu_tsbinfo_cache;
226 static struct kmem_cache *sfmmu_tsb8k_cache;
227 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
228 static vmem_t *kmem_bigtsb_arena;
229 static vmem_t *kmem_tsb_arena;
230 
231 /*
232  * sfmmu static variables for hmeblk resource management.
233  */
234 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
235 static struct kmem_cache *sfmmu8_cache;
236 static struct kmem_cache *sfmmu1_cache;
237 static struct kmem_cache *pa_hment_cache;
238 
239 static kmutex_t 	ism_mlist_lock;	/* mutex for ism mapping list */
240 /*
241  * private data for ism
242  */
243 static struct kmem_cache *ism_blk_cache;
244 static struct kmem_cache *ism_ment_cache;
245 #define	ISMID_STARTADDR	NULL
246 
247 /*
248  * Region management data structures and function declarations.
249  */
250 
251 static void	sfmmu_leave_srd(sfmmu_t *);
252 static int	sfmmu_srdcache_constructor(void *, void *, int);
253 static void	sfmmu_srdcache_destructor(void *, void *);
254 static int	sfmmu_rgncache_constructor(void *, void *, int);
255 static void	sfmmu_rgncache_destructor(void *, void *);
256 static int	sfrgnmap_isnull(sf_region_map_t *);
257 static int	sfhmergnmap_isnull(sf_hmeregion_map_t *);
258 static int	sfmmu_scdcache_constructor(void *, void *, int);
259 static void	sfmmu_scdcache_destructor(void *, void *);
260 static void	sfmmu_rgn_cb_noop(caddr_t, caddr_t, caddr_t,
261     size_t, void *, u_offset_t);
262 
263 static uint_t srd_hashmask = SFMMU_MAX_SRD_BUCKETS - 1;
264 static sf_srd_bucket_t *srd_buckets;
265 static struct kmem_cache *srd_cache;
266 static uint_t srd_rgn_hashmask = SFMMU_MAX_REGION_BUCKETS - 1;
267 static struct kmem_cache *region_cache;
268 static struct kmem_cache *scd_cache;
269 
270 #ifdef sun4v
271 int use_bigtsb_arena = 1;
272 #else
273 int use_bigtsb_arena = 0;
274 #endif
275 
276 /* External /etc/system tunable, for turning on&off the shctx support */
277 int disable_shctx = 0;
278 /* Internal variable, set by MD if the HW supports shctx feature */
279 int shctx_on = 0;
280 
281 #ifdef DEBUG
282 static void check_scd_sfmmu_list(sfmmu_t **, sfmmu_t *, int);
283 #endif
284 static void sfmmu_to_scd_list(sfmmu_t **, sfmmu_t *);
285 static void sfmmu_from_scd_list(sfmmu_t **, sfmmu_t *);
286 
287 static sf_scd_t *sfmmu_alloc_scd(sf_srd_t *, sf_region_map_t *);
288 static void sfmmu_find_scd(sfmmu_t *);
289 static void sfmmu_join_scd(sf_scd_t *, sfmmu_t *);
290 static void sfmmu_finish_join_scd(sfmmu_t *);
291 static void sfmmu_leave_scd(sfmmu_t *, uchar_t);
292 static void sfmmu_destroy_scd(sf_srd_t *, sf_scd_t *, sf_region_map_t *);
293 static int sfmmu_alloc_scd_tsbs(sf_srd_t *, sf_scd_t *);
294 static void sfmmu_free_scd_tsbs(sfmmu_t *);
295 static void sfmmu_tsb_inv_ctx(sfmmu_t *);
296 static int find_ism_rid(sfmmu_t *, sfmmu_t *, caddr_t, uint_t *);
297 static void sfmmu_ism_hatflags(sfmmu_t *, int);
298 static int sfmmu_srd_lock_held(sf_srd_t *);
299 static void sfmmu_remove_scd(sf_scd_t **, sf_scd_t *);
300 static void sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *);
301 static void sfmmu_link_scd_to_regions(sf_srd_t *, sf_scd_t *);
302 static void sfmmu_unlink_scd_from_regions(sf_srd_t *, sf_scd_t *);
303 static void sfmmu_link_to_hmeregion(sfmmu_t *, sf_region_t *);
304 static void sfmmu_unlink_from_hmeregion(sfmmu_t *, sf_region_t *);
305 
306 /*
307  * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
308  * HAT flags, synchronizing TLB/TSB coherency, and context management.
309  * The lock is hashed on the sfmmup since the case where we need to lock
310  * all processes is rare but does occur (e.g. we need to unload a shared
311  * mapping from all processes using the mapping).  We have a lot of buckets,
312  * and each slab of sfmmu_t's can use about a quarter of them, giving us
313  * a fairly good distribution without wasting too much space and overhead
314  * when we have to grab them all.
315  */
316 #define	SFMMU_NUM_LOCK	128		/* must be power of two */
317 hatlock_t	hat_lock[SFMMU_NUM_LOCK];
318 
319 /*
320  * Hash algorithm optimized for a small number of slabs.
321  *  7 is (highbit((sizeof sfmmu_t)) - 1)
322  * This hash algorithm is based upon the knowledge that sfmmu_t's come from a
323  * kmem_cache, and thus they will be sequential within that cache.  In
324  * addition, each new slab will have a different "color" up to cache_maxcolor
325  * which will skew the hashing for each successive slab which is allocated.
326  * If the size of sfmmu_t changed to a larger size, this algorithm may need
327  * to be revisited.
328  */
329 #define	TSB_HASH_SHIFT_BITS (7)
330 #define	PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
331 
332 #ifdef DEBUG
333 int tsb_hash_debug = 0;
334 #define	TSB_HASH(sfmmup)	\
335 	(tsb_hash_debug ? &hat_lock[0] : \
336 	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
337 #else	/* DEBUG */
338 #define	TSB_HASH(sfmmup)	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
339 #endif	/* DEBUG */
340 
341 
342 /* sfmmu_replace_tsb() return codes. */
343 typedef enum tsb_replace_rc {
344 	TSB_SUCCESS,
345 	TSB_ALLOCFAIL,
346 	TSB_LOSTRACE,
347 	TSB_ALREADY_SWAPPED,
348 	TSB_CANTGROW
349 } tsb_replace_rc_t;
350 
351 /*
352  * Flags for TSB allocation routines.
353  */
354 #define	TSB_ALLOC	0x01
355 #define	TSB_FORCEALLOC	0x02
356 #define	TSB_GROW	0x04
357 #define	TSB_SHRINK	0x08
358 #define	TSB_SWAPIN	0x10
359 
360 /*
361  * Support for HAT callbacks.
362  */
363 #define	SFMMU_MAX_RELOC_CALLBACKS	10
364 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
365 static id_t sfmmu_cb_nextid = 0;
366 static id_t sfmmu_tsb_cb_id;
367 struct sfmmu_callback *sfmmu_cb_table;
368 
369 /*
370  * Kernel page relocation is enabled by default for non-caged
371  * kernel pages.  This has little effect unless segkmem_reloc is
372  * set, since by default kernel memory comes from inside the
373  * kernel cage.
374  */
375 int hat_kpr_enabled = 1;
376 
377 kmutex_t	kpr_mutex;
378 kmutex_t	kpr_suspendlock;
379 kthread_t	*kreloc_thread;
380 
381 /*
382  * Enable VA->PA translation sanity checking on DEBUG kernels.
383  * Disabled by default.  This is incompatible with some
384  * drivers (error injector, RSM) so if it breaks you get
385  * to keep both pieces.
386  */
387 int hat_check_vtop = 0;
388 
389 /*
390  * Private sfmmu routines (prototypes)
391  */
392 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
393 static struct 	hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
394 			struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t,
395 			uint_t);
396 static caddr_t	sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
397 			caddr_t, demap_range_t *, uint_t);
398 static caddr_t	sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
399 			caddr_t, int);
400 static void	sfmmu_hblk_free(struct hmehash_bucket *, struct hme_blk *,
401 			uint64_t, struct hme_blk **);
402 static void	sfmmu_hblks_list_purge(struct hme_blk **);
403 static uint_t	sfmmu_get_free_hblk(struct hme_blk **, uint_t);
404 static uint_t	sfmmu_put_free_hblk(struct hme_blk *, uint_t);
405 static struct hme_blk *sfmmu_hblk_steal(int);
406 static int	sfmmu_steal_this_hblk(struct hmehash_bucket *,
407 			struct hme_blk *, uint64_t, uint64_t,
408 			struct hme_blk *);
409 static caddr_t	sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
410 
411 static void	hat_do_memload_array(struct hat *, caddr_t, size_t,
412 		    struct page **, uint_t, uint_t, uint_t);
413 static void	hat_do_memload(struct hat *, caddr_t, struct page *,
414 		    uint_t, uint_t, uint_t);
415 static void	sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
416 		    uint_t, uint_t, pgcnt_t, uint_t);
417 void		sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
418 			uint_t);
419 static int	sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
420 			uint_t, uint_t);
421 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
422 					caddr_t, int, uint_t);
423 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
424 			struct hmehash_bucket *, caddr_t, uint_t, uint_t,
425 			uint_t);
426 static int	sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
427 			caddr_t, page_t **, uint_t, uint_t);
428 static void	sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
429 
430 static int	sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
431 static pfn_t	sfmmu_uvatopfn(caddr_t, sfmmu_t *, tte_t *);
432 void		sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
433 #ifdef VAC
434 static void	sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
435 static int	sfmmu_vacconflict_array(caddr_t, page_t *, int *);
436 int	tst_tnc(page_t *pp, pgcnt_t);
437 void	conv_tnc(page_t *pp, int);
438 #endif
439 
440 static void	sfmmu_get_ctx(sfmmu_t *);
441 static void	sfmmu_free_sfmmu(sfmmu_t *);
442 
443 static void	sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
444 static void	sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
445 
446 cpuset_t	sfmmu_pageunload(page_t *, struct sf_hment *, int);
447 static void	hat_pagereload(struct page *, struct page *);
448 static cpuset_t	sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
449 #ifdef VAC
450 void	sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
451 static void	sfmmu_page_cache(page_t *, int, int, int);
452 #endif
453 
454 cpuset_t	sfmmu_rgntlb_demap(caddr_t, sf_region_t *,
455     struct hme_blk *, int);
456 static void	sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
457 			pfn_t, int, int, int, int);
458 static void	sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
459 			pfn_t, int);
460 static void	sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
461 static void	sfmmu_tlb_range_demap(demap_range_t *);
462 static void	sfmmu_invalidate_ctx(sfmmu_t *);
463 static void	sfmmu_sync_mmustate(sfmmu_t *);
464 
465 static void 	sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
466 static int	sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
467 			sfmmu_t *);
468 static void	sfmmu_tsb_free(struct tsb_info *);
469 static void	sfmmu_tsbinfo_free(struct tsb_info *);
470 static int	sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
471 			sfmmu_t *);
472 static void	sfmmu_tsb_chk_reloc(sfmmu_t *, hatlock_t *);
473 static void	sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
474 static int	sfmmu_select_tsb_szc(pgcnt_t);
475 static void	sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
476 #define		sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
477 	sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
478 #define		sfmmu_unload_tsb(sfmmup, vaddr, szc)    \
479 	sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
480 static void	sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
481 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
482     hatlock_t *, uint_t);
483 static void	sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
484 
485 #ifdef VAC
486 void	sfmmu_cache_flush(pfn_t, int);
487 void	sfmmu_cache_flushcolor(int, pfn_t);
488 #endif
489 static caddr_t	sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
490 			caddr_t, demap_range_t *, uint_t, int);
491 
492 static uint64_t	sfmmu_vtop_attr(uint_t, int mode, tte_t *);
493 static uint_t	sfmmu_ptov_attr(tte_t *);
494 static caddr_t	sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
495 			caddr_t, demap_range_t *, uint_t);
496 static uint_t	sfmmu_vtop_prot(uint_t, uint_t *);
497 static int	sfmmu_idcache_constructor(void *, void *, int);
498 static void	sfmmu_idcache_destructor(void *, void *);
499 static int	sfmmu_hblkcache_constructor(void *, void *, int);
500 static void	sfmmu_hblkcache_destructor(void *, void *);
501 static void	sfmmu_hblkcache_reclaim(void *);
502 static void	sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
503 			struct hmehash_bucket *);
504 static void	sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
505 static void	sfmmu_cleanup_rhblk(sf_srd_t *, caddr_t, uint_t, int);
506 static void	sfmmu_unload_hmeregion_va(sf_srd_t *, uint_t, caddr_t, caddr_t,
507 			int, caddr_t *);
508 static void	sfmmu_unload_hmeregion(sf_srd_t *, sf_region_t *);
509 
510 static void	sfmmu_rm_large_mappings(page_t *, int);
511 
512 static void	hat_lock_init(void);
513 static void	hat_kstat_init(void);
514 static int	sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
515 static void	sfmmu_set_scd_rttecnt(sf_srd_t *, sf_scd_t *);
516 static	int	sfmmu_is_rgnva(sf_srd_t *, caddr_t, ulong_t, ulong_t);
517 static void	sfmmu_check_page_sizes(sfmmu_t *, int);
518 int	fnd_mapping_sz(page_t *);
519 static void	iment_add(struct ism_ment *,  struct hat *);
520 static void	iment_sub(struct ism_ment *, struct hat *);
521 static pgcnt_t	ism_tsb_entries(sfmmu_t *, int szc);
522 extern void	sfmmu_setup_tsbinfo(sfmmu_t *);
523 extern void	sfmmu_clear_utsbinfo(void);
524 
525 static void	sfmmu_ctx_wrap_around(mmu_ctx_t *);
526 
527 /* kpm globals */
528 #ifdef	DEBUG
529 /*
530  * Enable trap level tsbmiss handling
531  */
532 int	kpm_tsbmtl = 1;
533 
534 /*
535  * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
536  * required TLB shootdowns in this case, so handle w/ care. Off by default.
537  */
538 int	kpm_tlb_flush;
539 #endif	/* DEBUG */
540 
541 static void	*sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
542 
543 #ifdef DEBUG
544 static void	sfmmu_check_hblk_flist();
545 #endif
546 
547 /*
548  * Semi-private sfmmu data structures.  Some of them are initialize in
549  * startup or in hat_init. Some of them are private but accessed by
550  * assembly code or mach_sfmmu.c
551  */
552 struct hmehash_bucket *uhme_hash;	/* user hmeblk hash table */
553 struct hmehash_bucket *khme_hash;	/* kernel hmeblk hash table */
554 uint64_t	uhme_hash_pa;		/* PA of uhme_hash */
555 uint64_t	khme_hash_pa;		/* PA of khme_hash */
556 int 		uhmehash_num;		/* # of buckets in user hash table */
557 int 		khmehash_num;		/* # of buckets in kernel hash table */
558 
559 uint_t		max_mmu_ctxdoms = 0;	/* max context domains in the system */
560 mmu_ctx_t	**mmu_ctxs_tbl;		/* global array of context domains */
561 uint64_t	mmu_saved_gnum = 0;	/* to init incoming MMUs' gnums */
562 
563 #define	DEFAULT_NUM_CTXS_PER_MMU 8192
564 static uint_t	nctxs = DEFAULT_NUM_CTXS_PER_MMU;
565 
566 int		cache;			/* describes system cache */
567 
568 caddr_t		ktsb_base;		/* kernel 8k-indexed tsb base address */
569 uint64_t	ktsb_pbase;		/* kernel 8k-indexed tsb phys address */
570 int		ktsb_szcode;		/* kernel 8k-indexed tsb size code */
571 int		ktsb_sz;		/* kernel 8k-indexed tsb size */
572 
573 caddr_t		ktsb4m_base;		/* kernel 4m-indexed tsb base address */
574 uint64_t	ktsb4m_pbase;		/* kernel 4m-indexed tsb phys address */
575 int		ktsb4m_szcode;		/* kernel 4m-indexed tsb size code */
576 int		ktsb4m_sz;		/* kernel 4m-indexed tsb size */
577 
578 uint64_t	kpm_tsbbase;		/* kernel seg_kpm 4M TSB base address */
579 int		kpm_tsbsz;		/* kernel seg_kpm 4M TSB size code */
580 uint64_t	kpmsm_tsbbase;		/* kernel seg_kpm 8K TSB base address */
581 int		kpmsm_tsbsz;		/* kernel seg_kpm 8K TSB size code */
582 
583 #ifndef sun4v
584 int		utsb_dtlb_ttenum = -1;	/* index in TLB for utsb locked TTE */
585 int		utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
586 int		dtlb_resv_ttenum;	/* index in TLB of first reserved TTE */
587 caddr_t		utsb_vabase;		/* reserved kernel virtual memory */
588 caddr_t		utsb4m_vabase;		/* for trap handler TSB accesses */
589 #endif /* sun4v */
590 uint64_t	tsb_alloc_bytes = 0;	/* bytes allocated to TSBs */
591 vmem_t		*kmem_tsb_default_arena[NLGRPS_MAX];	/* For dynamic TSBs */
592 vmem_t		*kmem_bigtsb_default_arena[NLGRPS_MAX]; /* dynamic 256M TSBs */
593 
594 /*
595  * Size to use for TSB slabs.  Future platforms that support page sizes
596  * larger than 4M may wish to change these values, and provide their own
597  * assembly macros for building and decoding the TSB base register contents.
598  * Note disable_large_pages will override the value set here.
599  */
600 static	uint_t tsb_slab_ttesz = TTE4M;
601 size_t	tsb_slab_size = MMU_PAGESIZE4M;
602 uint_t	tsb_slab_shift = MMU_PAGESHIFT4M;
603 /* PFN mask for TTE */
604 size_t	tsb_slab_mask = MMU_PAGEOFFSET4M >> MMU_PAGESHIFT;
605 
606 /*
607  * Size to use for TSB slabs.  These are used only when 256M tsb arenas
608  * exist.
609  */
610 static uint_t	bigtsb_slab_ttesz = TTE256M;
611 static size_t	bigtsb_slab_size = MMU_PAGESIZE256M;
612 static uint_t	bigtsb_slab_shift = MMU_PAGESHIFT256M;
613 /* 256M page alignment for 8K pfn */
614 static size_t	bigtsb_slab_mask = MMU_PAGEOFFSET256M >> MMU_PAGESHIFT;
615 
616 /* largest TSB size to grow to, will be smaller on smaller memory systems */
617 static int	tsb_max_growsize = 0;
618 
619 /*
620  * Tunable parameters dealing with TSB policies.
621  */
622 
623 /*
624  * This undocumented tunable forces all 8K TSBs to be allocated from
625  * the kernel heap rather than from the kmem_tsb_default_arena arenas.
626  */
627 #ifdef	DEBUG
628 int	tsb_forceheap = 0;
629 #endif	/* DEBUG */
630 
631 /*
632  * Decide whether to use per-lgroup arenas, or one global set of
633  * TSB arenas.  The default is not to break up per-lgroup, since
634  * most platforms don't recognize any tangible benefit from it.
635  */
636 int	tsb_lgrp_affinity = 0;
637 
638 /*
639  * Used for growing the TSB based on the process RSS.
640  * tsb_rss_factor is based on the smallest TSB, and is
641  * shifted by the TSB size to determine if we need to grow.
642  * The default will grow the TSB if the number of TTEs for
643  * this page size exceeds 75% of the number of TSB entries,
644  * which should _almost_ eliminate all conflict misses
645  * (at the expense of using up lots and lots of memory).
646  */
647 #define	TSB_RSS_FACTOR		(TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
648 #define	SFMMU_RSS_TSBSIZE(tsbszc)	(tsb_rss_factor << tsbszc)
649 #define	SELECT_TSB_SIZECODE(pgcnt) ( \
650 	(enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
651 	default_tsb_size)
652 #define	TSB_OK_SHRINK()	\
653 	(tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
654 #define	TSB_OK_GROW()	\
655 	(tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
656 
657 int	enable_tsb_rss_sizing = 1;
658 int	tsb_rss_factor	= (int)TSB_RSS_FACTOR;
659 
660 /* which TSB size code to use for new address spaces or if rss sizing off */
661 int default_tsb_size = TSB_8K_SZCODE;
662 
663 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
664 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */
665 #define	TSB_ALLOC_HIWATER_FACTOR_DEFAULT	32
666 
667 #ifdef DEBUG
668 static int tsb_random_size = 0;	/* set to 1 to test random tsb sizes on alloc */
669 static int tsb_grow_stress = 0;	/* if set to 1, keep replacing TSB w/ random */
670 static int tsb_alloc_mtbf = 0;	/* fail allocation every n attempts */
671 static int tsb_alloc_fail_mtbf = 0;
672 static int tsb_alloc_count = 0;
673 #endif /* DEBUG */
674 
675 /* if set to 1, will remap valid TTEs when growing TSB. */
676 int tsb_remap_ttes = 1;
677 
678 /*
679  * If we have more than this many mappings, allocate a second TSB.
680  * This default is chosen because the I/D fully associative TLBs are
681  * assumed to have at least 8 available entries. Platforms with a
682  * larger fully-associative TLB could probably override the default.
683  */
684 
685 #ifdef sun4v
686 int tsb_sectsb_threshold = 0;
687 #else
688 int tsb_sectsb_threshold = 8;
689 #endif
690 
691 /*
692  * kstat data
693  */
694 struct sfmmu_global_stat sfmmu_global_stat;
695 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
696 
697 /*
698  * Global data
699  */
700 sfmmu_t 	*ksfmmup;		/* kernel's hat id */
701 
702 #ifdef DEBUG
703 static void	chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
704 #endif
705 
706 /* sfmmu locking operations */
707 static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
708 static int	sfmmu_mlspl_held(struct page *, int);
709 
710 kmutex_t *sfmmu_page_enter(page_t *);
711 void	sfmmu_page_exit(kmutex_t *);
712 int	sfmmu_page_spl_held(struct page *);
713 
714 /* sfmmu internal locking operations - accessed directly */
715 static void	sfmmu_mlist_reloc_enter(page_t *, page_t *,
716 				kmutex_t **, kmutex_t **);
717 static void	sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
718 static hatlock_t *
719 		sfmmu_hat_enter(sfmmu_t *);
720 static hatlock_t *
721 		sfmmu_hat_tryenter(sfmmu_t *);
722 static void	sfmmu_hat_exit(hatlock_t *);
723 static void	sfmmu_hat_lock_all(void);
724 static void	sfmmu_hat_unlock_all(void);
725 static void	sfmmu_ismhat_enter(sfmmu_t *, int);
726 static void	sfmmu_ismhat_exit(sfmmu_t *, int);
727 
728 /*
729  * Array of mutexes protecting a page's mapping list and p_nrm field.
730  *
731  * The hash function looks complicated, but is made up so that:
732  *
733  * "pp" not shifted, so adjacent pp values will hash to different cache lines
734  *  (8 byte alignment * 8 bytes/mutes == 64 byte coherency subblock)
735  *
736  * "pp" >> mml_shift, incorporates more source bits into the hash result
737  *
738  *  "& (mml_table_size - 1), should be faster than using remainder "%"
739  *
740  * Hopefully, mml_table, mml_table_size and mml_shift are all in the same
741  * cacheline, since they get declared next to each other below. We'll trust
742  * ld not to do something random.
743  */
744 #ifdef	DEBUG
745 int mlist_hash_debug = 0;
746 #define	MLIST_HASH(pp)	(mlist_hash_debug ? &mml_table[0] : \
747 	&mml_table[((uintptr_t)(pp) + \
748 	((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)])
749 #else	/* !DEBUG */
750 #define	MLIST_HASH(pp)   &mml_table[ \
751 	((uintptr_t)(pp) + ((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)]
752 #endif	/* !DEBUG */
753 
754 kmutex_t		*mml_table;
755 uint_t			mml_table_sz;	/* must be a power of 2 */
756 uint_t			mml_shift;	/* log2(mml_table_sz) + 3 for align */
757 
758 kpm_hlk_t	*kpmp_table;
759 uint_t		kpmp_table_sz;	/* must be a power of 2 */
760 uchar_t		kpmp_shift;
761 
762 kpm_shlk_t	*kpmp_stable;
763 uint_t		kpmp_stable_sz;	/* must be a power of 2 */
764 
765 /*
766  * SPL_HASH was improved to avoid false cache line sharing
767  */
768 #define	SPL_TABLE_SIZE	128
769 #define	SPL_MASK	(SPL_TABLE_SIZE - 1)
770 #define	SPL_SHIFT	7		/* log2(SPL_TABLE_SIZE) */
771 
772 #define	SPL_INDEX(pp) \
773 	((((uintptr_t)(pp) >> SPL_SHIFT) ^ \
774 	((uintptr_t)(pp) >> (SPL_SHIFT << 1))) & \
775 	(SPL_TABLE_SIZE - 1))
776 
777 #define	SPL_HASH(pp)    \
778 	(&sfmmu_page_lock[SPL_INDEX(pp) & SPL_MASK].pad_mutex)
779 
780 static	pad_mutex_t	sfmmu_page_lock[SPL_TABLE_SIZE];
781 
782 
783 /*
784  * hat_unload_callback() will group together callbacks in order
785  * to avoid xt_sync() calls.  This is the maximum size of the group.
786  */
787 #define	MAX_CB_ADDR	32
788 
789 tte_t	hw_tte;
790 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
791 
792 static char	*mmu_ctx_kstat_names[] = {
793 	"mmu_ctx_tsb_exceptions",
794 	"mmu_ctx_tsb_raise_exception",
795 	"mmu_ctx_wrap_around",
796 };
797 
798 /*
799  * Wrapper for vmem_xalloc since vmem_create only allows limited
800  * parameters for vm_source_alloc functions.  This function allows us
801  * to specify alignment consistent with the size of the object being
802  * allocated.
803  */
804 static void *
805 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
806 {
807 	return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
808 }
809 
810 /* Common code for setting tsb_alloc_hiwater. */
811 #define	SFMMU_SET_TSB_ALLOC_HIWATER(pages)	tsb_alloc_hiwater = \
812 		ptob(pages) / tsb_alloc_hiwater_factor
813 
814 /*
815  * Set tsb_max_growsize to allow at most all of physical memory to be mapped by
816  * a single TSB.  physmem is the number of physical pages so we need physmem 8K
817  * TTEs to represent all those physical pages.  We round this up by using
818  * 1<<highbit().  To figure out which size code to use, remember that the size
819  * code is just an amount to shift the smallest TSB size to get the size of
820  * this TSB.  So we subtract that size, TSB_START_SIZE, from highbit() (or
821  * highbit() - 1) to get the size code for the smallest TSB that can represent
822  * all of physical memory, while erring on the side of too much.
823  *
824  * Restrict tsb_max_growsize to make sure that:
825  *	1) TSBs can't grow larger than the TSB slab size
826  *	2) TSBs can't grow larger than UTSB_MAX_SZCODE.
827  */
828 #define	SFMMU_SET_TSB_MAX_GROWSIZE(pages) {				\
829 	int	_i, _szc, _slabszc, _tsbszc;				\
830 									\
831 	_i = highbit(pages);						\
832 	if ((1 << (_i - 1)) == (pages))					\
833 		_i--;		/* 2^n case, round down */              \
834 	_szc = _i - TSB_START_SIZE;					\
835 	_slabszc = bigtsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT); \
836 	_tsbszc = MIN(_szc, _slabszc);                                  \
837 	tsb_max_growsize = MIN(_tsbszc, UTSB_MAX_SZCODE);               \
838 }
839 
840 /*
841  * Given a pointer to an sfmmu and a TTE size code, return a pointer to the
842  * tsb_info which handles that TTE size.
843  */
844 #define	SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc) {			\
845 	(tsbinfop) = (sfmmup)->sfmmu_tsb;				\
846 	ASSERT(((tsbinfop)->tsb_flags & TSB_SHAREDCTX) ||		\
847 	    sfmmu_hat_lock_held(sfmmup));				\
848 	if ((tte_szc) >= TTE4M)	{					\
849 		ASSERT((tsbinfop) != NULL);				\
850 		(tsbinfop) = (tsbinfop)->tsb_next;			\
851 	}								\
852 }
853 
854 /*
855  * Macro to use to unload entries from the TSB.
856  * It has knowledge of which page sizes get replicated in the TSB
857  * and will call the appropriate unload routine for the appropriate size.
858  */
859 #define	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, ismhat)		\
860 {									\
861 	int ttesz = get_hblk_ttesz(hmeblkp);				\
862 	if (ttesz == TTE8K || ttesz == TTE4M) {				\
863 		sfmmu_unload_tsb(sfmmup, addr, ttesz);			\
864 	} else {							\
865 		caddr_t sva = ismhat ? addr : 				\
866 		    (caddr_t)get_hblk_base(hmeblkp);			\
867 		caddr_t eva = sva + get_hblk_span(hmeblkp);		\
868 		ASSERT(addr >= sva && addr < eva);			\
869 		sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);	\
870 	}								\
871 }
872 
873 
874 /* Update tsb_alloc_hiwater after memory is configured. */
875 /*ARGSUSED*/
876 static void
877 sfmmu_update_post_add(void *arg, pgcnt_t delta_pages)
878 {
879 	/* Assumes physmem has already been updated. */
880 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
881 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
882 }
883 
884 /*
885  * Update tsb_alloc_hiwater before memory is deleted.  We'll do nothing here
886  * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
887  * deleted.
888  */
889 /*ARGSUSED*/
890 static int
891 sfmmu_update_pre_del(void *arg, pgcnt_t delta_pages)
892 {
893 	return (0);
894 }
895 
896 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
897 /*ARGSUSED*/
898 static void
899 sfmmu_update_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
900 {
901 	/*
902 	 * Whether the delete was cancelled or not, just go ahead and update
903 	 * tsb_alloc_hiwater and tsb_max_growsize.
904 	 */
905 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
906 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
907 }
908 
909 static kphysm_setup_vector_t sfmmu_update_vec = {
910 	KPHYSM_SETUP_VECTOR_VERSION,	/* version */
911 	sfmmu_update_post_add,		/* post_add */
912 	sfmmu_update_pre_del,		/* pre_del */
913 	sfmmu_update_post_del		/* post_del */
914 };
915 
916 
917 /*
918  * HME_BLK HASH PRIMITIVES
919  */
920 
921 /*
922  * Enter a hme on the mapping list for page pp.
923  * When large pages are more prevalent in the system we might want to
924  * keep the mapping list in ascending order by the hment size. For now,
925  * small pages are more frequent, so don't slow it down.
926  */
927 #define	HME_ADD(hme, pp)					\
928 {								\
929 	ASSERT(sfmmu_mlist_held(pp));				\
930 								\
931 	hme->hme_prev = NULL;					\
932 	hme->hme_next = pp->p_mapping;				\
933 	hme->hme_page = pp;					\
934 	if (pp->p_mapping) {					\
935 		((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
936 		ASSERT(pp->p_share > 0);			\
937 	} else  {						\
938 		/* EMPTY */					\
939 		ASSERT(pp->p_share == 0);			\
940 	}							\
941 	pp->p_mapping = hme;					\
942 	pp->p_share++;						\
943 }
944 
945 /*
946  * Enter a hme on the mapping list for page pp.
947  * If we are unmapping a large translation, we need to make sure that the
948  * change is reflect in the corresponding bit of the p_index field.
949  */
950 #define	HME_SUB(hme, pp)					\
951 {								\
952 	ASSERT(sfmmu_mlist_held(pp));				\
953 	ASSERT(hme->hme_page == pp || IS_PAHME(hme));		\
954 								\
955 	if (pp->p_mapping == NULL) {				\
956 		panic("hme_remove - no mappings");		\
957 	}							\
958 								\
959 	membar_stst();	/* ensure previous stores finish */	\
960 								\
961 	ASSERT(pp->p_share > 0);				\
962 	pp->p_share--;						\
963 								\
964 	if (hme->hme_prev) {					\
965 		ASSERT(pp->p_mapping != hme);			\
966 		ASSERT(hme->hme_prev->hme_page == pp ||		\
967 			IS_PAHME(hme->hme_prev));		\
968 		hme->hme_prev->hme_next = hme->hme_next;	\
969 	} else {						\
970 		ASSERT(pp->p_mapping == hme);			\
971 		pp->p_mapping = hme->hme_next;			\
972 		ASSERT((pp->p_mapping == NULL) ?		\
973 			(pp->p_share == 0) : 1);		\
974 	}							\
975 								\
976 	if (hme->hme_next) {					\
977 		ASSERT(hme->hme_next->hme_page == pp ||		\
978 			IS_PAHME(hme->hme_next));		\
979 		hme->hme_next->hme_prev = hme->hme_prev;	\
980 	}							\
981 								\
982 	/* zero out the entry */				\
983 	hme->hme_next = NULL;					\
984 	hme->hme_prev = NULL;					\
985 	hme->hme_page = NULL;					\
986 								\
987 	if (hme_size(hme) > TTE8K) {				\
988 		/* remove mappings for remainder of large pg */	\
989 		sfmmu_rm_large_mappings(pp, hme_size(hme));	\
990 	}							\
991 }
992 
993 /*
994  * This function returns the hment given the hme_blk and a vaddr.
995  * It assumes addr has already been checked to belong to hme_blk's
996  * range.
997  */
998 #define	HBLKTOHME(hment, hmeblkp, addr)					\
999 {									\
1000 	int index;							\
1001 	HBLKTOHME_IDX(hment, hmeblkp, addr, index)			\
1002 }
1003 
1004 /*
1005  * Version of HBLKTOHME that also returns the index in hmeblkp
1006  * of the hment.
1007  */
1008 #define	HBLKTOHME_IDX(hment, hmeblkp, addr, idx)			\
1009 {									\
1010 	ASSERT(in_hblk_range((hmeblkp), (addr)));			\
1011 									\
1012 	if (get_hblk_ttesz(hmeblkp) == TTE8K) {				\
1013 		idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
1014 	} else								\
1015 		idx = 0;						\
1016 									\
1017 	(hment) = &(hmeblkp)->hblk_hme[idx];				\
1018 }
1019 
1020 /*
1021  * Disable any page sizes not supported by the CPU
1022  */
1023 void
1024 hat_init_pagesizes()
1025 {
1026 	int 		i;
1027 
1028 	mmu_exported_page_sizes = 0;
1029 	for (i = TTE8K; i < max_mmu_page_sizes; i++) {
1030 
1031 		szc_2_userszc[i] = (uint_t)-1;
1032 		userszc_2_szc[i] = (uint_t)-1;
1033 
1034 		if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
1035 			disable_large_pages |= (1 << i);
1036 		} else {
1037 			szc_2_userszc[i] = mmu_exported_page_sizes;
1038 			userszc_2_szc[mmu_exported_page_sizes] = i;
1039 			mmu_exported_page_sizes++;
1040 		}
1041 	}
1042 
1043 	disable_ism_large_pages |= disable_large_pages;
1044 	disable_auto_data_large_pages = disable_large_pages;
1045 	disable_auto_text_large_pages = disable_large_pages;
1046 
1047 	/*
1048 	 * Initialize mmu-specific large page sizes.
1049 	 */
1050 	if (&mmu_large_pages_disabled) {
1051 		disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
1052 		disable_ism_large_pages |=
1053 		    mmu_large_pages_disabled(HAT_LOAD_SHARE);
1054 		disable_auto_data_large_pages |=
1055 		    mmu_large_pages_disabled(HAT_AUTO_DATA);
1056 		disable_auto_text_large_pages |=
1057 		    mmu_large_pages_disabled(HAT_AUTO_TEXT);
1058 	}
1059 }
1060 
1061 /*
1062  * Initialize the hardware address translation structures.
1063  */
1064 void
1065 hat_init(void)
1066 {
1067 	int 		i;
1068 	uint_t		sz;
1069 	size_t		size;
1070 
1071 	hat_lock_init();
1072 	hat_kstat_init();
1073 
1074 	/*
1075 	 * Hardware-only bits in a TTE
1076 	 */
1077 	MAKE_TTE_MASK(&hw_tte);
1078 
1079 	hat_init_pagesizes();
1080 
1081 	/* Initialize the hash locks */
1082 	for (i = 0; i < khmehash_num; i++) {
1083 		mutex_init(&khme_hash[i].hmehash_mutex, NULL,
1084 		    MUTEX_DEFAULT, NULL);
1085 	}
1086 	for (i = 0; i < uhmehash_num; i++) {
1087 		mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
1088 		    MUTEX_DEFAULT, NULL);
1089 	}
1090 	khmehash_num--;		/* make sure counter starts from 0 */
1091 	uhmehash_num--;		/* make sure counter starts from 0 */
1092 
1093 	/*
1094 	 * Allocate context domain structures.
1095 	 *
1096 	 * A platform may choose to modify max_mmu_ctxdoms in
1097 	 * set_platform_defaults(). If a platform does not define
1098 	 * a set_platform_defaults() or does not choose to modify
1099 	 * max_mmu_ctxdoms, it gets one MMU context domain for every CPU.
1100 	 *
1101 	 * For sun4v, there will be one global context domain, this is to
1102 	 * avoid the ldom cpu substitution problem.
1103 	 *
1104 	 * For all platforms that have CPUs sharing MMUs, this
1105 	 * value must be defined.
1106 	 */
1107 	if (max_mmu_ctxdoms == 0) {
1108 #ifndef sun4v
1109 		max_mmu_ctxdoms = max_ncpus;
1110 #else /* sun4v */
1111 		max_mmu_ctxdoms = 1;
1112 #endif /* sun4v */
1113 	}
1114 
1115 	size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *);
1116 	mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP);
1117 
1118 	/* mmu_ctx_t is 64 bytes aligned */
1119 	mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache",
1120 	    sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
1121 	/*
1122 	 * MMU context domain initialization for the Boot CPU.
1123 	 * This needs the context domains array allocated above.
1124 	 */
1125 	mutex_enter(&cpu_lock);
1126 	sfmmu_cpu_init(CPU);
1127 	mutex_exit(&cpu_lock);
1128 
1129 	/*
1130 	 * Intialize ism mapping list lock.
1131 	 */
1132 
1133 	mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
1134 
1135 	/*
1136 	 * Each sfmmu structure carries an array of MMU context info
1137 	 * structures, one per context domain. The size of this array depends
1138 	 * on the maximum number of context domains. So, the size of the
1139 	 * sfmmu structure varies per platform.
1140 	 *
1141 	 * sfmmu is allocated from static arena, because trap
1142 	 * handler at TL > 0 is not allowed to touch kernel relocatable
1143 	 * memory. sfmmu's alignment is changed to 64 bytes from
1144 	 * default 8 bytes, as the lower 6 bits will be used to pass
1145 	 * pgcnt to vtag_flush_pgcnt_tl1.
1146 	 */
1147 	size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1);
1148 
1149 	sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size,
1150 	    64, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
1151 	    NULL, NULL, static_arena, 0);
1152 
1153 	sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
1154 	    sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
1155 
1156 	/*
1157 	 * Since we only use the tsb8k cache to "borrow" pages for TSBs
1158 	 * from the heap when low on memory or when TSB_FORCEALLOC is
1159 	 * specified, don't use magazines to cache them--we want to return
1160 	 * them to the system as quickly as possible.
1161 	 */
1162 	sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
1163 	    MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
1164 	    static_arena, KMC_NOMAGAZINE);
1165 
1166 	/*
1167 	 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
1168 	 * memory, which corresponds to the old static reserve for TSBs.
1169 	 * tsb_alloc_hiwater_factor defaults to 32.  This caps the amount of
1170 	 * memory we'll allocate for TSB slabs; beyond this point TSB
1171 	 * allocations will be taken from the kernel heap (via
1172 	 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem
1173 	 * consumer.
1174 	 */
1175 	if (tsb_alloc_hiwater_factor == 0) {
1176 		tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
1177 	}
1178 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
1179 
1180 	for (sz = tsb_slab_ttesz; sz > 0; sz--) {
1181 		if (!(disable_large_pages & (1 << sz)))
1182 			break;
1183 	}
1184 
1185 	if (sz < tsb_slab_ttesz) {
1186 		tsb_slab_ttesz = sz;
1187 		tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz;
1188 		tsb_slab_size = 1 << tsb_slab_shift;
1189 		tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1;
1190 		use_bigtsb_arena = 0;
1191 	} else if (use_bigtsb_arena &&
1192 	    (disable_large_pages & (1 << bigtsb_slab_ttesz))) {
1193 		use_bigtsb_arena = 0;
1194 	}
1195 
1196 	if (!use_bigtsb_arena) {
1197 		bigtsb_slab_shift = tsb_slab_shift;
1198 	}
1199 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
1200 
1201 	/*
1202 	 * On smaller memory systems, allocate TSB memory in smaller chunks
1203 	 * than the default 4M slab size. We also honor disable_large_pages
1204 	 * here.
1205 	 *
1206 	 * The trap handlers need to be patched with the final slab shift,
1207 	 * since they need to be able to construct the TSB pointer at runtime.
1208 	 */
1209 	if ((tsb_max_growsize <= TSB_512K_SZCODE) &&
1210 	    !(disable_large_pages & (1 << TTE512K))) {
1211 		tsb_slab_ttesz = TTE512K;
1212 		tsb_slab_shift = MMU_PAGESHIFT512K;
1213 		tsb_slab_size = MMU_PAGESIZE512K;
1214 		tsb_slab_mask = MMU_PAGEOFFSET512K >> MMU_PAGESHIFT;
1215 		use_bigtsb_arena = 0;
1216 	}
1217 
1218 	if (!use_bigtsb_arena) {
1219 		bigtsb_slab_ttesz = tsb_slab_ttesz;
1220 		bigtsb_slab_shift = tsb_slab_shift;
1221 		bigtsb_slab_size = tsb_slab_size;
1222 		bigtsb_slab_mask = tsb_slab_mask;
1223 	}
1224 
1225 
1226 	/*
1227 	 * Set up memory callback to update tsb_alloc_hiwater and
1228 	 * tsb_max_growsize.
1229 	 */
1230 	i = kphysm_setup_func_register(&sfmmu_update_vec, (void *) 0);
1231 	ASSERT(i == 0);
1232 
1233 	/*
1234 	 * kmem_tsb_arena is the source from which large TSB slabs are
1235 	 * drawn.  The quantum of this arena corresponds to the largest
1236 	 * TSB size we can dynamically allocate for user processes.
1237 	 * Currently it must also be a supported page size since we
1238 	 * use exactly one translation entry to map each slab page.
1239 	 *
1240 	 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from
1241 	 * which most TSBs are allocated.  Since most TSB allocations are
1242 	 * typically 8K we have a kmem cache we stack on top of each
1243 	 * kmem_tsb_default_arena to speed up those allocations.
1244 	 *
1245 	 * Note the two-level scheme of arenas is required only
1246 	 * because vmem_create doesn't allow us to specify alignment
1247 	 * requirements.  If this ever changes the code could be
1248 	 * simplified to use only one level of arenas.
1249 	 *
1250 	 * If 256M page support exists on sun4v, 256MB kmem_bigtsb_arena
1251 	 * will be provided in addition to the 4M kmem_tsb_arena.
1252 	 */
1253 	if (use_bigtsb_arena) {
1254 		kmem_bigtsb_arena = vmem_create("kmem_bigtsb", NULL, 0,
1255 		    bigtsb_slab_size, sfmmu_vmem_xalloc_aligned_wrapper,
1256 		    vmem_xfree, heap_arena, 0, VM_SLEEP);
1257 	}
1258 
1259 	kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
1260 	    sfmmu_vmem_xalloc_aligned_wrapper,
1261 	    vmem_xfree, heap_arena, 0, VM_SLEEP);
1262 
1263 	if (tsb_lgrp_affinity) {
1264 		char s[50];
1265 		for (i = 0; i < NLGRPS_MAX; i++) {
1266 			if (use_bigtsb_arena) {
1267 				(void) sprintf(s, "kmem_bigtsb_lgrp%d", i);
1268 				kmem_bigtsb_default_arena[i] = vmem_create(s,
1269 				    NULL, 0, 2 * tsb_slab_size,
1270 				    sfmmu_tsb_segkmem_alloc,
1271 				    sfmmu_tsb_segkmem_free, kmem_bigtsb_arena,
1272 				    0, VM_SLEEP | VM_BESTFIT);
1273 			}
1274 
1275 			(void) sprintf(s, "kmem_tsb_lgrp%d", i);
1276 			kmem_tsb_default_arena[i] = vmem_create(s,
1277 			    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1278 			    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1279 			    VM_SLEEP | VM_BESTFIT);
1280 
1281 			(void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
1282 			sfmmu_tsb_cache[i] = kmem_cache_create(s,
1283 			    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1284 			    kmem_tsb_default_arena[i], 0);
1285 		}
1286 	} else {
1287 		if (use_bigtsb_arena) {
1288 			kmem_bigtsb_default_arena[0] =
1289 			    vmem_create("kmem_bigtsb_default", NULL, 0,
1290 			    2 * tsb_slab_size, sfmmu_tsb_segkmem_alloc,
1291 			    sfmmu_tsb_segkmem_free, kmem_bigtsb_arena, 0,
1292 			    VM_SLEEP | VM_BESTFIT);
1293 		}
1294 
1295 		kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
1296 		    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1297 		    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1298 		    VM_SLEEP | VM_BESTFIT);
1299 		sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
1300 		    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1301 		    kmem_tsb_default_arena[0], 0);
1302 	}
1303 
1304 	sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
1305 	    HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1306 	    sfmmu_hblkcache_destructor,
1307 	    sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
1308 	    hat_memload_arena, KMC_NOHASH);
1309 
1310 	hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
1311 	    segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP);
1312 
1313 	sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
1314 	    HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1315 	    sfmmu_hblkcache_destructor,
1316 	    NULL, (void *)HME1BLK_SZ,
1317 	    hat_memload1_arena, KMC_NOHASH);
1318 
1319 	pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
1320 	    0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
1321 
1322 	ism_blk_cache = kmem_cache_create("ism_blk_cache",
1323 	    sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
1324 	    NULL, NULL, static_arena, KMC_NOHASH);
1325 
1326 	ism_ment_cache = kmem_cache_create("ism_ment_cache",
1327 	    sizeof (ism_ment_t), 0, NULL, NULL,
1328 	    NULL, NULL, NULL, 0);
1329 
1330 	/*
1331 	 * We grab the first hat for the kernel,
1332 	 */
1333 	AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
1334 	kas.a_hat = hat_alloc(&kas);
1335 	AS_LOCK_EXIT(&kas, &kas.a_lock);
1336 
1337 	/*
1338 	 * Initialize hblk_reserve.
1339 	 */
1340 	((struct hme_blk *)hblk_reserve)->hblk_nextpa =
1341 	    va_to_pa((caddr_t)hblk_reserve);
1342 
1343 #ifndef UTSB_PHYS
1344 	/*
1345 	 * Reserve some kernel virtual address space for the locked TTEs
1346 	 * that allow us to probe the TSB from TL>0.
1347 	 */
1348 	utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1349 	    0, 0, NULL, NULL, VM_SLEEP);
1350 	utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1351 	    0, 0, NULL, NULL, VM_SLEEP);
1352 #endif
1353 
1354 #ifdef VAC
1355 	/*
1356 	 * The big page VAC handling code assumes VAC
1357 	 * will not be bigger than the smallest big
1358 	 * page- which is 64K.
1359 	 */
1360 	if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
1361 		cmn_err(CE_PANIC, "VAC too big!");
1362 	}
1363 #endif
1364 
1365 	(void) xhat_init();
1366 
1367 	uhme_hash_pa = va_to_pa(uhme_hash);
1368 	khme_hash_pa = va_to_pa(khme_hash);
1369 
1370 	/*
1371 	 * Initialize relocation locks. kpr_suspendlock is held
1372 	 * at PIL_MAX to prevent interrupts from pinning the holder
1373 	 * of a suspended TTE which may access it leading to a
1374 	 * deadlock condition.
1375 	 */
1376 	mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
1377 	mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
1378 
1379 	/*
1380 	 * If Shared context support is disabled via /etc/system
1381 	 * set shctx_on to 0 here if it was set to 1 earlier in boot
1382 	 * sequence by cpu module initialization code.
1383 	 */
1384 	if (shctx_on && disable_shctx) {
1385 		shctx_on = 0;
1386 	}
1387 
1388 	if (shctx_on) {
1389 		srd_buckets = kmem_zalloc(SFMMU_MAX_SRD_BUCKETS *
1390 		    sizeof (srd_buckets[0]), KM_SLEEP);
1391 		for (i = 0; i < SFMMU_MAX_SRD_BUCKETS; i++) {
1392 			mutex_init(&srd_buckets[i].srdb_lock, NULL,
1393 			    MUTEX_DEFAULT, NULL);
1394 		}
1395 
1396 		srd_cache = kmem_cache_create("srd_cache", sizeof (sf_srd_t),
1397 		    0, sfmmu_srdcache_constructor, sfmmu_srdcache_destructor,
1398 		    NULL, NULL, NULL, 0);
1399 		region_cache = kmem_cache_create("region_cache",
1400 		    sizeof (sf_region_t), 0, sfmmu_rgncache_constructor,
1401 		    sfmmu_rgncache_destructor, NULL, NULL, NULL, 0);
1402 		scd_cache = kmem_cache_create("scd_cache", sizeof (sf_scd_t),
1403 		    0, sfmmu_scdcache_constructor,  sfmmu_scdcache_destructor,
1404 		    NULL, NULL, NULL, 0);
1405 	}
1406 
1407 	/*
1408 	 * Pre-allocate hrm_hashtab before enabling the collection of
1409 	 * refmod statistics.  Allocating on the fly would mean us
1410 	 * running the risk of suffering recursive mutex enters or
1411 	 * deadlocks.
1412 	 */
1413 	hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
1414 	    KM_SLEEP);
1415 }
1416 
1417 /*
1418  * Initialize locking for the hat layer, called early during boot.
1419  */
1420 static void
1421 hat_lock_init()
1422 {
1423 	int i;
1424 
1425 	/*
1426 	 * initialize the array of mutexes protecting a page's mapping
1427 	 * list and p_nrm field.
1428 	 */
1429 	for (i = 0; i < mml_table_sz; i++)
1430 		mutex_init(&mml_table[i], NULL, MUTEX_DEFAULT, NULL);
1431 
1432 	if (kpm_enable) {
1433 		for (i = 0; i < kpmp_table_sz; i++) {
1434 			mutex_init(&kpmp_table[i].khl_mutex, NULL,
1435 			    MUTEX_DEFAULT, NULL);
1436 		}
1437 	}
1438 
1439 	/*
1440 	 * Initialize array of mutex locks that protects sfmmu fields and
1441 	 * TSB lists.
1442 	 */
1443 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
1444 		mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
1445 		    NULL);
1446 }
1447 
1448 #define	SFMMU_KERNEL_MAXVA \
1449 	(kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
1450 
1451 /*
1452  * Allocate a hat structure.
1453  * Called when an address space first uses a hat.
1454  */
1455 struct hat *
1456 hat_alloc(struct as *as)
1457 {
1458 	sfmmu_t *sfmmup;
1459 	int i;
1460 	uint64_t cnum;
1461 	extern uint_t get_color_start(struct as *);
1462 
1463 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1464 	sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
1465 	sfmmup->sfmmu_as = as;
1466 	sfmmup->sfmmu_flags = 0;
1467 	sfmmup->sfmmu_tteflags = 0;
1468 	sfmmup->sfmmu_rtteflags = 0;
1469 	LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock);
1470 
1471 	if (as == &kas) {
1472 		ksfmmup = sfmmup;
1473 		sfmmup->sfmmu_cext = 0;
1474 		cnum = KCONTEXT;
1475 
1476 		sfmmup->sfmmu_clrstart = 0;
1477 		sfmmup->sfmmu_tsb = NULL;
1478 		/*
1479 		 * hat_kern_setup() will call sfmmu_init_ktsbinfo()
1480 		 * to setup tsb_info for ksfmmup.
1481 		 */
1482 	} else {
1483 
1484 		/*
1485 		 * Just set to invalid ctx. When it faults, it will
1486 		 * get a valid ctx. This would avoid the situation
1487 		 * where we get a ctx, but it gets stolen and then
1488 		 * we fault when we try to run and so have to get
1489 		 * another ctx.
1490 		 */
1491 		sfmmup->sfmmu_cext = 0;
1492 		cnum = INVALID_CONTEXT;
1493 
1494 		/* initialize original physical page coloring bin */
1495 		sfmmup->sfmmu_clrstart = get_color_start(as);
1496 #ifdef DEBUG
1497 		if (tsb_random_size) {
1498 			uint32_t randval = (uint32_t)gettick() >> 4;
1499 			int size = randval % (tsb_max_growsize + 1);
1500 
1501 			/* chose a random tsb size for stress testing */
1502 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
1503 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1504 		} else
1505 #endif /* DEBUG */
1506 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
1507 			    default_tsb_size,
1508 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1509 		sfmmup->sfmmu_flags = HAT_SWAPPED | HAT_ALLCTX_INVALID;
1510 		ASSERT(sfmmup->sfmmu_tsb != NULL);
1511 	}
1512 
1513 	ASSERT(max_mmu_ctxdoms > 0);
1514 	for (i = 0; i < max_mmu_ctxdoms; i++) {
1515 		sfmmup->sfmmu_ctxs[i].cnum = cnum;
1516 		sfmmup->sfmmu_ctxs[i].gnum = 0;
1517 	}
1518 
1519 	for (i = 0; i < max_mmu_page_sizes; i++) {
1520 		sfmmup->sfmmu_ttecnt[i] = 0;
1521 		sfmmup->sfmmu_scdrttecnt[i] = 0;
1522 		sfmmup->sfmmu_ismttecnt[i] = 0;
1523 		sfmmup->sfmmu_scdismttecnt[i] = 0;
1524 		sfmmup->sfmmu_pgsz[i] = TTE8K;
1525 	}
1526 	sfmmup->sfmmu_tsb0_4minflcnt = 0;
1527 	sfmmup->sfmmu_iblk = NULL;
1528 	sfmmup->sfmmu_ismhat = 0;
1529 	sfmmup->sfmmu_scdhat = 0;
1530 	sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
1531 	if (sfmmup == ksfmmup) {
1532 		CPUSET_ALL(sfmmup->sfmmu_cpusran);
1533 	} else {
1534 		CPUSET_ZERO(sfmmup->sfmmu_cpusran);
1535 	}
1536 	sfmmup->sfmmu_free = 0;
1537 	sfmmup->sfmmu_rmstat = 0;
1538 	sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
1539 	sfmmup->sfmmu_xhat_provider = NULL;
1540 	cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
1541 	sfmmup->sfmmu_srdp = NULL;
1542 	SF_RGNMAP_ZERO(sfmmup->sfmmu_region_map);
1543 	bzero(sfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
1544 	sfmmup->sfmmu_scdp = NULL;
1545 	sfmmup->sfmmu_scd_link.next = NULL;
1546 	sfmmup->sfmmu_scd_link.prev = NULL;
1547 	return (sfmmup);
1548 }
1549 
1550 /*
1551  * Create per-MMU context domain kstats for a given MMU ctx.
1552  */
1553 static void
1554 sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp)
1555 {
1556 	mmu_ctx_stat_t	stat;
1557 	kstat_t		*mmu_kstat;
1558 
1559 	ASSERT(MUTEX_HELD(&cpu_lock));
1560 	ASSERT(mmu_ctxp->mmu_kstat == NULL);
1561 
1562 	mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx",
1563 	    "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL);
1564 
1565 	if (mmu_kstat == NULL) {
1566 		cmn_err(CE_WARN, "kstat_create for MMU %d failed",
1567 		    mmu_ctxp->mmu_idx);
1568 	} else {
1569 		mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data;
1570 		for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++)
1571 			kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat],
1572 			    mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64);
1573 		mmu_ctxp->mmu_kstat = mmu_kstat;
1574 		kstat_install(mmu_kstat);
1575 	}
1576 }
1577 
1578 /*
1579  * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU
1580  * context domain information for a given CPU. If a platform does not
1581  * specify that interface, then the function below is used instead to return
1582  * default information. The defaults are as follows:
1583  *
1584  *	- For sun4u systems there's one MMU context domain per CPU.
1585  *	  This default is used by all sun4u systems except OPL. OPL systems
1586  *	  provide platform specific interface to map CPU ids to MMU ids
1587  *	  because on OPL more than 1 CPU shares a single MMU.
1588  *        Note that on sun4v, there is one global context domain for
1589  *	  the entire system. This is to avoid running into potential problem
1590  *	  with ldom physical cpu substitution feature.
1591  *	- The number of MMU context IDs supported on any CPU in the
1592  *	  system is 8K.
1593  */
1594 /*ARGSUSED*/
1595 static void
1596 sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop)
1597 {
1598 	infop->mmu_nctxs = nctxs;
1599 #ifndef sun4v
1600 	infop->mmu_idx = cpu[cpuid]->cpu_seqid;
1601 #else /* sun4v */
1602 	infop->mmu_idx = 0;
1603 #endif /* sun4v */
1604 }
1605 
1606 /*
1607  * Called during CPU initialization to set the MMU context-related information
1608  * for a CPU.
1609  *
1610  * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum.
1611  */
1612 void
1613 sfmmu_cpu_init(cpu_t *cp)
1614 {
1615 	mmu_ctx_info_t	info;
1616 	mmu_ctx_t	*mmu_ctxp;
1617 
1618 	ASSERT(MUTEX_HELD(&cpu_lock));
1619 
1620 	if (&plat_cpuid_to_mmu_ctx_info == NULL)
1621 		sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1622 	else
1623 		plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1624 
1625 	ASSERT(info.mmu_idx < max_mmu_ctxdoms);
1626 
1627 	if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) {
1628 		/* Each mmu_ctx is cacheline aligned. */
1629 		mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP);
1630 		bzero(mmu_ctxp, sizeof (mmu_ctx_t));
1631 
1632 		mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN,
1633 		    (void *)ipltospl(DISP_LEVEL));
1634 		mmu_ctxp->mmu_idx = info.mmu_idx;
1635 		mmu_ctxp->mmu_nctxs = info.mmu_nctxs;
1636 		/*
1637 		 * Globally for lifetime of a system,
1638 		 * gnum must always increase.
1639 		 * mmu_saved_gnum is protected by the cpu_lock.
1640 		 */
1641 		mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1;
1642 		mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
1643 
1644 		sfmmu_mmu_kstat_create(mmu_ctxp);
1645 
1646 		mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp;
1647 	} else {
1648 		ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx);
1649 	}
1650 
1651 	/*
1652 	 * The mmu_lock is acquired here to prevent races with
1653 	 * the wrap-around code.
1654 	 */
1655 	mutex_enter(&mmu_ctxp->mmu_lock);
1656 
1657 
1658 	mmu_ctxp->mmu_ncpus++;
1659 	CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1660 	CPU_MMU_IDX(cp) = info.mmu_idx;
1661 	CPU_MMU_CTXP(cp) = mmu_ctxp;
1662 
1663 	mutex_exit(&mmu_ctxp->mmu_lock);
1664 }
1665 
1666 /*
1667  * Called to perform MMU context-related cleanup for a CPU.
1668  */
1669 void
1670 sfmmu_cpu_cleanup(cpu_t *cp)
1671 {
1672 	mmu_ctx_t	*mmu_ctxp;
1673 
1674 	ASSERT(MUTEX_HELD(&cpu_lock));
1675 
1676 	mmu_ctxp = CPU_MMU_CTXP(cp);
1677 	ASSERT(mmu_ctxp != NULL);
1678 
1679 	/*
1680 	 * The mmu_lock is acquired here to prevent races with
1681 	 * the wrap-around code.
1682 	 */
1683 	mutex_enter(&mmu_ctxp->mmu_lock);
1684 
1685 	CPU_MMU_CTXP(cp) = NULL;
1686 
1687 	CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1688 	if (--mmu_ctxp->mmu_ncpus == 0) {
1689 		mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL;
1690 		mutex_exit(&mmu_ctxp->mmu_lock);
1691 		mutex_destroy(&mmu_ctxp->mmu_lock);
1692 
1693 		if (mmu_ctxp->mmu_kstat)
1694 			kstat_delete(mmu_ctxp->mmu_kstat);
1695 
1696 		/* mmu_saved_gnum is protected by the cpu_lock. */
1697 		if (mmu_saved_gnum < mmu_ctxp->mmu_gnum)
1698 			mmu_saved_gnum = mmu_ctxp->mmu_gnum;
1699 
1700 		kmem_cache_free(mmuctxdom_cache, mmu_ctxp);
1701 
1702 		return;
1703 	}
1704 
1705 	mutex_exit(&mmu_ctxp->mmu_lock);
1706 }
1707 
1708 /*
1709  * Hat_setup, makes an address space context the current active one.
1710  * In sfmmu this translates to setting the secondary context with the
1711  * corresponding context.
1712  */
1713 void
1714 hat_setup(struct hat *sfmmup, int allocflag)
1715 {
1716 	hatlock_t *hatlockp;
1717 
1718 	/* Init needs some special treatment. */
1719 	if (allocflag == HAT_INIT) {
1720 		/*
1721 		 * Make sure that we have
1722 		 * 1. a TSB
1723 		 * 2. a valid ctx that doesn't get stolen after this point.
1724 		 */
1725 		hatlockp = sfmmu_hat_enter(sfmmup);
1726 
1727 		/*
1728 		 * Swap in the TSB.  hat_init() allocates tsbinfos without
1729 		 * TSBs, but we need one for init, since the kernel does some
1730 		 * special things to set up its stack and needs the TSB to
1731 		 * resolve page faults.
1732 		 */
1733 		sfmmu_tsb_swapin(sfmmup, hatlockp);
1734 
1735 		sfmmu_get_ctx(sfmmup);
1736 
1737 		sfmmu_hat_exit(hatlockp);
1738 	} else {
1739 		ASSERT(allocflag == HAT_ALLOC);
1740 
1741 		hatlockp = sfmmu_hat_enter(sfmmup);
1742 		kpreempt_disable();
1743 
1744 		CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1745 		/*
1746 		 * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter,
1747 		 * pagesize bits don't matter in this case since we are passing
1748 		 * INVALID_CONTEXT to it.
1749 		 * Compatibility Note: hw takes care of MMU_SCONTEXT1
1750 		 */
1751 		sfmmu_setctx_sec(INVALID_CONTEXT);
1752 		sfmmu_clear_utsbinfo();
1753 
1754 		kpreempt_enable();
1755 		sfmmu_hat_exit(hatlockp);
1756 	}
1757 }
1758 
1759 /*
1760  * Free all the translation resources for the specified address space.
1761  * Called from as_free when an address space is being destroyed.
1762  */
1763 void
1764 hat_free_start(struct hat *sfmmup)
1765 {
1766 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
1767 	ASSERT(sfmmup != ksfmmup);
1768 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1769 
1770 	sfmmup->sfmmu_free = 1;
1771 	if (sfmmup->sfmmu_scdp != NULL) {
1772 		sfmmu_leave_scd(sfmmup, 0);
1773 	}
1774 
1775 	ASSERT(sfmmup->sfmmu_scdp == NULL);
1776 }
1777 
1778 void
1779 hat_free_end(struct hat *sfmmup)
1780 {
1781 	int i;
1782 
1783 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1784 	ASSERT(sfmmup->sfmmu_free == 1);
1785 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
1786 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
1787 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
1788 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
1789 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
1790 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
1791 
1792 	if (sfmmup->sfmmu_rmstat) {
1793 		hat_freestat(sfmmup->sfmmu_as, NULL);
1794 	}
1795 
1796 	while (sfmmup->sfmmu_tsb != NULL) {
1797 		struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
1798 		sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
1799 		sfmmup->sfmmu_tsb = next;
1800 	}
1801 
1802 	if (sfmmup->sfmmu_srdp != NULL) {
1803 		sfmmu_leave_srd(sfmmup);
1804 		ASSERT(sfmmup->sfmmu_srdp == NULL);
1805 		for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1806 			if (sfmmup->sfmmu_hmeregion_links[i] != NULL) {
1807 				kmem_free(sfmmup->sfmmu_hmeregion_links[i],
1808 				    SFMMU_L2_HMERLINKS_SIZE);
1809 				sfmmup->sfmmu_hmeregion_links[i] = NULL;
1810 			}
1811 		}
1812 	}
1813 	sfmmu_free_sfmmu(sfmmup);
1814 
1815 #ifdef DEBUG
1816 	for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1817 		ASSERT(sfmmup->sfmmu_hmeregion_links[i] == NULL);
1818 	}
1819 #endif
1820 
1821 	kmem_cache_free(sfmmuid_cache, sfmmup);
1822 }
1823 
1824 /*
1825  * Set up any translation structures, for the specified address space,
1826  * that are needed or preferred when the process is being swapped in.
1827  */
1828 /* ARGSUSED */
1829 void
1830 hat_swapin(struct hat *hat)
1831 {
1832 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1833 }
1834 
1835 /*
1836  * Free all of the translation resources, for the specified address space,
1837  * that can be freed while the process is swapped out. Called from as_swapout.
1838  * Also, free up the ctx that this process was using.
1839  */
1840 void
1841 hat_swapout(struct hat *sfmmup)
1842 {
1843 	struct hmehash_bucket *hmebp;
1844 	struct hme_blk *hmeblkp;
1845 	struct hme_blk *pr_hblk = NULL;
1846 	struct hme_blk *nx_hblk;
1847 	int i;
1848 	uint64_t hblkpa, prevpa, nx_pa;
1849 	struct hme_blk *list = NULL;
1850 	hatlock_t *hatlockp;
1851 	struct tsb_info *tsbinfop;
1852 	struct free_tsb {
1853 		struct free_tsb *next;
1854 		struct tsb_info *tsbinfop;
1855 	};			/* free list of TSBs */
1856 	struct free_tsb *freelist, *last, *next;
1857 
1858 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1859 	SFMMU_STAT(sf_swapout);
1860 
1861 	/*
1862 	 * There is no way to go from an as to all its translations in sfmmu.
1863 	 * Here is one of the times when we take the big hit and traverse
1864 	 * the hash looking for hme_blks to free up.  Not only do we free up
1865 	 * this as hme_blks but all those that are free.  We are obviously
1866 	 * swapping because we need memory so let's free up as much
1867 	 * as we can.
1868 	 *
1869 	 * Note that we don't flush TLB/TSB here -- it's not necessary
1870 	 * because:
1871 	 *  1) we free the ctx we're using and throw away the TSB(s);
1872 	 *  2) processes aren't runnable while being swapped out.
1873 	 */
1874 	ASSERT(sfmmup != KHATID);
1875 	for (i = 0; i <= UHMEHASH_SZ; i++) {
1876 		hmebp = &uhme_hash[i];
1877 		SFMMU_HASH_LOCK(hmebp);
1878 		hmeblkp = hmebp->hmeblkp;
1879 		hblkpa = hmebp->hmeh_nextpa;
1880 		prevpa = 0;
1881 		pr_hblk = NULL;
1882 		while (hmeblkp) {
1883 
1884 			ASSERT(!hmeblkp->hblk_xhat_bit);
1885 
1886 			if ((hmeblkp->hblk_tag.htag_id == sfmmup) &&
1887 			    !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) {
1888 				ASSERT(!hmeblkp->hblk_shared);
1889 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
1890 				    (caddr_t)get_hblk_base(hmeblkp),
1891 				    get_hblk_endaddr(hmeblkp),
1892 				    NULL, HAT_UNLOAD);
1893 			}
1894 			nx_hblk = hmeblkp->hblk_next;
1895 			nx_pa = hmeblkp->hblk_nextpa;
1896 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
1897 				ASSERT(!hmeblkp->hblk_lckcnt);
1898 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
1899 				    prevpa, pr_hblk);
1900 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
1901 			} else {
1902 				pr_hblk = hmeblkp;
1903 				prevpa = hblkpa;
1904 			}
1905 			hmeblkp = nx_hblk;
1906 			hblkpa = nx_pa;
1907 		}
1908 		SFMMU_HASH_UNLOCK(hmebp);
1909 	}
1910 
1911 	sfmmu_hblks_list_purge(&list);
1912 
1913 	/*
1914 	 * Now free up the ctx so that others can reuse it.
1915 	 */
1916 	hatlockp = sfmmu_hat_enter(sfmmup);
1917 
1918 	sfmmu_invalidate_ctx(sfmmup);
1919 
1920 	/*
1921 	 * Free TSBs, but not tsbinfos, and set SWAPPED flag.
1922 	 * If TSBs were never swapped in, just return.
1923 	 * This implies that we don't support partial swapping
1924 	 * of TSBs -- either all are swapped out, or none are.
1925 	 *
1926 	 * We must hold the HAT lock here to prevent racing with another
1927 	 * thread trying to unmap TTEs from the TSB or running the post-
1928 	 * relocator after relocating the TSB's memory.  Unfortunately, we
1929 	 * can't free memory while holding the HAT lock or we could
1930 	 * deadlock, so we build a list of TSBs to be freed after marking
1931 	 * the tsbinfos as swapped out and free them after dropping the
1932 	 * lock.
1933 	 */
1934 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
1935 		sfmmu_hat_exit(hatlockp);
1936 		return;
1937 	}
1938 
1939 	SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED);
1940 	last = freelist = NULL;
1941 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
1942 	    tsbinfop = tsbinfop->tsb_next) {
1943 		ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0);
1944 
1945 		/*
1946 		 * Cast the TSB into a struct free_tsb and put it on the free
1947 		 * list.
1948 		 */
1949 		if (freelist == NULL) {
1950 			last = freelist = (struct free_tsb *)tsbinfop->tsb_va;
1951 		} else {
1952 			last->next = (struct free_tsb *)tsbinfop->tsb_va;
1953 			last = last->next;
1954 		}
1955 		last->next = NULL;
1956 		last->tsbinfop = tsbinfop;
1957 		tsbinfop->tsb_flags |= TSB_SWAPPED;
1958 		/*
1959 		 * Zero out the TTE to clear the valid bit.
1960 		 * Note we can't use a value like 0xbad because we want to
1961 		 * ensure diagnostic bits are NEVER set on TTEs that might
1962 		 * be loaded.  The intent is to catch any invalid access
1963 		 * to the swapped TSB, such as a thread running with a valid
1964 		 * context without first calling sfmmu_tsb_swapin() to
1965 		 * allocate TSB memory.
1966 		 */
1967 		tsbinfop->tsb_tte.ll = 0;
1968 	}
1969 
1970 	/* Now we can drop the lock and free the TSB memory. */
1971 	sfmmu_hat_exit(hatlockp);
1972 	for (; freelist != NULL; freelist = next) {
1973 		next = freelist->next;
1974 		sfmmu_tsb_free(freelist->tsbinfop);
1975 	}
1976 }
1977 
1978 /*
1979  * Duplicate the translations of an as into another newas
1980  */
1981 /* ARGSUSED */
1982 int
1983 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
1984 	uint_t flag)
1985 {
1986 	sf_srd_t *srdp;
1987 	sf_scd_t *scdp;
1988 	int i;
1989 	extern uint_t get_color_start(struct as *);
1990 
1991 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1992 	ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW) ||
1993 	    (flag == HAT_DUP_SRD));
1994 	ASSERT(hat != ksfmmup);
1995 	ASSERT(newhat != ksfmmup);
1996 	ASSERT(flag != HAT_DUP_ALL || hat->sfmmu_srdp == newhat->sfmmu_srdp);
1997 
1998 	if (flag == HAT_DUP_COW) {
1999 		panic("hat_dup: HAT_DUP_COW not supported");
2000 	}
2001 
2002 	if (flag == HAT_DUP_SRD && ((srdp = hat->sfmmu_srdp) != NULL)) {
2003 		ASSERT(srdp->srd_evp != NULL);
2004 		VN_HOLD(srdp->srd_evp);
2005 		ASSERT(srdp->srd_refcnt > 0);
2006 		newhat->sfmmu_srdp = srdp;
2007 		atomic_add_32((volatile uint_t *)&srdp->srd_refcnt, 1);
2008 	}
2009 
2010 	/*
2011 	 * HAT_DUP_ALL flag is used after as duplication is done.
2012 	 */
2013 	if (flag == HAT_DUP_ALL && ((srdp = newhat->sfmmu_srdp) != NULL)) {
2014 		ASSERT(newhat->sfmmu_srdp->srd_refcnt >= 2);
2015 		newhat->sfmmu_rtteflags = hat->sfmmu_rtteflags;
2016 		if (hat->sfmmu_flags & HAT_4MTEXT_FLAG) {
2017 			newhat->sfmmu_flags |= HAT_4MTEXT_FLAG;
2018 		}
2019 
2020 		/* check if need to join scd */
2021 		if ((scdp = hat->sfmmu_scdp) != NULL &&
2022 		    newhat->sfmmu_scdp != scdp) {
2023 			int ret;
2024 			SF_RGNMAP_IS_SUBSET(&newhat->sfmmu_region_map,
2025 			    &scdp->scd_region_map, ret);
2026 			ASSERT(ret);
2027 			sfmmu_join_scd(scdp, newhat);
2028 			ASSERT(newhat->sfmmu_scdp == scdp &&
2029 			    scdp->scd_refcnt >= 2);
2030 			for (i = 0; i < max_mmu_page_sizes; i++) {
2031 				newhat->sfmmu_ismttecnt[i] =
2032 				    hat->sfmmu_ismttecnt[i];
2033 				newhat->sfmmu_scdismttecnt[i] =
2034 				    hat->sfmmu_scdismttecnt[i];
2035 			}
2036 		}
2037 
2038 		sfmmu_check_page_sizes(newhat, 1);
2039 	}
2040 
2041 	if (flag == HAT_DUP_ALL && consistent_coloring == 0 &&
2042 	    update_proc_pgcolorbase_after_fork != 0) {
2043 		hat->sfmmu_clrbin = get_color_start(hat->sfmmu_as);
2044 	}
2045 	return (0);
2046 }
2047 
2048 void
2049 hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
2050 	uint_t attr, uint_t flags)
2051 {
2052 	hat_do_memload(hat, addr, pp, attr, flags,
2053 	    SFMMU_INVALID_SHMERID);
2054 }
2055 
2056 void
2057 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp,
2058 	uint_t attr, uint_t flags, hat_region_cookie_t rcookie)
2059 {
2060 	uint_t rid;
2061 	if (rcookie == HAT_INVALID_REGION_COOKIE ||
2062 	    hat->sfmmu_xhat_provider != NULL) {
2063 		hat_do_memload(hat, addr, pp, attr, flags,
2064 		    SFMMU_INVALID_SHMERID);
2065 		return;
2066 	}
2067 	rid = (uint_t)((uint64_t)rcookie);
2068 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2069 	hat_do_memload(hat, addr, pp, attr, flags, rid);
2070 }
2071 
2072 /*
2073  * Set up addr to map to page pp with protection prot.
2074  * As an optimization we also load the TSB with the
2075  * corresponding tte but it is no big deal if  the tte gets kicked out.
2076  */
2077 static void
2078 hat_do_memload(struct hat *hat, caddr_t addr, struct page *pp,
2079 	uint_t attr, uint_t flags, uint_t rid)
2080 {
2081 	tte_t tte;
2082 
2083 
2084 	ASSERT(hat != NULL);
2085 	ASSERT(PAGE_LOCKED(pp));
2086 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2087 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2088 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2089 	SFMMU_VALIDATE_HMERID(hat, rid, addr, MMU_PAGESIZE);
2090 
2091 	if (PP_ISFREE(pp)) {
2092 		panic("hat_memload: loading a mapping to free page %p",
2093 		    (void *)pp);
2094 	}
2095 
2096 	if (hat->sfmmu_xhat_provider) {
2097 		/* no regions for xhats */
2098 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
2099 		XHAT_MEMLOAD(hat, addr, pp, attr, flags);
2100 		return;
2101 	}
2102 
2103 	ASSERT((hat == ksfmmup) ||
2104 	    AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
2105 
2106 	if (flags & ~SFMMU_LOAD_ALLFLAG)
2107 		cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
2108 		    flags & ~SFMMU_LOAD_ALLFLAG);
2109 
2110 	if (hat->sfmmu_rmstat)
2111 		hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
2112 
2113 #if defined(SF_ERRATA_57)
2114 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2115 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2116 	    !(flags & HAT_LOAD_SHARE)) {
2117 		cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
2118 		    " page executable");
2119 		attr &= ~PROT_EXEC;
2120 	}
2121 #endif
2122 
2123 	sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2124 	(void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags, rid);
2125 
2126 	/*
2127 	 * Check TSB and TLB page sizes.
2128 	 */
2129 	if ((flags & HAT_LOAD_SHARE) == 0) {
2130 		sfmmu_check_page_sizes(hat, 1);
2131 	}
2132 }
2133 
2134 /*
2135  * hat_devload can be called to map real memory (e.g.
2136  * /dev/kmem) and even though hat_devload will determine pf is
2137  * for memory, it will be unable to get a shared lock on the
2138  * page (because someone else has it exclusively) and will
2139  * pass dp = NULL.  If tteload doesn't get a non-NULL
2140  * page pointer it can't cache memory.
2141  */
2142 void
2143 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
2144 	uint_t attr, int flags)
2145 {
2146 	tte_t tte;
2147 	struct page *pp = NULL;
2148 	int use_lgpg = 0;
2149 
2150 	ASSERT(hat != NULL);
2151 
2152 	if (hat->sfmmu_xhat_provider) {
2153 		XHAT_DEVLOAD(hat, addr, len, pfn, attr, flags);
2154 		return;
2155 	}
2156 
2157 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2158 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2159 	ASSERT((hat == ksfmmup) ||
2160 	    AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
2161 	if (len == 0)
2162 		panic("hat_devload: zero len");
2163 	if (flags & ~SFMMU_LOAD_ALLFLAG)
2164 		cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
2165 		    flags & ~SFMMU_LOAD_ALLFLAG);
2166 
2167 #if defined(SF_ERRATA_57)
2168 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2169 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2170 	    !(flags & HAT_LOAD_SHARE)) {
2171 		cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
2172 		    " page executable");
2173 		attr &= ~PROT_EXEC;
2174 	}
2175 #endif
2176 
2177 	/*
2178 	 * If it's a memory page find its pp
2179 	 */
2180 	if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
2181 		pp = page_numtopp_nolock(pfn);
2182 		if (pp == NULL) {
2183 			flags |= HAT_LOAD_NOCONSIST;
2184 		} else {
2185 			if (PP_ISFREE(pp)) {
2186 				panic("hat_memload: loading "
2187 				    "a mapping to free page %p",
2188 				    (void *)pp);
2189 			}
2190 			if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
2191 				panic("hat_memload: loading a mapping "
2192 				    "to unlocked relocatable page %p",
2193 				    (void *)pp);
2194 			}
2195 			ASSERT(len == MMU_PAGESIZE);
2196 		}
2197 	}
2198 
2199 	if (hat->sfmmu_rmstat)
2200 		hat_resvstat(len, hat->sfmmu_as, addr);
2201 
2202 	if (flags & HAT_LOAD_NOCONSIST) {
2203 		attr |= SFMMU_UNCACHEVTTE;
2204 		use_lgpg = 1;
2205 	}
2206 	if (!pf_is_memory(pfn)) {
2207 		attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
2208 		use_lgpg = 1;
2209 		switch (attr & HAT_ORDER_MASK) {
2210 			case HAT_STRICTORDER:
2211 			case HAT_UNORDERED_OK:
2212 				/*
2213 				 * we set the side effect bit for all non
2214 				 * memory mappings unless merging is ok
2215 				 */
2216 				attr |= SFMMU_SIDEFFECT;
2217 				break;
2218 			case HAT_MERGING_OK:
2219 			case HAT_LOADCACHING_OK:
2220 			case HAT_STORECACHING_OK:
2221 				break;
2222 			default:
2223 				panic("hat_devload: bad attr");
2224 				break;
2225 		}
2226 	}
2227 	while (len) {
2228 		if (!use_lgpg) {
2229 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
2230 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2231 			    flags, SFMMU_INVALID_SHMERID);
2232 			len -= MMU_PAGESIZE;
2233 			addr += MMU_PAGESIZE;
2234 			pfn++;
2235 			continue;
2236 		}
2237 		/*
2238 		 *  try to use large pages, check va/pa alignments
2239 		 *  Note that 32M/256M page sizes are not (yet) supported.
2240 		 */
2241 		if ((len >= MMU_PAGESIZE4M) &&
2242 		    !((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
2243 		    !(disable_large_pages & (1 << TTE4M)) &&
2244 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
2245 			sfmmu_memtte(&tte, pfn, attr, TTE4M);
2246 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2247 			    flags, SFMMU_INVALID_SHMERID);
2248 			len -= MMU_PAGESIZE4M;
2249 			addr += MMU_PAGESIZE4M;
2250 			pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
2251 		} else if ((len >= MMU_PAGESIZE512K) &&
2252 		    !((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
2253 		    !(disable_large_pages & (1 << TTE512K)) &&
2254 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
2255 			sfmmu_memtte(&tte, pfn, attr, TTE512K);
2256 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2257 			    flags, SFMMU_INVALID_SHMERID);
2258 			len -= MMU_PAGESIZE512K;
2259 			addr += MMU_PAGESIZE512K;
2260 			pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
2261 		} else if ((len >= MMU_PAGESIZE64K) &&
2262 		    !((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
2263 		    !(disable_large_pages & (1 << TTE64K)) &&
2264 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
2265 			sfmmu_memtte(&tte, pfn, attr, TTE64K);
2266 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2267 			    flags, SFMMU_INVALID_SHMERID);
2268 			len -= MMU_PAGESIZE64K;
2269 			addr += MMU_PAGESIZE64K;
2270 			pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
2271 		} else {
2272 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
2273 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2274 			    flags, SFMMU_INVALID_SHMERID);
2275 			len -= MMU_PAGESIZE;
2276 			addr += MMU_PAGESIZE;
2277 			pfn++;
2278 		}
2279 	}
2280 
2281 	/*
2282 	 * Check TSB and TLB page sizes.
2283 	 */
2284 	if ((flags & HAT_LOAD_SHARE) == 0) {
2285 		sfmmu_check_page_sizes(hat, 1);
2286 	}
2287 }
2288 
2289 void
2290 hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
2291 	struct page **pps, uint_t attr, uint_t flags)
2292 {
2293 	hat_do_memload_array(hat, addr, len, pps, attr, flags,
2294 	    SFMMU_INVALID_SHMERID);
2295 }
2296 
2297 void
2298 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len,
2299 	struct page **pps, uint_t attr, uint_t flags,
2300 	hat_region_cookie_t rcookie)
2301 {
2302 	uint_t rid;
2303 	if (rcookie == HAT_INVALID_REGION_COOKIE ||
2304 	    hat->sfmmu_xhat_provider != NULL) {
2305 		hat_do_memload_array(hat, addr, len, pps, attr, flags,
2306 		    SFMMU_INVALID_SHMERID);
2307 		return;
2308 	}
2309 	rid = (uint_t)((uint64_t)rcookie);
2310 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2311 	hat_do_memload_array(hat, addr, len, pps, attr, flags, rid);
2312 }
2313 
2314 /*
2315  * Map the largest extend possible out of the page array. The array may NOT
2316  * be in order.  The largest possible mapping a page can have
2317  * is specified in the p_szc field.  The p_szc field
2318  * cannot change as long as there any mappings (large or small)
2319  * to any of the pages that make up the large page. (ie. any
2320  * promotion/demotion of page size is not up to the hat but up to
2321  * the page free list manager).  The array
2322  * should consist of properly aligned contigous pages that are
2323  * part of a big page for a large mapping to be created.
2324  */
2325 static void
2326 hat_do_memload_array(struct hat *hat, caddr_t addr, size_t len,
2327 	struct page **pps, uint_t attr, uint_t flags, uint_t rid)
2328 {
2329 	int  ttesz;
2330 	size_t mapsz;
2331 	pgcnt_t	numpg, npgs;
2332 	tte_t tte;
2333 	page_t *pp;
2334 	uint_t large_pages_disable;
2335 
2336 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2337 	SFMMU_VALIDATE_HMERID(hat, rid, addr, len);
2338 
2339 	if (hat->sfmmu_xhat_provider) {
2340 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
2341 		XHAT_MEMLOAD_ARRAY(hat, addr, len, pps, attr, flags);
2342 		return;
2343 	}
2344 
2345 	if (hat->sfmmu_rmstat)
2346 		hat_resvstat(len, hat->sfmmu_as, addr);
2347 
2348 #if defined(SF_ERRATA_57)
2349 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2350 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2351 	    !(flags & HAT_LOAD_SHARE)) {
2352 		cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
2353 		    "user page executable");
2354 		attr &= ~PROT_EXEC;
2355 	}
2356 #endif
2357 
2358 	/* Get number of pages */
2359 	npgs = len >> MMU_PAGESHIFT;
2360 
2361 	if (flags & HAT_LOAD_SHARE) {
2362 		large_pages_disable = disable_ism_large_pages;
2363 	} else {
2364 		large_pages_disable = disable_large_pages;
2365 	}
2366 
2367 	if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
2368 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2369 		    rid);
2370 		return;
2371 	}
2372 
2373 	while (npgs >= NHMENTS) {
2374 		pp = *pps;
2375 		for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
2376 			/*
2377 			 * Check if this page size is disabled.
2378 			 */
2379 			if (large_pages_disable & (1 << ttesz))
2380 				continue;
2381 
2382 			numpg = TTEPAGES(ttesz);
2383 			mapsz = numpg << MMU_PAGESHIFT;
2384 			if ((npgs >= numpg) &&
2385 			    IS_P2ALIGNED(addr, mapsz) &&
2386 			    IS_P2ALIGNED(pp->p_pagenum, numpg)) {
2387 				/*
2388 				 * At this point we have enough pages and
2389 				 * we know the virtual address and the pfn
2390 				 * are properly aligned.  We still need
2391 				 * to check for physical contiguity but since
2392 				 * it is very likely that this is the case
2393 				 * we will assume they are so and undo
2394 				 * the request if necessary.  It would
2395 				 * be great if we could get a hint flag
2396 				 * like HAT_CONTIG which would tell us
2397 				 * the pages are contigous for sure.
2398 				 */
2399 				sfmmu_memtte(&tte, (*pps)->p_pagenum,
2400 				    attr, ttesz);
2401 				if (!sfmmu_tteload_array(hat, &tte, addr,
2402 				    pps, flags, rid)) {
2403 					break;
2404 				}
2405 			}
2406 		}
2407 		if (ttesz == TTE8K) {
2408 			/*
2409 			 * We were not able to map array using a large page
2410 			 * batch a hmeblk or fraction at a time.
2411 			 */
2412 			numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
2413 			    & (NHMENTS-1);
2414 			numpg = NHMENTS - numpg;
2415 			ASSERT(numpg <= npgs);
2416 			mapsz = numpg * MMU_PAGESIZE;
2417 			sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
2418 			    numpg, rid);
2419 		}
2420 		addr += mapsz;
2421 		npgs -= numpg;
2422 		pps += numpg;
2423 	}
2424 
2425 	if (npgs) {
2426 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2427 		    rid);
2428 	}
2429 
2430 	/*
2431 	 * Check TSB and TLB page sizes.
2432 	 */
2433 	if ((flags & HAT_LOAD_SHARE) == 0) {
2434 		sfmmu_check_page_sizes(hat, 1);
2435 	}
2436 }
2437 
2438 /*
2439  * Function tries to batch 8K pages into the same hme blk.
2440  */
2441 static void
2442 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
2443 		    uint_t attr, uint_t flags, pgcnt_t npgs, uint_t rid)
2444 {
2445 	tte_t	tte;
2446 	page_t *pp;
2447 	struct hmehash_bucket *hmebp;
2448 	struct hme_blk *hmeblkp;
2449 	int	index;
2450 
2451 	while (npgs) {
2452 		/*
2453 		 * Acquire the hash bucket.
2454 		 */
2455 		hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K,
2456 		    rid);
2457 		ASSERT(hmebp);
2458 
2459 		/*
2460 		 * Find the hment block.
2461 		 */
2462 		hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
2463 		    TTE8K, flags, rid);
2464 		ASSERT(hmeblkp);
2465 
2466 		do {
2467 			/*
2468 			 * Make the tte.
2469 			 */
2470 			pp = *pps;
2471 			sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2472 
2473 			/*
2474 			 * Add the translation.
2475 			 */
2476 			(void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
2477 			    vaddr, pps, flags, rid);
2478 
2479 			/*
2480 			 * Goto next page.
2481 			 */
2482 			pps++;
2483 			npgs--;
2484 
2485 			/*
2486 			 * Goto next address.
2487 			 */
2488 			vaddr += MMU_PAGESIZE;
2489 
2490 			/*
2491 			 * Don't crossover into a different hmentblk.
2492 			 */
2493 			index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
2494 			    (NHMENTS-1));
2495 
2496 		} while (index != 0 && npgs != 0);
2497 
2498 		/*
2499 		 * Release the hash bucket.
2500 		 */
2501 
2502 		sfmmu_tteload_release_hashbucket(hmebp);
2503 	}
2504 }
2505 
2506 /*
2507  * Construct a tte for a page:
2508  *
2509  * tte_valid = 1
2510  * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only)
2511  * tte_size = size
2512  * tte_nfo = attr & HAT_NOFAULT
2513  * tte_ie = attr & HAT_STRUCTURE_LE
2514  * tte_hmenum = hmenum
2515  * tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
2516  * tte_palo = pp->p_pagenum & TTE_PALOMASK;
2517  * tte_ref = 1 (optimization)
2518  * tte_wr_perm = attr & PROT_WRITE;
2519  * tte_no_sync = attr & HAT_NOSYNC
2520  * tte_lock = attr & SFMMU_LOCKTTE
2521  * tte_cp = !(attr & SFMMU_UNCACHEPTTE)
2522  * tte_cv = !(attr & SFMMU_UNCACHEVTTE)
2523  * tte_e = attr & SFMMU_SIDEFFECT
2524  * tte_priv = !(attr & PROT_USER)
2525  * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
2526  * tte_glb = 0
2527  */
2528 void
2529 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
2530 {
2531 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2532 
2533 	ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
2534 	ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
2535 
2536 	if (TTE_IS_NOSYNC(ttep)) {
2537 		TTE_SET_REF(ttep);
2538 		if (TTE_IS_WRITABLE(ttep)) {
2539 			TTE_SET_MOD(ttep);
2540 		}
2541 	}
2542 	if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
2543 		panic("sfmmu_memtte: can't set both NFO and EXEC bits");
2544 	}
2545 }
2546 
2547 /*
2548  * This function will add a translation to the hme_blk and allocate the
2549  * hme_blk if one does not exist.
2550  * If a page structure is specified then it will add the
2551  * corresponding hment to the mapping list.
2552  * It will also update the hmenum field for the tte.
2553  *
2554  * Currently this function is only used for kernel mappings.
2555  * So pass invalid region to sfmmu_tteload_array().
2556  */
2557 void
2558 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
2559 	uint_t flags)
2560 {
2561 	ASSERT(sfmmup == ksfmmup);
2562 	(void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags,
2563 	    SFMMU_INVALID_SHMERID);
2564 }
2565 
2566 /*
2567  * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
2568  * Assumes that a particular page size may only be resident in one TSB.
2569  */
2570 static void
2571 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
2572 {
2573 	struct tsb_info *tsbinfop = NULL;
2574 	uint64_t tag;
2575 	struct tsbe *tsbe_addr;
2576 	uint64_t tsb_base;
2577 	uint_t tsb_size;
2578 	int vpshift = MMU_PAGESHIFT;
2579 	int phys = 0;
2580 
2581 	if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
2582 		phys = ktsb_phys;
2583 		if (ttesz >= TTE4M) {
2584 #ifndef sun4v
2585 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2586 #endif
2587 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2588 			tsb_size = ktsb4m_szcode;
2589 		} else {
2590 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2591 			tsb_size = ktsb_szcode;
2592 		}
2593 	} else {
2594 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2595 
2596 		/*
2597 		 * If there isn't a TSB for this page size, or the TSB is
2598 		 * swapped out, there is nothing to do.  Note that the latter
2599 		 * case seems impossible but can occur if hat_pageunload()
2600 		 * is called on an ISM mapping while the process is swapped
2601 		 * out.
2602 		 */
2603 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2604 			return;
2605 
2606 		/*
2607 		 * If another thread is in the middle of relocating a TSB
2608 		 * we can't unload the entry so set a flag so that the
2609 		 * TSB will be flushed before it can be accessed by the
2610 		 * process.
2611 		 */
2612 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2613 			if (ttep == NULL)
2614 				tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2615 			return;
2616 		}
2617 #if defined(UTSB_PHYS)
2618 		phys = 1;
2619 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2620 #else
2621 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2622 #endif
2623 		tsb_size = tsbinfop->tsb_szc;
2624 	}
2625 	if (ttesz >= TTE4M)
2626 		vpshift = MMU_PAGESHIFT4M;
2627 
2628 	tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2629 	tag = sfmmu_make_tsbtag(vaddr);
2630 
2631 	if (ttep == NULL) {
2632 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2633 	} else {
2634 		if (ttesz >= TTE4M) {
2635 			SFMMU_STAT(sf_tsb_load4m);
2636 		} else {
2637 			SFMMU_STAT(sf_tsb_load8k);
2638 		}
2639 
2640 		sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
2641 	}
2642 }
2643 
2644 /*
2645  * Unmap all entries from [start, end) matching the given page size.
2646  *
2647  * This function is used primarily to unmap replicated 64K or 512K entries
2648  * from the TSB that are inserted using the base page size TSB pointer, but
2649  * it may also be called to unmap a range of addresses from the TSB.
2650  */
2651 void
2652 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
2653 {
2654 	struct tsb_info *tsbinfop;
2655 	uint64_t tag;
2656 	struct tsbe *tsbe_addr;
2657 	caddr_t vaddr;
2658 	uint64_t tsb_base;
2659 	int vpshift, vpgsz;
2660 	uint_t tsb_size;
2661 	int phys = 0;
2662 
2663 	/*
2664 	 * Assumptions:
2665 	 *  If ttesz == 8K, 64K or 512K, we walk through the range 8K
2666 	 *  at a time shooting down any valid entries we encounter.
2667 	 *
2668 	 *  If ttesz >= 4M we walk the range 4M at a time shooting
2669 	 *  down any valid mappings we find.
2670 	 */
2671 	if (sfmmup == ksfmmup) {
2672 		phys = ktsb_phys;
2673 		if (ttesz >= TTE4M) {
2674 #ifndef sun4v
2675 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2676 #endif
2677 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2678 			tsb_size = ktsb4m_szcode;
2679 		} else {
2680 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2681 			tsb_size = ktsb_szcode;
2682 		}
2683 	} else {
2684 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2685 
2686 		/*
2687 		 * If there isn't a TSB for this page size, or the TSB is
2688 		 * swapped out, there is nothing to do.  Note that the latter
2689 		 * case seems impossible but can occur if hat_pageunload()
2690 		 * is called on an ISM mapping while the process is swapped
2691 		 * out.
2692 		 */
2693 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2694 			return;
2695 
2696 		/*
2697 		 * If another thread is in the middle of relocating a TSB
2698 		 * we can't unload the entry so set a flag so that the
2699 		 * TSB will be flushed before it can be accessed by the
2700 		 * process.
2701 		 */
2702 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2703 			tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2704 			return;
2705 		}
2706 #if defined(UTSB_PHYS)
2707 		phys = 1;
2708 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2709 #else
2710 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2711 #endif
2712 		tsb_size = tsbinfop->tsb_szc;
2713 	}
2714 	if (ttesz >= TTE4M) {
2715 		vpshift = MMU_PAGESHIFT4M;
2716 		vpgsz = MMU_PAGESIZE4M;
2717 	} else {
2718 		vpshift = MMU_PAGESHIFT;
2719 		vpgsz = MMU_PAGESIZE;
2720 	}
2721 
2722 	for (vaddr = start; vaddr < end; vaddr += vpgsz) {
2723 		tag = sfmmu_make_tsbtag(vaddr);
2724 		tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2725 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2726 	}
2727 }
2728 
2729 /*
2730  * Select the optimum TSB size given the number of mappings
2731  * that need to be cached.
2732  */
2733 static int
2734 sfmmu_select_tsb_szc(pgcnt_t pgcnt)
2735 {
2736 	int szc = 0;
2737 
2738 #ifdef DEBUG
2739 	if (tsb_grow_stress) {
2740 		uint32_t randval = (uint32_t)gettick() >> 4;
2741 		return (randval % (tsb_max_growsize + 1));
2742 	}
2743 #endif	/* DEBUG */
2744 
2745 	while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
2746 		szc++;
2747 	return (szc);
2748 }
2749 
2750 /*
2751  * This function will add a translation to the hme_blk and allocate the
2752  * hme_blk if one does not exist.
2753  * If a page structure is specified then it will add the
2754  * corresponding hment to the mapping list.
2755  * It will also update the hmenum field for the tte.
2756  * Furthermore, it attempts to create a large page translation
2757  * for <addr,hat> at page array pps.  It assumes addr and first
2758  * pp is correctly aligned.  It returns 0 if successful and 1 otherwise.
2759  */
2760 static int
2761 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
2762 	page_t **pps, uint_t flags, uint_t rid)
2763 {
2764 	struct hmehash_bucket *hmebp;
2765 	struct hme_blk *hmeblkp;
2766 	int 	ret;
2767 	uint_t	size;
2768 
2769 	/*
2770 	 * Get mapping size.
2771 	 */
2772 	size = TTE_CSZ(ttep);
2773 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2774 
2775 	/*
2776 	 * Acquire the hash bucket.
2777 	 */
2778 	hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size, rid);
2779 	ASSERT(hmebp);
2780 
2781 	/*
2782 	 * Find the hment block.
2783 	 */
2784 	hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags,
2785 	    rid);
2786 	ASSERT(hmeblkp);
2787 
2788 	/*
2789 	 * Add the translation.
2790 	 */
2791 	ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags,
2792 	    rid);
2793 
2794 	/*
2795 	 * Release the hash bucket.
2796 	 */
2797 	sfmmu_tteload_release_hashbucket(hmebp);
2798 
2799 	return (ret);
2800 }
2801 
2802 /*
2803  * Function locks and returns a pointer to the hash bucket for vaddr and size.
2804  */
2805 static struct hmehash_bucket *
2806 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size,
2807     uint_t rid)
2808 {
2809 	struct hmehash_bucket *hmebp;
2810 	int hmeshift;
2811 	void *htagid = sfmmutohtagid(sfmmup, rid);
2812 
2813 	ASSERT(htagid != NULL);
2814 
2815 	hmeshift = HME_HASH_SHIFT(size);
2816 
2817 	hmebp = HME_HASH_FUNCTION(htagid, vaddr, hmeshift);
2818 
2819 	SFMMU_HASH_LOCK(hmebp);
2820 
2821 	return (hmebp);
2822 }
2823 
2824 /*
2825  * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
2826  * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
2827  * allocated.
2828  */
2829 static struct hme_blk *
2830 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
2831 	caddr_t vaddr, uint_t size, uint_t flags, uint_t rid)
2832 {
2833 	hmeblk_tag hblktag;
2834 	int hmeshift;
2835 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
2836 	uint64_t hblkpa, prevpa;
2837 	struct kmem_cache *sfmmu_cache;
2838 	uint_t forcefree;
2839 
2840 	SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
2841 
2842 	hblktag.htag_id = sfmmutohtagid(sfmmup, rid);
2843 	ASSERT(hblktag.htag_id != NULL);
2844 	hmeshift = HME_HASH_SHIFT(size);
2845 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2846 	hblktag.htag_rehash = HME_HASH_REHASH(size);
2847 	hblktag.htag_rid = rid;
2848 
2849 ttearray_realloc:
2850 
2851 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa,
2852 	    pr_hblk, prevpa, &list);
2853 
2854 	/*
2855 	 * We block until hblk_reserve_lock is released; it's held by
2856 	 * the thread, temporarily using hblk_reserve, until hblk_reserve is
2857 	 * replaced by a hblk from sfmmu8_cache.
2858 	 */
2859 	if (hmeblkp == (struct hme_blk *)hblk_reserve &&
2860 	    hblk_reserve_thread != curthread) {
2861 		SFMMU_HASH_UNLOCK(hmebp);
2862 		mutex_enter(&hblk_reserve_lock);
2863 		mutex_exit(&hblk_reserve_lock);
2864 		SFMMU_STAT(sf_hblk_reserve_hit);
2865 		SFMMU_HASH_LOCK(hmebp);
2866 		goto ttearray_realloc;
2867 	}
2868 
2869 	if (hmeblkp == NULL) {
2870 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
2871 		    hblktag, flags, rid);
2872 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
2873 		ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
2874 	} else {
2875 		/*
2876 		 * It is possible for 8k and 64k hblks to collide since they
2877 		 * have the same rehash value. This is because we
2878 		 * lazily free hblks and 8K/64K blks could be lingering.
2879 		 * If we find size mismatch we free the block and & try again.
2880 		 */
2881 		if (get_hblk_ttesz(hmeblkp) != size) {
2882 			ASSERT(!hmeblkp->hblk_vcnt);
2883 			ASSERT(!hmeblkp->hblk_hmecnt);
2884 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
2885 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
2886 			goto ttearray_realloc;
2887 		}
2888 		if (hmeblkp->hblk_shw_bit) {
2889 			/*
2890 			 * if the hblk was previously used as a shadow hblk then
2891 			 * we will change it to a normal hblk
2892 			 */
2893 			ASSERT(!hmeblkp->hblk_shared);
2894 			if (hmeblkp->hblk_shw_mask) {
2895 				sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
2896 				ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2897 				goto ttearray_realloc;
2898 			} else {
2899 				hmeblkp->hblk_shw_bit = 0;
2900 			}
2901 		}
2902 		SFMMU_STAT(sf_hblk_hit);
2903 	}
2904 
2905 	/*
2906 	 * hat_memload() should never call kmem_cache_free(); see block
2907 	 * comment showing the stacktrace in sfmmu_hblk_alloc();
2908 	 * enqueue each hblk in the list to reserve list if it's created
2909 	 * from sfmmu8_cache *and* sfmmup == KHATID.
2910 	 */
2911 	forcefree = (sfmmup == KHATID) ? 1 : 0;
2912 	while ((pr_hblk = list) != NULL) {
2913 		list = pr_hblk->hblk_next;
2914 		sfmmu_cache = get_hblk_cache(pr_hblk);
2915 		if ((sfmmu_cache == sfmmu8_cache) &&
2916 		    sfmmu_put_free_hblk(pr_hblk, forcefree))
2917 			continue;
2918 
2919 		ASSERT(sfmmup != KHATID);
2920 		kmem_cache_free(sfmmu_cache, pr_hblk);
2921 	}
2922 
2923 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
2924 	ASSERT(!hmeblkp->hblk_shw_bit);
2925 	ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
2926 	ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
2927 	ASSERT(hmeblkp->hblk_tag.htag_rid == rid);
2928 
2929 	return (hmeblkp);
2930 }
2931 
2932 /*
2933  * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
2934  * otherwise.
2935  */
2936 static int
2937 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
2938 	caddr_t vaddr, page_t **pps, uint_t flags, uint_t rid)
2939 {
2940 	page_t *pp = *pps;
2941 	int hmenum, size, remap;
2942 	tte_t tteold, flush_tte;
2943 #ifdef DEBUG
2944 	tte_t orig_old;
2945 #endif /* DEBUG */
2946 	struct sf_hment *sfhme;
2947 	kmutex_t *pml, *pmtx;
2948 	hatlock_t *hatlockp;
2949 	int myflt;
2950 
2951 	/*
2952 	 * remove this panic when we decide to let user virtual address
2953 	 * space be >= USERLIMIT.
2954 	 */
2955 	if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
2956 		panic("user addr %p in kernel space", (void *)vaddr);
2957 #if defined(TTE_IS_GLOBAL)
2958 	if (TTE_IS_GLOBAL(ttep))
2959 		panic("sfmmu_tteload: creating global tte");
2960 #endif
2961 
2962 #ifdef DEBUG
2963 	if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
2964 	    !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
2965 		panic("sfmmu_tteload: non cacheable memory tte");
2966 #endif /* DEBUG */
2967 
2968 	/* don't simulate dirty bit for writeable ISM/DISM mappings */
2969 	if ((flags & HAT_LOAD_SHARE) && TTE_IS_WRITABLE(ttep)) {
2970 		TTE_SET_REF(ttep);
2971 		TTE_SET_MOD(ttep);
2972 	}
2973 
2974 	if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
2975 	    !TTE_IS_MOD(ttep)) {
2976 		/*
2977 		 * Don't load TSB for dummy as in ISM.  Also don't preload
2978 		 * the TSB if the TTE isn't writable since we're likely to
2979 		 * fault on it again -- preloading can be fairly expensive.
2980 		 */
2981 		flags |= SFMMU_NO_TSBLOAD;
2982 	}
2983 
2984 	size = TTE_CSZ(ttep);
2985 	switch (size) {
2986 	case TTE8K:
2987 		SFMMU_STAT(sf_tteload8k);
2988 		break;
2989 	case TTE64K:
2990 		SFMMU_STAT(sf_tteload64k);
2991 		break;
2992 	case TTE512K:
2993 		SFMMU_STAT(sf_tteload512k);
2994 		break;
2995 	case TTE4M:
2996 		SFMMU_STAT(sf_tteload4m);
2997 		break;
2998 	case (TTE32M):
2999 		SFMMU_STAT(sf_tteload32m);
3000 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
3001 		break;
3002 	case (TTE256M):
3003 		SFMMU_STAT(sf_tteload256m);
3004 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
3005 		break;
3006 	}
3007 
3008 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
3009 	SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
3010 	ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
3011 	ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
3012 
3013 	HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
3014 
3015 	/*
3016 	 * Need to grab mlist lock here so that pageunload
3017 	 * will not change tte behind us.
3018 	 */
3019 	if (pp) {
3020 		pml = sfmmu_mlist_enter(pp);
3021 	}
3022 
3023 	sfmmu_copytte(&sfhme->hme_tte, &tteold);
3024 	/*
3025 	 * Look for corresponding hment and if valid verify
3026 	 * pfns are equal.
3027 	 */
3028 	remap = TTE_IS_VALID(&tteold);
3029 	if (remap) {
3030 		pfn_t	new_pfn, old_pfn;
3031 
3032 		old_pfn = TTE_TO_PFN(vaddr, &tteold);
3033 		new_pfn = TTE_TO_PFN(vaddr, ttep);
3034 
3035 		if (flags & HAT_LOAD_REMAP) {
3036 			/* make sure we are remapping same type of pages */
3037 			if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
3038 				panic("sfmmu_tteload - tte remap io<->memory");
3039 			}
3040 			if (old_pfn != new_pfn &&
3041 			    (pp != NULL || sfhme->hme_page != NULL)) {
3042 				panic("sfmmu_tteload - tte remap pp != NULL");
3043 			}
3044 		} else if (old_pfn != new_pfn) {
3045 			panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
3046 			    (void *)hmeblkp);
3047 		}
3048 		ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
3049 	}
3050 
3051 	if (pp) {
3052 		if (size == TTE8K) {
3053 #ifdef VAC
3054 			/*
3055 			 * Handle VAC consistency
3056 			 */
3057 			if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
3058 				sfmmu_vac_conflict(sfmmup, vaddr, pp);
3059 			}
3060 #endif
3061 
3062 			if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3063 				pmtx = sfmmu_page_enter(pp);
3064 				PP_CLRRO(pp);
3065 				sfmmu_page_exit(pmtx);
3066 			} else if (!PP_ISMAPPED(pp) &&
3067 			    (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
3068 				pmtx = sfmmu_page_enter(pp);
3069 				if (!(PP_ISMOD(pp))) {
3070 					PP_SETRO(pp);
3071 				}
3072 				sfmmu_page_exit(pmtx);
3073 			}
3074 
3075 		} else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
3076 			/*
3077 			 * sfmmu_pagearray_setup failed so return
3078 			 */
3079 			sfmmu_mlist_exit(pml);
3080 			return (1);
3081 		}
3082 	}
3083 
3084 	/*
3085 	 * Make sure hment is not on a mapping list.
3086 	 */
3087 	ASSERT(remap || (sfhme->hme_page == NULL));
3088 
3089 	/* if it is not a remap then hme->next better be NULL */
3090 	ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
3091 
3092 	if (flags & HAT_LOAD_LOCK) {
3093 		if ((hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
3094 			panic("too high lckcnt-hmeblk %p",
3095 			    (void *)hmeblkp);
3096 		}
3097 		atomic_add_32(&hmeblkp->hblk_lckcnt, 1);
3098 
3099 		HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
3100 	}
3101 
3102 #ifdef VAC
3103 	if (pp && PP_ISNC(pp)) {
3104 		/*
3105 		 * If the physical page is marked to be uncacheable, like
3106 		 * by a vac conflict, make sure the new mapping is also
3107 		 * uncacheable.
3108 		 */
3109 		TTE_CLR_VCACHEABLE(ttep);
3110 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
3111 	}
3112 #endif
3113 	ttep->tte_hmenum = hmenum;
3114 
3115 #ifdef DEBUG
3116 	orig_old = tteold;
3117 #endif /* DEBUG */
3118 
3119 	while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
3120 		if ((sfmmup == KHATID) &&
3121 		    (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
3122 			sfmmu_copytte(&sfhme->hme_tte, &tteold);
3123 		}
3124 #ifdef DEBUG
3125 		chk_tte(&orig_old, &tteold, ttep, hmeblkp);
3126 #endif /* DEBUG */
3127 	}
3128 	ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
3129 
3130 	if (!TTE_IS_VALID(&tteold)) {
3131 
3132 		atomic_add_16(&hmeblkp->hblk_vcnt, 1);
3133 		if (rid == SFMMU_INVALID_SHMERID) {
3134 			atomic_add_long(&sfmmup->sfmmu_ttecnt[size], 1);
3135 		} else {
3136 			sf_srd_t *srdp = sfmmup->sfmmu_srdp;
3137 			sf_region_t *rgnp = srdp->srd_hmergnp[rid];
3138 			/*
3139 			 * We already accounted for region ttecnt's in sfmmu
3140 			 * during hat_join_region() processing. Here we
3141 			 * only update ttecnt's in region struture.
3142 			 */
3143 			atomic_add_long(&rgnp->rgn_ttecnt[size], 1);
3144 		}
3145 	}
3146 
3147 	myflt = (astosfmmu(curthread->t_procp->p_as) == sfmmup);
3148 	if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
3149 	    sfmmup != ksfmmup) {
3150 		uchar_t tteflag = 1 << size;
3151 		if (rid == SFMMU_INVALID_SHMERID) {
3152 			if (!(sfmmup->sfmmu_tteflags & tteflag)) {
3153 				hatlockp = sfmmu_hat_enter(sfmmup);
3154 				sfmmup->sfmmu_tteflags |= tteflag;
3155 				sfmmu_hat_exit(hatlockp);
3156 			}
3157 		} else if (!(sfmmup->sfmmu_rtteflags & tteflag)) {
3158 			hatlockp = sfmmu_hat_enter(sfmmup);
3159 			sfmmup->sfmmu_rtteflags |= tteflag;
3160 			sfmmu_hat_exit(hatlockp);
3161 		}
3162 		/*
3163 		 * Update the current CPU tsbmiss area, so the current thread
3164 		 * won't need to take the tsbmiss for the new pagesize.
3165 		 * The other threads in the process will update their tsb
3166 		 * miss area lazily in sfmmu_tsbmiss_exception() when they
3167 		 * fail to find the translation for a newly added pagesize.
3168 		 */
3169 		if (size > TTE64K && myflt) {
3170 			struct tsbmiss *tsbmp;
3171 			kpreempt_disable();
3172 			tsbmp = &tsbmiss_area[CPU->cpu_id];
3173 			if (rid == SFMMU_INVALID_SHMERID) {
3174 				if (!(tsbmp->uhat_tteflags & tteflag)) {
3175 					tsbmp->uhat_tteflags |= tteflag;
3176 				}
3177 			} else {
3178 				if (!(tsbmp->uhat_rtteflags & tteflag)) {
3179 					tsbmp->uhat_rtteflags |= tteflag;
3180 				}
3181 			}
3182 			kpreempt_enable();
3183 		}
3184 	}
3185 
3186 	if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
3187 	    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
3188 		hatlockp = sfmmu_hat_enter(sfmmup);
3189 		SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
3190 		sfmmu_hat_exit(hatlockp);
3191 	}
3192 
3193 	flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
3194 	    hw_tte.tte_intlo;
3195 	flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
3196 	    hw_tte.tte_inthi;
3197 
3198 	if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
3199 		/*
3200 		 * If remap and new tte differs from old tte we need
3201 		 * to sync the mod bit and flush TLB/TSB.  We don't
3202 		 * need to sync ref bit because we currently always set
3203 		 * ref bit in tteload.
3204 		 */
3205 		ASSERT(TTE_IS_REF(ttep));
3206 		if (TTE_IS_MOD(&tteold)) {
3207 			sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
3208 		}
3209 		/*
3210 		 * hwtte bits shouldn't change for SRD hmeblks as long as SRD
3211 		 * hmes are only used for read only text. Adding this code for
3212 		 * completeness and future use of shared hmeblks with writable
3213 		 * mappings of VMODSORT vnodes.
3214 		 */
3215 		if (hmeblkp->hblk_shared) {
3216 			cpuset_t cpuset = sfmmu_rgntlb_demap(vaddr,
3217 			    sfmmup->sfmmu_srdp->srd_hmergnp[rid], hmeblkp, 1);
3218 			xt_sync(cpuset);
3219 			SFMMU_STAT_ADD(sf_region_remap_demap, 1);
3220 		} else {
3221 			sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
3222 			xt_sync(sfmmup->sfmmu_cpusran);
3223 		}
3224 	}
3225 
3226 	if ((flags & SFMMU_NO_TSBLOAD) == 0) {
3227 		/*
3228 		 * We only preload 8K and 4M mappings into the TSB, since
3229 		 * 64K and 512K mappings are replicated and hence don't
3230 		 * have a single, unique TSB entry. Ditto for 32M/256M.
3231 		 */
3232 		if (size == TTE8K || size == TTE4M) {
3233 			sf_scd_t *scdp;
3234 			hatlockp = sfmmu_hat_enter(sfmmup);
3235 			/*
3236 			 * Don't preload private TSB if the mapping is used
3237 			 * by the shctx in the SCD.
3238 			 */
3239 			scdp = sfmmup->sfmmu_scdp;
3240 			if (rid == SFMMU_INVALID_SHMERID || scdp == NULL ||
3241 			    !SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
3242 				sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte,
3243 				    size);
3244 			}
3245 			sfmmu_hat_exit(hatlockp);
3246 		}
3247 	}
3248 	if (pp) {
3249 		if (!remap) {
3250 			HME_ADD(sfhme, pp);
3251 			atomic_add_16(&hmeblkp->hblk_hmecnt, 1);
3252 			ASSERT(hmeblkp->hblk_hmecnt > 0);
3253 
3254 			/*
3255 			 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
3256 			 * see pageunload() for comment.
3257 			 */
3258 		}
3259 		sfmmu_mlist_exit(pml);
3260 	}
3261 
3262 	return (0);
3263 }
3264 /*
3265  * Function unlocks hash bucket.
3266  */
3267 static void
3268 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
3269 {
3270 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3271 	SFMMU_HASH_UNLOCK(hmebp);
3272 }
3273 
3274 /*
3275  * function which checks and sets up page array for a large
3276  * translation.  Will set p_vcolor, p_index, p_ro fields.
3277  * Assumes addr and pfnum of first page are properly aligned.
3278  * Will check for physical contiguity. If check fails it return
3279  * non null.
3280  */
3281 static int
3282 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
3283 {
3284 	int 	i, index, ttesz;
3285 	pfn_t	pfnum;
3286 	pgcnt_t	npgs;
3287 	page_t *pp, *pp1;
3288 	kmutex_t *pmtx;
3289 #ifdef VAC
3290 	int osz;
3291 	int cflags = 0;
3292 	int vac_err = 0;
3293 #endif
3294 	int newidx = 0;
3295 
3296 	ttesz = TTE_CSZ(ttep);
3297 
3298 	ASSERT(ttesz > TTE8K);
3299 
3300 	npgs = TTEPAGES(ttesz);
3301 	index = PAGESZ_TO_INDEX(ttesz);
3302 
3303 	pfnum = (*pps)->p_pagenum;
3304 	ASSERT(IS_P2ALIGNED(pfnum, npgs));
3305 
3306 	/*
3307 	 * Save the first pp so we can do HAT_TMPNC at the end.
3308 	 */
3309 	pp1 = *pps;
3310 #ifdef VAC
3311 	osz = fnd_mapping_sz(pp1);
3312 #endif
3313 
3314 	for (i = 0; i < npgs; i++, pps++) {
3315 		pp = *pps;
3316 		ASSERT(PAGE_LOCKED(pp));
3317 		ASSERT(pp->p_szc >= ttesz);
3318 		ASSERT(pp->p_szc == pp1->p_szc);
3319 		ASSERT(sfmmu_mlist_held(pp));
3320 
3321 		/*
3322 		 * XXX is it possible to maintain P_RO on the root only?
3323 		 */
3324 		if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3325 			pmtx = sfmmu_page_enter(pp);
3326 			PP_CLRRO(pp);
3327 			sfmmu_page_exit(pmtx);
3328 		} else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
3329 		    !PP_ISMOD(pp)) {
3330 			pmtx = sfmmu_page_enter(pp);
3331 			if (!(PP_ISMOD(pp))) {
3332 				PP_SETRO(pp);
3333 			}
3334 			sfmmu_page_exit(pmtx);
3335 		}
3336 
3337 		/*
3338 		 * If this is a remap we skip vac & contiguity checks.
3339 		 */
3340 		if (remap)
3341 			continue;
3342 
3343 		/*
3344 		 * set p_vcolor and detect any vac conflicts.
3345 		 */
3346 #ifdef VAC
3347 		if (vac_err == 0) {
3348 			vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
3349 
3350 		}
3351 #endif
3352 
3353 		/*
3354 		 * Save current index in case we need to undo it.
3355 		 * Note: "PAGESZ_TO_INDEX(sz)	(1 << (sz))"
3356 		 *	"SFMMU_INDEX_SHIFT	6"
3357 		 *	 "SFMMU_INDEX_MASK	((1 << SFMMU_INDEX_SHIFT) - 1)"
3358 		 *	 "PP_MAPINDEX(p_index)	(p_index & SFMMU_INDEX_MASK)"
3359 		 *
3360 		 * So:	index = PAGESZ_TO_INDEX(ttesz);
3361 		 *	if ttesz == 1 then index = 0x2
3362 		 *		    2 then index = 0x4
3363 		 *		    3 then index = 0x8
3364 		 *		    4 then index = 0x10
3365 		 *		    5 then index = 0x20
3366 		 * The code below checks if it's a new pagesize (ie, newidx)
3367 		 * in case we need to take it back out of p_index,
3368 		 * and then or's the new index into the existing index.
3369 		 */
3370 		if ((PP_MAPINDEX(pp) & index) == 0)
3371 			newidx = 1;
3372 		pp->p_index = (PP_MAPINDEX(pp) | index);
3373 
3374 		/*
3375 		 * contiguity check
3376 		 */
3377 		if (pp->p_pagenum != pfnum) {
3378 			/*
3379 			 * If we fail the contiguity test then
3380 			 * the only thing we need to fix is the p_index field.
3381 			 * We might get a few extra flushes but since this
3382 			 * path is rare that is ok.  The p_ro field will
3383 			 * get automatically fixed on the next tteload to
3384 			 * the page.  NO TNC bit is set yet.
3385 			 */
3386 			while (i >= 0) {
3387 				pp = *pps;
3388 				if (newidx)
3389 					pp->p_index = (PP_MAPINDEX(pp) &
3390 					    ~index);
3391 				pps--;
3392 				i--;
3393 			}
3394 			return (1);
3395 		}
3396 		pfnum++;
3397 		addr += MMU_PAGESIZE;
3398 	}
3399 
3400 #ifdef VAC
3401 	if (vac_err) {
3402 		if (ttesz > osz) {
3403 			/*
3404 			 * There are some smaller mappings that causes vac
3405 			 * conflicts. Convert all existing small mappings to
3406 			 * TNC.
3407 			 */
3408 			SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
3409 			sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
3410 			    npgs);
3411 		} else {
3412 			/* EMPTY */
3413 			/*
3414 			 * If there exists an big page mapping,
3415 			 * that means the whole existing big page
3416 			 * has TNC setting already. No need to covert to
3417 			 * TNC again.
3418 			 */
3419 			ASSERT(PP_ISTNC(pp1));
3420 		}
3421 	}
3422 #endif	/* VAC */
3423 
3424 	return (0);
3425 }
3426 
3427 #ifdef VAC
3428 /*
3429  * Routine that detects vac consistency for a large page. It also
3430  * sets virtual color for all pp's for this big mapping.
3431  */
3432 static int
3433 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
3434 {
3435 	int vcolor, ocolor;
3436 
3437 	ASSERT(sfmmu_mlist_held(pp));
3438 
3439 	if (PP_ISNC(pp)) {
3440 		return (HAT_TMPNC);
3441 	}
3442 
3443 	vcolor = addr_to_vcolor(addr);
3444 	if (PP_NEWPAGE(pp)) {
3445 		PP_SET_VCOLOR(pp, vcolor);
3446 		return (0);
3447 	}
3448 
3449 	ocolor = PP_GET_VCOLOR(pp);
3450 	if (ocolor == vcolor) {
3451 		return (0);
3452 	}
3453 
3454 	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
3455 		/*
3456 		 * Previous user of page had a differnet color
3457 		 * but since there are no current users
3458 		 * we just flush the cache and change the color.
3459 		 * As an optimization for large pages we flush the
3460 		 * entire cache of that color and set a flag.
3461 		 */
3462 		SFMMU_STAT(sf_pgcolor_conflict);
3463 		if (!CacheColor_IsFlushed(*cflags, ocolor)) {
3464 			CacheColor_SetFlushed(*cflags, ocolor);
3465 			sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
3466 		}
3467 		PP_SET_VCOLOR(pp, vcolor);
3468 		return (0);
3469 	}
3470 
3471 	/*
3472 	 * We got a real conflict with a current mapping.
3473 	 * set flags to start unencaching all mappings
3474 	 * and return failure so we restart looping
3475 	 * the pp array from the beginning.
3476 	 */
3477 	return (HAT_TMPNC);
3478 }
3479 #endif	/* VAC */
3480 
3481 /*
3482  * creates a large page shadow hmeblk for a tte.
3483  * The purpose of this routine is to allow us to do quick unloads because
3484  * the vm layer can easily pass a very large but sparsely populated range.
3485  */
3486 static struct hme_blk *
3487 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
3488 {
3489 	struct hmehash_bucket *hmebp;
3490 	hmeblk_tag hblktag;
3491 	int hmeshift, size, vshift;
3492 	uint_t shw_mask, newshw_mask;
3493 	struct hme_blk *hmeblkp;
3494 
3495 	ASSERT(sfmmup != KHATID);
3496 	if (mmu_page_sizes == max_mmu_page_sizes) {
3497 		ASSERT(ttesz < TTE256M);
3498 	} else {
3499 		ASSERT(ttesz < TTE4M);
3500 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
3501 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
3502 	}
3503 
3504 	if (ttesz == TTE8K) {
3505 		size = TTE512K;
3506 	} else {
3507 		size = ++ttesz;
3508 	}
3509 
3510 	hblktag.htag_id = sfmmup;
3511 	hmeshift = HME_HASH_SHIFT(size);
3512 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
3513 	hblktag.htag_rehash = HME_HASH_REHASH(size);
3514 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3515 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
3516 
3517 	SFMMU_HASH_LOCK(hmebp);
3518 
3519 	HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3520 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
3521 	if (hmeblkp == NULL) {
3522 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3523 		    hblktag, flags, SFMMU_INVALID_SHMERID);
3524 	}
3525 	ASSERT(hmeblkp);
3526 	if (!hmeblkp->hblk_shw_mask) {
3527 		/*
3528 		 * if this is a unused hblk it was just allocated or could
3529 		 * potentially be a previous large page hblk so we need to
3530 		 * set the shadow bit.
3531 		 */
3532 		ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3533 		hmeblkp->hblk_shw_bit = 1;
3534 	} else if (hmeblkp->hblk_shw_bit == 0) {
3535 		panic("sfmmu_shadow_hcreate: shw bit not set in hmeblkp 0x%p",
3536 		    (void *)hmeblkp);
3537 	}
3538 	ASSERT(hmeblkp->hblk_shw_bit == 1);
3539 	ASSERT(!hmeblkp->hblk_shared);
3540 	vshift = vaddr_to_vshift(hblktag, vaddr, size);
3541 	ASSERT(vshift < 8);
3542 	/*
3543 	 * Atomically set shw mask bit
3544 	 */
3545 	do {
3546 		shw_mask = hmeblkp->hblk_shw_mask;
3547 		newshw_mask = shw_mask | (1 << vshift);
3548 		newshw_mask = cas32(&hmeblkp->hblk_shw_mask, shw_mask,
3549 		    newshw_mask);
3550 	} while (newshw_mask != shw_mask);
3551 
3552 	SFMMU_HASH_UNLOCK(hmebp);
3553 
3554 	return (hmeblkp);
3555 }
3556 
3557 /*
3558  * This routine cleanup a previous shadow hmeblk and changes it to
3559  * a regular hblk.  This happens rarely but it is possible
3560  * when a process wants to use large pages and there are hblks still
3561  * lying around from the previous as that used these hmeblks.
3562  * The alternative was to cleanup the shadow hblks at unload time
3563  * but since so few user processes actually use large pages, it is
3564  * better to be lazy and cleanup at this time.
3565  */
3566 static void
3567 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
3568 	struct hmehash_bucket *hmebp)
3569 {
3570 	caddr_t addr, endaddr;
3571 	int hashno, size;
3572 
3573 	ASSERT(hmeblkp->hblk_shw_bit);
3574 	ASSERT(!hmeblkp->hblk_shared);
3575 
3576 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3577 
3578 	if (!hmeblkp->hblk_shw_mask) {
3579 		hmeblkp->hblk_shw_bit = 0;
3580 		return;
3581 	}
3582 	addr = (caddr_t)get_hblk_base(hmeblkp);
3583 	endaddr = get_hblk_endaddr(hmeblkp);
3584 	size = get_hblk_ttesz(hmeblkp);
3585 	hashno = size - 1;
3586 	ASSERT(hashno > 0);
3587 	SFMMU_HASH_UNLOCK(hmebp);
3588 
3589 	sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
3590 
3591 	SFMMU_HASH_LOCK(hmebp);
3592 }
3593 
3594 static void
3595 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
3596 	int hashno)
3597 {
3598 	int hmeshift, shadow = 0;
3599 	hmeblk_tag hblktag;
3600 	struct hmehash_bucket *hmebp;
3601 	struct hme_blk *hmeblkp;
3602 	struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
3603 	uint64_t hblkpa, prevpa, nx_pa;
3604 
3605 	ASSERT(hashno > 0);
3606 	hblktag.htag_id = sfmmup;
3607 	hblktag.htag_rehash = hashno;
3608 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3609 
3610 	hmeshift = HME_HASH_SHIFT(hashno);
3611 
3612 	while (addr < endaddr) {
3613 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3614 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3615 		SFMMU_HASH_LOCK(hmebp);
3616 		/* inline HME_HASH_SEARCH */
3617 		hmeblkp = hmebp->hmeblkp;
3618 		hblkpa = hmebp->hmeh_nextpa;
3619 		prevpa = 0;
3620 		pr_hblk = NULL;
3621 		while (hmeblkp) {
3622 			ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
3623 			if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
3624 				/* found hme_blk */
3625 				ASSERT(!hmeblkp->hblk_shared);
3626 				if (hmeblkp->hblk_shw_bit) {
3627 					if (hmeblkp->hblk_shw_mask) {
3628 						shadow = 1;
3629 						sfmmu_shadow_hcleanup(sfmmup,
3630 						    hmeblkp, hmebp);
3631 						break;
3632 					} else {
3633 						hmeblkp->hblk_shw_bit = 0;
3634 					}
3635 				}
3636 
3637 				/*
3638 				 * Hblk_hmecnt and hblk_vcnt could be non zero
3639 				 * since hblk_unload() does not gurantee that.
3640 				 *
3641 				 * XXX - this could cause tteload() to spin
3642 				 * where sfmmu_shadow_hcleanup() is called.
3643 				 */
3644 			}
3645 
3646 			nx_hblk = hmeblkp->hblk_next;
3647 			nx_pa = hmeblkp->hblk_nextpa;
3648 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
3649 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
3650 				    pr_hblk);
3651 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
3652 			} else {
3653 				pr_hblk = hmeblkp;
3654 				prevpa = hblkpa;
3655 			}
3656 			hmeblkp = nx_hblk;
3657 			hblkpa = nx_pa;
3658 		}
3659 
3660 		SFMMU_HASH_UNLOCK(hmebp);
3661 
3662 		if (shadow) {
3663 			/*
3664 			 * We found another shadow hblk so cleaned its
3665 			 * children.  We need to go back and cleanup
3666 			 * the original hblk so we don't change the
3667 			 * addr.
3668 			 */
3669 			shadow = 0;
3670 		} else {
3671 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
3672 			    (1 << hmeshift));
3673 		}
3674 	}
3675 	sfmmu_hblks_list_purge(&list);
3676 }
3677 
3678 /*
3679  * This routine's job is to delete stale invalid shared hmeregions hmeblks that
3680  * may still linger on after pageunload.
3681  */
3682 static void
3683 sfmmu_cleanup_rhblk(sf_srd_t *srdp, caddr_t addr, uint_t rid, int ttesz)
3684 {
3685 	int hmeshift;
3686 	hmeblk_tag hblktag;
3687 	struct hmehash_bucket *hmebp;
3688 	struct hme_blk *hmeblkp;
3689 	struct hme_blk *pr_hblk;
3690 	struct hme_blk *list = NULL;
3691 	uint64_t hblkpa, prevpa;
3692 
3693 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3694 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3695 
3696 	hmeshift = HME_HASH_SHIFT(ttesz);
3697 	hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3698 	hblktag.htag_rehash = ttesz;
3699 	hblktag.htag_rid = rid;
3700 	hblktag.htag_id = srdp;
3701 	hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3702 
3703 	SFMMU_HASH_LOCK(hmebp);
3704 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, pr_hblk,
3705 	    prevpa, &list);
3706 	if (hmeblkp != NULL) {
3707 		ASSERT(hmeblkp->hblk_shared);
3708 		ASSERT(!hmeblkp->hblk_shw_bit);
3709 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3710 			panic("sfmmu_cleanup_rhblk: valid hmeblk");
3711 		}
3712 		ASSERT(!hmeblkp->hblk_lckcnt);
3713 		sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
3714 		sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
3715 	}
3716 	SFMMU_HASH_UNLOCK(hmebp);
3717 	sfmmu_hblks_list_purge(&list);
3718 }
3719 
3720 /* ARGSUSED */
3721 static void
3722 sfmmu_rgn_cb_noop(caddr_t saddr, caddr_t eaddr, caddr_t r_saddr,
3723     size_t r_size, void *r_obj, u_offset_t r_objoff)
3724 {
3725 }
3726 
3727 /*
3728  * Searches for an hmeblk which maps addr, then unloads this mapping
3729  * and updates *eaddrp, if the hmeblk is found.
3730  */
3731 static void
3732 sfmmu_unload_hmeregion_va(sf_srd_t *srdp, uint_t rid, caddr_t addr,
3733     caddr_t eaddr, int ttesz, caddr_t *eaddrp)
3734 {
3735 	int hmeshift;
3736 	hmeblk_tag hblktag;
3737 	struct hmehash_bucket *hmebp;
3738 	struct hme_blk *hmeblkp;
3739 	struct hme_blk *pr_hblk;
3740 	struct hme_blk *list = NULL;
3741 	uint64_t hblkpa, prevpa;
3742 
3743 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3744 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3745 	ASSERT(ttesz >= HBLK_MIN_TTESZ);
3746 
3747 	hmeshift = HME_HASH_SHIFT(ttesz);
3748 	hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3749 	hblktag.htag_rehash = ttesz;
3750 	hblktag.htag_rid = rid;
3751 	hblktag.htag_id = srdp;
3752 	hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3753 
3754 	SFMMU_HASH_LOCK(hmebp);
3755 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, pr_hblk,
3756 	    prevpa, &list);
3757 	if (hmeblkp != NULL) {
3758 		ASSERT(hmeblkp->hblk_shared);
3759 		ASSERT(!hmeblkp->hblk_lckcnt);
3760 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3761 			*eaddrp = sfmmu_hblk_unload(NULL, hmeblkp, addr,
3762 			    eaddr, NULL, HAT_UNLOAD);
3763 			ASSERT(*eaddrp > addr);
3764 		}
3765 		ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3766 		sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
3767 		sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
3768 	}
3769 	SFMMU_HASH_UNLOCK(hmebp);
3770 	sfmmu_hblks_list_purge(&list);
3771 }
3772 
3773 static void
3774 sfmmu_unload_hmeregion(sf_srd_t *srdp, sf_region_t *rgnp)
3775 {
3776 	int ttesz = rgnp->rgn_pgszc;
3777 	size_t rsz = rgnp->rgn_size;
3778 	caddr_t rsaddr = rgnp->rgn_saddr;
3779 	caddr_t readdr = rsaddr + rsz;
3780 	caddr_t rhsaddr;
3781 	caddr_t va;
3782 	uint_t rid = rgnp->rgn_id;
3783 	caddr_t cbsaddr;
3784 	caddr_t cbeaddr;
3785 	hat_rgn_cb_func_t rcbfunc;
3786 	ulong_t cnt;
3787 
3788 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3789 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3790 
3791 	ASSERT(IS_P2ALIGNED(rsaddr, TTEBYTES(ttesz)));
3792 	ASSERT(IS_P2ALIGNED(rsz, TTEBYTES(ttesz)));
3793 	if (ttesz < HBLK_MIN_TTESZ) {
3794 		ttesz = HBLK_MIN_TTESZ;
3795 		rhsaddr = (caddr_t)P2ALIGN((uintptr_t)rsaddr, HBLK_MIN_BYTES);
3796 	} else {
3797 		rhsaddr = rsaddr;
3798 	}
3799 
3800 	if ((rcbfunc = rgnp->rgn_cb_function) == NULL) {
3801 		rcbfunc = sfmmu_rgn_cb_noop;
3802 	}
3803 
3804 	while (ttesz >= HBLK_MIN_TTESZ) {
3805 		cbsaddr = rsaddr;
3806 		cbeaddr = rsaddr;
3807 		if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
3808 			ttesz--;
3809 			continue;
3810 		}
3811 		cnt = 0;
3812 		va = rsaddr;
3813 		while (va < readdr) {
3814 			ASSERT(va >= rhsaddr);
3815 			if (va != cbeaddr) {
3816 				if (cbeaddr != cbsaddr) {
3817 					ASSERT(cbeaddr > cbsaddr);
3818 					(*rcbfunc)(cbsaddr, cbeaddr,
3819 					    rsaddr, rsz, rgnp->rgn_obj,
3820 					    rgnp->rgn_objoff);
3821 				}
3822 				cbsaddr = va;
3823 				cbeaddr = va;
3824 			}
3825 			sfmmu_unload_hmeregion_va(srdp, rid, va, readdr,
3826 			    ttesz, &cbeaddr);
3827 			cnt++;
3828 			va = rhsaddr + (cnt << TTE_PAGE_SHIFT(ttesz));
3829 		}
3830 		if (cbeaddr != cbsaddr) {
3831 			ASSERT(cbeaddr > cbsaddr);
3832 			(*rcbfunc)(cbsaddr, cbeaddr, rsaddr,
3833 			    rsz, rgnp->rgn_obj,
3834 			    rgnp->rgn_objoff);
3835 		}
3836 		ttesz--;
3837 	}
3838 }
3839 
3840 /*
3841  * Release one hardware address translation lock on the given address range.
3842  */
3843 void
3844 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
3845 {
3846 	struct hmehash_bucket *hmebp;
3847 	hmeblk_tag hblktag;
3848 	int hmeshift, hashno = 1;
3849 	struct hme_blk *hmeblkp, *list = NULL;
3850 	caddr_t endaddr;
3851 
3852 	ASSERT(sfmmup != NULL);
3853 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3854 
3855 	ASSERT((sfmmup == ksfmmup) ||
3856 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3857 	ASSERT((len & MMU_PAGEOFFSET) == 0);
3858 	endaddr = addr + len;
3859 	hblktag.htag_id = sfmmup;
3860 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3861 
3862 	/*
3863 	 * Spitfire supports 4 page sizes.
3864 	 * Most pages are expected to be of the smallest page size (8K) and
3865 	 * these will not need to be rehashed. 64K pages also don't need to be
3866 	 * rehashed because an hmeblk spans 64K of address space. 512K pages
3867 	 * might need 1 rehash and and 4M pages might need 2 rehashes.
3868 	 */
3869 	while (addr < endaddr) {
3870 		hmeshift = HME_HASH_SHIFT(hashno);
3871 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3872 		hblktag.htag_rehash = hashno;
3873 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3874 
3875 		SFMMU_HASH_LOCK(hmebp);
3876 
3877 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3878 		if (hmeblkp != NULL) {
3879 			ASSERT(!hmeblkp->hblk_shared);
3880 			/*
3881 			 * If we encounter a shadow hmeblk then
3882 			 * we know there are no valid hmeblks mapping
3883 			 * this address at this size or larger.
3884 			 * Just increment address by the smallest
3885 			 * page size.
3886 			 */
3887 			if (hmeblkp->hblk_shw_bit) {
3888 				addr += MMU_PAGESIZE;
3889 			} else {
3890 				addr = sfmmu_hblk_unlock(hmeblkp, addr,
3891 				    endaddr);
3892 			}
3893 			SFMMU_HASH_UNLOCK(hmebp);
3894 			hashno = 1;
3895 			continue;
3896 		}
3897 		SFMMU_HASH_UNLOCK(hmebp);
3898 
3899 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
3900 			/*
3901 			 * We have traversed the whole list and rehashed
3902 			 * if necessary without finding the address to unlock
3903 			 * which should never happen.
3904 			 */
3905 			panic("sfmmu_unlock: addr not found. "
3906 			    "addr %p hat %p", (void *)addr, (void *)sfmmup);
3907 		} else {
3908 			hashno++;
3909 		}
3910 	}
3911 
3912 	sfmmu_hblks_list_purge(&list);
3913 }
3914 
3915 void
3916 hat_unlock_region(struct hat *sfmmup, caddr_t addr, size_t len,
3917     hat_region_cookie_t rcookie)
3918 {
3919 	sf_srd_t *srdp;
3920 	sf_region_t *rgnp;
3921 	int ttesz;
3922 	uint_t rid;
3923 	caddr_t eaddr;
3924 	caddr_t va;
3925 	int hmeshift;
3926 	hmeblk_tag hblktag;
3927 	struct hmehash_bucket *hmebp;
3928 	struct hme_blk *hmeblkp;
3929 	struct hme_blk *pr_hblk;
3930 	struct hme_blk *list;
3931 	uint64_t hblkpa, prevpa;
3932 
3933 	if (rcookie == HAT_INVALID_REGION_COOKIE) {
3934 		hat_unlock(sfmmup, addr, len);
3935 		return;
3936 	}
3937 
3938 	ASSERT(sfmmup != NULL);
3939 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3940 	ASSERT(sfmmup != ksfmmup);
3941 
3942 	srdp = sfmmup->sfmmu_srdp;
3943 	rid = (uint_t)((uint64_t)rcookie);
3944 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3945 	eaddr = addr + len;
3946 	va = addr;
3947 	list = NULL;
3948 	rgnp = srdp->srd_hmergnp[rid];
3949 	SFMMU_VALIDATE_HMERID(sfmmup, rid, addr, len);
3950 
3951 	ASSERT(IS_P2ALIGNED(addr, TTEBYTES(rgnp->rgn_pgszc)));
3952 	ASSERT(IS_P2ALIGNED(len, TTEBYTES(rgnp->rgn_pgszc)));
3953 	if (rgnp->rgn_pgszc < HBLK_MIN_TTESZ) {
3954 		ttesz = HBLK_MIN_TTESZ;
3955 	} else {
3956 		ttesz = rgnp->rgn_pgszc;
3957 	}
3958 	while (va < eaddr) {
3959 		while (ttesz < rgnp->rgn_pgszc &&
3960 		    IS_P2ALIGNED(va, TTEBYTES(ttesz + 1))) {
3961 			ttesz++;
3962 		}
3963 		while (ttesz >= HBLK_MIN_TTESZ) {
3964 			if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
3965 				ttesz--;
3966 				continue;
3967 			}
3968 			hmeshift = HME_HASH_SHIFT(ttesz);
3969 			hblktag.htag_bspage = HME_HASH_BSPAGE(va, hmeshift);
3970 			hblktag.htag_rehash = ttesz;
3971 			hblktag.htag_rid = rid;
3972 			hblktag.htag_id = srdp;
3973 			hmebp = HME_HASH_FUNCTION(srdp, va, hmeshift);
3974 			SFMMU_HASH_LOCK(hmebp);
3975 			HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa,
3976 			    pr_hblk, prevpa, &list);
3977 			if (hmeblkp == NULL) {
3978 				SFMMU_HASH_UNLOCK(hmebp);
3979 				ttesz--;
3980 				continue;
3981 			}
3982 			ASSERT(hmeblkp->hblk_shared);
3983 			va = sfmmu_hblk_unlock(hmeblkp, va, eaddr);
3984 			ASSERT(va >= eaddr ||
3985 			    IS_P2ALIGNED((uintptr_t)va, TTEBYTES(ttesz)));
3986 			SFMMU_HASH_UNLOCK(hmebp);
3987 			break;
3988 		}
3989 		if (ttesz < HBLK_MIN_TTESZ) {
3990 			panic("hat_unlock_region: addr not found "
3991 			    "addr %p hat %p", (void *)va, (void *)sfmmup);
3992 		}
3993 	}
3994 	sfmmu_hblks_list_purge(&list);
3995 }
3996 
3997 /*
3998  * Function to unlock a range of addresses in an hmeblk.  It returns the
3999  * next address that needs to be unlocked.
4000  * Should be called with the hash lock held.
4001  */
4002 static caddr_t
4003 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
4004 {
4005 	struct sf_hment *sfhme;
4006 	tte_t tteold, ttemod;
4007 	int ttesz, ret;
4008 
4009 	ASSERT(in_hblk_range(hmeblkp, addr));
4010 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4011 
4012 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4013 	ttesz = get_hblk_ttesz(hmeblkp);
4014 
4015 	HBLKTOHME(sfhme, hmeblkp, addr);
4016 	while (addr < endaddr) {
4017 readtte:
4018 		sfmmu_copytte(&sfhme->hme_tte, &tteold);
4019 		if (TTE_IS_VALID(&tteold)) {
4020 
4021 			ttemod = tteold;
4022 
4023 			ret = sfmmu_modifytte_try(&tteold, &ttemod,
4024 			    &sfhme->hme_tte);
4025 
4026 			if (ret < 0)
4027 				goto readtte;
4028 
4029 			if (hmeblkp->hblk_lckcnt == 0)
4030 				panic("zero hblk lckcnt");
4031 
4032 			if (((uintptr_t)addr + TTEBYTES(ttesz)) >
4033 			    (uintptr_t)endaddr)
4034 				panic("can't unlock large tte");
4035 
4036 			ASSERT(hmeblkp->hblk_lckcnt > 0);
4037 			atomic_add_32(&hmeblkp->hblk_lckcnt, -1);
4038 			HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
4039 		} else {
4040 			panic("sfmmu_hblk_unlock: invalid tte");
4041 		}
4042 		addr += TTEBYTES(ttesz);
4043 		sfhme++;
4044 	}
4045 	return (addr);
4046 }
4047 
4048 /*
4049  * Physical Address Mapping Framework
4050  *
4051  * General rules:
4052  *
4053  * (1) Applies only to seg_kmem memory pages. To make things easier,
4054  *     seg_kpm addresses are also accepted by the routines, but nothing
4055  *     is done with them since by definition their PA mappings are static.
4056  * (2) hat_add_callback() may only be called while holding the page lock
4057  *     SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()),
4058  *     or passing HAC_PAGELOCK flag.
4059  * (3) prehandler() and posthandler() may not call hat_add_callback() or
4060  *     hat_delete_callback(), nor should they allocate memory. Post quiesce
4061  *     callbacks may not sleep or acquire adaptive mutex locks.
4062  * (4) Either prehandler() or posthandler() (but not both) may be specified
4063  *     as being NULL.  Specifying an errhandler() is optional.
4064  *
4065  * Details of using the framework:
4066  *
4067  * registering a callback (hat_register_callback())
4068  *
4069  *	Pass prehandler, posthandler, errhandler addresses
4070  *	as described below. If capture_cpus argument is nonzero,
4071  *	suspend callback to the prehandler will occur with CPUs
4072  *	captured and executing xc_loop() and CPUs will remain
4073  *	captured until after the posthandler suspend callback
4074  *	occurs.
4075  *
4076  * adding a callback (hat_add_callback())
4077  *
4078  *      as_pagelock();
4079  *	hat_add_callback();
4080  *      save returned pfn in private data structures or program registers;
4081  *      as_pageunlock();
4082  *
4083  * prehandler()
4084  *
4085  *	Stop all accesses by physical address to this memory page.
4086  *	Called twice: the first, PRESUSPEND, is a context safe to acquire
4087  *	adaptive locks. The second, SUSPEND, is called at high PIL with
4088  *	CPUs captured so adaptive locks may NOT be acquired (and all spin
4089  *	locks must be XCALL_PIL or higher locks).
4090  *
4091  *	May return the following errors:
4092  *		EIO:	A fatal error has occurred. This will result in panic.
4093  *		EAGAIN:	The page cannot be suspended. This will fail the
4094  *			relocation.
4095  *		0:	Success.
4096  *
4097  * posthandler()
4098  *
4099  *      Save new pfn in private data structures or program registers;
4100  *	not allowed to fail (non-zero return values will result in panic).
4101  *
4102  * errhandler()
4103  *
4104  *	called when an error occurs related to the callback.  Currently
4105  *	the only such error is HAT_CB_ERR_LEAKED which indicates that
4106  *	a page is being freed, but there are still outstanding callback(s)
4107  *	registered on the page.
4108  *
4109  * removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
4110  *
4111  *	stop using physical address
4112  *	hat_delete_callback();
4113  *
4114  */
4115 
4116 /*
4117  * Register a callback class.  Each subsystem should do this once and
4118  * cache the id_t returned for use in setting up and tearing down callbacks.
4119  *
4120  * There is no facility for removing callback IDs once they are created;
4121  * the "key" should be unique for each module, so in case a module is unloaded
4122  * and subsequently re-loaded, we can recycle the module's previous entry.
4123  */
4124 id_t
4125 hat_register_callback(int key,
4126 	int (*prehandler)(caddr_t, uint_t, uint_t, void *),
4127 	int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
4128 	int (*errhandler)(caddr_t, uint_t, uint_t, void *),
4129 	int capture_cpus)
4130 {
4131 	id_t id;
4132 
4133 	/*
4134 	 * Search the table for a pre-existing callback associated with
4135 	 * the identifier "key".  If one exists, we re-use that entry in
4136 	 * the table for this instance, otherwise we assign the next
4137 	 * available table slot.
4138 	 */
4139 	for (id = 0; id < sfmmu_max_cb_id; id++) {
4140 		if (sfmmu_cb_table[id].key == key)
4141 			break;
4142 	}
4143 
4144 	if (id == sfmmu_max_cb_id) {
4145 		id = sfmmu_cb_nextid++;
4146 		if (id >= sfmmu_max_cb_id)
4147 			panic("hat_register_callback: out of callback IDs");
4148 	}
4149 
4150 	ASSERT(prehandler != NULL || posthandler != NULL);
4151 
4152 	sfmmu_cb_table[id].key = key;
4153 	sfmmu_cb_table[id].prehandler = prehandler;
4154 	sfmmu_cb_table[id].posthandler = posthandler;
4155 	sfmmu_cb_table[id].errhandler = errhandler;
4156 	sfmmu_cb_table[id].capture_cpus = capture_cpus;
4157 
4158 	return (id);
4159 }
4160 
4161 #define	HAC_COOKIE_NONE	(void *)-1
4162 
4163 /*
4164  * Add relocation callbacks to the specified addr/len which will be called
4165  * when relocating the associated page. See the description of pre and
4166  * posthandler above for more details.
4167  *
4168  * If HAC_PAGELOCK is included in flags, the underlying memory page is
4169  * locked internally so the caller must be able to deal with the callback
4170  * running even before this function has returned.  If HAC_PAGELOCK is not
4171  * set, it is assumed that the underlying memory pages are locked.
4172  *
4173  * Since the caller must track the individual page boundaries anyway,
4174  * we only allow a callback to be added to a single page (large
4175  * or small).  Thus [addr, addr + len) MUST be contained within a single
4176  * page.
4177  *
4178  * Registering multiple callbacks on the same [addr, addr+len) is supported,
4179  * _provided_that_ a unique parameter is specified for each callback.
4180  * If multiple callbacks are registered on the same range the callback will
4181  * be invoked with each unique parameter. Registering the same callback with
4182  * the same argument more than once will result in corrupted kernel state.
4183  *
4184  * Returns the pfn of the underlying kernel page in *rpfn
4185  * on success, or PFN_INVALID on failure.
4186  *
4187  * cookiep (if passed) provides storage space for an opaque cookie
4188  * to return later to hat_delete_callback(). This cookie makes the callback
4189  * deletion significantly quicker by avoiding a potentially lengthy hash
4190  * search.
4191  *
4192  * Returns values:
4193  *    0:      success
4194  *    ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
4195  *    EINVAL: callback ID is not valid
4196  *    ENXIO:  ["vaddr", "vaddr" + len) is not mapped in the kernel's address
4197  *            space
4198  *    ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary
4199  */
4200 int
4201 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
4202 	void *pvt, pfn_t *rpfn, void **cookiep)
4203 {
4204 	struct 		hmehash_bucket *hmebp;
4205 	hmeblk_tag 	hblktag;
4206 	struct hme_blk	*hmeblkp;
4207 	int 		hmeshift, hashno;
4208 	caddr_t 	saddr, eaddr, baseaddr;
4209 	struct pa_hment *pahmep;
4210 	struct sf_hment *sfhmep, *osfhmep;
4211 	kmutex_t	*pml;
4212 	tte_t   	tte;
4213 	page_t		*pp;
4214 	vnode_t		*vp;
4215 	u_offset_t	off;
4216 	pfn_t		pfn;
4217 	int		kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
4218 	int		locked = 0;
4219 
4220 	/*
4221 	 * For KPM mappings, just return the physical address since we
4222 	 * don't need to register any callbacks.
4223 	 */
4224 	if (IS_KPM_ADDR(vaddr)) {
4225 		uint64_t paddr;
4226 		SFMMU_KPM_VTOP(vaddr, paddr);
4227 		*rpfn = btop(paddr);
4228 		if (cookiep != NULL)
4229 			*cookiep = HAC_COOKIE_NONE;
4230 		return (0);
4231 	}
4232 
4233 	if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
4234 		*rpfn = PFN_INVALID;
4235 		return (EINVAL);
4236 	}
4237 
4238 	if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
4239 		*rpfn = PFN_INVALID;
4240 		return (ENOMEM);
4241 	}
4242 
4243 	sfhmep = &pahmep->sfment;
4244 
4245 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4246 	eaddr = saddr + len;
4247 
4248 rehash:
4249 	/* Find the mapping(s) for this page */
4250 	for (hashno = TTE64K, hmeblkp = NULL;
4251 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
4252 	    hashno++) {
4253 		hmeshift = HME_HASH_SHIFT(hashno);
4254 		hblktag.htag_id = ksfmmup;
4255 		hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4256 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4257 		hblktag.htag_rehash = hashno;
4258 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4259 
4260 		SFMMU_HASH_LOCK(hmebp);
4261 
4262 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4263 
4264 		if (hmeblkp == NULL)
4265 			SFMMU_HASH_UNLOCK(hmebp);
4266 	}
4267 
4268 	if (hmeblkp == NULL) {
4269 		kmem_cache_free(pa_hment_cache, pahmep);
4270 		*rpfn = PFN_INVALID;
4271 		return (ENXIO);
4272 	}
4273 
4274 	ASSERT(!hmeblkp->hblk_shared);
4275 
4276 	HBLKTOHME(osfhmep, hmeblkp, saddr);
4277 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
4278 
4279 	if (!TTE_IS_VALID(&tte)) {
4280 		SFMMU_HASH_UNLOCK(hmebp);
4281 		kmem_cache_free(pa_hment_cache, pahmep);
4282 		*rpfn = PFN_INVALID;
4283 		return (ENXIO);
4284 	}
4285 
4286 	/*
4287 	 * Make sure the boundaries for the callback fall within this
4288 	 * single mapping.
4289 	 */
4290 	baseaddr = (caddr_t)get_hblk_base(hmeblkp);
4291 	ASSERT(saddr >= baseaddr);
4292 	if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) {
4293 		SFMMU_HASH_UNLOCK(hmebp);
4294 		kmem_cache_free(pa_hment_cache, pahmep);
4295 		*rpfn = PFN_INVALID;
4296 		return (ERANGE);
4297 	}
4298 
4299 	pfn = sfmmu_ttetopfn(&tte, vaddr);
4300 
4301 	/*
4302 	 * The pfn may not have a page_t underneath in which case we
4303 	 * just return it. This can happen if we are doing I/O to a
4304 	 * static portion of the kernel's address space, for instance.
4305 	 */
4306 	pp = osfhmep->hme_page;
4307 	if (pp == NULL) {
4308 		SFMMU_HASH_UNLOCK(hmebp);
4309 		kmem_cache_free(pa_hment_cache, pahmep);
4310 		*rpfn = pfn;
4311 		if (cookiep)
4312 			*cookiep = HAC_COOKIE_NONE;
4313 		return (0);
4314 	}
4315 	ASSERT(pp == PP_PAGEROOT(pp));
4316 
4317 	vp = pp->p_vnode;
4318 	off = pp->p_offset;
4319 
4320 	pml = sfmmu_mlist_enter(pp);
4321 
4322 	if (flags & HAC_PAGELOCK) {
4323 		if (!page_trylock(pp, SE_SHARED)) {
4324 			/*
4325 			 * Somebody is holding SE_EXCL lock. Might
4326 			 * even be hat_page_relocate(). Drop all
4327 			 * our locks, lookup the page in &kvp, and
4328 			 * retry. If it doesn't exist in &kvp and &zvp,
4329 			 * then we must be dealing with a kernel mapped
4330 			 * page which doesn't actually belong to
4331 			 * segkmem so we punt.
4332 			 */
4333 			sfmmu_mlist_exit(pml);
4334 			SFMMU_HASH_UNLOCK(hmebp);
4335 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4336 
4337 			/* check zvp before giving up */
4338 			if (pp == NULL)
4339 				pp = page_lookup(&zvp, (u_offset_t)saddr,
4340 				    SE_SHARED);
4341 
4342 			/* Okay, we didn't find it, give up */
4343 			if (pp == NULL) {
4344 				kmem_cache_free(pa_hment_cache, pahmep);
4345 				*rpfn = pfn;
4346 				if (cookiep)
4347 					*cookiep = HAC_COOKIE_NONE;
4348 				return (0);
4349 			}
4350 			page_unlock(pp);
4351 			goto rehash;
4352 		}
4353 		locked = 1;
4354 	}
4355 
4356 	if (!PAGE_LOCKED(pp) && !panicstr)
4357 		panic("hat_add_callback: page 0x%p not locked", (void *)pp);
4358 
4359 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4360 	    pp->p_offset != off) {
4361 		/*
4362 		 * The page moved before we got our hands on it.  Drop
4363 		 * all the locks and try again.
4364 		 */
4365 		ASSERT((flags & HAC_PAGELOCK) != 0);
4366 		sfmmu_mlist_exit(pml);
4367 		SFMMU_HASH_UNLOCK(hmebp);
4368 		page_unlock(pp);
4369 		locked = 0;
4370 		goto rehash;
4371 	}
4372 
4373 	if (!VN_ISKAS(vp)) {
4374 		/*
4375 		 * This is not a segkmem page but another page which
4376 		 * has been kernel mapped. It had better have at least
4377 		 * a share lock on it. Return the pfn.
4378 		 */
4379 		sfmmu_mlist_exit(pml);
4380 		SFMMU_HASH_UNLOCK(hmebp);
4381 		if (locked)
4382 			page_unlock(pp);
4383 		kmem_cache_free(pa_hment_cache, pahmep);
4384 		ASSERT(PAGE_LOCKED(pp));
4385 		*rpfn = pfn;
4386 		if (cookiep)
4387 			*cookiep = HAC_COOKIE_NONE;
4388 		return (0);
4389 	}
4390 
4391 	/*
4392 	 * Setup this pa_hment and link its embedded dummy sf_hment into
4393 	 * the mapping list.
4394 	 */
4395 	pp->p_share++;
4396 	pahmep->cb_id = callback_id;
4397 	pahmep->addr = vaddr;
4398 	pahmep->len = len;
4399 	pahmep->refcnt = 1;
4400 	pahmep->flags = 0;
4401 	pahmep->pvt = pvt;
4402 
4403 	sfhmep->hme_tte.ll = 0;
4404 	sfhmep->hme_data = pahmep;
4405 	sfhmep->hme_prev = osfhmep;
4406 	sfhmep->hme_next = osfhmep->hme_next;
4407 
4408 	if (osfhmep->hme_next)
4409 		osfhmep->hme_next->hme_prev = sfhmep;
4410 
4411 	osfhmep->hme_next = sfhmep;
4412 
4413 	sfmmu_mlist_exit(pml);
4414 	SFMMU_HASH_UNLOCK(hmebp);
4415 
4416 	if (locked)
4417 		page_unlock(pp);
4418 
4419 	*rpfn = pfn;
4420 	if (cookiep)
4421 		*cookiep = (void *)pahmep;
4422 
4423 	return (0);
4424 }
4425 
4426 /*
4427  * Remove the relocation callbacks from the specified addr/len.
4428  */
4429 void
4430 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags,
4431 	void *cookie)
4432 {
4433 	struct		hmehash_bucket *hmebp;
4434 	hmeblk_tag	hblktag;
4435 	struct hme_blk	*hmeblkp;
4436 	int		hmeshift, hashno;
4437 	caddr_t		saddr;
4438 	struct pa_hment	*pahmep;
4439 	struct sf_hment	*sfhmep, *osfhmep;
4440 	kmutex_t	*pml;
4441 	tte_t		tte;
4442 	page_t		*pp;
4443 	vnode_t		*vp;
4444 	u_offset_t	off;
4445 	int		locked = 0;
4446 
4447 	/*
4448 	 * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to
4449 	 * remove so just return.
4450 	 */
4451 	if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr))
4452 		return;
4453 
4454 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4455 
4456 rehash:
4457 	/* Find the mapping(s) for this page */
4458 	for (hashno = TTE64K, hmeblkp = NULL;
4459 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
4460 	    hashno++) {
4461 		hmeshift = HME_HASH_SHIFT(hashno);
4462 		hblktag.htag_id = ksfmmup;
4463 		hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4464 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4465 		hblktag.htag_rehash = hashno;
4466 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4467 
4468 		SFMMU_HASH_LOCK(hmebp);
4469 
4470 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4471 
4472 		if (hmeblkp == NULL)
4473 			SFMMU_HASH_UNLOCK(hmebp);
4474 	}
4475 
4476 	if (hmeblkp == NULL)
4477 		return;
4478 
4479 	ASSERT(!hmeblkp->hblk_shared);
4480 
4481 	HBLKTOHME(osfhmep, hmeblkp, saddr);
4482 
4483 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
4484 	if (!TTE_IS_VALID(&tte)) {
4485 		SFMMU_HASH_UNLOCK(hmebp);
4486 		return;
4487 	}
4488 
4489 	pp = osfhmep->hme_page;
4490 	if (pp == NULL) {
4491 		SFMMU_HASH_UNLOCK(hmebp);
4492 		ASSERT(cookie == NULL);
4493 		return;
4494 	}
4495 
4496 	vp = pp->p_vnode;
4497 	off = pp->p_offset;
4498 
4499 	pml = sfmmu_mlist_enter(pp);
4500 
4501 	if (flags & HAC_PAGELOCK) {
4502 		if (!page_trylock(pp, SE_SHARED)) {
4503 			/*
4504 			 * Somebody is holding SE_EXCL lock. Might
4505 			 * even be hat_page_relocate(). Drop all
4506 			 * our locks, lookup the page in &kvp, and
4507 			 * retry. If it doesn't exist in &kvp and &zvp,
4508 			 * then we must be dealing with a kernel mapped
4509 			 * page which doesn't actually belong to
4510 			 * segkmem so we punt.
4511 			 */
4512 			sfmmu_mlist_exit(pml);
4513 			SFMMU_HASH_UNLOCK(hmebp);
4514 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4515 			/* check zvp before giving up */
4516 			if (pp == NULL)
4517 				pp = page_lookup(&zvp, (u_offset_t)saddr,
4518 				    SE_SHARED);
4519 
4520 			if (pp == NULL) {
4521 				ASSERT(cookie == NULL);
4522 				return;
4523 			}
4524 			page_unlock(pp);
4525 			goto rehash;
4526 		}
4527 		locked = 1;
4528 	}
4529 
4530 	ASSERT(PAGE_LOCKED(pp));
4531 
4532 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4533 	    pp->p_offset != off) {
4534 		/*
4535 		 * The page moved before we got our hands on it.  Drop
4536 		 * all the locks and try again.
4537 		 */
4538 		ASSERT((flags & HAC_PAGELOCK) != 0);
4539 		sfmmu_mlist_exit(pml);
4540 		SFMMU_HASH_UNLOCK(hmebp);
4541 		page_unlock(pp);
4542 		locked = 0;
4543 		goto rehash;
4544 	}
4545 
4546 	if (!VN_ISKAS(vp)) {
4547 		/*
4548 		 * This is not a segkmem page but another page which
4549 		 * has been kernel mapped.
4550 		 */
4551 		sfmmu_mlist_exit(pml);
4552 		SFMMU_HASH_UNLOCK(hmebp);
4553 		if (locked)
4554 			page_unlock(pp);
4555 		ASSERT(cookie == NULL);
4556 		return;
4557 	}
4558 
4559 	if (cookie != NULL) {
4560 		pahmep = (struct pa_hment *)cookie;
4561 		sfhmep = &pahmep->sfment;
4562 	} else {
4563 		for (sfhmep = pp->p_mapping; sfhmep != NULL;
4564 		    sfhmep = sfhmep->hme_next) {
4565 
4566 			/*
4567 			 * skip va<->pa mappings
4568 			 */
4569 			if (!IS_PAHME(sfhmep))
4570 				continue;
4571 
4572 			pahmep = sfhmep->hme_data;
4573 			ASSERT(pahmep != NULL);
4574 
4575 			/*
4576 			 * if pa_hment matches, remove it
4577 			 */
4578 			if ((pahmep->pvt == pvt) &&
4579 			    (pahmep->addr == vaddr) &&
4580 			    (pahmep->len == len)) {
4581 				break;
4582 			}
4583 		}
4584 	}
4585 
4586 	if (sfhmep == NULL) {
4587 		if (!panicstr) {
4588 			panic("hat_delete_callback: pa_hment not found, pp %p",
4589 			    (void *)pp);
4590 		}
4591 		return;
4592 	}
4593 
4594 	/*
4595 	 * Note: at this point a valid kernel mapping must still be
4596 	 * present on this page.
4597 	 */
4598 	pp->p_share--;
4599 	if (pp->p_share <= 0)
4600 		panic("hat_delete_callback: zero p_share");
4601 
4602 	if (--pahmep->refcnt == 0) {
4603 		if (pahmep->flags != 0)
4604 			panic("hat_delete_callback: pa_hment is busy");
4605 
4606 		/*
4607 		 * Remove sfhmep from the mapping list for the page.
4608 		 */
4609 		if (sfhmep->hme_prev) {
4610 			sfhmep->hme_prev->hme_next = sfhmep->hme_next;
4611 		} else {
4612 			pp->p_mapping = sfhmep->hme_next;
4613 		}
4614 
4615 		if (sfhmep->hme_next)
4616 			sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
4617 
4618 		sfmmu_mlist_exit(pml);
4619 		SFMMU_HASH_UNLOCK(hmebp);
4620 
4621 		if (locked)
4622 			page_unlock(pp);
4623 
4624 		kmem_cache_free(pa_hment_cache, pahmep);
4625 		return;
4626 	}
4627 
4628 	sfmmu_mlist_exit(pml);
4629 	SFMMU_HASH_UNLOCK(hmebp);
4630 	if (locked)
4631 		page_unlock(pp);
4632 }
4633 
4634 /*
4635  * hat_probe returns 1 if the translation for the address 'addr' is
4636  * loaded, zero otherwise.
4637  *
4638  * hat_probe should be used only for advisorary purposes because it may
4639  * occasionally return the wrong value. The implementation must guarantee that
4640  * returning the wrong value is a very rare event. hat_probe is used
4641  * to implement optimizations in the segment drivers.
4642  *
4643  */
4644 int
4645 hat_probe(struct hat *sfmmup, caddr_t addr)
4646 {
4647 	pfn_t pfn;
4648 	tte_t tte;
4649 
4650 	ASSERT(sfmmup != NULL);
4651 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4652 
4653 	ASSERT((sfmmup == ksfmmup) ||
4654 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4655 
4656 	if (sfmmup == ksfmmup) {
4657 		while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
4658 		    == PFN_SUSPENDED) {
4659 			sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
4660 		}
4661 	} else {
4662 		pfn = sfmmu_uvatopfn(addr, sfmmup, NULL);
4663 	}
4664 
4665 	if (pfn != PFN_INVALID)
4666 		return (1);
4667 	else
4668 		return (0);
4669 }
4670 
4671 ssize_t
4672 hat_getpagesize(struct hat *sfmmup, caddr_t addr)
4673 {
4674 	tte_t tte;
4675 
4676 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4677 
4678 	if (sfmmup == ksfmmup) {
4679 		if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4680 			return (-1);
4681 		}
4682 	} else {
4683 		if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4684 			return (-1);
4685 		}
4686 	}
4687 
4688 	ASSERT(TTE_IS_VALID(&tte));
4689 	return (TTEBYTES(TTE_CSZ(&tte)));
4690 }
4691 
4692 uint_t
4693 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
4694 {
4695 	tte_t tte;
4696 
4697 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4698 
4699 	if (sfmmup == ksfmmup) {
4700 		if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4701 			tte.ll = 0;
4702 		}
4703 	} else {
4704 		if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4705 			tte.ll = 0;
4706 		}
4707 	}
4708 	if (TTE_IS_VALID(&tte)) {
4709 		*attr = sfmmu_ptov_attr(&tte);
4710 		return (0);
4711 	}
4712 	*attr = 0;
4713 	return ((uint_t)0xffffffff);
4714 }
4715 
4716 /*
4717  * Enables more attributes on specified address range (ie. logical OR)
4718  */
4719 void
4720 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4721 {
4722 	if (hat->sfmmu_xhat_provider) {
4723 		XHAT_SETATTR(hat, addr, len, attr);
4724 		return;
4725 	} else {
4726 		/*
4727 		 * This must be a CPU HAT. If the address space has
4728 		 * XHATs attached, change attributes for all of them,
4729 		 * just in case
4730 		 */
4731 		ASSERT(hat->sfmmu_as != NULL);
4732 		if (hat->sfmmu_as->a_xhat != NULL)
4733 			xhat_setattr_all(hat->sfmmu_as, addr, len, attr);
4734 	}
4735 
4736 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
4737 }
4738 
4739 /*
4740  * Assigns attributes to the specified address range.  All the attributes
4741  * are specified.
4742  */
4743 void
4744 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4745 {
4746 	if (hat->sfmmu_xhat_provider) {
4747 		XHAT_CHGATTR(hat, addr, len, attr);
4748 		return;
4749 	} else {
4750 		/*
4751 		 * This must be a CPU HAT. If the address space has
4752 		 * XHATs attached, change attributes for all of them,
4753 		 * just in case
4754 		 */
4755 		ASSERT(hat->sfmmu_as != NULL);
4756 		if (hat->sfmmu_as->a_xhat != NULL)
4757 			xhat_chgattr_all(hat->sfmmu_as, addr, len, attr);
4758 	}
4759 
4760 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
4761 }
4762 
4763 /*
4764  * Remove attributes on the specified address range (ie. loginal NAND)
4765  */
4766 void
4767 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4768 {
4769 	if (hat->sfmmu_xhat_provider) {
4770 		XHAT_CLRATTR(hat, addr, len, attr);
4771 		return;
4772 	} else {
4773 		/*
4774 		 * This must be a CPU HAT. If the address space has
4775 		 * XHATs attached, change attributes for all of them,
4776 		 * just in case
4777 		 */
4778 		ASSERT(hat->sfmmu_as != NULL);
4779 		if (hat->sfmmu_as->a_xhat != NULL)
4780 			xhat_clrattr_all(hat->sfmmu_as, addr, len, attr);
4781 	}
4782 
4783 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
4784 }
4785 
4786 /*
4787  * Change attributes on an address range to that specified by attr and mode.
4788  */
4789 static void
4790 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
4791 	int mode)
4792 {
4793 	struct hmehash_bucket *hmebp;
4794 	hmeblk_tag hblktag;
4795 	int hmeshift, hashno = 1;
4796 	struct hme_blk *hmeblkp, *list = NULL;
4797 	caddr_t endaddr;
4798 	cpuset_t cpuset;
4799 	demap_range_t dmr;
4800 
4801 	CPUSET_ZERO(cpuset);
4802 
4803 	ASSERT((sfmmup == ksfmmup) ||
4804 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4805 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4806 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4807 
4808 	if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
4809 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4810 		panic("user addr %p in kernel space",
4811 		    (void *)addr);
4812 	}
4813 
4814 	endaddr = addr + len;
4815 	hblktag.htag_id = sfmmup;
4816 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4817 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4818 
4819 	while (addr < endaddr) {
4820 		hmeshift = HME_HASH_SHIFT(hashno);
4821 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4822 		hblktag.htag_rehash = hashno;
4823 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4824 
4825 		SFMMU_HASH_LOCK(hmebp);
4826 
4827 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4828 		if (hmeblkp != NULL) {
4829 			ASSERT(!hmeblkp->hblk_shared);
4830 			/*
4831 			 * We've encountered a shadow hmeblk so skip the range
4832 			 * of the next smaller mapping size.
4833 			 */
4834 			if (hmeblkp->hblk_shw_bit) {
4835 				ASSERT(sfmmup != ksfmmup);
4836 				ASSERT(hashno > 1);
4837 				addr = (caddr_t)P2END((uintptr_t)addr,
4838 				    TTEBYTES(hashno - 1));
4839 			} else {
4840 				addr = sfmmu_hblk_chgattr(sfmmup,
4841 				    hmeblkp, addr, endaddr, &dmr, attr, mode);
4842 			}
4843 			SFMMU_HASH_UNLOCK(hmebp);
4844 			hashno = 1;
4845 			continue;
4846 		}
4847 		SFMMU_HASH_UNLOCK(hmebp);
4848 
4849 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4850 			/*
4851 			 * We have traversed the whole list and rehashed
4852 			 * if necessary without finding the address to chgattr.
4853 			 * This is ok, so we increment the address by the
4854 			 * smallest hmeblk range for kernel mappings or for
4855 			 * user mappings with no large pages, and the largest
4856 			 * hmeblk range, to account for shadow hmeblks, for
4857 			 * user mappings with large pages and continue.
4858 			 */
4859 			if (sfmmup == ksfmmup)
4860 				addr = (caddr_t)P2END((uintptr_t)addr,
4861 				    TTEBYTES(1));
4862 			else
4863 				addr = (caddr_t)P2END((uintptr_t)addr,
4864 				    TTEBYTES(hashno));
4865 			hashno = 1;
4866 		} else {
4867 			hashno++;
4868 		}
4869 	}
4870 
4871 	sfmmu_hblks_list_purge(&list);
4872 	DEMAP_RANGE_FLUSH(&dmr);
4873 	cpuset = sfmmup->sfmmu_cpusran;
4874 	xt_sync(cpuset);
4875 }
4876 
4877 /*
4878  * This function chgattr on a range of addresses in an hmeblk.  It returns the
4879  * next addres that needs to be chgattr.
4880  * It should be called with the hash lock held.
4881  * XXX It should be possible to optimize chgattr by not flushing every time but
4882  * on the other hand:
4883  * 1. do one flush crosscall.
4884  * 2. only flush if we are increasing permissions (make sure this will work)
4885  */
4886 static caddr_t
4887 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4888 	caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
4889 {
4890 	tte_t tte, tteattr, tteflags, ttemod;
4891 	struct sf_hment *sfhmep;
4892 	int ttesz;
4893 	struct page *pp = NULL;
4894 	kmutex_t *pml, *pmtx;
4895 	int ret;
4896 	int use_demap_range;
4897 #if defined(SF_ERRATA_57)
4898 	int check_exec;
4899 #endif
4900 
4901 	ASSERT(in_hblk_range(hmeblkp, addr));
4902 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4903 	ASSERT(!hmeblkp->hblk_shared);
4904 
4905 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4906 	ttesz = get_hblk_ttesz(hmeblkp);
4907 
4908 	/*
4909 	 * Flush the current demap region if addresses have been
4910 	 * skipped or the page size doesn't match.
4911 	 */
4912 	use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
4913 	if (use_demap_range) {
4914 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4915 	} else {
4916 		DEMAP_RANGE_FLUSH(dmrp);
4917 	}
4918 
4919 	tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
4920 #if defined(SF_ERRATA_57)
4921 	check_exec = (sfmmup != ksfmmup) &&
4922 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4923 	    TTE_IS_EXECUTABLE(&tteattr);
4924 #endif
4925 	HBLKTOHME(sfhmep, hmeblkp, addr);
4926 	while (addr < endaddr) {
4927 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4928 		if (TTE_IS_VALID(&tte)) {
4929 			if ((tte.ll & tteflags.ll) == tteattr.ll) {
4930 				/*
4931 				 * if the new attr is the same as old
4932 				 * continue
4933 				 */
4934 				goto next_addr;
4935 			}
4936 			if (!TTE_IS_WRITABLE(&tteattr)) {
4937 				/*
4938 				 * make sure we clear hw modify bit if we
4939 				 * removing write protections
4940 				 */
4941 				tteflags.tte_intlo |= TTE_HWWR_INT;
4942 			}
4943 
4944 			pml = NULL;
4945 			pp = sfhmep->hme_page;
4946 			if (pp) {
4947 				pml = sfmmu_mlist_enter(pp);
4948 			}
4949 
4950 			if (pp != sfhmep->hme_page) {
4951 				/*
4952 				 * tte must have been unloaded.
4953 				 */
4954 				ASSERT(pml);
4955 				sfmmu_mlist_exit(pml);
4956 				continue;
4957 			}
4958 
4959 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4960 
4961 			ttemod = tte;
4962 			ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
4963 			ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
4964 
4965 #if defined(SF_ERRATA_57)
4966 			if (check_exec && addr < errata57_limit)
4967 				ttemod.tte_exec_perm = 0;
4968 #endif
4969 			ret = sfmmu_modifytte_try(&tte, &ttemod,
4970 			    &sfhmep->hme_tte);
4971 
4972 			if (ret < 0) {
4973 				/* tte changed underneath us */
4974 				if (pml) {
4975 					sfmmu_mlist_exit(pml);
4976 				}
4977 				continue;
4978 			}
4979 
4980 			if (tteflags.tte_intlo & TTE_HWWR_INT) {
4981 				/*
4982 				 * need to sync if we are clearing modify bit.
4983 				 */
4984 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4985 			}
4986 
4987 			if (pp && PP_ISRO(pp)) {
4988 				if (tteattr.tte_intlo & TTE_WRPRM_INT) {
4989 					pmtx = sfmmu_page_enter(pp);
4990 					PP_CLRRO(pp);
4991 					sfmmu_page_exit(pmtx);
4992 				}
4993 			}
4994 
4995 			if (ret > 0 && use_demap_range) {
4996 				DEMAP_RANGE_MARKPG(dmrp, addr);
4997 			} else if (ret > 0) {
4998 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4999 			}
5000 
5001 			if (pml) {
5002 				sfmmu_mlist_exit(pml);
5003 			}
5004 		}
5005 next_addr:
5006 		addr += TTEBYTES(ttesz);
5007 		sfhmep++;
5008 		DEMAP_RANGE_NEXTPG(dmrp);
5009 	}
5010 	return (addr);
5011 }
5012 
5013 /*
5014  * This routine converts virtual attributes to physical ones.  It will
5015  * update the tteflags field with the tte mask corresponding to the attributes
5016  * affected and it returns the new attributes.  It will also clear the modify
5017  * bit if we are taking away write permission.  This is necessary since the
5018  * modify bit is the hardware permission bit and we need to clear it in order
5019  * to detect write faults.
5020  */
5021 static uint64_t
5022 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
5023 {
5024 	tte_t ttevalue;
5025 
5026 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
5027 
5028 	switch (mode) {
5029 	case SFMMU_CHGATTR:
5030 		/* all attributes specified */
5031 		ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
5032 		ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
5033 		ttemaskp->tte_inthi = TTEINTHI_ATTR;
5034 		ttemaskp->tte_intlo = TTEINTLO_ATTR;
5035 		break;
5036 	case SFMMU_SETATTR:
5037 		ASSERT(!(attr & ~HAT_PROT_MASK));
5038 		ttemaskp->ll = 0;
5039 		ttevalue.ll = 0;
5040 		/*
5041 		 * a valid tte implies exec and read for sfmmu
5042 		 * so no need to do anything about them.
5043 		 * since priviledged access implies user access
5044 		 * PROT_USER doesn't make sense either.
5045 		 */
5046 		if (attr & PROT_WRITE) {
5047 			ttemaskp->tte_intlo |= TTE_WRPRM_INT;
5048 			ttevalue.tte_intlo |= TTE_WRPRM_INT;
5049 		}
5050 		break;
5051 	case SFMMU_CLRATTR:
5052 		/* attributes will be nand with current ones */
5053 		if (attr & ~(PROT_WRITE | PROT_USER)) {
5054 			panic("sfmmu: attr %x not supported", attr);
5055 		}
5056 		ttemaskp->ll = 0;
5057 		ttevalue.ll = 0;
5058 		if (attr & PROT_WRITE) {
5059 			/* clear both writable and modify bit */
5060 			ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
5061 		}
5062 		if (attr & PROT_USER) {
5063 			ttemaskp->tte_intlo |= TTE_PRIV_INT;
5064 			ttevalue.tte_intlo |= TTE_PRIV_INT;
5065 		}
5066 		break;
5067 	default:
5068 		panic("sfmmu_vtop_attr: bad mode %x", mode);
5069 	}
5070 	ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
5071 	return (ttevalue.ll);
5072 }
5073 
5074 static uint_t
5075 sfmmu_ptov_attr(tte_t *ttep)
5076 {
5077 	uint_t attr;
5078 
5079 	ASSERT(TTE_IS_VALID(ttep));
5080 
5081 	attr = PROT_READ;
5082 
5083 	if (TTE_IS_WRITABLE(ttep)) {
5084 		attr |= PROT_WRITE;
5085 	}
5086 	if (TTE_IS_EXECUTABLE(ttep)) {
5087 		attr |= PROT_EXEC;
5088 	}
5089 	if (!TTE_IS_PRIVILEGED(ttep)) {
5090 		attr |= PROT_USER;
5091 	}
5092 	if (TTE_IS_NFO(ttep)) {
5093 		attr |= HAT_NOFAULT;
5094 	}
5095 	if (TTE_IS_NOSYNC(ttep)) {
5096 		attr |= HAT_NOSYNC;
5097 	}
5098 	if (TTE_IS_SIDEFFECT(ttep)) {
5099 		attr |= SFMMU_SIDEFFECT;
5100 	}
5101 	if (!TTE_IS_VCACHEABLE(ttep)) {
5102 		attr |= SFMMU_UNCACHEVTTE;
5103 	}
5104 	if (!TTE_IS_PCACHEABLE(ttep)) {
5105 		attr |= SFMMU_UNCACHEPTTE;
5106 	}
5107 	return (attr);
5108 }
5109 
5110 /*
5111  * hat_chgprot is a deprecated hat call.  New segment drivers
5112  * should store all attributes and use hat_*attr calls.
5113  *
5114  * Change the protections in the virtual address range
5115  * given to the specified virtual protection.  If vprot is ~PROT_WRITE,
5116  * then remove write permission, leaving the other
5117  * permissions unchanged.  If vprot is ~PROT_USER, remove user permissions.
5118  *
5119  */
5120 void
5121 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
5122 {
5123 	struct hmehash_bucket *hmebp;
5124 	hmeblk_tag hblktag;
5125 	int hmeshift, hashno = 1;
5126 	struct hme_blk *hmeblkp, *list = NULL;
5127 	caddr_t endaddr;
5128 	cpuset_t cpuset;
5129 	demap_range_t dmr;
5130 
5131 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5132 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
5133 
5134 	if (sfmmup->sfmmu_xhat_provider) {
5135 		XHAT_CHGPROT(sfmmup, addr, len, vprot);
5136 		return;
5137 	} else {
5138 		/*
5139 		 * This must be a CPU HAT. If the address space has
5140 		 * XHATs attached, change attributes for all of them,
5141 		 * just in case
5142 		 */
5143 		ASSERT(sfmmup->sfmmu_as != NULL);
5144 		if (sfmmup->sfmmu_as->a_xhat != NULL)
5145 			xhat_chgprot_all(sfmmup->sfmmu_as, addr, len, vprot);
5146 	}
5147 
5148 	CPUSET_ZERO(cpuset);
5149 
5150 	if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
5151 	    ((addr + len) > (caddr_t)USERLIMIT)) {
5152 		panic("user addr %p vprot %x in kernel space",
5153 		    (void *)addr, vprot);
5154 	}
5155 	endaddr = addr + len;
5156 	hblktag.htag_id = sfmmup;
5157 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5158 	DEMAP_RANGE_INIT(sfmmup, &dmr);
5159 
5160 	while (addr < endaddr) {
5161 		hmeshift = HME_HASH_SHIFT(hashno);
5162 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5163 		hblktag.htag_rehash = hashno;
5164 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5165 
5166 		SFMMU_HASH_LOCK(hmebp);
5167 
5168 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
5169 		if (hmeblkp != NULL) {
5170 			ASSERT(!hmeblkp->hblk_shared);
5171 			/*
5172 			 * We've encountered a shadow hmeblk so skip the range
5173 			 * of the next smaller mapping size.
5174 			 */
5175 			if (hmeblkp->hblk_shw_bit) {
5176 				ASSERT(sfmmup != ksfmmup);
5177 				ASSERT(hashno > 1);
5178 				addr = (caddr_t)P2END((uintptr_t)addr,
5179 				    TTEBYTES(hashno - 1));
5180 			} else {
5181 				addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
5182 				    addr, endaddr, &dmr, vprot);
5183 			}
5184 			SFMMU_HASH_UNLOCK(hmebp);
5185 			hashno = 1;
5186 			continue;
5187 		}
5188 		SFMMU_HASH_UNLOCK(hmebp);
5189 
5190 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
5191 			/*
5192 			 * We have traversed the whole list and rehashed
5193 			 * if necessary without finding the address to chgprot.
5194 			 * This is ok so we increment the address by the
5195 			 * smallest hmeblk range for kernel mappings and the
5196 			 * largest hmeblk range, to account for shadow hmeblks,
5197 			 * for user mappings and continue.
5198 			 */
5199 			if (sfmmup == ksfmmup)
5200 				addr = (caddr_t)P2END((uintptr_t)addr,
5201 				    TTEBYTES(1));
5202 			else
5203 				addr = (caddr_t)P2END((uintptr_t)addr,
5204 				    TTEBYTES(hashno));
5205 			hashno = 1;
5206 		} else {
5207 			hashno++;
5208 		}
5209 	}
5210 
5211 	sfmmu_hblks_list_purge(&list);
5212 	DEMAP_RANGE_FLUSH(&dmr);
5213 	cpuset = sfmmup->sfmmu_cpusran;
5214 	xt_sync(cpuset);
5215 }
5216 
5217 /*
5218  * This function chgprots a range of addresses in an hmeblk.  It returns the
5219  * next addres that needs to be chgprot.
5220  * It should be called with the hash lock held.
5221  * XXX It shold be possible to optimize chgprot by not flushing every time but
5222  * on the other hand:
5223  * 1. do one flush crosscall.
5224  * 2. only flush if we are increasing permissions (make sure this will work)
5225  */
5226 static caddr_t
5227 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5228 	caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
5229 {
5230 	uint_t pprot;
5231 	tte_t tte, ttemod;
5232 	struct sf_hment *sfhmep;
5233 	uint_t tteflags;
5234 	int ttesz;
5235 	struct page *pp = NULL;
5236 	kmutex_t *pml, *pmtx;
5237 	int ret;
5238 	int use_demap_range;
5239 #if defined(SF_ERRATA_57)
5240 	int check_exec;
5241 #endif
5242 
5243 	ASSERT(in_hblk_range(hmeblkp, addr));
5244 	ASSERT(hmeblkp->hblk_shw_bit == 0);
5245 	ASSERT(!hmeblkp->hblk_shared);
5246 
5247 #ifdef DEBUG
5248 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5249 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
5250 		panic("sfmmu_hblk_chgprot: partial chgprot of large page");
5251 	}
5252 #endif /* DEBUG */
5253 
5254 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5255 	ttesz = get_hblk_ttesz(hmeblkp);
5256 
5257 	pprot = sfmmu_vtop_prot(vprot, &tteflags);
5258 #if defined(SF_ERRATA_57)
5259 	check_exec = (sfmmup != ksfmmup) &&
5260 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
5261 	    ((vprot & PROT_EXEC) == PROT_EXEC);
5262 #endif
5263 	HBLKTOHME(sfhmep, hmeblkp, addr);
5264 
5265 	/*
5266 	 * Flush the current demap region if addresses have been
5267 	 * skipped or the page size doesn't match.
5268 	 */
5269 	use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
5270 	if (use_demap_range) {
5271 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5272 	} else {
5273 		DEMAP_RANGE_FLUSH(dmrp);
5274 	}
5275 
5276 	while (addr < endaddr) {
5277 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5278 		if (TTE_IS_VALID(&tte)) {
5279 			if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
5280 				/*
5281 				 * if the new protection is the same as old
5282 				 * continue
5283 				 */
5284 				goto next_addr;
5285 			}
5286 			pml = NULL;
5287 			pp = sfhmep->hme_page;
5288 			if (pp) {
5289 				pml = sfmmu_mlist_enter(pp);
5290 			}
5291 			if (pp != sfhmep->hme_page) {
5292 				/*
5293 				 * tte most have been unloaded
5294 				 * underneath us.  Recheck
5295 				 */
5296 				ASSERT(pml);
5297 				sfmmu_mlist_exit(pml);
5298 				continue;
5299 			}
5300 
5301 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5302 
5303 			ttemod = tte;
5304 			TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
5305 #if defined(SF_ERRATA_57)
5306 			if (check_exec && addr < errata57_limit)
5307 				ttemod.tte_exec_perm = 0;
5308 #endif
5309 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5310 			    &sfhmep->hme_tte);
5311 
5312 			if (ret < 0) {
5313 				/* tte changed underneath us */
5314 				if (pml) {
5315 					sfmmu_mlist_exit(pml);
5316 				}
5317 				continue;
5318 			}
5319 
5320 			if (tteflags & TTE_HWWR_INT) {
5321 				/*
5322 				 * need to sync if we are clearing modify bit.
5323 				 */
5324 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
5325 			}
5326 
5327 			if (pp && PP_ISRO(pp)) {
5328 				if (pprot & TTE_WRPRM_INT) {
5329 					pmtx = sfmmu_page_enter(pp);
5330 					PP_CLRRO(pp);
5331 					sfmmu_page_exit(pmtx);
5332 				}
5333 			}
5334 
5335 			if (ret > 0 && use_demap_range) {
5336 				DEMAP_RANGE_MARKPG(dmrp, addr);
5337 			} else if (ret > 0) {
5338 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
5339 			}
5340 
5341 			if (pml) {
5342 				sfmmu_mlist_exit(pml);
5343 			}
5344 		}
5345 next_addr:
5346 		addr += TTEBYTES(ttesz);
5347 		sfhmep++;
5348 		DEMAP_RANGE_NEXTPG(dmrp);
5349 	}
5350 	return (addr);
5351 }
5352 
5353 /*
5354  * This routine is deprecated and should only be used by hat_chgprot.
5355  * The correct routine is sfmmu_vtop_attr.
5356  * This routine converts virtual page protections to physical ones.  It will
5357  * update the tteflags field with the tte mask corresponding to the protections
5358  * affected and it returns the new protections.  It will also clear the modify
5359  * bit if we are taking away write permission.  This is necessary since the
5360  * modify bit is the hardware permission bit and we need to clear it in order
5361  * to detect write faults.
5362  * It accepts the following special protections:
5363  * ~PROT_WRITE = remove write permissions.
5364  * ~PROT_USER = remove user permissions.
5365  */
5366 static uint_t
5367 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
5368 {
5369 	if (vprot == (uint_t)~PROT_WRITE) {
5370 		*tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
5371 		return (0);		/* will cause wrprm to be cleared */
5372 	}
5373 	if (vprot == (uint_t)~PROT_USER) {
5374 		*tteflagsp = TTE_PRIV_INT;
5375 		return (0);		/* will cause privprm to be cleared */
5376 	}
5377 	if ((vprot == 0) || (vprot == PROT_USER) ||
5378 	    ((vprot & PROT_ALL) != vprot)) {
5379 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5380 	}
5381 
5382 	switch (vprot) {
5383 	case (PROT_READ):
5384 	case (PROT_EXEC):
5385 	case (PROT_EXEC | PROT_READ):
5386 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5387 		return (TTE_PRIV_INT); 		/* set prv and clr wrt */
5388 	case (PROT_WRITE):
5389 	case (PROT_WRITE | PROT_READ):
5390 	case (PROT_EXEC | PROT_WRITE):
5391 	case (PROT_EXEC | PROT_WRITE | PROT_READ):
5392 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5393 		return (TTE_PRIV_INT | TTE_WRPRM_INT); 	/* set prv and wrt */
5394 	case (PROT_USER | PROT_READ):
5395 	case (PROT_USER | PROT_EXEC):
5396 	case (PROT_USER | PROT_EXEC | PROT_READ):
5397 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5398 		return (0); 			/* clr prv and wrt */
5399 	case (PROT_USER | PROT_WRITE):
5400 	case (PROT_USER | PROT_WRITE | PROT_READ):
5401 	case (PROT_USER | PROT_EXEC | PROT_WRITE):
5402 	case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
5403 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5404 		return (TTE_WRPRM_INT); 	/* clr prv and set wrt */
5405 	default:
5406 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5407 	}
5408 	return (0);
5409 }
5410 
5411 /*
5412  * Alternate unload for very large virtual ranges. With a true 64 bit VA,
5413  * the normal algorithm would take too long for a very large VA range with
5414  * few real mappings. This routine just walks thru all HMEs in the global
5415  * hash table to find and remove mappings.
5416  */
5417 static void
5418 hat_unload_large_virtual(
5419 	struct hat		*sfmmup,
5420 	caddr_t			startaddr,
5421 	size_t			len,
5422 	uint_t			flags,
5423 	hat_callback_t		*callback)
5424 {
5425 	struct hmehash_bucket *hmebp;
5426 	struct hme_blk *hmeblkp;
5427 	struct hme_blk *pr_hblk = NULL;
5428 	struct hme_blk *nx_hblk;
5429 	struct hme_blk *list = NULL;
5430 	int i;
5431 	uint64_t hblkpa, prevpa, nx_pa;
5432 	demap_range_t dmr, *dmrp;
5433 	cpuset_t cpuset;
5434 	caddr_t	endaddr = startaddr + len;
5435 	caddr_t	sa;
5436 	caddr_t	ea;
5437 	caddr_t	cb_sa[MAX_CB_ADDR];
5438 	caddr_t	cb_ea[MAX_CB_ADDR];
5439 	int	addr_cnt = 0;
5440 	int	a = 0;
5441 
5442 	if (sfmmup->sfmmu_free) {
5443 		dmrp = NULL;
5444 	} else {
5445 		dmrp = &dmr;
5446 		DEMAP_RANGE_INIT(sfmmup, dmrp);
5447 	}
5448 
5449 	/*
5450 	 * Loop through all the hash buckets of HME blocks looking for matches.
5451 	 */
5452 	for (i = 0; i <= UHMEHASH_SZ; i++) {
5453 		hmebp = &uhme_hash[i];
5454 		SFMMU_HASH_LOCK(hmebp);
5455 		hmeblkp = hmebp->hmeblkp;
5456 		hblkpa = hmebp->hmeh_nextpa;
5457 		prevpa = 0;
5458 		pr_hblk = NULL;
5459 		while (hmeblkp) {
5460 			nx_hblk = hmeblkp->hblk_next;
5461 			nx_pa = hmeblkp->hblk_nextpa;
5462 
5463 			/*
5464 			 * skip if not this context, if a shadow block or
5465 			 * if the mapping is not in the requested range
5466 			 */
5467 			if (hmeblkp->hblk_tag.htag_id != sfmmup ||
5468 			    hmeblkp->hblk_shw_bit ||
5469 			    (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
5470 			    (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
5471 				pr_hblk = hmeblkp;
5472 				prevpa = hblkpa;
5473 				goto next_block;
5474 			}
5475 
5476 			ASSERT(!hmeblkp->hblk_shared);
5477 			/*
5478 			 * unload if there are any current valid mappings
5479 			 */
5480 			if (hmeblkp->hblk_vcnt != 0 ||
5481 			    hmeblkp->hblk_hmecnt != 0)
5482 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
5483 				    sa, ea, dmrp, flags);
5484 
5485 			/*
5486 			 * on unmap we also release the HME block itself, once
5487 			 * all mappings are gone.
5488 			 */
5489 			if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
5490 			    !hmeblkp->hblk_vcnt &&
5491 			    !hmeblkp->hblk_hmecnt) {
5492 				ASSERT(!hmeblkp->hblk_lckcnt);
5493 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
5494 				    prevpa, pr_hblk);
5495 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5496 			} else {
5497 				pr_hblk = hmeblkp;
5498 				prevpa = hblkpa;
5499 			}
5500 
5501 			if (callback == NULL)
5502 				goto next_block;
5503 
5504 			/*
5505 			 * HME blocks may span more than one page, but we may be
5506 			 * unmapping only one page, so check for a smaller range
5507 			 * for the callback
5508 			 */
5509 			if (sa < startaddr)
5510 				sa = startaddr;
5511 			if (--ea > endaddr)
5512 				ea = endaddr - 1;
5513 
5514 			cb_sa[addr_cnt] = sa;
5515 			cb_ea[addr_cnt] = ea;
5516 			if (++addr_cnt == MAX_CB_ADDR) {
5517 				if (dmrp != NULL) {
5518 					DEMAP_RANGE_FLUSH(dmrp);
5519 					cpuset = sfmmup->sfmmu_cpusran;
5520 					xt_sync(cpuset);
5521 				}
5522 
5523 				for (a = 0; a < MAX_CB_ADDR; ++a) {
5524 					callback->hcb_start_addr = cb_sa[a];
5525 					callback->hcb_end_addr = cb_ea[a];
5526 					callback->hcb_function(callback);
5527 				}
5528 				addr_cnt = 0;
5529 			}
5530 
5531 next_block:
5532 			hmeblkp = nx_hblk;
5533 			hblkpa = nx_pa;
5534 		}
5535 		SFMMU_HASH_UNLOCK(hmebp);
5536 	}
5537 
5538 	sfmmu_hblks_list_purge(&list);
5539 	if (dmrp != NULL) {
5540 		DEMAP_RANGE_FLUSH(dmrp);
5541 		cpuset = sfmmup->sfmmu_cpusran;
5542 		xt_sync(cpuset);
5543 	}
5544 
5545 	for (a = 0; a < addr_cnt; ++a) {
5546 		callback->hcb_start_addr = cb_sa[a];
5547 		callback->hcb_end_addr = cb_ea[a];
5548 		callback->hcb_function(callback);
5549 	}
5550 
5551 	/*
5552 	 * Check TSB and TLB page sizes if the process isn't exiting.
5553 	 */
5554 	if (!sfmmup->sfmmu_free)
5555 		sfmmu_check_page_sizes(sfmmup, 0);
5556 }
5557 
5558 /*
5559  * Unload all the mappings in the range [addr..addr+len). addr and len must
5560  * be MMU_PAGESIZE aligned.
5561  */
5562 
5563 extern struct seg *segkmap;
5564 #define	ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
5565 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
5566 
5567 
5568 void
5569 hat_unload_callback(
5570 	struct hat *sfmmup,
5571 	caddr_t addr,
5572 	size_t len,
5573 	uint_t flags,
5574 	hat_callback_t *callback)
5575 {
5576 	struct hmehash_bucket *hmebp;
5577 	hmeblk_tag hblktag;
5578 	int hmeshift, hashno, iskernel;
5579 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
5580 	caddr_t endaddr;
5581 	cpuset_t cpuset;
5582 	uint64_t hblkpa, prevpa;
5583 	int addr_count = 0;
5584 	int a;
5585 	caddr_t cb_start_addr[MAX_CB_ADDR];
5586 	caddr_t cb_end_addr[MAX_CB_ADDR];
5587 	int issegkmap = ISSEGKMAP(sfmmup, addr);
5588 	demap_range_t dmr, *dmrp;
5589 
5590 	if (sfmmup->sfmmu_xhat_provider) {
5591 		XHAT_UNLOAD_CALLBACK(sfmmup, addr, len, flags, callback);
5592 		return;
5593 	} else {
5594 		/*
5595 		 * This must be a CPU HAT. If the address space has
5596 		 * XHATs attached, unload the mappings for all of them,
5597 		 * just in case
5598 		 */
5599 		ASSERT(sfmmup->sfmmu_as != NULL);
5600 		if (sfmmup->sfmmu_as->a_xhat != NULL)
5601 			xhat_unload_callback_all(sfmmup->sfmmu_as, addr,
5602 			    len, flags, callback);
5603 	}
5604 
5605 	ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
5606 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
5607 
5608 	ASSERT(sfmmup != NULL);
5609 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5610 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
5611 
5612 	/*
5613 	 * Probing through a large VA range (say 63 bits) will be slow, even
5614 	 * at 4 Meg steps between the probes. So, when the virtual address range
5615 	 * is very large, search the HME entries for what to unload.
5616 	 *
5617 	 *	len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
5618 	 *
5619 	 *	UHMEHASH_SZ is number of hash buckets to examine
5620 	 *
5621 	 */
5622 	if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
5623 		hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
5624 		return;
5625 	}
5626 
5627 	CPUSET_ZERO(cpuset);
5628 
5629 	/*
5630 	 * If the process is exiting, we can save a lot of fuss since
5631 	 * we'll flush the TLB when we free the ctx anyway.
5632 	 */
5633 	if (sfmmup->sfmmu_free)
5634 		dmrp = NULL;
5635 	else
5636 		dmrp = &dmr;
5637 
5638 	DEMAP_RANGE_INIT(sfmmup, dmrp);
5639 	endaddr = addr + len;
5640 	hblktag.htag_id = sfmmup;
5641 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5642 
5643 	/*
5644 	 * It is likely for the vm to call unload over a wide range of
5645 	 * addresses that are actually very sparsely populated by
5646 	 * translations.  In order to speed this up the sfmmu hat supports
5647 	 * the concept of shadow hmeblks. Dummy large page hmeblks that
5648 	 * correspond to actual small translations are allocated at tteload
5649 	 * time and are referred to as shadow hmeblks.  Now, during unload
5650 	 * time, we first check if we have a shadow hmeblk for that
5651 	 * translation.  The absence of one means the corresponding address
5652 	 * range is empty and can be skipped.
5653 	 *
5654 	 * The kernel is an exception to above statement and that is why
5655 	 * we don't use shadow hmeblks and hash starting from the smallest
5656 	 * page size.
5657 	 */
5658 	if (sfmmup == KHATID) {
5659 		iskernel = 1;
5660 		hashno = TTE64K;
5661 	} else {
5662 		iskernel = 0;
5663 		if (mmu_page_sizes == max_mmu_page_sizes) {
5664 			hashno = TTE256M;
5665 		} else {
5666 			hashno = TTE4M;
5667 		}
5668 	}
5669 	while (addr < endaddr) {
5670 		hmeshift = HME_HASH_SHIFT(hashno);
5671 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5672 		hblktag.htag_rehash = hashno;
5673 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5674 
5675 		SFMMU_HASH_LOCK(hmebp);
5676 
5677 		HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, pr_hblk,
5678 		    prevpa, &list);
5679 		if (hmeblkp == NULL) {
5680 			/*
5681 			 * didn't find an hmeblk. skip the appropiate
5682 			 * address range.
5683 			 */
5684 			SFMMU_HASH_UNLOCK(hmebp);
5685 			if (iskernel) {
5686 				if (hashno < mmu_hashcnt) {
5687 					hashno++;
5688 					continue;
5689 				} else {
5690 					hashno = TTE64K;
5691 					addr = (caddr_t)roundup((uintptr_t)addr
5692 					    + 1, MMU_PAGESIZE64K);
5693 					continue;
5694 				}
5695 			}
5696 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5697 			    (1 << hmeshift));
5698 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5699 				ASSERT(hashno == TTE64K);
5700 				continue;
5701 			}
5702 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5703 				hashno = TTE512K;
5704 				continue;
5705 			}
5706 			if (mmu_page_sizes == max_mmu_page_sizes) {
5707 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5708 					hashno = TTE4M;
5709 					continue;
5710 				}
5711 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5712 					hashno = TTE32M;
5713 					continue;
5714 				}
5715 				hashno = TTE256M;
5716 				continue;
5717 			} else {
5718 				hashno = TTE4M;
5719 				continue;
5720 			}
5721 		}
5722 		ASSERT(hmeblkp);
5723 		ASSERT(!hmeblkp->hblk_shared);
5724 		if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5725 			/*
5726 			 * If the valid count is zero we can skip the range
5727 			 * mapped by this hmeblk.
5728 			 * We free hblks in the case of HAT_UNMAP.  HAT_UNMAP
5729 			 * is used by segment drivers as a hint
5730 			 * that the mapping resource won't be used any longer.
5731 			 * The best example of this is during exit().
5732 			 */
5733 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5734 			    get_hblk_span(hmeblkp));
5735 			if ((flags & HAT_UNLOAD_UNMAP) ||
5736 			    (iskernel && !issegkmap)) {
5737 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5738 				    pr_hblk);
5739 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5740 			}
5741 			SFMMU_HASH_UNLOCK(hmebp);
5742 
5743 			if (iskernel) {
5744 				hashno = TTE64K;
5745 				continue;
5746 			}
5747 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5748 				ASSERT(hashno == TTE64K);
5749 				continue;
5750 			}
5751 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5752 				hashno = TTE512K;
5753 				continue;
5754 			}
5755 			if (mmu_page_sizes == max_mmu_page_sizes) {
5756 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5757 					hashno = TTE4M;
5758 					continue;
5759 				}
5760 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5761 					hashno = TTE32M;
5762 					continue;
5763 				}
5764 				hashno = TTE256M;
5765 				continue;
5766 			} else {
5767 				hashno = TTE4M;
5768 				continue;
5769 			}
5770 		}
5771 		if (hmeblkp->hblk_shw_bit) {
5772 			/*
5773 			 * If we encounter a shadow hmeblk we know there is
5774 			 * smaller sized hmeblks mapping the same address space.
5775 			 * Decrement the hash size and rehash.
5776 			 */
5777 			ASSERT(sfmmup != KHATID);
5778 			hashno--;
5779 			SFMMU_HASH_UNLOCK(hmebp);
5780 			continue;
5781 		}
5782 
5783 		/*
5784 		 * track callback address ranges.
5785 		 * only start a new range when it's not contiguous
5786 		 */
5787 		if (callback != NULL) {
5788 			if (addr_count > 0 &&
5789 			    addr == cb_end_addr[addr_count - 1])
5790 				--addr_count;
5791 			else
5792 				cb_start_addr[addr_count] = addr;
5793 		}
5794 
5795 		addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
5796 		    dmrp, flags);
5797 
5798 		if (callback != NULL)
5799 			cb_end_addr[addr_count++] = addr;
5800 
5801 		if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
5802 		    !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5803 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5804 			    pr_hblk);
5805 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5806 		}
5807 		SFMMU_HASH_UNLOCK(hmebp);
5808 
5809 		/*
5810 		 * Notify our caller as to exactly which pages
5811 		 * have been unloaded. We do these in clumps,
5812 		 * to minimize the number of xt_sync()s that need to occur.
5813 		 */
5814 		if (callback != NULL && addr_count == MAX_CB_ADDR) {
5815 			DEMAP_RANGE_FLUSH(dmrp);
5816 			if (dmrp != NULL) {
5817 				cpuset = sfmmup->sfmmu_cpusran;
5818 				xt_sync(cpuset);
5819 			}
5820 
5821 			for (a = 0; a < MAX_CB_ADDR; ++a) {
5822 				callback->hcb_start_addr = cb_start_addr[a];
5823 				callback->hcb_end_addr = cb_end_addr[a];
5824 				callback->hcb_function(callback);
5825 			}
5826 			addr_count = 0;
5827 		}
5828 		if (iskernel) {
5829 			hashno = TTE64K;
5830 			continue;
5831 		}
5832 		if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5833 			ASSERT(hashno == TTE64K);
5834 			continue;
5835 		}
5836 		if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5837 			hashno = TTE512K;
5838 			continue;
5839 		}
5840 		if (mmu_page_sizes == max_mmu_page_sizes) {
5841 			if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5842 				hashno = TTE4M;
5843 				continue;
5844 			}
5845 			if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5846 				hashno = TTE32M;
5847 				continue;
5848 			}
5849 			hashno = TTE256M;
5850 		} else {
5851 			hashno = TTE4M;
5852 		}
5853 	}
5854 
5855 	sfmmu_hblks_list_purge(&list);
5856 	DEMAP_RANGE_FLUSH(dmrp);
5857 	if (dmrp != NULL) {
5858 		cpuset = sfmmup->sfmmu_cpusran;
5859 		xt_sync(cpuset);
5860 	}
5861 	if (callback && addr_count != 0) {
5862 		for (a = 0; a < addr_count; ++a) {
5863 			callback->hcb_start_addr = cb_start_addr[a];
5864 			callback->hcb_end_addr = cb_end_addr[a];
5865 			callback->hcb_function(callback);
5866 		}
5867 	}
5868 
5869 	/*
5870 	 * Check TSB and TLB page sizes if the process isn't exiting.
5871 	 */
5872 	if (!sfmmup->sfmmu_free)
5873 		sfmmu_check_page_sizes(sfmmup, 0);
5874 }
5875 
5876 /*
5877  * Unload all the mappings in the range [addr..addr+len). addr and len must
5878  * be MMU_PAGESIZE aligned.
5879  */
5880 void
5881 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
5882 {
5883 	if (sfmmup->sfmmu_xhat_provider) {
5884 		XHAT_UNLOAD(sfmmup, addr, len, flags);
5885 		return;
5886 	}
5887 	hat_unload_callback(sfmmup, addr, len, flags, NULL);
5888 }
5889 
5890 
5891 /*
5892  * Find the largest mapping size for this page.
5893  */
5894 int
5895 fnd_mapping_sz(page_t *pp)
5896 {
5897 	int sz;
5898 	int p_index;
5899 
5900 	p_index = PP_MAPINDEX(pp);
5901 
5902 	sz = 0;
5903 	p_index >>= 1;	/* don't care about 8K bit */
5904 	for (; p_index; p_index >>= 1) {
5905 		sz++;
5906 	}
5907 
5908 	return (sz);
5909 }
5910 
5911 /*
5912  * This function unloads a range of addresses for an hmeblk.
5913  * It returns the next address to be unloaded.
5914  * It should be called with the hash lock held.
5915  */
5916 static caddr_t
5917 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5918 	caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
5919 {
5920 	tte_t	tte, ttemod;
5921 	struct	sf_hment *sfhmep;
5922 	int	ttesz;
5923 	long	ttecnt;
5924 	page_t *pp;
5925 	kmutex_t *pml;
5926 	int ret;
5927 	int use_demap_range;
5928 
5929 	ASSERT(in_hblk_range(hmeblkp, addr));
5930 	ASSERT(!hmeblkp->hblk_shw_bit);
5931 	ASSERT(sfmmup != NULL || hmeblkp->hblk_shared);
5932 	ASSERT(sfmmup == NULL || !hmeblkp->hblk_shared);
5933 	ASSERT(dmrp == NULL || !hmeblkp->hblk_shared);
5934 
5935 #ifdef DEBUG
5936 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5937 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
5938 		panic("sfmmu_hblk_unload: partial unload of large page");
5939 	}
5940 #endif /* DEBUG */
5941 
5942 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5943 	ttesz = get_hblk_ttesz(hmeblkp);
5944 
5945 	use_demap_range = ((dmrp == NULL) ||
5946 	    (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)));
5947 
5948 	if (use_demap_range) {
5949 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5950 	} else {
5951 		DEMAP_RANGE_FLUSH(dmrp);
5952 	}
5953 	ttecnt = 0;
5954 	HBLKTOHME(sfhmep, hmeblkp, addr);
5955 
5956 	while (addr < endaddr) {
5957 		pml = NULL;
5958 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5959 		if (TTE_IS_VALID(&tte)) {
5960 			pp = sfhmep->hme_page;
5961 			if (pp != NULL) {
5962 				pml = sfmmu_mlist_enter(pp);
5963 			}
5964 
5965 			/*
5966 			 * Verify if hme still points to 'pp' now that
5967 			 * we have p_mapping lock.
5968 			 */
5969 			if (sfhmep->hme_page != pp) {
5970 				if (pp != NULL && sfhmep->hme_page != NULL) {
5971 					ASSERT(pml != NULL);
5972 					sfmmu_mlist_exit(pml);
5973 					/* Re-start this iteration. */
5974 					continue;
5975 				}
5976 				ASSERT((pp != NULL) &&
5977 				    (sfhmep->hme_page == NULL));
5978 				goto tte_unloaded;
5979 			}
5980 
5981 			/*
5982 			 * This point on we have both HASH and p_mapping
5983 			 * lock.
5984 			 */
5985 			ASSERT(pp == sfhmep->hme_page);
5986 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5987 
5988 			/*
5989 			 * We need to loop on modify tte because it is
5990 			 * possible for pagesync to come along and
5991 			 * change the software bits beneath us.
5992 			 *
5993 			 * Page_unload can also invalidate the tte after
5994 			 * we read tte outside of p_mapping lock.
5995 			 */
5996 again:
5997 			ttemod = tte;
5998 
5999 			TTE_SET_INVALID(&ttemod);
6000 			ret = sfmmu_modifytte_try(&tte, &ttemod,
6001 			    &sfhmep->hme_tte);
6002 
6003 			if (ret <= 0) {
6004 				if (TTE_IS_VALID(&tte)) {
6005 					ASSERT(ret < 0);
6006 					goto again;
6007 				}
6008 				if (pp != NULL) {
6009 					panic("sfmmu_hblk_unload: pp = 0x%p "
6010 					    "tte became invalid under mlist"
6011 					    " lock = 0x%p", (void *)pp,
6012 					    (void *)pml);
6013 				}
6014 				continue;
6015 			}
6016 
6017 			if (!(flags & HAT_UNLOAD_NOSYNC)) {
6018 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
6019 			}
6020 
6021 			/*
6022 			 * Ok- we invalidated the tte. Do the rest of the job.
6023 			 */
6024 			ttecnt++;
6025 
6026 			if (flags & HAT_UNLOAD_UNLOCK) {
6027 				ASSERT(hmeblkp->hblk_lckcnt > 0);
6028 				atomic_add_32(&hmeblkp->hblk_lckcnt, -1);
6029 				HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
6030 			}
6031 
6032 			/*
6033 			 * Normally we would need to flush the page
6034 			 * from the virtual cache at this point in
6035 			 * order to prevent a potential cache alias
6036 			 * inconsistency.
6037 			 * The particular scenario we need to worry
6038 			 * about is:
6039 			 * Given:  va1 and va2 are two virtual address
6040 			 * that alias and map the same physical
6041 			 * address.
6042 			 * 1.   mapping exists from va1 to pa and data
6043 			 * has been read into the cache.
6044 			 * 2.   unload va1.
6045 			 * 3.   load va2 and modify data using va2.
6046 			 * 4    unload va2.
6047 			 * 5.   load va1 and reference data.  Unless we
6048 			 * flush the data cache when we unload we will
6049 			 * get stale data.
6050 			 * Fortunately, page coloring eliminates the
6051 			 * above scenario by remembering the color a
6052 			 * physical page was last or is currently
6053 			 * mapped to.  Now, we delay the flush until
6054 			 * the loading of translations.  Only when the
6055 			 * new translation is of a different color
6056 			 * are we forced to flush.
6057 			 */
6058 			if (use_demap_range) {
6059 				/*
6060 				 * Mark this page as needing a demap.
6061 				 */
6062 				DEMAP_RANGE_MARKPG(dmrp, addr);
6063 			} else {
6064 				ASSERT(sfmmup != NULL);
6065 				ASSERT(!hmeblkp->hblk_shared);
6066 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
6067 				    sfmmup->sfmmu_free, 0);
6068 			}
6069 
6070 			if (pp) {
6071 				/*
6072 				 * Remove the hment from the mapping list
6073 				 */
6074 				ASSERT(hmeblkp->hblk_hmecnt > 0);
6075 
6076 				/*
6077 				 * Again, we cannot
6078 				 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
6079 				 */
6080 				HME_SUB(sfhmep, pp);
6081 				membar_stst();
6082 				atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
6083 			}
6084 
6085 			ASSERT(hmeblkp->hblk_vcnt > 0);
6086 			atomic_add_16(&hmeblkp->hblk_vcnt, -1);
6087 
6088 			ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
6089 			    !hmeblkp->hblk_lckcnt);
6090 
6091 #ifdef VAC
6092 			if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
6093 				if (PP_ISTNC(pp)) {
6094 					/*
6095 					 * If page was temporary
6096 					 * uncached, try to recache
6097 					 * it. Note that HME_SUB() was
6098 					 * called above so p_index and
6099 					 * mlist had been updated.
6100 					 */
6101 					conv_tnc(pp, ttesz);
6102 				} else if (pp->p_mapping == NULL) {
6103 					ASSERT(kpm_enable);
6104 					/*
6105 					 * Page is marked to be in VAC conflict
6106 					 * to an existing kpm mapping and/or is
6107 					 * kpm mapped using only the regular
6108 					 * pagesize.
6109 					 */
6110 					sfmmu_kpm_hme_unload(pp);
6111 				}
6112 			}
6113 #endif	/* VAC */
6114 		} else if ((pp = sfhmep->hme_page) != NULL) {
6115 				/*
6116 				 * TTE is invalid but the hme
6117 				 * still exists. let pageunload
6118 				 * complete its job.
6119 				 */
6120 				ASSERT(pml == NULL);
6121 				pml = sfmmu_mlist_enter(pp);
6122 				if (sfhmep->hme_page != NULL) {
6123 					sfmmu_mlist_exit(pml);
6124 					continue;
6125 				}
6126 				ASSERT(sfhmep->hme_page == NULL);
6127 		} else if (hmeblkp->hblk_hmecnt != 0) {
6128 			/*
6129 			 * pageunload may have not finished decrementing
6130 			 * hblk_vcnt and hblk_hmecnt. Find page_t if any and
6131 			 * wait for pageunload to finish. Rely on pageunload
6132 			 * to decrement hblk_hmecnt after hblk_vcnt.
6133 			 */
6134 			pfn_t pfn = TTE_TO_TTEPFN(&tte);
6135 			ASSERT(pml == NULL);
6136 			if (pf_is_memory(pfn)) {
6137 				pp = page_numtopp_nolock(pfn);
6138 				if (pp != NULL) {
6139 					pml = sfmmu_mlist_enter(pp);
6140 					sfmmu_mlist_exit(pml);
6141 					pml = NULL;
6142 				}
6143 			}
6144 		}
6145 
6146 tte_unloaded:
6147 		/*
6148 		 * At this point, the tte we are looking at
6149 		 * should be unloaded, and hme has been unlinked
6150 		 * from page too. This is important because in
6151 		 * pageunload, it does ttesync() then HME_SUB.
6152 		 * We need to make sure HME_SUB has been completed
6153 		 * so we know ttesync() has been completed. Otherwise,
6154 		 * at exit time, after return from hat layer, VM will
6155 		 * release as structure which hat_setstat() (called
6156 		 * by ttesync()) needs.
6157 		 */
6158 #ifdef DEBUG
6159 		{
6160 			tte_t	dtte;
6161 
6162 			ASSERT(sfhmep->hme_page == NULL);
6163 
6164 			sfmmu_copytte(&sfhmep->hme_tte, &dtte);
6165 			ASSERT(!TTE_IS_VALID(&dtte));
6166 		}
6167 #endif
6168 
6169 		if (pml) {
6170 			sfmmu_mlist_exit(pml);
6171 		}
6172 
6173 		addr += TTEBYTES(ttesz);
6174 		sfhmep++;
6175 		DEMAP_RANGE_NEXTPG(dmrp);
6176 	}
6177 	/*
6178 	 * For shared hmeblks this routine is only called when region is freed
6179 	 * and no longer referenced.  So no need to decrement ttecnt
6180 	 * in the region structure here.
6181 	 */
6182 	if (ttecnt > 0 && sfmmup != NULL) {
6183 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
6184 	}
6185 	return (addr);
6186 }
6187 
6188 /*
6189  * Synchronize all the mappings in the range [addr..addr+len).
6190  * Can be called with clearflag having two states:
6191  * HAT_SYNC_DONTZERO means just return the rm stats
6192  * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
6193  */
6194 void
6195 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
6196 {
6197 	struct hmehash_bucket *hmebp;
6198 	hmeblk_tag hblktag;
6199 	int hmeshift, hashno = 1;
6200 	struct hme_blk *hmeblkp, *list = NULL;
6201 	caddr_t endaddr;
6202 	cpuset_t cpuset;
6203 
6204 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
6205 	ASSERT((sfmmup == ksfmmup) ||
6206 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
6207 	ASSERT((len & MMU_PAGEOFFSET) == 0);
6208 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
6209 	    (clearflag == HAT_SYNC_ZERORM));
6210 
6211 	CPUSET_ZERO(cpuset);
6212 
6213 	endaddr = addr + len;
6214 	hblktag.htag_id = sfmmup;
6215 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
6216 
6217 	/*
6218 	 * Spitfire supports 4 page sizes.
6219 	 * Most pages are expected to be of the smallest page
6220 	 * size (8K) and these will not need to be rehashed. 64K
6221 	 * pages also don't need to be rehashed because the an hmeblk
6222 	 * spans 64K of address space. 512K pages might need 1 rehash and
6223 	 * and 4M pages 2 rehashes.
6224 	 */
6225 	while (addr < endaddr) {
6226 		hmeshift = HME_HASH_SHIFT(hashno);
6227 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
6228 		hblktag.htag_rehash = hashno;
6229 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
6230 
6231 		SFMMU_HASH_LOCK(hmebp);
6232 
6233 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
6234 		if (hmeblkp != NULL) {
6235 			ASSERT(!hmeblkp->hblk_shared);
6236 			/*
6237 			 * We've encountered a shadow hmeblk so skip the range
6238 			 * of the next smaller mapping size.
6239 			 */
6240 			if (hmeblkp->hblk_shw_bit) {
6241 				ASSERT(sfmmup != ksfmmup);
6242 				ASSERT(hashno > 1);
6243 				addr = (caddr_t)P2END((uintptr_t)addr,
6244 				    TTEBYTES(hashno - 1));
6245 			} else {
6246 				addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
6247 				    addr, endaddr, clearflag);
6248 			}
6249 			SFMMU_HASH_UNLOCK(hmebp);
6250 			hashno = 1;
6251 			continue;
6252 		}
6253 		SFMMU_HASH_UNLOCK(hmebp);
6254 
6255 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
6256 			/*
6257 			 * We have traversed the whole list and rehashed
6258 			 * if necessary without finding the address to sync.
6259 			 * This is ok so we increment the address by the
6260 			 * smallest hmeblk range for kernel mappings and the
6261 			 * largest hmeblk range, to account for shadow hmeblks,
6262 			 * for user mappings and continue.
6263 			 */
6264 			if (sfmmup == ksfmmup)
6265 				addr = (caddr_t)P2END((uintptr_t)addr,
6266 				    TTEBYTES(1));
6267 			else
6268 				addr = (caddr_t)P2END((uintptr_t)addr,
6269 				    TTEBYTES(hashno));
6270 			hashno = 1;
6271 		} else {
6272 			hashno++;
6273 		}
6274 	}
6275 	sfmmu_hblks_list_purge(&list);
6276 	cpuset = sfmmup->sfmmu_cpusran;
6277 	xt_sync(cpuset);
6278 }
6279 
6280 static caddr_t
6281 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
6282 	caddr_t endaddr, int clearflag)
6283 {
6284 	tte_t	tte, ttemod;
6285 	struct sf_hment *sfhmep;
6286 	int ttesz;
6287 	struct page *pp;
6288 	kmutex_t *pml;
6289 	int ret;
6290 
6291 	ASSERT(hmeblkp->hblk_shw_bit == 0);
6292 	ASSERT(!hmeblkp->hblk_shared);
6293 
6294 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
6295 
6296 	ttesz = get_hblk_ttesz(hmeblkp);
6297 	HBLKTOHME(sfhmep, hmeblkp, addr);
6298 
6299 	while (addr < endaddr) {
6300 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
6301 		if (TTE_IS_VALID(&tte)) {
6302 			pml = NULL;
6303 			pp = sfhmep->hme_page;
6304 			if (pp) {
6305 				pml = sfmmu_mlist_enter(pp);
6306 			}
6307 			if (pp != sfhmep->hme_page) {
6308 				/*
6309 				 * tte most have been unloaded
6310 				 * underneath us.  Recheck
6311 				 */
6312 				ASSERT(pml);
6313 				sfmmu_mlist_exit(pml);
6314 				continue;
6315 			}
6316 
6317 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
6318 
6319 			if (clearflag == HAT_SYNC_ZERORM) {
6320 				ttemod = tte;
6321 				TTE_CLR_RM(&ttemod);
6322 				ret = sfmmu_modifytte_try(&tte, &ttemod,
6323 				    &sfhmep->hme_tte);
6324 				if (ret < 0) {
6325 					if (pml) {
6326 						sfmmu_mlist_exit(pml);
6327 					}
6328 					continue;
6329 				}
6330 
6331 				if (ret > 0) {
6332 					sfmmu_tlb_demap(addr, sfmmup,
6333 					    hmeblkp, 0, 0);
6334 				}
6335 			}
6336 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
6337 			if (pml) {
6338 				sfmmu_mlist_exit(pml);
6339 			}
6340 		}
6341 		addr += TTEBYTES(ttesz);
6342 		sfhmep++;
6343 	}
6344 	return (addr);
6345 }
6346 
6347 /*
6348  * This function will sync a tte to the page struct and it will
6349  * update the hat stats. Currently it allows us to pass a NULL pp
6350  * and we will simply update the stats.  We may want to change this
6351  * so we only keep stats for pages backed by pp's.
6352  */
6353 static void
6354 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
6355 {
6356 	uint_t rm = 0;
6357 	int   	sz;
6358 	pgcnt_t	npgs;
6359 
6360 	ASSERT(TTE_IS_VALID(ttep));
6361 
6362 	if (TTE_IS_NOSYNC(ttep)) {
6363 		return;
6364 	}
6365 
6366 	if (TTE_IS_REF(ttep))  {
6367 		rm = P_REF;
6368 	}
6369 	if (TTE_IS_MOD(ttep))  {
6370 		rm |= P_MOD;
6371 	}
6372 
6373 	if (rm == 0) {
6374 		return;
6375 	}
6376 
6377 	sz = TTE_CSZ(ttep);
6378 	if (sfmmup != NULL && sfmmup->sfmmu_rmstat) {
6379 		int i;
6380 		caddr_t	vaddr = addr;
6381 
6382 		for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) {
6383 			hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm);
6384 		}
6385 
6386 	}
6387 
6388 	/*
6389 	 * XXX I want to use cas to update nrm bits but they
6390 	 * currently belong in common/vm and not in hat where
6391 	 * they should be.
6392 	 * The nrm bits are protected by the same mutex as
6393 	 * the one that protects the page's mapping list.
6394 	 */
6395 	if (!pp)
6396 		return;
6397 	ASSERT(sfmmu_mlist_held(pp));
6398 	/*
6399 	 * If the tte is for a large page, we need to sync all the
6400 	 * pages covered by the tte.
6401 	 */
6402 	if (sz != TTE8K) {
6403 		ASSERT(pp->p_szc != 0);
6404 		pp = PP_GROUPLEADER(pp, sz);
6405 		ASSERT(sfmmu_mlist_held(pp));
6406 	}
6407 
6408 	/* Get number of pages from tte size. */
6409 	npgs = TTEPAGES(sz);
6410 
6411 	do {
6412 		ASSERT(pp);
6413 		ASSERT(sfmmu_mlist_held(pp));
6414 		if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
6415 		    ((rm & P_MOD) != 0 && !PP_ISMOD(pp)))
6416 			hat_page_setattr(pp, rm);
6417 
6418 		/*
6419 		 * Are we done? If not, we must have a large mapping.
6420 		 * For large mappings we need to sync the rest of the pages
6421 		 * covered by this tte; goto the next page.
6422 		 */
6423 	} while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
6424 }
6425 
6426 /*
6427  * Execute pre-callback handler of each pa_hment linked to pp
6428  *
6429  * Inputs:
6430  *   flag: either HAT_PRESUSPEND or HAT_SUSPEND.
6431  *   capture_cpus: pointer to return value (below)
6432  *
6433  * Returns:
6434  *   Propagates the subsystem callback return values back to the caller;
6435  *   returns 0 on success.  If capture_cpus is non-NULL, the value returned
6436  *   is zero if all of the pa_hments are of a type that do not require
6437  *   capturing CPUs prior to suspending the mapping, else it is 1.
6438  */
6439 static int
6440 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
6441 {
6442 	struct sf_hment	*sfhmep;
6443 	struct pa_hment *pahmep;
6444 	int (*f)(caddr_t, uint_t, uint_t, void *);
6445 	int		ret;
6446 	id_t		id;
6447 	int		locked = 0;
6448 	kmutex_t	*pml;
6449 
6450 	ASSERT(PAGE_EXCL(pp));
6451 	if (!sfmmu_mlist_held(pp)) {
6452 		pml = sfmmu_mlist_enter(pp);
6453 		locked = 1;
6454 	}
6455 
6456 	if (capture_cpus)
6457 		*capture_cpus = 0;
6458 
6459 top:
6460 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6461 		/*
6462 		 * skip sf_hments corresponding to VA<->PA mappings;
6463 		 * for pa_hment's, hme_tte.ll is zero
6464 		 */
6465 		if (!IS_PAHME(sfhmep))
6466 			continue;
6467 
6468 		pahmep = sfhmep->hme_data;
6469 		ASSERT(pahmep != NULL);
6470 
6471 		/*
6472 		 * skip if pre-handler has been called earlier in this loop
6473 		 */
6474 		if (pahmep->flags & flag)
6475 			continue;
6476 
6477 		id = pahmep->cb_id;
6478 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6479 		if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
6480 			*capture_cpus = 1;
6481 		if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
6482 			pahmep->flags |= flag;
6483 			continue;
6484 		}
6485 
6486 		/*
6487 		 * Drop the mapping list lock to avoid locking order issues.
6488 		 */
6489 		if (locked)
6490 			sfmmu_mlist_exit(pml);
6491 
6492 		ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
6493 		if (ret != 0)
6494 			return (ret);	/* caller must do the cleanup */
6495 
6496 		if (locked) {
6497 			pml = sfmmu_mlist_enter(pp);
6498 			pahmep->flags |= flag;
6499 			goto top;
6500 		}
6501 
6502 		pahmep->flags |= flag;
6503 	}
6504 
6505 	if (locked)
6506 		sfmmu_mlist_exit(pml);
6507 
6508 	return (0);
6509 }
6510 
6511 /*
6512  * Execute post-callback handler of each pa_hment linked to pp
6513  *
6514  * Same overall assumptions and restrictions apply as for
6515  * hat_pageprocess_precallbacks().
6516  */
6517 static void
6518 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
6519 {
6520 	pfn_t pgpfn = pp->p_pagenum;
6521 	pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
6522 	pfn_t newpfn;
6523 	struct sf_hment *sfhmep;
6524 	struct pa_hment *pahmep;
6525 	int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
6526 	id_t	id;
6527 	int	locked = 0;
6528 	kmutex_t *pml;
6529 
6530 	ASSERT(PAGE_EXCL(pp));
6531 	if (!sfmmu_mlist_held(pp)) {
6532 		pml = sfmmu_mlist_enter(pp);
6533 		locked = 1;
6534 	}
6535 
6536 top:
6537 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6538 		/*
6539 		 * skip sf_hments corresponding to VA<->PA mappings;
6540 		 * for pa_hment's, hme_tte.ll is zero
6541 		 */
6542 		if (!IS_PAHME(sfhmep))
6543 			continue;
6544 
6545 		pahmep = sfhmep->hme_data;
6546 		ASSERT(pahmep != NULL);
6547 
6548 		if ((pahmep->flags & flag) == 0)
6549 			continue;
6550 
6551 		pahmep->flags &= ~flag;
6552 
6553 		id = pahmep->cb_id;
6554 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6555 		if ((f = sfmmu_cb_table[id].posthandler) == NULL)
6556 			continue;
6557 
6558 		/*
6559 		 * Convert the base page PFN into the constituent PFN
6560 		 * which is needed by the callback handler.
6561 		 */
6562 		newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
6563 
6564 		/*
6565 		 * Drop the mapping list lock to avoid locking order issues.
6566 		 */
6567 		if (locked)
6568 			sfmmu_mlist_exit(pml);
6569 
6570 		if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
6571 		    != 0)
6572 			panic("sfmmu: posthandler failed");
6573 
6574 		if (locked) {
6575 			pml = sfmmu_mlist_enter(pp);
6576 			goto top;
6577 		}
6578 	}
6579 
6580 	if (locked)
6581 		sfmmu_mlist_exit(pml);
6582 }
6583 
6584 /*
6585  * Suspend locked kernel mapping
6586  */
6587 void
6588 hat_pagesuspend(struct page *pp)
6589 {
6590 	struct sf_hment *sfhmep;
6591 	sfmmu_t *sfmmup;
6592 	tte_t tte, ttemod;
6593 	struct hme_blk *hmeblkp;
6594 	caddr_t addr;
6595 	int index, cons;
6596 	cpuset_t cpuset;
6597 
6598 	ASSERT(PAGE_EXCL(pp));
6599 	ASSERT(sfmmu_mlist_held(pp));
6600 
6601 	mutex_enter(&kpr_suspendlock);
6602 
6603 	/*
6604 	 * We're about to suspend a kernel mapping so mark this thread as
6605 	 * non-traceable by DTrace. This prevents us from running into issues
6606 	 * with probe context trying to touch a suspended page
6607 	 * in the relocation codepath itself.
6608 	 */
6609 	curthread->t_flag |= T_DONTDTRACE;
6610 
6611 	index = PP_MAPINDEX(pp);
6612 	cons = TTE8K;
6613 
6614 retry:
6615 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6616 
6617 		if (IS_PAHME(sfhmep))
6618 			continue;
6619 
6620 		if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
6621 			continue;
6622 
6623 		/*
6624 		 * Loop until we successfully set the suspend bit in
6625 		 * the TTE.
6626 		 */
6627 again:
6628 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
6629 		ASSERT(TTE_IS_VALID(&tte));
6630 
6631 		ttemod = tte;
6632 		TTE_SET_SUSPEND(&ttemod);
6633 		if (sfmmu_modifytte_try(&tte, &ttemod,
6634 		    &sfhmep->hme_tte) < 0)
6635 			goto again;
6636 
6637 		/*
6638 		 * Invalidate TSB entry
6639 		 */
6640 		hmeblkp = sfmmu_hmetohblk(sfhmep);
6641 
6642 		sfmmup = hblktosfmmu(hmeblkp);
6643 		ASSERT(sfmmup == ksfmmup);
6644 		ASSERT(!hmeblkp->hblk_shared);
6645 
6646 		addr = tte_to_vaddr(hmeblkp, tte);
6647 
6648 		/*
6649 		 * No need to make sure that the TSB for this sfmmu is
6650 		 * not being relocated since it is ksfmmup and thus it
6651 		 * will never be relocated.
6652 		 */
6653 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
6654 
6655 		/*
6656 		 * Update xcall stats
6657 		 */
6658 		cpuset = cpu_ready_set;
6659 		CPUSET_DEL(cpuset, CPU->cpu_id);
6660 
6661 		/* LINTED: constant in conditional context */
6662 		SFMMU_XCALL_STATS(ksfmmup);
6663 
6664 		/*
6665 		 * Flush TLB entry on remote CPU's
6666 		 */
6667 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
6668 		    (uint64_t)ksfmmup);
6669 		xt_sync(cpuset);
6670 
6671 		/*
6672 		 * Flush TLB entry on local CPU
6673 		 */
6674 		vtag_flushpage(addr, (uint64_t)ksfmmup);
6675 	}
6676 
6677 	while (index != 0) {
6678 		index = index >> 1;
6679 		if (index != 0)
6680 			cons++;
6681 		if (index & 0x1) {
6682 			pp = PP_GROUPLEADER(pp, cons);
6683 			goto retry;
6684 		}
6685 	}
6686 }
6687 
6688 #ifdef	DEBUG
6689 
6690 #define	N_PRLE	1024
6691 struct prle {
6692 	page_t *targ;
6693 	page_t *repl;
6694 	int status;
6695 	int pausecpus;
6696 	hrtime_t whence;
6697 };
6698 
6699 static struct prle page_relocate_log[N_PRLE];
6700 static int prl_entry;
6701 static kmutex_t prl_mutex;
6702 
6703 #define	PAGE_RELOCATE_LOG(t, r, s, p)					\
6704 	mutex_enter(&prl_mutex);					\
6705 	page_relocate_log[prl_entry].targ = *(t);			\
6706 	page_relocate_log[prl_entry].repl = *(r);			\
6707 	page_relocate_log[prl_entry].status = (s);			\
6708 	page_relocate_log[prl_entry].pausecpus = (p);			\
6709 	page_relocate_log[prl_entry].whence = gethrtime();		\
6710 	prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1;	\
6711 	mutex_exit(&prl_mutex);
6712 
6713 #else	/* !DEBUG */
6714 #define	PAGE_RELOCATE_LOG(t, r, s, p)
6715 #endif
6716 
6717 /*
6718  * Core Kernel Page Relocation Algorithm
6719  *
6720  * Input:
6721  *
6722  * target : 	constituent pages are SE_EXCL locked.
6723  * replacement:	constituent pages are SE_EXCL locked.
6724  *
6725  * Output:
6726  *
6727  * nrelocp:	number of pages relocated
6728  */
6729 int
6730 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
6731 {
6732 	page_t		*targ, *repl;
6733 	page_t		*tpp, *rpp;
6734 	kmutex_t	*low, *high;
6735 	spgcnt_t	npages, i;
6736 	page_t		*pl = NULL;
6737 	int		old_pil;
6738 	cpuset_t	cpuset;
6739 	int		cap_cpus;
6740 	int		ret;
6741 #ifdef VAC
6742 	int		cflags = 0;
6743 #endif
6744 
6745 	if (hat_kpr_enabled == 0 || !kcage_on || PP_ISNORELOC(*target)) {
6746 		PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
6747 		return (EAGAIN);
6748 	}
6749 
6750 	mutex_enter(&kpr_mutex);
6751 	kreloc_thread = curthread;
6752 
6753 	targ = *target;
6754 	repl = *replacement;
6755 	ASSERT(repl != NULL);
6756 	ASSERT(targ->p_szc == repl->p_szc);
6757 
6758 	npages = page_get_pagecnt(targ->p_szc);
6759 
6760 	/*
6761 	 * unload VA<->PA mappings that are not locked
6762 	 */
6763 	tpp = targ;
6764 	for (i = 0; i < npages; i++) {
6765 		(void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
6766 		tpp++;
6767 	}
6768 
6769 	/*
6770 	 * Do "presuspend" callbacks, in a context from which we can still
6771 	 * block as needed. Note that we don't hold the mapping list lock
6772 	 * of "targ" at this point due to potential locking order issues;
6773 	 * we assume that between the hat_pageunload() above and holding
6774 	 * the SE_EXCL lock that the mapping list *cannot* change at this
6775 	 * point.
6776 	 */
6777 	ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
6778 	if (ret != 0) {
6779 		/*
6780 		 * EIO translates to fatal error, for all others cleanup
6781 		 * and return EAGAIN.
6782 		 */
6783 		ASSERT(ret != EIO);
6784 		hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
6785 		PAGE_RELOCATE_LOG(target, replacement, ret, -1);
6786 		kreloc_thread = NULL;
6787 		mutex_exit(&kpr_mutex);
6788 		return (EAGAIN);
6789 	}
6790 
6791 	/*
6792 	 * acquire p_mapping list lock for both the target and replacement
6793 	 * root pages.
6794 	 *
6795 	 * low and high refer to the need to grab the mlist locks in a
6796 	 * specific order in order to prevent race conditions.  Thus the
6797 	 * lower lock must be grabbed before the higher lock.
6798 	 *
6799 	 * This will block hat_unload's accessing p_mapping list.  Since
6800 	 * we have SE_EXCL lock, hat_memload and hat_pageunload will be
6801 	 * blocked.  Thus, no one else will be accessing the p_mapping list
6802 	 * while we suspend and reload the locked mapping below.
6803 	 */
6804 	tpp = targ;
6805 	rpp = repl;
6806 	sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
6807 
6808 	kpreempt_disable();
6809 
6810 	/*
6811 	 * We raise our PIL to 13 so that we don't get captured by
6812 	 * another CPU or pinned by an interrupt thread.  We can't go to
6813 	 * PIL 14 since the nexus driver(s) may need to interrupt at
6814 	 * that level in the case of IOMMU pseudo mappings.
6815 	 */
6816 	cpuset = cpu_ready_set;
6817 	CPUSET_DEL(cpuset, CPU->cpu_id);
6818 	if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
6819 		old_pil = splr(XCALL_PIL);
6820 	} else {
6821 		old_pil = -1;
6822 		xc_attention(cpuset);
6823 	}
6824 	ASSERT(getpil() == XCALL_PIL);
6825 
6826 	/*
6827 	 * Now do suspend callbacks. In the case of an IOMMU mapping
6828 	 * this will suspend all DMA activity to the page while it is
6829 	 * being relocated. Since we are well above LOCK_LEVEL and CPUs
6830 	 * may be captured at this point we should have acquired any needed
6831 	 * locks in the presuspend callback.
6832 	 */
6833 	ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
6834 	if (ret != 0) {
6835 		repl = targ;
6836 		goto suspend_fail;
6837 	}
6838 
6839 	/*
6840 	 * Raise the PIL yet again, this time to block all high-level
6841 	 * interrupts on this CPU. This is necessary to prevent an
6842 	 * interrupt routine from pinning the thread which holds the
6843 	 * mapping suspended and then touching the suspended page.
6844 	 *
6845 	 * Once the page is suspended we also need to be careful to
6846 	 * avoid calling any functions which touch any seg_kmem memory
6847 	 * since that memory may be backed by the very page we are
6848 	 * relocating in here!
6849 	 */
6850 	hat_pagesuspend(targ);
6851 
6852 	/*
6853 	 * Now that we are confident everybody has stopped using this page,
6854 	 * copy the page contents.  Note we use a physical copy to prevent
6855 	 * locking issues and to avoid fpRAS because we can't handle it in
6856 	 * this context.
6857 	 */
6858 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6859 #ifdef VAC
6860 		/*
6861 		 * If the replacement has a different vcolor than
6862 		 * the one being replacd, we need to handle VAC
6863 		 * consistency for it just as we were setting up
6864 		 * a new mapping to it.
6865 		 */
6866 		if ((PP_GET_VCOLOR(rpp) != NO_VCOLOR) &&
6867 		    (tpp->p_vcolor != rpp->p_vcolor) &&
6868 		    !CacheColor_IsFlushed(cflags, PP_GET_VCOLOR(rpp))) {
6869 			CacheColor_SetFlushed(cflags, PP_GET_VCOLOR(rpp));
6870 			sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
6871 			    rpp->p_pagenum);
6872 		}
6873 #endif
6874 		/*
6875 		 * Copy the contents of the page.
6876 		 */
6877 		ppcopy_kernel(tpp, rpp);
6878 	}
6879 
6880 	tpp = targ;
6881 	rpp = repl;
6882 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6883 		/*
6884 		 * Copy attributes.  VAC consistency was handled above,
6885 		 * if required.
6886 		 */
6887 		rpp->p_nrm = tpp->p_nrm;
6888 		tpp->p_nrm = 0;
6889 		rpp->p_index = tpp->p_index;
6890 		tpp->p_index = 0;
6891 #ifdef VAC
6892 		rpp->p_vcolor = tpp->p_vcolor;
6893 #endif
6894 	}
6895 
6896 	/*
6897 	 * First, unsuspend the page, if we set the suspend bit, and transfer
6898 	 * the mapping list from the target page to the replacement page.
6899 	 * Next process postcallbacks; since pa_hment's are linked only to the
6900 	 * p_mapping list of root page, we don't iterate over the constituent
6901 	 * pages.
6902 	 */
6903 	hat_pagereload(targ, repl);
6904 
6905 suspend_fail:
6906 	hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
6907 
6908 	/*
6909 	 * Now lower our PIL and release any captured CPUs since we
6910 	 * are out of the "danger zone".  After this it will again be
6911 	 * safe to acquire adaptive mutex locks, or to drop them...
6912 	 */
6913 	if (old_pil != -1) {
6914 		splx(old_pil);
6915 	} else {
6916 		xc_dismissed(cpuset);
6917 	}
6918 
6919 	kpreempt_enable();
6920 
6921 	sfmmu_mlist_reloc_exit(low, high);
6922 
6923 	/*
6924 	 * Postsuspend callbacks should drop any locks held across
6925 	 * the suspend callbacks.  As before, we don't hold the mapping
6926 	 * list lock at this point.. our assumption is that the mapping
6927 	 * list still can't change due to our holding SE_EXCL lock and
6928 	 * there being no unlocked mappings left. Hence the restriction
6929 	 * on calling context to hat_delete_callback()
6930 	 */
6931 	hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
6932 	if (ret != 0) {
6933 		/*
6934 		 * The second presuspend call failed: we got here through
6935 		 * the suspend_fail label above.
6936 		 */
6937 		ASSERT(ret != EIO);
6938 		PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
6939 		kreloc_thread = NULL;
6940 		mutex_exit(&kpr_mutex);
6941 		return (EAGAIN);
6942 	}
6943 
6944 	/*
6945 	 * Now that we're out of the performance critical section we can
6946 	 * take care of updating the hash table, since we still
6947 	 * hold all the pages locked SE_EXCL at this point we
6948 	 * needn't worry about things changing out from under us.
6949 	 */
6950 	tpp = targ;
6951 	rpp = repl;
6952 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6953 
6954 		/*
6955 		 * replace targ with replacement in page_hash table
6956 		 */
6957 		targ = tpp;
6958 		page_relocate_hash(rpp, targ);
6959 
6960 		/*
6961 		 * concatenate target; caller of platform_page_relocate()
6962 		 * expects target to be concatenated after returning.
6963 		 */
6964 		ASSERT(targ->p_next == targ);
6965 		ASSERT(targ->p_prev == targ);
6966 		page_list_concat(&pl, &targ);
6967 	}
6968 
6969 	ASSERT(*target == pl);
6970 	*nrelocp = npages;
6971 	PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
6972 	kreloc_thread = NULL;
6973 	mutex_exit(&kpr_mutex);
6974 	return (0);
6975 }
6976 
6977 /*
6978  * Called when stray pa_hments are found attached to a page which is
6979  * being freed.  Notify the subsystem which attached the pa_hment of
6980  * the error if it registered a suitable handler, else panic.
6981  */
6982 static void
6983 sfmmu_pahment_leaked(struct pa_hment *pahmep)
6984 {
6985 	id_t cb_id = pahmep->cb_id;
6986 
6987 	ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
6988 	if (sfmmu_cb_table[cb_id].errhandler != NULL) {
6989 		if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
6990 		    HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
6991 			return;		/* non-fatal */
6992 	}
6993 	panic("pa_hment leaked: 0x%p", (void *)pahmep);
6994 }
6995 
6996 /*
6997  * Remove all mappings to page 'pp'.
6998  */
6999 int
7000 hat_pageunload(struct page *pp, uint_t forceflag)
7001 {
7002 	struct page *origpp = pp;
7003 	struct sf_hment *sfhme, *tmphme;
7004 	struct hme_blk *hmeblkp;
7005 	kmutex_t *pml;
7006 #ifdef VAC
7007 	kmutex_t *pmtx;
7008 #endif
7009 	cpuset_t cpuset, tset;
7010 	int index, cons;
7011 	int xhme_blks;
7012 	int pa_hments;
7013 
7014 	ASSERT(PAGE_EXCL(pp));
7015 
7016 retry_xhat:
7017 	tmphme = NULL;
7018 	xhme_blks = 0;
7019 	pa_hments = 0;
7020 	CPUSET_ZERO(cpuset);
7021 
7022 	pml = sfmmu_mlist_enter(pp);
7023 
7024 #ifdef VAC
7025 	if (pp->p_kpmref)
7026 		sfmmu_kpm_pageunload(pp);
7027 	ASSERT(!PP_ISMAPPED_KPM(pp));
7028 #endif
7029 
7030 	index = PP_MAPINDEX(pp);
7031 	cons = TTE8K;
7032 retry:
7033 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7034 		tmphme = sfhme->hme_next;
7035 
7036 		if (IS_PAHME(sfhme)) {
7037 			ASSERT(sfhme->hme_data != NULL);
7038 			pa_hments++;
7039 			continue;
7040 		}
7041 
7042 		hmeblkp = sfmmu_hmetohblk(sfhme);
7043 		if (hmeblkp->hblk_xhat_bit) {
7044 			struct xhat_hme_blk *xblk =
7045 			    (struct xhat_hme_blk *)hmeblkp;
7046 
7047 			(void) XHAT_PAGEUNLOAD(xblk->xhat_hme_blk_hat,
7048 			    pp, forceflag, XBLK2PROVBLK(xblk));
7049 
7050 			xhme_blks = 1;
7051 			continue;
7052 		}
7053 
7054 		/*
7055 		 * If there are kernel mappings don't unload them, they will
7056 		 * be suspended.
7057 		 */
7058 		if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
7059 		    hmeblkp->hblk_tag.htag_id == ksfmmup)
7060 			continue;
7061 
7062 		tset = sfmmu_pageunload(pp, sfhme, cons);
7063 		CPUSET_OR(cpuset, tset);
7064 	}
7065 
7066 	while (index != 0) {
7067 		index = index >> 1;
7068 		if (index != 0)
7069 			cons++;
7070 		if (index & 0x1) {
7071 			/* Go to leading page */
7072 			pp = PP_GROUPLEADER(pp, cons);
7073 			ASSERT(sfmmu_mlist_held(pp));
7074 			goto retry;
7075 		}
7076 	}
7077 
7078 	/*
7079 	 * cpuset may be empty if the page was only mapped by segkpm,
7080 	 * in which case we won't actually cross-trap.
7081 	 */
7082 	xt_sync(cpuset);
7083 
7084 	/*
7085 	 * The page should have no mappings at this point, unless
7086 	 * we were called from hat_page_relocate() in which case we
7087 	 * leave the locked mappings which will be suspended later.
7088 	 */
7089 	ASSERT(!PP_ISMAPPED(origpp) || xhme_blks || pa_hments ||
7090 	    (forceflag == SFMMU_KERNEL_RELOC));
7091 
7092 #ifdef VAC
7093 	if (PP_ISTNC(pp)) {
7094 		if (cons == TTE8K) {
7095 			pmtx = sfmmu_page_enter(pp);
7096 			PP_CLRTNC(pp);
7097 			sfmmu_page_exit(pmtx);
7098 		} else {
7099 			conv_tnc(pp, cons);
7100 		}
7101 	}
7102 #endif	/* VAC */
7103 
7104 	if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
7105 		/*
7106 		 * Unlink any pa_hments and free them, calling back
7107 		 * the responsible subsystem to notify it of the error.
7108 		 * This can occur in situations such as drivers leaking
7109 		 * DMA handles: naughty, but common enough that we'd like
7110 		 * to keep the system running rather than bringing it
7111 		 * down with an obscure error like "pa_hment leaked"
7112 		 * which doesn't aid the user in debugging their driver.
7113 		 */
7114 		for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7115 			tmphme = sfhme->hme_next;
7116 			if (IS_PAHME(sfhme)) {
7117 				struct pa_hment *pahmep = sfhme->hme_data;
7118 				sfmmu_pahment_leaked(pahmep);
7119 				HME_SUB(sfhme, pp);
7120 				kmem_cache_free(pa_hment_cache, pahmep);
7121 			}
7122 		}
7123 
7124 		ASSERT(!PP_ISMAPPED(origpp) || xhme_blks);
7125 	}
7126 
7127 	sfmmu_mlist_exit(pml);
7128 
7129 	/*
7130 	 * XHAT may not have finished unloading pages
7131 	 * because some other thread was waiting for
7132 	 * mlist lock and XHAT_PAGEUNLOAD let it do
7133 	 * the job.
7134 	 */
7135 	if (xhme_blks) {
7136 		pp = origpp;
7137 		goto retry_xhat;
7138 	}
7139 
7140 	return (0);
7141 }
7142 
7143 cpuset_t
7144 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
7145 {
7146 	struct hme_blk *hmeblkp;
7147 	sfmmu_t *sfmmup;
7148 	tte_t tte, ttemod;
7149 #ifdef DEBUG
7150 	tte_t orig_old;
7151 #endif /* DEBUG */
7152 	caddr_t addr;
7153 	int ttesz;
7154 	int ret;
7155 	cpuset_t cpuset;
7156 
7157 	ASSERT(pp != NULL);
7158 	ASSERT(sfmmu_mlist_held(pp));
7159 	ASSERT(!PP_ISKAS(pp));
7160 
7161 	CPUSET_ZERO(cpuset);
7162 
7163 	hmeblkp = sfmmu_hmetohblk(sfhme);
7164 
7165 readtte:
7166 	sfmmu_copytte(&sfhme->hme_tte, &tte);
7167 	if (TTE_IS_VALID(&tte)) {
7168 		sfmmup = hblktosfmmu(hmeblkp);
7169 		ttesz = get_hblk_ttesz(hmeblkp);
7170 		/*
7171 		 * Only unload mappings of 'cons' size.
7172 		 */
7173 		if (ttesz != cons)
7174 			return (cpuset);
7175 
7176 		/*
7177 		 * Note that we have p_mapping lock, but no hash lock here.
7178 		 * hblk_unload() has to have both hash lock AND p_mapping
7179 		 * lock before it tries to modify tte. So, the tte could
7180 		 * not become invalid in the sfmmu_modifytte_try() below.
7181 		 */
7182 		ttemod = tte;
7183 #ifdef DEBUG
7184 		orig_old = tte;
7185 #endif /* DEBUG */
7186 
7187 		TTE_SET_INVALID(&ttemod);
7188 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7189 		if (ret < 0) {
7190 #ifdef DEBUG
7191 			/* only R/M bits can change. */
7192 			chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
7193 #endif /* DEBUG */
7194 			goto readtte;
7195 		}
7196 
7197 		if (ret == 0) {
7198 			panic("pageunload: cas failed?");
7199 		}
7200 
7201 		addr = tte_to_vaddr(hmeblkp, tte);
7202 
7203 		if (hmeblkp->hblk_shared) {
7204 			sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7205 			uint_t rid = hmeblkp->hblk_tag.htag_rid;
7206 			sf_region_t *rgnp;
7207 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7208 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7209 			ASSERT(srdp != NULL);
7210 			rgnp = srdp->srd_hmergnp[rid];
7211 			SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
7212 			cpuset = sfmmu_rgntlb_demap(addr, rgnp, hmeblkp, 1);
7213 			sfmmu_ttesync(NULL, addr, &tte, pp);
7214 			ASSERT(rgnp->rgn_ttecnt[ttesz] > 0);
7215 			atomic_add_long(&rgnp->rgn_ttecnt[ttesz], -1);
7216 		} else {
7217 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
7218 			atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -1);
7219 
7220 			/*
7221 			 * We need to flush the page from the virtual cache
7222 			 * in order to prevent a virtual cache alias
7223 			 * inconsistency. The particular scenario we need
7224 			 * to worry about is:
7225 			 * Given:  va1 and va2 are two virtual address that
7226 			 * alias and will map the same physical address.
7227 			 * 1.   mapping exists from va1 to pa and data has
7228 			 *	been read into the cache.
7229 			 * 2.   unload va1.
7230 			 * 3.   load va2 and modify data using va2.
7231 			 * 4    unload va2.
7232 			 * 5.   load va1 and reference data.  Unless we flush
7233 			 *	the data cache when we unload we will get
7234 			 *	stale data.
7235 			 * This scenario is taken care of by using virtual
7236 			 * page coloring.
7237 			 */
7238 			if (sfmmup->sfmmu_ismhat) {
7239 				/*
7240 				 * Flush TSBs, TLBs and caches
7241 				 * of every process
7242 				 * sharing this ism segment.
7243 				 */
7244 				sfmmu_hat_lock_all();
7245 				mutex_enter(&ism_mlist_lock);
7246 				kpreempt_disable();
7247 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
7248 				    pp->p_pagenum, CACHE_NO_FLUSH);
7249 				kpreempt_enable();
7250 				mutex_exit(&ism_mlist_lock);
7251 				sfmmu_hat_unlock_all();
7252 				cpuset = cpu_ready_set;
7253 			} else {
7254 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7255 				cpuset = sfmmup->sfmmu_cpusran;
7256 			}
7257 		}
7258 
7259 		/*
7260 		 * Hme_sub has to run after ttesync() and a_rss update.
7261 		 * See hblk_unload().
7262 		 */
7263 		HME_SUB(sfhme, pp);
7264 		membar_stst();
7265 
7266 		/*
7267 		 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
7268 		 * since pteload may have done a HME_ADD() right after
7269 		 * we did the HME_SUB() above. Hmecnt is now maintained
7270 		 * by cas only. no lock guranteed its value. The only
7271 		 * gurantee we have is the hmecnt should not be less than
7272 		 * what it should be so the hblk will not be taken away.
7273 		 * It's also important that we decremented the hmecnt after
7274 		 * we are done with hmeblkp so that this hmeblk won't be
7275 		 * stolen.
7276 		 */
7277 		ASSERT(hmeblkp->hblk_hmecnt > 0);
7278 		ASSERT(hmeblkp->hblk_vcnt > 0);
7279 		atomic_add_16(&hmeblkp->hblk_vcnt, -1);
7280 		atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
7281 		/*
7282 		 * This is bug 4063182.
7283 		 * XXX: fixme
7284 		 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
7285 		 *	!hmeblkp->hblk_lckcnt);
7286 		 */
7287 	} else {
7288 		panic("invalid tte? pp %p &tte %p",
7289 		    (void *)pp, (void *)&tte);
7290 	}
7291 
7292 	return (cpuset);
7293 }
7294 
7295 /*
7296  * While relocating a kernel page, this function will move the mappings
7297  * from tpp to dpp and modify any associated data with these mappings.
7298  * It also unsuspends the suspended kernel mapping.
7299  */
7300 static void
7301 hat_pagereload(struct page *tpp, struct page *dpp)
7302 {
7303 	struct sf_hment *sfhme;
7304 	tte_t tte, ttemod;
7305 	int index, cons;
7306 
7307 	ASSERT(getpil() == PIL_MAX);
7308 	ASSERT(sfmmu_mlist_held(tpp));
7309 	ASSERT(sfmmu_mlist_held(dpp));
7310 
7311 	index = PP_MAPINDEX(tpp);
7312 	cons = TTE8K;
7313 
7314 	/* Update real mappings to the page */
7315 retry:
7316 	for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
7317 		if (IS_PAHME(sfhme))
7318 			continue;
7319 		sfmmu_copytte(&sfhme->hme_tte, &tte);
7320 		ttemod = tte;
7321 
7322 		/*
7323 		 * replace old pfn with new pfn in TTE
7324 		 */
7325 		PFN_TO_TTE(ttemod, dpp->p_pagenum);
7326 
7327 		/*
7328 		 * clear suspend bit
7329 		 */
7330 		ASSERT(TTE_IS_SUSPEND(&ttemod));
7331 		TTE_CLR_SUSPEND(&ttemod);
7332 
7333 		if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
7334 			panic("hat_pagereload(): sfmmu_modifytte_try() failed");
7335 
7336 		/*
7337 		 * set hme_page point to new page
7338 		 */
7339 		sfhme->hme_page = dpp;
7340 	}
7341 
7342 	/*
7343 	 * move p_mapping list from old page to new page
7344 	 */
7345 	dpp->p_mapping = tpp->p_mapping;
7346 	tpp->p_mapping = NULL;
7347 	dpp->p_share = tpp->p_share;
7348 	tpp->p_share = 0;
7349 
7350 	while (index != 0) {
7351 		index = index >> 1;
7352 		if (index != 0)
7353 			cons++;
7354 		if (index & 0x1) {
7355 			tpp = PP_GROUPLEADER(tpp, cons);
7356 			dpp = PP_GROUPLEADER(dpp, cons);
7357 			goto retry;
7358 		}
7359 	}
7360 
7361 	curthread->t_flag &= ~T_DONTDTRACE;
7362 	mutex_exit(&kpr_suspendlock);
7363 }
7364 
7365 uint_t
7366 hat_pagesync(struct page *pp, uint_t clearflag)
7367 {
7368 	struct sf_hment *sfhme, *tmphme = NULL;
7369 	struct hme_blk *hmeblkp;
7370 	kmutex_t *pml;
7371 	cpuset_t cpuset, tset;
7372 	int	index, cons;
7373 	extern	ulong_t po_share;
7374 	page_t	*save_pp = pp;
7375 	int	stop_on_sh = 0;
7376 	uint_t	shcnt;
7377 
7378 	CPUSET_ZERO(cpuset);
7379 
7380 	if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
7381 		return (PP_GENERIC_ATTR(pp));
7382 	}
7383 
7384 	if ((clearflag & HAT_SYNC_ZERORM) == 0) {
7385 		if ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(pp)) {
7386 			return (PP_GENERIC_ATTR(pp));
7387 		}
7388 		if ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(pp)) {
7389 			return (PP_GENERIC_ATTR(pp));
7390 		}
7391 		if (clearflag & HAT_SYNC_STOPON_SHARED) {
7392 			if (pp->p_share > po_share) {
7393 				hat_page_setattr(pp, P_REF);
7394 				return (PP_GENERIC_ATTR(pp));
7395 			}
7396 			stop_on_sh = 1;
7397 			shcnt = 0;
7398 		}
7399 	}
7400 
7401 	clearflag &= ~HAT_SYNC_STOPON_SHARED;
7402 	pml = sfmmu_mlist_enter(pp);
7403 	index = PP_MAPINDEX(pp);
7404 	cons = TTE8K;
7405 retry:
7406 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7407 		/*
7408 		 * We need to save the next hment on the list since
7409 		 * it is possible for pagesync to remove an invalid hment
7410 		 * from the list.
7411 		 */
7412 		tmphme = sfhme->hme_next;
7413 		if (IS_PAHME(sfhme))
7414 			continue;
7415 		/*
7416 		 * If we are looking for large mappings and this hme doesn't
7417 		 * reach the range we are seeking, just ignore it.
7418 		 */
7419 		hmeblkp = sfmmu_hmetohblk(sfhme);
7420 		if (hmeblkp->hblk_xhat_bit)
7421 			continue;
7422 
7423 		if (hme_size(sfhme) < cons)
7424 			continue;
7425 
7426 		if (stop_on_sh) {
7427 			if (hmeblkp->hblk_shared) {
7428 				sf_srd_t *srdp = hblktosrd(hmeblkp);
7429 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
7430 				sf_region_t *rgnp;
7431 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7432 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7433 				ASSERT(srdp != NULL);
7434 				rgnp = srdp->srd_hmergnp[rid];
7435 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
7436 				    rgnp, rid);
7437 				shcnt += rgnp->rgn_refcnt;
7438 			} else {
7439 				shcnt++;
7440 			}
7441 			if (shcnt > po_share) {
7442 				/*
7443 				 * tell the pager to spare the page this time
7444 				 * around.
7445 				 */
7446 				hat_page_setattr(save_pp, P_REF);
7447 				index = 0;
7448 				break;
7449 			}
7450 		}
7451 		tset = sfmmu_pagesync(pp, sfhme,
7452 		    clearflag & ~HAT_SYNC_STOPON_RM);
7453 		CPUSET_OR(cpuset, tset);
7454 
7455 		/*
7456 		 * If clearflag is HAT_SYNC_DONTZERO, break out as soon
7457 		 * as the "ref" or "mod" is set or share cnt exceeds po_share.
7458 		 */
7459 		if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
7460 		    (((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
7461 		    ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)))) {
7462 			index = 0;
7463 			break;
7464 		}
7465 	}
7466 
7467 	while (index) {
7468 		index = index >> 1;
7469 		cons++;
7470 		if (index & 0x1) {
7471 			/* Go to leading page */
7472 			pp = PP_GROUPLEADER(pp, cons);
7473 			goto retry;
7474 		}
7475 	}
7476 
7477 	xt_sync(cpuset);
7478 	sfmmu_mlist_exit(pml);
7479 	return (PP_GENERIC_ATTR(save_pp));
7480 }
7481 
7482 /*
7483  * Get all the hardware dependent attributes for a page struct
7484  */
7485 static cpuset_t
7486 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
7487 	uint_t clearflag)
7488 {
7489 	caddr_t addr;
7490 	tte_t tte, ttemod;
7491 	struct hme_blk *hmeblkp;
7492 	int ret;
7493 	sfmmu_t *sfmmup;
7494 	cpuset_t cpuset;
7495 
7496 	ASSERT(pp != NULL);
7497 	ASSERT(sfmmu_mlist_held(pp));
7498 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
7499 	    (clearflag == HAT_SYNC_ZERORM));
7500 
7501 	SFMMU_STAT(sf_pagesync);
7502 
7503 	CPUSET_ZERO(cpuset);
7504 
7505 sfmmu_pagesync_retry:
7506 
7507 	sfmmu_copytte(&sfhme->hme_tte, &tte);
7508 	if (TTE_IS_VALID(&tte)) {
7509 		hmeblkp = sfmmu_hmetohblk(sfhme);
7510 		sfmmup = hblktosfmmu(hmeblkp);
7511 		addr = tte_to_vaddr(hmeblkp, tte);
7512 		if (clearflag == HAT_SYNC_ZERORM) {
7513 			ttemod = tte;
7514 			TTE_CLR_RM(&ttemod);
7515 			ret = sfmmu_modifytte_try(&tte, &ttemod,
7516 			    &sfhme->hme_tte);
7517 			if (ret < 0) {
7518 				/*
7519 				 * cas failed and the new value is not what
7520 				 * we want.
7521 				 */
7522 				goto sfmmu_pagesync_retry;
7523 			}
7524 
7525 			if (ret > 0) {
7526 				/* we win the cas */
7527 				if (hmeblkp->hblk_shared) {
7528 					sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7529 					uint_t rid =
7530 					    hmeblkp->hblk_tag.htag_rid;
7531 					sf_region_t *rgnp;
7532 					ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7533 					ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7534 					ASSERT(srdp != NULL);
7535 					rgnp = srdp->srd_hmergnp[rid];
7536 					SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7537 					    srdp, rgnp, rid);
7538 					cpuset = sfmmu_rgntlb_demap(addr,
7539 					    rgnp, hmeblkp, 1);
7540 				} else {
7541 					sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
7542 					    0, 0);
7543 					cpuset = sfmmup->sfmmu_cpusran;
7544 				}
7545 			}
7546 		}
7547 		sfmmu_ttesync(hmeblkp->hblk_shared ? NULL : sfmmup, addr,
7548 		    &tte, pp);
7549 	}
7550 	return (cpuset);
7551 }
7552 
7553 /*
7554  * Remove write permission from a mappings to a page, so that
7555  * we can detect the next modification of it. This requires modifying
7556  * the TTE then invalidating (demap) any TLB entry using that TTE.
7557  * This code is similar to sfmmu_pagesync().
7558  */
7559 static cpuset_t
7560 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
7561 {
7562 	caddr_t addr;
7563 	tte_t tte;
7564 	tte_t ttemod;
7565 	struct hme_blk *hmeblkp;
7566 	int ret;
7567 	sfmmu_t *sfmmup;
7568 	cpuset_t cpuset;
7569 
7570 	ASSERT(pp != NULL);
7571 	ASSERT(sfmmu_mlist_held(pp));
7572 
7573 	CPUSET_ZERO(cpuset);
7574 	SFMMU_STAT(sf_clrwrt);
7575 
7576 retry:
7577 
7578 	sfmmu_copytte(&sfhme->hme_tte, &tte);
7579 	if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
7580 		hmeblkp = sfmmu_hmetohblk(sfhme);
7581 
7582 		/*
7583 		 * xhat mappings should never be to a VMODSORT page.
7584 		 */
7585 		ASSERT(hmeblkp->hblk_xhat_bit == 0);
7586 
7587 		sfmmup = hblktosfmmu(hmeblkp);
7588 		addr = tte_to_vaddr(hmeblkp, tte);
7589 
7590 		ttemod = tte;
7591 		TTE_CLR_WRT(&ttemod);
7592 		TTE_CLR_MOD(&ttemod);
7593 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7594 
7595 		/*
7596 		 * if cas failed and the new value is not what
7597 		 * we want retry
7598 		 */
7599 		if (ret < 0)
7600 			goto retry;
7601 
7602 		/* we win the cas */
7603 		if (ret > 0) {
7604 			if (hmeblkp->hblk_shared) {
7605 				sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7606 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
7607 				sf_region_t *rgnp;
7608 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7609 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7610 				ASSERT(srdp != NULL);
7611 				rgnp = srdp->srd_hmergnp[rid];
7612 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7613 				    srdp, rgnp, rid);
7614 				cpuset = sfmmu_rgntlb_demap(addr,
7615 				    rgnp, hmeblkp, 1);
7616 			} else {
7617 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7618 				cpuset = sfmmup->sfmmu_cpusran;
7619 			}
7620 		}
7621 	}
7622 
7623 	return (cpuset);
7624 }
7625 
7626 /*
7627  * Walk all mappings of a page, removing write permission and clearing the
7628  * ref/mod bits. This code is similar to hat_pagesync()
7629  */
7630 static void
7631 hat_page_clrwrt(page_t *pp)
7632 {
7633 	struct sf_hment *sfhme;
7634 	struct sf_hment *tmphme = NULL;
7635 	kmutex_t *pml;
7636 	cpuset_t cpuset;
7637 	cpuset_t tset;
7638 	int	index;
7639 	int	 cons;
7640 
7641 	CPUSET_ZERO(cpuset);
7642 
7643 	pml = sfmmu_mlist_enter(pp);
7644 	index = PP_MAPINDEX(pp);
7645 	cons = TTE8K;
7646 retry:
7647 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7648 		tmphme = sfhme->hme_next;
7649 
7650 		/*
7651 		 * If we are looking for large mappings and this hme doesn't
7652 		 * reach the range we are seeking, just ignore its.
7653 		 */
7654 
7655 		if (hme_size(sfhme) < cons)
7656 			continue;
7657 
7658 		tset = sfmmu_pageclrwrt(pp, sfhme);
7659 		CPUSET_OR(cpuset, tset);
7660 	}
7661 
7662 	while (index) {
7663 		index = index >> 1;
7664 		cons++;
7665 		if (index & 0x1) {
7666 			/* Go to leading page */
7667 			pp = PP_GROUPLEADER(pp, cons);
7668 			goto retry;
7669 		}
7670 	}
7671 
7672 	xt_sync(cpuset);
7673 	sfmmu_mlist_exit(pml);
7674 }
7675 
7676 /*
7677  * Set the given REF/MOD/RO bits for the given page.
7678  * For a vnode with a sorted v_pages list, we need to change
7679  * the attributes and the v_pages list together under page_vnode_mutex.
7680  */
7681 void
7682 hat_page_setattr(page_t *pp, uint_t flag)
7683 {
7684 	vnode_t		*vp = pp->p_vnode;
7685 	page_t		**listp;
7686 	kmutex_t	*pmtx;
7687 	kmutex_t	*vphm = NULL;
7688 	int		noshuffle;
7689 
7690 	noshuffle = flag & P_NSH;
7691 	flag &= ~P_NSH;
7692 
7693 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7694 
7695 	/*
7696 	 * nothing to do if attribute already set
7697 	 */
7698 	if ((pp->p_nrm & flag) == flag)
7699 		return;
7700 
7701 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
7702 	    !noshuffle) {
7703 		vphm = page_vnode_mutex(vp);
7704 		mutex_enter(vphm);
7705 	}
7706 
7707 	pmtx = sfmmu_page_enter(pp);
7708 	pp->p_nrm |= flag;
7709 	sfmmu_page_exit(pmtx);
7710 
7711 	if (vphm != NULL) {
7712 		/*
7713 		 * Some File Systems examine v_pages for NULL w/o
7714 		 * grabbing the vphm mutex. Must not let it become NULL when
7715 		 * pp is the only page on the list.
7716 		 */
7717 		if (pp->p_vpnext != pp) {
7718 			page_vpsub(&vp->v_pages, pp);
7719 			if (vp->v_pages != NULL)
7720 				listp = &vp->v_pages->p_vpprev->p_vpnext;
7721 			else
7722 				listp = &vp->v_pages;
7723 			page_vpadd(listp, pp);
7724 		}
7725 		mutex_exit(vphm);
7726 	}
7727 }
7728 
7729 void
7730 hat_page_clrattr(page_t *pp, uint_t flag)
7731 {
7732 	vnode_t		*vp = pp->p_vnode;
7733 	kmutex_t	*pmtx;
7734 
7735 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7736 
7737 	pmtx = sfmmu_page_enter(pp);
7738 
7739 	/*
7740 	 * Caller is expected to hold page's io lock for VMODSORT to work
7741 	 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
7742 	 * bit is cleared.
7743 	 * We don't have assert to avoid tripping some existing third party
7744 	 * code. The dirty page is moved back to top of the v_page list
7745 	 * after IO is done in pvn_write_done().
7746 	 */
7747 	pp->p_nrm &= ~flag;
7748 	sfmmu_page_exit(pmtx);
7749 
7750 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
7751 
7752 		/*
7753 		 * VMODSORT works by removing write permissions and getting
7754 		 * a fault when a page is made dirty. At this point
7755 		 * we need to remove write permission from all mappings
7756 		 * to this page.
7757 		 */
7758 		hat_page_clrwrt(pp);
7759 	}
7760 }
7761 
7762 uint_t
7763 hat_page_getattr(page_t *pp, uint_t flag)
7764 {
7765 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7766 	return ((uint_t)(pp->p_nrm & flag));
7767 }
7768 
7769 /*
7770  * DEBUG kernels: verify that a kernel va<->pa translation
7771  * is safe by checking the underlying page_t is in a page
7772  * relocation-safe state.
7773  */
7774 #ifdef	DEBUG
7775 void
7776 sfmmu_check_kpfn(pfn_t pfn)
7777 {
7778 	page_t *pp;
7779 	int index, cons;
7780 
7781 	if (hat_check_vtop == 0)
7782 		return;
7783 
7784 	if (hat_kpr_enabled == 0 || kvseg.s_base == NULL || panicstr)
7785 		return;
7786 
7787 	pp = page_numtopp_nolock(pfn);
7788 	if (!pp)
7789 		return;
7790 
7791 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7792 		return;
7793 
7794 	/*
7795 	 * Handed a large kernel page, we dig up the root page since we
7796 	 * know the root page might have the lock also.
7797 	 */
7798 	if (pp->p_szc != 0) {
7799 		index = PP_MAPINDEX(pp);
7800 		cons = TTE8K;
7801 again:
7802 		while (index != 0) {
7803 			index >>= 1;
7804 			if (index != 0)
7805 				cons++;
7806 			if (index & 0x1) {
7807 				pp = PP_GROUPLEADER(pp, cons);
7808 				goto again;
7809 			}
7810 		}
7811 	}
7812 
7813 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7814 		return;
7815 
7816 	/*
7817 	 * Pages need to be locked or allocated "permanent" (either from
7818 	 * static_arena arena or explicitly setting PG_NORELOC when calling
7819 	 * page_create_va()) for VA->PA translations to be valid.
7820 	 */
7821 	if (!PP_ISNORELOC(pp))
7822 		panic("Illegal VA->PA translation, pp 0x%p not permanent",
7823 		    (void *)pp);
7824 	else
7825 		panic("Illegal VA->PA translation, pp 0x%p not locked",
7826 		    (void *)pp);
7827 }
7828 #endif	/* DEBUG */
7829 
7830 /*
7831  * Returns a page frame number for a given virtual address.
7832  * Returns PFN_INVALID to indicate an invalid mapping
7833  */
7834 pfn_t
7835 hat_getpfnum(struct hat *hat, caddr_t addr)
7836 {
7837 	pfn_t pfn;
7838 	tte_t tte;
7839 
7840 	/*
7841 	 * We would like to
7842 	 * ASSERT(AS_LOCK_HELD(as, &as->a_lock));
7843 	 * but we can't because the iommu driver will call this
7844 	 * routine at interrupt time and it can't grab the as lock
7845 	 * or it will deadlock: A thread could have the as lock
7846 	 * and be waiting for io.  The io can't complete
7847 	 * because the interrupt thread is blocked trying to grab
7848 	 * the as lock.
7849 	 */
7850 
7851 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7852 
7853 	if (hat == ksfmmup) {
7854 		if (IS_KMEM_VA_LARGEPAGE(addr)) {
7855 			ASSERT(segkmem_lpszc > 0);
7856 			pfn = sfmmu_kvaszc2pfn(addr, segkmem_lpszc);
7857 			if (pfn != PFN_INVALID) {
7858 				sfmmu_check_kpfn(pfn);
7859 				return (pfn);
7860 			}
7861 		} else if (segkpm && IS_KPM_ADDR(addr)) {
7862 			return (sfmmu_kpm_vatopfn(addr));
7863 		}
7864 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7865 		    == PFN_SUSPENDED) {
7866 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7867 		}
7868 		sfmmu_check_kpfn(pfn);
7869 		return (pfn);
7870 	} else {
7871 		return (sfmmu_uvatopfn(addr, hat, NULL));
7872 	}
7873 }
7874 
7875 /*
7876  * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
7877  * Use hat_getpfnum(kas.a_hat, ...) instead.
7878  *
7879  * We'd like to return PFN_INVALID if the mappings have underlying page_t's
7880  * but can't right now due to the fact that some software has grown to use
7881  * this interface incorrectly. So for now when the interface is misused,
7882  * return a warning to the user that in the future it won't work in the
7883  * way they're abusing it, and carry on (after disabling page relocation).
7884  */
7885 pfn_t
7886 hat_getkpfnum(caddr_t addr)
7887 {
7888 	pfn_t pfn;
7889 	tte_t tte;
7890 	int badcaller = 0;
7891 	extern int segkmem_reloc;
7892 
7893 	if (segkpm && IS_KPM_ADDR(addr)) {
7894 		badcaller = 1;
7895 		pfn = sfmmu_kpm_vatopfn(addr);
7896 	} else {
7897 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7898 		    == PFN_SUSPENDED) {
7899 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7900 		}
7901 		badcaller = pf_is_memory(pfn);
7902 	}
7903 
7904 	if (badcaller) {
7905 		/*
7906 		 * We can't return PFN_INVALID or the caller may panic
7907 		 * or corrupt the system.  The only alternative is to
7908 		 * disable page relocation at this point for all kernel
7909 		 * memory.  This will impact any callers of page_relocate()
7910 		 * such as FMA or DR.
7911 		 *
7912 		 * RFE: Add junk here to spit out an ereport so the sysadmin
7913 		 * can be advised that he should upgrade his device driver
7914 		 * so that this doesn't happen.
7915 		 */
7916 		hat_getkpfnum_badcall(caller());
7917 		if (hat_kpr_enabled && segkmem_reloc) {
7918 			hat_kpr_enabled = 0;
7919 			segkmem_reloc = 0;
7920 			cmn_err(CE_WARN, "Kernel Page Relocation is DISABLED");
7921 		}
7922 	}
7923 	return (pfn);
7924 }
7925 
7926 /*
7927  * This routine will return both pfn and tte for the vaddr.
7928  */
7929 static pfn_t
7930 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup, tte_t *ttep)
7931 {
7932 	struct hmehash_bucket *hmebp;
7933 	hmeblk_tag hblktag;
7934 	int hmeshift, hashno = 1;
7935 	struct hme_blk *hmeblkp = NULL;
7936 	tte_t tte;
7937 
7938 	struct sf_hment *sfhmep;
7939 	pfn_t pfn;
7940 
7941 	/* support for ISM */
7942 	ism_map_t	*ism_map;
7943 	ism_blk_t	*ism_blkp;
7944 	int		i;
7945 	sfmmu_t *ism_hatid = NULL;
7946 	sfmmu_t *locked_hatid = NULL;
7947 	sfmmu_t	*sv_sfmmup = sfmmup;
7948 	caddr_t	sv_vaddr = vaddr;
7949 	sf_srd_t *srdp;
7950 
7951 	if (ttep == NULL) {
7952 		ttep = &tte;
7953 	} else {
7954 		ttep->ll = 0;
7955 	}
7956 
7957 	ASSERT(sfmmup != ksfmmup);
7958 	SFMMU_STAT(sf_user_vtop);
7959 	/*
7960 	 * Set ism_hatid if vaddr falls in a ISM segment.
7961 	 */
7962 	ism_blkp = sfmmup->sfmmu_iblk;
7963 	if (ism_blkp != NULL) {
7964 		sfmmu_ismhat_enter(sfmmup, 0);
7965 		locked_hatid = sfmmup;
7966 	}
7967 	while (ism_blkp != NULL && ism_hatid == NULL) {
7968 		ism_map = ism_blkp->iblk_maps;
7969 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
7970 			if (vaddr >= ism_start(ism_map[i]) &&
7971 			    vaddr < ism_end(ism_map[i])) {
7972 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
7973 				vaddr = (caddr_t)(vaddr -
7974 				    ism_start(ism_map[i]));
7975 				break;
7976 			}
7977 		}
7978 		ism_blkp = ism_blkp->iblk_next;
7979 	}
7980 	if (locked_hatid) {
7981 		sfmmu_ismhat_exit(locked_hatid, 0);
7982 	}
7983 
7984 	hblktag.htag_id = sfmmup;
7985 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
7986 	do {
7987 		hmeshift = HME_HASH_SHIFT(hashno);
7988 		hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
7989 		hblktag.htag_rehash = hashno;
7990 		hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
7991 
7992 		SFMMU_HASH_LOCK(hmebp);
7993 
7994 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
7995 		if (hmeblkp != NULL) {
7996 			ASSERT(!hmeblkp->hblk_shared);
7997 			HBLKTOHME(sfhmep, hmeblkp, vaddr);
7998 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
7999 			SFMMU_HASH_UNLOCK(hmebp);
8000 			if (TTE_IS_VALID(ttep)) {
8001 				pfn = TTE_TO_PFN(vaddr, ttep);
8002 				return (pfn);
8003 			}
8004 			break;
8005 		}
8006 		SFMMU_HASH_UNLOCK(hmebp);
8007 		hashno++;
8008 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
8009 
8010 	if (SF_HMERGNMAP_ISNULL(sv_sfmmup)) {
8011 		return (PFN_INVALID);
8012 	}
8013 	srdp = sv_sfmmup->sfmmu_srdp;
8014 	ASSERT(srdp != NULL);
8015 	ASSERT(srdp->srd_refcnt != 0);
8016 	hblktag.htag_id = srdp;
8017 	hashno = 1;
8018 	do {
8019 		hmeshift = HME_HASH_SHIFT(hashno);
8020 		hblktag.htag_bspage = HME_HASH_BSPAGE(sv_vaddr, hmeshift);
8021 		hblktag.htag_rehash = hashno;
8022 		hmebp = HME_HASH_FUNCTION(srdp, sv_vaddr, hmeshift);
8023 
8024 		SFMMU_HASH_LOCK(hmebp);
8025 		for (hmeblkp = hmebp->hmeblkp; hmeblkp != NULL;
8026 		    hmeblkp = hmeblkp->hblk_next) {
8027 			uint_t rid;
8028 			sf_region_t *rgnp;
8029 			caddr_t rsaddr;
8030 			caddr_t readdr;
8031 
8032 			if (!HTAGS_EQ_SHME(hmeblkp->hblk_tag, hblktag,
8033 			    sv_sfmmup->sfmmu_hmeregion_map)) {
8034 				continue;
8035 			}
8036 			ASSERT(hmeblkp->hblk_shared);
8037 			rid = hmeblkp->hblk_tag.htag_rid;
8038 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
8039 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
8040 			rgnp = srdp->srd_hmergnp[rid];
8041 			SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
8042 			HBLKTOHME(sfhmep, hmeblkp, sv_vaddr);
8043 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
8044 			rsaddr = rgnp->rgn_saddr;
8045 			readdr = rsaddr + rgnp->rgn_size;
8046 #ifdef DEBUG
8047 			if (TTE_IS_VALID(ttep) ||
8048 			    get_hblk_ttesz(hmeblkp) > TTE8K) {
8049 				caddr_t eva = tte_to_evaddr(hmeblkp, ttep);
8050 				ASSERT(eva > sv_vaddr);
8051 				ASSERT(sv_vaddr >= rsaddr);
8052 				ASSERT(sv_vaddr < readdr);
8053 				ASSERT(eva <= readdr);
8054 			}
8055 #endif /* DEBUG */
8056 			/*
8057 			 * Continue the search if we
8058 			 * found an invalid 8K tte outside of the area
8059 			 * covered by this hmeblk's region.
8060 			 */
8061 			if (TTE_IS_VALID(ttep)) {
8062 				SFMMU_HASH_UNLOCK(hmebp);
8063 				pfn = TTE_TO_PFN(sv_vaddr, ttep);
8064 				return (pfn);
8065 			} else if (get_hblk_ttesz(hmeblkp) > TTE8K ||
8066 			    (sv_vaddr >= rsaddr && sv_vaddr < readdr)) {
8067 				SFMMU_HASH_UNLOCK(hmebp);
8068 				pfn = PFN_INVALID;
8069 				return (pfn);
8070 			}
8071 		}
8072 		SFMMU_HASH_UNLOCK(hmebp);
8073 		hashno++;
8074 	} while (hashno <= mmu_hashcnt);
8075 	return (PFN_INVALID);
8076 }
8077 
8078 
8079 /*
8080  * For compatability with AT&T and later optimizations
8081  */
8082 /* ARGSUSED */
8083 void
8084 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
8085 {
8086 	ASSERT(hat != NULL);
8087 	ASSERT(hat->sfmmu_xhat_provider == NULL);
8088 }
8089 
8090 /*
8091  * Return the number of mappings to a particular page.  This number is an
8092  * approximation of the number of people sharing the page.
8093  *
8094  * shared hmeblks or ism hmeblks are counted as 1 mapping here.
8095  * hat_page_checkshare() can be used to compare threshold to share
8096  * count that reflects the number of region sharers albeit at higher cost.
8097  */
8098 ulong_t
8099 hat_page_getshare(page_t *pp)
8100 {
8101 	page_t *spp = pp;	/* start page */
8102 	kmutex_t *pml;
8103 	ulong_t	cnt;
8104 	int index, sz = TTE64K;
8105 
8106 	/*
8107 	 * We need to grab the mlist lock to make sure any outstanding
8108 	 * load/unloads complete.  Otherwise we could return zero
8109 	 * even though the unload(s) hasn't finished yet.
8110 	 */
8111 	pml = sfmmu_mlist_enter(spp);
8112 	cnt = spp->p_share;
8113 
8114 #ifdef VAC
8115 	if (kpm_enable)
8116 		cnt += spp->p_kpmref;
8117 #endif
8118 
8119 	/*
8120 	 * If we have any large mappings, we count the number of
8121 	 * mappings that this large page is part of.
8122 	 */
8123 	index = PP_MAPINDEX(spp);
8124 	index >>= 1;
8125 	while (index) {
8126 		pp = PP_GROUPLEADER(spp, sz);
8127 		if ((index & 0x1) && pp != spp) {
8128 			cnt += pp->p_share;
8129 			spp = pp;
8130 		}
8131 		index >>= 1;
8132 		sz++;
8133 	}
8134 	sfmmu_mlist_exit(pml);
8135 	return (cnt);
8136 }
8137 
8138 /*
8139  * Return 1 if the number of mappings exceeds sh_thresh. Return 0
8140  * otherwise. Count shared hmeblks by region's refcnt.
8141  */
8142 int
8143 hat_page_checkshare(page_t *pp, ulong_t sh_thresh)
8144 {
8145 	kmutex_t *pml;
8146 	ulong_t	cnt = 0;
8147 	int index, sz = TTE8K;
8148 	struct sf_hment *sfhme, *tmphme = NULL;
8149 	struct hme_blk *hmeblkp;
8150 
8151 	pml = sfmmu_mlist_enter(pp);
8152 
8153 	if (kpm_enable)
8154 		cnt = pp->p_kpmref;
8155 
8156 	if (pp->p_share + cnt > sh_thresh) {
8157 		sfmmu_mlist_exit(pml);
8158 		return (1);
8159 	}
8160 
8161 	index = PP_MAPINDEX(pp);
8162 
8163 again:
8164 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
8165 		tmphme = sfhme->hme_next;
8166 		if (IS_PAHME(sfhme)) {
8167 			continue;
8168 		}
8169 
8170 		hmeblkp = sfmmu_hmetohblk(sfhme);
8171 		if (hmeblkp->hblk_xhat_bit) {
8172 			cnt++;
8173 			if (cnt > sh_thresh) {
8174 				sfmmu_mlist_exit(pml);
8175 				return (1);
8176 			}
8177 			continue;
8178 		}
8179 		if (hme_size(sfhme) != sz) {
8180 			continue;
8181 		}
8182 
8183 		if (hmeblkp->hblk_shared) {
8184 			sf_srd_t *srdp = hblktosrd(hmeblkp);
8185 			uint_t rid = hmeblkp->hblk_tag.htag_rid;
8186 			sf_region_t *rgnp;
8187 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
8188 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
8189 			ASSERT(srdp != NULL);
8190 			rgnp = srdp->srd_hmergnp[rid];
8191 			SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
8192 			    rgnp, rid);
8193 			cnt += rgnp->rgn_refcnt;
8194 		} else {
8195 			cnt++;
8196 		}
8197 		if (cnt > sh_thresh) {
8198 			sfmmu_mlist_exit(pml);
8199 			return (1);
8200 		}
8201 	}
8202 
8203 	index >>= 1;
8204 	sz++;
8205 	while (index) {
8206 		pp = PP_GROUPLEADER(pp, sz);
8207 		ASSERT(sfmmu_mlist_held(pp));
8208 		if (index & 0x1) {
8209 			goto again;
8210 		}
8211 		index >>= 1;
8212 		sz++;
8213 	}
8214 	sfmmu_mlist_exit(pml);
8215 	return (0);
8216 }
8217 
8218 /*
8219  * Unload all large mappings to the pp and reset the p_szc field of every
8220  * constituent page according to the remaining mappings.
8221  *
8222  * pp must be locked SE_EXCL. Even though no other constituent pages are
8223  * locked it's legal to unload the large mappings to the pp because all
8224  * constituent pages of large locked mappings have to be locked SE_SHARED.
8225  * This means if we have SE_EXCL lock on one of constituent pages none of the
8226  * large mappings to pp are locked.
8227  *
8228  * Decrease p_szc field starting from the last constituent page and ending
8229  * with the root page. This method is used because other threads rely on the
8230  * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
8231  * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
8232  * ensures that p_szc changes of the constituent pages appears atomic for all
8233  * threads that use sfmmu_mlspl_enter() to examine p_szc field.
8234  *
8235  * This mechanism is only used for file system pages where it's not always
8236  * possible to get SE_EXCL locks on all constituent pages to demote the size
8237  * code (as is done for anonymous or kernel large pages).
8238  *
8239  * See more comments in front of sfmmu_mlspl_enter().
8240  */
8241 void
8242 hat_page_demote(page_t *pp)
8243 {
8244 	int index;
8245 	int sz;
8246 	cpuset_t cpuset;
8247 	int sync = 0;
8248 	page_t *rootpp;
8249 	struct sf_hment *sfhme;
8250 	struct sf_hment *tmphme = NULL;
8251 	struct hme_blk *hmeblkp;
8252 	uint_t pszc;
8253 	page_t *lastpp;
8254 	cpuset_t tset;
8255 	pgcnt_t npgs;
8256 	kmutex_t *pml;
8257 	kmutex_t *pmtx = NULL;
8258 
8259 	ASSERT(PAGE_EXCL(pp));
8260 	ASSERT(!PP_ISFREE(pp));
8261 	ASSERT(!PP_ISKAS(pp));
8262 	ASSERT(page_szc_lock_assert(pp));
8263 	pml = sfmmu_mlist_enter(pp);
8264 
8265 	pszc = pp->p_szc;
8266 	if (pszc == 0) {
8267 		goto out;
8268 	}
8269 
8270 	index = PP_MAPINDEX(pp) >> 1;
8271 
8272 	if (index) {
8273 		CPUSET_ZERO(cpuset);
8274 		sz = TTE64K;
8275 		sync = 1;
8276 	}
8277 
8278 	while (index) {
8279 		if (!(index & 0x1)) {
8280 			index >>= 1;
8281 			sz++;
8282 			continue;
8283 		}
8284 		ASSERT(sz <= pszc);
8285 		rootpp = PP_GROUPLEADER(pp, sz);
8286 		for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
8287 			tmphme = sfhme->hme_next;
8288 			ASSERT(!IS_PAHME(sfhme));
8289 			hmeblkp = sfmmu_hmetohblk(sfhme);
8290 			if (hme_size(sfhme) != sz) {
8291 				continue;
8292 			}
8293 			if (hmeblkp->hblk_xhat_bit) {
8294 				cmn_err(CE_PANIC,
8295 				    "hat_page_demote: xhat hmeblk");
8296 			}
8297 			tset = sfmmu_pageunload(rootpp, sfhme, sz);
8298 			CPUSET_OR(cpuset, tset);
8299 		}
8300 		if (index >>= 1) {
8301 			sz++;
8302 		}
8303 	}
8304 
8305 	ASSERT(!PP_ISMAPPED_LARGE(pp));
8306 
8307 	if (sync) {
8308 		xt_sync(cpuset);
8309 #ifdef VAC
8310 		if (PP_ISTNC(pp)) {
8311 			conv_tnc(rootpp, sz);
8312 		}
8313 #endif	/* VAC */
8314 	}
8315 
8316 	pmtx = sfmmu_page_enter(pp);
8317 
8318 	ASSERT(pp->p_szc == pszc);
8319 	rootpp = PP_PAGEROOT(pp);
8320 	ASSERT(rootpp->p_szc == pszc);
8321 	lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
8322 
8323 	while (lastpp != rootpp) {
8324 		sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
8325 		ASSERT(sz < pszc);
8326 		npgs = (sz == 0) ? 1 : TTEPAGES(sz);
8327 		ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
8328 		while (--npgs > 0) {
8329 			lastpp->p_szc = (uchar_t)sz;
8330 			lastpp = PP_PAGEPREV(lastpp);
8331 		}
8332 		if (sz) {
8333 			/*
8334 			 * make sure before current root's pszc
8335 			 * is updated all updates to constituent pages pszc
8336 			 * fields are globally visible.
8337 			 */
8338 			membar_producer();
8339 		}
8340 		lastpp->p_szc = sz;
8341 		ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
8342 		if (lastpp != rootpp) {
8343 			lastpp = PP_PAGEPREV(lastpp);
8344 		}
8345 	}
8346 	if (sz == 0) {
8347 		/* the loop above doesn't cover this case */
8348 		rootpp->p_szc = 0;
8349 	}
8350 out:
8351 	ASSERT(pp->p_szc == 0);
8352 	if (pmtx != NULL) {
8353 		sfmmu_page_exit(pmtx);
8354 	}
8355 	sfmmu_mlist_exit(pml);
8356 }
8357 
8358 /*
8359  * Refresh the HAT ismttecnt[] element for size szc.
8360  * Caller must have set ISM busy flag to prevent mapping
8361  * lists from changing while we're traversing them.
8362  */
8363 pgcnt_t
8364 ism_tsb_entries(sfmmu_t *sfmmup, int szc)
8365 {
8366 	ism_blk_t	*ism_blkp = sfmmup->sfmmu_iblk;
8367 	ism_map_t	*ism_map;
8368 	pgcnt_t		npgs = 0;
8369 	pgcnt_t		npgs_scd = 0;
8370 	int		j;
8371 	sf_scd_t	*scdp;
8372 	uchar_t		rid;
8373 
8374 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
8375 	scdp = sfmmup->sfmmu_scdp;
8376 
8377 	for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
8378 		ism_map = ism_blkp->iblk_maps;
8379 		for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++) {
8380 			rid = ism_map[j].imap_rid;
8381 			ASSERT(rid == SFMMU_INVALID_ISMRID ||
8382 			    rid < sfmmup->sfmmu_srdp->srd_next_ismrid);
8383 
8384 			if (scdp != NULL && rid != SFMMU_INVALID_ISMRID &&
8385 			    SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
8386 				/* ISM is in sfmmup's SCD */
8387 				npgs_scd +=
8388 				    ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8389 			} else {
8390 				/* ISMs is not in SCD */
8391 				npgs +=
8392 				    ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8393 			}
8394 		}
8395 	}
8396 	sfmmup->sfmmu_ismttecnt[szc] = npgs;
8397 	sfmmup->sfmmu_scdismttecnt[szc] = npgs_scd;
8398 	return (npgs);
8399 }
8400 
8401 /*
8402  * Yield the memory claim requirement for an address space.
8403  *
8404  * This is currently implemented as the number of bytes that have active
8405  * hardware translations that have page structures.  Therefore, it can
8406  * underestimate the traditional resident set size, eg, if the
8407  * physical page is present and the hardware translation is missing;
8408  * and it can overestimate the rss, eg, if there are active
8409  * translations to a frame buffer with page structs.
8410  * Also, it does not take sharing into account.
8411  *
8412  * Note that we don't acquire locks here since this function is most often
8413  * called from the clock thread.
8414  */
8415 size_t
8416 hat_get_mapped_size(struct hat *hat)
8417 {
8418 	size_t		assize = 0;
8419 	int 		i;
8420 
8421 	if (hat == NULL)
8422 		return (0);
8423 
8424 	ASSERT(hat->sfmmu_xhat_provider == NULL);
8425 
8426 	for (i = 0; i < mmu_page_sizes; i++)
8427 		assize += ((pgcnt_t)hat->sfmmu_ttecnt[i] +
8428 		    (pgcnt_t)hat->sfmmu_scdrttecnt[i]) * TTEBYTES(i);
8429 
8430 	if (hat->sfmmu_iblk == NULL)
8431 		return (assize);
8432 
8433 	for (i = 0; i < mmu_page_sizes; i++)
8434 		assize += ((pgcnt_t)hat->sfmmu_ismttecnt[i] +
8435 		    (pgcnt_t)hat->sfmmu_scdismttecnt[i]) * TTEBYTES(i);
8436 
8437 	return (assize);
8438 }
8439 
8440 int
8441 hat_stats_enable(struct hat *hat)
8442 {
8443 	hatlock_t	*hatlockp;
8444 
8445 	ASSERT(hat->sfmmu_xhat_provider == NULL);
8446 
8447 	hatlockp = sfmmu_hat_enter(hat);
8448 	hat->sfmmu_rmstat++;
8449 	sfmmu_hat_exit(hatlockp);
8450 	return (1);
8451 }
8452 
8453 void
8454 hat_stats_disable(struct hat *hat)
8455 {
8456 	hatlock_t	*hatlockp;
8457 
8458 	ASSERT(hat->sfmmu_xhat_provider == NULL);
8459 
8460 	hatlockp = sfmmu_hat_enter(hat);
8461 	hat->sfmmu_rmstat--;
8462 	sfmmu_hat_exit(hatlockp);
8463 }
8464 
8465 /*
8466  * Routines for entering or removing  ourselves from the
8467  * ism_hat's mapping list. This is used for both private and
8468  * SCD hats.
8469  */
8470 static void
8471 iment_add(struct ism_ment *iment,  struct hat *ism_hat)
8472 {
8473 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
8474 
8475 	iment->iment_prev = NULL;
8476 	iment->iment_next = ism_hat->sfmmu_iment;
8477 	if (ism_hat->sfmmu_iment) {
8478 		ism_hat->sfmmu_iment->iment_prev = iment;
8479 	}
8480 	ism_hat->sfmmu_iment = iment;
8481 }
8482 
8483 static void
8484 iment_sub(struct ism_ment *iment, struct hat *ism_hat)
8485 {
8486 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
8487 
8488 	if (ism_hat->sfmmu_iment == NULL) {
8489 		panic("ism map entry remove - no entries");
8490 	}
8491 
8492 	if (iment->iment_prev) {
8493 		ASSERT(ism_hat->sfmmu_iment != iment);
8494 		iment->iment_prev->iment_next = iment->iment_next;
8495 	} else {
8496 		ASSERT(ism_hat->sfmmu_iment == iment);
8497 		ism_hat->sfmmu_iment = iment->iment_next;
8498 	}
8499 
8500 	if (iment->iment_next) {
8501 		iment->iment_next->iment_prev = iment->iment_prev;
8502 	}
8503 
8504 	/*
8505 	 * zero out the entry
8506 	 */
8507 	iment->iment_next = NULL;
8508 	iment->iment_prev = NULL;
8509 	iment->iment_hat =  NULL;
8510 }
8511 
8512 /*
8513  * Hat_share()/unshare() return an (non-zero) error
8514  * when saddr and daddr are not properly aligned.
8515  *
8516  * The top level mapping element determines the alignment
8517  * requirement for saddr and daddr, depending on different
8518  * architectures.
8519  *
8520  * When hat_share()/unshare() are not supported,
8521  * HATOP_SHARE()/UNSHARE() return 0
8522  */
8523 int
8524 hat_share(struct hat *sfmmup, caddr_t addr,
8525 	struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc)
8526 {
8527 	ism_blk_t	*ism_blkp;
8528 	ism_blk_t	*new_iblk;
8529 	ism_map_t 	*ism_map;
8530 	ism_ment_t	*ism_ment;
8531 	int		i, added;
8532 	hatlock_t	*hatlockp;
8533 	int		reload_mmu = 0;
8534 	uint_t		ismshift = page_get_shift(ismszc);
8535 	size_t		ismpgsz = page_get_pagesize(ismszc);
8536 	uint_t		ismmask = (uint_t)ismpgsz - 1;
8537 	size_t		sh_size = ISM_SHIFT(ismshift, len);
8538 	ushort_t	ismhatflag;
8539 	hat_region_cookie_t rcookie;
8540 	sf_scd_t	*old_scdp;
8541 
8542 #ifdef DEBUG
8543 	caddr_t		eaddr = addr + len;
8544 #endif /* DEBUG */
8545 
8546 	ASSERT(ism_hatid != NULL && sfmmup != NULL);
8547 	ASSERT(sptaddr == ISMID_STARTADDR);
8548 	/*
8549 	 * Check the alignment.
8550 	 */
8551 	if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
8552 		return (EINVAL);
8553 
8554 	/*
8555 	 * Check size alignment.
8556 	 */
8557 	if (!ISM_ALIGNED(ismshift, len))
8558 		return (EINVAL);
8559 
8560 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
8561 
8562 	/*
8563 	 * Allocate ism_ment for the ism_hat's mapping list, and an
8564 	 * ism map blk in case we need one.  We must do our
8565 	 * allocations before acquiring locks to prevent a deadlock
8566 	 * in the kmem allocator on the mapping list lock.
8567 	 */
8568 	new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
8569 	ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
8570 
8571 	/*
8572 	 * Serialize ISM mappings with the ISM busy flag, and also the
8573 	 * trap handlers.
8574 	 */
8575 	sfmmu_ismhat_enter(sfmmup, 0);
8576 
8577 	/*
8578 	 * Allocate an ism map blk if necessary.
8579 	 */
8580 	if (sfmmup->sfmmu_iblk == NULL) {
8581 		sfmmup->sfmmu_iblk = new_iblk;
8582 		bzero(new_iblk, sizeof (*new_iblk));
8583 		new_iblk->iblk_nextpa = (uint64_t)-1;
8584 		membar_stst();	/* make sure next ptr visible to all CPUs */
8585 		sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
8586 		reload_mmu = 1;
8587 		new_iblk = NULL;
8588 	}
8589 
8590 #ifdef DEBUG
8591 	/*
8592 	 * Make sure mapping does not already exist.
8593 	 */
8594 	ism_blkp = sfmmup->sfmmu_iblk;
8595 	while (ism_blkp != NULL) {
8596 		ism_map = ism_blkp->iblk_maps;
8597 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
8598 			if ((addr >= ism_start(ism_map[i]) &&
8599 			    addr < ism_end(ism_map[i])) ||
8600 			    eaddr > ism_start(ism_map[i]) &&
8601 			    eaddr <= ism_end(ism_map[i])) {
8602 				panic("sfmmu_share: Already mapped!");
8603 			}
8604 		}
8605 		ism_blkp = ism_blkp->iblk_next;
8606 	}
8607 #endif /* DEBUG */
8608 
8609 	ASSERT(ismszc >= TTE4M);
8610 	if (ismszc == TTE4M) {
8611 		ismhatflag = HAT_4M_FLAG;
8612 	} else if (ismszc == TTE32M) {
8613 		ismhatflag = HAT_32M_FLAG;
8614 	} else if (ismszc == TTE256M) {
8615 		ismhatflag = HAT_256M_FLAG;
8616 	}
8617 	/*
8618 	 * Add mapping to first available mapping slot.
8619 	 */
8620 	ism_blkp = sfmmup->sfmmu_iblk;
8621 	added = 0;
8622 	while (!added) {
8623 		ism_map = ism_blkp->iblk_maps;
8624 		for (i = 0; i < ISM_MAP_SLOTS; i++)  {
8625 			if (ism_map[i].imap_ismhat == NULL) {
8626 
8627 				ism_map[i].imap_ismhat = ism_hatid;
8628 				ism_map[i].imap_vb_shift = (uchar_t)ismshift;
8629 				ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
8630 				ism_map[i].imap_hatflags = ismhatflag;
8631 				ism_map[i].imap_sz_mask = ismmask;
8632 				/*
8633 				 * imap_seg is checked in ISM_CHECK to see if
8634 				 * non-NULL, then other info assumed valid.
8635 				 */
8636 				membar_stst();
8637 				ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
8638 				ism_map[i].imap_ment = ism_ment;
8639 
8640 				/*
8641 				 * Now add ourselves to the ism_hat's
8642 				 * mapping list.
8643 				 */
8644 				ism_ment->iment_hat = sfmmup;
8645 				ism_ment->iment_base_va = addr;
8646 				ism_hatid->sfmmu_ismhat = 1;
8647 				mutex_enter(&ism_mlist_lock);
8648 				iment_add(ism_ment, ism_hatid);
8649 				mutex_exit(&ism_mlist_lock);
8650 				added = 1;
8651 				break;
8652 			}
8653 		}
8654 		if (!added && ism_blkp->iblk_next == NULL) {
8655 			ism_blkp->iblk_next = new_iblk;
8656 			new_iblk = NULL;
8657 			bzero(ism_blkp->iblk_next,
8658 			    sizeof (*ism_blkp->iblk_next));
8659 			ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
8660 			membar_stst();
8661 			ism_blkp->iblk_nextpa =
8662 			    va_to_pa((caddr_t)ism_blkp->iblk_next);
8663 		}
8664 		ism_blkp = ism_blkp->iblk_next;
8665 	}
8666 
8667 	/*
8668 	 * After calling hat_join_region, sfmmup may join a new SCD or
8669 	 * move from the old scd to a new scd, in which case, we want to
8670 	 * shrink the sfmmup's private tsb size, i.e., pass shrink to
8671 	 * sfmmu_check_page_sizes at the end of this routine.
8672 	 */
8673 	old_scdp = sfmmup->sfmmu_scdp;
8674 
8675 	rcookie = hat_join_region(sfmmup, addr, len, (void *)ism_hatid, 0,
8676 	    PROT_ALL, ismszc, NULL, HAT_REGION_ISM);
8677 	if (rcookie != HAT_INVALID_REGION_COOKIE) {
8678 		ism_map[i].imap_rid = (uchar_t)((uint64_t)rcookie);
8679 	}
8680 	/*
8681 	 * Update our counters for this sfmmup's ism mappings.
8682 	 */
8683 	for (i = 0; i <= ismszc; i++) {
8684 		if (!(disable_ism_large_pages & (1 << i)))
8685 			(void) ism_tsb_entries(sfmmup, i);
8686 	}
8687 
8688 	/*
8689 	 * For ISM and DISM we do not support 512K pages, so we only only
8690 	 * search the 4M and 8K/64K hashes for 4 pagesize cpus, and search the
8691 	 * 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
8692 	 *
8693 	 * Need to set 32M/256M ISM flags to make sure
8694 	 * sfmmu_check_page_sizes() enables them on Panther.
8695 	 */
8696 	ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
8697 
8698 	switch (ismszc) {
8699 	case TTE256M:
8700 		if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_ISM)) {
8701 			hatlockp = sfmmu_hat_enter(sfmmup);
8702 			SFMMU_FLAGS_SET(sfmmup, HAT_256M_ISM);
8703 			sfmmu_hat_exit(hatlockp);
8704 		}
8705 		break;
8706 	case TTE32M:
8707 		if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_ISM)) {
8708 			hatlockp = sfmmu_hat_enter(sfmmup);
8709 			SFMMU_FLAGS_SET(sfmmup, HAT_32M_ISM);
8710 			sfmmu_hat_exit(hatlockp);
8711 		}
8712 		break;
8713 	default:
8714 		break;
8715 	}
8716 
8717 	/*
8718 	 * If we updated the ismblkpa for this HAT we must make
8719 	 * sure all CPUs running this process reload their tsbmiss area.
8720 	 * Otherwise they will fail to load the mappings in the tsbmiss
8721 	 * handler and will loop calling pagefault().
8722 	 */
8723 	if (reload_mmu) {
8724 		hatlockp = sfmmu_hat_enter(sfmmup);
8725 		sfmmu_sync_mmustate(sfmmup);
8726 		sfmmu_hat_exit(hatlockp);
8727 	}
8728 
8729 	sfmmu_ismhat_exit(sfmmup, 0);
8730 
8731 	/*
8732 	 * Free up ismblk if we didn't use it.
8733 	 */
8734 	if (new_iblk != NULL)
8735 		kmem_cache_free(ism_blk_cache, new_iblk);
8736 
8737 	/*
8738 	 * Check TSB and TLB page sizes.
8739 	 */
8740 	if (sfmmup->sfmmu_scdp != NULL && old_scdp != sfmmup->sfmmu_scdp) {
8741 		sfmmu_check_page_sizes(sfmmup, 0);
8742 	} else {
8743 		sfmmu_check_page_sizes(sfmmup, 1);
8744 	}
8745 	return (0);
8746 }
8747 
8748 /*
8749  * hat_unshare removes exactly one ism_map from
8750  * this process's as.  It expects multiple calls
8751  * to hat_unshare for multiple shm segments.
8752  */
8753 void
8754 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
8755 {
8756 	ism_map_t 	*ism_map;
8757 	ism_ment_t	*free_ment = NULL;
8758 	ism_blk_t	*ism_blkp;
8759 	struct hat	*ism_hatid;
8760 	int 		found, i;
8761 	hatlock_t	*hatlockp;
8762 	struct tsb_info	*tsbinfo;
8763 	uint_t		ismshift = page_get_shift(ismszc);
8764 	size_t		sh_size = ISM_SHIFT(ismshift, len);
8765 	uchar_t		ism_rid;
8766 	sf_scd_t	*old_scdp;
8767 
8768 	ASSERT(ISM_ALIGNED(ismshift, addr));
8769 	ASSERT(ISM_ALIGNED(ismshift, len));
8770 	ASSERT(sfmmup != NULL);
8771 	ASSERT(sfmmup != ksfmmup);
8772 
8773 	if (sfmmup->sfmmu_xhat_provider) {
8774 		XHAT_UNSHARE(sfmmup, addr, len);
8775 		return;
8776 	} else {
8777 		/*
8778 		 * This must be a CPU HAT. If the address space has
8779 		 * XHATs attached, inform all XHATs that ISM segment
8780 		 * is going away
8781 		 */
8782 		ASSERT(sfmmup->sfmmu_as != NULL);
8783 		if (sfmmup->sfmmu_as->a_xhat != NULL)
8784 			xhat_unshare_all(sfmmup->sfmmu_as, addr, len);
8785 	}
8786 
8787 	/*
8788 	 * Make sure that during the entire time ISM mappings are removed,
8789 	 * the trap handlers serialize behind us, and that no one else
8790 	 * can be mucking with ISM mappings.  This also lets us get away
8791 	 * with not doing expensive cross calls to flush the TLB -- we
8792 	 * just discard the context, flush the entire TSB, and call it
8793 	 * a day.
8794 	 */
8795 	sfmmu_ismhat_enter(sfmmup, 0);
8796 
8797 	/*
8798 	 * Remove the mapping.
8799 	 *
8800 	 * We can't have any holes in the ism map.
8801 	 * The tsb miss code while searching the ism map will
8802 	 * stop on an empty map slot.  So we must move
8803 	 * everyone past the hole up 1 if any.
8804 	 *
8805 	 * Also empty ism map blks are not freed until the
8806 	 * process exits. This is to prevent a MT race condition
8807 	 * between sfmmu_unshare() and sfmmu_tsbmiss_exception().
8808 	 */
8809 	found = 0;
8810 	ism_blkp = sfmmup->sfmmu_iblk;
8811 	while (!found && ism_blkp != NULL) {
8812 		ism_map = ism_blkp->iblk_maps;
8813 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
8814 			if (addr == ism_start(ism_map[i]) &&
8815 			    sh_size == (size_t)(ism_size(ism_map[i]))) {
8816 				found = 1;
8817 				break;
8818 			}
8819 		}
8820 		if (!found)
8821 			ism_blkp = ism_blkp->iblk_next;
8822 	}
8823 
8824 	if (found) {
8825 		ism_hatid = ism_map[i].imap_ismhat;
8826 		ism_rid = ism_map[i].imap_rid;
8827 		ASSERT(ism_hatid != NULL);
8828 		ASSERT(ism_hatid->sfmmu_ismhat == 1);
8829 
8830 		/*
8831 		 * After hat_leave_region, the sfmmup may leave SCD,
8832 		 * in which case, we want to grow the private tsb size when
8833 		 * calling sfmmu_check_page_sizes at the end of the routine.
8834 		 */
8835 		old_scdp = sfmmup->sfmmu_scdp;
8836 		/*
8837 		 * Then remove ourselves from the region.
8838 		 */
8839 		if (ism_rid != SFMMU_INVALID_ISMRID) {
8840 			hat_leave_region(sfmmup, (void *)((uint64_t)ism_rid),
8841 			    HAT_REGION_ISM);
8842 		}
8843 
8844 		/*
8845 		 * And now guarantee that any other cpu
8846 		 * that tries to process an ISM miss
8847 		 * will go to tl=0.
8848 		 */
8849 		hatlockp = sfmmu_hat_enter(sfmmup);
8850 		sfmmu_invalidate_ctx(sfmmup);
8851 		sfmmu_hat_exit(hatlockp);
8852 
8853 		/*
8854 		 * Remove ourselves from the ism mapping list.
8855 		 */
8856 		mutex_enter(&ism_mlist_lock);
8857 		iment_sub(ism_map[i].imap_ment, ism_hatid);
8858 		mutex_exit(&ism_mlist_lock);
8859 		free_ment = ism_map[i].imap_ment;
8860 
8861 		/*
8862 		 * We delete the ism map by copying
8863 		 * the next map over the current one.
8864 		 * We will take the next one in the maps
8865 		 * array or from the next ism_blk.
8866 		 */
8867 		while (ism_blkp != NULL) {
8868 			ism_map = ism_blkp->iblk_maps;
8869 			while (i < (ISM_MAP_SLOTS - 1)) {
8870 				ism_map[i] = ism_map[i + 1];
8871 				i++;
8872 			}
8873 			/* i == (ISM_MAP_SLOTS - 1) */
8874 			ism_blkp = ism_blkp->iblk_next;
8875 			if (ism_blkp != NULL) {
8876 				ism_map[i] = ism_blkp->iblk_maps[0];
8877 				i = 0;
8878 			} else {
8879 				ism_map[i].imap_seg = 0;
8880 				ism_map[i].imap_vb_shift = 0;
8881 				ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
8882 				ism_map[i].imap_hatflags = 0;
8883 				ism_map[i].imap_sz_mask = 0;
8884 				ism_map[i].imap_ismhat = NULL;
8885 				ism_map[i].imap_ment = NULL;
8886 			}
8887 		}
8888 
8889 		/*
8890 		 * Now flush entire TSB for the process, since
8891 		 * demapping page by page can be too expensive.
8892 		 * We don't have to flush the TLB here anymore
8893 		 * since we switch to a new TLB ctx instead.
8894 		 * Also, there is no need to flush if the process
8895 		 * is exiting since the TSB will be freed later.
8896 		 */
8897 		if (!sfmmup->sfmmu_free) {
8898 			hatlockp = sfmmu_hat_enter(sfmmup);
8899 			for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
8900 			    tsbinfo = tsbinfo->tsb_next) {
8901 				if (tsbinfo->tsb_flags & TSB_SWAPPED)
8902 					continue;
8903 				if (tsbinfo->tsb_flags & TSB_RELOC_FLAG) {
8904 					tsbinfo->tsb_flags |=
8905 					    TSB_FLUSH_NEEDED;
8906 					continue;
8907 				}
8908 
8909 				sfmmu_inv_tsb(tsbinfo->tsb_va,
8910 				    TSB_BYTES(tsbinfo->tsb_szc));
8911 			}
8912 			sfmmu_hat_exit(hatlockp);
8913 		}
8914 	}
8915 
8916 	/*
8917 	 * Update our counters for this sfmmup's ism mappings.
8918 	 */
8919 	for (i = 0; i <= ismszc; i++) {
8920 		if (!(disable_ism_large_pages & (1 << i)))
8921 			(void) ism_tsb_entries(sfmmup, i);
8922 	}
8923 
8924 	sfmmu_ismhat_exit(sfmmup, 0);
8925 
8926 	/*
8927 	 * We must do our freeing here after dropping locks
8928 	 * to prevent a deadlock in the kmem allocator on the
8929 	 * mapping list lock.
8930 	 */
8931 	if (free_ment != NULL)
8932 		kmem_cache_free(ism_ment_cache, free_ment);
8933 
8934 	/*
8935 	 * Check TSB and TLB page sizes if the process isn't exiting.
8936 	 */
8937 	if (!sfmmup->sfmmu_free) {
8938 		if (found && old_scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
8939 			sfmmu_check_page_sizes(sfmmup, 1);
8940 		} else {
8941 			sfmmu_check_page_sizes(sfmmup, 0);
8942 		}
8943 	}
8944 }
8945 
8946 /* ARGSUSED */
8947 static int
8948 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
8949 {
8950 	/* void *buf is sfmmu_t pointer */
8951 	bzero(buf, sizeof (sfmmu_t));
8952 
8953 	return (0);
8954 }
8955 
8956 /* ARGSUSED */
8957 static void
8958 sfmmu_idcache_destructor(void *buf, void *cdrarg)
8959 {
8960 	/* void *buf is sfmmu_t pointer */
8961 }
8962 
8963 /*
8964  * setup kmem hmeblks by bzeroing all members and initializing the nextpa
8965  * field to be the pa of this hmeblk
8966  */
8967 /* ARGSUSED */
8968 static int
8969 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
8970 {
8971 	struct hme_blk *hmeblkp;
8972 
8973 	bzero(buf, (size_t)cdrarg);
8974 	hmeblkp = (struct hme_blk *)buf;
8975 	hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
8976 
8977 #ifdef	HBLK_TRACE
8978 	mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
8979 #endif	/* HBLK_TRACE */
8980 
8981 	return (0);
8982 }
8983 
8984 /* ARGSUSED */
8985 static void
8986 sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
8987 {
8988 
8989 #ifdef	HBLK_TRACE
8990 
8991 	struct hme_blk *hmeblkp;
8992 
8993 	hmeblkp = (struct hme_blk *)buf;
8994 	mutex_destroy(&hmeblkp->hblk_audit_lock);
8995 
8996 #endif	/* HBLK_TRACE */
8997 }
8998 
8999 #define	SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
9000 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
9001 /*
9002  * The kmem allocator will callback into our reclaim routine when the system
9003  * is running low in memory.  We traverse the hash and free up all unused but
9004  * still cached hme_blks.  We also traverse the free list and free them up
9005  * as well.
9006  */
9007 /*ARGSUSED*/
9008 static void
9009 sfmmu_hblkcache_reclaim(void *cdrarg)
9010 {
9011 	int i;
9012 	uint64_t hblkpa, prevpa, nx_pa;
9013 	struct hmehash_bucket *hmebp;
9014 	struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
9015 	static struct hmehash_bucket *uhmehash_reclaim_hand;
9016 	static struct hmehash_bucket *khmehash_reclaim_hand;
9017 	struct hme_blk *list = NULL;
9018 
9019 	hmebp = uhmehash_reclaim_hand;
9020 	if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
9021 		uhmehash_reclaim_hand = hmebp = uhme_hash;
9022 	uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
9023 
9024 	for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
9025 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
9026 			hmeblkp = hmebp->hmeblkp;
9027 			hblkpa = hmebp->hmeh_nextpa;
9028 			prevpa = 0;
9029 			pr_hblk = NULL;
9030 			while (hmeblkp) {
9031 				nx_hblk = hmeblkp->hblk_next;
9032 				nx_pa = hmeblkp->hblk_nextpa;
9033 				if (!hmeblkp->hblk_vcnt &&
9034 				    !hmeblkp->hblk_hmecnt) {
9035 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
9036 					    prevpa, pr_hblk);
9037 					sfmmu_hblk_free(hmebp, hmeblkp,
9038 					    hblkpa, &list);
9039 				} else {
9040 					pr_hblk = hmeblkp;
9041 					prevpa = hblkpa;
9042 				}
9043 				hmeblkp = nx_hblk;
9044 				hblkpa = nx_pa;
9045 			}
9046 			SFMMU_HASH_UNLOCK(hmebp);
9047 		}
9048 		if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
9049 			hmebp = uhme_hash;
9050 	}
9051 
9052 	hmebp = khmehash_reclaim_hand;
9053 	if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
9054 		khmehash_reclaim_hand = hmebp = khme_hash;
9055 	khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
9056 
9057 	for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
9058 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
9059 			hmeblkp = hmebp->hmeblkp;
9060 			hblkpa = hmebp->hmeh_nextpa;
9061 			prevpa = 0;
9062 			pr_hblk = NULL;
9063 			while (hmeblkp) {
9064 				nx_hblk = hmeblkp->hblk_next;
9065 				nx_pa = hmeblkp->hblk_nextpa;
9066 				if (!hmeblkp->hblk_vcnt &&
9067 				    !hmeblkp->hblk_hmecnt) {
9068 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
9069 					    prevpa, pr_hblk);
9070 					sfmmu_hblk_free(hmebp, hmeblkp,
9071 					    hblkpa, &list);
9072 				} else {
9073 					pr_hblk = hmeblkp;
9074 					prevpa = hblkpa;
9075 				}
9076 				hmeblkp = nx_hblk;
9077 				hblkpa = nx_pa;
9078 			}
9079 			SFMMU_HASH_UNLOCK(hmebp);
9080 		}
9081 		if (hmebp++ == &khme_hash[KHMEHASH_SZ])
9082 			hmebp = khme_hash;
9083 	}
9084 	sfmmu_hblks_list_purge(&list);
9085 }
9086 
9087 /*
9088  * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
9089  * same goes for sfmmu_get_addrvcolor().
9090  *
9091  * This function will return the virtual color for the specified page. The
9092  * virtual color corresponds to this page current mapping or its last mapping.
9093  * It is used by memory allocators to choose addresses with the correct
9094  * alignment so vac consistency is automatically maintained.  If the page
9095  * has no color it returns -1.
9096  */
9097 /*ARGSUSED*/
9098 int
9099 sfmmu_get_ppvcolor(struct page *pp)
9100 {
9101 #ifdef VAC
9102 	int color;
9103 
9104 	if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
9105 		return (-1);
9106 	}
9107 	color = PP_GET_VCOLOR(pp);
9108 	ASSERT(color < mmu_btop(shm_alignment));
9109 	return (color);
9110 #else
9111 	return (-1);
9112 #endif	/* VAC */
9113 }
9114 
9115 /*
9116  * This function will return the desired alignment for vac consistency
9117  * (vac color) given a virtual address.  If no vac is present it returns -1.
9118  */
9119 /*ARGSUSED*/
9120 int
9121 sfmmu_get_addrvcolor(caddr_t vaddr)
9122 {
9123 #ifdef VAC
9124 	if (cache & CACHE_VAC) {
9125 		return (addr_to_vcolor(vaddr));
9126 	} else {
9127 		return (-1);
9128 	}
9129 #else
9130 	return (-1);
9131 #endif	/* VAC */
9132 }
9133 
9134 #ifdef VAC
9135 /*
9136  * Check for conflicts.
9137  * A conflict exists if the new and existent mappings do not match in
9138  * their "shm_alignment fields. If conflicts exist, the existant mappings
9139  * are flushed unless one of them is locked. If one of them is locked, then
9140  * the mappings are flushed and converted to non-cacheable mappings.
9141  */
9142 static void
9143 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
9144 {
9145 	struct hat *tmphat;
9146 	struct sf_hment *sfhmep, *tmphme = NULL;
9147 	struct hme_blk *hmeblkp;
9148 	int vcolor;
9149 	tte_t tte;
9150 
9151 	ASSERT(sfmmu_mlist_held(pp));
9152 	ASSERT(!PP_ISNC(pp));		/* page better be cacheable */
9153 
9154 	vcolor = addr_to_vcolor(addr);
9155 	if (PP_NEWPAGE(pp)) {
9156 		PP_SET_VCOLOR(pp, vcolor);
9157 		return;
9158 	}
9159 
9160 	if (PP_GET_VCOLOR(pp) == vcolor) {
9161 		return;
9162 	}
9163 
9164 	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
9165 		/*
9166 		 * Previous user of page had a different color
9167 		 * but since there are no current users
9168 		 * we just flush the cache and change the color.
9169 		 */
9170 		SFMMU_STAT(sf_pgcolor_conflict);
9171 		sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9172 		PP_SET_VCOLOR(pp, vcolor);
9173 		return;
9174 	}
9175 
9176 	/*
9177 	 * If we get here we have a vac conflict with a current
9178 	 * mapping.  VAC conflict policy is as follows.
9179 	 * - The default is to unload the other mappings unless:
9180 	 * - If we have a large mapping we uncache the page.
9181 	 * We need to uncache the rest of the large page too.
9182 	 * - If any of the mappings are locked we uncache the page.
9183 	 * - If the requested mapping is inconsistent
9184 	 * with another mapping and that mapping
9185 	 * is in the same address space we have to
9186 	 * make it non-cached.  The default thing
9187 	 * to do is unload the inconsistent mapping
9188 	 * but if they are in the same address space
9189 	 * we run the risk of unmapping the pc or the
9190 	 * stack which we will use as we return to the user,
9191 	 * in which case we can then fault on the thing
9192 	 * we just unloaded and get into an infinite loop.
9193 	 */
9194 	if (PP_ISMAPPED_LARGE(pp)) {
9195 		int sz;
9196 
9197 		/*
9198 		 * Existing mapping is for big pages. We don't unload
9199 		 * existing big mappings to satisfy new mappings.
9200 		 * Always convert all mappings to TNC.
9201 		 */
9202 		sz = fnd_mapping_sz(pp);
9203 		pp = PP_GROUPLEADER(pp, sz);
9204 		SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
9205 		sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
9206 		    TTEPAGES(sz));
9207 
9208 		return;
9209 	}
9210 
9211 	/*
9212 	 * check if any mapping is in same as or if it is locked
9213 	 * since in that case we need to uncache.
9214 	 */
9215 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9216 		tmphme = sfhmep->hme_next;
9217 		if (IS_PAHME(sfhmep))
9218 			continue;
9219 		hmeblkp = sfmmu_hmetohblk(sfhmep);
9220 		if (hmeblkp->hblk_xhat_bit)
9221 			continue;
9222 		tmphat = hblktosfmmu(hmeblkp);
9223 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
9224 		ASSERT(TTE_IS_VALID(&tte));
9225 		if (hmeblkp->hblk_shared || tmphat == hat ||
9226 		    hmeblkp->hblk_lckcnt) {
9227 			/*
9228 			 * We have an uncache conflict
9229 			 */
9230 			SFMMU_STAT(sf_uncache_conflict);
9231 			sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
9232 			return;
9233 		}
9234 	}
9235 
9236 	/*
9237 	 * We have an unload conflict
9238 	 * We have already checked for LARGE mappings, therefore
9239 	 * the remaining mapping(s) must be TTE8K.
9240 	 */
9241 	SFMMU_STAT(sf_unload_conflict);
9242 
9243 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9244 		tmphme = sfhmep->hme_next;
9245 		if (IS_PAHME(sfhmep))
9246 			continue;
9247 		hmeblkp = sfmmu_hmetohblk(sfhmep);
9248 		if (hmeblkp->hblk_xhat_bit)
9249 			continue;
9250 		ASSERT(!hmeblkp->hblk_shared);
9251 		(void) sfmmu_pageunload(pp, sfhmep, TTE8K);
9252 	}
9253 
9254 	if (PP_ISMAPPED_KPM(pp))
9255 		sfmmu_kpm_vac_unload(pp, addr);
9256 
9257 	/*
9258 	 * Unloads only do TLB flushes so we need to flush the
9259 	 * cache here.
9260 	 */
9261 	sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9262 	PP_SET_VCOLOR(pp, vcolor);
9263 }
9264 
9265 /*
9266  * Whenever a mapping is unloaded and the page is in TNC state,
9267  * we see if the page can be made cacheable again. 'pp' is
9268  * the page that we just unloaded a mapping from, the size
9269  * of mapping that was unloaded is 'ottesz'.
9270  * Remark:
9271  * The recache policy for mpss pages can leave a performance problem
9272  * under the following circumstances:
9273  * . A large page in uncached mode has just been unmapped.
9274  * . All constituent pages are TNC due to a conflicting small mapping.
9275  * . There are many other, non conflicting, small mappings around for
9276  *   a lot of the constituent pages.
9277  * . We're called w/ the "old" groupleader page and the old ottesz,
9278  *   but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
9279  *   we end up w/ TTE8K or npages == 1.
9280  * . We call tst_tnc w/ the old groupleader only, and if there is no
9281  *   conflict, we re-cache only this page.
9282  * . All other small mappings are not checked and will be left in TNC mode.
9283  * The problem is not very serious because:
9284  * . mpss is actually only defined for heap and stack, so the probability
9285  *   is not very high that a large page mapping exists in parallel to a small
9286  *   one (this is possible, but seems to be bad programming style in the
9287  *   appl).
9288  * . The problem gets a little bit more serious, when those TNC pages
9289  *   have to be mapped into kernel space, e.g. for networking.
9290  * . When VAC alias conflicts occur in applications, this is regarded
9291  *   as an application bug. So if kstat's show them, the appl should
9292  *   be changed anyway.
9293  */
9294 void
9295 conv_tnc(page_t *pp, int ottesz)
9296 {
9297 	int cursz, dosz;
9298 	pgcnt_t curnpgs, dopgs;
9299 	pgcnt_t pg64k;
9300 	page_t *pp2;
9301 
9302 	/*
9303 	 * Determine how big a range we check for TNC and find
9304 	 * leader page. cursz is the size of the biggest
9305 	 * mapping that still exist on 'pp'.
9306 	 */
9307 	if (PP_ISMAPPED_LARGE(pp)) {
9308 		cursz = fnd_mapping_sz(pp);
9309 	} else {
9310 		cursz = TTE8K;
9311 	}
9312 
9313 	if (ottesz >= cursz) {
9314 		dosz = ottesz;
9315 		pp2 = pp;
9316 	} else {
9317 		dosz = cursz;
9318 		pp2 = PP_GROUPLEADER(pp, dosz);
9319 	}
9320 
9321 	pg64k = TTEPAGES(TTE64K);
9322 	dopgs = TTEPAGES(dosz);
9323 
9324 	ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
9325 
9326 	while (dopgs != 0) {
9327 		curnpgs = TTEPAGES(cursz);
9328 		if (tst_tnc(pp2, curnpgs)) {
9329 			SFMMU_STAT_ADD(sf_recache, curnpgs);
9330 			sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
9331 			    curnpgs);
9332 		}
9333 
9334 		ASSERT(dopgs >= curnpgs);
9335 		dopgs -= curnpgs;
9336 
9337 		if (dopgs == 0) {
9338 			break;
9339 		}
9340 
9341 		pp2 = PP_PAGENEXT_N(pp2, curnpgs);
9342 		if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
9343 			cursz = fnd_mapping_sz(pp2);
9344 		} else {
9345 			cursz = TTE8K;
9346 		}
9347 	}
9348 }
9349 
9350 /*
9351  * Returns 1 if page(s) can be converted from TNC to cacheable setting,
9352  * returns 0 otherwise. Note that oaddr argument is valid for only
9353  * 8k pages.
9354  */
9355 int
9356 tst_tnc(page_t *pp, pgcnt_t npages)
9357 {
9358 	struct	sf_hment *sfhme;
9359 	struct	hme_blk *hmeblkp;
9360 	tte_t	tte;
9361 	caddr_t	vaddr;
9362 	int	clr_valid = 0;
9363 	int 	color, color1, bcolor;
9364 	int	i, ncolors;
9365 
9366 	ASSERT(pp != NULL);
9367 	ASSERT(!(cache & CACHE_WRITEBACK));
9368 
9369 	if (npages > 1) {
9370 		ncolors = CACHE_NUM_COLOR;
9371 	}
9372 
9373 	for (i = 0; i < npages; i++) {
9374 		ASSERT(sfmmu_mlist_held(pp));
9375 		ASSERT(PP_ISTNC(pp));
9376 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
9377 
9378 		if (PP_ISPNC(pp)) {
9379 			return (0);
9380 		}
9381 
9382 		clr_valid = 0;
9383 		if (PP_ISMAPPED_KPM(pp)) {
9384 			caddr_t kpmvaddr;
9385 
9386 			ASSERT(kpm_enable);
9387 			kpmvaddr = hat_kpm_page2va(pp, 1);
9388 			ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
9389 			color1 = addr_to_vcolor(kpmvaddr);
9390 			clr_valid = 1;
9391 		}
9392 
9393 		for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9394 			if (IS_PAHME(sfhme))
9395 				continue;
9396 			hmeblkp = sfmmu_hmetohblk(sfhme);
9397 			if (hmeblkp->hblk_xhat_bit)
9398 				continue;
9399 
9400 			sfmmu_copytte(&sfhme->hme_tte, &tte);
9401 			ASSERT(TTE_IS_VALID(&tte));
9402 
9403 			vaddr = tte_to_vaddr(hmeblkp, tte);
9404 			color = addr_to_vcolor(vaddr);
9405 
9406 			if (npages > 1) {
9407 				/*
9408 				 * If there is a big mapping, make sure
9409 				 * 8K mapping is consistent with the big
9410 				 * mapping.
9411 				 */
9412 				bcolor = i % ncolors;
9413 				if (color != bcolor) {
9414 					return (0);
9415 				}
9416 			}
9417 			if (!clr_valid) {
9418 				clr_valid = 1;
9419 				color1 = color;
9420 			}
9421 
9422 			if (color1 != color) {
9423 				return (0);
9424 			}
9425 		}
9426 
9427 		pp = PP_PAGENEXT(pp);
9428 	}
9429 
9430 	return (1);
9431 }
9432 
9433 void
9434 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
9435 	pgcnt_t npages)
9436 {
9437 	kmutex_t *pmtx;
9438 	int i, ncolors, bcolor;
9439 	kpm_hlk_t *kpmp;
9440 	cpuset_t cpuset;
9441 
9442 	ASSERT(pp != NULL);
9443 	ASSERT(!(cache & CACHE_WRITEBACK));
9444 
9445 	kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
9446 	pmtx = sfmmu_page_enter(pp);
9447 
9448 	/*
9449 	 * Fast path caching single unmapped page
9450 	 */
9451 	if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
9452 	    flags == HAT_CACHE) {
9453 		PP_CLRTNC(pp);
9454 		PP_CLRPNC(pp);
9455 		sfmmu_page_exit(pmtx);
9456 		sfmmu_kpm_kpmp_exit(kpmp);
9457 		return;
9458 	}
9459 
9460 	/*
9461 	 * We need to capture all cpus in order to change cacheability
9462 	 * because we can't allow one cpu to access the same physical
9463 	 * page using a cacheable and a non-cachebale mapping at the same
9464 	 * time. Since we may end up walking the ism mapping list
9465 	 * have to grab it's lock now since we can't after all the
9466 	 * cpus have been captured.
9467 	 */
9468 	sfmmu_hat_lock_all();
9469 	mutex_enter(&ism_mlist_lock);
9470 	kpreempt_disable();
9471 	cpuset = cpu_ready_set;
9472 	xc_attention(cpuset);
9473 
9474 	if (npages > 1) {
9475 		/*
9476 		 * Make sure all colors are flushed since the
9477 		 * sfmmu_page_cache() only flushes one color-
9478 		 * it does not know big pages.
9479 		 */
9480 		ncolors = CACHE_NUM_COLOR;
9481 		if (flags & HAT_TMPNC) {
9482 			for (i = 0; i < ncolors; i++) {
9483 				sfmmu_cache_flushcolor(i, pp->p_pagenum);
9484 			}
9485 			cache_flush_flag = CACHE_NO_FLUSH;
9486 		}
9487 	}
9488 
9489 	for (i = 0; i < npages; i++) {
9490 
9491 		ASSERT(sfmmu_mlist_held(pp));
9492 
9493 		if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
9494 
9495 			if (npages > 1) {
9496 				bcolor = i % ncolors;
9497 			} else {
9498 				bcolor = NO_VCOLOR;
9499 			}
9500 
9501 			sfmmu_page_cache(pp, flags, cache_flush_flag,
9502 			    bcolor);
9503 		}
9504 
9505 		pp = PP_PAGENEXT(pp);
9506 	}
9507 
9508 	xt_sync(cpuset);
9509 	xc_dismissed(cpuset);
9510 	mutex_exit(&ism_mlist_lock);
9511 	sfmmu_hat_unlock_all();
9512 	sfmmu_page_exit(pmtx);
9513 	sfmmu_kpm_kpmp_exit(kpmp);
9514 	kpreempt_enable();
9515 }
9516 
9517 /*
9518  * This function changes the virtual cacheability of all mappings to a
9519  * particular page.  When changing from uncache to cacheable the mappings will
9520  * only be changed if all of them have the same virtual color.
9521  * We need to flush the cache in all cpus.  It is possible that
9522  * a process referenced a page as cacheable but has sinced exited
9523  * and cleared the mapping list.  We still to flush it but have no
9524  * state so all cpus is the only alternative.
9525  */
9526 static void
9527 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
9528 {
9529 	struct	sf_hment *sfhme;
9530 	struct	hme_blk *hmeblkp;
9531 	sfmmu_t *sfmmup;
9532 	tte_t	tte, ttemod;
9533 	caddr_t	vaddr;
9534 	int	ret, color;
9535 	pfn_t	pfn;
9536 
9537 	color = bcolor;
9538 	pfn = pp->p_pagenum;
9539 
9540 	for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9541 
9542 		if (IS_PAHME(sfhme))
9543 			continue;
9544 		hmeblkp = sfmmu_hmetohblk(sfhme);
9545 
9546 		if (hmeblkp->hblk_xhat_bit)
9547 			continue;
9548 
9549 		sfmmu_copytte(&sfhme->hme_tte, &tte);
9550 		ASSERT(TTE_IS_VALID(&tte));
9551 		vaddr = tte_to_vaddr(hmeblkp, tte);
9552 		color = addr_to_vcolor(vaddr);
9553 
9554 #ifdef DEBUG
9555 		if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
9556 			ASSERT(color == bcolor);
9557 		}
9558 #endif
9559 
9560 		ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
9561 
9562 		ttemod = tte;
9563 		if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
9564 			TTE_CLR_VCACHEABLE(&ttemod);
9565 		} else {	/* flags & HAT_CACHE */
9566 			TTE_SET_VCACHEABLE(&ttemod);
9567 		}
9568 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
9569 		if (ret < 0) {
9570 			/*
9571 			 * Since all cpus are captured modifytte should not
9572 			 * fail.
9573 			 */
9574 			panic("sfmmu_page_cache: write to tte failed");
9575 		}
9576 
9577 		sfmmup = hblktosfmmu(hmeblkp);
9578 		if (cache_flush_flag == CACHE_FLUSH) {
9579 			/*
9580 			 * Flush TSBs, TLBs and caches
9581 			 */
9582 			if (hmeblkp->hblk_shared) {
9583 				sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9584 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
9585 				sf_region_t *rgnp;
9586 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9587 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9588 				ASSERT(srdp != NULL);
9589 				rgnp = srdp->srd_hmergnp[rid];
9590 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9591 				    srdp, rgnp, rid);
9592 				(void) sfmmu_rgntlb_demap(vaddr, rgnp,
9593 				    hmeblkp, 0);
9594 				sfmmu_cache_flush(pfn, addr_to_vcolor(vaddr));
9595 			} else if (sfmmup->sfmmu_ismhat) {
9596 				if (flags & HAT_CACHE) {
9597 					SFMMU_STAT(sf_ism_recache);
9598 				} else {
9599 					SFMMU_STAT(sf_ism_uncache);
9600 				}
9601 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9602 				    pfn, CACHE_FLUSH);
9603 			} else {
9604 				sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
9605 				    pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
9606 			}
9607 
9608 			/*
9609 			 * all cache entries belonging to this pfn are
9610 			 * now flushed.
9611 			 */
9612 			cache_flush_flag = CACHE_NO_FLUSH;
9613 		} else {
9614 			/*
9615 			 * Flush only TSBs and TLBs.
9616 			 */
9617 			if (hmeblkp->hblk_shared) {
9618 				sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9619 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
9620 				sf_region_t *rgnp;
9621 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9622 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9623 				ASSERT(srdp != NULL);
9624 				rgnp = srdp->srd_hmergnp[rid];
9625 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9626 				    srdp, rgnp, rid);
9627 				(void) sfmmu_rgntlb_demap(vaddr, rgnp,
9628 				    hmeblkp, 0);
9629 			} else if (sfmmup->sfmmu_ismhat) {
9630 				if (flags & HAT_CACHE) {
9631 					SFMMU_STAT(sf_ism_recache);
9632 				} else {
9633 					SFMMU_STAT(sf_ism_uncache);
9634 				}
9635 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9636 				    pfn, CACHE_NO_FLUSH);
9637 			} else {
9638 				sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
9639 			}
9640 		}
9641 	}
9642 
9643 	if (PP_ISMAPPED_KPM(pp))
9644 		sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
9645 
9646 	switch (flags) {
9647 
9648 		default:
9649 			panic("sfmmu_pagecache: unknown flags");
9650 			break;
9651 
9652 		case HAT_CACHE:
9653 			PP_CLRTNC(pp);
9654 			PP_CLRPNC(pp);
9655 			PP_SET_VCOLOR(pp, color);
9656 			break;
9657 
9658 		case HAT_TMPNC:
9659 			PP_SETTNC(pp);
9660 			PP_SET_VCOLOR(pp, NO_VCOLOR);
9661 			break;
9662 
9663 		case HAT_UNCACHE:
9664 			PP_SETPNC(pp);
9665 			PP_CLRTNC(pp);
9666 			PP_SET_VCOLOR(pp, NO_VCOLOR);
9667 			break;
9668 	}
9669 }
9670 #endif	/* VAC */
9671 
9672 
9673 /*
9674  * Wrapper routine used to return a context.
9675  *
9676  * It's the responsibility of the caller to guarantee that the
9677  * process serializes on calls here by taking the HAT lock for
9678  * the hat.
9679  *
9680  */
9681 static void
9682 sfmmu_get_ctx(sfmmu_t *sfmmup)
9683 {
9684 	mmu_ctx_t *mmu_ctxp;
9685 	uint_t pstate_save;
9686 	int ret;
9687 
9688 	ASSERT(sfmmu_hat_lock_held(sfmmup));
9689 	ASSERT(sfmmup != ksfmmup);
9690 
9691 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID)) {
9692 		sfmmu_setup_tsbinfo(sfmmup);
9693 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_ALLCTX_INVALID);
9694 	}
9695 
9696 	kpreempt_disable();
9697 
9698 	mmu_ctxp = CPU_MMU_CTXP(CPU);
9699 	ASSERT(mmu_ctxp);
9700 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
9701 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
9702 
9703 	/*
9704 	 * Do a wrap-around if cnum reaches the max # cnum supported by a MMU.
9705 	 */
9706 	if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs)
9707 		sfmmu_ctx_wrap_around(mmu_ctxp);
9708 
9709 	/*
9710 	 * Let the MMU set up the page sizes to use for
9711 	 * this context in the TLB. Don't program 2nd dtlb for ism hat.
9712 	 */
9713 	if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) {
9714 		mmu_set_ctx_page_sizes(sfmmup);
9715 	}
9716 
9717 	/*
9718 	 * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with
9719 	 * interrupts disabled to prevent race condition with wrap-around
9720 	 * ctx invalidatation. In sun4v, ctx invalidation also involves
9721 	 * a HV call to set the number of TSBs to 0. If interrupts are not
9722 	 * disabled until after sfmmu_load_mmustate is complete TSBs may
9723 	 * become assigned to INVALID_CONTEXT. This is not allowed.
9724 	 */
9725 	pstate_save = sfmmu_disable_intrs();
9726 
9727 	if (sfmmu_alloc_ctx(sfmmup, 1, CPU, SFMMU_PRIVATE) &&
9728 	    sfmmup->sfmmu_scdp != NULL) {
9729 		sf_scd_t *scdp = sfmmup->sfmmu_scdp;
9730 		sfmmu_t *scsfmmup = scdp->scd_sfmmup;
9731 		ret = sfmmu_alloc_ctx(scsfmmup, 1, CPU, SFMMU_SHARED);
9732 		/* debug purpose only */
9733 		ASSERT(!ret || scsfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
9734 		    != INVALID_CONTEXT);
9735 	}
9736 	sfmmu_load_mmustate(sfmmup);
9737 
9738 	sfmmu_enable_intrs(pstate_save);
9739 
9740 	kpreempt_enable();
9741 }
9742 
9743 /*
9744  * When all cnums are used up in a MMU, cnum will wrap around to the
9745  * next generation and start from 2.
9746  */
9747 static void
9748 sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp)
9749 {
9750 
9751 	/* caller must have disabled the preemption */
9752 	ASSERT(curthread->t_preempt >= 1);
9753 	ASSERT(mmu_ctxp != NULL);
9754 
9755 	/* acquire Per-MMU (PM) spin lock */
9756 	mutex_enter(&mmu_ctxp->mmu_lock);
9757 
9758 	/* re-check to see if wrap-around is needed */
9759 	if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs)
9760 		goto done;
9761 
9762 	SFMMU_MMU_STAT(mmu_wrap_around);
9763 
9764 	/* update gnum */
9765 	ASSERT(mmu_ctxp->mmu_gnum != 0);
9766 	mmu_ctxp->mmu_gnum++;
9767 	if (mmu_ctxp->mmu_gnum == 0 ||
9768 	    mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) {
9769 		cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.",
9770 		    (void *)mmu_ctxp);
9771 	}
9772 
9773 	if (mmu_ctxp->mmu_ncpus > 1) {
9774 		cpuset_t cpuset;
9775 
9776 		membar_enter(); /* make sure updated gnum visible */
9777 
9778 		SFMMU_XCALL_STATS(NULL);
9779 
9780 		/* xcall to others on the same MMU to invalidate ctx */
9781 		cpuset = mmu_ctxp->mmu_cpuset;
9782 		ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id));
9783 		CPUSET_DEL(cpuset, CPU->cpu_id);
9784 		CPUSET_AND(cpuset, cpu_ready_set);
9785 
9786 		/*
9787 		 * Pass in INVALID_CONTEXT as the first parameter to
9788 		 * sfmmu_raise_tsb_exception, which invalidates the context
9789 		 * of any process running on the CPUs in the MMU.
9790 		 */
9791 		xt_some(cpuset, sfmmu_raise_tsb_exception,
9792 		    INVALID_CONTEXT, INVALID_CONTEXT);
9793 		xt_sync(cpuset);
9794 
9795 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
9796 	}
9797 
9798 	if (sfmmu_getctx_sec() != INVALID_CONTEXT) {
9799 		sfmmu_setctx_sec(INVALID_CONTEXT);
9800 		sfmmu_clear_utsbinfo();
9801 	}
9802 
9803 	/*
9804 	 * No xcall is needed here. For sun4u systems all CPUs in context
9805 	 * domain share a single physical MMU therefore it's enough to flush
9806 	 * TLB on local CPU. On sun4v systems we use 1 global context
9807 	 * domain and flush all remote TLBs in sfmmu_raise_tsb_exception
9808 	 * handler. Note that vtag_flushall_uctxs() is called
9809 	 * for Ultra II machine, where the equivalent flushall functionality
9810 	 * is implemented in SW, and only user ctx TLB entries are flushed.
9811 	 */
9812 	if (&vtag_flushall_uctxs != NULL) {
9813 		vtag_flushall_uctxs();
9814 	} else {
9815 		vtag_flushall();
9816 	}
9817 
9818 	/* reset mmu cnum, skips cnum 0 and 1 */
9819 	mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
9820 
9821 done:
9822 	mutex_exit(&mmu_ctxp->mmu_lock);
9823 }
9824 
9825 
9826 /*
9827  * For multi-threaded process, set the process context to INVALID_CONTEXT
9828  * so that it faults and reloads the MMU state from TL=0. For single-threaded
9829  * process, we can just load the MMU state directly without having to
9830  * set context invalid. Caller must hold the hat lock since we don't
9831  * acquire it here.
9832  */
9833 static void
9834 sfmmu_sync_mmustate(sfmmu_t *sfmmup)
9835 {
9836 	uint_t cnum;
9837 	uint_t pstate_save;
9838 
9839 	ASSERT(sfmmup != ksfmmup);
9840 	ASSERT(sfmmu_hat_lock_held(sfmmup));
9841 
9842 	kpreempt_disable();
9843 
9844 	/*
9845 	 * We check whether the pass'ed-in sfmmup is the same as the
9846 	 * current running proc. This is to makes sure the current proc
9847 	 * stays single-threaded if it already is.
9848 	 */
9849 	if ((sfmmup == curthread->t_procp->p_as->a_hat) &&
9850 	    (curthread->t_procp->p_lwpcnt == 1)) {
9851 		/* single-thread */
9852 		cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum;
9853 		if (cnum != INVALID_CONTEXT) {
9854 			uint_t curcnum;
9855 			/*
9856 			 * Disable interrupts to prevent race condition
9857 			 * with sfmmu_ctx_wrap_around ctx invalidation.
9858 			 * In sun4v, ctx invalidation involves setting
9859 			 * TSB to NULL, hence, interrupts should be disabled
9860 			 * untill after sfmmu_load_mmustate is completed.
9861 			 */
9862 			pstate_save = sfmmu_disable_intrs();
9863 			curcnum = sfmmu_getctx_sec();
9864 			if (curcnum == cnum)
9865 				sfmmu_load_mmustate(sfmmup);
9866 			sfmmu_enable_intrs(pstate_save);
9867 			ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT);
9868 		}
9869 	} else {
9870 		/*
9871 		 * multi-thread
9872 		 * or when sfmmup is not the same as the curproc.
9873 		 */
9874 		sfmmu_invalidate_ctx(sfmmup);
9875 	}
9876 
9877 	kpreempt_enable();
9878 }
9879 
9880 
9881 /*
9882  * Replace the specified TSB with a new TSB.  This function gets called when
9883  * we grow, shrink or swapin a TSB.  When swapping in a TSB (TSB_SWAPIN), the
9884  * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
9885  * (8K).
9886  *
9887  * Caller must hold the HAT lock, but should assume any tsb_info
9888  * pointers it has are no longer valid after calling this function.
9889  *
9890  * Return values:
9891  *	TSB_ALLOCFAIL	Failed to allocate a TSB, due to memory constraints
9892  *	TSB_LOSTRACE	HAT is busy, i.e. another thread is already doing
9893  *			something to this tsbinfo/TSB
9894  *	TSB_SUCCESS	Operation succeeded
9895  */
9896 static tsb_replace_rc_t
9897 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
9898     hatlock_t *hatlockp, uint_t flags)
9899 {
9900 	struct tsb_info *new_tsbinfo = NULL;
9901 	struct tsb_info *curtsb, *prevtsb;
9902 	uint_t tte_sz_mask;
9903 	int i;
9904 
9905 	ASSERT(sfmmup != ksfmmup);
9906 	ASSERT(sfmmup->sfmmu_ismhat == 0);
9907 	ASSERT(sfmmu_hat_lock_held(sfmmup));
9908 	ASSERT(szc <= tsb_max_growsize);
9909 
9910 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
9911 		return (TSB_LOSTRACE);
9912 
9913 	/*
9914 	 * Find the tsb_info ahead of this one in the list, and
9915 	 * also make sure that the tsb_info passed in really
9916 	 * exists!
9917 	 */
9918 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
9919 	    curtsb != old_tsbinfo && curtsb != NULL;
9920 	    prevtsb = curtsb, curtsb = curtsb->tsb_next)
9921 		;
9922 	ASSERT(curtsb != NULL);
9923 
9924 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
9925 		/*
9926 		 * The process is swapped out, so just set the new size
9927 		 * code.  When it swaps back in, we'll allocate a new one
9928 		 * of the new chosen size.
9929 		 */
9930 		curtsb->tsb_szc = szc;
9931 		return (TSB_SUCCESS);
9932 	}
9933 	SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
9934 
9935 	tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
9936 
9937 	/*
9938 	 * All initialization is done inside of sfmmu_tsbinfo_alloc().
9939 	 * If we fail to allocate a TSB, exit.
9940 	 *
9941 	 * If tsb grows with new tsb size > 4M and old tsb size < 4M,
9942 	 * then try 4M slab after the initial alloc fails.
9943 	 *
9944 	 * If tsb swapin with tsb size > 4M, then try 4M after the
9945 	 * initial alloc fails.
9946 	 */
9947 	sfmmu_hat_exit(hatlockp);
9948 	if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc,
9949 	    tte_sz_mask, flags, sfmmup) &&
9950 	    (!(flags & (TSB_GROW | TSB_SWAPIN)) || (szc <= TSB_4M_SZCODE) ||
9951 	    (!(flags & TSB_SWAPIN) &&
9952 	    (old_tsbinfo->tsb_szc >= TSB_4M_SZCODE)) ||
9953 	    sfmmu_tsbinfo_alloc(&new_tsbinfo, TSB_4M_SZCODE,
9954 	    tte_sz_mask, flags, sfmmup))) {
9955 		(void) sfmmu_hat_enter(sfmmup);
9956 		if (!(flags & TSB_SWAPIN))
9957 			SFMMU_STAT(sf_tsb_resize_failures);
9958 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9959 		return (TSB_ALLOCFAIL);
9960 	}
9961 	(void) sfmmu_hat_enter(sfmmup);
9962 
9963 	/*
9964 	 * Re-check to make sure somebody else didn't muck with us while we
9965 	 * didn't hold the HAT lock.  If the process swapped out, fine, just
9966 	 * exit; this can happen if we try to shrink the TSB from the context
9967 	 * of another process (such as on an ISM unmap), though it is rare.
9968 	 */
9969 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
9970 		SFMMU_STAT(sf_tsb_resize_failures);
9971 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9972 		sfmmu_hat_exit(hatlockp);
9973 		sfmmu_tsbinfo_free(new_tsbinfo);
9974 		(void) sfmmu_hat_enter(sfmmup);
9975 		return (TSB_LOSTRACE);
9976 	}
9977 
9978 #ifdef	DEBUG
9979 	/* Reverify that the tsb_info still exists.. for debugging only */
9980 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
9981 	    curtsb != old_tsbinfo && curtsb != NULL;
9982 	    prevtsb = curtsb, curtsb = curtsb->tsb_next)
9983 		;
9984 	ASSERT(curtsb != NULL);
9985 #endif	/* DEBUG */
9986 
9987 	/*
9988 	 * Quiesce any CPUs running this process on their next TLB miss
9989 	 * so they atomically see the new tsb_info.  We temporarily set the
9990 	 * context to invalid context so new threads that come on processor
9991 	 * after we do the xcall to cpusran will also serialize behind the
9992 	 * HAT lock on TLB miss and will see the new TSB.  Since this short
9993 	 * race with a new thread coming on processor is relatively rare,
9994 	 * this synchronization mechanism should be cheaper than always
9995 	 * pausing all CPUs for the duration of the setup, which is what
9996 	 * the old implementation did.  This is particuarly true if we are
9997 	 * copying a huge chunk of memory around during that window.
9998 	 *
9999 	 * The memory barriers are to make sure things stay consistent
10000 	 * with resume() since it does not hold the HAT lock while
10001 	 * walking the list of tsb_info structures.
10002 	 */
10003 	if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
10004 		/* The TSB is either growing or shrinking. */
10005 		sfmmu_invalidate_ctx(sfmmup);
10006 	} else {
10007 		/*
10008 		 * It is illegal to swap in TSBs from a process other
10009 		 * than a process being swapped in.  This in turn
10010 		 * implies we do not have a valid MMU context here
10011 		 * since a process needs one to resolve translation
10012 		 * misses.
10013 		 */
10014 		ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
10015 	}
10016 
10017 #ifdef DEBUG
10018 	ASSERT(max_mmu_ctxdoms > 0);
10019 
10020 	/*
10021 	 * Process should have INVALID_CONTEXT on all MMUs
10022 	 */
10023 	for (i = 0; i < max_mmu_ctxdoms; i++) {
10024 
10025 		ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
10026 	}
10027 #endif
10028 
10029 	new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
10030 	membar_stst();	/* strict ordering required */
10031 	if (prevtsb)
10032 		prevtsb->tsb_next = new_tsbinfo;
10033 	else
10034 		sfmmup->sfmmu_tsb = new_tsbinfo;
10035 	membar_enter();	/* make sure new TSB globally visible */
10036 
10037 	/*
10038 	 * We need to migrate TSB entries from the old TSB to the new TSB
10039 	 * if tsb_remap_ttes is set and the TSB is growing.
10040 	 */
10041 	if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
10042 		sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
10043 
10044 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
10045 
10046 	/*
10047 	 * Drop the HAT lock to free our old tsb_info.
10048 	 */
10049 	sfmmu_hat_exit(hatlockp);
10050 
10051 	if ((flags & TSB_GROW) == TSB_GROW) {
10052 		SFMMU_STAT(sf_tsb_grow);
10053 	} else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
10054 		SFMMU_STAT(sf_tsb_shrink);
10055 	}
10056 
10057 	sfmmu_tsbinfo_free(old_tsbinfo);
10058 
10059 	(void) sfmmu_hat_enter(sfmmup);
10060 	return (TSB_SUCCESS);
10061 }
10062 
10063 /*
10064  * This function will re-program hat pgsz array, and invalidate the
10065  * process' context, forcing the process to switch to another
10066  * context on the next TLB miss, and therefore start using the
10067  * TLB that is reprogrammed for the new page sizes.
10068  */
10069 void
10070 sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
10071 {
10072 	int i;
10073 	hatlock_t *hatlockp = NULL;
10074 
10075 	hatlockp = sfmmu_hat_enter(sfmmup);
10076 	/* USIII+-IV+ optimization, requires hat lock */
10077 	if (tmp_pgsz) {
10078 		for (i = 0; i < mmu_page_sizes; i++)
10079 			sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
10080 	}
10081 	SFMMU_STAT(sf_tlb_reprog_pgsz);
10082 
10083 	sfmmu_invalidate_ctx(sfmmup);
10084 
10085 	sfmmu_hat_exit(hatlockp);
10086 }
10087 
10088 /*
10089  * The scd_rttecnt field in the SCD must be updated to take account of the
10090  * regions which it contains.
10091  */
10092 static void
10093 sfmmu_set_scd_rttecnt(sf_srd_t *srdp, sf_scd_t *scdp)
10094 {
10095 	uint_t rid;
10096 	uint_t i, j;
10097 	ulong_t w;
10098 	sf_region_t *rgnp;
10099 
10100 	ASSERT(srdp != NULL);
10101 
10102 	for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
10103 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
10104 			continue;
10105 		}
10106 
10107 		j = 0;
10108 		while (w) {
10109 			if (!(w & 0x1)) {
10110 				j++;
10111 				w >>= 1;
10112 				continue;
10113 			}
10114 			rid = (i << BT_ULSHIFT) | j;
10115 			j++;
10116 			w >>= 1;
10117 
10118 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
10119 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
10120 			rgnp = srdp->srd_hmergnp[rid];
10121 			ASSERT(rgnp->rgn_refcnt > 0);
10122 			ASSERT(rgnp->rgn_id == rid);
10123 
10124 			scdp->scd_rttecnt[rgnp->rgn_pgszc] +=
10125 			    rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
10126 
10127 			/*
10128 			 * Maintain the tsb0 inflation cnt for the regions
10129 			 * in the SCD.
10130 			 */
10131 			if (rgnp->rgn_pgszc >= TTE4M) {
10132 				scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt +=
10133 				    rgnp->rgn_size >>
10134 				    (TTE_PAGE_SHIFT(TTE8K) + 2);
10135 			}
10136 		}
10137 	}
10138 }
10139 
10140 /*
10141  * This function assumes that there are either four or six supported page
10142  * sizes and at most two programmable TLBs, so we need to decide which
10143  * page sizes are most important and then tell the MMU layer so it
10144  * can adjust the TLB page sizes accordingly (if supported).
10145  *
10146  * If these assumptions change, this function will need to be
10147  * updated to support whatever the new limits are.
10148  *
10149  * The growing flag is nonzero if we are growing the address space,
10150  * and zero if it is shrinking.  This allows us to decide whether
10151  * to grow or shrink our TSB, depending upon available memory
10152  * conditions.
10153  */
10154 static void
10155 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
10156 {
10157 	uint64_t ttecnt[MMU_PAGE_SIZES];
10158 	uint64_t tte8k_cnt, tte4m_cnt;
10159 	uint8_t i;
10160 	int sectsb_thresh;
10161 
10162 	/*
10163 	 * Kernel threads, processes with small address spaces not using
10164 	 * large pages, and dummy ISM HATs need not apply.
10165 	 */
10166 	if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL)
10167 		return;
10168 
10169 	if (!SFMMU_LGPGS_INUSE(sfmmup) &&
10170 	    sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
10171 		return;
10172 
10173 	for (i = 0; i < mmu_page_sizes; i++) {
10174 		ttecnt[i] = sfmmup->sfmmu_ttecnt[i] +
10175 		    sfmmup->sfmmu_ismttecnt[i];
10176 	}
10177 
10178 	/* Check pagesizes in use, and possibly reprogram DTLB. */
10179 	if (&mmu_check_page_sizes)
10180 		mmu_check_page_sizes(sfmmup, ttecnt);
10181 
10182 	/*
10183 	 * Calculate the number of 8k ttes to represent the span of these
10184 	 * pages.
10185 	 */
10186 	tte8k_cnt = ttecnt[TTE8K] +
10187 	    (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
10188 	    (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
10189 	if (mmu_page_sizes == max_mmu_page_sizes) {
10190 		tte4m_cnt = ttecnt[TTE4M] +
10191 		    (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
10192 		    (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
10193 	} else {
10194 		tte4m_cnt = ttecnt[TTE4M];
10195 	}
10196 
10197 	/*
10198 	 * Inflate tte8k_cnt to allow for region large page allocation failure.
10199 	 */
10200 	tte8k_cnt += sfmmup->sfmmu_tsb0_4minflcnt;
10201 
10202 	/*
10203 	 * Inflate TSB sizes by a factor of 2 if this process
10204 	 * uses 4M text pages to minimize extra conflict misses
10205 	 * in the first TSB since without counting text pages
10206 	 * 8K TSB may become too small.
10207 	 *
10208 	 * Also double the size of the second TSB to minimize
10209 	 * extra conflict misses due to competition between 4M text pages
10210 	 * and data pages.
10211 	 *
10212 	 * We need to adjust the second TSB allocation threshold by the
10213 	 * inflation factor, since there is no point in creating a second
10214 	 * TSB when we know all the mappings can fit in the I/D TLBs.
10215 	 */
10216 	sectsb_thresh = tsb_sectsb_threshold;
10217 	if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
10218 		tte8k_cnt <<= 1;
10219 		tte4m_cnt <<= 1;
10220 		sectsb_thresh <<= 1;
10221 	}
10222 
10223 	/*
10224 	 * Check to see if our TSB is the right size; we may need to
10225 	 * grow or shrink it.  If the process is small, our work is
10226 	 * finished at this point.
10227 	 */
10228 	if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
10229 		return;
10230 	}
10231 	sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
10232 }
10233 
10234 static void
10235 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
10236 	uint64_t tte4m_cnt, int sectsb_thresh)
10237 {
10238 	int tsb_bits;
10239 	uint_t tsb_szc;
10240 	struct tsb_info *tsbinfop;
10241 	hatlock_t *hatlockp = NULL;
10242 
10243 	hatlockp = sfmmu_hat_enter(sfmmup);
10244 	ASSERT(hatlockp != NULL);
10245 	tsbinfop = sfmmup->sfmmu_tsb;
10246 	ASSERT(tsbinfop != NULL);
10247 
10248 	/*
10249 	 * If we're growing, select the size based on RSS.  If we're
10250 	 * shrinking, leave some room so we don't have to turn around and
10251 	 * grow again immediately.
10252 	 */
10253 	if (growing)
10254 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
10255 	else
10256 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
10257 
10258 	if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10259 	    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10260 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10261 		    hatlockp, TSB_SHRINK);
10262 	} else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
10263 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10264 		    hatlockp, TSB_GROW);
10265 	}
10266 	tsbinfop = sfmmup->sfmmu_tsb;
10267 
10268 	/*
10269 	 * With the TLB and first TSB out of the way, we need to see if
10270 	 * we need a second TSB for 4M pages.  If we managed to reprogram
10271 	 * the TLB page sizes above, the process will start using this new
10272 	 * TSB right away; otherwise, it will start using it on the next
10273 	 * context switch.  Either way, it's no big deal so there's no
10274 	 * synchronization with the trap handlers here unless we grow the
10275 	 * TSB (in which case it's required to prevent using the old one
10276 	 * after it's freed). Note: second tsb is required for 32M/256M
10277 	 * page sizes.
10278 	 */
10279 	if (tte4m_cnt > sectsb_thresh) {
10280 		/*
10281 		 * If we're growing, select the size based on RSS.  If we're
10282 		 * shrinking, leave some room so we don't have to turn
10283 		 * around and grow again immediately.
10284 		 */
10285 		if (growing)
10286 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
10287 		else
10288 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
10289 		if (tsbinfop->tsb_next == NULL) {
10290 			struct tsb_info *newtsb;
10291 			int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
10292 			    0 : TSB_ALLOC;
10293 
10294 			sfmmu_hat_exit(hatlockp);
10295 
10296 			/*
10297 			 * Try to allocate a TSB for 4[32|256]M pages.  If we
10298 			 * can't get the size we want, retry w/a minimum sized
10299 			 * TSB.  If that still didn't work, give up; we can
10300 			 * still run without one.
10301 			 */
10302 			tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
10303 			    TSB4M|TSB32M|TSB256M:TSB4M;
10304 			if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
10305 			    allocflags, sfmmup)) &&
10306 			    (tsb_szc <= TSB_4M_SZCODE ||
10307 			    sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
10308 			    tsb_bits, allocflags, sfmmup)) &&
10309 			    sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
10310 			    tsb_bits, allocflags, sfmmup)) {
10311 				return;
10312 			}
10313 
10314 			hatlockp = sfmmu_hat_enter(sfmmup);
10315 
10316 			sfmmu_invalidate_ctx(sfmmup);
10317 
10318 			if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
10319 				sfmmup->sfmmu_tsb->tsb_next = newtsb;
10320 				SFMMU_STAT(sf_tsb_sectsb_create);
10321 				sfmmu_hat_exit(hatlockp);
10322 				return;
10323 			} else {
10324 				/*
10325 				 * It's annoying, but possible for us
10326 				 * to get here.. we dropped the HAT lock
10327 				 * because of locking order in the kmem
10328 				 * allocator, and while we were off getting
10329 				 * our memory, some other thread decided to
10330 				 * do us a favor and won the race to get a
10331 				 * second TSB for this process.  Sigh.
10332 				 */
10333 				sfmmu_hat_exit(hatlockp);
10334 				sfmmu_tsbinfo_free(newtsb);
10335 				return;
10336 			}
10337 		}
10338 
10339 		/*
10340 		 * We have a second TSB, see if it's big enough.
10341 		 */
10342 		tsbinfop = tsbinfop->tsb_next;
10343 
10344 		/*
10345 		 * Check to see if our second TSB is the right size;
10346 		 * we may need to grow or shrink it.
10347 		 * To prevent thrashing (e.g. growing the TSB on a
10348 		 * subsequent map operation), only try to shrink if
10349 		 * the TSB reach exceeds twice the virtual address
10350 		 * space size.
10351 		 */
10352 		if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10353 		    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10354 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10355 			    tsb_szc, hatlockp, TSB_SHRINK);
10356 		} else if (growing && tsb_szc > tsbinfop->tsb_szc &&
10357 		    TSB_OK_GROW()) {
10358 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10359 			    tsb_szc, hatlockp, TSB_GROW);
10360 		}
10361 	}
10362 
10363 	sfmmu_hat_exit(hatlockp);
10364 }
10365 
10366 /*
10367  * Free up a sfmmu
10368  * Since the sfmmu is currently embedded in the hat struct we simply zero
10369  * out our fields and free up the ism map blk list if any.
10370  */
10371 static void
10372 sfmmu_free_sfmmu(sfmmu_t *sfmmup)
10373 {
10374 	ism_blk_t	*blkp, *nx_blkp;
10375 #ifdef	DEBUG
10376 	ism_map_t	*map;
10377 	int 		i;
10378 #endif
10379 
10380 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
10381 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
10382 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
10383 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
10384 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
10385 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
10386 	ASSERT(SF_RGNMAP_ISNULL(sfmmup));
10387 
10388 	sfmmup->sfmmu_free = 0;
10389 	sfmmup->sfmmu_ismhat = 0;
10390 
10391 	blkp = sfmmup->sfmmu_iblk;
10392 	sfmmup->sfmmu_iblk = NULL;
10393 
10394 	while (blkp) {
10395 #ifdef	DEBUG
10396 		map = blkp->iblk_maps;
10397 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
10398 			ASSERT(map[i].imap_seg == 0);
10399 			ASSERT(map[i].imap_ismhat == NULL);
10400 			ASSERT(map[i].imap_ment == NULL);
10401 		}
10402 #endif
10403 		nx_blkp = blkp->iblk_next;
10404 		blkp->iblk_next = NULL;
10405 		blkp->iblk_nextpa = (uint64_t)-1;
10406 		kmem_cache_free(ism_blk_cache, blkp);
10407 		blkp = nx_blkp;
10408 	}
10409 }
10410 
10411 /*
10412  * Locking primitves accessed by HATLOCK macros
10413  */
10414 
10415 #define	SFMMU_SPL_MTX	(0x0)
10416 #define	SFMMU_ML_MTX	(0x1)
10417 
10418 #define	SFMMU_MLSPL_MTX(type, pg)	(((type) == SFMMU_SPL_MTX) ? \
10419 					    SPL_HASH(pg) : MLIST_HASH(pg))
10420 
10421 kmutex_t *
10422 sfmmu_page_enter(struct page *pp)
10423 {
10424 	return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
10425 }
10426 
10427 void
10428 sfmmu_page_exit(kmutex_t *spl)
10429 {
10430 	mutex_exit(spl);
10431 }
10432 
10433 int
10434 sfmmu_page_spl_held(struct page *pp)
10435 {
10436 	return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
10437 }
10438 
10439 kmutex_t *
10440 sfmmu_mlist_enter(struct page *pp)
10441 {
10442 	return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
10443 }
10444 
10445 void
10446 sfmmu_mlist_exit(kmutex_t *mml)
10447 {
10448 	mutex_exit(mml);
10449 }
10450 
10451 int
10452 sfmmu_mlist_held(struct page *pp)
10453 {
10454 
10455 	return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
10456 }
10457 
10458 /*
10459  * Common code for sfmmu_mlist_enter() and sfmmu_page_enter().  For
10460  * sfmmu_mlist_enter() case mml_table lock array is used and for
10461  * sfmmu_page_enter() sfmmu_page_lock lock array is used.
10462  *
10463  * The lock is taken on a root page so that it protects an operation on all
10464  * constituent pages of a large page pp belongs to.
10465  *
10466  * The routine takes a lock from the appropriate array. The lock is determined
10467  * by hashing the root page. After taking the lock this routine checks if the
10468  * root page has the same size code that was used to determine the root (i.e
10469  * that root hasn't changed).  If root page has the expected p_szc field we
10470  * have the right lock and it's returned to the caller. If root's p_szc
10471  * decreased we release the lock and retry from the beginning.  This case can
10472  * happen due to hat_page_demote() decreasing p_szc between our load of p_szc
10473  * value and taking the lock. The number of retries due to p_szc decrease is
10474  * limited by the maximum p_szc value. If p_szc is 0 we return the lock
10475  * determined by hashing pp itself.
10476  *
10477  * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
10478  * possible that p_szc can increase. To increase p_szc a thread has to lock
10479  * all constituent pages EXCL and do hat_pageunload() on all of them. All the
10480  * callers that don't hold a page locked recheck if hmeblk through which pp
10481  * was found still maps this pp.  If it doesn't map it anymore returned lock
10482  * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
10483  * p_szc increase after taking the lock it returns this lock without further
10484  * retries because in this case the caller doesn't care about which lock was
10485  * taken. The caller will drop it right away.
10486  *
10487  * After the routine returns it's guaranteed that hat_page_demote() can't
10488  * change p_szc field of any of constituent pages of a large page pp belongs
10489  * to as long as pp was either locked at least SHARED prior to this call or
10490  * the caller finds that hment that pointed to this pp still references this
10491  * pp (this also assumes that the caller holds hme hash bucket lock so that
10492  * the same pp can't be remapped into the same hmeblk after it was unmapped by
10493  * hat_pageunload()).
10494  */
10495 static kmutex_t *
10496 sfmmu_mlspl_enter(struct page *pp, int type)
10497 {
10498 	kmutex_t	*mtx;
10499 	uint_t		prev_rszc = UINT_MAX;
10500 	page_t		*rootpp;
10501 	uint_t		szc;
10502 	uint_t		rszc;
10503 	uint_t		pszc = pp->p_szc;
10504 
10505 	ASSERT(pp != NULL);
10506 
10507 again:
10508 	if (pszc == 0) {
10509 		mtx = SFMMU_MLSPL_MTX(type, pp);
10510 		mutex_enter(mtx);
10511 		return (mtx);
10512 	}
10513 
10514 	/* The lock lives in the root page */
10515 	rootpp = PP_GROUPLEADER(pp, pszc);
10516 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
10517 	mutex_enter(mtx);
10518 
10519 	/*
10520 	 * Return mml in the following 3 cases:
10521 	 *
10522 	 * 1) If pp itself is root since if its p_szc decreased before we took
10523 	 * the lock pp is still the root of smaller szc page. And if its p_szc
10524 	 * increased it doesn't matter what lock we return (see comment in
10525 	 * front of this routine).
10526 	 *
10527 	 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
10528 	 * large page we have the right lock since any previous potential
10529 	 * hat_page_demote() is done demoting from greater than current root's
10530 	 * p_szc because hat_page_demote() changes root's p_szc last. No
10531 	 * further hat_page_demote() can start or be in progress since it
10532 	 * would need the same lock we currently hold.
10533 	 *
10534 	 * 3) If rootpp's p_szc increased since previous iteration it doesn't
10535 	 * matter what lock we return (see comment in front of this routine).
10536 	 */
10537 	if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
10538 	    rszc >= prev_rszc) {
10539 		return (mtx);
10540 	}
10541 
10542 	/*
10543 	 * hat_page_demote() could have decreased root's p_szc.
10544 	 * In this case pp's p_szc must also be smaller than pszc.
10545 	 * Retry.
10546 	 */
10547 	if (rszc < pszc) {
10548 		szc = pp->p_szc;
10549 		if (szc < pszc) {
10550 			mutex_exit(mtx);
10551 			pszc = szc;
10552 			goto again;
10553 		}
10554 		/*
10555 		 * pp's p_szc increased after it was decreased.
10556 		 * page cannot be mapped. Return current lock. The caller
10557 		 * will drop it right away.
10558 		 */
10559 		return (mtx);
10560 	}
10561 
10562 	/*
10563 	 * root's p_szc is greater than pp's p_szc.
10564 	 * hat_page_demote() is not done with all pages
10565 	 * yet. Wait for it to complete.
10566 	 */
10567 	mutex_exit(mtx);
10568 	rootpp = PP_GROUPLEADER(rootpp, rszc);
10569 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
10570 	mutex_enter(mtx);
10571 	mutex_exit(mtx);
10572 	prev_rszc = rszc;
10573 	goto again;
10574 }
10575 
10576 static int
10577 sfmmu_mlspl_held(struct page *pp, int type)
10578 {
10579 	kmutex_t	*mtx;
10580 
10581 	ASSERT(pp != NULL);
10582 	/* The lock lives in the root page */
10583 	pp = PP_PAGEROOT(pp);
10584 	ASSERT(pp != NULL);
10585 
10586 	mtx = SFMMU_MLSPL_MTX(type, pp);
10587 	return (MUTEX_HELD(mtx));
10588 }
10589 
10590 static uint_t
10591 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
10592 {
10593 	struct  hme_blk *hblkp;
10594 
10595 	if (freehblkp != NULL) {
10596 		mutex_enter(&freehblkp_lock);
10597 		if (freehblkp != NULL) {
10598 			/*
10599 			 * If the current thread is owning hblk_reserve OR
10600 			 * critical request from sfmmu_hblk_steal()
10601 			 * let it succeed even if freehblkcnt is really low.
10602 			 */
10603 			if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
10604 				SFMMU_STAT(sf_get_free_throttle);
10605 				mutex_exit(&freehblkp_lock);
10606 				return (0);
10607 			}
10608 			freehblkcnt--;
10609 			*hmeblkpp = freehblkp;
10610 			hblkp = *hmeblkpp;
10611 			freehblkp = hblkp->hblk_next;
10612 			mutex_exit(&freehblkp_lock);
10613 			hblkp->hblk_next = NULL;
10614 			SFMMU_STAT(sf_get_free_success);
10615 			return (1);
10616 		}
10617 		mutex_exit(&freehblkp_lock);
10618 	}
10619 	SFMMU_STAT(sf_get_free_fail);
10620 	return (0);
10621 }
10622 
10623 static uint_t
10624 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
10625 {
10626 	struct  hme_blk *hblkp;
10627 
10628 	/*
10629 	 * If the current thread is mapping into kernel space,
10630 	 * let it succede even if freehblkcnt is max
10631 	 * so that it will avoid freeing it to kmem.
10632 	 * This will prevent stack overflow due to
10633 	 * possible recursion since kmem_cache_free()
10634 	 * might require creation of a slab which
10635 	 * in turn needs an hmeblk to map that slab;
10636 	 * let's break this vicious chain at the first
10637 	 * opportunity.
10638 	 */
10639 	if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10640 		mutex_enter(&freehblkp_lock);
10641 		if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10642 			SFMMU_STAT(sf_put_free_success);
10643 			freehblkcnt++;
10644 			hmeblkp->hblk_next = freehblkp;
10645 			freehblkp = hmeblkp;
10646 			mutex_exit(&freehblkp_lock);
10647 			return (1);
10648 		}
10649 		mutex_exit(&freehblkp_lock);
10650 	}
10651 
10652 	/*
10653 	 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
10654 	 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
10655 	 * we are not in the process of mapping into kernel space.
10656 	 */
10657 	ASSERT(!critical);
10658 	while (freehblkcnt > HBLK_RESERVE_CNT) {
10659 		mutex_enter(&freehblkp_lock);
10660 		if (freehblkcnt > HBLK_RESERVE_CNT) {
10661 			freehblkcnt--;
10662 			hblkp = freehblkp;
10663 			freehblkp = hblkp->hblk_next;
10664 			mutex_exit(&freehblkp_lock);
10665 			ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
10666 			kmem_cache_free(sfmmu8_cache, hblkp);
10667 			continue;
10668 		}
10669 		mutex_exit(&freehblkp_lock);
10670 	}
10671 	SFMMU_STAT(sf_put_free_fail);
10672 	return (0);
10673 }
10674 
10675 static void
10676 sfmmu_hblk_swap(struct hme_blk *new)
10677 {
10678 	struct hme_blk *old, *hblkp, *prev;
10679 	uint64_t hblkpa, prevpa, newpa;
10680 	caddr_t	base, vaddr, endaddr;
10681 	struct hmehash_bucket *hmebp;
10682 	struct sf_hment *osfhme, *nsfhme;
10683 	page_t *pp;
10684 	kmutex_t *pml;
10685 	tte_t tte;
10686 
10687 #ifdef	DEBUG
10688 	hmeblk_tag		hblktag;
10689 	struct hme_blk		*found;
10690 #endif
10691 	old = HBLK_RESERVE;
10692 	ASSERT(!old->hblk_shared);
10693 
10694 	/*
10695 	 * save pa before bcopy clobbers it
10696 	 */
10697 	newpa = new->hblk_nextpa;
10698 
10699 	base = (caddr_t)get_hblk_base(old);
10700 	endaddr = base + get_hblk_span(old);
10701 
10702 	/*
10703 	 * acquire hash bucket lock.
10704 	 */
10705 	hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K,
10706 	    SFMMU_INVALID_SHMERID);
10707 
10708 	/*
10709 	 * copy contents from old to new
10710 	 */
10711 	bcopy((void *)old, (void *)new, HME8BLK_SZ);
10712 
10713 	/*
10714 	 * add new to hash chain
10715 	 */
10716 	sfmmu_hblk_hash_add(hmebp, new, newpa);
10717 
10718 	/*
10719 	 * search hash chain for hblk_reserve; this needs to be performed
10720 	 * after adding new, otherwise prevpa and prev won't correspond
10721 	 * to the hblk which is prior to old in hash chain when we call
10722 	 * sfmmu_hblk_hash_rm to remove old later.
10723 	 */
10724 	for (prevpa = 0, prev = NULL,
10725 	    hblkpa = hmebp->hmeh_nextpa, hblkp = hmebp->hmeblkp;
10726 	    hblkp != NULL && hblkp != old;
10727 	    prevpa = hblkpa, prev = hblkp,
10728 	    hblkpa = hblkp->hblk_nextpa, hblkp = hblkp->hblk_next)
10729 		;
10730 
10731 	if (hblkp != old)
10732 		panic("sfmmu_hblk_swap: hblk_reserve not found");
10733 
10734 	/*
10735 	 * p_mapping list is still pointing to hments in hblk_reserve;
10736 	 * fix up p_mapping list so that they point to hments in new.
10737 	 *
10738 	 * Since all these mappings are created by hblk_reserve_thread
10739 	 * on the way and it's using at least one of the buffers from each of
10740 	 * the newly minted slabs, there is no danger of any of these
10741 	 * mappings getting unloaded by another thread.
10742 	 *
10743 	 * tsbmiss could only modify ref/mod bits of hments in old/new.
10744 	 * Since all of these hments hold mappings established by segkmem
10745 	 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
10746 	 * have no meaning for the mappings in hblk_reserve.  hments in
10747 	 * old and new are identical except for ref/mod bits.
10748 	 */
10749 	for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
10750 
10751 		HBLKTOHME(osfhme, old, vaddr);
10752 		sfmmu_copytte(&osfhme->hme_tte, &tte);
10753 
10754 		if (TTE_IS_VALID(&tte)) {
10755 			if ((pp = osfhme->hme_page) == NULL)
10756 				panic("sfmmu_hblk_swap: page not mapped");
10757 
10758 			pml = sfmmu_mlist_enter(pp);
10759 
10760 			if (pp != osfhme->hme_page)
10761 				panic("sfmmu_hblk_swap: mapping changed");
10762 
10763 			HBLKTOHME(nsfhme, new, vaddr);
10764 
10765 			HME_ADD(nsfhme, pp);
10766 			HME_SUB(osfhme, pp);
10767 
10768 			sfmmu_mlist_exit(pml);
10769 		}
10770 	}
10771 
10772 	/*
10773 	 * remove old from hash chain
10774 	 */
10775 	sfmmu_hblk_hash_rm(hmebp, old, prevpa, prev);
10776 
10777 #ifdef	DEBUG
10778 
10779 	hblktag.htag_id = ksfmmup;
10780 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
10781 	hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
10782 	hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
10783 	HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
10784 
10785 	if (found != new)
10786 		panic("sfmmu_hblk_swap: new hblk not found");
10787 #endif
10788 
10789 	SFMMU_HASH_UNLOCK(hmebp);
10790 
10791 	/*
10792 	 * Reset hblk_reserve
10793 	 */
10794 	bzero((void *)old, HME8BLK_SZ);
10795 	old->hblk_nextpa = va_to_pa((caddr_t)old);
10796 }
10797 
10798 /*
10799  * Grab the mlist mutex for both pages passed in.
10800  *
10801  * low and high will be returned as pointers to the mutexes for these pages.
10802  * low refers to the mutex residing in the lower bin of the mlist hash, while
10803  * high refers to the mutex residing in the higher bin of the mlist hash.  This
10804  * is due to the locking order restrictions on the same thread grabbing
10805  * multiple mlist mutexes.  The low lock must be acquired before the high lock.
10806  *
10807  * If both pages hash to the same mutex, only grab that single mutex, and
10808  * high will be returned as NULL
10809  * If the pages hash to different bins in the hash, grab the lower addressed
10810  * lock first and then the higher addressed lock in order to follow the locking
10811  * rules involved with the same thread grabbing multiple mlist mutexes.
10812  * low and high will both have non-NULL values.
10813  */
10814 static void
10815 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
10816     kmutex_t **low, kmutex_t **high)
10817 {
10818 	kmutex_t	*mml_targ, *mml_repl;
10819 
10820 	/*
10821 	 * no need to do the dance around szc as in sfmmu_mlist_enter()
10822 	 * because this routine is only called by hat_page_relocate() and all
10823 	 * targ and repl pages are already locked EXCL so szc can't change.
10824 	 */
10825 
10826 	mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
10827 	mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
10828 
10829 	if (mml_targ == mml_repl) {
10830 		*low = mml_targ;
10831 		*high = NULL;
10832 	} else {
10833 		if (mml_targ < mml_repl) {
10834 			*low = mml_targ;
10835 			*high = mml_repl;
10836 		} else {
10837 			*low = mml_repl;
10838 			*high = mml_targ;
10839 		}
10840 	}
10841 
10842 	mutex_enter(*low);
10843 	if (*high)
10844 		mutex_enter(*high);
10845 }
10846 
10847 static void
10848 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
10849 {
10850 	if (high)
10851 		mutex_exit(high);
10852 	mutex_exit(low);
10853 }
10854 
10855 static hatlock_t *
10856 sfmmu_hat_enter(sfmmu_t *sfmmup)
10857 {
10858 	hatlock_t	*hatlockp;
10859 
10860 	if (sfmmup != ksfmmup) {
10861 		hatlockp = TSB_HASH(sfmmup);
10862 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
10863 		return (hatlockp);
10864 	}
10865 	return (NULL);
10866 }
10867 
10868 static hatlock_t *
10869 sfmmu_hat_tryenter(sfmmu_t *sfmmup)
10870 {
10871 	hatlock_t	*hatlockp;
10872 
10873 	if (sfmmup != ksfmmup) {
10874 		hatlockp = TSB_HASH(sfmmup);
10875 		if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
10876 			return (NULL);
10877 		return (hatlockp);
10878 	}
10879 	return (NULL);
10880 }
10881 
10882 static void
10883 sfmmu_hat_exit(hatlock_t *hatlockp)
10884 {
10885 	if (hatlockp != NULL)
10886 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
10887 }
10888 
10889 static void
10890 sfmmu_hat_lock_all(void)
10891 {
10892 	int i;
10893 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
10894 		mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
10895 }
10896 
10897 static void
10898 sfmmu_hat_unlock_all(void)
10899 {
10900 	int i;
10901 	for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
10902 		mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
10903 }
10904 
10905 int
10906 sfmmu_hat_lock_held(sfmmu_t *sfmmup)
10907 {
10908 	ASSERT(sfmmup != ksfmmup);
10909 	return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
10910 }
10911 
10912 /*
10913  * Locking primitives to provide consistency between ISM unmap
10914  * and other operations.  Since ISM unmap can take a long time, we
10915  * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
10916  * contention on the hatlock buckets while ISM segments are being
10917  * unmapped.  The tradeoff is that the flags don't prevent priority
10918  * inversion from occurring, so we must request kernel priority in
10919  * case we have to sleep to keep from getting buried while holding
10920  * the HAT_ISMBUSY flag set, which in turn could block other kernel
10921  * threads from running (for example, in sfmmu_uvatopfn()).
10922  */
10923 static void
10924 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
10925 {
10926 	hatlock_t *hatlockp;
10927 
10928 	THREAD_KPRI_REQUEST();
10929 	if (!hatlock_held)
10930 		hatlockp = sfmmu_hat_enter(sfmmup);
10931 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
10932 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
10933 	SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
10934 	if (!hatlock_held)
10935 		sfmmu_hat_exit(hatlockp);
10936 }
10937 
10938 static void
10939 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
10940 {
10941 	hatlock_t *hatlockp;
10942 
10943 	if (!hatlock_held)
10944 		hatlockp = sfmmu_hat_enter(sfmmup);
10945 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
10946 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
10947 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10948 	if (!hatlock_held)
10949 		sfmmu_hat_exit(hatlockp);
10950 	THREAD_KPRI_RELEASE();
10951 }
10952 
10953 /*
10954  *
10955  * Algorithm:
10956  *
10957  * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
10958  *	hblks.
10959  *
10960  * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
10961  *
10962  * 		(a) try to return an hblk from reserve pool of free hblks;
10963  *		(b) if the reserve pool is empty, acquire hblk_reserve_lock
10964  *		    and return hblk_reserve.
10965  *
10966  * (3) call kmem_cache_alloc() to allocate hblk;
10967  *
10968  *		(a) if hblk_reserve_lock is held by the current thread,
10969  *		    atomically replace hblk_reserve by the hblk that is
10970  *		    returned by kmem_cache_alloc; release hblk_reserve_lock
10971  *		    and call kmem_cache_alloc() again.
10972  *		(b) if reserve pool is not full, add the hblk that is
10973  *		    returned by kmem_cache_alloc to reserve pool and
10974  *		    call kmem_cache_alloc again.
10975  *
10976  */
10977 static struct hme_blk *
10978 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
10979 	struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
10980 	uint_t flags, uint_t rid)
10981 {
10982 	struct hme_blk *hmeblkp = NULL;
10983 	struct hme_blk *newhblkp;
10984 	struct hme_blk *shw_hblkp = NULL;
10985 	struct kmem_cache *sfmmu_cache = NULL;
10986 	uint64_t hblkpa;
10987 	ulong_t index;
10988 	uint_t owner;		/* set to 1 if using hblk_reserve */
10989 	uint_t forcefree;
10990 	int sleep;
10991 	sf_srd_t *srdp;
10992 	sf_region_t *rgnp;
10993 
10994 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10995 	ASSERT(hblktag.htag_rid == rid);
10996 	SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
10997 	ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
10998 	    IS_P2ALIGNED(vaddr, TTEBYTES(size)));
10999 
11000 	/*
11001 	 * If segkmem is not created yet, allocate from static hmeblks
11002 	 * created at the end of startup_modules().  See the block comment
11003 	 * in startup_modules() describing how we estimate the number of
11004 	 * static hmeblks that will be needed during re-map.
11005 	 */
11006 	if (!hblk_alloc_dynamic) {
11007 
11008 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
11009 
11010 		if (size == TTE8K) {
11011 			index = nucleus_hblk8.index;
11012 			if (index >= nucleus_hblk8.len) {
11013 				/*
11014 				 * If we panic here, see startup_modules() to
11015 				 * make sure that we are calculating the
11016 				 * number of hblk8's that we need correctly.
11017 				 */
11018 				prom_panic("no nucleus hblk8 to allocate");
11019 			}
11020 			hmeblkp =
11021 			    (struct hme_blk *)&nucleus_hblk8.list[index];
11022 			nucleus_hblk8.index++;
11023 			SFMMU_STAT(sf_hblk8_nalloc);
11024 		} else {
11025 			index = nucleus_hblk1.index;
11026 			if (nucleus_hblk1.index >= nucleus_hblk1.len) {
11027 				/*
11028 				 * If we panic here, see startup_modules().
11029 				 * Most likely you need to update the
11030 				 * calculation of the number of hblk1 elements
11031 				 * that the kernel needs to boot.
11032 				 */
11033 				prom_panic("no nucleus hblk1 to allocate");
11034 			}
11035 			hmeblkp =
11036 			    (struct hme_blk *)&nucleus_hblk1.list[index];
11037 			nucleus_hblk1.index++;
11038 			SFMMU_STAT(sf_hblk1_nalloc);
11039 		}
11040 
11041 		goto hblk_init;
11042 	}
11043 
11044 	SFMMU_HASH_UNLOCK(hmebp);
11045 
11046 	if (sfmmup != KHATID && !SFMMU_IS_SHMERID_VALID(rid)) {
11047 		if (mmu_page_sizes == max_mmu_page_sizes) {
11048 			if (size < TTE256M)
11049 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
11050 				    size, flags);
11051 		} else {
11052 			if (size < TTE4M)
11053 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
11054 				    size, flags);
11055 		}
11056 	} else if (SFMMU_IS_SHMERID_VALID(rid)) {
11057 		/*
11058 		 * Shared hmes use per region bitmaps in rgn_hmeflag
11059 		 * rather than shadow hmeblks to keep track of the
11060 		 * mapping sizes which have been allocated for the region.
11061 		 * Here we cleanup old invalid hmeblks with this rid,
11062 		 * which may be left around by pageunload().
11063 		 */
11064 		int ttesz;
11065 		caddr_t va;
11066 		caddr_t	eva = vaddr + TTEBYTES(size);
11067 
11068 		ASSERT(sfmmup != KHATID);
11069 
11070 		srdp = sfmmup->sfmmu_srdp;
11071 		ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11072 		rgnp = srdp->srd_hmergnp[rid];
11073 		ASSERT(rgnp != NULL && rgnp->rgn_id == rid);
11074 		ASSERT(rgnp->rgn_refcnt != 0);
11075 		ASSERT(size <= rgnp->rgn_pgszc);
11076 
11077 		ttesz = HBLK_MIN_TTESZ;
11078 		do {
11079 			if (!(rgnp->rgn_hmeflags & (0x1 << ttesz))) {
11080 				continue;
11081 			}
11082 
11083 			if (ttesz > size && ttesz != HBLK_MIN_TTESZ) {
11084 				sfmmu_cleanup_rhblk(srdp, vaddr, rid, ttesz);
11085 			} else if (ttesz < size) {
11086 				for (va = vaddr; va < eva;
11087 				    va += TTEBYTES(ttesz)) {
11088 					sfmmu_cleanup_rhblk(srdp, va, rid,
11089 					    ttesz);
11090 				}
11091 			}
11092 		} while (++ttesz <= rgnp->rgn_pgszc);
11093 	}
11094 
11095 fill_hblk:
11096 	owner = (hblk_reserve_thread == curthread) ? 1 : 0;
11097 
11098 	if (owner && size == TTE8K) {
11099 
11100 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
11101 		/*
11102 		 * We are really in a tight spot. We already own
11103 		 * hblk_reserve and we need another hblk.  In anticipation
11104 		 * of this kind of scenario, we specifically set aside
11105 		 * HBLK_RESERVE_MIN number of hblks to be used exclusively
11106 		 * by owner of hblk_reserve.
11107 		 */
11108 		SFMMU_STAT(sf_hblk_recurse_cnt);
11109 
11110 		if (!sfmmu_get_free_hblk(&hmeblkp, 1))
11111 			panic("sfmmu_hblk_alloc: reserve list is empty");
11112 
11113 		goto hblk_verify;
11114 	}
11115 
11116 	ASSERT(!owner);
11117 
11118 	if ((flags & HAT_NO_KALLOC) == 0) {
11119 
11120 		sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
11121 		sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
11122 
11123 		if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
11124 			hmeblkp = sfmmu_hblk_steal(size);
11125 		} else {
11126 			/*
11127 			 * if we are the owner of hblk_reserve,
11128 			 * swap hblk_reserve with hmeblkp and
11129 			 * start a fresh life.  Hope things go
11130 			 * better this time.
11131 			 */
11132 			if (hblk_reserve_thread == curthread) {
11133 				ASSERT(sfmmu_cache == sfmmu8_cache);
11134 				sfmmu_hblk_swap(hmeblkp);
11135 				hblk_reserve_thread = NULL;
11136 				mutex_exit(&hblk_reserve_lock);
11137 				goto fill_hblk;
11138 			}
11139 			/*
11140 			 * let's donate this hblk to our reserve list if
11141 			 * we are not mapping kernel range
11142 			 */
11143 			if (size == TTE8K && sfmmup != KHATID)
11144 				if (sfmmu_put_free_hblk(hmeblkp, 0))
11145 					goto fill_hblk;
11146 		}
11147 	} else {
11148 		/*
11149 		 * We are here to map the slab in sfmmu8_cache; let's
11150 		 * check if we could tap our reserve list; if successful,
11151 		 * this will avoid the pain of going thru sfmmu_hblk_swap
11152 		 */
11153 		SFMMU_STAT(sf_hblk_slab_cnt);
11154 		if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
11155 			/*
11156 			 * let's start hblk_reserve dance
11157 			 */
11158 			SFMMU_STAT(sf_hblk_reserve_cnt);
11159 			owner = 1;
11160 			mutex_enter(&hblk_reserve_lock);
11161 			hmeblkp = HBLK_RESERVE;
11162 			hblk_reserve_thread = curthread;
11163 		}
11164 	}
11165 
11166 hblk_verify:
11167 	ASSERT(hmeblkp != NULL);
11168 	set_hblk_sz(hmeblkp, size);
11169 	ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
11170 	SFMMU_HASH_LOCK(hmebp);
11171 	HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11172 	if (newhblkp != NULL) {
11173 		SFMMU_HASH_UNLOCK(hmebp);
11174 		if (hmeblkp != HBLK_RESERVE) {
11175 			/*
11176 			 * This is really tricky!
11177 			 *
11178 			 * vmem_alloc(vmem_seg_arena)
11179 			 *  vmem_alloc(vmem_internal_arena)
11180 			 *   segkmem_alloc(heap_arena)
11181 			 *    vmem_alloc(heap_arena)
11182 			 *    page_create()
11183 			 *    hat_memload()
11184 			 *	kmem_cache_free()
11185 			 *	 kmem_cache_alloc()
11186 			 *	  kmem_slab_create()
11187 			 *	   vmem_alloc(kmem_internal_arena)
11188 			 *	    segkmem_alloc(heap_arena)
11189 			 *		vmem_alloc(heap_arena)
11190 			 *		page_create()
11191 			 *		hat_memload()
11192 			 *		  kmem_cache_free()
11193 			 *		...
11194 			 *
11195 			 * Thus, hat_memload() could call kmem_cache_free
11196 			 * for enough number of times that we could easily
11197 			 * hit the bottom of the stack or run out of reserve
11198 			 * list of vmem_seg structs.  So, we must donate
11199 			 * this hblk to reserve list if it's allocated
11200 			 * from sfmmu8_cache *and* mapping kernel range.
11201 			 * We don't need to worry about freeing hmeblk1's
11202 			 * to kmem since they don't map any kmem slabs.
11203 			 *
11204 			 * Note: When segkmem supports largepages, we must
11205 			 * free hmeblk1's to reserve list as well.
11206 			 */
11207 			forcefree = (sfmmup == KHATID) ? 1 : 0;
11208 			if (size == TTE8K &&
11209 			    sfmmu_put_free_hblk(hmeblkp, forcefree)) {
11210 				goto re_verify;
11211 			}
11212 			ASSERT(sfmmup != KHATID);
11213 			kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
11214 		} else {
11215 			/*
11216 			 * Hey! we don't need hblk_reserve any more.
11217 			 */
11218 			ASSERT(owner);
11219 			hblk_reserve_thread = NULL;
11220 			mutex_exit(&hblk_reserve_lock);
11221 			owner = 0;
11222 		}
11223 re_verify:
11224 		/*
11225 		 * let's check if the goodies are still present
11226 		 */
11227 		SFMMU_HASH_LOCK(hmebp);
11228 		HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11229 		if (newhblkp != NULL) {
11230 			/*
11231 			 * return newhblkp if it's not hblk_reserve;
11232 			 * if newhblkp is hblk_reserve, return it
11233 			 * _only if_ we are the owner of hblk_reserve.
11234 			 */
11235 			if (newhblkp != HBLK_RESERVE || owner) {
11236 				ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
11237 				    newhblkp->hblk_shared);
11238 				ASSERT(SFMMU_IS_SHMERID_VALID(rid) ||
11239 				    !newhblkp->hblk_shared);
11240 				return (newhblkp);
11241 			} else {
11242 				/*
11243 				 * we just hit hblk_reserve in the hash and
11244 				 * we are not the owner of that;
11245 				 *
11246 				 * block until hblk_reserve_thread completes
11247 				 * swapping hblk_reserve and try the dance
11248 				 * once again.
11249 				 */
11250 				SFMMU_HASH_UNLOCK(hmebp);
11251 				mutex_enter(&hblk_reserve_lock);
11252 				mutex_exit(&hblk_reserve_lock);
11253 				SFMMU_STAT(sf_hblk_reserve_hit);
11254 				goto fill_hblk;
11255 			}
11256 		} else {
11257 			/*
11258 			 * it's no more! try the dance once again.
11259 			 */
11260 			SFMMU_HASH_UNLOCK(hmebp);
11261 			goto fill_hblk;
11262 		}
11263 	}
11264 
11265 hblk_init:
11266 	if (SFMMU_IS_SHMERID_VALID(rid)) {
11267 		uint16_t tteflag = 0x1 <<
11268 		    ((size < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ : size);
11269 
11270 		if (!(rgnp->rgn_hmeflags & tteflag)) {
11271 			atomic_or_16(&rgnp->rgn_hmeflags, tteflag);
11272 		}
11273 		hmeblkp->hblk_shared = 1;
11274 	} else {
11275 		hmeblkp->hblk_shared = 0;
11276 	}
11277 	set_hblk_sz(hmeblkp, size);
11278 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11279 	hmeblkp->hblk_next = (struct hme_blk *)NULL;
11280 	hmeblkp->hblk_tag = hblktag;
11281 	hmeblkp->hblk_shadow = shw_hblkp;
11282 	hblkpa = hmeblkp->hblk_nextpa;
11283 	hmeblkp->hblk_nextpa = 0;
11284 
11285 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
11286 	ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
11287 	ASSERT(hmeblkp->hblk_hmecnt == 0);
11288 	ASSERT(hmeblkp->hblk_vcnt == 0);
11289 	ASSERT(hmeblkp->hblk_lckcnt == 0);
11290 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
11291 	sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
11292 	return (hmeblkp);
11293 }
11294 
11295 /*
11296  * This function performs any cleanup required on the hme_blk
11297  * and returns it to the free list.
11298  */
11299 /* ARGSUSED */
11300 static void
11301 sfmmu_hblk_free(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
11302 	uint64_t hblkpa, struct hme_blk **listp)
11303 {
11304 	int shw_size, vshift;
11305 	struct hme_blk *shw_hblkp;
11306 	uint_t		shw_mask, newshw_mask;
11307 	caddr_t		vaddr;
11308 	int		size;
11309 	uint_t		critical;
11310 
11311 	ASSERT(hmeblkp);
11312 	ASSERT(!hmeblkp->hblk_hmecnt);
11313 	ASSERT(!hmeblkp->hblk_vcnt);
11314 	ASSERT(!hmeblkp->hblk_lckcnt);
11315 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
11316 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
11317 
11318 	critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
11319 
11320 	size = get_hblk_ttesz(hmeblkp);
11321 	shw_hblkp = hmeblkp->hblk_shadow;
11322 	if (shw_hblkp) {
11323 		ASSERT(hblktosfmmu(hmeblkp) != KHATID);
11324 		ASSERT(!hmeblkp->hblk_shared);
11325 		if (mmu_page_sizes == max_mmu_page_sizes) {
11326 			ASSERT(size < TTE256M);
11327 		} else {
11328 			ASSERT(size < TTE4M);
11329 		}
11330 
11331 		shw_size = get_hblk_ttesz(shw_hblkp);
11332 		vaddr = (caddr_t)get_hblk_base(hmeblkp);
11333 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
11334 		ASSERT(vshift < 8);
11335 		/*
11336 		 * Atomically clear shadow mask bit
11337 		 */
11338 		do {
11339 			shw_mask = shw_hblkp->hblk_shw_mask;
11340 			ASSERT(shw_mask & (1 << vshift));
11341 			newshw_mask = shw_mask & ~(1 << vshift);
11342 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
11343 			    shw_mask, newshw_mask);
11344 		} while (newshw_mask != shw_mask);
11345 		hmeblkp->hblk_shadow = NULL;
11346 	}
11347 	hmeblkp->hblk_next = NULL;
11348 	hmeblkp->hblk_nextpa = hblkpa;
11349 	hmeblkp->hblk_shw_bit = 0;
11350 
11351 	if (hmeblkp->hblk_shared) {
11352 		sf_srd_t	*srdp;
11353 		sf_region_t	*rgnp;
11354 		uint_t		rid;
11355 
11356 		srdp = hblktosrd(hmeblkp);
11357 		ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11358 		rid = hmeblkp->hblk_tag.htag_rid;
11359 		ASSERT(SFMMU_IS_SHMERID_VALID(rid));
11360 		ASSERT(rid < SFMMU_MAX_HME_REGIONS);
11361 		rgnp = srdp->srd_hmergnp[rid];
11362 		ASSERT(rgnp != NULL);
11363 		SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
11364 		hmeblkp->hblk_shared = 0;
11365 	}
11366 
11367 	if (hmeblkp->hblk_nuc_bit == 0) {
11368 
11369 		if (size == TTE8K && sfmmu_put_free_hblk(hmeblkp, critical))
11370 			return;
11371 
11372 		hmeblkp->hblk_next = *listp;
11373 		*listp = hmeblkp;
11374 	}
11375 }
11376 
11377 static void
11378 sfmmu_hblks_list_purge(struct hme_blk **listp)
11379 {
11380 	struct hme_blk	*hmeblkp;
11381 
11382 	while ((hmeblkp = *listp) != NULL) {
11383 		*listp = hmeblkp->hblk_next;
11384 		kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
11385 	}
11386 }
11387 
11388 #define	BUCKETS_TO_SEARCH_BEFORE_UNLOAD	30
11389 #define	SFMMU_HBLK_STEAL_THRESHOLD 5
11390 
11391 static uint_t sfmmu_hblk_steal_twice;
11392 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
11393 
11394 /*
11395  * Steal a hmeblk from user or kernel hme hash lists.
11396  * For 8K tte grab one from reserve pool (freehblkp) before proceeding to
11397  * steal and if we fail to steal after SFMMU_HBLK_STEAL_THRESHOLD attempts
11398  * tap into critical reserve of freehblkp.
11399  * Note: We remain looping in this routine until we find one.
11400  */
11401 static struct hme_blk *
11402 sfmmu_hblk_steal(int size)
11403 {
11404 	static struct hmehash_bucket *uhmehash_steal_hand = NULL;
11405 	struct hmehash_bucket *hmebp;
11406 	struct hme_blk *hmeblkp = NULL, *pr_hblk;
11407 	uint64_t hblkpa, prevpa;
11408 	int i;
11409 	uint_t loop_cnt = 0, critical;
11410 
11411 	for (;;) {
11412 		if (size == TTE8K) {
11413 			critical =
11414 			    (++loop_cnt > SFMMU_HBLK_STEAL_THRESHOLD) ? 1 : 0;
11415 			if (sfmmu_get_free_hblk(&hmeblkp, critical))
11416 				return (hmeblkp);
11417 		}
11418 
11419 		hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
11420 		    uhmehash_steal_hand;
11421 		ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
11422 
11423 		for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
11424 		    BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
11425 			SFMMU_HASH_LOCK(hmebp);
11426 			hmeblkp = hmebp->hmeblkp;
11427 			hblkpa = hmebp->hmeh_nextpa;
11428 			prevpa = 0;
11429 			pr_hblk = NULL;
11430 			while (hmeblkp) {
11431 				/*
11432 				 * check if it is a hmeblk that is not locked
11433 				 * and not shared. skip shadow hmeblks with
11434 				 * shadow_mask set i.e valid count non zero.
11435 				 */
11436 				if ((get_hblk_ttesz(hmeblkp) == size) &&
11437 				    (hmeblkp->hblk_shw_bit == 0 ||
11438 				    hmeblkp->hblk_vcnt == 0) &&
11439 				    (hmeblkp->hblk_lckcnt == 0)) {
11440 					/*
11441 					 * there is a high probability that we
11442 					 * will find a free one. search some
11443 					 * buckets for a free hmeblk initially
11444 					 * before unloading a valid hmeblk.
11445 					 */
11446 					if ((hmeblkp->hblk_vcnt == 0 &&
11447 					    hmeblkp->hblk_hmecnt == 0) || (i >=
11448 					    BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
11449 						if (sfmmu_steal_this_hblk(hmebp,
11450 						    hmeblkp, hblkpa, prevpa,
11451 						    pr_hblk)) {
11452 							/*
11453 							 * Hblk is unloaded
11454 							 * successfully
11455 							 */
11456 							break;
11457 						}
11458 					}
11459 				}
11460 				pr_hblk = hmeblkp;
11461 				prevpa = hblkpa;
11462 				hblkpa = hmeblkp->hblk_nextpa;
11463 				hmeblkp = hmeblkp->hblk_next;
11464 			}
11465 
11466 			SFMMU_HASH_UNLOCK(hmebp);
11467 			if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
11468 				hmebp = uhme_hash;
11469 		}
11470 		uhmehash_steal_hand = hmebp;
11471 
11472 		if (hmeblkp != NULL)
11473 			break;
11474 
11475 		/*
11476 		 * in the worst case, look for a free one in the kernel
11477 		 * hash table.
11478 		 */
11479 		for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
11480 			SFMMU_HASH_LOCK(hmebp);
11481 			hmeblkp = hmebp->hmeblkp;
11482 			hblkpa = hmebp->hmeh_nextpa;
11483 			prevpa = 0;
11484 			pr_hblk = NULL;
11485 			while (hmeblkp) {
11486 				/*
11487 				 * check if it is free hmeblk
11488 				 */
11489 				if ((get_hblk_ttesz(hmeblkp) == size) &&
11490 				    (hmeblkp->hblk_lckcnt == 0) &&
11491 				    (hmeblkp->hblk_vcnt == 0) &&
11492 				    (hmeblkp->hblk_hmecnt == 0)) {
11493 					if (sfmmu_steal_this_hblk(hmebp,
11494 					    hmeblkp, hblkpa, prevpa, pr_hblk)) {
11495 						break;
11496 					} else {
11497 						/*
11498 						 * Cannot fail since we have
11499 						 * hash lock.
11500 						 */
11501 						panic("fail to steal?");
11502 					}
11503 				}
11504 
11505 				pr_hblk = hmeblkp;
11506 				prevpa = hblkpa;
11507 				hblkpa = hmeblkp->hblk_nextpa;
11508 				hmeblkp = hmeblkp->hblk_next;
11509 			}
11510 
11511 			SFMMU_HASH_UNLOCK(hmebp);
11512 			if (hmebp++ == &khme_hash[KHMEHASH_SZ])
11513 				hmebp = khme_hash;
11514 		}
11515 
11516 		if (hmeblkp != NULL)
11517 			break;
11518 		sfmmu_hblk_steal_twice++;
11519 	}
11520 	return (hmeblkp);
11521 }
11522 
11523 /*
11524  * This routine does real work to prepare a hblk to be "stolen" by
11525  * unloading the mappings, updating shadow counts ....
11526  * It returns 1 if the block is ready to be reused (stolen), or 0
11527  * means the block cannot be stolen yet- pageunload is still working
11528  * on this hblk.
11529  */
11530 static int
11531 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
11532 	uint64_t hblkpa, uint64_t prevpa, struct hme_blk *pr_hblk)
11533 {
11534 	int shw_size, vshift;
11535 	struct hme_blk *shw_hblkp;
11536 	caddr_t vaddr;
11537 	uint_t shw_mask, newshw_mask;
11538 
11539 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11540 
11541 	/*
11542 	 * check if the hmeblk is free, unload if necessary
11543 	 */
11544 	if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11545 		sfmmu_t *sfmmup;
11546 		demap_range_t dmr;
11547 
11548 		sfmmup = hblktosfmmu(hmeblkp);
11549 		if (hmeblkp->hblk_shared || sfmmup->sfmmu_ismhat) {
11550 			return (0);
11551 		}
11552 		DEMAP_RANGE_INIT(sfmmup, &dmr);
11553 		(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
11554 		    (caddr_t)get_hblk_base(hmeblkp),
11555 		    get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
11556 		DEMAP_RANGE_FLUSH(&dmr);
11557 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11558 			/*
11559 			 * Pageunload is working on the same hblk.
11560 			 */
11561 			return (0);
11562 		}
11563 
11564 		sfmmu_hblk_steal_unload_count++;
11565 	}
11566 
11567 	ASSERT(hmeblkp->hblk_lckcnt == 0);
11568 	ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
11569 
11570 	sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
11571 	hmeblkp->hblk_nextpa = hblkpa;
11572 
11573 	shw_hblkp = hmeblkp->hblk_shadow;
11574 	if (shw_hblkp) {
11575 		ASSERT(!hmeblkp->hblk_shared);
11576 		shw_size = get_hblk_ttesz(shw_hblkp);
11577 		vaddr = (caddr_t)get_hblk_base(hmeblkp);
11578 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
11579 		ASSERT(vshift < 8);
11580 		/*
11581 		 * Atomically clear shadow mask bit
11582 		 */
11583 		do {
11584 			shw_mask = shw_hblkp->hblk_shw_mask;
11585 			ASSERT(shw_mask & (1 << vshift));
11586 			newshw_mask = shw_mask & ~(1 << vshift);
11587 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
11588 			    shw_mask, newshw_mask);
11589 		} while (newshw_mask != shw_mask);
11590 		hmeblkp->hblk_shadow = NULL;
11591 	}
11592 
11593 	/*
11594 	 * remove shadow bit if we are stealing an unused shadow hmeblk.
11595 	 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if
11596 	 * we are indeed allocating a shadow hmeblk.
11597 	 */
11598 	hmeblkp->hblk_shw_bit = 0;
11599 
11600 	if (hmeblkp->hblk_shared) {
11601 		sf_srd_t	*srdp;
11602 		sf_region_t	*rgnp;
11603 		uint_t		rid;
11604 
11605 		srdp = hblktosrd(hmeblkp);
11606 		ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11607 		rid = hmeblkp->hblk_tag.htag_rid;
11608 		ASSERT(SFMMU_IS_SHMERID_VALID(rid));
11609 		ASSERT(rid < SFMMU_MAX_HME_REGIONS);
11610 		rgnp = srdp->srd_hmergnp[rid];
11611 		ASSERT(rgnp != NULL);
11612 		SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
11613 		hmeblkp->hblk_shared = 0;
11614 	}
11615 
11616 	sfmmu_hblk_steal_count++;
11617 	SFMMU_STAT(sf_steal_count);
11618 
11619 	return (1);
11620 }
11621 
11622 struct hme_blk *
11623 sfmmu_hmetohblk(struct sf_hment *sfhme)
11624 {
11625 	struct hme_blk *hmeblkp;
11626 	struct sf_hment *sfhme0;
11627 	struct hme_blk *hblk_dummy = 0;
11628 
11629 	/*
11630 	 * No dummy sf_hments, please.
11631 	 */
11632 	ASSERT(sfhme->hme_tte.ll != 0);
11633 
11634 	sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
11635 	hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
11636 	    (uintptr_t)&hblk_dummy->hblk_hme[0]);
11637 
11638 	return (hmeblkp);
11639 }
11640 
11641 /*
11642  * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
11643  * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
11644  * KM_SLEEP allocation.
11645  *
11646  * Return 0 on success, -1 otherwise.
11647  */
11648 static void
11649 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
11650 {
11651 	struct tsb_info *tsbinfop, *next;
11652 	tsb_replace_rc_t rc;
11653 	boolean_t gotfirst = B_FALSE;
11654 
11655 	ASSERT(sfmmup != ksfmmup);
11656 	ASSERT(sfmmu_hat_lock_held(sfmmup));
11657 
11658 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
11659 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
11660 	}
11661 
11662 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
11663 		SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
11664 	} else {
11665 		return;
11666 	}
11667 
11668 	ASSERT(sfmmup->sfmmu_tsb != NULL);
11669 
11670 	/*
11671 	 * Loop over all tsbinfo's replacing them with ones that actually have
11672 	 * a TSB.  If any of the replacements ever fail, bail out of the loop.
11673 	 */
11674 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
11675 		ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
11676 		next = tsbinfop->tsb_next;
11677 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
11678 		    hatlockp, TSB_SWAPIN);
11679 		if (rc != TSB_SUCCESS) {
11680 			break;
11681 		}
11682 		gotfirst = B_TRUE;
11683 	}
11684 
11685 	switch (rc) {
11686 	case TSB_SUCCESS:
11687 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11688 		cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11689 		return;
11690 	case TSB_LOSTRACE:
11691 		break;
11692 	case TSB_ALLOCFAIL:
11693 		break;
11694 	default:
11695 		panic("sfmmu_replace_tsb returned unrecognized failure code "
11696 		    "%d", rc);
11697 	}
11698 
11699 	/*
11700 	 * In this case, we failed to get one of our TSBs.  If we failed to
11701 	 * get the first TSB, get one of minimum size (8KB).  Walk the list
11702 	 * and throw away the tsbinfos, starting where the allocation failed;
11703 	 * we can get by with just one TSB as long as we don't leave the
11704 	 * SWAPPED tsbinfo structures lying around.
11705 	 */
11706 	tsbinfop = sfmmup->sfmmu_tsb;
11707 	next = tsbinfop->tsb_next;
11708 	tsbinfop->tsb_next = NULL;
11709 
11710 	sfmmu_hat_exit(hatlockp);
11711 	for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
11712 		next = tsbinfop->tsb_next;
11713 		sfmmu_tsbinfo_free(tsbinfop);
11714 	}
11715 	hatlockp = sfmmu_hat_enter(sfmmup);
11716 
11717 	/*
11718 	 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
11719 	 * pages.
11720 	 */
11721 	if (!gotfirst) {
11722 		tsbinfop = sfmmup->sfmmu_tsb;
11723 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
11724 		    hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
11725 		ASSERT(rc == TSB_SUCCESS);
11726 	}
11727 
11728 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11729 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11730 }
11731 
11732 static int
11733 sfmmu_is_rgnva(sf_srd_t *srdp, caddr_t addr, ulong_t w, ulong_t bmw)
11734 {
11735 	ulong_t bix = 0;
11736 	uint_t rid;
11737 	sf_region_t *rgnp;
11738 
11739 	ASSERT(srdp != NULL);
11740 	ASSERT(srdp->srd_refcnt != 0);
11741 
11742 	w <<= BT_ULSHIFT;
11743 	while (bmw) {
11744 		if (!(bmw & 0x1)) {
11745 			bix++;
11746 			bmw >>= 1;
11747 			continue;
11748 		}
11749 		rid = w | bix;
11750 		rgnp = srdp->srd_hmergnp[rid];
11751 		ASSERT(rgnp->rgn_refcnt > 0);
11752 		ASSERT(rgnp->rgn_id == rid);
11753 		if (addr < rgnp->rgn_saddr ||
11754 		    addr >= (rgnp->rgn_saddr + rgnp->rgn_size)) {
11755 			bix++;
11756 			bmw >>= 1;
11757 		} else {
11758 			return (1);
11759 		}
11760 	}
11761 	return (0);
11762 }
11763 
11764 /*
11765  * Handle exceptions for low level tsb_handler.
11766  *
11767  * There are many scenarios that could land us here:
11768  *
11769  * If the context is invalid we land here. The context can be invalid
11770  * for 3 reasons: 1) we couldn't allocate a new context and now need to
11771  * perform a wrap around operation in order to allocate a new context.
11772  * 2) Context was invalidated to change pagesize programming 3) ISMs or
11773  * TSBs configuration is changeing for this process and we are forced into
11774  * here to do a syncronization operation. If the context is valid we can
11775  * be here from window trap hanlder. In this case just call trap to handle
11776  * the fault.
11777  *
11778  * Note that the process will run in INVALID_CONTEXT before
11779  * faulting into here and subsequently loading the MMU registers
11780  * (including the TSB base register) associated with this process.
11781  * For this reason, the trap handlers must all test for
11782  * INVALID_CONTEXT before attempting to access any registers other
11783  * than the context registers.
11784  */
11785 void
11786 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
11787 {
11788 	sfmmu_t *sfmmup, *shsfmmup;
11789 	uint_t ctxtype;
11790 	klwp_id_t lwp;
11791 	char lwp_save_state;
11792 	hatlock_t *hatlockp, *shatlockp;
11793 	struct tsb_info *tsbinfop;
11794 	struct tsbmiss *tsbmp;
11795 	sf_scd_t *scdp;
11796 
11797 	SFMMU_STAT(sf_tsb_exceptions);
11798 	SFMMU_MMU_STAT(mmu_tsb_exceptions);
11799 	sfmmup = astosfmmu(curthread->t_procp->p_as);
11800 	/*
11801 	 * note that in sun4u, tagacces register contains ctxnum
11802 	 * while sun4v passes ctxtype in the tagaccess register.
11803 	 */
11804 	ctxtype = tagaccess & TAGACC_CTX_MASK;
11805 
11806 	ASSERT(sfmmup != ksfmmup && ctxtype != KCONTEXT);
11807 	ASSERT(sfmmup->sfmmu_ismhat == 0);
11808 	ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) ||
11809 	    ctxtype == INVALID_CONTEXT);
11810 
11811 	if (ctxtype != INVALID_CONTEXT && traptype != T_DATA_PROT) {
11812 		/*
11813 		 * We may land here because shme bitmap and pagesize
11814 		 * flags are updated lazily in tsbmiss area on other cpus.
11815 		 * If we detect here that tsbmiss area is out of sync with
11816 		 * sfmmu update it and retry the trapped instruction.
11817 		 * Otherwise call trap().
11818 		 */
11819 		int ret = 0;
11820 		uchar_t tteflag_mask = (1 << TTE64K) | (1 << TTE8K);
11821 		caddr_t addr = (caddr_t)(tagaccess & TAGACC_VADDR_MASK);
11822 
11823 		/*
11824 		 * Must set lwp state to LWP_SYS before
11825 		 * trying to acquire any adaptive lock
11826 		 */
11827 		lwp = ttolwp(curthread);
11828 		ASSERT(lwp);
11829 		lwp_save_state = lwp->lwp_state;
11830 		lwp->lwp_state = LWP_SYS;
11831 
11832 		hatlockp = sfmmu_hat_enter(sfmmup);
11833 		kpreempt_disable();
11834 		tsbmp = &tsbmiss_area[CPU->cpu_id];
11835 		ASSERT(sfmmup == tsbmp->usfmmup);
11836 		if (((tsbmp->uhat_tteflags ^ sfmmup->sfmmu_tteflags) &
11837 		    ~tteflag_mask) ||
11838 		    ((tsbmp->uhat_rtteflags ^  sfmmup->sfmmu_rtteflags) &
11839 		    ~tteflag_mask)) {
11840 			tsbmp->uhat_tteflags = sfmmup->sfmmu_tteflags;
11841 			tsbmp->uhat_rtteflags = sfmmup->sfmmu_rtteflags;
11842 			ret = 1;
11843 		}
11844 		if (sfmmup->sfmmu_srdp != NULL) {
11845 			ulong_t *sm = sfmmup->sfmmu_hmeregion_map.bitmap;
11846 			ulong_t *tm = tsbmp->shmermap;
11847 			ulong_t i;
11848 			for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
11849 				ulong_t d = tm[i] ^ sm[i];
11850 				if (d) {
11851 					if (d & sm[i]) {
11852 						if (!ret && sfmmu_is_rgnva(
11853 						    sfmmup->sfmmu_srdp,
11854 						    addr, i, d & sm[i])) {
11855 							ret = 1;
11856 						}
11857 					}
11858 					tm[i] = sm[i];
11859 				}
11860 			}
11861 		}
11862 		kpreempt_enable();
11863 		sfmmu_hat_exit(hatlockp);
11864 		lwp->lwp_state = lwp_save_state;
11865 		if (ret) {
11866 			return;
11867 		}
11868 	} else if (ctxtype == INVALID_CONTEXT) {
11869 		/*
11870 		 * First, make sure we come out of here with a valid ctx,
11871 		 * since if we don't get one we'll simply loop on the
11872 		 * faulting instruction.
11873 		 *
11874 		 * If the ISM mappings are changing, the TSB is relocated,
11875 		 * the process is swapped, the process is joining SCD or
11876 		 * leaving SCD or shared regions we serialize behind the
11877 		 * controlling thread with hat lock, sfmmu_flags and
11878 		 * sfmmu_tsb_cv condition variable.
11879 		 */
11880 
11881 		/*
11882 		 * Must set lwp state to LWP_SYS before
11883 		 * trying to acquire any adaptive lock
11884 		 */
11885 		lwp = ttolwp(curthread);
11886 		ASSERT(lwp);
11887 		lwp_save_state = lwp->lwp_state;
11888 		lwp->lwp_state = LWP_SYS;
11889 
11890 		hatlockp = sfmmu_hat_enter(sfmmup);
11891 retry:
11892 		if ((scdp = sfmmup->sfmmu_scdp) != NULL) {
11893 			shsfmmup = scdp->scd_sfmmup;
11894 			ASSERT(shsfmmup != NULL);
11895 
11896 			for (tsbinfop = shsfmmup->sfmmu_tsb; tsbinfop != NULL;
11897 			    tsbinfop = tsbinfop->tsb_next) {
11898 				if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
11899 					/* drop the private hat lock */
11900 					sfmmu_hat_exit(hatlockp);
11901 					/* acquire the shared hat lock */
11902 					shatlockp = sfmmu_hat_enter(shsfmmup);
11903 					/*
11904 					 * recheck to see if anything changed
11905 					 * after we drop the private hat lock.
11906 					 */
11907 					if (sfmmup->sfmmu_scdp == scdp &&
11908 					    shsfmmup == scdp->scd_sfmmup) {
11909 						sfmmu_tsb_chk_reloc(shsfmmup,
11910 						    shatlockp);
11911 					}
11912 					sfmmu_hat_exit(shatlockp);
11913 					hatlockp = sfmmu_hat_enter(sfmmup);
11914 					goto retry;
11915 				}
11916 			}
11917 		}
11918 
11919 		for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
11920 		    tsbinfop = tsbinfop->tsb_next) {
11921 			if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
11922 				cv_wait(&sfmmup->sfmmu_tsb_cv,
11923 				    HATLOCK_MUTEXP(hatlockp));
11924 				goto retry;
11925 			}
11926 		}
11927 
11928 		/*
11929 		 * Wait for ISM maps to be updated.
11930 		 */
11931 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
11932 			cv_wait(&sfmmup->sfmmu_tsb_cv,
11933 			    HATLOCK_MUTEXP(hatlockp));
11934 			goto retry;
11935 		}
11936 
11937 		/* Is this process joining an SCD? */
11938 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
11939 			/*
11940 			 * Flush private TSB and setup shared TSB.
11941 			 * sfmmu_finish_join_scd() does not drop the
11942 			 * hat lock.
11943 			 */
11944 			sfmmu_finish_join_scd(sfmmup);
11945 			SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
11946 		}
11947 
11948 		/*
11949 		 * If we're swapping in, get TSB(s).  Note that we must do
11950 		 * this before we get a ctx or load the MMU state.  Once
11951 		 * we swap in we have to recheck to make sure the TSB(s) and
11952 		 * ISM mappings didn't change while we slept.
11953 		 */
11954 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
11955 			sfmmu_tsb_swapin(sfmmup, hatlockp);
11956 			goto retry;
11957 		}
11958 
11959 		sfmmu_get_ctx(sfmmup);
11960 
11961 		sfmmu_hat_exit(hatlockp);
11962 		/*
11963 		 * Must restore lwp_state if not calling
11964 		 * trap() for further processing. Restore
11965 		 * it anyway.
11966 		 */
11967 		lwp->lwp_state = lwp_save_state;
11968 		return;
11969 	}
11970 	trap(rp, (caddr_t)tagaccess, traptype, 0);
11971 }
11972 
11973 static void
11974 sfmmu_tsb_chk_reloc(sfmmu_t *sfmmup, hatlock_t *hatlockp)
11975 {
11976 	struct tsb_info *tp;
11977 
11978 	ASSERT(sfmmu_hat_lock_held(sfmmup));
11979 
11980 	for (tp = sfmmup->sfmmu_tsb; tp != NULL; tp = tp->tsb_next) {
11981 		if (tp->tsb_flags & TSB_RELOC_FLAG) {
11982 			cv_wait(&sfmmup->sfmmu_tsb_cv,
11983 			    HATLOCK_MUTEXP(hatlockp));
11984 			break;
11985 		}
11986 	}
11987 }
11988 
11989 /*
11990  * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
11991  * TTE_SUSPENDED bit set in tte we block on aquiring a page lock
11992  * rather than spinning to avoid send mondo timeouts with
11993  * interrupts enabled. When the lock is acquired it is immediately
11994  * released and we return back to sfmmu_vatopfn just after
11995  * the GET_TTE call.
11996  */
11997 void
11998 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
11999 {
12000 	struct page	**pp;
12001 
12002 	(void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
12003 	as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
12004 }
12005 
12006 /*
12007  * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
12008  * TTE_SUSPENDED bit set in tte. We do this so that we can handle
12009  * cross traps which cannot be handled while spinning in the
12010  * trap handlers. Simply enter and exit the kpr_suspendlock spin
12011  * mutex, which is held by the holder of the suspend bit, and then
12012  * retry the trapped instruction after unwinding.
12013  */
12014 /*ARGSUSED*/
12015 void
12016 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
12017 {
12018 	ASSERT(curthread != kreloc_thread);
12019 	mutex_enter(&kpr_suspendlock);
12020 	mutex_exit(&kpr_suspendlock);
12021 }
12022 
12023 /*
12024  * This routine could be optimized to reduce the number of xcalls by flushing
12025  * the entire TLBs if region reference count is above some threshold but the
12026  * tradeoff will depend on the size of the TLB. So for now flush the specific
12027  * page a context at a time.
12028  *
12029  * If uselocks is 0 then it's called after all cpus were captured and all the
12030  * hat locks were taken. In this case don't take the region lock by relying on
12031  * the order of list region update operations in hat_join_region(),
12032  * hat_leave_region() and hat_dup_region(). The ordering in those routines
12033  * guarantees that list is always forward walkable and reaches active sfmmus
12034  * regardless of where xc_attention() captures a cpu.
12035  */
12036 cpuset_t
12037 sfmmu_rgntlb_demap(caddr_t addr, sf_region_t *rgnp,
12038     struct hme_blk *hmeblkp, int uselocks)
12039 {
12040 	sfmmu_t	*sfmmup;
12041 	cpuset_t cpuset;
12042 	cpuset_t rcpuset;
12043 	hatlock_t *hatlockp;
12044 	uint_t rid = rgnp->rgn_id;
12045 	sf_rgn_link_t *rlink;
12046 	sf_scd_t *scdp;
12047 
12048 	ASSERT(hmeblkp->hblk_shared);
12049 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
12050 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
12051 
12052 	CPUSET_ZERO(rcpuset);
12053 	if (uselocks) {
12054 		mutex_enter(&rgnp->rgn_mutex);
12055 	}
12056 	sfmmup = rgnp->rgn_sfmmu_head;
12057 	while (sfmmup != NULL) {
12058 		if (uselocks) {
12059 			hatlockp = sfmmu_hat_enter(sfmmup);
12060 		}
12061 
12062 		/*
12063 		 * When an SCD is created the SCD hat is linked on the sfmmu
12064 		 * region lists for each hme region which is part of the
12065 		 * SCD. If we find an SCD hat, when walking these lists,
12066 		 * then we flush the shared TSBs, if we find a private hat,
12067 		 * which is part of an SCD, but where the region
12068 		 * is not part of the SCD then we flush the private TSBs.
12069 		 */
12070 		if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
12071 		    !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
12072 			scdp = sfmmup->sfmmu_scdp;
12073 			if (SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
12074 				if (uselocks) {
12075 					sfmmu_hat_exit(hatlockp);
12076 				}
12077 				goto next;
12078 			}
12079 		}
12080 
12081 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12082 
12083 		kpreempt_disable();
12084 		cpuset = sfmmup->sfmmu_cpusran;
12085 		CPUSET_AND(cpuset, cpu_ready_set);
12086 		CPUSET_DEL(cpuset, CPU->cpu_id);
12087 		SFMMU_XCALL_STATS(sfmmup);
12088 		xt_some(cpuset, vtag_flushpage_tl1,
12089 		    (uint64_t)addr, (uint64_t)sfmmup);
12090 		vtag_flushpage(addr, (uint64_t)sfmmup);
12091 		if (uselocks) {
12092 			sfmmu_hat_exit(hatlockp);
12093 		}
12094 		kpreempt_enable();
12095 		CPUSET_OR(rcpuset, cpuset);
12096 
12097 next:
12098 		/* LINTED: constant in conditional context */
12099 		SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
12100 		ASSERT(rlink != NULL);
12101 		sfmmup = rlink->next;
12102 	}
12103 	if (uselocks) {
12104 		mutex_exit(&rgnp->rgn_mutex);
12105 	}
12106 	return (rcpuset);
12107 }
12108 
12109 /*
12110  * This routine takes an sfmmu pointer and the va for an adddress in an
12111  * ISM region as input and returns the corresponding region id in ism_rid.
12112  * The return value of 1 indicates that a region has been found and ism_rid
12113  * is valid, otherwise 0 is returned.
12114  */
12115 static int
12116 find_ism_rid(sfmmu_t *sfmmup, sfmmu_t *ism_sfmmup, caddr_t va, uint_t *ism_rid)
12117 {
12118 	ism_blk_t	*ism_blkp;
12119 	int		i;
12120 	ism_map_t	*ism_map;
12121 #ifdef DEBUG
12122 	struct hat	*ism_hatid;
12123 #endif
12124 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12125 
12126 	ism_blkp = sfmmup->sfmmu_iblk;
12127 	while (ism_blkp != NULL) {
12128 		ism_map = ism_blkp->iblk_maps;
12129 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
12130 			if ((va >= ism_start(ism_map[i])) &&
12131 			    (va < ism_end(ism_map[i]))) {
12132 
12133 				*ism_rid = ism_map[i].imap_rid;
12134 #ifdef DEBUG
12135 				ism_hatid = ism_map[i].imap_ismhat;
12136 				ASSERT(ism_hatid == ism_sfmmup);
12137 				ASSERT(ism_hatid->sfmmu_ismhat);
12138 #endif
12139 				return (1);
12140 			}
12141 		}
12142 		ism_blkp = ism_blkp->iblk_next;
12143 	}
12144 	return (0);
12145 }
12146 
12147 /*
12148  * Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
12149  * This routine may be called with all cpu's captured. Therefore, the
12150  * caller is responsible for holding all locks and disabling kernel
12151  * preemption.
12152  */
12153 /* ARGSUSED */
12154 static void
12155 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
12156 	struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
12157 {
12158 	cpuset_t 	cpuset;
12159 	caddr_t 	va;
12160 	ism_ment_t	*ment;
12161 	sfmmu_t		*sfmmup;
12162 #ifdef VAC
12163 	int 		vcolor;
12164 #endif
12165 
12166 	sf_scd_t	*scdp;
12167 	uint_t		ism_rid;
12168 
12169 	ASSERT(!hmeblkp->hblk_shared);
12170 	/*
12171 	 * Walk the ism_hat's mapping list and flush the page
12172 	 * from every hat sharing this ism_hat. This routine
12173 	 * may be called while all cpu's have been captured.
12174 	 * Therefore we can't attempt to grab any locks. For now
12175 	 * this means we will protect the ism mapping list under
12176 	 * a single lock which will be grabbed by the caller.
12177 	 * If hat_share/unshare scalibility becomes a performance
12178 	 * problem then we may need to re-think ism mapping list locking.
12179 	 */
12180 	ASSERT(ism_sfmmup->sfmmu_ismhat);
12181 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
12182 	addr = addr - ISMID_STARTADDR;
12183 
12184 	for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
12185 
12186 		sfmmup = ment->iment_hat;
12187 
12188 		va = ment->iment_base_va;
12189 		va = (caddr_t)((uintptr_t)va  + (uintptr_t)addr);
12190 
12191 		/*
12192 		 * When an SCD is created the SCD hat is linked on the ism
12193 		 * mapping lists for each ISM segment which is part of the
12194 		 * SCD. If we find an SCD hat, when walking these lists,
12195 		 * then we flush the shared TSBs, if we find a private hat,
12196 		 * which is part of an SCD, but where the region
12197 		 * corresponding to this va is not part of the SCD then we
12198 		 * flush the private TSBs.
12199 		 */
12200 		if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
12201 		    !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD) &&
12202 		    !SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
12203 			if (!find_ism_rid(sfmmup, ism_sfmmup, va,
12204 			    &ism_rid)) {
12205 				cmn_err(CE_PANIC,
12206 				    "can't find matching ISM rid!");
12207 			}
12208 
12209 			scdp = sfmmup->sfmmu_scdp;
12210 			if (SFMMU_IS_ISMRID_VALID(ism_rid) &&
12211 			    SF_RGNMAP_TEST(scdp->scd_ismregion_map,
12212 			    ism_rid)) {
12213 				continue;
12214 			}
12215 		}
12216 		SFMMU_UNLOAD_TSB(va, sfmmup, hmeblkp, 1);
12217 
12218 		cpuset = sfmmup->sfmmu_cpusran;
12219 		CPUSET_AND(cpuset, cpu_ready_set);
12220 		CPUSET_DEL(cpuset, CPU->cpu_id);
12221 		SFMMU_XCALL_STATS(sfmmup);
12222 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
12223 		    (uint64_t)sfmmup);
12224 		vtag_flushpage(va, (uint64_t)sfmmup);
12225 
12226 #ifdef VAC
12227 		/*
12228 		 * Flush D$
12229 		 * When flushing D$ we must flush all
12230 		 * cpu's. See sfmmu_cache_flush().
12231 		 */
12232 		if (cache_flush_flag == CACHE_FLUSH) {
12233 			cpuset = cpu_ready_set;
12234 			CPUSET_DEL(cpuset, CPU->cpu_id);
12235 
12236 			SFMMU_XCALL_STATS(sfmmup);
12237 			vcolor = addr_to_vcolor(va);
12238 			xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12239 			vac_flushpage(pfnum, vcolor);
12240 		}
12241 #endif	/* VAC */
12242 	}
12243 }
12244 
12245 /*
12246  * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
12247  * a particular virtual address and ctx.  If noflush is set we do not
12248  * flush the TLB/TSB.  This function may or may not be called with the
12249  * HAT lock held.
12250  */
12251 static void
12252 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12253 	pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
12254 	int hat_lock_held)
12255 {
12256 #ifdef VAC
12257 	int vcolor;
12258 #endif
12259 	cpuset_t cpuset;
12260 	hatlock_t *hatlockp;
12261 
12262 	ASSERT(!hmeblkp->hblk_shared);
12263 
12264 #if defined(lint) && !defined(VAC)
12265 	pfnum = pfnum;
12266 	cpu_flag = cpu_flag;
12267 	cache_flush_flag = cache_flush_flag;
12268 #endif
12269 
12270 	/*
12271 	 * There is no longer a need to protect against ctx being
12272 	 * stolen here since we don't store the ctx in the TSB anymore.
12273 	 */
12274 #ifdef VAC
12275 	vcolor = addr_to_vcolor(addr);
12276 #endif
12277 
12278 	/*
12279 	 * We must hold the hat lock during the flush of TLB,
12280 	 * to avoid a race with sfmmu_invalidate_ctx(), where
12281 	 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12282 	 * causing TLB demap routine to skip flush on that MMU.
12283 	 * If the context on a MMU has already been set to
12284 	 * INVALID_CONTEXT, we just get an extra flush on
12285 	 * that MMU.
12286 	 */
12287 	if (!hat_lock_held && !tlb_noflush)
12288 		hatlockp = sfmmu_hat_enter(sfmmup);
12289 
12290 	kpreempt_disable();
12291 	if (!tlb_noflush) {
12292 		/*
12293 		 * Flush the TSB and TLB.
12294 		 */
12295 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12296 
12297 		cpuset = sfmmup->sfmmu_cpusran;
12298 		CPUSET_AND(cpuset, cpu_ready_set);
12299 		CPUSET_DEL(cpuset, CPU->cpu_id);
12300 
12301 		SFMMU_XCALL_STATS(sfmmup);
12302 
12303 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
12304 		    (uint64_t)sfmmup);
12305 
12306 		vtag_flushpage(addr, (uint64_t)sfmmup);
12307 	}
12308 
12309 	if (!hat_lock_held && !tlb_noflush)
12310 		sfmmu_hat_exit(hatlockp);
12311 
12312 #ifdef VAC
12313 	/*
12314 	 * Flush the D$
12315 	 *
12316 	 * Even if the ctx is stolen, we need to flush the
12317 	 * cache. Our ctx stealer only flushes the TLBs.
12318 	 */
12319 	if (cache_flush_flag == CACHE_FLUSH) {
12320 		if (cpu_flag & FLUSH_ALL_CPUS) {
12321 			cpuset = cpu_ready_set;
12322 		} else {
12323 			cpuset = sfmmup->sfmmu_cpusran;
12324 			CPUSET_AND(cpuset, cpu_ready_set);
12325 		}
12326 		CPUSET_DEL(cpuset, CPU->cpu_id);
12327 		SFMMU_XCALL_STATS(sfmmup);
12328 		xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12329 		vac_flushpage(pfnum, vcolor);
12330 	}
12331 #endif	/* VAC */
12332 	kpreempt_enable();
12333 }
12334 
12335 /*
12336  * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
12337  * address and ctx.  If noflush is set we do not currently do anything.
12338  * This function may or may not be called with the HAT lock held.
12339  */
12340 static void
12341 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12342 	int tlb_noflush, int hat_lock_held)
12343 {
12344 	cpuset_t cpuset;
12345 	hatlock_t *hatlockp;
12346 
12347 	ASSERT(!hmeblkp->hblk_shared);
12348 
12349 	/*
12350 	 * If the process is exiting we have nothing to do.
12351 	 */
12352 	if (tlb_noflush)
12353 		return;
12354 
12355 	/*
12356 	 * Flush TSB.
12357 	 */
12358 	if (!hat_lock_held)
12359 		hatlockp = sfmmu_hat_enter(sfmmup);
12360 	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12361 
12362 	kpreempt_disable();
12363 
12364 	cpuset = sfmmup->sfmmu_cpusran;
12365 	CPUSET_AND(cpuset, cpu_ready_set);
12366 	CPUSET_DEL(cpuset, CPU->cpu_id);
12367 
12368 	SFMMU_XCALL_STATS(sfmmup);
12369 	xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup);
12370 
12371 	vtag_flushpage(addr, (uint64_t)sfmmup);
12372 
12373 	if (!hat_lock_held)
12374 		sfmmu_hat_exit(hatlockp);
12375 
12376 	kpreempt_enable();
12377 
12378 }
12379 
12380 /*
12381  * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
12382  * call handler that can flush a range of pages to save on xcalls.
12383  */
12384 static int sfmmu_xcall_save;
12385 
12386 /*
12387  * this routine is never used for demaping addresses backed by SRD hmeblks.
12388  */
12389 static void
12390 sfmmu_tlb_range_demap(demap_range_t *dmrp)
12391 {
12392 	sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
12393 	hatlock_t *hatlockp;
12394 	cpuset_t cpuset;
12395 	uint64_t sfmmu_pgcnt;
12396 	pgcnt_t pgcnt = 0;
12397 	int pgunload = 0;
12398 	int dirtypg = 0;
12399 	caddr_t addr = dmrp->dmr_addr;
12400 	caddr_t eaddr;
12401 	uint64_t bitvec = dmrp->dmr_bitvec;
12402 
12403 	ASSERT(bitvec & 1);
12404 
12405 	/*
12406 	 * Flush TSB and calculate number of pages to flush.
12407 	 */
12408 	while (bitvec != 0) {
12409 		dirtypg = 0;
12410 		/*
12411 		 * Find the first page to flush and then count how many
12412 		 * pages there are after it that also need to be flushed.
12413 		 * This way the number of TSB flushes is minimized.
12414 		 */
12415 		while ((bitvec & 1) == 0) {
12416 			pgcnt++;
12417 			addr += MMU_PAGESIZE;
12418 			bitvec >>= 1;
12419 		}
12420 		while (bitvec & 1) {
12421 			dirtypg++;
12422 			bitvec >>= 1;
12423 		}
12424 		eaddr = addr + ptob(dirtypg);
12425 		hatlockp = sfmmu_hat_enter(sfmmup);
12426 		sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
12427 		sfmmu_hat_exit(hatlockp);
12428 		pgunload += dirtypg;
12429 		addr = eaddr;
12430 		pgcnt += dirtypg;
12431 	}
12432 
12433 	ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
12434 	if (sfmmup->sfmmu_free == 0) {
12435 		addr = dmrp->dmr_addr;
12436 		bitvec = dmrp->dmr_bitvec;
12437 
12438 		/*
12439 		 * make sure it has SFMMU_PGCNT_SHIFT bits only,
12440 		 * as it will be used to pack argument for xt_some
12441 		 */
12442 		ASSERT((pgcnt > 0) &&
12443 		    (pgcnt <= (1 << SFMMU_PGCNT_SHIFT)));
12444 
12445 		/*
12446 		 * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in
12447 		 * the low 6 bits of sfmmup. This is doable since pgcnt
12448 		 * always >= 1.
12449 		 */
12450 		ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK));
12451 		sfmmu_pgcnt = (uint64_t)sfmmup |
12452 		    ((pgcnt - 1) & SFMMU_PGCNT_MASK);
12453 
12454 		/*
12455 		 * We must hold the hat lock during the flush of TLB,
12456 		 * to avoid a race with sfmmu_invalidate_ctx(), where
12457 		 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12458 		 * causing TLB demap routine to skip flush on that MMU.
12459 		 * If the context on a MMU has already been set to
12460 		 * INVALID_CONTEXT, we just get an extra flush on
12461 		 * that MMU.
12462 		 */
12463 		hatlockp = sfmmu_hat_enter(sfmmup);
12464 		kpreempt_disable();
12465 
12466 		cpuset = sfmmup->sfmmu_cpusran;
12467 		CPUSET_AND(cpuset, cpu_ready_set);
12468 		CPUSET_DEL(cpuset, CPU->cpu_id);
12469 
12470 		SFMMU_XCALL_STATS(sfmmup);
12471 		xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
12472 		    sfmmu_pgcnt);
12473 
12474 		for (; bitvec != 0; bitvec >>= 1) {
12475 			if (bitvec & 1)
12476 				vtag_flushpage(addr, (uint64_t)sfmmup);
12477 			addr += MMU_PAGESIZE;
12478 		}
12479 		kpreempt_enable();
12480 		sfmmu_hat_exit(hatlockp);
12481 
12482 		sfmmu_xcall_save += (pgunload-1);
12483 	}
12484 	dmrp->dmr_bitvec = 0;
12485 }
12486 
12487 /*
12488  * In cases where we need to synchronize with TLB/TSB miss trap
12489  * handlers, _and_ need to flush the TLB, it's a lot easier to
12490  * throw away the context from the process than to do a
12491  * special song and dance to keep things consistent for the
12492  * handlers.
12493  *
12494  * Since the process suddenly ends up without a context and our caller
12495  * holds the hat lock, threads that fault after this function is called
12496  * will pile up on the lock.  We can then do whatever we need to
12497  * atomically from the context of the caller.  The first blocked thread
12498  * to resume executing will get the process a new context, and the
12499  * process will resume executing.
12500  *
12501  * One added advantage of this approach is that on MMUs that
12502  * support a "flush all" operation, we will delay the flush until
12503  * cnum wrap-around, and then flush the TLB one time.  This
12504  * is rather rare, so it's a lot less expensive than making 8000
12505  * x-calls to flush the TLB 8000 times.
12506  *
12507  * A per-process (PP) lock is used to synchronize ctx allocations in
12508  * resume() and ctx invalidations here.
12509  */
12510 static void
12511 sfmmu_invalidate_ctx(sfmmu_t *sfmmup)
12512 {
12513 	cpuset_t cpuset;
12514 	int cnum, currcnum;
12515 	mmu_ctx_t *mmu_ctxp;
12516 	int i;
12517 	uint_t pstate_save;
12518 
12519 	SFMMU_STAT(sf_ctx_inv);
12520 
12521 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12522 	ASSERT(sfmmup != ksfmmup);
12523 
12524 	kpreempt_disable();
12525 
12526 	mmu_ctxp = CPU_MMU_CTXP(CPU);
12527 	ASSERT(mmu_ctxp);
12528 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
12529 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
12530 
12531 	currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum;
12532 
12533 	pstate_save = sfmmu_disable_intrs();
12534 
12535 	lock_set(&sfmmup->sfmmu_ctx_lock);	/* acquire PP lock */
12536 	/* set HAT cnum invalid across all context domains. */
12537 	for (i = 0; i < max_mmu_ctxdoms; i++) {
12538 
12539 		cnum = 	sfmmup->sfmmu_ctxs[i].cnum;
12540 		if (cnum == INVALID_CONTEXT) {
12541 			continue;
12542 		}
12543 
12544 		sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
12545 	}
12546 	membar_enter();	/* make sure globally visible to all CPUs */
12547 	lock_clear(&sfmmup->sfmmu_ctx_lock);	/* release PP lock */
12548 
12549 	sfmmu_enable_intrs(pstate_save);
12550 
12551 	cpuset = sfmmup->sfmmu_cpusran;
12552 	CPUSET_DEL(cpuset, CPU->cpu_id);
12553 	CPUSET_AND(cpuset, cpu_ready_set);
12554 	if (!CPUSET_ISNULL(cpuset)) {
12555 		SFMMU_XCALL_STATS(sfmmup);
12556 		xt_some(cpuset, sfmmu_raise_tsb_exception,
12557 		    (uint64_t)sfmmup, INVALID_CONTEXT);
12558 		xt_sync(cpuset);
12559 		SFMMU_STAT(sf_tsb_raise_exception);
12560 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
12561 	}
12562 
12563 	/*
12564 	 * If the hat to-be-invalidated is the same as the current
12565 	 * process on local CPU we need to invalidate
12566 	 * this CPU context as well.
12567 	 */
12568 	if ((sfmmu_getctx_sec() == currcnum) &&
12569 	    (currcnum != INVALID_CONTEXT)) {
12570 		/* sets shared context to INVALID too */
12571 		sfmmu_setctx_sec(INVALID_CONTEXT);
12572 		sfmmu_clear_utsbinfo();
12573 	}
12574 
12575 	SFMMU_FLAGS_SET(sfmmup, HAT_ALLCTX_INVALID);
12576 
12577 	kpreempt_enable();
12578 
12579 	/*
12580 	 * we hold the hat lock, so nobody should allocate a context
12581 	 * for us yet
12582 	 */
12583 	ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT);
12584 }
12585 
12586 #ifdef VAC
12587 /*
12588  * We need to flush the cache in all cpus.  It is possible that
12589  * a process referenced a page as cacheable but has sinced exited
12590  * and cleared the mapping list.  We still to flush it but have no
12591  * state so all cpus is the only alternative.
12592  */
12593 void
12594 sfmmu_cache_flush(pfn_t pfnum, int vcolor)
12595 {
12596 	cpuset_t cpuset;
12597 
12598 	kpreempt_disable();
12599 	cpuset = cpu_ready_set;
12600 	CPUSET_DEL(cpuset, CPU->cpu_id);
12601 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
12602 	xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12603 	xt_sync(cpuset);
12604 	vac_flushpage(pfnum, vcolor);
12605 	kpreempt_enable();
12606 }
12607 
12608 void
12609 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
12610 {
12611 	cpuset_t cpuset;
12612 
12613 	ASSERT(vcolor >= 0);
12614 
12615 	kpreempt_disable();
12616 	cpuset = cpu_ready_set;
12617 	CPUSET_DEL(cpuset, CPU->cpu_id);
12618 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
12619 	xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
12620 	xt_sync(cpuset);
12621 	vac_flushcolor(vcolor, pfnum);
12622 	kpreempt_enable();
12623 }
12624 #endif	/* VAC */
12625 
12626 /*
12627  * We need to prevent processes from accessing the TSB using a cached physical
12628  * address.  It's alright if they try to access the TSB via virtual address
12629  * since they will just fault on that virtual address once the mapping has
12630  * been suspended.
12631  */
12632 #pragma weak sendmondo_in_recover
12633 
12634 /* ARGSUSED */
12635 static int
12636 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
12637 {
12638 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12639 	sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
12640 	hatlock_t *hatlockp;
12641 	sf_scd_t *scdp;
12642 
12643 	if (flags != HAT_PRESUSPEND)
12644 		return (0);
12645 
12646 	/*
12647 	 * If tsb is a shared TSB with TSB_SHAREDCTX set, sfmmup must
12648 	 * be a shared hat, then set SCD's tsbinfo's flag.
12649 	 * If tsb is not shared, sfmmup is a private hat, then set
12650 	 * its private tsbinfo's flag.
12651 	 */
12652 	hatlockp = sfmmu_hat_enter(sfmmup);
12653 	tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
12654 
12655 	if (!(tsbinfop->tsb_flags & TSB_SHAREDCTX)) {
12656 		sfmmu_tsb_inv_ctx(sfmmup);
12657 		sfmmu_hat_exit(hatlockp);
12658 	} else {
12659 		/* release lock on the shared hat */
12660 		sfmmu_hat_exit(hatlockp);
12661 		/* sfmmup is a shared hat */
12662 		ASSERT(sfmmup->sfmmu_scdhat);
12663 		scdp = sfmmup->sfmmu_scdp;
12664 		ASSERT(scdp != NULL);
12665 		/* get private hat from the scd list */
12666 		mutex_enter(&scdp->scd_mutex);
12667 		sfmmup = scdp->scd_sf_list;
12668 		while (sfmmup != NULL) {
12669 			hatlockp = sfmmu_hat_enter(sfmmup);
12670 			/*
12671 			 * We do not call sfmmu_tsb_inv_ctx here because
12672 			 * sendmondo_in_recover check is only needed for
12673 			 * sun4u.
12674 			 */
12675 			sfmmu_invalidate_ctx(sfmmup);
12676 			sfmmu_hat_exit(hatlockp);
12677 			sfmmup = sfmmup->sfmmu_scd_link.next;
12678 
12679 		}
12680 		mutex_exit(&scdp->scd_mutex);
12681 	}
12682 	return (0);
12683 }
12684 
12685 static void
12686 sfmmu_tsb_inv_ctx(sfmmu_t *sfmmup)
12687 {
12688 	extern uint32_t sendmondo_in_recover;
12689 
12690 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12691 
12692 	/*
12693 	 * For Cheetah+ Erratum 25:
12694 	 * Wait for any active recovery to finish.  We can't risk
12695 	 * relocating the TSB of the thread running mondo_recover_proc()
12696 	 * since, if we did that, we would deadlock.  The scenario we are
12697 	 * trying to avoid is as follows:
12698 	 *
12699 	 * THIS CPU			RECOVER CPU
12700 	 * --------			-----------
12701 	 *				Begins recovery, walking through TSB
12702 	 * hat_pagesuspend() TSB TTE
12703 	 *				TLB miss on TSB TTE, spins at TL1
12704 	 * xt_sync()
12705 	 *	send_mondo_timeout()
12706 	 *	mondo_recover_proc()
12707 	 *	((deadlocked))
12708 	 *
12709 	 * The second half of the workaround is that mondo_recover_proc()
12710 	 * checks to see if the tsb_info has the RELOC flag set, and if it
12711 	 * does, it skips over that TSB without ever touching tsbinfop->tsb_va
12712 	 * and hence avoiding the TLB miss that could result in a deadlock.
12713 	 */
12714 	if (&sendmondo_in_recover) {
12715 		membar_enter();	/* make sure RELOC flag visible */
12716 		while (sendmondo_in_recover) {
12717 			drv_usecwait(1);
12718 			membar_consumer();
12719 		}
12720 	}
12721 
12722 	sfmmu_invalidate_ctx(sfmmup);
12723 }
12724 
12725 /* ARGSUSED */
12726 static int
12727 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
12728 	void *tsbinfo, pfn_t newpfn)
12729 {
12730 	hatlock_t *hatlockp;
12731 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12732 	sfmmu_t	*sfmmup = tsbinfop->tsb_sfmmu;
12733 
12734 	if (flags != HAT_POSTUNSUSPEND)
12735 		return (0);
12736 
12737 	hatlockp = sfmmu_hat_enter(sfmmup);
12738 
12739 	SFMMU_STAT(sf_tsb_reloc);
12740 
12741 	/*
12742 	 * The process may have swapped out while we were relocating one
12743 	 * of its TSBs.  If so, don't bother doing the setup since the
12744 	 * process can't be using the memory anymore.
12745 	 */
12746 	if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
12747 		ASSERT(va == tsbinfop->tsb_va);
12748 		sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
12749 
12750 		if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
12751 			sfmmu_inv_tsb(tsbinfop->tsb_va,
12752 			    TSB_BYTES(tsbinfop->tsb_szc));
12753 			tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
12754 		}
12755 	}
12756 
12757 	membar_exit();
12758 	tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
12759 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
12760 
12761 	sfmmu_hat_exit(hatlockp);
12762 
12763 	return (0);
12764 }
12765 
12766 /*
12767  * Allocate and initialize a tsb_info structure.  Note that we may or may not
12768  * allocate a TSB here, depending on the flags passed in.
12769  */
12770 static int
12771 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
12772 	uint_t flags, sfmmu_t *sfmmup)
12773 {
12774 	int err;
12775 
12776 	*tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
12777 	    sfmmu_tsbinfo_cache, KM_SLEEP);
12778 
12779 	if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
12780 	    tsb_szc, flags, sfmmup)) != 0) {
12781 		kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
12782 		SFMMU_STAT(sf_tsb_allocfail);
12783 		*tsbinfopp = NULL;
12784 		return (err);
12785 	}
12786 	SFMMU_STAT(sf_tsb_alloc);
12787 
12788 	/*
12789 	 * Bump the TSB size counters for this TSB size.
12790 	 */
12791 	(*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
12792 	return (0);
12793 }
12794 
12795 static void
12796 sfmmu_tsb_free(struct tsb_info *tsbinfo)
12797 {
12798 	caddr_t tsbva = tsbinfo->tsb_va;
12799 	uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
12800 	struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
12801 	vmem_t	*vmp = tsbinfo->tsb_vmp;
12802 
12803 	/*
12804 	 * If we allocated this TSB from relocatable kernel memory, then we
12805 	 * need to uninstall the callback handler.
12806 	 */
12807 	if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
12808 		uintptr_t slab_mask;
12809 		caddr_t slab_vaddr;
12810 		page_t **ppl;
12811 		int ret;
12812 
12813 		ASSERT(tsb_size <= MMU_PAGESIZE4M || use_bigtsb_arena);
12814 		if (tsb_size > MMU_PAGESIZE4M)
12815 			slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
12816 		else
12817 			slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
12818 		slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
12819 
12820 		ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
12821 		ASSERT(ret == 0);
12822 		hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
12823 		    0, NULL);
12824 		as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
12825 	}
12826 
12827 	if (kmem_cachep != NULL) {
12828 		kmem_cache_free(kmem_cachep, tsbva);
12829 	} else {
12830 		vmem_xfree(vmp, (void *)tsbva, tsb_size);
12831 	}
12832 	tsbinfo->tsb_va = (caddr_t)0xbad00bad;
12833 	atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
12834 }
12835 
12836 static void
12837 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
12838 {
12839 	if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
12840 		sfmmu_tsb_free(tsbinfo);
12841 	}
12842 	kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
12843 
12844 }
12845 
12846 /*
12847  * Setup all the references to physical memory for this tsbinfo.
12848  * The underlying page(s) must be locked.
12849  */
12850 static void
12851 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
12852 {
12853 	ASSERT(pfn != PFN_INVALID);
12854 	ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
12855 
12856 #ifndef sun4v
12857 	if (tsbinfo->tsb_szc == 0) {
12858 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
12859 		    PROT_WRITE|PROT_READ, TTE8K);
12860 	} else {
12861 		/*
12862 		 * Round down PA and use a large mapping; the handlers will
12863 		 * compute the TSB pointer at the correct offset into the
12864 		 * big virtual page.  NOTE: this assumes all TSBs larger
12865 		 * than 8K must come from physically contiguous slabs of
12866 		 * size tsb_slab_size.
12867 		 */
12868 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
12869 		    PROT_WRITE|PROT_READ, tsb_slab_ttesz);
12870 	}
12871 	tsbinfo->tsb_pa = ptob(pfn);
12872 
12873 	TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
12874 	TTE_SET_MOD(&tsbinfo->tsb_tte);    /* enable writes */
12875 
12876 	ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
12877 	ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
12878 #else /* sun4v */
12879 	tsbinfo->tsb_pa = ptob(pfn);
12880 #endif /* sun4v */
12881 }
12882 
12883 
12884 /*
12885  * Returns zero on success, ENOMEM if over the high water mark,
12886  * or EAGAIN if the caller needs to retry with a smaller TSB
12887  * size (or specify TSB_FORCEALLOC if the allocation can't fail).
12888  *
12889  * This call cannot fail to allocate a TSB if TSB_FORCEALLOC
12890  * is specified and the TSB requested is PAGESIZE, though it
12891  * may sleep waiting for memory if sufficient memory is not
12892  * available.
12893  */
12894 static int
12895 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
12896     int tsbcode, uint_t flags, sfmmu_t *sfmmup)
12897 {
12898 	caddr_t vaddr = NULL;
12899 	caddr_t slab_vaddr;
12900 	uintptr_t slab_mask;
12901 	int tsbbytes = TSB_BYTES(tsbcode);
12902 	int lowmem = 0;
12903 	struct kmem_cache *kmem_cachep = NULL;
12904 	vmem_t *vmp = NULL;
12905 	lgrp_id_t lgrpid = LGRP_NONE;
12906 	pfn_t pfn;
12907 	uint_t cbflags = HAC_SLEEP;
12908 	page_t **pplist;
12909 	int ret;
12910 
12911 	ASSERT(tsbbytes <= MMU_PAGESIZE4M || use_bigtsb_arena);
12912 	if (tsbbytes > MMU_PAGESIZE4M)
12913 		slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
12914 	else
12915 		slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
12916 
12917 	if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
12918 		flags |= TSB_ALLOC;
12919 
12920 	ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
12921 
12922 	tsbinfo->tsb_sfmmu = sfmmup;
12923 
12924 	/*
12925 	 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
12926 	 * return.
12927 	 */
12928 	if ((flags & TSB_ALLOC) == 0) {
12929 		tsbinfo->tsb_szc = tsbcode;
12930 		tsbinfo->tsb_ttesz_mask = tteszmask;
12931 		tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
12932 		tsbinfo->tsb_pa = -1;
12933 		tsbinfo->tsb_tte.ll = 0;
12934 		tsbinfo->tsb_next = NULL;
12935 		tsbinfo->tsb_flags = TSB_SWAPPED;
12936 		tsbinfo->tsb_cache = NULL;
12937 		tsbinfo->tsb_vmp = NULL;
12938 		return (0);
12939 	}
12940 
12941 #ifdef DEBUG
12942 	/*
12943 	 * For debugging:
12944 	 * Randomly force allocation failures every tsb_alloc_mtbf
12945 	 * tries if TSB_FORCEALLOC is not specified.  This will
12946 	 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
12947 	 * it is even, to allow testing of both failure paths...
12948 	 */
12949 	if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
12950 	    (tsb_alloc_count++ == tsb_alloc_mtbf)) {
12951 		tsb_alloc_count = 0;
12952 		tsb_alloc_fail_mtbf++;
12953 		return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
12954 	}
12955 #endif	/* DEBUG */
12956 
12957 	/*
12958 	 * Enforce high water mark if we are not doing a forced allocation
12959 	 * and are not shrinking a process' TSB.
12960 	 */
12961 	if ((flags & TSB_SHRINK) == 0 &&
12962 	    (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
12963 		if ((flags & TSB_FORCEALLOC) == 0)
12964 			return (ENOMEM);
12965 		lowmem = 1;
12966 	}
12967 
12968 	/*
12969 	 * Allocate from the correct location based upon the size of the TSB
12970 	 * compared to the base page size, and what memory conditions dictate.
12971 	 * Note we always do nonblocking allocations from the TSB arena since
12972 	 * we don't want memory fragmentation to cause processes to block
12973 	 * indefinitely waiting for memory; until the kernel algorithms that
12974 	 * coalesce large pages are improved this is our best option.
12975 	 *
12976 	 * Algorithm:
12977 	 *	If allocating a "large" TSB (>8K), allocate from the
12978 	 *		appropriate kmem_tsb_default_arena vmem arena
12979 	 *	else if low on memory or the TSB_FORCEALLOC flag is set or
12980 	 *	tsb_forceheap is set
12981 	 *		Allocate from kernel heap via sfmmu_tsb8k_cache with
12982 	 *		KM_SLEEP (never fails)
12983 	 *	else
12984 	 *		Allocate from appropriate sfmmu_tsb_cache with
12985 	 *		KM_NOSLEEP
12986 	 *	endif
12987 	 */
12988 	if (tsb_lgrp_affinity)
12989 		lgrpid = lgrp_home_id(curthread);
12990 	if (lgrpid == LGRP_NONE)
12991 		lgrpid = 0;	/* use lgrp of boot CPU */
12992 
12993 	if (tsbbytes > MMU_PAGESIZE) {
12994 		if (tsbbytes > MMU_PAGESIZE4M) {
12995 			vmp = kmem_bigtsb_default_arena[lgrpid];
12996 			vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
12997 			    0, 0, NULL, NULL, VM_NOSLEEP);
12998 		} else {
12999 			vmp = kmem_tsb_default_arena[lgrpid];
13000 			vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
13001 			    0, 0, NULL, NULL, VM_NOSLEEP);
13002 		}
13003 #ifdef	DEBUG
13004 	} else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
13005 #else	/* !DEBUG */
13006 	} else if (lowmem || (flags & TSB_FORCEALLOC)) {
13007 #endif	/* DEBUG */
13008 		kmem_cachep = sfmmu_tsb8k_cache;
13009 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
13010 		ASSERT(vaddr != NULL);
13011 	} else {
13012 		kmem_cachep = sfmmu_tsb_cache[lgrpid];
13013 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
13014 	}
13015 
13016 	tsbinfo->tsb_cache = kmem_cachep;
13017 	tsbinfo->tsb_vmp = vmp;
13018 
13019 	if (vaddr == NULL) {
13020 		return (EAGAIN);
13021 	}
13022 
13023 	atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
13024 	kmem_cachep = tsbinfo->tsb_cache;
13025 
13026 	/*
13027 	 * If we are allocating from outside the cage, then we need to
13028 	 * register a relocation callback handler.  Note that for now
13029 	 * since pseudo mappings always hang off of the slab's root page,
13030 	 * we need only lock the first 8K of the TSB slab.  This is a bit
13031 	 * hacky but it is good for performance.
13032 	 */
13033 	if (kmem_cachep != sfmmu_tsb8k_cache) {
13034 		slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
13035 		ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
13036 		ASSERT(ret == 0);
13037 		ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
13038 		    cbflags, (void *)tsbinfo, &pfn, NULL);
13039 
13040 		/*
13041 		 * Need to free up resources if we could not successfully
13042 		 * add the callback function and return an error condition.
13043 		 */
13044 		if (ret != 0) {
13045 			if (kmem_cachep) {
13046 				kmem_cache_free(kmem_cachep, vaddr);
13047 			} else {
13048 				vmem_xfree(vmp, (void *)vaddr, tsbbytes);
13049 			}
13050 			as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
13051 			    S_WRITE);
13052 			return (EAGAIN);
13053 		}
13054 	} else {
13055 		/*
13056 		 * Since allocation of 8K TSBs from heap is rare and occurs
13057 		 * during memory pressure we allocate them from permanent
13058 		 * memory rather than using callbacks to get the PFN.
13059 		 */
13060 		pfn = hat_getpfnum(kas.a_hat, vaddr);
13061 	}
13062 
13063 	tsbinfo->tsb_va = vaddr;
13064 	tsbinfo->tsb_szc = tsbcode;
13065 	tsbinfo->tsb_ttesz_mask = tteszmask;
13066 	tsbinfo->tsb_next = NULL;
13067 	tsbinfo->tsb_flags = 0;
13068 
13069 	sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
13070 
13071 	sfmmu_inv_tsb(vaddr, tsbbytes);
13072 
13073 	if (kmem_cachep != sfmmu_tsb8k_cache) {
13074 		as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
13075 	}
13076 
13077 	return (0);
13078 }
13079 
13080 /*
13081  * Initialize per cpu tsb and per cpu tsbmiss_area
13082  */
13083 void
13084 sfmmu_init_tsbs(void)
13085 {
13086 	int i;
13087 	struct tsbmiss	*tsbmissp;
13088 	struct kpmtsbm	*kpmtsbmp;
13089 #ifndef sun4v
13090 	extern int	dcache_line_mask;
13091 #endif /* sun4v */
13092 	extern uint_t	vac_colors;
13093 
13094 	/*
13095 	 * Init. tsb miss area.
13096 	 */
13097 	tsbmissp = tsbmiss_area;
13098 
13099 	for (i = 0; i < NCPU; tsbmissp++, i++) {
13100 		/*
13101 		 * initialize the tsbmiss area.
13102 		 * Do this for all possible CPUs as some may be added
13103 		 * while the system is running. There is no cost to this.
13104 		 */
13105 		tsbmissp->ksfmmup = ksfmmup;
13106 #ifndef sun4v
13107 		tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
13108 #endif /* sun4v */
13109 		tsbmissp->khashstart =
13110 		    (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
13111 		tsbmissp->uhashstart =
13112 		    (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
13113 		tsbmissp->khashsz = khmehash_num;
13114 		tsbmissp->uhashsz = uhmehash_num;
13115 	}
13116 
13117 	sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
13118 	    sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
13119 
13120 	if (kpm_enable == 0)
13121 		return;
13122 
13123 	/* -- Begin KPM specific init -- */
13124 
13125 	if (kpm_smallpages) {
13126 		/*
13127 		 * If we're using base pagesize pages for seg_kpm
13128 		 * mappings, we use the kernel TSB since we can't afford
13129 		 * to allocate a second huge TSB for these mappings.
13130 		 */
13131 		kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13132 		kpm_tsbsz = ktsb_szcode;
13133 		kpmsm_tsbbase = kpm_tsbbase;
13134 		kpmsm_tsbsz = kpm_tsbsz;
13135 	} else {
13136 		/*
13137 		 * In VAC conflict case, just put the entries in the
13138 		 * kernel 8K indexed TSB for now so we can find them.
13139 		 * This could really be changed in the future if we feel
13140 		 * the need...
13141 		 */
13142 		kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13143 		kpmsm_tsbsz = ktsb_szcode;
13144 		kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
13145 		kpm_tsbsz = ktsb4m_szcode;
13146 	}
13147 
13148 	kpmtsbmp = kpmtsbm_area;
13149 	for (i = 0; i < NCPU; kpmtsbmp++, i++) {
13150 		/*
13151 		 * Initialize the kpmtsbm area.
13152 		 * Do this for all possible CPUs as some may be added
13153 		 * while the system is running. There is no cost to this.
13154 		 */
13155 		kpmtsbmp->vbase = kpm_vbase;
13156 		kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
13157 		kpmtsbmp->sz_shift = kpm_size_shift;
13158 		kpmtsbmp->kpmp_shift = kpmp_shift;
13159 		kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
13160 		if (kpm_smallpages == 0) {
13161 			kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
13162 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
13163 		} else {
13164 			kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
13165 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
13166 		}
13167 		kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
13168 		kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
13169 #ifdef	DEBUG
13170 		kpmtsbmp->flags |= (kpm_tsbmtl) ?  KPMTSBM_TLTSBM_FLAG : 0;
13171 #endif	/* DEBUG */
13172 		if (ktsb_phys)
13173 			kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
13174 	}
13175 
13176 	/* -- End KPM specific init -- */
13177 }
13178 
13179 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
13180 struct tsb_info ktsb_info[2];
13181 
13182 /*
13183  * Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
13184  */
13185 void
13186 sfmmu_init_ktsbinfo()
13187 {
13188 	ASSERT(ksfmmup != NULL);
13189 	ASSERT(ksfmmup->sfmmu_tsb == NULL);
13190 	/*
13191 	 * Allocate tsbinfos for kernel and copy in data
13192 	 * to make debug easier and sun4v setup easier.
13193 	 */
13194 	ktsb_info[0].tsb_sfmmu = ksfmmup;
13195 	ktsb_info[0].tsb_szc = ktsb_szcode;
13196 	ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
13197 	ktsb_info[0].tsb_va = ktsb_base;
13198 	ktsb_info[0].tsb_pa = ktsb_pbase;
13199 	ktsb_info[0].tsb_flags = 0;
13200 	ktsb_info[0].tsb_tte.ll = 0;
13201 	ktsb_info[0].tsb_cache = NULL;
13202 
13203 	ktsb_info[1].tsb_sfmmu = ksfmmup;
13204 	ktsb_info[1].tsb_szc = ktsb4m_szcode;
13205 	ktsb_info[1].tsb_ttesz_mask = TSB4M;
13206 	ktsb_info[1].tsb_va = ktsb4m_base;
13207 	ktsb_info[1].tsb_pa = ktsb4m_pbase;
13208 	ktsb_info[1].tsb_flags = 0;
13209 	ktsb_info[1].tsb_tte.ll = 0;
13210 	ktsb_info[1].tsb_cache = NULL;
13211 
13212 	/* Link them into ksfmmup. */
13213 	ktsb_info[0].tsb_next = &ktsb_info[1];
13214 	ktsb_info[1].tsb_next = NULL;
13215 	ksfmmup->sfmmu_tsb = &ktsb_info[0];
13216 
13217 	sfmmu_setup_tsbinfo(ksfmmup);
13218 }
13219 
13220 /*
13221  * Cache the last value returned from va_to_pa().  If the VA specified
13222  * in the current call to cached_va_to_pa() maps to the same Page (as the
13223  * previous call to cached_va_to_pa()), then compute the PA using
13224  * cached info, else call va_to_pa().
13225  *
13226  * Note: this function is neither MT-safe nor consistent in the presence
13227  * of multiple, interleaved threads.  This function was created to enable
13228  * an optimization used during boot (at a point when there's only one thread
13229  * executing on the "boot CPU", and before startup_vm() has been called).
13230  */
13231 static uint64_t
13232 cached_va_to_pa(void *vaddr)
13233 {
13234 	static uint64_t prev_vaddr_base = 0;
13235 	static uint64_t prev_pfn = 0;
13236 
13237 	if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
13238 		return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
13239 	} else {
13240 		uint64_t pa = va_to_pa(vaddr);
13241 
13242 		if (pa != ((uint64_t)-1)) {
13243 			/*
13244 			 * Computed physical address is valid.  Cache its
13245 			 * related info for the next cached_va_to_pa() call.
13246 			 */
13247 			prev_pfn = pa & MMU_PAGEMASK;
13248 			prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
13249 		}
13250 
13251 		return (pa);
13252 	}
13253 }
13254 
13255 /*
13256  * Carve up our nucleus hblk region.  We may allocate more hblks than
13257  * asked due to rounding errors but we are guaranteed to have at least
13258  * enough space to allocate the requested number of hblk8's and hblk1's.
13259  */
13260 void
13261 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
13262 {
13263 	struct hme_blk *hmeblkp;
13264 	size_t hme8blk_sz, hme1blk_sz;
13265 	size_t i;
13266 	size_t hblk8_bound;
13267 	ulong_t j = 0, k = 0;
13268 
13269 	ASSERT(addr != NULL && size != 0);
13270 
13271 	/* Need to use proper structure alignment */
13272 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
13273 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
13274 
13275 	nucleus_hblk8.list = (void *)addr;
13276 	nucleus_hblk8.index = 0;
13277 
13278 	/*
13279 	 * Use as much memory as possible for hblk8's since we
13280 	 * expect all bop_alloc'ed memory to be allocated in 8k chunks.
13281 	 * We need to hold back enough space for the hblk1's which
13282 	 * we'll allocate next.
13283 	 */
13284 	hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
13285 	for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
13286 		hmeblkp = (struct hme_blk *)addr;
13287 		addr += hme8blk_sz;
13288 		hmeblkp->hblk_nuc_bit = 1;
13289 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13290 	}
13291 	nucleus_hblk8.len = j;
13292 	ASSERT(j >= nhblk8);
13293 	SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
13294 
13295 	nucleus_hblk1.list = (void *)addr;
13296 	nucleus_hblk1.index = 0;
13297 	for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
13298 		hmeblkp = (struct hme_blk *)addr;
13299 		addr += hme1blk_sz;
13300 		hmeblkp->hblk_nuc_bit = 1;
13301 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13302 	}
13303 	ASSERT(k >= nhblk1);
13304 	nucleus_hblk1.len = k;
13305 	SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
13306 }
13307 
13308 /*
13309  * This function is currently not supported on this platform. For what
13310  * it's supposed to do, see hat.c and hat_srmmu.c
13311  */
13312 /* ARGSUSED */
13313 faultcode_t
13314 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
13315     uint_t flags)
13316 {
13317 	ASSERT(hat->sfmmu_xhat_provider == NULL);
13318 	return (FC_NOSUPPORT);
13319 }
13320 
13321 /*
13322  * Searchs the mapping list of the page for a mapping of the same size. If not
13323  * found the corresponding bit is cleared in the p_index field. When large
13324  * pages are more prevalent in the system, we can maintain the mapping list
13325  * in order and we don't have to traverse the list each time. Just check the
13326  * next and prev entries, and if both are of different size, we clear the bit.
13327  */
13328 static void
13329 sfmmu_rm_large_mappings(page_t *pp, int ttesz)
13330 {
13331 	struct sf_hment *sfhmep;
13332 	struct hme_blk *hmeblkp;
13333 	int	index;
13334 	pgcnt_t	npgs;
13335 
13336 	ASSERT(ttesz > TTE8K);
13337 
13338 	ASSERT(sfmmu_mlist_held(pp));
13339 
13340 	ASSERT(PP_ISMAPPED_LARGE(pp));
13341 
13342 	/*
13343 	 * Traverse mapping list looking for another mapping of same size.
13344 	 * since we only want to clear index field if all mappings of
13345 	 * that size are gone.
13346 	 */
13347 
13348 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
13349 		if (IS_PAHME(sfhmep))
13350 			continue;
13351 		hmeblkp = sfmmu_hmetohblk(sfhmep);
13352 		if (hmeblkp->hblk_xhat_bit)
13353 			continue;
13354 		if (hme_size(sfhmep) == ttesz) {
13355 			/*
13356 			 * another mapping of the same size. don't clear index.
13357 			 */
13358 			return;
13359 		}
13360 	}
13361 
13362 	/*
13363 	 * Clear the p_index bit for large page.
13364 	 */
13365 	index = PAGESZ_TO_INDEX(ttesz);
13366 	npgs = TTEPAGES(ttesz);
13367 	while (npgs-- > 0) {
13368 		ASSERT(pp->p_index & index);
13369 		pp->p_index &= ~index;
13370 		pp = PP_PAGENEXT(pp);
13371 	}
13372 }
13373 
13374 /*
13375  * return supported features
13376  */
13377 /* ARGSUSED */
13378 int
13379 hat_supported(enum hat_features feature, void *arg)
13380 {
13381 	switch (feature) {
13382 	case    HAT_SHARED_PT:
13383 	case	HAT_DYNAMIC_ISM_UNMAP:
13384 	case	HAT_VMODSORT:
13385 		return (1);
13386 	case	HAT_SHARED_REGIONS:
13387 		if (shctx_on)
13388 			return (1);
13389 		else
13390 			return (0);
13391 	default:
13392 		return (0);
13393 	}
13394 }
13395 
13396 void
13397 hat_enter(struct hat *hat)
13398 {
13399 	hatlock_t	*hatlockp;
13400 
13401 	if (hat != ksfmmup) {
13402 		hatlockp = TSB_HASH(hat);
13403 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
13404 	}
13405 }
13406 
13407 void
13408 hat_exit(struct hat *hat)
13409 {
13410 	hatlock_t	*hatlockp;
13411 
13412 	if (hat != ksfmmup) {
13413 		hatlockp = TSB_HASH(hat);
13414 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
13415 	}
13416 }
13417 
13418 /*ARGSUSED*/
13419 void
13420 hat_reserve(struct as *as, caddr_t addr, size_t len)
13421 {
13422 }
13423 
13424 static void
13425 hat_kstat_init(void)
13426 {
13427 	kstat_t *ksp;
13428 
13429 	ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
13430 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
13431 	    KSTAT_FLAG_VIRTUAL);
13432 	if (ksp) {
13433 		ksp->ks_data = (void *) &sfmmu_global_stat;
13434 		kstat_install(ksp);
13435 	}
13436 	ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
13437 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
13438 	    KSTAT_FLAG_VIRTUAL);
13439 	if (ksp) {
13440 		ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
13441 		kstat_install(ksp);
13442 	}
13443 	ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
13444 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
13445 	    KSTAT_FLAG_WRITABLE);
13446 	if (ksp) {
13447 		ksp->ks_update = sfmmu_kstat_percpu_update;
13448 		kstat_install(ksp);
13449 	}
13450 }
13451 
13452 /* ARGSUSED */
13453 static int
13454 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
13455 {
13456 	struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
13457 	struct tsbmiss *tsbm = tsbmiss_area;
13458 	struct kpmtsbm *kpmtsbm = kpmtsbm_area;
13459 	int i;
13460 
13461 	ASSERT(cpu_kstat);
13462 	if (rw == KSTAT_READ) {
13463 		for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
13464 			cpu_kstat->sf_itlb_misses = 0;
13465 			cpu_kstat->sf_dtlb_misses = 0;
13466 			cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
13467 			    tsbm->uprot_traps;
13468 			cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
13469 			    kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
13470 			cpu_kstat->sf_tsb_hits = 0;
13471 			cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
13472 			cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
13473 		}
13474 	} else {
13475 		/* KSTAT_WRITE is used to clear stats */
13476 		for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
13477 			tsbm->utsb_misses = 0;
13478 			tsbm->ktsb_misses = 0;
13479 			tsbm->uprot_traps = 0;
13480 			tsbm->kprot_traps = 0;
13481 			kpmtsbm->kpm_dtlb_misses = 0;
13482 			kpmtsbm->kpm_tsb_misses = 0;
13483 		}
13484 	}
13485 	return (0);
13486 }
13487 
13488 #ifdef	DEBUG
13489 
13490 tte_t  *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
13491 
13492 /*
13493  * A tte checker. *orig_old is the value we read before cas.
13494  *	*cur is the value returned by cas.
13495  *	*new is the desired value when we do the cas.
13496  *
13497  *	*hmeblkp is currently unused.
13498  */
13499 
13500 /* ARGSUSED */
13501 void
13502 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
13503 {
13504 	pfn_t i, j, k;
13505 	int cpuid = CPU->cpu_id;
13506 
13507 	gorig[cpuid] = orig_old;
13508 	gcur[cpuid] = cur;
13509 	gnew[cpuid] = new;
13510 
13511 #ifdef lint
13512 	hmeblkp = hmeblkp;
13513 #endif
13514 
13515 	if (TTE_IS_VALID(orig_old)) {
13516 		if (TTE_IS_VALID(cur)) {
13517 			i = TTE_TO_TTEPFN(orig_old);
13518 			j = TTE_TO_TTEPFN(cur);
13519 			k = TTE_TO_TTEPFN(new);
13520 			if (i != j) {
13521 				/* remap error? */
13522 				panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j);
13523 			}
13524 
13525 			if (i != k) {
13526 				/* remap error? */
13527 				panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k);
13528 			}
13529 		} else {
13530 			if (TTE_IS_VALID(new)) {
13531 				panic("chk_tte: invalid cur? ");
13532 			}
13533 
13534 			i = TTE_TO_TTEPFN(orig_old);
13535 			k = TTE_TO_TTEPFN(new);
13536 			if (i != k) {
13537 				panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k);
13538 			}
13539 		}
13540 	} else {
13541 		if (TTE_IS_VALID(cur)) {
13542 			j = TTE_TO_TTEPFN(cur);
13543 			if (TTE_IS_VALID(new)) {
13544 				k = TTE_TO_TTEPFN(new);
13545 				if (j != k) {
13546 					panic("chk_tte: bad pfn4, 0x%lx, 0x%lx",
13547 					    j, k);
13548 				}
13549 			} else {
13550 				panic("chk_tte: why here?");
13551 			}
13552 		} else {
13553 			if (!TTE_IS_VALID(new)) {
13554 				panic("chk_tte: why here2 ?");
13555 			}
13556 		}
13557 	}
13558 }
13559 
13560 #endif /* DEBUG */
13561 
13562 extern void prefetch_tsbe_read(struct tsbe *);
13563 extern void prefetch_tsbe_write(struct tsbe *);
13564 
13565 
13566 /*
13567  * We want to prefetch 7 cache lines ahead for our read prefetch.  This gives
13568  * us optimal performance on Cheetah+.  You can only have 8 outstanding
13569  * prefetches at any one time, so we opted for 7 read prefetches and 1 write
13570  * prefetch to make the most utilization of the prefetch capability.
13571  */
13572 #define	TSBE_PREFETCH_STRIDE (7)
13573 
13574 void
13575 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
13576 {
13577 	int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
13578 	int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
13579 	int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
13580 	int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
13581 	struct tsbe *old;
13582 	struct tsbe *new;
13583 	struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
13584 	uint64_t va;
13585 	int new_offset;
13586 	int i;
13587 	int vpshift;
13588 	int last_prefetch;
13589 
13590 	if (old_bytes == new_bytes) {
13591 		bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
13592 	} else {
13593 
13594 		/*
13595 		 * A TSBE is 16 bytes which means there are four TSBE's per
13596 		 * P$ line (64 bytes), thus every 4 TSBE's we prefetch.
13597 		 */
13598 		old = (struct tsbe *)old_tsbinfo->tsb_va;
13599 		last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
13600 		for (i = 0; i < old_entries; i++, old++) {
13601 			if (((i & (4-1)) == 0) && (i < last_prefetch))
13602 				prefetch_tsbe_read(old);
13603 			if (!old->tte_tag.tag_invalid) {
13604 				/*
13605 				 * We have a valid TTE to remap.  Check the
13606 				 * size.  We won't remap 64K or 512K TTEs
13607 				 * because they span more than one TSB entry
13608 				 * and are indexed using an 8K virt. page.
13609 				 * Ditto for 32M and 256M TTEs.
13610 				 */
13611 				if (TTE_CSZ(&old->tte_data) == TTE64K ||
13612 				    TTE_CSZ(&old->tte_data) == TTE512K)
13613 					continue;
13614 				if (mmu_page_sizes == max_mmu_page_sizes) {
13615 					if (TTE_CSZ(&old->tte_data) == TTE32M ||
13616 					    TTE_CSZ(&old->tte_data) == TTE256M)
13617 						continue;
13618 				}
13619 
13620 				/* clear the lower 22 bits of the va */
13621 				va = *(uint64_t *)old << 22;
13622 				/* turn va into a virtual pfn */
13623 				va >>= 22 - TSB_START_SIZE;
13624 				/*
13625 				 * or in bits from the offset in the tsb
13626 				 * to get the real virtual pfn. These
13627 				 * correspond to bits [21:13] in the va
13628 				 */
13629 				vpshift =
13630 				    TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
13631 				    0x1ff;
13632 				va |= (i << vpshift);
13633 				va >>= vpshift;
13634 				new_offset = va & (new_entries - 1);
13635 				new = new_base + new_offset;
13636 				prefetch_tsbe_write(new);
13637 				*new = *old;
13638 			}
13639 		}
13640 	}
13641 }
13642 
13643 /*
13644  * unused in sfmmu
13645  */
13646 void
13647 hat_dump(void)
13648 {
13649 }
13650 
13651 /*
13652  * Called when a thread is exiting and we have switched to the kernel address
13653  * space.  Perform the same VM initialization resume() uses when switching
13654  * processes.
13655  *
13656  * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
13657  * we call it anyway in case the semantics change in the future.
13658  */
13659 /*ARGSUSED*/
13660 void
13661 hat_thread_exit(kthread_t *thd)
13662 {
13663 	uint_t pgsz_cnum;
13664 	uint_t pstate_save;
13665 
13666 	ASSERT(thd->t_procp->p_as == &kas);
13667 
13668 	pgsz_cnum = KCONTEXT;
13669 #ifdef sun4u
13670 	pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT);
13671 #endif
13672 
13673 	/*
13674 	 * Note that sfmmu_load_mmustate() is currently a no-op for
13675 	 * kernel threads. We need to disable interrupts here,
13676 	 * simply because otherwise sfmmu_load_mmustate() would panic
13677 	 * if the caller does not disable interrupts.
13678 	 */
13679 	pstate_save = sfmmu_disable_intrs();
13680 
13681 	/* Compatibility Note: hw takes care of MMU_SCONTEXT1 */
13682 	sfmmu_setctx_sec(pgsz_cnum);
13683 	sfmmu_load_mmustate(ksfmmup);
13684 	sfmmu_enable_intrs(pstate_save);
13685 }
13686 
13687 
13688 /*
13689  * SRD support
13690  */
13691 #define	SRD_HASH_FUNCTION(vp)	(((((uintptr_t)(vp)) >> 4) ^ \
13692 				    (((uintptr_t)(vp)) >> 11)) & \
13693 				    srd_hashmask)
13694 
13695 /*
13696  * Attach the process to the srd struct associated with the exec vnode
13697  * from which the process is started.
13698  */
13699 void
13700 hat_join_srd(struct hat *sfmmup, vnode_t *evp)
13701 {
13702 	uint_t hash = SRD_HASH_FUNCTION(evp);
13703 	sf_srd_t *srdp;
13704 	sf_srd_t *newsrdp;
13705 
13706 	ASSERT(sfmmup != ksfmmup);
13707 	ASSERT(sfmmup->sfmmu_srdp == NULL);
13708 
13709 	if (!shctx_on) {
13710 		return;
13711 	}
13712 
13713 	VN_HOLD(evp);
13714 
13715 	if (srd_buckets[hash].srdb_srdp != NULL) {
13716 		mutex_enter(&srd_buckets[hash].srdb_lock);
13717 		for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13718 		    srdp = srdp->srd_hash) {
13719 			if (srdp->srd_evp == evp) {
13720 				ASSERT(srdp->srd_refcnt >= 0);
13721 				sfmmup->sfmmu_srdp = srdp;
13722 				atomic_add_32(
13723 				    (volatile uint_t *)&srdp->srd_refcnt, 1);
13724 				mutex_exit(&srd_buckets[hash].srdb_lock);
13725 				return;
13726 			}
13727 		}
13728 		mutex_exit(&srd_buckets[hash].srdb_lock);
13729 	}
13730 	newsrdp = kmem_cache_alloc(srd_cache, KM_SLEEP);
13731 	ASSERT(newsrdp->srd_next_ismrid == 0 && newsrdp->srd_next_hmerid == 0);
13732 
13733 	newsrdp->srd_evp = evp;
13734 	newsrdp->srd_refcnt = 1;
13735 	newsrdp->srd_hmergnfree = NULL;
13736 	newsrdp->srd_ismrgnfree = NULL;
13737 
13738 	mutex_enter(&srd_buckets[hash].srdb_lock);
13739 	for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13740 	    srdp = srdp->srd_hash) {
13741 		if (srdp->srd_evp == evp) {
13742 			ASSERT(srdp->srd_refcnt >= 0);
13743 			sfmmup->sfmmu_srdp = srdp;
13744 			atomic_add_32((volatile uint_t *)&srdp->srd_refcnt, 1);
13745 			mutex_exit(&srd_buckets[hash].srdb_lock);
13746 			kmem_cache_free(srd_cache, newsrdp);
13747 			return;
13748 		}
13749 	}
13750 	newsrdp->srd_hash = srd_buckets[hash].srdb_srdp;
13751 	srd_buckets[hash].srdb_srdp = newsrdp;
13752 	sfmmup->sfmmu_srdp = newsrdp;
13753 
13754 	mutex_exit(&srd_buckets[hash].srdb_lock);
13755 
13756 }
13757 
13758 static void
13759 sfmmu_leave_srd(sfmmu_t *sfmmup)
13760 {
13761 	vnode_t *evp;
13762 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
13763 	uint_t hash;
13764 	sf_srd_t **prev_srdpp;
13765 	sf_region_t *rgnp;
13766 	sf_region_t *nrgnp;
13767 #ifdef DEBUG
13768 	int rgns = 0;
13769 #endif
13770 	int i;
13771 
13772 	ASSERT(sfmmup != ksfmmup);
13773 	ASSERT(srdp != NULL);
13774 	ASSERT(srdp->srd_refcnt > 0);
13775 	ASSERT(sfmmup->sfmmu_scdp == NULL);
13776 	ASSERT(sfmmup->sfmmu_free == 1);
13777 
13778 	sfmmup->sfmmu_srdp = NULL;
13779 	evp = srdp->srd_evp;
13780 	ASSERT(evp != NULL);
13781 	if (atomic_add_32_nv(
13782 	    (volatile uint_t *)&srdp->srd_refcnt, -1)) {
13783 		VN_RELE(evp);
13784 		return;
13785 	}
13786 
13787 	hash = SRD_HASH_FUNCTION(evp);
13788 	mutex_enter(&srd_buckets[hash].srdb_lock);
13789 	for (prev_srdpp = &srd_buckets[hash].srdb_srdp;
13790 	    (srdp = *prev_srdpp) != NULL; prev_srdpp = &srdp->srd_hash) {
13791 		if (srdp->srd_evp == evp) {
13792 			break;
13793 		}
13794 	}
13795 	if (srdp == NULL || srdp->srd_refcnt) {
13796 		mutex_exit(&srd_buckets[hash].srdb_lock);
13797 		VN_RELE(evp);
13798 		return;
13799 	}
13800 	*prev_srdpp = srdp->srd_hash;
13801 	mutex_exit(&srd_buckets[hash].srdb_lock);
13802 
13803 	ASSERT(srdp->srd_refcnt == 0);
13804 	VN_RELE(evp);
13805 
13806 #ifdef DEBUG
13807 	for (i = 0; i < SFMMU_MAX_REGION_BUCKETS; i++) {
13808 		ASSERT(srdp->srd_rgnhash[i] == NULL);
13809 	}
13810 #endif /* DEBUG */
13811 
13812 	/* free each hme regions in the srd */
13813 	for (rgnp = srdp->srd_hmergnfree; rgnp != NULL; rgnp = nrgnp) {
13814 		nrgnp = rgnp->rgn_next;
13815 		ASSERT(rgnp->rgn_id < srdp->srd_next_hmerid);
13816 		ASSERT(rgnp->rgn_refcnt == 0);
13817 		ASSERT(rgnp->rgn_sfmmu_head == NULL);
13818 		ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13819 		ASSERT(rgnp->rgn_hmeflags == 0);
13820 		ASSERT(srdp->srd_hmergnp[rgnp->rgn_id] == rgnp);
13821 #ifdef DEBUG
13822 		for (i = 0; i < MMU_PAGE_SIZES; i++) {
13823 			ASSERT(rgnp->rgn_ttecnt[i] == 0);
13824 		}
13825 		rgns++;
13826 #endif /* DEBUG */
13827 		kmem_cache_free(region_cache, rgnp);
13828 	}
13829 	ASSERT(rgns == srdp->srd_next_hmerid);
13830 
13831 #ifdef DEBUG
13832 	rgns = 0;
13833 #endif
13834 	/* free each ism rgns in the srd */
13835 	for (rgnp = srdp->srd_ismrgnfree; rgnp != NULL; rgnp = nrgnp) {
13836 		nrgnp = rgnp->rgn_next;
13837 		ASSERT(rgnp->rgn_id < srdp->srd_next_ismrid);
13838 		ASSERT(rgnp->rgn_refcnt == 0);
13839 		ASSERT(rgnp->rgn_sfmmu_head == NULL);
13840 		ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13841 		ASSERT(srdp->srd_ismrgnp[rgnp->rgn_id] == rgnp);
13842 #ifdef DEBUG
13843 		for (i = 0; i < MMU_PAGE_SIZES; i++) {
13844 			ASSERT(rgnp->rgn_ttecnt[i] == 0);
13845 		}
13846 		rgns++;
13847 #endif /* DEBUG */
13848 		kmem_cache_free(region_cache, rgnp);
13849 	}
13850 	ASSERT(rgns == srdp->srd_next_ismrid);
13851 	ASSERT(srdp->srd_ismbusyrgns == 0);
13852 	ASSERT(srdp->srd_hmebusyrgns == 0);
13853 
13854 	srdp->srd_next_ismrid = 0;
13855 	srdp->srd_next_hmerid = 0;
13856 
13857 	bzero((void *)srdp->srd_ismrgnp,
13858 	    sizeof (sf_region_t *) * SFMMU_MAX_ISM_REGIONS);
13859 	bzero((void *)srdp->srd_hmergnp,
13860 	    sizeof (sf_region_t *) * SFMMU_MAX_HME_REGIONS);
13861 
13862 	ASSERT(srdp->srd_scdp == NULL);
13863 	kmem_cache_free(srd_cache, srdp);
13864 }
13865 
13866 /* ARGSUSED */
13867 static int
13868 sfmmu_srdcache_constructor(void *buf, void *cdrarg, int kmflags)
13869 {
13870 	sf_srd_t *srdp = (sf_srd_t *)buf;
13871 	bzero(buf, sizeof (*srdp));
13872 
13873 	mutex_init(&srdp->srd_mutex, NULL, MUTEX_DEFAULT, NULL);
13874 	mutex_init(&srdp->srd_scd_mutex, NULL, MUTEX_DEFAULT, NULL);
13875 	return (0);
13876 }
13877 
13878 /* ARGSUSED */
13879 static void
13880 sfmmu_srdcache_destructor(void *buf, void *cdrarg)
13881 {
13882 	sf_srd_t *srdp = (sf_srd_t *)buf;
13883 
13884 	mutex_destroy(&srdp->srd_mutex);
13885 	mutex_destroy(&srdp->srd_scd_mutex);
13886 }
13887 
13888 /*
13889  * The caller makes sure hat_join_region()/hat_leave_region() can't be called
13890  * at the same time for the same process and address range. This is ensured by
13891  * the fact that address space is locked as writer when a process joins the
13892  * regions. Therefore there's no need to hold an srd lock during the entire
13893  * execution of hat_join_region()/hat_leave_region().
13894  */
13895 
13896 #define	RGN_HASH_FUNCTION(obj)	(((((uintptr_t)(obj)) >> 4) ^ \
13897 				    (((uintptr_t)(obj)) >> 11)) & \
13898 					srd_rgn_hashmask)
13899 /*
13900  * This routine implements the shared context functionality required when
13901  * attaching a segment to an address space. It must be called from
13902  * hat_share() for D(ISM) segments and from segvn_create() for segments
13903  * with the MAP_PRIVATE and MAP_TEXT flags set. It returns a region_cookie
13904  * which is saved in the private segment data for hme segments and
13905  * the ism_map structure for ism segments.
13906  */
13907 hat_region_cookie_t
13908 hat_join_region(struct hat *sfmmup,
13909 	caddr_t r_saddr,
13910 	size_t r_size,
13911 	void *r_obj,
13912 	u_offset_t r_objoff,
13913 	uchar_t r_perm,
13914 	uchar_t r_pgszc,
13915 	hat_rgn_cb_func_t r_cb_function,
13916 	uint_t flags)
13917 {
13918 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
13919 	uint_t rhash;
13920 	uint_t rid;
13921 	hatlock_t *hatlockp;
13922 	sf_region_t *rgnp;
13923 	sf_region_t *new_rgnp = NULL;
13924 	int i;
13925 	uint16_t *nextidp;
13926 	sf_region_t **freelistp;
13927 	int maxids;
13928 	sf_region_t **rarrp;
13929 	uint16_t *busyrgnsp;
13930 	ulong_t rttecnt;
13931 	uchar_t tteflag;
13932 	uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
13933 	int text = (r_type == HAT_REGION_TEXT);
13934 
13935 	if (srdp == NULL || r_size == 0) {
13936 		return (HAT_INVALID_REGION_COOKIE);
13937 	}
13938 
13939 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
13940 	ASSERT(sfmmup != ksfmmup);
13941 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
13942 	ASSERT(srdp->srd_refcnt > 0);
13943 	ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
13944 	ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
13945 	ASSERT(r_pgszc < mmu_page_sizes);
13946 	if (!IS_P2ALIGNED(r_saddr, TTEBYTES(r_pgszc)) ||
13947 	    !IS_P2ALIGNED(r_size, TTEBYTES(r_pgszc))) {
13948 		panic("hat_join_region: region addr or size is not aligned\n");
13949 	}
13950 
13951 
13952 	r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
13953 	    SFMMU_REGION_HME;
13954 	/*
13955 	 * Currently only support shared hmes for the read only main text
13956 	 * region.
13957 	 */
13958 	if (r_type == SFMMU_REGION_HME && ((r_obj != srdp->srd_evp) ||
13959 	    (r_perm & PROT_WRITE))) {
13960 		return (HAT_INVALID_REGION_COOKIE);
13961 	}
13962 
13963 	rhash = RGN_HASH_FUNCTION(r_obj);
13964 
13965 	if (r_type == SFMMU_REGION_ISM) {
13966 		nextidp = &srdp->srd_next_ismrid;
13967 		freelistp = &srdp->srd_ismrgnfree;
13968 		maxids = SFMMU_MAX_ISM_REGIONS;
13969 		rarrp = srdp->srd_ismrgnp;
13970 		busyrgnsp = &srdp->srd_ismbusyrgns;
13971 	} else {
13972 		nextidp = &srdp->srd_next_hmerid;
13973 		freelistp = &srdp->srd_hmergnfree;
13974 		maxids = SFMMU_MAX_HME_REGIONS;
13975 		rarrp = srdp->srd_hmergnp;
13976 		busyrgnsp = &srdp->srd_hmebusyrgns;
13977 	}
13978 
13979 	mutex_enter(&srdp->srd_mutex);
13980 
13981 	for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
13982 	    rgnp = rgnp->rgn_hash) {
13983 		if (rgnp->rgn_saddr == r_saddr && rgnp->rgn_size == r_size &&
13984 		    rgnp->rgn_obj == r_obj && rgnp->rgn_objoff == r_objoff &&
13985 		    rgnp->rgn_perm == r_perm && rgnp->rgn_pgszc == r_pgszc) {
13986 			break;
13987 		}
13988 	}
13989 
13990 rfound:
13991 	if (rgnp != NULL) {
13992 		ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
13993 		ASSERT(rgnp->rgn_cb_function == r_cb_function);
13994 		ASSERT(rgnp->rgn_refcnt >= 0);
13995 		rid = rgnp->rgn_id;
13996 		ASSERT(rid < maxids);
13997 		ASSERT(rarrp[rid] == rgnp);
13998 		ASSERT(rid < *nextidp);
13999 		atomic_add_32((volatile uint_t *)&rgnp->rgn_refcnt, 1);
14000 		mutex_exit(&srdp->srd_mutex);
14001 		if (new_rgnp != NULL) {
14002 			kmem_cache_free(region_cache, new_rgnp);
14003 		}
14004 		if (r_type == SFMMU_REGION_HME) {
14005 			int myjoin =
14006 			    (sfmmup == astosfmmu(curthread->t_procp->p_as));
14007 
14008 			sfmmu_link_to_hmeregion(sfmmup, rgnp);
14009 			/*
14010 			 * bitmap should be updated after linking sfmmu on
14011 			 * region list so that pageunload() doesn't skip
14012 			 * TSB/TLB flush. As soon as bitmap is updated another
14013 			 * thread in this process can already start accessing
14014 			 * this region.
14015 			 */
14016 			/*
14017 			 * Normally ttecnt accounting is done as part of
14018 			 * pagefault handling. But a process may not take any
14019 			 * pagefaults on shared hmeblks created by some other
14020 			 * process. To compensate for this assume that the
14021 			 * entire region will end up faulted in using
14022 			 * the region's pagesize.
14023 			 *
14024 			 */
14025 			if (r_pgszc > TTE8K) {
14026 				tteflag = 1 << r_pgszc;
14027 				if (disable_large_pages & tteflag) {
14028 					tteflag = 0;
14029 				}
14030 			} else {
14031 				tteflag = 0;
14032 			}
14033 			if (tteflag && !(sfmmup->sfmmu_rtteflags & tteflag)) {
14034 				hatlockp = sfmmu_hat_enter(sfmmup);
14035 				sfmmup->sfmmu_rtteflags |= tteflag;
14036 				sfmmu_hat_exit(hatlockp);
14037 			}
14038 			hatlockp = sfmmu_hat_enter(sfmmup);
14039 
14040 			/*
14041 			 * Preallocate 1/4 of ttecnt's in 8K TSB for >= 4M
14042 			 * region to allow for large page allocation failure.
14043 			 */
14044 			if (r_pgszc >= TTE4M) {
14045 				sfmmup->sfmmu_tsb0_4minflcnt +=
14046 				    r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14047 			}
14048 
14049 			/* update sfmmu_ttecnt with the shme rgn ttecnt */
14050 			rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14051 			atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
14052 			    rttecnt);
14053 
14054 			if (text && r_pgszc >= TTE4M &&
14055 			    (tteflag || ((disable_large_pages >> TTE4M) &
14056 			    ((1 << (r_pgszc - TTE4M + 1)) - 1))) &&
14057 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
14058 				SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
14059 			}
14060 
14061 			sfmmu_hat_exit(hatlockp);
14062 			/*
14063 			 * On Panther we need to make sure TLB is programmed
14064 			 * to accept 32M/256M pages.  Call
14065 			 * sfmmu_check_page_sizes() now to make sure TLB is
14066 			 * setup before making hmeregions visible to other
14067 			 * threads.
14068 			 */
14069 			sfmmu_check_page_sizes(sfmmup, 1);
14070 			hatlockp = sfmmu_hat_enter(sfmmup);
14071 			SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
14072 
14073 			/*
14074 			 * if context is invalid tsb miss exception code will
14075 			 * call sfmmu_check_page_sizes() and update tsbmiss
14076 			 * area later.
14077 			 */
14078 			kpreempt_disable();
14079 			if (myjoin &&
14080 			    (sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
14081 			    != INVALID_CONTEXT)) {
14082 				struct tsbmiss *tsbmp;
14083 
14084 				tsbmp = &tsbmiss_area[CPU->cpu_id];
14085 				ASSERT(sfmmup == tsbmp->usfmmup);
14086 				BT_SET(tsbmp->shmermap, rid);
14087 				if (r_pgszc > TTE64K) {
14088 					tsbmp->uhat_rtteflags |= tteflag;
14089 				}
14090 
14091 			}
14092 			kpreempt_enable();
14093 
14094 			sfmmu_hat_exit(hatlockp);
14095 			ASSERT((hat_region_cookie_t)((uint64_t)rid) !=
14096 			    HAT_INVALID_REGION_COOKIE);
14097 		} else {
14098 			hatlockp = sfmmu_hat_enter(sfmmup);
14099 			SF_RGNMAP_ADD(sfmmup->sfmmu_ismregion_map, rid);
14100 			sfmmu_hat_exit(hatlockp);
14101 		}
14102 		ASSERT(rid < maxids);
14103 
14104 		if (r_type == SFMMU_REGION_ISM) {
14105 			sfmmu_find_scd(sfmmup);
14106 		}
14107 		return ((hat_region_cookie_t)((uint64_t)rid));
14108 	}
14109 
14110 	ASSERT(new_rgnp == NULL);
14111 
14112 	if (*busyrgnsp >= maxids) {
14113 		mutex_exit(&srdp->srd_mutex);
14114 		return (HAT_INVALID_REGION_COOKIE);
14115 	}
14116 
14117 	ASSERT(MUTEX_HELD(&srdp->srd_mutex));
14118 	if (*freelistp != NULL) {
14119 		rgnp = *freelistp;
14120 		*freelistp = rgnp->rgn_next;
14121 		ASSERT(rgnp->rgn_id < *nextidp);
14122 		ASSERT(rgnp->rgn_id < maxids);
14123 		ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
14124 		ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK)
14125 		    == r_type);
14126 		ASSERT(rarrp[rgnp->rgn_id] == rgnp);
14127 		ASSERT(rgnp->rgn_hmeflags == 0);
14128 	} else {
14129 		/*
14130 		 * release local locks before memory allocation.
14131 		 */
14132 		mutex_exit(&srdp->srd_mutex);
14133 
14134 		new_rgnp = kmem_cache_alloc(region_cache, KM_SLEEP);
14135 
14136 		mutex_enter(&srdp->srd_mutex);
14137 		for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
14138 		    rgnp = rgnp->rgn_hash) {
14139 			if (rgnp->rgn_saddr == r_saddr &&
14140 			    rgnp->rgn_size == r_size &&
14141 			    rgnp->rgn_obj == r_obj &&
14142 			    rgnp->rgn_objoff == r_objoff &&
14143 			    rgnp->rgn_perm == r_perm &&
14144 			    rgnp->rgn_pgszc == r_pgszc) {
14145 				break;
14146 			}
14147 		}
14148 		if (rgnp != NULL) {
14149 			goto rfound;
14150 		}
14151 
14152 		if (*nextidp >= maxids) {
14153 			mutex_exit(&srdp->srd_mutex);
14154 			goto fail;
14155 		}
14156 		rgnp = new_rgnp;
14157 		new_rgnp = NULL;
14158 		rgnp->rgn_id = (*nextidp)++;
14159 		ASSERT(rgnp->rgn_id < maxids);
14160 		ASSERT(rarrp[rgnp->rgn_id] == NULL);
14161 		rarrp[rgnp->rgn_id] = rgnp;
14162 	}
14163 
14164 	ASSERT(rgnp->rgn_sfmmu_head == NULL);
14165 	ASSERT(rgnp->rgn_hmeflags == 0);
14166 #ifdef DEBUG
14167 	for (i = 0; i < MMU_PAGE_SIZES; i++) {
14168 		ASSERT(rgnp->rgn_ttecnt[i] == 0);
14169 	}
14170 #endif
14171 	rgnp->rgn_saddr = r_saddr;
14172 	rgnp->rgn_size = r_size;
14173 	rgnp->rgn_obj = r_obj;
14174 	rgnp->rgn_objoff = r_objoff;
14175 	rgnp->rgn_perm = r_perm;
14176 	rgnp->rgn_pgszc = r_pgszc;
14177 	rgnp->rgn_flags = r_type;
14178 	rgnp->rgn_refcnt = 0;
14179 	rgnp->rgn_cb_function = r_cb_function;
14180 	rgnp->rgn_hash = srdp->srd_rgnhash[rhash];
14181 	srdp->srd_rgnhash[rhash] = rgnp;
14182 	(*busyrgnsp)++;
14183 	ASSERT(*busyrgnsp <= maxids);
14184 	goto rfound;
14185 
14186 fail:
14187 	ASSERT(new_rgnp != NULL);
14188 	kmem_cache_free(region_cache, new_rgnp);
14189 	return (HAT_INVALID_REGION_COOKIE);
14190 }
14191 
14192 /*
14193  * This function implements the shared context functionality required
14194  * when detaching a segment from an address space. It must be called
14195  * from hat_unshare() for all D(ISM) segments and from segvn_unmap(),
14196  * for segments with a valid region_cookie.
14197  * It will also be called from all seg_vn routines which change a
14198  * segment's attributes such as segvn_setprot(), segvn_setpagesize(),
14199  * segvn_clrszc() & segvn_advise(), as well as in the case of COW fault
14200  * from segvn_fault().
14201  */
14202 void
14203 hat_leave_region(struct hat *sfmmup, hat_region_cookie_t rcookie, uint_t flags)
14204 {
14205 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14206 	sf_scd_t *scdp;
14207 	uint_t rhash;
14208 	uint_t rid = (uint_t)((uint64_t)rcookie);
14209 	hatlock_t *hatlockp = NULL;
14210 	sf_region_t *rgnp;
14211 	sf_region_t **prev_rgnpp;
14212 	sf_region_t *cur_rgnp;
14213 	void *r_obj;
14214 	int i;
14215 	caddr_t	r_saddr;
14216 	caddr_t r_eaddr;
14217 	size_t	r_size;
14218 	uchar_t	r_pgszc;
14219 	uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
14220 
14221 	ASSERT(sfmmup != ksfmmup);
14222 	ASSERT(srdp != NULL);
14223 	ASSERT(srdp->srd_refcnt > 0);
14224 	ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
14225 	ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
14226 	ASSERT(!sfmmup->sfmmu_free || sfmmup->sfmmu_scdp == NULL);
14227 
14228 	r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
14229 	    SFMMU_REGION_HME;
14230 
14231 	if (r_type == SFMMU_REGION_ISM) {
14232 		ASSERT(SFMMU_IS_ISMRID_VALID(rid));
14233 		ASSERT(rid < SFMMU_MAX_ISM_REGIONS);
14234 		rgnp = srdp->srd_ismrgnp[rid];
14235 	} else {
14236 		ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14237 		ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14238 		rgnp = srdp->srd_hmergnp[rid];
14239 	}
14240 	ASSERT(rgnp != NULL);
14241 	ASSERT(rgnp->rgn_id == rid);
14242 	ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14243 	ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14244 	ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
14245 
14246 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
14247 	if (r_type == SFMMU_REGION_HME && sfmmup->sfmmu_as->a_xhat != NULL) {
14248 		xhat_unload_callback_all(sfmmup->sfmmu_as, rgnp->rgn_saddr,
14249 		    rgnp->rgn_size, 0, NULL);
14250 	}
14251 
14252 	if (sfmmup->sfmmu_free) {
14253 		ulong_t rttecnt;
14254 		r_pgszc = rgnp->rgn_pgszc;
14255 		r_size = rgnp->rgn_size;
14256 
14257 		ASSERT(sfmmup->sfmmu_scdp == NULL);
14258 		if (r_type == SFMMU_REGION_ISM) {
14259 			SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14260 		} else {
14261 			/* update shme rgns ttecnt in sfmmu_ttecnt */
14262 			rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14263 			ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14264 
14265 			atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
14266 			    -rttecnt);
14267 
14268 			SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14269 		}
14270 	} else if (r_type == SFMMU_REGION_ISM) {
14271 		hatlockp = sfmmu_hat_enter(sfmmup);
14272 		ASSERT(rid < srdp->srd_next_ismrid);
14273 		SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14274 		scdp = sfmmup->sfmmu_scdp;
14275 		if (scdp != NULL &&
14276 		    SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
14277 			sfmmu_leave_scd(sfmmup, r_type);
14278 			ASSERT(sfmmu_hat_lock_held(sfmmup));
14279 		}
14280 		sfmmu_hat_exit(hatlockp);
14281 	} else {
14282 		ulong_t rttecnt;
14283 		r_pgszc = rgnp->rgn_pgszc;
14284 		r_saddr = rgnp->rgn_saddr;
14285 		r_size = rgnp->rgn_size;
14286 		r_eaddr = r_saddr + r_size;
14287 
14288 		ASSERT(r_type == SFMMU_REGION_HME);
14289 		hatlockp = sfmmu_hat_enter(sfmmup);
14290 		ASSERT(rid < srdp->srd_next_hmerid);
14291 		SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14292 
14293 		/*
14294 		 * If region is part of an SCD call sfmmu_leave_scd().
14295 		 * Otherwise if process is not exiting and has valid context
14296 		 * just drop the context on the floor to lose stale TLB
14297 		 * entries and force the update of tsb miss area to reflect
14298 		 * the new region map. After that clean our TSB entries.
14299 		 */
14300 		scdp = sfmmup->sfmmu_scdp;
14301 		if (scdp != NULL &&
14302 		    SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
14303 			sfmmu_leave_scd(sfmmup, r_type);
14304 			ASSERT(sfmmu_hat_lock_held(sfmmup));
14305 		}
14306 		sfmmu_invalidate_ctx(sfmmup);
14307 
14308 		i = TTE8K;
14309 		while (i < mmu_page_sizes) {
14310 			if (rgnp->rgn_ttecnt[i] != 0) {
14311 				sfmmu_unload_tsb_range(sfmmup, r_saddr,
14312 				    r_eaddr, i);
14313 				if (i < TTE4M) {
14314 					i = TTE4M;
14315 					continue;
14316 				} else {
14317 					break;
14318 				}
14319 			}
14320 			i++;
14321 		}
14322 		/* Remove the preallocated 1/4 8k ttecnt for 4M regions. */
14323 		if (r_pgszc >= TTE4M) {
14324 			rttecnt = r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14325 			ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
14326 			    rttecnt);
14327 			sfmmup->sfmmu_tsb0_4minflcnt -= rttecnt;
14328 		}
14329 
14330 		/* update shme rgns ttecnt in sfmmu_ttecnt */
14331 		rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14332 		ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14333 		atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc], -rttecnt);
14334 
14335 		sfmmu_hat_exit(hatlockp);
14336 		if (scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
14337 			/* sfmmup left the scd, grow private tsb */
14338 			sfmmu_check_page_sizes(sfmmup, 1);
14339 		} else {
14340 			sfmmu_check_page_sizes(sfmmup, 0);
14341 		}
14342 	}
14343 
14344 	if (r_type == SFMMU_REGION_HME) {
14345 		sfmmu_unlink_from_hmeregion(sfmmup, rgnp);
14346 	}
14347 
14348 	r_obj = rgnp->rgn_obj;
14349 	if (atomic_add_32_nv((volatile uint_t *)&rgnp->rgn_refcnt, -1)) {
14350 		return;
14351 	}
14352 
14353 	/*
14354 	 * looks like nobody uses this region anymore. Free it.
14355 	 */
14356 	rhash = RGN_HASH_FUNCTION(r_obj);
14357 	mutex_enter(&srdp->srd_mutex);
14358 	for (prev_rgnpp = &srdp->srd_rgnhash[rhash];
14359 	    (cur_rgnp = *prev_rgnpp) != NULL;
14360 	    prev_rgnpp = &cur_rgnp->rgn_hash) {
14361 		if (cur_rgnp == rgnp && cur_rgnp->rgn_refcnt == 0) {
14362 			break;
14363 		}
14364 	}
14365 
14366 	if (cur_rgnp == NULL) {
14367 		mutex_exit(&srdp->srd_mutex);
14368 		return;
14369 	}
14370 
14371 	ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14372 	*prev_rgnpp = rgnp->rgn_hash;
14373 	if (r_type == SFMMU_REGION_ISM) {
14374 		rgnp->rgn_flags |= SFMMU_REGION_FREE;
14375 		ASSERT(rid < srdp->srd_next_ismrid);
14376 		rgnp->rgn_next = srdp->srd_ismrgnfree;
14377 		srdp->srd_ismrgnfree = rgnp;
14378 		ASSERT(srdp->srd_ismbusyrgns > 0);
14379 		srdp->srd_ismbusyrgns--;
14380 		mutex_exit(&srdp->srd_mutex);
14381 		return;
14382 	}
14383 	mutex_exit(&srdp->srd_mutex);
14384 
14385 	/*
14386 	 * Destroy region's hmeblks.
14387 	 */
14388 	sfmmu_unload_hmeregion(srdp, rgnp);
14389 
14390 	rgnp->rgn_hmeflags = 0;
14391 
14392 	ASSERT(rgnp->rgn_sfmmu_head == NULL);
14393 	ASSERT(rgnp->rgn_id == rid);
14394 	for (i = 0; i < MMU_PAGE_SIZES; i++) {
14395 		rgnp->rgn_ttecnt[i] = 0;
14396 	}
14397 	rgnp->rgn_flags |= SFMMU_REGION_FREE;
14398 	mutex_enter(&srdp->srd_mutex);
14399 	ASSERT(rid < srdp->srd_next_hmerid);
14400 	rgnp->rgn_next = srdp->srd_hmergnfree;
14401 	srdp->srd_hmergnfree = rgnp;
14402 	ASSERT(srdp->srd_hmebusyrgns > 0);
14403 	srdp->srd_hmebusyrgns--;
14404 	mutex_exit(&srdp->srd_mutex);
14405 }
14406 
14407 /*
14408  * For now only called for hmeblk regions and not for ISM regions.
14409  */
14410 void
14411 hat_dup_region(struct hat *sfmmup, hat_region_cookie_t rcookie)
14412 {
14413 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14414 	uint_t rid = (uint_t)((uint64_t)rcookie);
14415 	sf_region_t *rgnp;
14416 	sf_rgn_link_t *rlink;
14417 	sf_rgn_link_t *hrlink;
14418 	ulong_t	rttecnt;
14419 
14420 	ASSERT(sfmmup != ksfmmup);
14421 	ASSERT(srdp != NULL);
14422 	ASSERT(srdp->srd_refcnt > 0);
14423 
14424 	ASSERT(rid < srdp->srd_next_hmerid);
14425 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14426 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14427 
14428 	rgnp = srdp->srd_hmergnp[rid];
14429 	ASSERT(rgnp->rgn_refcnt > 0);
14430 	ASSERT(rgnp->rgn_id == rid);
14431 	ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == SFMMU_REGION_HME);
14432 	ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14433 
14434 	atomic_add_32((volatile uint_t *)&rgnp->rgn_refcnt, 1);
14435 
14436 	/* LINTED: constant in conditional context */
14437 	SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 0);
14438 	ASSERT(rlink != NULL);
14439 	mutex_enter(&rgnp->rgn_mutex);
14440 	ASSERT(rgnp->rgn_sfmmu_head != NULL);
14441 	/* LINTED: constant in conditional context */
14442 	SFMMU_HMERID2RLINKP(rgnp->rgn_sfmmu_head, rid, hrlink, 0, 0);
14443 	ASSERT(hrlink != NULL);
14444 	ASSERT(hrlink->prev == NULL);
14445 	rlink->next = rgnp->rgn_sfmmu_head;
14446 	rlink->prev = NULL;
14447 	hrlink->prev = sfmmup;
14448 	/*
14449 	 * make sure rlink's next field is correct
14450 	 * before making this link visible.
14451 	 */
14452 	membar_stst();
14453 	rgnp->rgn_sfmmu_head = sfmmup;
14454 	mutex_exit(&rgnp->rgn_mutex);
14455 
14456 	/* update sfmmu_ttecnt with the shme rgn ttecnt */
14457 	rttecnt = rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
14458 	atomic_add_long(&sfmmup->sfmmu_ttecnt[rgnp->rgn_pgszc], rttecnt);
14459 	/* update tsb0 inflation count */
14460 	if (rgnp->rgn_pgszc >= TTE4M) {
14461 		sfmmup->sfmmu_tsb0_4minflcnt +=
14462 		    rgnp->rgn_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14463 	}
14464 	/*
14465 	 * Update regionid bitmask without hat lock since no other thread
14466 	 * can update this region bitmask right now.
14467 	 */
14468 	SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
14469 }
14470 
14471 /* ARGSUSED */
14472 static int
14473 sfmmu_rgncache_constructor(void *buf, void *cdrarg, int kmflags)
14474 {
14475 	sf_region_t *rgnp = (sf_region_t *)buf;
14476 	bzero(buf, sizeof (*rgnp));
14477 
14478 	mutex_init(&rgnp->rgn_mutex, NULL, MUTEX_DEFAULT, NULL);
14479 
14480 	return (0);
14481 }
14482 
14483 /* ARGSUSED */
14484 static void
14485 sfmmu_rgncache_destructor(void *buf, void *cdrarg)
14486 {
14487 	sf_region_t *rgnp = (sf_region_t *)buf;
14488 	mutex_destroy(&rgnp->rgn_mutex);
14489 }
14490 
14491 static int
14492 sfrgnmap_isnull(sf_region_map_t *map)
14493 {
14494 	int i;
14495 
14496 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14497 		if (map->bitmap[i] != 0) {
14498 			return (0);
14499 		}
14500 	}
14501 	return (1);
14502 }
14503 
14504 static int
14505 sfhmergnmap_isnull(sf_hmeregion_map_t *map)
14506 {
14507 	int i;
14508 
14509 	for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
14510 		if (map->bitmap[i] != 0) {
14511 			return (0);
14512 		}
14513 	}
14514 	return (1);
14515 }
14516 
14517 #ifdef DEBUG
14518 static void
14519 check_scd_sfmmu_list(sfmmu_t **headp, sfmmu_t *sfmmup, int onlist)
14520 {
14521 	sfmmu_t *sp;
14522 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14523 
14524 	for (sp = *headp; sp != NULL; sp = sp->sfmmu_scd_link.next) {
14525 		ASSERT(srdp == sp->sfmmu_srdp);
14526 		if (sp == sfmmup) {
14527 			if (onlist) {
14528 				return;
14529 			} else {
14530 				panic("shctx: sfmmu 0x%p found on scd"
14531 				    "list 0x%p", (void *)sfmmup,
14532 				    (void *)*headp);
14533 			}
14534 		}
14535 	}
14536 	if (onlist) {
14537 		panic("shctx: sfmmu 0x%p not found on scd list 0x%p",
14538 		    (void *)sfmmup, (void *)*headp);
14539 	} else {
14540 		return;
14541 	}
14542 }
14543 #else /* DEBUG */
14544 #define	check_scd_sfmmu_list(headp, sfmmup, onlist)
14545 #endif /* DEBUG */
14546 
14547 /*
14548  * Removes an sfmmu from the SCD sfmmu list.
14549  */
14550 static void
14551 sfmmu_from_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14552 {
14553 	ASSERT(sfmmup->sfmmu_srdp != NULL);
14554 	check_scd_sfmmu_list(headp, sfmmup, 1);
14555 	if (sfmmup->sfmmu_scd_link.prev != NULL) {
14556 		ASSERT(*headp != sfmmup);
14557 		sfmmup->sfmmu_scd_link.prev->sfmmu_scd_link.next =
14558 		    sfmmup->sfmmu_scd_link.next;
14559 	} else {
14560 		ASSERT(*headp == sfmmup);
14561 		*headp = sfmmup->sfmmu_scd_link.next;
14562 	}
14563 	if (sfmmup->sfmmu_scd_link.next != NULL) {
14564 		sfmmup->sfmmu_scd_link.next->sfmmu_scd_link.prev =
14565 		    sfmmup->sfmmu_scd_link.prev;
14566 	}
14567 }
14568 
14569 
14570 /*
14571  * Adds an sfmmu to the start of the queue.
14572  */
14573 static void
14574 sfmmu_to_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14575 {
14576 	check_scd_sfmmu_list(headp, sfmmup, 0);
14577 	sfmmup->sfmmu_scd_link.prev = NULL;
14578 	sfmmup->sfmmu_scd_link.next = *headp;
14579 	if (*headp != NULL)
14580 		(*headp)->sfmmu_scd_link.prev = sfmmup;
14581 	*headp = sfmmup;
14582 }
14583 
14584 /*
14585  * Remove an scd from the start of the queue.
14586  */
14587 static void
14588 sfmmu_remove_scd(sf_scd_t **headp, sf_scd_t *scdp)
14589 {
14590 	if (scdp->scd_prev != NULL) {
14591 		ASSERT(*headp != scdp);
14592 		scdp->scd_prev->scd_next = scdp->scd_next;
14593 	} else {
14594 		ASSERT(*headp == scdp);
14595 		*headp = scdp->scd_next;
14596 	}
14597 
14598 	if (scdp->scd_next != NULL) {
14599 		scdp->scd_next->scd_prev = scdp->scd_prev;
14600 	}
14601 }
14602 
14603 /*
14604  * Add an scd to the start of the queue.
14605  */
14606 static void
14607 sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *scdp)
14608 {
14609 	scdp->scd_prev = NULL;
14610 	scdp->scd_next = *headp;
14611 	if (*headp != NULL) {
14612 		(*headp)->scd_prev = scdp;
14613 	}
14614 	*headp = scdp;
14615 }
14616 
14617 static int
14618 sfmmu_alloc_scd_tsbs(sf_srd_t *srdp, sf_scd_t *scdp)
14619 {
14620 	uint_t rid;
14621 	uint_t i;
14622 	uint_t j;
14623 	ulong_t w;
14624 	sf_region_t *rgnp;
14625 	ulong_t tte8k_cnt = 0;
14626 	ulong_t tte4m_cnt = 0;
14627 	uint_t tsb_szc;
14628 	sfmmu_t *scsfmmup = scdp->scd_sfmmup;
14629 	sfmmu_t	*ism_hatid;
14630 	struct tsb_info *newtsb;
14631 	int szc;
14632 
14633 	ASSERT(srdp != NULL);
14634 
14635 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14636 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14637 			continue;
14638 		}
14639 		j = 0;
14640 		while (w) {
14641 			if (!(w & 0x1)) {
14642 				j++;
14643 				w >>= 1;
14644 				continue;
14645 			}
14646 			rid = (i << BT_ULSHIFT) | j;
14647 			j++;
14648 			w >>= 1;
14649 
14650 			if (rid < SFMMU_MAX_HME_REGIONS) {
14651 				rgnp = srdp->srd_hmergnp[rid];
14652 				ASSERT(rgnp->rgn_id == rid);
14653 				ASSERT(rgnp->rgn_refcnt > 0);
14654 
14655 				if (rgnp->rgn_pgszc < TTE4M) {
14656 					tte8k_cnt += rgnp->rgn_size >>
14657 					    TTE_PAGE_SHIFT(TTE8K);
14658 				} else {
14659 					ASSERT(rgnp->rgn_pgszc >= TTE4M);
14660 					tte4m_cnt += rgnp->rgn_size >>
14661 					    TTE_PAGE_SHIFT(TTE4M);
14662 					/*
14663 					 * Inflate SCD tsb0 by preallocating
14664 					 * 1/4 8k ttecnt for 4M regions to
14665 					 * allow for lgpg alloc failure.
14666 					 */
14667 					tte8k_cnt += rgnp->rgn_size >>
14668 					    (TTE_PAGE_SHIFT(TTE8K) + 2);
14669 				}
14670 			} else {
14671 				rid -= SFMMU_MAX_HME_REGIONS;
14672 				rgnp = srdp->srd_ismrgnp[rid];
14673 				ASSERT(rgnp->rgn_id == rid);
14674 				ASSERT(rgnp->rgn_refcnt > 0);
14675 
14676 				ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14677 				ASSERT(ism_hatid->sfmmu_ismhat);
14678 
14679 				for (szc = 0; szc < TTE4M; szc++) {
14680 					tte8k_cnt +=
14681 					    ism_hatid->sfmmu_ttecnt[szc] <<
14682 					    TTE_BSZS_SHIFT(szc);
14683 				}
14684 
14685 				ASSERT(rgnp->rgn_pgszc >= TTE4M);
14686 				if (rgnp->rgn_pgszc >= TTE4M) {
14687 					tte4m_cnt += rgnp->rgn_size >>
14688 					    TTE_PAGE_SHIFT(TTE4M);
14689 				}
14690 			}
14691 		}
14692 	}
14693 
14694 	tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
14695 
14696 	/* Allocate both the SCD TSBs here. */
14697 	if (sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14698 	    tsb_szc, TSB8K|TSB64K|TSB512K, TSB_ALLOC, scsfmmup) &&
14699 	    (tsb_szc <= TSB_4M_SZCODE ||
14700 	    sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14701 	    TSB_4M_SZCODE, TSB8K|TSB64K|TSB512K,
14702 	    TSB_ALLOC, scsfmmup))) {
14703 
14704 		SFMMU_STAT(sf_scd_1sttsb_allocfail);
14705 		return (TSB_ALLOCFAIL);
14706 	} else {
14707 		scsfmmup->sfmmu_tsb->tsb_flags |= TSB_SHAREDCTX;
14708 
14709 		if (tte4m_cnt) {
14710 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
14711 			if (sfmmu_tsbinfo_alloc(&newtsb, tsb_szc,
14712 			    TSB4M|TSB32M|TSB256M, TSB_ALLOC, scsfmmup) &&
14713 			    (tsb_szc <= TSB_4M_SZCODE ||
14714 			    sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
14715 			    TSB4M|TSB32M|TSB256M,
14716 			    TSB_ALLOC, scsfmmup))) {
14717 				/*
14718 				 * If we fail to allocate the 2nd shared tsb,
14719 				 * just free the 1st tsb, return failure.
14720 				 */
14721 				sfmmu_tsbinfo_free(scsfmmup->sfmmu_tsb);
14722 				SFMMU_STAT(sf_scd_2ndtsb_allocfail);
14723 				return (TSB_ALLOCFAIL);
14724 			} else {
14725 				ASSERT(scsfmmup->sfmmu_tsb->tsb_next == NULL);
14726 				newtsb->tsb_flags |= TSB_SHAREDCTX;
14727 				scsfmmup->sfmmu_tsb->tsb_next = newtsb;
14728 				SFMMU_STAT(sf_scd_2ndtsb_alloc);
14729 			}
14730 		}
14731 		SFMMU_STAT(sf_scd_1sttsb_alloc);
14732 	}
14733 	return (TSB_SUCCESS);
14734 }
14735 
14736 static void
14737 sfmmu_free_scd_tsbs(sfmmu_t *scd_sfmmu)
14738 {
14739 	while (scd_sfmmu->sfmmu_tsb != NULL) {
14740 		struct tsb_info *next = scd_sfmmu->sfmmu_tsb->tsb_next;
14741 		sfmmu_tsbinfo_free(scd_sfmmu->sfmmu_tsb);
14742 		scd_sfmmu->sfmmu_tsb = next;
14743 	}
14744 }
14745 
14746 /*
14747  * Link the sfmmu onto the hme region list.
14748  */
14749 void
14750 sfmmu_link_to_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14751 {
14752 	uint_t rid;
14753 	sf_rgn_link_t *rlink;
14754 	sfmmu_t *head;
14755 	sf_rgn_link_t *hrlink;
14756 
14757 	rid = rgnp->rgn_id;
14758 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14759 
14760 	/* LINTED: constant in conditional context */
14761 	SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 1);
14762 	ASSERT(rlink != NULL);
14763 	mutex_enter(&rgnp->rgn_mutex);
14764 	if ((head = rgnp->rgn_sfmmu_head) == NULL) {
14765 		rlink->next = NULL;
14766 		rlink->prev = NULL;
14767 		/*
14768 		 * make sure rlink's next field is NULL
14769 		 * before making this link visible.
14770 		 */
14771 		membar_stst();
14772 		rgnp->rgn_sfmmu_head = sfmmup;
14773 	} else {
14774 		/* LINTED: constant in conditional context */
14775 		SFMMU_HMERID2RLINKP(head, rid, hrlink, 0, 0);
14776 		ASSERT(hrlink != NULL);
14777 		ASSERT(hrlink->prev == NULL);
14778 		rlink->next = head;
14779 		rlink->prev = NULL;
14780 		hrlink->prev = sfmmup;
14781 		/*
14782 		 * make sure rlink's next field is correct
14783 		 * before making this link visible.
14784 		 */
14785 		membar_stst();
14786 		rgnp->rgn_sfmmu_head = sfmmup;
14787 	}
14788 	mutex_exit(&rgnp->rgn_mutex);
14789 }
14790 
14791 /*
14792  * Unlink the sfmmu from the hme region list.
14793  */
14794 void
14795 sfmmu_unlink_from_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14796 {
14797 	uint_t rid;
14798 	sf_rgn_link_t *rlink;
14799 
14800 	rid = rgnp->rgn_id;
14801 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14802 
14803 	/* LINTED: constant in conditional context */
14804 	SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
14805 	ASSERT(rlink != NULL);
14806 	mutex_enter(&rgnp->rgn_mutex);
14807 	if (rgnp->rgn_sfmmu_head == sfmmup) {
14808 		sfmmu_t *next = rlink->next;
14809 		rgnp->rgn_sfmmu_head = next;
14810 		/*
14811 		 * if we are stopped by xc_attention() after this
14812 		 * point the forward link walking in
14813 		 * sfmmu_rgntlb_demap() will work correctly since the
14814 		 * head correctly points to the next element.
14815 		 */
14816 		membar_stst();
14817 		rlink->next = NULL;
14818 		ASSERT(rlink->prev == NULL);
14819 		if (next != NULL) {
14820 			sf_rgn_link_t *nrlink;
14821 			/* LINTED: constant in conditional context */
14822 			SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
14823 			ASSERT(nrlink != NULL);
14824 			ASSERT(nrlink->prev == sfmmup);
14825 			nrlink->prev = NULL;
14826 		}
14827 	} else {
14828 		sfmmu_t *next = rlink->next;
14829 		sfmmu_t *prev = rlink->prev;
14830 		sf_rgn_link_t *prlink;
14831 
14832 		ASSERT(prev != NULL);
14833 		/* LINTED: constant in conditional context */
14834 		SFMMU_HMERID2RLINKP(prev, rid, prlink, 0, 0);
14835 		ASSERT(prlink != NULL);
14836 		ASSERT(prlink->next == sfmmup);
14837 		prlink->next = next;
14838 		/*
14839 		 * if we are stopped by xc_attention()
14840 		 * after this point the forward link walking
14841 		 * will work correctly since the prev element
14842 		 * correctly points to the next element.
14843 		 */
14844 		membar_stst();
14845 		rlink->next = NULL;
14846 		rlink->prev = NULL;
14847 		if (next != NULL) {
14848 			sf_rgn_link_t *nrlink;
14849 			/* LINTED: constant in conditional context */
14850 			SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
14851 			ASSERT(nrlink != NULL);
14852 			ASSERT(nrlink->prev == sfmmup);
14853 			nrlink->prev = prev;
14854 		}
14855 	}
14856 	mutex_exit(&rgnp->rgn_mutex);
14857 }
14858 
14859 /*
14860  * Link scd sfmmu onto ism or hme region list for each region in the
14861  * scd region map.
14862  */
14863 void
14864 sfmmu_link_scd_to_regions(sf_srd_t *srdp, sf_scd_t *scdp)
14865 {
14866 	uint_t rid;
14867 	uint_t i;
14868 	uint_t j;
14869 	ulong_t w;
14870 	sf_region_t *rgnp;
14871 	sfmmu_t *scsfmmup;
14872 
14873 	scsfmmup = scdp->scd_sfmmup;
14874 	ASSERT(scsfmmup->sfmmu_scdhat);
14875 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14876 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14877 			continue;
14878 		}
14879 		j = 0;
14880 		while (w) {
14881 			if (!(w & 0x1)) {
14882 				j++;
14883 				w >>= 1;
14884 				continue;
14885 			}
14886 			rid = (i << BT_ULSHIFT) | j;
14887 			j++;
14888 			w >>= 1;
14889 
14890 			if (rid < SFMMU_MAX_HME_REGIONS) {
14891 				rgnp = srdp->srd_hmergnp[rid];
14892 				ASSERT(rgnp->rgn_id == rid);
14893 				ASSERT(rgnp->rgn_refcnt > 0);
14894 				sfmmu_link_to_hmeregion(scsfmmup, rgnp);
14895 			} else {
14896 				sfmmu_t *ism_hatid = NULL;
14897 				ism_ment_t *ism_ment;
14898 				rid -= SFMMU_MAX_HME_REGIONS;
14899 				rgnp = srdp->srd_ismrgnp[rid];
14900 				ASSERT(rgnp->rgn_id == rid);
14901 				ASSERT(rgnp->rgn_refcnt > 0);
14902 
14903 				ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14904 				ASSERT(ism_hatid->sfmmu_ismhat);
14905 				ism_ment = &scdp->scd_ism_links[rid];
14906 				ism_ment->iment_hat = scsfmmup;
14907 				ism_ment->iment_base_va = rgnp->rgn_saddr;
14908 				mutex_enter(&ism_mlist_lock);
14909 				iment_add(ism_ment, ism_hatid);
14910 				mutex_exit(&ism_mlist_lock);
14911 
14912 			}
14913 		}
14914 	}
14915 }
14916 /*
14917  * Unlink scd sfmmu from ism or hme region list for each region in the
14918  * scd region map.
14919  */
14920 void
14921 sfmmu_unlink_scd_from_regions(sf_srd_t *srdp, sf_scd_t *scdp)
14922 {
14923 	uint_t rid;
14924 	uint_t i;
14925 	uint_t j;
14926 	ulong_t w;
14927 	sf_region_t *rgnp;
14928 	sfmmu_t *scsfmmup;
14929 
14930 	scsfmmup = scdp->scd_sfmmup;
14931 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14932 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14933 			continue;
14934 		}
14935 		j = 0;
14936 		while (w) {
14937 			if (!(w & 0x1)) {
14938 				j++;
14939 				w >>= 1;
14940 				continue;
14941 			}
14942 			rid = (i << BT_ULSHIFT) | j;
14943 			j++;
14944 			w >>= 1;
14945 
14946 			if (rid < SFMMU_MAX_HME_REGIONS) {
14947 				rgnp = srdp->srd_hmergnp[rid];
14948 				ASSERT(rgnp->rgn_id == rid);
14949 				ASSERT(rgnp->rgn_refcnt > 0);
14950 				sfmmu_unlink_from_hmeregion(scsfmmup,
14951 				    rgnp);
14952 
14953 			} else {
14954 				sfmmu_t *ism_hatid = NULL;
14955 				ism_ment_t *ism_ment;
14956 				rid -= SFMMU_MAX_HME_REGIONS;
14957 				rgnp = srdp->srd_ismrgnp[rid];
14958 				ASSERT(rgnp->rgn_id == rid);
14959 				ASSERT(rgnp->rgn_refcnt > 0);
14960 
14961 				ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14962 				ASSERT(ism_hatid->sfmmu_ismhat);
14963 				ism_ment = &scdp->scd_ism_links[rid];
14964 				ASSERT(ism_ment->iment_hat == scdp->scd_sfmmup);
14965 				ASSERT(ism_ment->iment_base_va ==
14966 				    rgnp->rgn_saddr);
14967 				ism_ment->iment_hat = NULL;
14968 				ism_ment->iment_base_va = 0;
14969 				mutex_enter(&ism_mlist_lock);
14970 				iment_sub(ism_ment, ism_hatid);
14971 				mutex_exit(&ism_mlist_lock);
14972 
14973 			}
14974 		}
14975 	}
14976 }
14977 /*
14978  * Allocates and initialises a new SCD structure, this is called with
14979  * the srd_scd_mutex held and returns with the reference count
14980  * initialised to 1.
14981  */
14982 static sf_scd_t *
14983 sfmmu_alloc_scd(sf_srd_t *srdp, sf_region_map_t *new_map)
14984 {
14985 	sf_scd_t *new_scdp;
14986 	sfmmu_t *scsfmmup;
14987 	int i;
14988 
14989 	ASSERT(MUTEX_HELD(&srdp->srd_scd_mutex));
14990 	new_scdp = kmem_cache_alloc(scd_cache, KM_SLEEP);
14991 
14992 	scsfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
14993 	new_scdp->scd_sfmmup = scsfmmup;
14994 	scsfmmup->sfmmu_srdp = srdp;
14995 	scsfmmup->sfmmu_scdp = new_scdp;
14996 	scsfmmup->sfmmu_tsb0_4minflcnt = 0;
14997 	scsfmmup->sfmmu_scdhat = 1;
14998 	CPUSET_ALL(scsfmmup->sfmmu_cpusran);
14999 	bzero(scsfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
15000 
15001 	ASSERT(max_mmu_ctxdoms > 0);
15002 	for (i = 0; i < max_mmu_ctxdoms; i++) {
15003 		scsfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
15004 		scsfmmup->sfmmu_ctxs[i].gnum = 0;
15005 	}
15006 
15007 	for (i = 0; i < MMU_PAGE_SIZES; i++) {
15008 		new_scdp->scd_rttecnt[i] = 0;
15009 	}
15010 
15011 	new_scdp->scd_region_map = *new_map;
15012 	new_scdp->scd_refcnt = 1;
15013 	if (sfmmu_alloc_scd_tsbs(srdp, new_scdp) != TSB_SUCCESS) {
15014 		kmem_cache_free(scd_cache, new_scdp);
15015 		kmem_cache_free(sfmmuid_cache, scsfmmup);
15016 		return (NULL);
15017 	}
15018 	return (new_scdp);
15019 }
15020 
15021 /*
15022  * The first phase of a process joining an SCD. The hat structure is
15023  * linked to the SCD queue and then the HAT_JOIN_SCD sfmmu flag is set
15024  * and a cross-call with context invalidation is used to cause the
15025  * remaining work to be carried out in the sfmmu_tsbmiss_exception()
15026  * routine.
15027  */
15028 static void
15029 sfmmu_join_scd(sf_scd_t *scdp, sfmmu_t *sfmmup)
15030 {
15031 	hatlock_t *hatlockp;
15032 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
15033 	int i;
15034 	sf_scd_t *old_scdp;
15035 
15036 	ASSERT(srdp != NULL);
15037 	ASSERT(scdp != NULL);
15038 	ASSERT(scdp->scd_refcnt > 0);
15039 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
15040 
15041 	if ((old_scdp = sfmmup->sfmmu_scdp) != NULL) {
15042 		ASSERT(old_scdp != scdp);
15043 
15044 		mutex_enter(&old_scdp->scd_mutex);
15045 		sfmmu_from_scd_list(&old_scdp->scd_sf_list, sfmmup);
15046 		mutex_exit(&old_scdp->scd_mutex);
15047 		/*
15048 		 * sfmmup leaves the old scd. Update sfmmu_ttecnt to
15049 		 * include the shme rgn ttecnt for rgns that
15050 		 * were in the old SCD
15051 		 */
15052 		for (i = 0; i < mmu_page_sizes; i++) {
15053 			ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15054 			    old_scdp->scd_rttecnt[i]);
15055 			atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15056 			    sfmmup->sfmmu_scdrttecnt[i]);
15057 		}
15058 	}
15059 
15060 	/*
15061 	 * Move sfmmu to the scd lists.
15062 	 */
15063 	mutex_enter(&scdp->scd_mutex);
15064 	sfmmu_to_scd_list(&scdp->scd_sf_list, sfmmup);
15065 	mutex_exit(&scdp->scd_mutex);
15066 	SF_SCD_INCR_REF(scdp);
15067 
15068 	hatlockp = sfmmu_hat_enter(sfmmup);
15069 	/*
15070 	 * For a multi-thread process, we must stop
15071 	 * all the other threads before joining the scd.
15072 	 */
15073 
15074 	SFMMU_FLAGS_SET(sfmmup, HAT_JOIN_SCD);
15075 
15076 	sfmmu_invalidate_ctx(sfmmup);
15077 	sfmmup->sfmmu_scdp = scdp;
15078 
15079 	/*
15080 	 * Copy scd_rttecnt into sfmmup's sfmmu_scdrttecnt, and update
15081 	 * sfmmu_ttecnt to not include the rgn ttecnt just joined in SCD.
15082 	 */
15083 	for (i = 0; i < mmu_page_sizes; i++) {
15084 		sfmmup->sfmmu_scdrttecnt[i] = scdp->scd_rttecnt[i];
15085 		ASSERT(sfmmup->sfmmu_ttecnt[i] >= scdp->scd_rttecnt[i]);
15086 		atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15087 		    -sfmmup->sfmmu_scdrttecnt[i]);
15088 	}
15089 	/* update tsb0 inflation count */
15090 	if (old_scdp != NULL) {
15091 		sfmmup->sfmmu_tsb0_4minflcnt +=
15092 		    old_scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15093 	}
15094 	ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
15095 	    scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt);
15096 	sfmmup->sfmmu_tsb0_4minflcnt -= scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15097 
15098 	sfmmu_hat_exit(hatlockp);
15099 
15100 	if (old_scdp != NULL) {
15101 		SF_SCD_DECR_REF(srdp, old_scdp);
15102 	}
15103 
15104 }
15105 
15106 /*
15107  * This routine is called by a process to become part of an SCD. It is called
15108  * from sfmmu_tsbmiss_exception() once most of the initial work has been
15109  * done by sfmmu_join_scd(). This routine must not drop the hat lock.
15110  */
15111 static void
15112 sfmmu_finish_join_scd(sfmmu_t *sfmmup)
15113 {
15114 	struct tsb_info	*tsbinfop;
15115 
15116 	ASSERT(sfmmu_hat_lock_held(sfmmup));
15117 	ASSERT(sfmmup->sfmmu_scdp != NULL);
15118 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD));
15119 	ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15120 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID));
15121 
15122 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
15123 	    tsbinfop = tsbinfop->tsb_next) {
15124 		if (tsbinfop->tsb_flags & TSB_SWAPPED) {
15125 			continue;
15126 		}
15127 		ASSERT(!(tsbinfop->tsb_flags & TSB_RELOC_FLAG));
15128 
15129 		sfmmu_inv_tsb(tsbinfop->tsb_va,
15130 		    TSB_BYTES(tsbinfop->tsb_szc));
15131 	}
15132 
15133 	/* Set HAT_CTX1_FLAG for all SCD ISMs */
15134 	sfmmu_ism_hatflags(sfmmup, 1);
15135 
15136 	SFMMU_STAT(sf_join_scd);
15137 }
15138 
15139 /*
15140  * This routine is called in order to check if there is an SCD which matches
15141  * the process's region map if not then a new SCD may be created.
15142  */
15143 static void
15144 sfmmu_find_scd(sfmmu_t *sfmmup)
15145 {
15146 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
15147 	sf_scd_t *scdp, *new_scdp;
15148 	int ret;
15149 
15150 	ASSERT(srdp != NULL);
15151 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
15152 
15153 	mutex_enter(&srdp->srd_scd_mutex);
15154 	for (scdp = srdp->srd_scdp; scdp != NULL;
15155 	    scdp = scdp->scd_next) {
15156 		SF_RGNMAP_EQUAL(&scdp->scd_region_map,
15157 		    &sfmmup->sfmmu_region_map, ret);
15158 		if (ret == 1) {
15159 			SF_SCD_INCR_REF(scdp);
15160 			mutex_exit(&srdp->srd_scd_mutex);
15161 			sfmmu_join_scd(scdp, sfmmup);
15162 			ASSERT(scdp->scd_refcnt >= 2);
15163 			atomic_add_32((volatile uint32_t *)
15164 			    &scdp->scd_refcnt, -1);
15165 			return;
15166 		} else {
15167 			/*
15168 			 * If the sfmmu region map is a subset of the scd
15169 			 * region map, then the assumption is that this process
15170 			 * will continue attaching to ISM segments until the
15171 			 * region maps are equal.
15172 			 */
15173 			SF_RGNMAP_IS_SUBSET(&scdp->scd_region_map,
15174 			    &sfmmup->sfmmu_region_map, ret);
15175 			if (ret == 1) {
15176 				mutex_exit(&srdp->srd_scd_mutex);
15177 				return;
15178 			}
15179 		}
15180 	}
15181 
15182 	ASSERT(scdp == NULL);
15183 	/*
15184 	 * No matching SCD has been found, create a new one.
15185 	 */
15186 	if ((new_scdp = sfmmu_alloc_scd(srdp, &sfmmup->sfmmu_region_map)) ==
15187 	    NULL) {
15188 		mutex_exit(&srdp->srd_scd_mutex);
15189 		return;
15190 	}
15191 
15192 	/*
15193 	 * sfmmu_alloc_scd() returns with a ref count of 1 on the scd.
15194 	 */
15195 
15196 	/* Set scd_rttecnt for shme rgns in SCD */
15197 	sfmmu_set_scd_rttecnt(srdp, new_scdp);
15198 
15199 	/*
15200 	 * Link scd onto srd_scdp list and scd sfmmu onto region/iment lists.
15201 	 */
15202 	sfmmu_link_scd_to_regions(srdp, new_scdp);
15203 	sfmmu_add_scd(&srdp->srd_scdp, new_scdp);
15204 	SFMMU_STAT_ADD(sf_create_scd, 1);
15205 
15206 	mutex_exit(&srdp->srd_scd_mutex);
15207 	sfmmu_join_scd(new_scdp, sfmmup);
15208 	ASSERT(new_scdp->scd_refcnt >= 2);
15209 	atomic_add_32((volatile uint32_t *)&new_scdp->scd_refcnt, -1);
15210 }
15211 
15212 /*
15213  * This routine is called by a process to remove itself from an SCD. It is
15214  * either called when the processes has detached from a segment or from
15215  * hat_free_start() as a result of calling exit.
15216  */
15217 static void
15218 sfmmu_leave_scd(sfmmu_t *sfmmup, uchar_t r_type)
15219 {
15220 	sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15221 	sf_srd_t *srdp =  sfmmup->sfmmu_srdp;
15222 	hatlock_t *hatlockp = TSB_HASH(sfmmup);
15223 	int i;
15224 
15225 	ASSERT(scdp != NULL);
15226 	ASSERT(srdp != NULL);
15227 
15228 	if (sfmmup->sfmmu_free) {
15229 		/*
15230 		 * If the process is part of an SCD the sfmmu is unlinked
15231 		 * from scd_sf_list.
15232 		 */
15233 		mutex_enter(&scdp->scd_mutex);
15234 		sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15235 		mutex_exit(&scdp->scd_mutex);
15236 		/*
15237 		 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15238 		 * are about to leave the SCD
15239 		 */
15240 		for (i = 0; i < mmu_page_sizes; i++) {
15241 			ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15242 			    scdp->scd_rttecnt[i]);
15243 			atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15244 			    sfmmup->sfmmu_scdrttecnt[i]);
15245 			sfmmup->sfmmu_scdrttecnt[i] = 0;
15246 		}
15247 		sfmmup->sfmmu_scdp = NULL;
15248 
15249 		SF_SCD_DECR_REF(srdp, scdp);
15250 		return;
15251 	}
15252 
15253 	ASSERT(r_type != SFMMU_REGION_ISM ||
15254 	    SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15255 	ASSERT(scdp->scd_refcnt);
15256 	ASSERT(!sfmmup->sfmmu_free);
15257 	ASSERT(sfmmu_hat_lock_held(sfmmup));
15258 	ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
15259 
15260 	/*
15261 	 * Wait for ISM maps to be updated.
15262 	 */
15263 	if (r_type != SFMMU_REGION_ISM) {
15264 		while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY) &&
15265 		    sfmmup->sfmmu_scdp != NULL) {
15266 			cv_wait(&sfmmup->sfmmu_tsb_cv,
15267 			    HATLOCK_MUTEXP(hatlockp));
15268 		}
15269 
15270 		if (sfmmup->sfmmu_scdp == NULL) {
15271 			sfmmu_hat_exit(hatlockp);
15272 			return;
15273 		}
15274 		SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
15275 	}
15276 
15277 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
15278 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
15279 		/*
15280 		 * Since HAT_JOIN_SCD was set our context
15281 		 * is still invalid.
15282 		 */
15283 	} else {
15284 		/*
15285 		 * For a multi-thread process, we must stop
15286 		 * all the other threads before leaving the scd.
15287 		 */
15288 
15289 		sfmmu_invalidate_ctx(sfmmup);
15290 	}
15291 
15292 	/* Clear all the rid's for ISM, delete flags, etc */
15293 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15294 	sfmmu_ism_hatflags(sfmmup, 0);
15295 
15296 	/*
15297 	 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15298 	 * are in SCD before this sfmmup leaves the SCD.
15299 	 */
15300 	for (i = 0; i < mmu_page_sizes; i++) {
15301 		ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15302 		    scdp->scd_rttecnt[i]);
15303 		atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15304 		    sfmmup->sfmmu_scdrttecnt[i]);
15305 		sfmmup->sfmmu_scdrttecnt[i] = 0;
15306 		/* update ismttecnt to include SCD ism before hat leaves SCD */
15307 		sfmmup->sfmmu_ismttecnt[i] += sfmmup->sfmmu_scdismttecnt[i];
15308 		sfmmup->sfmmu_scdismttecnt[i] = 0;
15309 	}
15310 	/* update tsb0 inflation count */
15311 	sfmmup->sfmmu_tsb0_4minflcnt += scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15312 
15313 	if (r_type != SFMMU_REGION_ISM) {
15314 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
15315 	}
15316 	sfmmup->sfmmu_scdp = NULL;
15317 
15318 	sfmmu_hat_exit(hatlockp);
15319 
15320 	/*
15321 	 * Unlink sfmmu from scd_sf_list this can be done without holding
15322 	 * the hat lock as we hold the sfmmu_as lock which prevents
15323 	 * hat_join_region from adding this thread to the scd again. Other
15324 	 * threads check if sfmmu_scdp is NULL under hat lock and if it's NULL
15325 	 * they won't get here, since sfmmu_leave_scd() clears sfmmu_scdp
15326 	 * while holding the hat lock.
15327 	 */
15328 	mutex_enter(&scdp->scd_mutex);
15329 	sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15330 	mutex_exit(&scdp->scd_mutex);
15331 	SFMMU_STAT(sf_leave_scd);
15332 
15333 	SF_SCD_DECR_REF(srdp, scdp);
15334 	hatlockp = sfmmu_hat_enter(sfmmup);
15335 
15336 }
15337 
15338 /*
15339  * Unlink and free up an SCD structure with a reference count of 0.
15340  */
15341 static void
15342 sfmmu_destroy_scd(sf_srd_t *srdp, sf_scd_t *scdp, sf_region_map_t *scd_rmap)
15343 {
15344 	sfmmu_t *scsfmmup;
15345 	sf_scd_t *sp;
15346 	hatlock_t *shatlockp;
15347 	int i, ret;
15348 
15349 	mutex_enter(&srdp->srd_scd_mutex);
15350 	for (sp = srdp->srd_scdp; sp != NULL; sp = sp->scd_next) {
15351 		if (sp == scdp)
15352 			break;
15353 	}
15354 	if (sp == NULL || sp->scd_refcnt) {
15355 		mutex_exit(&srdp->srd_scd_mutex);
15356 		return;
15357 	}
15358 
15359 	/*
15360 	 * It is possible that the scd has been freed and reallocated with a
15361 	 * different region map while we've been waiting for the srd_scd_mutex.
15362 	 */
15363 	SF_RGNMAP_EQUAL(scd_rmap, &sp->scd_region_map, ret);
15364 	if (ret != 1) {
15365 		mutex_exit(&srdp->srd_scd_mutex);
15366 		return;
15367 	}
15368 
15369 	ASSERT(scdp->scd_sf_list == NULL);
15370 	/*
15371 	 * Unlink scd from srd_scdp list.
15372 	 */
15373 	sfmmu_remove_scd(&srdp->srd_scdp, scdp);
15374 	mutex_exit(&srdp->srd_scd_mutex);
15375 
15376 	sfmmu_unlink_scd_from_regions(srdp, scdp);
15377 
15378 	/* Clear shared context tsb and release ctx */
15379 	scsfmmup = scdp->scd_sfmmup;
15380 
15381 	/*
15382 	 * create a barrier so that scd will not be destroyed
15383 	 * if other thread still holds the same shared hat lock.
15384 	 * E.g., sfmmu_tsbmiss_exception() needs to acquire the
15385 	 * shared hat lock before checking the shared tsb reloc flag.
15386 	 */
15387 	shatlockp = sfmmu_hat_enter(scsfmmup);
15388 	sfmmu_hat_exit(shatlockp);
15389 
15390 	sfmmu_free_scd_tsbs(scsfmmup);
15391 
15392 	for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
15393 		if (scsfmmup->sfmmu_hmeregion_links[i] != NULL) {
15394 			kmem_free(scsfmmup->sfmmu_hmeregion_links[i],
15395 			    SFMMU_L2_HMERLINKS_SIZE);
15396 			scsfmmup->sfmmu_hmeregion_links[i] = NULL;
15397 		}
15398 	}
15399 	kmem_cache_free(sfmmuid_cache, scsfmmup);
15400 	kmem_cache_free(scd_cache, scdp);
15401 	SFMMU_STAT(sf_destroy_scd);
15402 }
15403 
15404 /*
15405  * Modifies the HAT_CTX1_FLAG for each of the ISM segments which correspond to
15406  * bits which are set in the ism_region_map parameter. This flag indicates to
15407  * the tsbmiss handler that mapping for these segments should be loaded using
15408  * the shared context.
15409  */
15410 static void
15411 sfmmu_ism_hatflags(sfmmu_t *sfmmup, int addflag)
15412 {
15413 	sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15414 	ism_blk_t *ism_blkp;
15415 	ism_map_t *ism_map;
15416 	int i, rid;
15417 
15418 	ASSERT(sfmmup->sfmmu_iblk != NULL);
15419 	ASSERT(scdp != NULL);
15420 	/*
15421 	 * Note that the caller either set HAT_ISMBUSY flag or checked
15422 	 * under hat lock that HAT_ISMBUSY was not set by another thread.
15423 	 */
15424 	ASSERT(sfmmu_hat_lock_held(sfmmup));
15425 
15426 	ism_blkp = sfmmup->sfmmu_iblk;
15427 	while (ism_blkp != NULL) {
15428 		ism_map = ism_blkp->iblk_maps;
15429 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
15430 			rid = ism_map[i].imap_rid;
15431 			if (rid == SFMMU_INVALID_ISMRID) {
15432 				continue;
15433 			}
15434 			ASSERT(rid >= 0 && rid < SFMMU_MAX_ISM_REGIONS);
15435 			if (SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid) &&
15436 			    addflag) {
15437 				ism_map[i].imap_hatflags |=
15438 				    HAT_CTX1_FLAG;
15439 			} else {
15440 				ism_map[i].imap_hatflags &=
15441 				    ~HAT_CTX1_FLAG;
15442 			}
15443 		}
15444 		ism_blkp = ism_blkp->iblk_next;
15445 	}
15446 }
15447 
15448 static int
15449 sfmmu_srd_lock_held(sf_srd_t *srdp)
15450 {
15451 	return (MUTEX_HELD(&srdp->srd_mutex));
15452 }
15453 
15454 /* ARGSUSED */
15455 static int
15456 sfmmu_scdcache_constructor(void *buf, void *cdrarg, int kmflags)
15457 {
15458 	sf_scd_t *scdp = (sf_scd_t *)buf;
15459 
15460 	bzero(buf, sizeof (sf_scd_t));
15461 	mutex_init(&scdp->scd_mutex, NULL, MUTEX_DEFAULT, NULL);
15462 	return (0);
15463 }
15464 
15465 /* ARGSUSED */
15466 static void
15467 sfmmu_scdcache_destructor(void *buf, void *cdrarg)
15468 {
15469 	sf_scd_t *scdp = (sf_scd_t *)buf;
15470 
15471 	mutex_destroy(&scdp->scd_mutex);
15472 }
15473