xref: /titanic_50/usr/src/uts/sfmmu/vm/hat_sfmmu.c (revision 07b569258a7f225101878792e6bfeedb2b35902c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * VM - Hardware Address Translation management for Spitfire MMU.
31  *
32  * This file implements the machine specific hardware translation
33  * needed by the VM system.  The machine independent interface is
34  * described in <vm/hat.h> while the machine dependent interface
35  * and data structures are described in <vm/hat_sfmmu.h>.
36  *
37  * The hat layer manages the address translation hardware as a cache
38  * driven by calls from the higher levels in the VM system.
39  */
40 
41 #include <sys/types.h>
42 #include <vm/hat.h>
43 #include <vm/hat_sfmmu.h>
44 #include <vm/page.h>
45 #include <sys/pte.h>
46 #include <sys/systm.h>
47 #include <sys/mman.h>
48 #include <sys/sysmacros.h>
49 #include <sys/machparam.h>
50 #include <sys/vtrace.h>
51 #include <sys/kmem.h>
52 #include <sys/mmu.h>
53 #include <sys/cmn_err.h>
54 #include <sys/cpu.h>
55 #include <sys/cpuvar.h>
56 #include <sys/debug.h>
57 #include <sys/lgrp.h>
58 #include <sys/archsystm.h>
59 #include <sys/machsystm.h>
60 #include <sys/vmsystm.h>
61 #include <vm/as.h>
62 #include <vm/seg.h>
63 #include <vm/seg_kp.h>
64 #include <vm/seg_kmem.h>
65 #include <vm/seg_kpm.h>
66 #include <vm/rm.h>
67 #include <sys/t_lock.h>
68 #include <sys/obpdefs.h>
69 #include <sys/vm_machparam.h>
70 #include <sys/var.h>
71 #include <sys/trap.h>
72 #include <sys/machtrap.h>
73 #include <sys/scb.h>
74 #include <sys/bitmap.h>
75 #include <sys/machlock.h>
76 #include <sys/membar.h>
77 #include <sys/atomic.h>
78 #include <sys/cpu_module.h>
79 #include <sys/prom_debug.h>
80 #include <sys/ksynch.h>
81 #include <sys/mem_config.h>
82 #include <sys/mem_cage.h>
83 #include <sys/dtrace.h>
84 #include <vm/vm_dep.h>
85 #include <vm/xhat_sfmmu.h>
86 #include <sys/fpu/fpusystm.h>
87 
88 #if defined(SF_ERRATA_57)
89 extern caddr_t errata57_limit;
90 #endif
91 
92 #define	HME8BLK_SZ_RND		((roundup(HME8BLK_SZ, sizeof (int64_t))) /  \
93 				(sizeof (int64_t)))
94 #define	HBLK_RESERVE		((struct hme_blk *)hblk_reserve)
95 
96 #define	HBLK_RESERVE_CNT	128
97 #define	HBLK_RESERVE_MIN	20
98 
99 static struct hme_blk		*freehblkp;
100 static kmutex_t			freehblkp_lock;
101 static int			freehblkcnt;
102 
103 static int64_t			hblk_reserve[HME8BLK_SZ_RND];
104 static kmutex_t			hblk_reserve_lock;
105 static kthread_t		*hblk_reserve_thread;
106 
107 static nucleus_hblk8_info_t	nucleus_hblk8;
108 static nucleus_hblk1_info_t	nucleus_hblk1;
109 
110 /*
111  * SFMMU specific hat functions
112  */
113 void	hat_pagecachectl(struct page *, int);
114 
115 /* flags for hat_pagecachectl */
116 #define	HAT_CACHE	0x1
117 #define	HAT_UNCACHE	0x2
118 #define	HAT_TMPNC	0x4
119 
120 /*
121  * Flag to allow the creation of non-cacheable translations
122  * to system memory. It is off by default. At the moment this
123  * flag is used by the ecache error injector. The error injector
124  * will turn it on when creating such a translation then shut it
125  * off when it's finished.
126  */
127 
128 int	sfmmu_allow_nc_trans = 0;
129 
130 /*
131  * Flag to disable large page support.
132  * 	value of 1 => disable all large pages.
133  *	bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
134  *
135  * For example, use the value 0x4 to disable 512K pages.
136  *
137  */
138 #define	LARGE_PAGES_OFF		0x1
139 
140 /*
141  * WARNING: 512K pages MUST be disabled for ISM/DISM. If not
142  * a process would page fault indefinitely if it tried to
143  * access a 512K page.
144  */
145 int	disable_ism_large_pages = (1 << TTE512K);
146 int	disable_large_pages = 0;
147 int	disable_auto_large_pages = 0;
148 
149 /*
150  * Private sfmmu data structures for hat management
151  */
152 static struct kmem_cache *sfmmuid_cache;
153 
154 /*
155  * Private sfmmu data structures for ctx management
156  */
157 static struct ctx	*ctxhand;	/* hand used while stealing ctxs */
158 static struct ctx	*ctxfree;	/* head of free ctx list */
159 static struct ctx	*ctxdirty;	/* head of dirty ctx list */
160 
161 /*
162  * Private sfmmu data structures for tsb management
163  */
164 static struct kmem_cache *sfmmu_tsbinfo_cache;
165 static struct kmem_cache *sfmmu_tsb8k_cache;
166 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
167 static vmem_t *kmem_tsb_arena;
168 
169 /*
170  * sfmmu static variables for hmeblk resource management.
171  */
172 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
173 static struct kmem_cache *sfmmu8_cache;
174 static struct kmem_cache *sfmmu1_cache;
175 static struct kmem_cache *pa_hment_cache;
176 
177 static kmutex_t 	ctx_list_lock;	/* mutex for ctx free/dirty lists */
178 static kmutex_t 	ism_mlist_lock;	/* mutex for ism mapping list */
179 /*
180  * private data for ism
181  */
182 static struct kmem_cache *ism_blk_cache;
183 static struct kmem_cache *ism_ment_cache;
184 #define	ISMID_STARTADDR	NULL
185 
186 /*
187  * Whether to delay TLB flushes and use Cheetah's flush-all support
188  * when removing contexts from the dirty list.
189  */
190 int delay_tlb_flush;
191 int disable_delay_tlb_flush;
192 
193 /*
194  * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
195  * HAT flags, synchronizing TLB/TSB coherency, and context management.
196  * The lock is hashed on the sfmmup since the case where we need to lock
197  * all processes is rare but does occur (e.g. we need to unload a shared
198  * mapping from all processes using the mapping).  We have a lot of buckets,
199  * and each slab of sfmmu_t's can use about a quarter of them, giving us
200  * a fairly good distribution without wasting too much space and overhead
201  * when we have to grab them all.
202  */
203 #define	SFMMU_NUM_LOCK	128		/* must be power of two */
204 hatlock_t	hat_lock[SFMMU_NUM_LOCK];
205 
206 /*
207  * Hash algorithm optimized for a small number of slabs.
208  *  7 is (highbit((sizeof sfmmu_t)) - 1)
209  * This hash algorithm is based upon the knowledge that sfmmu_t's come from a
210  * kmem_cache, and thus they will be sequential within that cache.  In
211  * addition, each new slab will have a different "color" up to cache_maxcolor
212  * which will skew the hashing for each successive slab which is allocated.
213  * If the size of sfmmu_t changed to a larger size, this algorithm may need
214  * to be revisited.
215  */
216 #define	TSB_HASH_SHIFT_BITS (7)
217 #define	PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
218 
219 #ifdef DEBUG
220 int tsb_hash_debug = 0;
221 #define	TSB_HASH(sfmmup)	\
222 	(tsb_hash_debug ? &hat_lock[0] : \
223 	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
224 #else	/* DEBUG */
225 #define	TSB_HASH(sfmmup)	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
226 #endif	/* DEBUG */
227 
228 
229 /* sfmmu_replace_tsb() return codes. */
230 typedef enum tsb_replace_rc {
231 	TSB_SUCCESS,
232 	TSB_ALLOCFAIL,
233 	TSB_LOSTRACE,
234 	TSB_ALREADY_SWAPPED,
235 	TSB_CANTGROW
236 } tsb_replace_rc_t;
237 
238 /*
239  * Flags for TSB allocation routines.
240  */
241 #define	TSB_ALLOC	0x01
242 #define	TSB_FORCEALLOC	0x02
243 #define	TSB_GROW	0x04
244 #define	TSB_SHRINK	0x08
245 #define	TSB_SWAPIN	0x10
246 
247 /*
248  * Support for HAT callbacks.
249  */
250 #define	SFMMU_MAX_RELOC_CALLBACKS	10
251 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
252 static id_t sfmmu_cb_nextid = 0;
253 static id_t sfmmu_tsb_cb_id;
254 struct sfmmu_callback *sfmmu_cb_table;
255 
256 /*
257  * Kernel page relocation is enabled by default for non-caged
258  * kernel pages.  This has little effect unless segkmem_reloc is
259  * set, since by default kernel memory comes from inside the
260  * kernel cage.
261  */
262 int hat_kpr_enabled = 1;
263 
264 kmutex_t	kpr_mutex;
265 kmutex_t	kpr_suspendlock;
266 kthread_t	*kreloc_thread;
267 
268 /*
269  * Enable VA->PA translation sanity checking on DEBUG kernels.
270  * Disabled by default.  This is incompatible with some
271  * drivers (error injector, RSM) so if it breaks you get
272  * to keep both pieces.
273  */
274 int hat_check_vtop = 0;
275 
276 /*
277  * Private sfmmu routines (prototypes)
278  */
279 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
280 static struct 	hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
281 			struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t);
282 static caddr_t	sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
283 			caddr_t, demap_range_t *, uint_t);
284 static caddr_t	sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
285 			caddr_t, int);
286 static void	sfmmu_hblk_free(struct hmehash_bucket *, struct hme_blk *,
287 			uint64_t, struct hme_blk **);
288 static void	sfmmu_hblks_list_purge(struct hme_blk **);
289 static uint_t	sfmmu_get_free_hblk(struct hme_blk **, uint_t);
290 static uint_t	sfmmu_put_free_hblk(struct hme_blk *, uint_t);
291 static struct hme_blk *sfmmu_hblk_steal(int);
292 static int	sfmmu_steal_this_hblk(struct hmehash_bucket *,
293 			struct hme_blk *, uint64_t, uint64_t,
294 			struct hme_blk *);
295 static caddr_t	sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
296 
297 static void	sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
298 		    uint_t, uint_t, pgcnt_t);
299 void		sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
300 			uint_t);
301 static int	sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
302 			uint_t);
303 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
304 					caddr_t, int);
305 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
306 			struct hmehash_bucket *, caddr_t, uint_t, uint_t);
307 static int	sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
308 			caddr_t, page_t **, uint_t);
309 static void	sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
310 
311 static int	sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
312 pfn_t		sfmmu_uvatopfn(caddr_t, sfmmu_t *);
313 void		sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
314 static void	sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
315 static int	sfmmu_vacconflict_array(caddr_t, page_t *, int *);
316 static int	tst_tnc(page_t *pp, pgcnt_t);
317 static void	conv_tnc(page_t *pp, int);
318 
319 static struct ctx *sfmmu_get_ctx(sfmmu_t *);
320 static void	sfmmu_free_ctx(sfmmu_t *, struct ctx *);
321 static void	sfmmu_free_sfmmu(sfmmu_t *);
322 
323 static void	sfmmu_gettte(struct hat *, caddr_t, tte_t *);
324 static void	sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
325 static void	sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
326 
327 static cpuset_t	sfmmu_pageunload(page_t *, struct sf_hment *, int);
328 static void	hat_pagereload(struct page *, struct page *);
329 static cpuset_t	sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
330 static void	sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
331 static void	sfmmu_page_cache(page_t *, int, int, int);
332 
333 static void	sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
334 			pfn_t, int, int, int, int);
335 static void	sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
336 			pfn_t, int);
337 static void	sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
338 static void	sfmmu_tlb_range_demap(demap_range_t *);
339 static void	sfmmu_tlb_ctx_demap(sfmmu_t *);
340 static void	sfmmu_tlb_all_demap(void);
341 static void	sfmmu_tlb_swap_ctx(sfmmu_t *, struct ctx *);
342 static void	sfmmu_sync_mmustate(sfmmu_t *);
343 
344 static void 	sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
345 static int	sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
346 			sfmmu_t *);
347 static void	sfmmu_tsb_free(struct tsb_info *);
348 static void	sfmmu_tsbinfo_free(struct tsb_info *);
349 static int	sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
350 			sfmmu_t *);
351 
352 static void	sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
353 static int	sfmmu_select_tsb_szc(pgcnt_t);
354 static void	sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
355 #define		sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
356 	sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
357 #define		sfmmu_unload_tsb(sfmmup, vaddr, szc)    \
358 	sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
359 static void	sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
360 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
361     hatlock_t *, uint_t);
362 static void	sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
363 
364 static void	sfmmu_cache_flush(pfn_t, int);
365 void		sfmmu_cache_flushcolor(int, pfn_t);
366 static caddr_t	sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
367 			caddr_t, demap_range_t *, uint_t, int);
368 
369 static uint64_t	sfmmu_vtop_attr(uint_t, int mode, tte_t *);
370 static uint_t	sfmmu_ptov_attr(tte_t *);
371 static caddr_t	sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
372 			caddr_t, demap_range_t *, uint_t);
373 static uint_t	sfmmu_vtop_prot(uint_t, uint_t *);
374 static int	sfmmu_idcache_constructor(void *, void *, int);
375 static void	sfmmu_idcache_destructor(void *, void *);
376 static int	sfmmu_hblkcache_constructor(void *, void *, int);
377 static void	sfmmu_hblkcache_destructor(void *, void *);
378 static void	sfmmu_hblkcache_reclaim(void *);
379 static void	sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
380 			struct hmehash_bucket *);
381 static void	sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
382 
383 static void	sfmmu_reuse_ctx(struct ctx *, sfmmu_t *);
384 static void	sfmmu_disallow_ctx_steal(sfmmu_t *);
385 static void	sfmmu_allow_ctx_steal(sfmmu_t *);
386 
387 static void	sfmmu_rm_large_mappings(page_t *, int);
388 
389 static void	hat_lock_init(void);
390 static void	hat_kstat_init(void);
391 static int	sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
392 static void	sfmmu_check_page_sizes(sfmmu_t *, int);
393 static int	fnd_mapping_sz(page_t *);
394 static void	iment_add(struct ism_ment *,  struct hat *);
395 static void	iment_sub(struct ism_ment *, struct hat *);
396 static pgcnt_t	ism_tsb_entries(sfmmu_t *, int szc);
397 extern void	sfmmu_setup_tsbinfo(sfmmu_t *);
398 extern void	sfmmu_clear_utsbinfo(void);
399 
400 /* kpm prototypes */
401 static caddr_t	sfmmu_kpm_mapin(page_t *);
402 static void	sfmmu_kpm_mapout(page_t *, caddr_t);
403 static int	sfmmu_kpme_lookup(struct kpme *, page_t *);
404 static void	sfmmu_kpme_add(struct kpme *, page_t *);
405 static void	sfmmu_kpme_sub(struct kpme *, page_t *);
406 static caddr_t	sfmmu_kpm_getvaddr(page_t *, int *);
407 static int	sfmmu_kpm_fault(caddr_t, struct memseg *, page_t *);
408 static int	sfmmu_kpm_fault_small(caddr_t, struct memseg *, page_t *);
409 static void	sfmmu_kpm_vac_conflict(page_t *, caddr_t);
410 static void	sfmmu_kpm_pageunload(page_t *);
411 static void	sfmmu_kpm_vac_unload(page_t *, caddr_t);
412 static void	sfmmu_kpm_demap_large(caddr_t);
413 static void	sfmmu_kpm_demap_small(caddr_t);
414 static void	sfmmu_kpm_demap_tlbs(caddr_t, int);
415 static void	sfmmu_kpm_hme_unload(page_t *);
416 static kpm_hlk_t *sfmmu_kpm_kpmp_enter(page_t *, pgcnt_t);
417 static void	sfmmu_kpm_kpmp_exit(kpm_hlk_t *kpmp);
418 static void	sfmmu_kpm_page_cache(page_t *, int, int);
419 
420 /* kpm globals */
421 #ifdef	DEBUG
422 /*
423  * Enable trap level tsbmiss handling
424  */
425 int	kpm_tsbmtl = 1;
426 
427 /*
428  * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
429  * required TLB shootdowns in this case, so handle w/ care. Off by default.
430  */
431 int	kpm_tlb_flush;
432 #endif	/* DEBUG */
433 
434 static void	*sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
435 
436 #ifdef DEBUG
437 static void	sfmmu_check_hblk_flist();
438 #endif
439 
440 /*
441  * Semi-private sfmmu data structures.  Some of them are initialize in
442  * startup or in hat_init. Some of them are private but accessed by
443  * assembly code or mach_sfmmu.c
444  */
445 struct hmehash_bucket *uhme_hash;	/* user hmeblk hash table */
446 struct hmehash_bucket *khme_hash;	/* kernel hmeblk hash table */
447 uint64_t	uhme_hash_pa;		/* PA of uhme_hash */
448 uint64_t	khme_hash_pa;		/* PA of khme_hash */
449 int 		uhmehash_num;		/* # of buckets in user hash table */
450 int 		khmehash_num;		/* # of buckets in kernel hash table */
451 struct ctx	*ctxs;			/* used by <machine/mmu.c> */
452 uint_t		nctxs;			/* total number of contexts */
453 
454 int		cache;			/* describes system cache */
455 
456 caddr_t		ktsb_base;		/* kernel 8k-indexed tsb base address */
457 uint64_t	ktsb_pbase;		/* kernel 8k-indexed tsb phys address */
458 int		ktsb_szcode;		/* kernel 8k-indexed tsb size code */
459 int		ktsb_sz;		/* kernel 8k-indexed tsb size */
460 
461 caddr_t		ktsb4m_base;		/* kernel 4m-indexed tsb base address */
462 uint64_t	ktsb4m_pbase;		/* kernel 4m-indexed tsb phys address */
463 int		ktsb4m_szcode;		/* kernel 4m-indexed tsb size code */
464 int		ktsb4m_sz;		/* kernel 4m-indexed tsb size */
465 
466 uint64_t	kpm_tsbbase;		/* kernel seg_kpm 4M TSB base address */
467 int		kpm_tsbsz;		/* kernel seg_kpm 4M TSB size code */
468 uint64_t	kpmsm_tsbbase;		/* kernel seg_kpm 8K TSB base address */
469 int		kpmsm_tsbsz;		/* kernel seg_kpm 8K TSB size code */
470 
471 #ifndef sun4v
472 int		utsb_dtlb_ttenum = -1;	/* index in TLB for utsb locked TTE */
473 int		utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
474 int		dtlb_resv_ttenum;	/* index in TLB of first reserved TTE */
475 caddr_t		utsb_vabase;		/* reserved kernel virtual memory */
476 caddr_t		utsb4m_vabase;		/* for trap handler TSB accesses */
477 #endif /* sun4v */
478 uint64_t	tsb_alloc_bytes = 0;	/* bytes allocated to TSBs */
479 vmem_t		*kmem_tsb_default_arena[NLGRPS_MAX];	/* For dynamic TSBs */
480 
481 /*
482  * Size to use for TSB slabs.  Future platforms that support page sizes
483  * larger than 4M may wish to change these values, and provide their own
484  * assembly macros for building and decoding the TSB base register contents.
485  */
486 uint_t	tsb_slab_size = MMU_PAGESIZE4M;
487 uint_t	tsb_slab_shift = MMU_PAGESHIFT4M;
488 uint_t	tsb_slab_ttesz = TTE4M;
489 uint_t	tsb_slab_mask = 0x1ff;	/* 4M page alignment for 8K pfn */
490 
491 /* largest TSB size to grow to, will be smaller on smaller memory systems */
492 int	tsb_max_growsize = UTSB_MAX_SZCODE;
493 
494 /*
495  * Tunable parameters dealing with TSB policies.
496  */
497 
498 /*
499  * This undocumented tunable forces all 8K TSBs to be allocated from
500  * the kernel heap rather than from the kmem_tsb_default_arena arenas.
501  */
502 #ifdef	DEBUG
503 int	tsb_forceheap = 0;
504 #endif	/* DEBUG */
505 
506 /*
507  * Decide whether to use per-lgroup arenas, or one global set of
508  * TSB arenas.  The default is not to break up per-lgroup, since
509  * most platforms don't recognize any tangible benefit from it.
510  */
511 int	tsb_lgrp_affinity = 0;
512 
513 /*
514  * Used for growing the TSB based on the process RSS.
515  * tsb_rss_factor is based on the smallest TSB, and is
516  * shifted by the TSB size to determine if we need to grow.
517  * The default will grow the TSB if the number of TTEs for
518  * this page size exceeds 75% of the number of TSB entries,
519  * which should _almost_ eliminate all conflict misses
520  * (at the expense of using up lots and lots of memory).
521  */
522 #define	TSB_RSS_FACTOR		(TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
523 #define	SFMMU_RSS_TSBSIZE(tsbszc)	(tsb_rss_factor << tsbszc)
524 #define	SELECT_TSB_SIZECODE(pgcnt) ( \
525 	(enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
526 	default_tsb_size)
527 #define	TSB_OK_SHRINK()	\
528 	(tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
529 #define	TSB_OK_GROW()	\
530 	(tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
531 
532 int	enable_tsb_rss_sizing = 1;
533 int	tsb_rss_factor	= (int)TSB_RSS_FACTOR;
534 
535 /* which TSB size code to use for new address spaces or if rss sizing off */
536 int default_tsb_size = TSB_8K_SZCODE;
537 
538 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
539 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */
540 #define	TSB_ALLOC_HIWATER_FACTOR_DEFAULT	32
541 
542 #ifdef DEBUG
543 static int tsb_random_size = 0;	/* set to 1 to test random tsb sizes on alloc */
544 static int tsb_grow_stress = 0;	/* if set to 1, keep replacing TSB w/ random */
545 static int tsb_alloc_mtbf = 0;	/* fail allocation every n attempts */
546 static int tsb_alloc_fail_mtbf = 0;
547 static int tsb_alloc_count = 0;
548 #endif /* DEBUG */
549 
550 /* if set to 1, will remap valid TTEs when growing TSB. */
551 int tsb_remap_ttes = 1;
552 
553 /*
554  * If we have more than this many mappings, allocate a second TSB.
555  * This default is chosen because the I/D fully associative TLBs are
556  * assumed to have at least 8 available entries. Platforms with a
557  * larger fully-associative TLB could probably override the default.
558  */
559 int tsb_sectsb_threshold = 8;
560 
561 /*
562  * kstat data
563  */
564 struct sfmmu_global_stat sfmmu_global_stat;
565 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
566 
567 /*
568  * Global data
569  */
570 sfmmu_t 	*ksfmmup;		/* kernel's hat id */
571 struct ctx 	*kctx;			/* kernel's context */
572 
573 #ifdef DEBUG
574 static void	chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
575 #endif
576 
577 /* sfmmu locking operations */
578 static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
579 static int	sfmmu_mlspl_held(struct page *, int);
580 
581 static kmutex_t *sfmmu_page_enter(page_t *);
582 static void	sfmmu_page_exit(kmutex_t *);
583 static int	sfmmu_page_spl_held(struct page *);
584 
585 /* sfmmu internal locking operations - accessed directly */
586 static void	sfmmu_mlist_reloc_enter(page_t *, page_t *,
587 				kmutex_t **, kmutex_t **);
588 static void	sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
589 static hatlock_t *
590 		sfmmu_hat_enter(sfmmu_t *);
591 static hatlock_t *
592 		sfmmu_hat_tryenter(sfmmu_t *);
593 static void	sfmmu_hat_exit(hatlock_t *);
594 static void	sfmmu_hat_lock_all(void);
595 static void	sfmmu_hat_unlock_all(void);
596 static void	sfmmu_ismhat_enter(sfmmu_t *, int);
597 static void	sfmmu_ismhat_exit(sfmmu_t *, int);
598 
599 /*
600  * Array of mutexes protecting a page's mapping list and p_nrm field.
601  *
602  * The hash function looks complicated, but is made up so that:
603  *
604  * "pp" not shifted, so adjacent pp values will hash to different cache lines
605  *  (8 byte alignment * 8 bytes/mutes == 64 byte coherency subblock)
606  *
607  * "pp" >> mml_shift, incorporates more source bits into the hash result
608  *
609  *  "& (mml_table_size - 1), should be faster than using remainder "%"
610  *
611  * Hopefully, mml_table, mml_table_size and mml_shift are all in the same
612  * cacheline, since they get declared next to each other below. We'll trust
613  * ld not to do something random.
614  */
615 #ifdef	DEBUG
616 int mlist_hash_debug = 0;
617 #define	MLIST_HASH(pp)	(mlist_hash_debug ? &mml_table[0] : \
618 	&mml_table[((uintptr_t)(pp) + \
619 	((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)])
620 #else	/* !DEBUG */
621 #define	MLIST_HASH(pp)   &mml_table[ \
622 	((uintptr_t)(pp) + ((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)]
623 #endif	/* !DEBUG */
624 
625 kmutex_t		*mml_table;
626 uint_t			mml_table_sz;	/* must be a power of 2 */
627 uint_t			mml_shift;	/* log2(mml_table_sz) + 3 for align */
628 
629 /*
630  * kpm_page lock hash.
631  * All slots should be used equally and 2 adjacent kpm_page_t's
632  * shouldn't have their mutexes in the same cache line.
633  */
634 #ifdef	DEBUG
635 int kpmp_hash_debug = 0;
636 #define	KPMP_HASH(kpp)	(kpmp_hash_debug ? &kpmp_table[0] : &kpmp_table[ \
637 	((uintptr_t)(kpp) + ((uintptr_t)(kpp) >> kpmp_shift)) \
638 	& (kpmp_table_sz - 1)])
639 #else	/* !DEBUG */
640 #define	KPMP_HASH(kpp)	&kpmp_table[ \
641 	((uintptr_t)(kpp) + ((uintptr_t)(kpp) >> kpmp_shift)) \
642 	& (kpmp_table_sz - 1)]
643 #endif	/* DEBUG */
644 
645 kpm_hlk_t	*kpmp_table;
646 uint_t		kpmp_table_sz;	/* must be a power of 2 */
647 uchar_t		kpmp_shift;
648 
649 #ifdef	DEBUG
650 #define	KPMP_SHASH(kpp)	(kpmp_hash_debug ? &kpmp_stable[0] : &kpmp_stable[ \
651 	(((uintptr_t)(kpp) << kpmp_shift) + (uintptr_t)(kpp)) \
652 	& (kpmp_stable_sz - 1)])
653 #else	/* !DEBUG */
654 #define	KPMP_SHASH(kpp)	&kpmp_stable[ \
655 	(((uintptr_t)(kpp) << kpmp_shift) + (uintptr_t)(kpp)) \
656 	& (kpmp_stable_sz - 1)]
657 #endif	/* DEBUG */
658 
659 kpm_shlk_t	*kpmp_stable;
660 uint_t		kpmp_stable_sz;	/* must be a power of 2 */
661 
662 /*
663  * SPL_HASH was improved to avoid false cache line sharing
664  */
665 #define	SPL_TABLE_SIZE	128
666 #define	SPL_MASK	(SPL_TABLE_SIZE - 1)
667 #define	SPL_SHIFT	7		/* log2(SPL_TABLE_SIZE) */
668 
669 #define	SPL_INDEX(pp) \
670 	((((uintptr_t)(pp) >> SPL_SHIFT) ^ \
671 	((uintptr_t)(pp) >> (SPL_SHIFT << 1))) & \
672 	(SPL_TABLE_SIZE - 1))
673 
674 #define	SPL_HASH(pp)    \
675 	(&sfmmu_page_lock[SPL_INDEX(pp) & SPL_MASK].pad_mutex)
676 
677 static	pad_mutex_t	sfmmu_page_lock[SPL_TABLE_SIZE];
678 
679 
680 /*
681  * hat_unload_callback() will group together callbacks in order
682  * to avoid xt_sync() calls.  This is the maximum size of the group.
683  */
684 #define	MAX_CB_ADDR	32
685 
686 #ifdef DEBUG
687 
688 /*
689  * Debugging trace ring buffer for stolen and freed ctxs.  The
690  * stolen_ctxs[] array is protected by the ctx_trace_mutex.
691  */
692 struct ctx_trace stolen_ctxs[TRSIZE];
693 struct ctx_trace *ctx_trace_first = &stolen_ctxs[0];
694 struct ctx_trace *ctx_trace_last = &stolen_ctxs[TRSIZE-1];
695 struct ctx_trace *ctx_trace_ptr = &stolen_ctxs[0];
696 kmutex_t ctx_trace_mutex;
697 uint_t	num_ctx_stolen = 0;
698 
699 int	ism_debug = 0;
700 
701 #endif /* DEBUG */
702 
703 tte_t	hw_tte;
704 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
705 
706 /*
707  * kpm virtual address to physical address
708  */
709 #define	SFMMU_KPM_VTOP(vaddr, paddr) {					\
710 	uintptr_t r, v;							\
711 									\
712 	r = ((vaddr) - kpm_vbase) >> (uintptr_t)kpm_size_shift;		\
713 	(paddr) = (vaddr) - kpm_vbase;					\
714 	if (r != 0) {							\
715 		v = ((uintptr_t)(vaddr) >> MMU_PAGESHIFT) &		\
716 		    vac_colors_mask;					\
717 		(paddr) -= r << kpm_size_shift;				\
718 		if (r > v)						\
719 			(paddr) += (r - v) << MMU_PAGESHIFT;		\
720 		else							\
721 			(paddr) -= r << MMU_PAGESHIFT;			\
722 	}								\
723 }
724 
725 /*
726  * Wrapper for vmem_xalloc since vmem_create only allows limited
727  * parameters for vm_source_alloc functions.  This function allows us
728  * to specify alignment consistent with the size of the object being
729  * allocated.
730  */
731 static void *
732 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
733 {
734 	return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
735 }
736 
737 /* Common code for setting tsb_alloc_hiwater. */
738 #define	SFMMU_SET_TSB_ALLOC_HIWATER(pages)	tsb_alloc_hiwater = \
739 		ptob(pages) / tsb_alloc_hiwater_factor
740 
741 /*
742  * Set tsb_max_growsize to allow at most all of physical memory to be mapped by
743  * a single TSB.  physmem is the number of physical pages so we need physmem 8K
744  * TTEs to represent all those physical pages.  We round this up by using
745  * 1<<highbit().  To figure out which size code to use, remember that the size
746  * code is just an amount to shift the smallest TSB size to get the size of
747  * this TSB.  So we subtract that size, TSB_START_SIZE, from highbit() (or
748  * highbit() - 1) to get the size code for the smallest TSB that can represent
749  * all of physical memory, while erring on the side of too much.
750  *
751  * If the computed size code is less than the current tsb_max_growsize, we set
752  * tsb_max_growsize to the computed size code.  In the case where the computed
753  * size code is greater than tsb_max_growsize, we have these restrictions that
754  * apply to increasing tsb_max_growsize:
755  *	1) TSBs can't grow larger than the TSB slab size
756  *	2) TSBs can't grow larger than UTSB_MAX_SZCODE.
757  */
758 #define	SFMMU_SET_TSB_MAX_GROWSIZE(pages) {				\
759 	int	i, szc;							\
760 									\
761 	i = highbit(pages);						\
762 	if ((1 << (i - 1)) == (pages))					\
763 		i--;		/* 2^n case, round down */		\
764 	szc = i - TSB_START_SIZE;					\
765 	if (szc < tsb_max_growsize)					\
766 		tsb_max_growsize = szc;					\
767 	else if ((szc > tsb_max_growsize) &&				\
768 	    (szc <= tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT))) \
769 		tsb_max_growsize = MIN(szc, UTSB_MAX_SZCODE);		\
770 }
771 
772 /*
773  * Given a pointer to an sfmmu and a TTE size code, return a pointer to the
774  * tsb_info which handles that TTE size.
775  */
776 #define	SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc)			\
777 	(tsbinfop) = (sfmmup)->sfmmu_tsb;				\
778 	ASSERT(sfmmu_hat_lock_held(sfmmup));				\
779 	if ((tte_szc) >= TTE4M)						\
780 		(tsbinfop) = (tsbinfop)->tsb_next;
781 
782 /*
783  * Return the number of mappings present in the HAT
784  * for a particular process and page size.
785  */
786 #define	SFMMU_TTE_CNT(sfmmup, szc)					\
787 	(sfmmup)->sfmmu_iblk?						\
788 	    (sfmmup)->sfmmu_ismttecnt[(szc)] +				\
789 	    (sfmmup)->sfmmu_ttecnt[(szc)] :				\
790 	    (sfmmup)->sfmmu_ttecnt[(szc)];
791 
792 /*
793  * Macro to use to unload entries from the TSB.
794  * It has knowledge of which page sizes get replicated in the TSB
795  * and will call the appropriate unload routine for the appropriate size.
796  */
797 #define	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp)				\
798 {									\
799 	int ttesz = get_hblk_ttesz(hmeblkp);				\
800 	if (ttesz == TTE8K || ttesz == TTE4M) {				\
801 		sfmmu_unload_tsb(sfmmup, addr, ttesz);			\
802 	} else {							\
803 		caddr_t sva = (caddr_t)get_hblk_base(hmeblkp);		\
804 		caddr_t eva = sva + get_hblk_span(hmeblkp);		\
805 		ASSERT(addr >= sva && addr < eva);			\
806 		sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);	\
807 	}								\
808 }
809 
810 
811 /* Update tsb_alloc_hiwater after memory is configured. */
812 /*ARGSUSED*/
813 static void
814 sfmmu_update_tsb_post_add(void *arg, pgcnt_t delta_pages)
815 {
816 	/* Assumes physmem has already been updated. */
817 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
818 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
819 }
820 
821 /*
822  * Update tsb_alloc_hiwater before memory is deleted.  We'll do nothing here
823  * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
824  * deleted.
825  */
826 /*ARGSUSED*/
827 static int
828 sfmmu_update_tsb_pre_del(void *arg, pgcnt_t delta_pages)
829 {
830 	return (0);
831 }
832 
833 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
834 /*ARGSUSED*/
835 static void
836 sfmmu_update_tsb_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
837 {
838 	/*
839 	 * Whether the delete was cancelled or not, just go ahead and update
840 	 * tsb_alloc_hiwater and tsb_max_growsize.
841 	 */
842 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
843 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
844 }
845 
846 static kphysm_setup_vector_t sfmmu_update_tsb_vec = {
847 	KPHYSM_SETUP_VECTOR_VERSION,	/* version */
848 	sfmmu_update_tsb_post_add,	/* post_add */
849 	sfmmu_update_tsb_pre_del,	/* pre_del */
850 	sfmmu_update_tsb_post_del	/* post_del */
851 };
852 
853 
854 /*
855  * HME_BLK HASH PRIMITIVES
856  */
857 
858 /*
859  * Enter a hme on the mapping list for page pp.
860  * When large pages are more prevalent in the system we might want to
861  * keep the mapping list in ascending order by the hment size. For now,
862  * small pages are more frequent, so don't slow it down.
863  */
864 #define	HME_ADD(hme, pp)					\
865 {								\
866 	ASSERT(sfmmu_mlist_held(pp));				\
867 								\
868 	hme->hme_prev = NULL;					\
869 	hme->hme_next = pp->p_mapping;				\
870 	hme->hme_page = pp;					\
871 	if (pp->p_mapping) {					\
872 		((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
873 		ASSERT(pp->p_share > 0);			\
874 	} else  {						\
875 		/* EMPTY */					\
876 		ASSERT(pp->p_share == 0);			\
877 	}							\
878 	pp->p_mapping = hme;					\
879 	pp->p_share++;						\
880 }
881 
882 /*
883  * Enter a hme on the mapping list for page pp.
884  * If we are unmapping a large translation, we need to make sure that the
885  * change is reflect in the corresponding bit of the p_index field.
886  */
887 #define	HME_SUB(hme, pp)					\
888 {								\
889 	ASSERT(sfmmu_mlist_held(pp));				\
890 	ASSERT(hme->hme_page == pp || IS_PAHME(hme));		\
891 								\
892 	if (pp->p_mapping == NULL) {				\
893 		panic("hme_remove - no mappings");		\
894 	}							\
895 								\
896 	membar_stst();	/* ensure previous stores finish */	\
897 								\
898 	ASSERT(pp->p_share > 0);				\
899 	pp->p_share--;						\
900 								\
901 	if (hme->hme_prev) {					\
902 		ASSERT(pp->p_mapping != hme);			\
903 		ASSERT(hme->hme_prev->hme_page == pp ||		\
904 			IS_PAHME(hme->hme_prev));		\
905 		hme->hme_prev->hme_next = hme->hme_next;	\
906 	} else {						\
907 		ASSERT(pp->p_mapping == hme);			\
908 		pp->p_mapping = hme->hme_next;			\
909 		ASSERT((pp->p_mapping == NULL) ?		\
910 			(pp->p_share == 0) : 1);		\
911 	}							\
912 								\
913 	if (hme->hme_next) {					\
914 		ASSERT(hme->hme_next->hme_page == pp ||		\
915 			IS_PAHME(hme->hme_next));		\
916 		hme->hme_next->hme_prev = hme->hme_prev;	\
917 	}							\
918 								\
919 	/* zero out the entry */				\
920 	hme->hme_next = NULL;					\
921 	hme->hme_prev = NULL;					\
922 	hme->hme_page = NULL;					\
923 								\
924 	if (hme_size(hme) > TTE8K) {				\
925 		/* remove mappings for remainder of large pg */	\
926 		sfmmu_rm_large_mappings(pp, hme_size(hme));	\
927 	}							\
928 }
929 
930 /*
931  * This function returns the hment given the hme_blk and a vaddr.
932  * It assumes addr has already been checked to belong to hme_blk's
933  * range.
934  */
935 #define	HBLKTOHME(hment, hmeblkp, addr)					\
936 {									\
937 	int index;							\
938 	HBLKTOHME_IDX(hment, hmeblkp, addr, index)			\
939 }
940 
941 /*
942  * Version of HBLKTOHME that also returns the index in hmeblkp
943  * of the hment.
944  */
945 #define	HBLKTOHME_IDX(hment, hmeblkp, addr, idx)			\
946 {									\
947 	ASSERT(in_hblk_range((hmeblkp), (addr)));			\
948 									\
949 	if (get_hblk_ttesz(hmeblkp) == TTE8K) {				\
950 		idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
951 	} else								\
952 		idx = 0;						\
953 									\
954 	(hment) = &(hmeblkp)->hblk_hme[idx];				\
955 }
956 
957 /*
958  * Disable any page sizes not supported by the CPU
959  */
960 void
961 hat_init_pagesizes()
962 {
963 	int 		i;
964 
965 	mmu_exported_page_sizes = 0;
966 	for (i = TTE8K; i < max_mmu_page_sizes; i++) {
967 		extern int	disable_text_largepages;
968 		extern int	disable_initdata_largepages;
969 
970 		szc_2_userszc[i] = (uint_t)-1;
971 		userszc_2_szc[i] = (uint_t)-1;
972 
973 		if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
974 			disable_large_pages |= (1 << i);
975 			disable_ism_large_pages |= (1 << i);
976 			disable_text_largepages |= (1 << i);
977 			disable_initdata_largepages |= (1 << i);
978 		} else {
979 			szc_2_userszc[i] = mmu_exported_page_sizes;
980 			userszc_2_szc[mmu_exported_page_sizes] = i;
981 			mmu_exported_page_sizes++;
982 		}
983 	}
984 
985 	disable_auto_large_pages = disable_large_pages;
986 
987 	/*
988 	 * Initialize mmu-specific large page sizes.
989 	 */
990 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
991 	    (&mmu_large_pages_disabled)) {
992 		disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
993 		disable_ism_large_pages |=
994 		    mmu_large_pages_disabled(HAT_LOAD_SHARE);
995 		disable_auto_large_pages |=
996 		    mmu_large_pages_disabled(HAT_LOAD_AUTOLPG);
997 	}
998 
999 }
1000 
1001 /*
1002  * Initialize the hardware address translation structures.
1003  */
1004 void
1005 hat_init(void)
1006 {
1007 	struct ctx	*ctx;
1008 	struct ctx	*cur_ctx = NULL;
1009 	int 		i;
1010 
1011 	hat_lock_init();
1012 	hat_kstat_init();
1013 
1014 	/*
1015 	 * Hardware-only bits in a TTE
1016 	 */
1017 	MAKE_TTE_MASK(&hw_tte);
1018 
1019 	hat_init_pagesizes();
1020 
1021 	/* Initialize the hash locks */
1022 	for (i = 0; i < khmehash_num; i++) {
1023 		mutex_init(&khme_hash[i].hmehash_mutex, NULL,
1024 		    MUTEX_DEFAULT, NULL);
1025 	}
1026 	for (i = 0; i < uhmehash_num; i++) {
1027 		mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
1028 		    MUTEX_DEFAULT, NULL);
1029 	}
1030 	khmehash_num--;		/* make sure counter starts from 0 */
1031 	uhmehash_num--;		/* make sure counter starts from 0 */
1032 
1033 	/*
1034 	 * Initialize ctx structures and list lock.
1035 	 * We keep two lists of ctxs. The "free" list contains contexts
1036 	 * ready to use.  The "dirty" list contains contexts that are OK
1037 	 * to use after flushing the TLBs of any stale mappings.
1038 	 */
1039 	mutex_init(&ctx_list_lock, NULL, MUTEX_DEFAULT, NULL);
1040 	kctx = &ctxs[KCONTEXT];
1041 	ctx = &ctxs[NUM_LOCKED_CTXS];
1042 	ctxhand = ctxfree = ctx;		/* head of free list */
1043 	ctxdirty = NULL;
1044 	for (i = NUM_LOCKED_CTXS; i < nctxs; i++) {
1045 		cur_ctx = &ctxs[i];
1046 		cur_ctx->ctx_flags = CTX_FREE_FLAG;
1047 		cur_ctx->ctx_free = &ctxs[i + 1];
1048 	}
1049 	cur_ctx->ctx_free = NULL;		/* tail of free list */
1050 
1051 	/*
1052 	 * Intialize ism mapping list lock.
1053 	 */
1054 	mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
1055 
1056 	sfmmuid_cache = kmem_cache_create("sfmmuid_cache", sizeof (sfmmu_t),
1057 	    0, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
1058 	    NULL, NULL, NULL, 0);
1059 
1060 	sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
1061 	    sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
1062 
1063 	/*
1064 	 * Since we only use the tsb8k cache to "borrow" pages for TSBs
1065 	 * from the heap when low on memory or when TSB_FORCEALLOC is
1066 	 * specified, don't use magazines to cache them--we want to return
1067 	 * them to the system as quickly as possible.
1068 	 */
1069 	sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
1070 	    MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
1071 	    static_arena, KMC_NOMAGAZINE);
1072 
1073 	/*
1074 	 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
1075 	 * memory, which corresponds to the old static reserve for TSBs.
1076 	 * tsb_alloc_hiwater_factor defaults to 32.  This caps the amount of
1077 	 * memory we'll allocate for TSB slabs; beyond this point TSB
1078 	 * allocations will be taken from the kernel heap (via
1079 	 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem
1080 	 * consumer.
1081 	 */
1082 	if (tsb_alloc_hiwater_factor == 0) {
1083 		tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
1084 	}
1085 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
1086 
1087 	/* Set tsb_max_growsize. */
1088 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
1089 
1090 	/*
1091 	 * On smaller memory systems, allocate TSB memory in 512K chunks
1092 	 * instead of the default 4M slab size.  The trap handlers need to
1093 	 * be patched with the final slab shift since they need to be able
1094 	 * to construct the TSB pointer at runtime.
1095 	 */
1096 	if ((tsb_max_growsize <= TSB_512K_SZCODE) &&
1097 	    !(disable_large_pages & (1 << TTE512K))) {
1098 		tsb_slab_size = MMU_PAGESIZE512K;
1099 		tsb_slab_shift = MMU_PAGESHIFT512K;
1100 		tsb_slab_ttesz = TTE512K;
1101 		tsb_slab_mask = 0x3f;	/* 512K page alignment for 8K pfn */
1102 	}
1103 
1104 	/*
1105 	 * Set up memory callback to update tsb_alloc_hiwater and
1106 	 * tsb_max_growsize.
1107 	 */
1108 	i = kphysm_setup_func_register(&sfmmu_update_tsb_vec, (void *) 0);
1109 	ASSERT(i == 0);
1110 
1111 	/*
1112 	 * kmem_tsb_arena is the source from which large TSB slabs are
1113 	 * drawn.  The quantum of this arena corresponds to the largest
1114 	 * TSB size we can dynamically allocate for user processes.
1115 	 * Currently it must also be a supported page size since we
1116 	 * use exactly one translation entry to map each slab page.
1117 	 *
1118 	 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from
1119 	 * which most TSBs are allocated.  Since most TSB allocations are
1120 	 * typically 8K we have a kmem cache we stack on top of each
1121 	 * kmem_tsb_default_arena to speed up those allocations.
1122 	 *
1123 	 * Note the two-level scheme of arenas is required only
1124 	 * because vmem_create doesn't allow us to specify alignment
1125 	 * requirements.  If this ever changes the code could be
1126 	 * simplified to use only one level of arenas.
1127 	 */
1128 	kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
1129 	    sfmmu_vmem_xalloc_aligned_wrapper, vmem_xfree, heap_arena,
1130 	    0, VM_SLEEP);
1131 
1132 	if (tsb_lgrp_affinity) {
1133 		char s[50];
1134 		for (i = 0; i < NLGRPS_MAX; i++) {
1135 			(void) sprintf(s, "kmem_tsb_lgrp%d", i);
1136 			kmem_tsb_default_arena[i] =
1137 			    vmem_create(s, NULL, 0, PAGESIZE,
1138 			    sfmmu_tsb_segkmem_alloc, sfmmu_tsb_segkmem_free,
1139 			    kmem_tsb_arena, 0, VM_SLEEP | VM_BESTFIT);
1140 			(void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
1141 			sfmmu_tsb_cache[i] = kmem_cache_create(s, PAGESIZE,
1142 			    PAGESIZE, NULL, NULL, NULL, NULL,
1143 			    kmem_tsb_default_arena[i], 0);
1144 		}
1145 	} else {
1146 		kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
1147 		    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1148 		    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1149 		    VM_SLEEP | VM_BESTFIT);
1150 
1151 		sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
1152 		    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1153 		    kmem_tsb_default_arena[0], 0);
1154 	}
1155 
1156 	sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
1157 		HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1158 		sfmmu_hblkcache_destructor,
1159 		sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
1160 		hat_memload_arena, KMC_NOHASH);
1161 
1162 	hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
1163 	    segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP);
1164 
1165 	sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
1166 		HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1167 		sfmmu_hblkcache_destructor,
1168 		NULL, (void *)HME1BLK_SZ,
1169 		hat_memload1_arena, KMC_NOHASH);
1170 
1171 	pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
1172 		0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
1173 
1174 	ism_blk_cache = kmem_cache_create("ism_blk_cache",
1175 		sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
1176 		NULL, NULL, static_arena, KMC_NOHASH);
1177 
1178 	ism_ment_cache = kmem_cache_create("ism_ment_cache",
1179 		sizeof (ism_ment_t), 0, NULL, NULL,
1180 		NULL, NULL, NULL, 0);
1181 
1182 	/*
1183 	 * We grab the first hat for the kernel,
1184 	 */
1185 	AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
1186 	kas.a_hat = hat_alloc(&kas);
1187 	AS_LOCK_EXIT(&kas, &kas.a_lock);
1188 
1189 	/*
1190 	 * Initialize hblk_reserve.
1191 	 */
1192 	((struct hme_blk *)hblk_reserve)->hblk_nextpa =
1193 				va_to_pa((caddr_t)hblk_reserve);
1194 
1195 #ifndef sun4v
1196 	/*
1197 	 * Reserve some kernel virtual address space for the locked TTEs
1198 	 * that allow us to probe the TSB from TL>0.
1199 	 */
1200 	utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1201 		0, 0, NULL, NULL, VM_SLEEP);
1202 	utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1203 		0, 0, NULL, NULL, VM_SLEEP);
1204 #endif
1205 
1206 	/*
1207 	 * The big page VAC handling code assumes VAC
1208 	 * will not be bigger than the smallest big
1209 	 * page- which is 64K.
1210 	 */
1211 	if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
1212 		cmn_err(CE_PANIC, "VAC too big!");
1213 	}
1214 
1215 	(void) xhat_init();
1216 
1217 	uhme_hash_pa = va_to_pa(uhme_hash);
1218 	khme_hash_pa = va_to_pa(khme_hash);
1219 
1220 	/*
1221 	 * Initialize relocation locks. kpr_suspendlock is held
1222 	 * at PIL_MAX to prevent interrupts from pinning the holder
1223 	 * of a suspended TTE which may access it leading to a
1224 	 * deadlock condition.
1225 	 */
1226 	mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
1227 	mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
1228 }
1229 
1230 /*
1231  * Initialize locking for the hat layer, called early during boot.
1232  */
1233 static void
1234 hat_lock_init()
1235 {
1236 	int i;
1237 	struct ctx *ctx;
1238 
1239 	/*
1240 	 * initialize the array of mutexes protecting a page's mapping
1241 	 * list and p_nrm field.
1242 	 */
1243 	for (i = 0; i < mml_table_sz; i++)
1244 		mutex_init(&mml_table[i], NULL, MUTEX_DEFAULT, NULL);
1245 
1246 	if (kpm_enable) {
1247 		for (i = 0; i < kpmp_table_sz; i++) {
1248 			mutex_init(&kpmp_table[i].khl_mutex, NULL,
1249 			    MUTEX_DEFAULT, NULL);
1250 		}
1251 	}
1252 
1253 	/*
1254 	 * Initialize array of mutex locks that protects sfmmu fields and
1255 	 * TSB lists.
1256 	 */
1257 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
1258 		mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
1259 		    NULL);
1260 
1261 #ifdef	DEBUG
1262 	mutex_init(&ctx_trace_mutex, NULL, MUTEX_DEFAULT, NULL);
1263 #endif	/* DEBUG */
1264 
1265 	for (ctx = ctxs, i = 0; i < nctxs; i++, ctx++) {
1266 		rw_init(&ctx->ctx_rwlock, NULL, RW_DEFAULT, NULL);
1267 	}
1268 }
1269 
1270 extern caddr_t kmem64_base, kmem64_end;
1271 
1272 #define	SFMMU_KERNEL_MAXVA \
1273 	(kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
1274 
1275 /*
1276  * Allocate a hat structure.
1277  * Called when an address space first uses a hat.
1278  */
1279 struct hat *
1280 hat_alloc(struct as *as)
1281 {
1282 	sfmmu_t *sfmmup;
1283 	struct ctx *ctx;
1284 	int i;
1285 	extern uint_t get_color_start(struct as *);
1286 
1287 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1288 	sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
1289 	sfmmup->sfmmu_as = as;
1290 	sfmmup->sfmmu_flags = 0;
1291 
1292 	if (as == &kas) {
1293 		ctx = kctx;
1294 		ksfmmup = sfmmup;
1295 		sfmmup->sfmmu_cnum = ctxtoctxnum(ctx);
1296 		ASSERT(sfmmup->sfmmu_cnum == KCONTEXT);
1297 		sfmmup->sfmmu_cext = 0;
1298 		ctx->ctx_sfmmu = sfmmup;
1299 		ctx->ctx_flags = 0;
1300 		sfmmup->sfmmu_clrstart = 0;
1301 		sfmmup->sfmmu_tsb = NULL;
1302 		/*
1303 		 * hat_kern_setup() will call sfmmu_init_ktsbinfo()
1304 		 * to setup tsb_info for ksfmmup.
1305 		 */
1306 	} else {
1307 
1308 		/*
1309 		 * Just set to invalid ctx. When it faults, it will
1310 		 * get a valid ctx. This would avoid the situation
1311 		 * where we get a ctx, but it gets stolen and then
1312 		 * we fault when we try to run and so have to get
1313 		 * another ctx.
1314 		 */
1315 		sfmmup->sfmmu_cnum = INVALID_CONTEXT;
1316 		sfmmup->sfmmu_cext = 0;
1317 		/* initialize original physical page coloring bin */
1318 		sfmmup->sfmmu_clrstart = get_color_start(as);
1319 #ifdef DEBUG
1320 		if (tsb_random_size) {
1321 			uint32_t randval = (uint32_t)gettick() >> 4;
1322 			int size = randval % (tsb_max_growsize + 1);
1323 
1324 			/* chose a random tsb size for stress testing */
1325 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
1326 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1327 		} else
1328 #endif /* DEBUG */
1329 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
1330 			    default_tsb_size,
1331 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1332 		sfmmup->sfmmu_flags = HAT_SWAPPED;
1333 		ASSERT(sfmmup->sfmmu_tsb != NULL);
1334 	}
1335 	sfmmu_setup_tsbinfo(sfmmup);
1336 	for (i = 0; i < max_mmu_page_sizes; i++) {
1337 		sfmmup->sfmmu_ttecnt[i] = 0;
1338 		sfmmup->sfmmu_ismttecnt[i] = 0;
1339 		sfmmup->sfmmu_pgsz[i] = TTE8K;
1340 	}
1341 
1342 	sfmmup->sfmmu_iblk = NULL;
1343 	sfmmup->sfmmu_ismhat = 0;
1344 	sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
1345 	if (sfmmup == ksfmmup) {
1346 		CPUSET_ALL(sfmmup->sfmmu_cpusran);
1347 	} else {
1348 		CPUSET_ZERO(sfmmup->sfmmu_cpusran);
1349 	}
1350 	sfmmup->sfmmu_free = 0;
1351 	sfmmup->sfmmu_rmstat = 0;
1352 	sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
1353 	sfmmup->sfmmu_xhat_provider = NULL;
1354 	cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
1355 	return (sfmmup);
1356 }
1357 
1358 /*
1359  * Hat_setup, makes an address space context the current active one.
1360  * In sfmmu this translates to setting the secondary context with the
1361  * corresponding context.
1362  */
1363 void
1364 hat_setup(struct hat *sfmmup, int allocflag)
1365 {
1366 	struct ctx *ctx;
1367 	uint_t ctx_num;
1368 	hatlock_t *hatlockp;
1369 
1370 	/* Init needs some special treatment. */
1371 	if (allocflag == HAT_INIT) {
1372 		/*
1373 		 * Make sure that we have
1374 		 * 1. a TSB
1375 		 * 2. a valid ctx that doesn't get stolen after this point.
1376 		 */
1377 		hatlockp = sfmmu_hat_enter(sfmmup);
1378 
1379 		/*
1380 		 * Swap in the TSB.  hat_init() allocates tsbinfos without
1381 		 * TSBs, but we need one for init, since the kernel does some
1382 		 * special things to set up its stack and needs the TSB to
1383 		 * resolve page faults.
1384 		 */
1385 		sfmmu_tsb_swapin(sfmmup, hatlockp);
1386 
1387 		sfmmu_disallow_ctx_steal(sfmmup);
1388 
1389 		kpreempt_disable();
1390 
1391 		ctx = sfmmutoctx(sfmmup);
1392 		CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1393 		ctx_num = ctxtoctxnum(ctx);
1394 		ASSERT(sfmmup == ctx->ctx_sfmmu);
1395 		ASSERT(ctx_num >= NUM_LOCKED_CTXS);
1396 		sfmmu_setctx_sec(ctx_num);
1397 		sfmmu_load_mmustate(sfmmup);
1398 
1399 		kpreempt_enable();
1400 
1401 		/*
1402 		 * Allow ctx to be stolen.
1403 		 */
1404 		sfmmu_allow_ctx_steal(sfmmup);
1405 		sfmmu_hat_exit(hatlockp);
1406 	} else {
1407 		ASSERT(allocflag == HAT_ALLOC);
1408 
1409 		hatlockp = sfmmu_hat_enter(sfmmup);
1410 		kpreempt_disable();
1411 
1412 		CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1413 		sfmmu_setctx_sec(INVALID_CONTEXT);
1414 		sfmmu_clear_utsbinfo();
1415 
1416 		kpreempt_enable();
1417 		sfmmu_hat_exit(hatlockp);
1418 	}
1419 }
1420 
1421 /*
1422  * Free all the translation resources for the specified address space.
1423  * Called from as_free when an address space is being destroyed.
1424  */
1425 void
1426 hat_free_start(struct hat *sfmmup)
1427 {
1428 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
1429 	ASSERT(sfmmup != ksfmmup);
1430 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1431 
1432 	sfmmup->sfmmu_free = 1;
1433 }
1434 
1435 void
1436 hat_free_end(struct hat *sfmmup)
1437 {
1438 	int i;
1439 
1440 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1441 	if (sfmmup->sfmmu_ismhat) {
1442 		for (i = 0; i < mmu_page_sizes; i++) {
1443 			sfmmup->sfmmu_ttecnt[i] = 0;
1444 			sfmmup->sfmmu_ismttecnt[i] = 0;
1445 		}
1446 	} else {
1447 		/* EMPTY */
1448 		ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
1449 		ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
1450 		ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
1451 		ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
1452 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
1453 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
1454 	}
1455 
1456 	if (sfmmup->sfmmu_rmstat) {
1457 		hat_freestat(sfmmup->sfmmu_as, NULL);
1458 	}
1459 	if (!delay_tlb_flush) {
1460 		sfmmu_tlb_ctx_demap(sfmmup);
1461 		xt_sync(sfmmup->sfmmu_cpusran);
1462 	} else {
1463 		SFMMU_STAT(sf_tlbflush_deferred);
1464 	}
1465 	sfmmu_free_ctx(sfmmup, sfmmutoctx(sfmmup));
1466 	while (sfmmup->sfmmu_tsb != NULL) {
1467 		struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
1468 		sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
1469 		sfmmup->sfmmu_tsb = next;
1470 	}
1471 	sfmmu_free_sfmmu(sfmmup);
1472 
1473 	kmem_cache_free(sfmmuid_cache, sfmmup);
1474 }
1475 
1476 /*
1477  * Set up any translation structures, for the specified address space,
1478  * that are needed or preferred when the process is being swapped in.
1479  */
1480 /* ARGSUSED */
1481 void
1482 hat_swapin(struct hat *hat)
1483 {
1484 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1485 }
1486 
1487 /*
1488  * Free all of the translation resources, for the specified address space,
1489  * that can be freed while the process is swapped out. Called from as_swapout.
1490  * Also, free up the ctx that this process was using.
1491  */
1492 void
1493 hat_swapout(struct hat *sfmmup)
1494 {
1495 	struct hmehash_bucket *hmebp;
1496 	struct hme_blk *hmeblkp;
1497 	struct hme_blk *pr_hblk = NULL;
1498 	struct hme_blk *nx_hblk;
1499 	struct ctx *ctx;
1500 	int cnum;
1501 	int i;
1502 	uint64_t hblkpa, prevpa, nx_pa;
1503 	struct hme_blk *list = NULL;
1504 	hatlock_t *hatlockp;
1505 	struct tsb_info *tsbinfop;
1506 	struct free_tsb {
1507 		struct free_tsb *next;
1508 		struct tsb_info *tsbinfop;
1509 	};			/* free list of TSBs */
1510 	struct free_tsb *freelist, *last, *next;
1511 
1512 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1513 	SFMMU_STAT(sf_swapout);
1514 
1515 	/*
1516 	 * There is no way to go from an as to all its translations in sfmmu.
1517 	 * Here is one of the times when we take the big hit and traverse
1518 	 * the hash looking for hme_blks to free up.  Not only do we free up
1519 	 * this as hme_blks but all those that are free.  We are obviously
1520 	 * swapping because we need memory so let's free up as much
1521 	 * as we can.
1522 	 *
1523 	 * Note that we don't flush TLB/TSB here -- it's not necessary
1524 	 * because:
1525 	 *  1) we free the ctx we're using and throw away the TSB(s);
1526 	 *  2) processes aren't runnable while being swapped out.
1527 	 */
1528 	ASSERT(sfmmup != KHATID);
1529 	for (i = 0; i <= UHMEHASH_SZ; i++) {
1530 		hmebp = &uhme_hash[i];
1531 		SFMMU_HASH_LOCK(hmebp);
1532 		hmeblkp = hmebp->hmeblkp;
1533 		hblkpa = hmebp->hmeh_nextpa;
1534 		prevpa = 0;
1535 		pr_hblk = NULL;
1536 		while (hmeblkp) {
1537 
1538 			ASSERT(!hmeblkp->hblk_xhat_bit);
1539 
1540 			if ((hmeblkp->hblk_tag.htag_id == sfmmup) &&
1541 			    !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) {
1542 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
1543 					(caddr_t)get_hblk_base(hmeblkp),
1544 					get_hblk_endaddr(hmeblkp),
1545 					NULL, HAT_UNLOAD);
1546 			}
1547 			nx_hblk = hmeblkp->hblk_next;
1548 			nx_pa = hmeblkp->hblk_nextpa;
1549 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
1550 				ASSERT(!hmeblkp->hblk_lckcnt);
1551 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
1552 					prevpa, pr_hblk);
1553 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
1554 			} else {
1555 				pr_hblk = hmeblkp;
1556 				prevpa = hblkpa;
1557 			}
1558 			hmeblkp = nx_hblk;
1559 			hblkpa = nx_pa;
1560 		}
1561 		SFMMU_HASH_UNLOCK(hmebp);
1562 	}
1563 
1564 	sfmmu_hblks_list_purge(&list);
1565 
1566 	/*
1567 	 * Now free up the ctx so that others can reuse it.
1568 	 */
1569 	hatlockp = sfmmu_hat_enter(sfmmup);
1570 	ctx = sfmmutoctx(sfmmup);
1571 	cnum = ctxtoctxnum(ctx);
1572 
1573 	if (cnum != INVALID_CONTEXT) {
1574 		rw_enter(&ctx->ctx_rwlock, RW_WRITER);
1575 		if (sfmmup->sfmmu_cnum == cnum) {
1576 			sfmmu_reuse_ctx(ctx, sfmmup);
1577 			/*
1578 			 * Put ctx back to the free list.
1579 			 */
1580 			mutex_enter(&ctx_list_lock);
1581 			CTX_SET_FLAGS(ctx, CTX_FREE_FLAG);
1582 			ctx->ctx_free = ctxfree;
1583 			ctxfree = ctx;
1584 			mutex_exit(&ctx_list_lock);
1585 		}
1586 		rw_exit(&ctx->ctx_rwlock);
1587 	}
1588 
1589 	/*
1590 	 * Free TSBs, but not tsbinfos, and set SWAPPED flag.
1591 	 * If TSBs were never swapped in, just return.
1592 	 * This implies that we don't support partial swapping
1593 	 * of TSBs -- either all are swapped out, or none are.
1594 	 *
1595 	 * We must hold the HAT lock here to prevent racing with another
1596 	 * thread trying to unmap TTEs from the TSB or running the post-
1597 	 * relocator after relocating the TSB's memory.  Unfortunately, we
1598 	 * can't free memory while holding the HAT lock or we could
1599 	 * deadlock, so we build a list of TSBs to be freed after marking
1600 	 * the tsbinfos as swapped out and free them after dropping the
1601 	 * lock.
1602 	 */
1603 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
1604 		sfmmu_hat_exit(hatlockp);
1605 		return;
1606 	}
1607 
1608 	SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED);
1609 	last = freelist = NULL;
1610 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
1611 	    tsbinfop = tsbinfop->tsb_next) {
1612 		ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0);
1613 
1614 		/*
1615 		 * Cast the TSB into a struct free_tsb and put it on the free
1616 		 * list.
1617 		 */
1618 		if (freelist == NULL) {
1619 			last = freelist = (struct free_tsb *)tsbinfop->tsb_va;
1620 		} else {
1621 			last->next = (struct free_tsb *)tsbinfop->tsb_va;
1622 			last = last->next;
1623 		}
1624 		last->next = NULL;
1625 		last->tsbinfop = tsbinfop;
1626 		tsbinfop->tsb_flags |= TSB_SWAPPED;
1627 		/*
1628 		 * Zero out the TTE to clear the valid bit.
1629 		 * Note we can't use a value like 0xbad because we want to
1630 		 * ensure diagnostic bits are NEVER set on TTEs that might
1631 		 * be loaded.  The intent is to catch any invalid access
1632 		 * to the swapped TSB, such as a thread running with a valid
1633 		 * context without first calling sfmmu_tsb_swapin() to
1634 		 * allocate TSB memory.
1635 		 */
1636 		tsbinfop->tsb_tte.ll = 0;
1637 	}
1638 
1639 	/* Now we can drop the lock and free the TSB memory. */
1640 	sfmmu_hat_exit(hatlockp);
1641 	for (; freelist != NULL; freelist = next) {
1642 		next = freelist->next;
1643 		sfmmu_tsb_free(freelist->tsbinfop);
1644 	}
1645 }
1646 
1647 /*
1648  * Duplicate the translations of an as into another newas
1649  */
1650 /* ARGSUSED */
1651 int
1652 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
1653 	uint_t flag)
1654 {
1655 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1656 	ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW));
1657 
1658 	if (flag == HAT_DUP_COW) {
1659 		panic("hat_dup: HAT_DUP_COW not supported");
1660 	}
1661 	return (0);
1662 }
1663 
1664 /*
1665  * Set up addr to map to page pp with protection prot.
1666  * As an optimization we also load the TSB with the
1667  * corresponding tte but it is no big deal if  the tte gets kicked out.
1668  */
1669 void
1670 hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
1671 	uint_t attr, uint_t flags)
1672 {
1673 	tte_t tte;
1674 
1675 
1676 	ASSERT(hat != NULL);
1677 	ASSERT(PAGE_LOCKED(pp));
1678 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
1679 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
1680 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
1681 
1682 	if (PP_ISFREE(pp)) {
1683 		panic("hat_memload: loading a mapping to free page %p",
1684 		    (void *)pp);
1685 	}
1686 
1687 	if (hat->sfmmu_xhat_provider) {
1688 		XHAT_MEMLOAD(hat, addr, pp, attr, flags);
1689 		return;
1690 	}
1691 
1692 	ASSERT((hat == ksfmmup) ||
1693 		AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
1694 
1695 	if (flags & ~SFMMU_LOAD_ALLFLAG)
1696 		cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
1697 		    flags & ~SFMMU_LOAD_ALLFLAG);
1698 
1699 	if (hat->sfmmu_rmstat)
1700 		hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
1701 
1702 #if defined(SF_ERRATA_57)
1703 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1704 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1705 	    !(flags & HAT_LOAD_SHARE)) {
1706 		cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
1707 		    " page executable");
1708 		attr &= ~PROT_EXEC;
1709 	}
1710 #endif
1711 
1712 	sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
1713 	(void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags);
1714 
1715 	/*
1716 	 * Check TSB and TLB page sizes.
1717 	 */
1718 	if ((flags & HAT_LOAD_SHARE) == 0) {
1719 		sfmmu_check_page_sizes(hat, 1);
1720 	}
1721 }
1722 
1723 /*
1724  * hat_devload can be called to map real memory (e.g.
1725  * /dev/kmem) and even though hat_devload will determine pf is
1726  * for memory, it will be unable to get a shared lock on the
1727  * page (because someone else has it exclusively) and will
1728  * pass dp = NULL.  If tteload doesn't get a non-NULL
1729  * page pointer it can't cache memory.
1730  */
1731 void
1732 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
1733 	uint_t attr, int flags)
1734 {
1735 	tte_t tte;
1736 	struct page *pp = NULL;
1737 	int use_lgpg = 0;
1738 
1739 	ASSERT(hat != NULL);
1740 
1741 	if (hat->sfmmu_xhat_provider) {
1742 		XHAT_DEVLOAD(hat, addr, len, pfn, attr, flags);
1743 		return;
1744 	}
1745 
1746 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
1747 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
1748 	ASSERT((hat == ksfmmup) ||
1749 		AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
1750 	if (len == 0)
1751 		panic("hat_devload: zero len");
1752 	if (flags & ~SFMMU_LOAD_ALLFLAG)
1753 		cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
1754 		    flags & ~SFMMU_LOAD_ALLFLAG);
1755 
1756 #if defined(SF_ERRATA_57)
1757 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1758 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1759 	    !(flags & HAT_LOAD_SHARE)) {
1760 		cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
1761 		    " page executable");
1762 		attr &= ~PROT_EXEC;
1763 	}
1764 #endif
1765 
1766 	/*
1767 	 * If it's a memory page find its pp
1768 	 */
1769 	if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
1770 		pp = page_numtopp_nolock(pfn);
1771 		if (pp == NULL) {
1772 			flags |= HAT_LOAD_NOCONSIST;
1773 		} else {
1774 			if (PP_ISFREE(pp)) {
1775 				panic("hat_memload: loading "
1776 				    "a mapping to free page %p",
1777 				    (void *)pp);
1778 			}
1779 			if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
1780 				panic("hat_memload: loading a mapping "
1781 				    "to unlocked relocatable page %p",
1782 				    (void *)pp);
1783 			}
1784 			ASSERT(len == MMU_PAGESIZE);
1785 		}
1786 	}
1787 
1788 	if (hat->sfmmu_rmstat)
1789 		hat_resvstat(len, hat->sfmmu_as, addr);
1790 
1791 	if (flags & HAT_LOAD_NOCONSIST) {
1792 		attr |= SFMMU_UNCACHEVTTE;
1793 		use_lgpg = 1;
1794 	}
1795 	if (!pf_is_memory(pfn)) {
1796 		attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
1797 		use_lgpg = 1;
1798 		switch (attr & HAT_ORDER_MASK) {
1799 			case HAT_STRICTORDER:
1800 			case HAT_UNORDERED_OK:
1801 				/*
1802 				 * we set the side effect bit for all non
1803 				 * memory mappings unless merging is ok
1804 				 */
1805 				attr |= SFMMU_SIDEFFECT;
1806 				break;
1807 			case HAT_MERGING_OK:
1808 			case HAT_LOADCACHING_OK:
1809 			case HAT_STORECACHING_OK:
1810 				break;
1811 			default:
1812 				panic("hat_devload: bad attr");
1813 				break;
1814 		}
1815 	}
1816 	while (len) {
1817 		if (!use_lgpg) {
1818 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
1819 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1820 			    flags);
1821 			len -= MMU_PAGESIZE;
1822 			addr += MMU_PAGESIZE;
1823 			pfn++;
1824 			continue;
1825 		}
1826 		/*
1827 		 *  try to use large pages, check va/pa alignments
1828 		 *  Note that 32M/256M page sizes are not (yet) supported.
1829 		 */
1830 		if ((len >= MMU_PAGESIZE4M) &&
1831 		    !((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
1832 		    !(disable_large_pages & (1 << TTE4M)) &&
1833 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
1834 			sfmmu_memtte(&tte, pfn, attr, TTE4M);
1835 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1836 			    flags);
1837 			len -= MMU_PAGESIZE4M;
1838 			addr += MMU_PAGESIZE4M;
1839 			pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
1840 		} else if ((len >= MMU_PAGESIZE512K) &&
1841 		    !((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
1842 		    !(disable_large_pages & (1 << TTE512K)) &&
1843 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
1844 			sfmmu_memtte(&tte, pfn, attr, TTE512K);
1845 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1846 			    flags);
1847 			len -= MMU_PAGESIZE512K;
1848 			addr += MMU_PAGESIZE512K;
1849 			pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
1850 		} else if ((len >= MMU_PAGESIZE64K) &&
1851 		    !((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
1852 		    !(disable_large_pages & (1 << TTE64K)) &&
1853 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
1854 			sfmmu_memtte(&tte, pfn, attr, TTE64K);
1855 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1856 			    flags);
1857 			len -= MMU_PAGESIZE64K;
1858 			addr += MMU_PAGESIZE64K;
1859 			pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
1860 		} else {
1861 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
1862 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
1863 			    flags);
1864 			len -= MMU_PAGESIZE;
1865 			addr += MMU_PAGESIZE;
1866 			pfn++;
1867 		}
1868 	}
1869 
1870 	/*
1871 	 * Check TSB and TLB page sizes.
1872 	 */
1873 	if ((flags & HAT_LOAD_SHARE) == 0) {
1874 		sfmmu_check_page_sizes(hat, 1);
1875 	}
1876 }
1877 
1878 /*
1879  * Map the largest extend possible out of the page array. The array may NOT
1880  * be in order.  The largest possible mapping a page can have
1881  * is specified in the p_szc field.  The p_szc field
1882  * cannot change as long as there any mappings (large or small)
1883  * to any of the pages that make up the large page. (ie. any
1884  * promotion/demotion of page size is not up to the hat but up to
1885  * the page free list manager).  The array
1886  * should consist of properly aligned contigous pages that are
1887  * part of a big page for a large mapping to be created.
1888  */
1889 void
1890 hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
1891 	struct page **pps, uint_t attr, uint_t flags)
1892 {
1893 	int  ttesz;
1894 	size_t mapsz;
1895 	pgcnt_t	numpg, npgs;
1896 	tte_t tte;
1897 	page_t *pp;
1898 	int large_pages_disable;
1899 
1900 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
1901 
1902 	if (hat->sfmmu_xhat_provider) {
1903 		XHAT_MEMLOAD_ARRAY(hat, addr, len, pps, attr, flags);
1904 		return;
1905 	}
1906 
1907 	if (hat->sfmmu_rmstat)
1908 		hat_resvstat(len, hat->sfmmu_as, addr);
1909 
1910 #if defined(SF_ERRATA_57)
1911 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
1912 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
1913 	    !(flags & HAT_LOAD_SHARE)) {
1914 		cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
1915 		    "user page executable");
1916 		attr &= ~PROT_EXEC;
1917 	}
1918 #endif
1919 
1920 	/* Get number of pages */
1921 	npgs = len >> MMU_PAGESHIFT;
1922 
1923 	if (flags & HAT_LOAD_SHARE) {
1924 		large_pages_disable = disable_ism_large_pages;
1925 	} else {
1926 		large_pages_disable = disable_large_pages;
1927 	}
1928 
1929 	if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
1930 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
1931 		return;
1932 	}
1933 
1934 	while (npgs >= NHMENTS) {
1935 		pp = *pps;
1936 		for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
1937 			/*
1938 			 * Check if this page size is disabled.
1939 			 */
1940 			if (large_pages_disable & (1 << ttesz))
1941 				continue;
1942 
1943 			numpg = TTEPAGES(ttesz);
1944 			mapsz = numpg << MMU_PAGESHIFT;
1945 			if ((npgs >= numpg) &&
1946 			    IS_P2ALIGNED(addr, mapsz) &&
1947 			    IS_P2ALIGNED(pp->p_pagenum, numpg)) {
1948 				/*
1949 				 * At this point we have enough pages and
1950 				 * we know the virtual address and the pfn
1951 				 * are properly aligned.  We still need
1952 				 * to check for physical contiguity but since
1953 				 * it is very likely that this is the case
1954 				 * we will assume they are so and undo
1955 				 * the request if necessary.  It would
1956 				 * be great if we could get a hint flag
1957 				 * like HAT_CONTIG which would tell us
1958 				 * the pages are contigous for sure.
1959 				 */
1960 				sfmmu_memtte(&tte, (*pps)->p_pagenum,
1961 					attr, ttesz);
1962 				if (!sfmmu_tteload_array(hat, &tte, addr,
1963 				    pps, flags)) {
1964 					break;
1965 				}
1966 			}
1967 		}
1968 		if (ttesz == TTE8K) {
1969 			/*
1970 			 * We were not able to map array using a large page
1971 			 * batch a hmeblk or fraction at a time.
1972 			 */
1973 			numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
1974 				& (NHMENTS-1);
1975 			numpg = NHMENTS - numpg;
1976 			ASSERT(numpg <= npgs);
1977 			mapsz = numpg * MMU_PAGESIZE;
1978 			sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
1979 							numpg);
1980 		}
1981 		addr += mapsz;
1982 		npgs -= numpg;
1983 		pps += numpg;
1984 	}
1985 
1986 	if (npgs) {
1987 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
1988 	}
1989 
1990 	/*
1991 	 * Check TSB and TLB page sizes.
1992 	 */
1993 	if ((flags & HAT_LOAD_SHARE) == 0) {
1994 		sfmmu_check_page_sizes(hat, 1);
1995 	}
1996 }
1997 
1998 /*
1999  * Function tries to batch 8K pages into the same hme blk.
2000  */
2001 static void
2002 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
2003 		    uint_t attr, uint_t flags, pgcnt_t npgs)
2004 {
2005 	tte_t	tte;
2006 	page_t *pp;
2007 	struct hmehash_bucket *hmebp;
2008 	struct hme_blk *hmeblkp;
2009 	int	index;
2010 
2011 	while (npgs) {
2012 		/*
2013 		 * Acquire the hash bucket.
2014 		 */
2015 		hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K);
2016 		ASSERT(hmebp);
2017 
2018 		/*
2019 		 * Find the hment block.
2020 		 */
2021 		hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
2022 				TTE8K, flags);
2023 		ASSERT(hmeblkp);
2024 
2025 		do {
2026 			/*
2027 			 * Make the tte.
2028 			 */
2029 			pp = *pps;
2030 			sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2031 
2032 			/*
2033 			 * Add the translation.
2034 			 */
2035 			(void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
2036 					vaddr, pps, flags);
2037 
2038 			/*
2039 			 * Goto next page.
2040 			 */
2041 			pps++;
2042 			npgs--;
2043 
2044 			/*
2045 			 * Goto next address.
2046 			 */
2047 			vaddr += MMU_PAGESIZE;
2048 
2049 			/*
2050 			 * Don't crossover into a different hmentblk.
2051 			 */
2052 			index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
2053 			    (NHMENTS-1));
2054 
2055 		} while (index != 0 && npgs != 0);
2056 
2057 		/*
2058 		 * Release the hash bucket.
2059 		 */
2060 
2061 		sfmmu_tteload_release_hashbucket(hmebp);
2062 	}
2063 }
2064 
2065 /*
2066  * Construct a tte for a page:
2067  *
2068  * tte_valid = 1
2069  * tte_size2 = size & TTE_SZ2_BITS (Panther-only)
2070  * tte_size = size
2071  * tte_nfo = attr & HAT_NOFAULT
2072  * tte_ie = attr & HAT_STRUCTURE_LE
2073  * tte_hmenum = hmenum
2074  * tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
2075  * tte_palo = pp->p_pagenum & TTE_PALOMASK;
2076  * tte_ref = 1 (optimization)
2077  * tte_wr_perm = attr & PROT_WRITE;
2078  * tte_no_sync = attr & HAT_NOSYNC
2079  * tte_lock = attr & SFMMU_LOCKTTE
2080  * tte_cp = !(attr & SFMMU_UNCACHEPTTE)
2081  * tte_cv = !(attr & SFMMU_UNCACHEVTTE)
2082  * tte_e = attr & SFMMU_SIDEFFECT
2083  * tte_priv = !(attr & PROT_USER)
2084  * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
2085  * tte_glb = 0
2086  */
2087 void
2088 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
2089 {
2090 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2091 
2092 	ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
2093 	ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
2094 
2095 	if (TTE_IS_NOSYNC(ttep)) {
2096 		TTE_SET_REF(ttep);
2097 		if (TTE_IS_WRITABLE(ttep)) {
2098 			TTE_SET_MOD(ttep);
2099 		}
2100 	}
2101 	if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
2102 		panic("sfmmu_memtte: can't set both NFO and EXEC bits");
2103 	}
2104 }
2105 
2106 /*
2107  * This function will add a translation to the hme_blk and allocate the
2108  * hme_blk if one does not exist.
2109  * If a page structure is specified then it will add the
2110  * corresponding hment to the mapping list.
2111  * It will also update the hmenum field for the tte.
2112  */
2113 void
2114 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
2115 	uint_t flags)
2116 {
2117 	(void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags);
2118 }
2119 
2120 /*
2121  * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
2122  * Assumes that a particular page size may only be resident in one TSB.
2123  */
2124 static void
2125 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
2126 {
2127 	struct tsb_info *tsbinfop = NULL;
2128 	uint64_t tag;
2129 	struct tsbe *tsbe_addr;
2130 	uint64_t tsb_base;
2131 	uint_t tsb_size;
2132 	int vpshift = MMU_PAGESHIFT;
2133 	int phys = 0;
2134 
2135 	if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
2136 		phys = ktsb_phys;
2137 		if (ttesz >= TTE4M) {
2138 #ifndef sun4v
2139 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2140 #endif
2141 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2142 			tsb_size = ktsb4m_szcode;
2143 		} else {
2144 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2145 			tsb_size = ktsb_szcode;
2146 		}
2147 	} else {
2148 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2149 
2150 		/*
2151 		 * If there isn't a TSB for this page size, or the TSB is
2152 		 * swapped out, there is nothing to do.  Note that the latter
2153 		 * case seems impossible but can occur if hat_pageunload()
2154 		 * is called on an ISM mapping while the process is swapped
2155 		 * out.
2156 		 */
2157 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2158 			return;
2159 
2160 		/*
2161 		 * If another thread is in the middle of relocating a TSB
2162 		 * we can't unload the entry so set a flag so that the
2163 		 * TSB will be flushed before it can be accessed by the
2164 		 * process.
2165 		 */
2166 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2167 			if (ttep == NULL)
2168 				tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2169 			return;
2170 		}
2171 #if defined(UTSB_PHYS)
2172 		phys = 1;
2173 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2174 #else
2175 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2176 #endif
2177 		tsb_size = tsbinfop->tsb_szc;
2178 	}
2179 	if (ttesz >= TTE4M)
2180 		vpshift = MMU_PAGESHIFT4M;
2181 
2182 	tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2183 	tag = sfmmu_make_tsbtag(vaddr);
2184 
2185 	if (ttep == NULL) {
2186 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2187 	} else {
2188 		if (ttesz >= TTE4M) {
2189 			SFMMU_STAT(sf_tsb_load4m);
2190 		} else {
2191 			SFMMU_STAT(sf_tsb_load8k);
2192 		}
2193 
2194 		sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
2195 	}
2196 }
2197 
2198 /*
2199  * Unmap all entries from [start, end) matching the given page size.
2200  *
2201  * This function is used primarily to unmap replicated 64K or 512K entries
2202  * from the TSB that are inserted using the base page size TSB pointer, but
2203  * it may also be called to unmap a range of addresses from the TSB.
2204  */
2205 void
2206 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
2207 {
2208 	struct tsb_info *tsbinfop;
2209 	uint64_t tag;
2210 	struct tsbe *tsbe_addr;
2211 	caddr_t vaddr;
2212 	uint64_t tsb_base;
2213 	int vpshift, vpgsz;
2214 	uint_t tsb_size;
2215 	int phys = 0;
2216 
2217 	/*
2218 	 * Assumptions:
2219 	 *  If ttesz == 8K, 64K or 512K, we walk through the range 8K
2220 	 *  at a time shooting down any valid entries we encounter.
2221 	 *
2222 	 *  If ttesz >= 4M we walk the range 4M at a time shooting
2223 	 *  down any valid mappings we find.
2224 	 */
2225 	if (sfmmup == ksfmmup) {
2226 		phys = ktsb_phys;
2227 		if (ttesz >= TTE4M) {
2228 #ifndef sun4v
2229 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2230 #endif
2231 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2232 			tsb_size = ktsb4m_szcode;
2233 		} else {
2234 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2235 			tsb_size = ktsb_szcode;
2236 		}
2237 	} else {
2238 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2239 
2240 		/*
2241 		 * If there isn't a TSB for this page size, or the TSB is
2242 		 * swapped out, there is nothing to do.  Note that the latter
2243 		 * case seems impossible but can occur if hat_pageunload()
2244 		 * is called on an ISM mapping while the process is swapped
2245 		 * out.
2246 		 */
2247 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2248 			return;
2249 
2250 		/*
2251 		 * If another thread is in the middle of relocating a TSB
2252 		 * we can't unload the entry so set a flag so that the
2253 		 * TSB will be flushed before it can be accessed by the
2254 		 * process.
2255 		 */
2256 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2257 			tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2258 			return;
2259 		}
2260 #if defined(UTSB_PHYS)
2261 		phys = 1;
2262 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2263 #else
2264 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2265 #endif
2266 		tsb_size = tsbinfop->tsb_szc;
2267 	}
2268 	if (ttesz >= TTE4M) {
2269 		vpshift = MMU_PAGESHIFT4M;
2270 		vpgsz = MMU_PAGESIZE4M;
2271 	} else {
2272 		vpshift = MMU_PAGESHIFT;
2273 		vpgsz = MMU_PAGESIZE;
2274 	}
2275 
2276 	for (vaddr = start; vaddr < end; vaddr += vpgsz) {
2277 		tag = sfmmu_make_tsbtag(vaddr);
2278 		tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2279 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2280 	}
2281 }
2282 
2283 /*
2284  * Select the optimum TSB size given the number of mappings
2285  * that need to be cached.
2286  */
2287 static int
2288 sfmmu_select_tsb_szc(pgcnt_t pgcnt)
2289 {
2290 	int szc = 0;
2291 
2292 #ifdef DEBUG
2293 	if (tsb_grow_stress) {
2294 		uint32_t randval = (uint32_t)gettick() >> 4;
2295 		return (randval % (tsb_max_growsize + 1));
2296 	}
2297 #endif	/* DEBUG */
2298 
2299 	while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
2300 		szc++;
2301 	return (szc);
2302 }
2303 
2304 /*
2305  * This function will add a translation to the hme_blk and allocate the
2306  * hme_blk if one does not exist.
2307  * If a page structure is specified then it will add the
2308  * corresponding hment to the mapping list.
2309  * It will also update the hmenum field for the tte.
2310  * Furthermore, it attempts to create a large page translation
2311  * for <addr,hat> at page array pps.  It assumes addr and first
2312  * pp is correctly aligned.  It returns 0 if successful and 1 otherwise.
2313  */
2314 static int
2315 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
2316 	page_t **pps, uint_t flags)
2317 {
2318 	struct hmehash_bucket *hmebp;
2319 	struct hme_blk *hmeblkp;
2320 	int 	ret;
2321 	uint_t	size;
2322 
2323 	/*
2324 	 * Get mapping size.
2325 	 */
2326 	size = TTE_CSZ(ttep);
2327 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2328 
2329 	/*
2330 	 * Acquire the hash bucket.
2331 	 */
2332 	hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size);
2333 	ASSERT(hmebp);
2334 
2335 	/*
2336 	 * Find the hment block.
2337 	 */
2338 	hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags);
2339 	ASSERT(hmeblkp);
2340 
2341 	/*
2342 	 * Add the translation.
2343 	 */
2344 	ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags);
2345 
2346 	/*
2347 	 * Release the hash bucket.
2348 	 */
2349 	sfmmu_tteload_release_hashbucket(hmebp);
2350 
2351 	return (ret);
2352 }
2353 
2354 /*
2355  * Function locks and returns a pointer to the hash bucket for vaddr and size.
2356  */
2357 static struct hmehash_bucket *
2358 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size)
2359 {
2360 	struct hmehash_bucket *hmebp;
2361 	int hmeshift;
2362 
2363 	hmeshift = HME_HASH_SHIFT(size);
2364 
2365 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
2366 
2367 	SFMMU_HASH_LOCK(hmebp);
2368 
2369 	return (hmebp);
2370 }
2371 
2372 /*
2373  * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
2374  * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
2375  * allocated.
2376  */
2377 static struct hme_blk *
2378 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
2379 	caddr_t vaddr, uint_t size, uint_t flags)
2380 {
2381 	hmeblk_tag hblktag;
2382 	int hmeshift;
2383 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
2384 	uint64_t hblkpa, prevpa;
2385 	struct kmem_cache *sfmmu_cache;
2386 	uint_t forcefree;
2387 
2388 	hblktag.htag_id = sfmmup;
2389 	hmeshift = HME_HASH_SHIFT(size);
2390 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2391 	hblktag.htag_rehash = HME_HASH_REHASH(size);
2392 
2393 ttearray_realloc:
2394 
2395 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa,
2396 	    pr_hblk, prevpa, &list);
2397 
2398 	/*
2399 	 * We block until hblk_reserve_lock is released; it's held by
2400 	 * the thread, temporarily using hblk_reserve, until hblk_reserve is
2401 	 * replaced by a hblk from sfmmu8_cache.
2402 	 */
2403 	if (hmeblkp == (struct hme_blk *)hblk_reserve &&
2404 	    hblk_reserve_thread != curthread) {
2405 		SFMMU_HASH_UNLOCK(hmebp);
2406 		mutex_enter(&hblk_reserve_lock);
2407 		mutex_exit(&hblk_reserve_lock);
2408 		SFMMU_STAT(sf_hblk_reserve_hit);
2409 		SFMMU_HASH_LOCK(hmebp);
2410 		goto ttearray_realloc;
2411 	}
2412 
2413 	if (hmeblkp == NULL) {
2414 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
2415 		    hblktag, flags);
2416 	} else {
2417 		/*
2418 		 * It is possible for 8k and 64k hblks to collide since they
2419 		 * have the same rehash value. This is because we
2420 		 * lazily free hblks and 8K/64K blks could be lingering.
2421 		 * If we find size mismatch we free the block and & try again.
2422 		 */
2423 		if (get_hblk_ttesz(hmeblkp) != size) {
2424 			ASSERT(!hmeblkp->hblk_vcnt);
2425 			ASSERT(!hmeblkp->hblk_hmecnt);
2426 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
2427 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
2428 			goto ttearray_realloc;
2429 		}
2430 		if (hmeblkp->hblk_shw_bit) {
2431 			/*
2432 			 * if the hblk was previously used as a shadow hblk then
2433 			 * we will change it to a normal hblk
2434 			 */
2435 			if (hmeblkp->hblk_shw_mask) {
2436 				sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
2437 				ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2438 				goto ttearray_realloc;
2439 			} else {
2440 				hmeblkp->hblk_shw_bit = 0;
2441 			}
2442 		}
2443 		SFMMU_STAT(sf_hblk_hit);
2444 	}
2445 
2446 	/*
2447 	 * hat_memload() should never call kmem_cache_free(); see block
2448 	 * comment showing the stacktrace in sfmmu_hblk_alloc();
2449 	 * enqueue each hblk in the list to reserve list if it's created
2450 	 * from sfmmu8_cache *and* sfmmup == KHATID.
2451 	 */
2452 	forcefree = (sfmmup == KHATID) ? 1 : 0;
2453 	while ((pr_hblk = list) != NULL) {
2454 		list = pr_hblk->hblk_next;
2455 		sfmmu_cache = get_hblk_cache(pr_hblk);
2456 		if ((sfmmu_cache == sfmmu8_cache) &&
2457 		    sfmmu_put_free_hblk(pr_hblk, forcefree))
2458 			continue;
2459 
2460 		ASSERT(sfmmup != KHATID);
2461 		kmem_cache_free(sfmmu_cache, pr_hblk);
2462 	}
2463 
2464 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
2465 	ASSERT(!hmeblkp->hblk_shw_bit);
2466 
2467 	return (hmeblkp);
2468 }
2469 
2470 /*
2471  * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
2472  * otherwise.
2473  */
2474 static int
2475 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
2476 	caddr_t vaddr, page_t **pps, uint_t flags)
2477 {
2478 	page_t *pp = *pps;
2479 	int hmenum, size, remap;
2480 	tte_t tteold, flush_tte;
2481 #ifdef DEBUG
2482 	tte_t orig_old;
2483 #endif /* DEBUG */
2484 	struct sf_hment *sfhme;
2485 	kmutex_t *pml, *pmtx;
2486 	hatlock_t *hatlockp;
2487 
2488 	/*
2489 	 * remove this panic when we decide to let user virtual address
2490 	 * space be >= USERLIMIT.
2491 	 */
2492 	if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
2493 		panic("user addr %p in kernel space", vaddr);
2494 #if defined(TTE_IS_GLOBAL)
2495 	if (TTE_IS_GLOBAL(ttep))
2496 		panic("sfmmu_tteload: creating global tte");
2497 #endif
2498 
2499 #ifdef DEBUG
2500 	if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
2501 	    !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
2502 		panic("sfmmu_tteload: non cacheable memory tte");
2503 #endif /* DEBUG */
2504 
2505 	if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
2506 	    !TTE_IS_MOD(ttep)) {
2507 		/*
2508 		 * Don't load TSB for dummy as in ISM.  Also don't preload
2509 		 * the TSB if the TTE isn't writable since we're likely to
2510 		 * fault on it again -- preloading can be fairly expensive.
2511 		 */
2512 		flags |= SFMMU_NO_TSBLOAD;
2513 	}
2514 
2515 	size = TTE_CSZ(ttep);
2516 	switch (size) {
2517 	case TTE8K:
2518 		SFMMU_STAT(sf_tteload8k);
2519 		break;
2520 	case TTE64K:
2521 		SFMMU_STAT(sf_tteload64k);
2522 		break;
2523 	case TTE512K:
2524 		SFMMU_STAT(sf_tteload512k);
2525 		break;
2526 	case TTE4M:
2527 		SFMMU_STAT(sf_tteload4m);
2528 		break;
2529 	case (TTE32M):
2530 		SFMMU_STAT(sf_tteload32m);
2531 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2532 		break;
2533 	case (TTE256M):
2534 		SFMMU_STAT(sf_tteload256m);
2535 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2536 		break;
2537 	}
2538 
2539 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2540 
2541 	HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
2542 
2543 	/*
2544 	 * Need to grab mlist lock here so that pageunload
2545 	 * will not change tte behind us.
2546 	 */
2547 	if (pp) {
2548 		pml = sfmmu_mlist_enter(pp);
2549 	}
2550 
2551 	sfmmu_copytte(&sfhme->hme_tte, &tteold);
2552 	/*
2553 	 * Look for corresponding hment and if valid verify
2554 	 * pfns are equal.
2555 	 */
2556 	remap = TTE_IS_VALID(&tteold);
2557 	if (remap) {
2558 		pfn_t	new_pfn, old_pfn;
2559 
2560 		old_pfn = TTE_TO_PFN(vaddr, &tteold);
2561 		new_pfn = TTE_TO_PFN(vaddr, ttep);
2562 
2563 		if (flags & HAT_LOAD_REMAP) {
2564 			/* make sure we are remapping same type of pages */
2565 			if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
2566 				panic("sfmmu_tteload - tte remap io<->memory");
2567 			}
2568 			if (old_pfn != new_pfn &&
2569 			    (pp != NULL || sfhme->hme_page != NULL)) {
2570 				panic("sfmmu_tteload - tte remap pp != NULL");
2571 			}
2572 		} else if (old_pfn != new_pfn) {
2573 			panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
2574 			    (void *)hmeblkp);
2575 		}
2576 		ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
2577 	}
2578 
2579 	if (pp) {
2580 		if (size == TTE8K) {
2581 			/*
2582 			 * Handle VAC consistency
2583 			 */
2584 			if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
2585 				sfmmu_vac_conflict(sfmmup, vaddr, pp);
2586 			}
2587 
2588 			if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
2589 				pmtx = sfmmu_page_enter(pp);
2590 				PP_CLRRO(pp);
2591 				sfmmu_page_exit(pmtx);
2592 			} else if (!PP_ISMAPPED(pp) &&
2593 			    (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
2594 				pmtx = sfmmu_page_enter(pp);
2595 				if (!(PP_ISMOD(pp))) {
2596 					PP_SETRO(pp);
2597 				}
2598 				sfmmu_page_exit(pmtx);
2599 			}
2600 
2601 		} else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
2602 			/*
2603 			 * sfmmu_pagearray_setup failed so return
2604 			 */
2605 			sfmmu_mlist_exit(pml);
2606 			return (1);
2607 		}
2608 	}
2609 
2610 	/*
2611 	 * Make sure hment is not on a mapping list.
2612 	 */
2613 	ASSERT(remap || (sfhme->hme_page == NULL));
2614 
2615 	/* if it is not a remap then hme->next better be NULL */
2616 	ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
2617 
2618 	if (flags & HAT_LOAD_LOCK) {
2619 		if (((int)hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
2620 			panic("too high lckcnt-hmeblk %p",
2621 			    (void *)hmeblkp);
2622 		}
2623 		atomic_add_16(&hmeblkp->hblk_lckcnt, 1);
2624 
2625 		HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
2626 	}
2627 
2628 	if (pp && PP_ISNC(pp)) {
2629 		/*
2630 		 * If the physical page is marked to be uncacheable, like
2631 		 * by a vac conflict, make sure the new mapping is also
2632 		 * uncacheable.
2633 		 */
2634 		TTE_CLR_VCACHEABLE(ttep);
2635 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
2636 	}
2637 	ttep->tte_hmenum = hmenum;
2638 
2639 #ifdef DEBUG
2640 	orig_old = tteold;
2641 #endif /* DEBUG */
2642 
2643 	while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
2644 		if ((sfmmup == KHATID) &&
2645 		    (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
2646 			sfmmu_copytte(&sfhme->hme_tte, &tteold);
2647 		}
2648 #ifdef DEBUG
2649 		chk_tte(&orig_old, &tteold, ttep, hmeblkp);
2650 #endif /* DEBUG */
2651 	}
2652 
2653 	if (!TTE_IS_VALID(&tteold)) {
2654 
2655 		atomic_add_16(&hmeblkp->hblk_vcnt, 1);
2656 		atomic_add_long(&sfmmup->sfmmu_ttecnt[size], 1);
2657 
2658 		/*
2659 		 * HAT_RELOAD_SHARE has been deprecated with lpg DISM.
2660 		 */
2661 
2662 		if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
2663 		    sfmmup != ksfmmup) {
2664 			/*
2665 			 * If this is the first large mapping for the process
2666 			 * we must force any CPUs running this process to TL=0
2667 			 * where they will reload the HAT flags from the
2668 			 * tsbmiss area.  This is necessary to make the large
2669 			 * mappings we are about to load visible to those CPUs;
2670 			 * otherwise they'll loop forever calling pagefault()
2671 			 * since we don't search large hash chains by default.
2672 			 */
2673 			hatlockp = sfmmu_hat_enter(sfmmup);
2674 			if (size == TTE512K &&
2675 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_512K_FLAG)) {
2676 				SFMMU_FLAGS_SET(sfmmup, HAT_512K_FLAG);
2677 				sfmmu_sync_mmustate(sfmmup);
2678 			} else if (size == TTE4M &&
2679 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
2680 				SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
2681 				sfmmu_sync_mmustate(sfmmup);
2682 			} else if (size == TTE64K &&
2683 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG)) {
2684 				SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
2685 				/* no sync mmustate; 64K shares 8K hashes */
2686 			} else if (mmu_page_sizes == max_mmu_page_sizes) {
2687 			    if (size == TTE32M &&
2688 				!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
2689 				SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
2690 				sfmmu_sync_mmustate(sfmmup);
2691 			    } else if (size == TTE256M &&
2692 				!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
2693 				SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
2694 				sfmmu_sync_mmustate(sfmmup);
2695 			    }
2696 			}
2697 			if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
2698 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
2699 				SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
2700 			}
2701 			sfmmu_hat_exit(hatlockp);
2702 		}
2703 	}
2704 	ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
2705 
2706 	flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
2707 	    hw_tte.tte_intlo;
2708 	flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
2709 	    hw_tte.tte_inthi;
2710 
2711 	if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
2712 		/*
2713 		 * If remap and new tte differs from old tte we need
2714 		 * to sync the mod bit and flush TLB/TSB.  We don't
2715 		 * need to sync ref bit because we currently always set
2716 		 * ref bit in tteload.
2717 		 */
2718 		ASSERT(TTE_IS_REF(ttep));
2719 		if (TTE_IS_MOD(&tteold)) {
2720 			sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
2721 		}
2722 		sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
2723 		xt_sync(sfmmup->sfmmu_cpusran);
2724 	}
2725 
2726 	if ((flags & SFMMU_NO_TSBLOAD) == 0) {
2727 		/*
2728 		 * We only preload 8K and 4M mappings into the TSB, since
2729 		 * 64K and 512K mappings are replicated and hence don't
2730 		 * have a single, unique TSB entry. Ditto for 32M/256M.
2731 		 */
2732 		if (size == TTE8K || size == TTE4M) {
2733 			hatlockp = sfmmu_hat_enter(sfmmup);
2734 			sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte, size);
2735 			sfmmu_hat_exit(hatlockp);
2736 		}
2737 	}
2738 	if (pp) {
2739 		if (!remap) {
2740 			HME_ADD(sfhme, pp);
2741 			atomic_add_16(&hmeblkp->hblk_hmecnt, 1);
2742 			ASSERT(hmeblkp->hblk_hmecnt > 0);
2743 
2744 			/*
2745 			 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
2746 			 * see pageunload() for comment.
2747 			 */
2748 		}
2749 		sfmmu_mlist_exit(pml);
2750 	}
2751 
2752 	return (0);
2753 }
2754 /*
2755  * Function unlocks hash bucket.
2756  */
2757 static void
2758 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
2759 {
2760 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2761 	SFMMU_HASH_UNLOCK(hmebp);
2762 }
2763 
2764 /*
2765  * function which checks and sets up page array for a large
2766  * translation.  Will set p_vcolor, p_index, p_ro fields.
2767  * Assumes addr and pfnum of first page are properly aligned.
2768  * Will check for physical contiguity. If check fails it return
2769  * non null.
2770  */
2771 static int
2772 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
2773 {
2774 	int 	i, index, ttesz, osz;
2775 	pfn_t	pfnum;
2776 	pgcnt_t	npgs;
2777 	int cflags = 0;
2778 	page_t *pp, *pp1;
2779 	kmutex_t *pmtx;
2780 	int vac_err = 0;
2781 	int newidx = 0;
2782 
2783 	ttesz = TTE_CSZ(ttep);
2784 
2785 	ASSERT(ttesz > TTE8K);
2786 
2787 	npgs = TTEPAGES(ttesz);
2788 	index = PAGESZ_TO_INDEX(ttesz);
2789 
2790 	pfnum = (*pps)->p_pagenum;
2791 	ASSERT(IS_P2ALIGNED(pfnum, npgs));
2792 
2793 	/*
2794 	 * Save the first pp so we can do HAT_TMPNC at the end.
2795 	 */
2796 	pp1 = *pps;
2797 	osz = fnd_mapping_sz(pp1);
2798 
2799 	for (i = 0; i < npgs; i++, pps++) {
2800 		pp = *pps;
2801 		ASSERT(PAGE_LOCKED(pp));
2802 		ASSERT(pp->p_szc >= ttesz);
2803 		ASSERT(pp->p_szc == pp1->p_szc);
2804 		ASSERT(sfmmu_mlist_held(pp));
2805 
2806 		/*
2807 		 * XXX is it possible to maintain P_RO on the root only?
2808 		 */
2809 		if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
2810 			pmtx = sfmmu_page_enter(pp);
2811 			PP_CLRRO(pp);
2812 			sfmmu_page_exit(pmtx);
2813 		} else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
2814 		    !PP_ISMOD(pp)) {
2815 			pmtx = sfmmu_page_enter(pp);
2816 			if (!(PP_ISMOD(pp))) {
2817 				PP_SETRO(pp);
2818 			}
2819 			sfmmu_page_exit(pmtx);
2820 		}
2821 
2822 		/*
2823 		 * If this is a remap we skip vac & contiguity checks.
2824 		 */
2825 		if (remap)
2826 			continue;
2827 
2828 		/*
2829 		 * set p_vcolor and detect any vac conflicts.
2830 		 */
2831 		if (vac_err == 0) {
2832 			vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
2833 
2834 		}
2835 
2836 		/*
2837 		 * Save current index in case we need to undo it.
2838 		 * Note: "PAGESZ_TO_INDEX(sz)	(1 << (sz))"
2839 		 *	"SFMMU_INDEX_SHIFT	6"
2840 		 *	 "SFMMU_INDEX_MASK	((1 << SFMMU_INDEX_SHIFT) - 1)"
2841 		 *	 "PP_MAPINDEX(p_index)	(p_index & SFMMU_INDEX_MASK)"
2842 		 *
2843 		 * So:	index = PAGESZ_TO_INDEX(ttesz);
2844 		 *	if ttesz == 1 then index = 0x2
2845 		 *		    2 then index = 0x4
2846 		 *		    3 then index = 0x8
2847 		 *		    4 then index = 0x10
2848 		 *		    5 then index = 0x20
2849 		 * The code below checks if it's a new pagesize (ie, newidx)
2850 		 * in case we need to take it back out of p_index,
2851 		 * and then or's the new index into the existing index.
2852 		 */
2853 		if ((PP_MAPINDEX(pp) & index) == 0)
2854 			newidx = 1;
2855 		pp->p_index = (PP_MAPINDEX(pp) | index);
2856 
2857 		/*
2858 		 * contiguity check
2859 		 */
2860 		if (pp->p_pagenum != pfnum) {
2861 			/*
2862 			 * If we fail the contiguity test then
2863 			 * the only thing we need to fix is the p_index field.
2864 			 * We might get a few extra flushes but since this
2865 			 * path is rare that is ok.  The p_ro field will
2866 			 * get automatically fixed on the next tteload to
2867 			 * the page.  NO TNC bit is set yet.
2868 			 */
2869 			while (i >= 0) {
2870 				pp = *pps;
2871 				if (newidx)
2872 					pp->p_index = (PP_MAPINDEX(pp) &
2873 					    ~index);
2874 				pps--;
2875 				i--;
2876 			}
2877 			return (1);
2878 		}
2879 		pfnum++;
2880 		addr += MMU_PAGESIZE;
2881 	}
2882 
2883 	if (vac_err) {
2884 		if (ttesz > osz) {
2885 			/*
2886 			 * There are some smaller mappings that causes vac
2887 			 * conflicts. Convert all existing small mappings to
2888 			 * TNC.
2889 			 */
2890 			SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
2891 			sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
2892 				npgs);
2893 		} else {
2894 			/* EMPTY */
2895 			/*
2896 			 * If there exists an big page mapping,
2897 			 * that means the whole existing big page
2898 			 * has TNC setting already. No need to covert to
2899 			 * TNC again.
2900 			 */
2901 			ASSERT(PP_ISTNC(pp1));
2902 		}
2903 	}
2904 
2905 	return (0);
2906 }
2907 
2908 /*
2909  * Routine that detects vac consistency for a large page. It also
2910  * sets virtual color for all pp's for this big mapping.
2911  */
2912 static int
2913 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
2914 {
2915 	int vcolor, ocolor;
2916 
2917 	ASSERT(sfmmu_mlist_held(pp));
2918 
2919 	if (PP_ISNC(pp)) {
2920 		return (HAT_TMPNC);
2921 	}
2922 
2923 	vcolor = addr_to_vcolor(addr);
2924 	if (PP_NEWPAGE(pp)) {
2925 		PP_SET_VCOLOR(pp, vcolor);
2926 		return (0);
2927 	}
2928 
2929 	ocolor = PP_GET_VCOLOR(pp);
2930 	if (ocolor == vcolor) {
2931 		return (0);
2932 	}
2933 
2934 	if (!PP_ISMAPPED(pp)) {
2935 		/*
2936 		 * Previous user of page had a differnet color
2937 		 * but since there are no current users
2938 		 * we just flush the cache and change the color.
2939 		 * As an optimization for large pages we flush the
2940 		 * entire cache of that color and set a flag.
2941 		 */
2942 		SFMMU_STAT(sf_pgcolor_conflict);
2943 		if (!CacheColor_IsFlushed(*cflags, ocolor)) {
2944 			CacheColor_SetFlushed(*cflags, ocolor);
2945 			sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
2946 		}
2947 		PP_SET_VCOLOR(pp, vcolor);
2948 		return (0);
2949 	}
2950 
2951 	/*
2952 	 * We got a real conflict with a current mapping.
2953 	 * set flags to start unencaching all mappings
2954 	 * and return failure so we restart looping
2955 	 * the pp array from the beginning.
2956 	 */
2957 	return (HAT_TMPNC);
2958 }
2959 
2960 /*
2961  * creates a large page shadow hmeblk for a tte.
2962  * The purpose of this routine is to allow us to do quick unloads because
2963  * the vm layer can easily pass a very large but sparsely populated range.
2964  */
2965 static struct hme_blk *
2966 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
2967 {
2968 	struct hmehash_bucket *hmebp;
2969 	hmeblk_tag hblktag;
2970 	int hmeshift, size, vshift;
2971 	uint_t shw_mask, newshw_mask;
2972 	struct hme_blk *hmeblkp;
2973 
2974 	ASSERT(sfmmup != KHATID);
2975 	if (mmu_page_sizes == max_mmu_page_sizes) {
2976 		ASSERT(ttesz < TTE256M);
2977 	} else {
2978 		ASSERT(ttesz < TTE4M);
2979 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
2980 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
2981 	}
2982 
2983 	if (ttesz == TTE8K) {
2984 		size = TTE512K;
2985 	} else {
2986 		size = ++ttesz;
2987 	}
2988 
2989 	hblktag.htag_id = sfmmup;
2990 	hmeshift = HME_HASH_SHIFT(size);
2991 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2992 	hblktag.htag_rehash = HME_HASH_REHASH(size);
2993 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
2994 
2995 	SFMMU_HASH_LOCK(hmebp);
2996 
2997 	HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
2998 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
2999 	if (hmeblkp == NULL) {
3000 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3001 			hblktag, flags);
3002 	}
3003 	ASSERT(hmeblkp);
3004 	if (!hmeblkp->hblk_shw_mask) {
3005 		/*
3006 		 * if this is a unused hblk it was just allocated or could
3007 		 * potentially be a previous large page hblk so we need to
3008 		 * set the shadow bit.
3009 		 */
3010 		hmeblkp->hblk_shw_bit = 1;
3011 	}
3012 	ASSERT(hmeblkp->hblk_shw_bit == 1);
3013 	vshift = vaddr_to_vshift(hblktag, vaddr, size);
3014 	ASSERT(vshift < 8);
3015 	/*
3016 	 * Atomically set shw mask bit
3017 	 */
3018 	do {
3019 		shw_mask = hmeblkp->hblk_shw_mask;
3020 		newshw_mask = shw_mask | (1 << vshift);
3021 		newshw_mask = cas32(&hmeblkp->hblk_shw_mask, shw_mask,
3022 		    newshw_mask);
3023 	} while (newshw_mask != shw_mask);
3024 
3025 	SFMMU_HASH_UNLOCK(hmebp);
3026 
3027 	return (hmeblkp);
3028 }
3029 
3030 /*
3031  * This routine cleanup a previous shadow hmeblk and changes it to
3032  * a regular hblk.  This happens rarely but it is possible
3033  * when a process wants to use large pages and there are hblks still
3034  * lying around from the previous as that used these hmeblks.
3035  * The alternative was to cleanup the shadow hblks at unload time
3036  * but since so few user processes actually use large pages, it is
3037  * better to be lazy and cleanup at this time.
3038  */
3039 static void
3040 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
3041 	struct hmehash_bucket *hmebp)
3042 {
3043 	caddr_t addr, endaddr;
3044 	int hashno, size;
3045 
3046 	ASSERT(hmeblkp->hblk_shw_bit);
3047 
3048 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3049 
3050 	if (!hmeblkp->hblk_shw_mask) {
3051 		hmeblkp->hblk_shw_bit = 0;
3052 		return;
3053 	}
3054 	addr = (caddr_t)get_hblk_base(hmeblkp);
3055 	endaddr = get_hblk_endaddr(hmeblkp);
3056 	size = get_hblk_ttesz(hmeblkp);
3057 	hashno = size - 1;
3058 	ASSERT(hashno > 0);
3059 	SFMMU_HASH_UNLOCK(hmebp);
3060 
3061 	sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
3062 
3063 	SFMMU_HASH_LOCK(hmebp);
3064 }
3065 
3066 static void
3067 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
3068 	int hashno)
3069 {
3070 	int hmeshift, shadow = 0;
3071 	hmeblk_tag hblktag;
3072 	struct hmehash_bucket *hmebp;
3073 	struct hme_blk *hmeblkp;
3074 	struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
3075 	uint64_t hblkpa, prevpa, nx_pa;
3076 
3077 	ASSERT(hashno > 0);
3078 	hblktag.htag_id = sfmmup;
3079 	hblktag.htag_rehash = hashno;
3080 
3081 	hmeshift = HME_HASH_SHIFT(hashno);
3082 
3083 	while (addr < endaddr) {
3084 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3085 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3086 		SFMMU_HASH_LOCK(hmebp);
3087 		/* inline HME_HASH_SEARCH */
3088 		hmeblkp = hmebp->hmeblkp;
3089 		hblkpa = hmebp->hmeh_nextpa;
3090 		prevpa = 0;
3091 		pr_hblk = NULL;
3092 		while (hmeblkp) {
3093 			ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
3094 			if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
3095 				/* found hme_blk */
3096 				if (hmeblkp->hblk_shw_bit) {
3097 					if (hmeblkp->hblk_shw_mask) {
3098 						shadow = 1;
3099 						sfmmu_shadow_hcleanup(sfmmup,
3100 						    hmeblkp, hmebp);
3101 						break;
3102 					} else {
3103 						hmeblkp->hblk_shw_bit = 0;
3104 					}
3105 				}
3106 
3107 				/*
3108 				 * Hblk_hmecnt and hblk_vcnt could be non zero
3109 				 * since hblk_unload() does not gurantee that.
3110 				 *
3111 				 * XXX - this could cause tteload() to spin
3112 				 * where sfmmu_shadow_hcleanup() is called.
3113 				 */
3114 			}
3115 
3116 			nx_hblk = hmeblkp->hblk_next;
3117 			nx_pa = hmeblkp->hblk_nextpa;
3118 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
3119 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
3120 					pr_hblk);
3121 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
3122 			} else {
3123 				pr_hblk = hmeblkp;
3124 				prevpa = hblkpa;
3125 			}
3126 			hmeblkp = nx_hblk;
3127 			hblkpa = nx_pa;
3128 		}
3129 
3130 		SFMMU_HASH_UNLOCK(hmebp);
3131 
3132 		if (shadow) {
3133 			/*
3134 			 * We found another shadow hblk so cleaned its
3135 			 * children.  We need to go back and cleanup
3136 			 * the original hblk so we don't change the
3137 			 * addr.
3138 			 */
3139 			shadow = 0;
3140 		} else {
3141 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
3142 				(1 << hmeshift));
3143 		}
3144 	}
3145 	sfmmu_hblks_list_purge(&list);
3146 }
3147 
3148 /*
3149  * Release one hardware address translation lock on the given address range.
3150  */
3151 void
3152 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
3153 {
3154 	struct hmehash_bucket *hmebp;
3155 	hmeblk_tag hblktag;
3156 	int hmeshift, hashno = 1;
3157 	struct hme_blk *hmeblkp, *list = NULL;
3158 	caddr_t endaddr;
3159 
3160 	ASSERT(sfmmup != NULL);
3161 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3162 
3163 	ASSERT((sfmmup == ksfmmup) ||
3164 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3165 	ASSERT((len & MMU_PAGEOFFSET) == 0);
3166 	endaddr = addr + len;
3167 	hblktag.htag_id = sfmmup;
3168 
3169 	/*
3170 	 * Spitfire supports 4 page sizes.
3171 	 * Most pages are expected to be of the smallest page size (8K) and
3172 	 * these will not need to be rehashed. 64K pages also don't need to be
3173 	 * rehashed because an hmeblk spans 64K of address space. 512K pages
3174 	 * might need 1 rehash and and 4M pages might need 2 rehashes.
3175 	 */
3176 	while (addr < endaddr) {
3177 		hmeshift = HME_HASH_SHIFT(hashno);
3178 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3179 		hblktag.htag_rehash = hashno;
3180 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3181 
3182 		SFMMU_HASH_LOCK(hmebp);
3183 
3184 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3185 		if (hmeblkp != NULL) {
3186 			/*
3187 			 * If we encounter a shadow hmeblk then
3188 			 * we know there are no valid hmeblks mapping
3189 			 * this address at this size or larger.
3190 			 * Just increment address by the smallest
3191 			 * page size.
3192 			 */
3193 			if (hmeblkp->hblk_shw_bit) {
3194 				addr += MMU_PAGESIZE;
3195 			} else {
3196 				addr = sfmmu_hblk_unlock(hmeblkp, addr,
3197 				    endaddr);
3198 			}
3199 			SFMMU_HASH_UNLOCK(hmebp);
3200 			hashno = 1;
3201 			continue;
3202 		}
3203 		SFMMU_HASH_UNLOCK(hmebp);
3204 
3205 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
3206 			/*
3207 			 * We have traversed the whole list and rehashed
3208 			 * if necessary without finding the address to unlock
3209 			 * which should never happen.
3210 			 */
3211 			panic("sfmmu_unlock: addr not found. "
3212 			    "addr %p hat %p", (void *)addr, (void *)sfmmup);
3213 		} else {
3214 			hashno++;
3215 		}
3216 	}
3217 
3218 	sfmmu_hblks_list_purge(&list);
3219 }
3220 
3221 /*
3222  * Function to unlock a range of addresses in an hmeblk.  It returns the
3223  * next address that needs to be unlocked.
3224  * Should be called with the hash lock held.
3225  */
3226 static caddr_t
3227 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
3228 {
3229 	struct sf_hment *sfhme;
3230 	tte_t tteold, ttemod;
3231 	int ttesz, ret;
3232 
3233 	ASSERT(in_hblk_range(hmeblkp, addr));
3234 	ASSERT(hmeblkp->hblk_shw_bit == 0);
3235 
3236 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
3237 	ttesz = get_hblk_ttesz(hmeblkp);
3238 
3239 	HBLKTOHME(sfhme, hmeblkp, addr);
3240 	while (addr < endaddr) {
3241 readtte:
3242 		sfmmu_copytte(&sfhme->hme_tte, &tteold);
3243 		if (TTE_IS_VALID(&tteold)) {
3244 
3245 			ttemod = tteold;
3246 
3247 			ret = sfmmu_modifytte_try(&tteold, &ttemod,
3248 			    &sfhme->hme_tte);
3249 
3250 			if (ret < 0)
3251 				goto readtte;
3252 
3253 			if (hmeblkp->hblk_lckcnt == 0)
3254 				panic("zero hblk lckcnt");
3255 
3256 			if (((uintptr_t)addr + TTEBYTES(ttesz)) >
3257 			    (uintptr_t)endaddr)
3258 				panic("can't unlock large tte");
3259 
3260 			ASSERT(hmeblkp->hblk_lckcnt > 0);
3261 			atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
3262 			HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
3263 		} else {
3264 			panic("sfmmu_hblk_unlock: invalid tte");
3265 		}
3266 		addr += TTEBYTES(ttesz);
3267 		sfhme++;
3268 	}
3269 	return (addr);
3270 }
3271 
3272 /*
3273  * Physical Address Mapping Framework
3274  *
3275  * General rules:
3276  *
3277  * (1) Applies only to seg_kmem memory pages. To make things easier,
3278  *     seg_kpm addresses are also accepted by the routines, but nothing
3279  *     is done with them since by definition their PA mappings are static.
3280  * (2) hat_add_callback() may only be called while holding the page lock
3281  *     SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()).
3282  * (3) prehandler() and posthandler() may not call hat_add_callback() or
3283  *     hat_delete_callback(), nor should they allocate memory. Post quiesce
3284  *     callbacks may not sleep or acquire adaptive mutex locks.
3285  * (4) Either prehandler() or posthandler() (but not both) may be specified
3286  *     as being NULL.  Specifying an errhandler() is optional.
3287  *
3288  * Details of using the framework:
3289  *
3290  * registering a callback (hat_register_callback())
3291  *
3292  *	Pass prehandler, posthandler, errhandler addresses
3293  *	as described below. If capture_cpus argument is nonzero,
3294  *	suspend callback to the prehandler will occur with CPUs
3295  *	captured and executing xc_loop() and CPUs will remain
3296  *	captured until after the posthandler suspend callback
3297  *	occurs.
3298  *
3299  * adding a callback (hat_add_callback())
3300  *
3301  *      as_pagelock();
3302  *	hat_add_callback();
3303  *      save returned pfn in private data structures or program registers;
3304  *      as_pageunlock();
3305  *
3306  * prehandler()
3307  *
3308  *	Stop all accesses by physical address to this memory page.
3309  *	Called twice: the first, PRESUSPEND, is a context safe to acquire
3310  *	adaptive locks. The second, SUSPEND, is called at high PIL with
3311  *	CPUs captured so adaptive locks may NOT be acquired (and all spin
3312  *	locks must be XCALL_PIL or higher locks).
3313  *
3314  *	May return the following errors:
3315  *		EIO:	A fatal error has occurred. This will result in panic.
3316  *		EAGAIN:	The page cannot be suspended. This will fail the
3317  *			relocation.
3318  *		0:	Success.
3319  *
3320  * posthandler()
3321  *
3322  *      Save new pfn in private data structures or program registers;
3323  *	not allowed to fail (non-zero return values will result in panic).
3324  *
3325  * errhandler()
3326  *
3327  *	called when an error occurs related to the callback.  Currently
3328  *	the only such error is HAT_CB_ERR_LEAKED which indicates that
3329  *	a page is being freed, but there are still outstanding callback(s)
3330  *	registered on the page.
3331  *
3332  * removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
3333  *
3334  *	stop using physical address
3335  *	hat_delete_callback();
3336  *
3337  */
3338 
3339 /*
3340  * Register a callback class.  Each subsystem should do this once and
3341  * cache the id_t returned for use in setting up and tearing down callbacks.
3342  *
3343  * There is no facility for removing callback IDs once they are created;
3344  * the "key" should be unique for each module, so in case a module is unloaded
3345  * and subsequently re-loaded, we can recycle the module's previous entry.
3346  */
3347 id_t
3348 hat_register_callback(int key,
3349 	int (*prehandler)(caddr_t, uint_t, uint_t, void *),
3350 	int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
3351 	int (*errhandler)(caddr_t, uint_t, uint_t, void *),
3352 	int capture_cpus)
3353 {
3354 	id_t id;
3355 
3356 	/*
3357 	 * Search the table for a pre-existing callback associated with
3358 	 * the identifier "key".  If one exists, we re-use that entry in
3359 	 * the table for this instance, otherwise we assign the next
3360 	 * available table slot.
3361 	 */
3362 	for (id = 0; id < sfmmu_max_cb_id; id++) {
3363 		if (sfmmu_cb_table[id].key == key)
3364 			break;
3365 	}
3366 
3367 	if (id == sfmmu_max_cb_id) {
3368 		id = sfmmu_cb_nextid++;
3369 		if (id >= sfmmu_max_cb_id)
3370 			panic("hat_register_callback: out of callback IDs");
3371 	}
3372 
3373 	ASSERT(prehandler != NULL || posthandler != NULL);
3374 
3375 	sfmmu_cb_table[id].key = key;
3376 	sfmmu_cb_table[id].prehandler = prehandler;
3377 	sfmmu_cb_table[id].posthandler = posthandler;
3378 	sfmmu_cb_table[id].errhandler = errhandler;
3379 	sfmmu_cb_table[id].capture_cpus = capture_cpus;
3380 
3381 	return (id);
3382 }
3383 
3384 /*
3385  * Add relocation callbacks to the specified addr/len which will be called
3386  * when relocating the associated page.  See the description of pre and
3387  * posthandler above for more details.  IMPT: this operation is only valid
3388  * on seg_kmem pages!!
3389  *
3390  * If HAC_PAGELOCK is included in flags, the underlying memory page is
3391  * locked internally so the caller must be able to deal with the callback
3392  * running even before this function has returned.  If HAC_PAGELOCK is not
3393  * set, it is assumed that the underlying memory pages are locked.
3394  *
3395  * Since the caller must track the individual page boundaries anyway,
3396  * we only allow a callback to be added to a single page (large
3397  * or small).  Thus [addr, addr + len) MUST be contained within a single
3398  * page.
3399  *
3400  * Registering multiple callbacks on the same [addr, addr+len) is supported,
3401  * in which case the corresponding callback will be called once with each
3402  * unique parameter specified. The number of subsequent deletes must match
3403  * since reference counts are held.  If a callback is desired for each
3404  * virtual object with the same parameter specified for multiple callbacks,
3405  * a different virtual address should be specified at the time of
3406  * callback registration.
3407  *
3408  * Returns the pfn of the underlying kernel page in *rpfn
3409  * on success, or PFN_INVALID on failure.
3410  *
3411  * Returns values:
3412  *    0:      success
3413  *    ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
3414  *    EINVAL: callback ID is not valid
3415  *    ENXIO:  ["vaddr", "vaddr" + len) is not mapped in the kernel's address
3416  *            space, or crosses a page boundary
3417  */
3418 int
3419 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
3420 	void *pvt, pfn_t *rpfn)
3421 {
3422 	struct 		hmehash_bucket *hmebp;
3423 	hmeblk_tag 	hblktag;
3424 	struct hme_blk	*hmeblkp;
3425 	int 		hmeshift, hashno;
3426 	caddr_t 	saddr, eaddr, baseaddr;
3427 	struct pa_hment *pahmep, *tpahmep;
3428 	struct sf_hment *sfhmep, *osfhmep, *tsfhmep;
3429 	kmutex_t	*pml;
3430 	tte_t   	tte;
3431 	page_t		*pp, *rpp;
3432 	pfn_t		pfn;
3433 	int		kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
3434 	int		locked = 0;
3435 
3436 	/*
3437 	 * For KPM mappings, just return the physical address since we
3438 	 * don't need to register any callbacks.
3439 	 */
3440 	if (IS_KPM_ADDR(vaddr)) {
3441 		uint64_t paddr;
3442 		SFMMU_KPM_VTOP(vaddr, paddr);
3443 		*rpfn = btop(paddr);
3444 		return (0);
3445 	}
3446 
3447 	if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
3448 		*rpfn = PFN_INVALID;
3449 		return (EINVAL);
3450 	}
3451 
3452 	if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
3453 		*rpfn = PFN_INVALID;
3454 		return (ENOMEM);
3455 	}
3456 
3457 	sfhmep = &pahmep->sfment;
3458 
3459 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
3460 	eaddr = saddr + len;
3461 
3462 rehash:
3463 	/* Find the mapping(s) for this page */
3464 	for (hashno = TTE64K, hmeblkp = NULL;
3465 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
3466 	    hashno++) {
3467 		hmeshift = HME_HASH_SHIFT(hashno);
3468 		hblktag.htag_id = ksfmmup;
3469 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
3470 		hblktag.htag_rehash = hashno;
3471 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
3472 
3473 		SFMMU_HASH_LOCK(hmebp);
3474 
3475 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3476 
3477 		if (hmeblkp == NULL)
3478 			SFMMU_HASH_UNLOCK(hmebp);
3479 	}
3480 
3481 	if (hmeblkp == NULL) {
3482 		*rpfn = PFN_INVALID;
3483 		return (ENXIO);
3484 	}
3485 
3486 	/*
3487 	 * Make sure the boundaries for the callback fall within this
3488 	 * single mapping.
3489 	 */
3490 	baseaddr = (caddr_t)get_hblk_base(hmeblkp);
3491 	ASSERT(saddr >= baseaddr);
3492 	if (eaddr > (caddr_t)get_hblk_endaddr(hmeblkp)) {
3493 		SFMMU_HASH_UNLOCK(hmebp);
3494 		*rpfn = PFN_INVALID;
3495 		return (ENXIO);
3496 	}
3497 
3498 	HBLKTOHME(osfhmep, hmeblkp, saddr);
3499 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
3500 
3501 	ASSERT(TTE_IS_VALID(&tte));
3502 	pfn = sfmmu_ttetopfn(&tte, vaddr);
3503 
3504 	pp = osfhmep->hme_page;
3505 	pml = sfmmu_mlist_enter(pp);
3506 
3507 	if ((flags & HAC_PAGELOCK) && !locked) {
3508 		if (!page_trylock(pp, SE_SHARED)) {
3509 			/*
3510 			 * Somebody is holding SE_EXCL lock.  Drop all
3511 			 * our locks, lookup the page in &kvp, and
3512 			 * retry.
3513 			 */
3514 			sfmmu_mlist_exit(pml);
3515 			SFMMU_HASH_UNLOCK(hmebp);
3516 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
3517 			ASSERT(pp != NULL);
3518 			rpp = PP_PAGEROOT(pp);
3519 			if (rpp != pp) {
3520 				page_unlock(pp);
3521 				(void) page_lock(rpp, SE_SHARED, NULL,
3522 				    P_NO_RECLAIM);
3523 			}
3524 			locked = 1;
3525 			goto rehash;
3526 		}
3527 		locked = 1;
3528 	}
3529 
3530 	if (!PAGE_LOCKED(pp) && !panicstr)
3531 		panic("hat_add_callback: page 0x%p not locked", pp);
3532 
3533 	if (osfhmep->hme_page != pp || pp->p_vnode != &kvp ||
3534 	    pp->p_offset < (u_offset_t)baseaddr ||
3535 	    pp->p_offset > (u_offset_t)eaddr) {
3536 		/*
3537 		 * The page moved before we got our hands on it.  Drop
3538 		 * all the locks and try again.
3539 		 */
3540 		ASSERT((flags & HAC_PAGELOCK) != 0);
3541 		sfmmu_mlist_exit(pml);
3542 		SFMMU_HASH_UNLOCK(hmebp);
3543 		page_unlock(pp);
3544 		locked = 0;
3545 		goto rehash;
3546 	}
3547 
3548 	ASSERT(osfhmep->hme_page == pp);
3549 
3550 	for (tsfhmep = pp->p_mapping; tsfhmep != NULL;
3551 	    tsfhmep = tsfhmep->hme_next) {
3552 
3553 		/*
3554 		 * skip va to pa mappings
3555 		 */
3556 		if (!IS_PAHME(tsfhmep))
3557 			continue;
3558 
3559 		tpahmep = tsfhmep->hme_data;
3560 		ASSERT(tpahmep != NULL);
3561 
3562 		/*
3563 		 * See if the pahment already exists.
3564 		 */
3565 		if ((tpahmep->pvt == pvt) &&
3566 		    (tpahmep->addr == vaddr) &&
3567 		    (tpahmep->len == len)) {
3568 			ASSERT(tpahmep->cb_id == callback_id);
3569 			tpahmep->refcnt++;
3570 			pp->p_share++;
3571 
3572 			sfmmu_mlist_exit(pml);
3573 			SFMMU_HASH_UNLOCK(hmebp);
3574 
3575 			if (locked)
3576 				page_unlock(pp);
3577 
3578 			kmem_cache_free(pa_hment_cache, pahmep);
3579 
3580 			*rpfn = pfn;
3581 			return (0);
3582 		}
3583 	}
3584 
3585 	/*
3586 	 * setup this shiny new pa_hment ..
3587 	 */
3588 	pp->p_share++;
3589 	pahmep->cb_id = callback_id;
3590 	pahmep->addr = vaddr;
3591 	pahmep->len = len;
3592 	pahmep->refcnt = 1;
3593 	pahmep->flags = 0;
3594 	pahmep->pvt = pvt;
3595 
3596 	/*
3597 	 * .. and also set up the sf_hment and link to p_mapping list.
3598 	 */
3599 	sfhmep->hme_tte.ll = 0;
3600 	sfhmep->hme_data = pahmep;
3601 	sfhmep->hme_prev = osfhmep;
3602 	sfhmep->hme_next = osfhmep->hme_next;
3603 
3604 	if (osfhmep->hme_next)
3605 		osfhmep->hme_next->hme_prev = sfhmep;
3606 
3607 	osfhmep->hme_next = sfhmep;
3608 
3609 	sfmmu_mlist_exit(pml);
3610 	SFMMU_HASH_UNLOCK(hmebp);
3611 
3612 	*rpfn = pfn;
3613 	if (locked)
3614 		page_unlock(pp);
3615 
3616 	return (0);
3617 }
3618 
3619 /*
3620  * Remove the relocation callbacks from the specified addr/len.
3621  */
3622 void
3623 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags)
3624 {
3625 	struct		hmehash_bucket *hmebp;
3626 	hmeblk_tag	hblktag;
3627 	struct hme_blk	*hmeblkp;
3628 	int		hmeshift, hashno;
3629 	caddr_t		saddr, eaddr, baseaddr;
3630 	struct pa_hment	*pahmep;
3631 	struct sf_hment	*sfhmep, *osfhmep;
3632 	kmutex_t	*pml;
3633 	tte_t		tte;
3634 	page_t		*pp, *rpp;
3635 	int		locked = 0;
3636 
3637 	if (IS_KPM_ADDR(vaddr))
3638 		return;
3639 
3640 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
3641 	eaddr = saddr + len;
3642 
3643 rehash:
3644 	/* Find the mapping(s) for this page */
3645 	for (hashno = TTE64K, hmeblkp = NULL;
3646 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
3647 	    hashno++) {
3648 		hmeshift = HME_HASH_SHIFT(hashno);
3649 		hblktag.htag_id = ksfmmup;
3650 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
3651 		hblktag.htag_rehash = hashno;
3652 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
3653 
3654 		SFMMU_HASH_LOCK(hmebp);
3655 
3656 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3657 
3658 		if (hmeblkp == NULL)
3659 			SFMMU_HASH_UNLOCK(hmebp);
3660 	}
3661 
3662 	if (hmeblkp == NULL) {
3663 		if (!panicstr) {
3664 			panic("hat_delete_callback: addr 0x%p not found",
3665 			    saddr);
3666 		}
3667 		return;
3668 	}
3669 
3670 	baseaddr = (caddr_t)get_hblk_base(hmeblkp);
3671 	HBLKTOHME(osfhmep, hmeblkp, saddr);
3672 
3673 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
3674 	ASSERT(TTE_IS_VALID(&tte));
3675 
3676 	pp = osfhmep->hme_page;
3677 	pml = sfmmu_mlist_enter(pp);
3678 
3679 	if ((flags & HAC_PAGELOCK) && !locked) {
3680 		if (!page_trylock(pp, SE_SHARED)) {
3681 			/*
3682 			 * Somebody is holding SE_EXCL lock.  Drop all
3683 			 * our locks, lookup the page in &kvp, and
3684 			 * retry.
3685 			 */
3686 			sfmmu_mlist_exit(pml);
3687 			SFMMU_HASH_UNLOCK(hmebp);
3688 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
3689 			ASSERT(pp != NULL);
3690 			rpp = PP_PAGEROOT(pp);
3691 			if (rpp != pp) {
3692 				page_unlock(pp);
3693 				(void) page_lock(rpp, SE_SHARED, NULL,
3694 				    P_NO_RECLAIM);
3695 			}
3696 			locked = 1;
3697 			goto rehash;
3698 		}
3699 		locked = 1;
3700 	}
3701 
3702 	ASSERT(PAGE_LOCKED(pp));
3703 
3704 	if (osfhmep->hme_page != pp || pp->p_vnode != &kvp ||
3705 	    pp->p_offset < (u_offset_t)baseaddr ||
3706 	    pp->p_offset > (u_offset_t)eaddr) {
3707 		/*
3708 		 * The page moved before we got our hands on it.  Drop
3709 		 * all the locks and try again.
3710 		 */
3711 		ASSERT((flags & HAC_PAGELOCK) != 0);
3712 		sfmmu_mlist_exit(pml);
3713 		SFMMU_HASH_UNLOCK(hmebp);
3714 		page_unlock(pp);
3715 		locked = 0;
3716 		goto rehash;
3717 	}
3718 
3719 	ASSERT(osfhmep->hme_page == pp);
3720 
3721 	for (sfhmep = pp->p_mapping; sfhmep != NULL;
3722 	    sfhmep = sfhmep->hme_next) {
3723 
3724 		/*
3725 		 * skip va<->pa mappings
3726 		 */
3727 		if (!IS_PAHME(sfhmep))
3728 			continue;
3729 
3730 		pahmep = sfhmep->hme_data;
3731 		ASSERT(pahmep != NULL);
3732 
3733 		/*
3734 		 * if pa_hment matches, remove it
3735 		 */
3736 		if ((pahmep->pvt == pvt) &&
3737 		    (pahmep->addr == vaddr) &&
3738 		    (pahmep->len == len)) {
3739 			break;
3740 		}
3741 	}
3742 
3743 	if (sfhmep == NULL) {
3744 		if (!panicstr) {
3745 			panic("hat_delete_callback: pa_hment not found, pp %p",
3746 			    (void *)pp);
3747 		}
3748 		return;
3749 	}
3750 
3751 	/*
3752 	 * Note: at this point a valid kernel mapping must still be
3753 	 * present on this page.
3754 	 */
3755 	pp->p_share--;
3756 	if (pp->p_share <= 0)
3757 		panic("hat_delete_callback: zero p_share");
3758 
3759 	if (--pahmep->refcnt == 0) {
3760 		if (pahmep->flags != 0)
3761 			panic("hat_delete_callback: pa_hment is busy");
3762 
3763 		/*
3764 		 * Remove sfhmep from the mapping list for the page.
3765 		 */
3766 		if (sfhmep->hme_prev) {
3767 			sfhmep->hme_prev->hme_next = sfhmep->hme_next;
3768 		} else {
3769 			pp->p_mapping = sfhmep->hme_next;
3770 		}
3771 
3772 		if (sfhmep->hme_next)
3773 			sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
3774 
3775 		sfmmu_mlist_exit(pml);
3776 		SFMMU_HASH_UNLOCK(hmebp);
3777 
3778 		if (locked)
3779 			page_unlock(pp);
3780 
3781 		kmem_cache_free(pa_hment_cache, pahmep);
3782 		return;
3783 	}
3784 
3785 	sfmmu_mlist_exit(pml);
3786 	SFMMU_HASH_UNLOCK(hmebp);
3787 	if (locked)
3788 		page_unlock(pp);
3789 }
3790 
3791 /*
3792  * hat_probe returns 1 if the translation for the address 'addr' is
3793  * loaded, zero otherwise.
3794  *
3795  * hat_probe should be used only for advisorary purposes because it may
3796  * occasionally return the wrong value. The implementation must guarantee that
3797  * returning the wrong value is a very rare event. hat_probe is used
3798  * to implement optimizations in the segment drivers.
3799  *
3800  */
3801 int
3802 hat_probe(struct hat *sfmmup, caddr_t addr)
3803 {
3804 	pfn_t pfn;
3805 	tte_t tte;
3806 
3807 	ASSERT(sfmmup != NULL);
3808 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3809 
3810 	ASSERT((sfmmup == ksfmmup) ||
3811 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3812 
3813 	if (sfmmup == ksfmmup) {
3814 		while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
3815 		    == PFN_SUSPENDED) {
3816 			sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
3817 		}
3818 	} else {
3819 		pfn = sfmmu_uvatopfn(addr, sfmmup);
3820 	}
3821 
3822 	if (pfn != PFN_INVALID)
3823 		return (1);
3824 	else
3825 		return (0);
3826 }
3827 
3828 ssize_t
3829 hat_getpagesize(struct hat *sfmmup, caddr_t addr)
3830 {
3831 	tte_t tte;
3832 
3833 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3834 
3835 	sfmmu_gettte(sfmmup, addr, &tte);
3836 	if (TTE_IS_VALID(&tte)) {
3837 		return (TTEBYTES(TTE_CSZ(&tte)));
3838 	}
3839 	return (-1);
3840 }
3841 
3842 static void
3843 sfmmu_gettte(struct hat *sfmmup, caddr_t addr, tte_t *ttep)
3844 {
3845 	struct hmehash_bucket *hmebp;
3846 	hmeblk_tag hblktag;
3847 	int hmeshift, hashno = 1;
3848 	struct hme_blk *hmeblkp, *list = NULL;
3849 	struct sf_hment *sfhmep;
3850 
3851 	/* support for ISM */
3852 	ism_map_t	*ism_map;
3853 	ism_blk_t	*ism_blkp;
3854 	int		i;
3855 	sfmmu_t		*ism_hatid = NULL;
3856 	sfmmu_t		*locked_hatid = NULL;
3857 
3858 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
3859 
3860 	ism_blkp = sfmmup->sfmmu_iblk;
3861 	if (ism_blkp) {
3862 		sfmmu_ismhat_enter(sfmmup, 0);
3863 		locked_hatid = sfmmup;
3864 	}
3865 	while (ism_blkp && ism_hatid == NULL) {
3866 		ism_map = ism_blkp->iblk_maps;
3867 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
3868 			if (addr >= ism_start(ism_map[i]) &&
3869 			    addr < ism_end(ism_map[i])) {
3870 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
3871 				addr = (caddr_t)(addr -
3872 					ism_start(ism_map[i]));
3873 				break;
3874 			}
3875 		}
3876 		ism_blkp = ism_blkp->iblk_next;
3877 	}
3878 	if (locked_hatid) {
3879 		sfmmu_ismhat_exit(locked_hatid, 0);
3880 	}
3881 
3882 	hblktag.htag_id = sfmmup;
3883 	ttep->ll = 0;
3884 
3885 	do {
3886 		hmeshift = HME_HASH_SHIFT(hashno);
3887 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3888 		hblktag.htag_rehash = hashno;
3889 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3890 
3891 		SFMMU_HASH_LOCK(hmebp);
3892 
3893 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3894 		if (hmeblkp != NULL) {
3895 			HBLKTOHME(sfhmep, hmeblkp, addr);
3896 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
3897 			SFMMU_HASH_UNLOCK(hmebp);
3898 			break;
3899 		}
3900 		SFMMU_HASH_UNLOCK(hmebp);
3901 		hashno++;
3902 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
3903 
3904 	sfmmu_hblks_list_purge(&list);
3905 }
3906 
3907 uint_t
3908 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
3909 {
3910 	tte_t tte;
3911 
3912 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3913 
3914 	sfmmu_gettte(sfmmup, addr, &tte);
3915 	if (TTE_IS_VALID(&tte)) {
3916 		*attr = sfmmu_ptov_attr(&tte);
3917 		return (0);
3918 	}
3919 	*attr = 0;
3920 	return ((uint_t)0xffffffff);
3921 }
3922 
3923 /*
3924  * Enables more attributes on specified address range (ie. logical OR)
3925  */
3926 void
3927 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
3928 {
3929 	if (hat->sfmmu_xhat_provider) {
3930 		XHAT_SETATTR(hat, addr, len, attr);
3931 		return;
3932 	} else {
3933 		/*
3934 		 * This must be a CPU HAT. If the address space has
3935 		 * XHATs attached, change attributes for all of them,
3936 		 * just in case
3937 		 */
3938 		ASSERT(hat->sfmmu_as != NULL);
3939 		if (hat->sfmmu_as->a_xhat != NULL)
3940 			xhat_setattr_all(hat->sfmmu_as, addr, len, attr);
3941 	}
3942 
3943 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
3944 }
3945 
3946 /*
3947  * Assigns attributes to the specified address range.  All the attributes
3948  * are specified.
3949  */
3950 void
3951 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
3952 {
3953 	if (hat->sfmmu_xhat_provider) {
3954 		XHAT_CHGATTR(hat, addr, len, attr);
3955 		return;
3956 	} else {
3957 		/*
3958 		 * This must be a CPU HAT. If the address space has
3959 		 * XHATs attached, change attributes for all of them,
3960 		 * just in case
3961 		 */
3962 		ASSERT(hat->sfmmu_as != NULL);
3963 		if (hat->sfmmu_as->a_xhat != NULL)
3964 			xhat_chgattr_all(hat->sfmmu_as, addr, len, attr);
3965 	}
3966 
3967 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
3968 }
3969 
3970 /*
3971  * Remove attributes on the specified address range (ie. loginal NAND)
3972  */
3973 void
3974 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
3975 {
3976 	if (hat->sfmmu_xhat_provider) {
3977 		XHAT_CLRATTR(hat, addr, len, attr);
3978 		return;
3979 	} else {
3980 		/*
3981 		 * This must be a CPU HAT. If the address space has
3982 		 * XHATs attached, change attributes for all of them,
3983 		 * just in case
3984 		 */
3985 		ASSERT(hat->sfmmu_as != NULL);
3986 		if (hat->sfmmu_as->a_xhat != NULL)
3987 			xhat_clrattr_all(hat->sfmmu_as, addr, len, attr);
3988 	}
3989 
3990 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
3991 }
3992 
3993 /*
3994  * Change attributes on an address range to that specified by attr and mode.
3995  */
3996 static void
3997 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
3998 	int mode)
3999 {
4000 	struct hmehash_bucket *hmebp;
4001 	hmeblk_tag hblktag;
4002 	int hmeshift, hashno = 1;
4003 	struct hme_blk *hmeblkp, *list = NULL;
4004 	caddr_t endaddr;
4005 	cpuset_t cpuset;
4006 	demap_range_t dmr;
4007 
4008 	CPUSET_ZERO(cpuset);
4009 
4010 	ASSERT((sfmmup == ksfmmup) ||
4011 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4012 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4013 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4014 
4015 	if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
4016 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4017 		panic("user addr %p in kernel space",
4018 		    (void *)addr);
4019 	}
4020 
4021 	endaddr = addr + len;
4022 	hblktag.htag_id = sfmmup;
4023 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4024 
4025 	while (addr < endaddr) {
4026 		hmeshift = HME_HASH_SHIFT(hashno);
4027 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4028 		hblktag.htag_rehash = hashno;
4029 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4030 
4031 		SFMMU_HASH_LOCK(hmebp);
4032 
4033 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4034 		if (hmeblkp != NULL) {
4035 			/*
4036 			 * We've encountered a shadow hmeblk so skip the range
4037 			 * of the next smaller mapping size.
4038 			 */
4039 			if (hmeblkp->hblk_shw_bit) {
4040 				ASSERT(sfmmup != ksfmmup);
4041 				ASSERT(hashno > 1);
4042 				addr = (caddr_t)P2END((uintptr_t)addr,
4043 					    TTEBYTES(hashno - 1));
4044 			} else {
4045 				addr = sfmmu_hblk_chgattr(sfmmup,
4046 				    hmeblkp, addr, endaddr, &dmr, attr, mode);
4047 			}
4048 			SFMMU_HASH_UNLOCK(hmebp);
4049 			hashno = 1;
4050 			continue;
4051 		}
4052 		SFMMU_HASH_UNLOCK(hmebp);
4053 
4054 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4055 			/*
4056 			 * We have traversed the whole list and rehashed
4057 			 * if necessary without finding the address to chgattr.
4058 			 * This is ok, so we increment the address by the
4059 			 * smallest hmeblk range for kernel mappings or for
4060 			 * user mappings with no large pages, and the largest
4061 			 * hmeblk range, to account for shadow hmeblks, for
4062 			 * user mappings with large pages and continue.
4063 			 */
4064 			if (sfmmup == ksfmmup)
4065 				addr = (caddr_t)P2END((uintptr_t)addr,
4066 					    TTEBYTES(1));
4067 			else
4068 				addr = (caddr_t)P2END((uintptr_t)addr,
4069 					    TTEBYTES(hashno));
4070 			hashno = 1;
4071 		} else {
4072 			hashno++;
4073 		}
4074 	}
4075 
4076 	sfmmu_hblks_list_purge(&list);
4077 	DEMAP_RANGE_FLUSH(&dmr);
4078 	cpuset = sfmmup->sfmmu_cpusran;
4079 	xt_sync(cpuset);
4080 }
4081 
4082 /*
4083  * This function chgattr on a range of addresses in an hmeblk.  It returns the
4084  * next addres that needs to be chgattr.
4085  * It should be called with the hash lock held.
4086  * XXX It should be possible to optimize chgattr by not flushing every time but
4087  * on the other hand:
4088  * 1. do one flush crosscall.
4089  * 2. only flush if we are increasing permissions (make sure this will work)
4090  */
4091 static caddr_t
4092 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4093 	caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
4094 {
4095 	tte_t tte, tteattr, tteflags, ttemod;
4096 	struct sf_hment *sfhmep;
4097 	int ttesz;
4098 	struct page *pp = NULL;
4099 	kmutex_t *pml, *pmtx;
4100 	int ret;
4101 	int use_demap_range;
4102 #if defined(SF_ERRATA_57)
4103 	int check_exec;
4104 #endif
4105 
4106 	ASSERT(in_hblk_range(hmeblkp, addr));
4107 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4108 
4109 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4110 	ttesz = get_hblk_ttesz(hmeblkp);
4111 
4112 	/*
4113 	 * Flush the current demap region if addresses have been
4114 	 * skipped or the page size doesn't match.
4115 	 */
4116 	use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
4117 	if (use_demap_range) {
4118 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4119 	} else {
4120 		DEMAP_RANGE_FLUSH(dmrp);
4121 	}
4122 
4123 	tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
4124 #if defined(SF_ERRATA_57)
4125 	check_exec = (sfmmup != ksfmmup) &&
4126 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4127 	    TTE_IS_EXECUTABLE(&tteattr);
4128 #endif
4129 	HBLKTOHME(sfhmep, hmeblkp, addr);
4130 	while (addr < endaddr) {
4131 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4132 		if (TTE_IS_VALID(&tte)) {
4133 			if ((tte.ll & tteflags.ll) == tteattr.ll) {
4134 				/*
4135 				 * if the new attr is the same as old
4136 				 * continue
4137 				 */
4138 				goto next_addr;
4139 			}
4140 			if (!TTE_IS_WRITABLE(&tteattr)) {
4141 				/*
4142 				 * make sure we clear hw modify bit if we
4143 				 * removing write protections
4144 				 */
4145 				tteflags.tte_intlo |= TTE_HWWR_INT;
4146 			}
4147 
4148 			pml = NULL;
4149 			pp = sfhmep->hme_page;
4150 			if (pp) {
4151 				pml = sfmmu_mlist_enter(pp);
4152 			}
4153 
4154 			if (pp != sfhmep->hme_page) {
4155 				/*
4156 				 * tte must have been unloaded.
4157 				 */
4158 				ASSERT(pml);
4159 				sfmmu_mlist_exit(pml);
4160 				continue;
4161 			}
4162 
4163 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4164 
4165 			ttemod = tte;
4166 			ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
4167 			ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
4168 
4169 #if defined(SF_ERRATA_57)
4170 			if (check_exec && addr < errata57_limit)
4171 				ttemod.tte_exec_perm = 0;
4172 #endif
4173 			ret = sfmmu_modifytte_try(&tte, &ttemod,
4174 			    &sfhmep->hme_tte);
4175 
4176 			if (ret < 0) {
4177 				/* tte changed underneath us */
4178 				if (pml) {
4179 					sfmmu_mlist_exit(pml);
4180 				}
4181 				continue;
4182 			}
4183 
4184 			if (tteflags.tte_intlo & TTE_HWWR_INT) {
4185 				/*
4186 				 * need to sync if we are clearing modify bit.
4187 				 */
4188 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4189 			}
4190 
4191 			if (pp && PP_ISRO(pp)) {
4192 				if (tteattr.tte_intlo & TTE_WRPRM_INT) {
4193 					pmtx = sfmmu_page_enter(pp);
4194 					PP_CLRRO(pp);
4195 					sfmmu_page_exit(pmtx);
4196 				}
4197 			}
4198 
4199 			if (ret > 0 && use_demap_range) {
4200 				DEMAP_RANGE_MARKPG(dmrp, addr);
4201 			} else if (ret > 0) {
4202 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4203 			}
4204 
4205 			if (pml) {
4206 				sfmmu_mlist_exit(pml);
4207 			}
4208 		}
4209 next_addr:
4210 		addr += TTEBYTES(ttesz);
4211 		sfhmep++;
4212 		DEMAP_RANGE_NEXTPG(dmrp);
4213 	}
4214 	return (addr);
4215 }
4216 
4217 /*
4218  * This routine converts virtual attributes to physical ones.  It will
4219  * update the tteflags field with the tte mask corresponding to the attributes
4220  * affected and it returns the new attributes.  It will also clear the modify
4221  * bit if we are taking away write permission.  This is necessary since the
4222  * modify bit is the hardware permission bit and we need to clear it in order
4223  * to detect write faults.
4224  */
4225 static uint64_t
4226 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
4227 {
4228 	tte_t ttevalue;
4229 
4230 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
4231 
4232 	switch (mode) {
4233 	case SFMMU_CHGATTR:
4234 		/* all attributes specified */
4235 		ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
4236 		ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
4237 		ttemaskp->tte_inthi = TTEINTHI_ATTR;
4238 		ttemaskp->tte_intlo = TTEINTLO_ATTR;
4239 		break;
4240 	case SFMMU_SETATTR:
4241 		ASSERT(!(attr & ~HAT_PROT_MASK));
4242 		ttemaskp->ll = 0;
4243 		ttevalue.ll = 0;
4244 		/*
4245 		 * a valid tte implies exec and read for sfmmu
4246 		 * so no need to do anything about them.
4247 		 * since priviledged access implies user access
4248 		 * PROT_USER doesn't make sense either.
4249 		 */
4250 		if (attr & PROT_WRITE) {
4251 			ttemaskp->tte_intlo |= TTE_WRPRM_INT;
4252 			ttevalue.tte_intlo |= TTE_WRPRM_INT;
4253 		}
4254 		break;
4255 	case SFMMU_CLRATTR:
4256 		/* attributes will be nand with current ones */
4257 		if (attr & ~(PROT_WRITE | PROT_USER)) {
4258 			panic("sfmmu: attr %x not supported", attr);
4259 		}
4260 		ttemaskp->ll = 0;
4261 		ttevalue.ll = 0;
4262 		if (attr & PROT_WRITE) {
4263 			/* clear both writable and modify bit */
4264 			ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
4265 		}
4266 		if (attr & PROT_USER) {
4267 			ttemaskp->tte_intlo |= TTE_PRIV_INT;
4268 			ttevalue.tte_intlo |= TTE_PRIV_INT;
4269 		}
4270 		break;
4271 	default:
4272 		panic("sfmmu_vtop_attr: bad mode %x", mode);
4273 	}
4274 	ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
4275 	return (ttevalue.ll);
4276 }
4277 
4278 static uint_t
4279 sfmmu_ptov_attr(tte_t *ttep)
4280 {
4281 	uint_t attr;
4282 
4283 	ASSERT(TTE_IS_VALID(ttep));
4284 
4285 	attr = PROT_READ;
4286 
4287 	if (TTE_IS_WRITABLE(ttep)) {
4288 		attr |= PROT_WRITE;
4289 	}
4290 	if (TTE_IS_EXECUTABLE(ttep)) {
4291 		attr |= PROT_EXEC;
4292 	}
4293 	if (!TTE_IS_PRIVILEGED(ttep)) {
4294 		attr |= PROT_USER;
4295 	}
4296 	if (TTE_IS_NFO(ttep)) {
4297 		attr |= HAT_NOFAULT;
4298 	}
4299 	if (TTE_IS_NOSYNC(ttep)) {
4300 		attr |= HAT_NOSYNC;
4301 	}
4302 	if (TTE_IS_SIDEFFECT(ttep)) {
4303 		attr |= SFMMU_SIDEFFECT;
4304 	}
4305 	if (!TTE_IS_VCACHEABLE(ttep)) {
4306 		attr |= SFMMU_UNCACHEVTTE;
4307 	}
4308 	if (!TTE_IS_PCACHEABLE(ttep)) {
4309 		attr |= SFMMU_UNCACHEPTTE;
4310 	}
4311 	return (attr);
4312 }
4313 
4314 /*
4315  * hat_chgprot is a deprecated hat call.  New segment drivers
4316  * should store all attributes and use hat_*attr calls.
4317  *
4318  * Change the protections in the virtual address range
4319  * given to the specified virtual protection.  If vprot is ~PROT_WRITE,
4320  * then remove write permission, leaving the other
4321  * permissions unchanged.  If vprot is ~PROT_USER, remove user permissions.
4322  *
4323  */
4324 void
4325 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
4326 {
4327 	struct hmehash_bucket *hmebp;
4328 	hmeblk_tag hblktag;
4329 	int hmeshift, hashno = 1;
4330 	struct hme_blk *hmeblkp, *list = NULL;
4331 	caddr_t endaddr;
4332 	cpuset_t cpuset;
4333 	demap_range_t dmr;
4334 
4335 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4336 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4337 
4338 	if (sfmmup->sfmmu_xhat_provider) {
4339 		XHAT_CHGPROT(sfmmup, addr, len, vprot);
4340 		return;
4341 	} else {
4342 		/*
4343 		 * This must be a CPU HAT. If the address space has
4344 		 * XHATs attached, change attributes for all of them,
4345 		 * just in case
4346 		 */
4347 		ASSERT(sfmmup->sfmmu_as != NULL);
4348 		if (sfmmup->sfmmu_as->a_xhat != NULL)
4349 			xhat_chgprot_all(sfmmup->sfmmu_as, addr, len, vprot);
4350 	}
4351 
4352 	CPUSET_ZERO(cpuset);
4353 
4354 	if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
4355 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4356 		panic("user addr %p vprot %x in kernel space",
4357 		    (void *)addr, vprot);
4358 	}
4359 	endaddr = addr + len;
4360 	hblktag.htag_id = sfmmup;
4361 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4362 
4363 	while (addr < endaddr) {
4364 		hmeshift = HME_HASH_SHIFT(hashno);
4365 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4366 		hblktag.htag_rehash = hashno;
4367 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4368 
4369 		SFMMU_HASH_LOCK(hmebp);
4370 
4371 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4372 		if (hmeblkp != NULL) {
4373 			/*
4374 			 * We've encountered a shadow hmeblk so skip the range
4375 			 * of the next smaller mapping size.
4376 			 */
4377 			if (hmeblkp->hblk_shw_bit) {
4378 				ASSERT(sfmmup != ksfmmup);
4379 				ASSERT(hashno > 1);
4380 				addr = (caddr_t)P2END((uintptr_t)addr,
4381 					    TTEBYTES(hashno - 1));
4382 			} else {
4383 				addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
4384 					addr, endaddr, &dmr, vprot);
4385 			}
4386 			SFMMU_HASH_UNLOCK(hmebp);
4387 			hashno = 1;
4388 			continue;
4389 		}
4390 		SFMMU_HASH_UNLOCK(hmebp);
4391 
4392 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4393 			/*
4394 			 * We have traversed the whole list and rehashed
4395 			 * if necessary without finding the address to chgprot.
4396 			 * This is ok so we increment the address by the
4397 			 * smallest hmeblk range for kernel mappings and the
4398 			 * largest hmeblk range, to account for shadow hmeblks,
4399 			 * for user mappings and continue.
4400 			 */
4401 			if (sfmmup == ksfmmup)
4402 				addr = (caddr_t)P2END((uintptr_t)addr,
4403 					    TTEBYTES(1));
4404 			else
4405 				addr = (caddr_t)P2END((uintptr_t)addr,
4406 					    TTEBYTES(hashno));
4407 			hashno = 1;
4408 		} else {
4409 			hashno++;
4410 		}
4411 	}
4412 
4413 	sfmmu_hblks_list_purge(&list);
4414 	DEMAP_RANGE_FLUSH(&dmr);
4415 	cpuset = sfmmup->sfmmu_cpusran;
4416 	xt_sync(cpuset);
4417 }
4418 
4419 /*
4420  * This function chgprots a range of addresses in an hmeblk.  It returns the
4421  * next addres that needs to be chgprot.
4422  * It should be called with the hash lock held.
4423  * XXX It shold be possible to optimize chgprot by not flushing every time but
4424  * on the other hand:
4425  * 1. do one flush crosscall.
4426  * 2. only flush if we are increasing permissions (make sure this will work)
4427  */
4428 static caddr_t
4429 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4430 	caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
4431 {
4432 	uint_t pprot;
4433 	tte_t tte, ttemod;
4434 	struct sf_hment *sfhmep;
4435 	uint_t tteflags;
4436 	int ttesz;
4437 	struct page *pp = NULL;
4438 	kmutex_t *pml, *pmtx;
4439 	int ret;
4440 	int use_demap_range;
4441 #if defined(SF_ERRATA_57)
4442 	int check_exec;
4443 #endif
4444 
4445 	ASSERT(in_hblk_range(hmeblkp, addr));
4446 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4447 
4448 #ifdef DEBUG
4449 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
4450 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
4451 		panic("sfmmu_hblk_chgprot: partial chgprot of large page");
4452 	}
4453 #endif /* DEBUG */
4454 
4455 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4456 	ttesz = get_hblk_ttesz(hmeblkp);
4457 
4458 	pprot = sfmmu_vtop_prot(vprot, &tteflags);
4459 #if defined(SF_ERRATA_57)
4460 	check_exec = (sfmmup != ksfmmup) &&
4461 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4462 	    ((vprot & PROT_EXEC) == PROT_EXEC);
4463 #endif
4464 	HBLKTOHME(sfhmep, hmeblkp, addr);
4465 
4466 	/*
4467 	 * Flush the current demap region if addresses have been
4468 	 * skipped or the page size doesn't match.
4469 	 */
4470 	use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
4471 	if (use_demap_range) {
4472 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4473 	} else {
4474 		DEMAP_RANGE_FLUSH(dmrp);
4475 	}
4476 
4477 	while (addr < endaddr) {
4478 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4479 		if (TTE_IS_VALID(&tte)) {
4480 			if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
4481 				/*
4482 				 * if the new protection is the same as old
4483 				 * continue
4484 				 */
4485 				goto next_addr;
4486 			}
4487 			pml = NULL;
4488 			pp = sfhmep->hme_page;
4489 			if (pp) {
4490 				pml = sfmmu_mlist_enter(pp);
4491 			}
4492 			if (pp != sfhmep->hme_page) {
4493 				/*
4494 				 * tte most have been unloaded
4495 				 * underneath us.  Recheck
4496 				 */
4497 				ASSERT(pml);
4498 				sfmmu_mlist_exit(pml);
4499 				continue;
4500 			}
4501 
4502 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4503 
4504 			ttemod = tte;
4505 			TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
4506 #if defined(SF_ERRATA_57)
4507 			if (check_exec && addr < errata57_limit)
4508 				ttemod.tte_exec_perm = 0;
4509 #endif
4510 			ret = sfmmu_modifytte_try(&tte, &ttemod,
4511 			    &sfhmep->hme_tte);
4512 
4513 			if (ret < 0) {
4514 				/* tte changed underneath us */
4515 				if (pml) {
4516 					sfmmu_mlist_exit(pml);
4517 				}
4518 				continue;
4519 			}
4520 
4521 			if (tteflags & TTE_HWWR_INT) {
4522 				/*
4523 				 * need to sync if we are clearing modify bit.
4524 				 */
4525 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
4526 			}
4527 
4528 			if (pp && PP_ISRO(pp)) {
4529 				if (pprot & TTE_WRPRM_INT) {
4530 					pmtx = sfmmu_page_enter(pp);
4531 					PP_CLRRO(pp);
4532 					sfmmu_page_exit(pmtx);
4533 				}
4534 			}
4535 
4536 			if (ret > 0 && use_demap_range) {
4537 				DEMAP_RANGE_MARKPG(dmrp, addr);
4538 			} else if (ret > 0) {
4539 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4540 			}
4541 
4542 			if (pml) {
4543 				sfmmu_mlist_exit(pml);
4544 			}
4545 		}
4546 next_addr:
4547 		addr += TTEBYTES(ttesz);
4548 		sfhmep++;
4549 		DEMAP_RANGE_NEXTPG(dmrp);
4550 	}
4551 	return (addr);
4552 }
4553 
4554 /*
4555  * This routine is deprecated and should only be used by hat_chgprot.
4556  * The correct routine is sfmmu_vtop_attr.
4557  * This routine converts virtual page protections to physical ones.  It will
4558  * update the tteflags field with the tte mask corresponding to the protections
4559  * affected and it returns the new protections.  It will also clear the modify
4560  * bit if we are taking away write permission.  This is necessary since the
4561  * modify bit is the hardware permission bit and we need to clear it in order
4562  * to detect write faults.
4563  * It accepts the following special protections:
4564  * ~PROT_WRITE = remove write permissions.
4565  * ~PROT_USER = remove user permissions.
4566  */
4567 static uint_t
4568 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
4569 {
4570 	if (vprot == (uint_t)~PROT_WRITE) {
4571 		*tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
4572 		return (0);		/* will cause wrprm to be cleared */
4573 	}
4574 	if (vprot == (uint_t)~PROT_USER) {
4575 		*tteflagsp = TTE_PRIV_INT;
4576 		return (0);		/* will cause privprm to be cleared */
4577 	}
4578 	if ((vprot == 0) || (vprot == PROT_USER) ||
4579 		((vprot & PROT_ALL) != vprot)) {
4580 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
4581 	}
4582 
4583 	switch (vprot) {
4584 	case (PROT_READ):
4585 	case (PROT_EXEC):
4586 	case (PROT_EXEC | PROT_READ):
4587 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
4588 		return (TTE_PRIV_INT); 		/* set prv and clr wrt */
4589 	case (PROT_WRITE):
4590 	case (PROT_WRITE | PROT_READ):
4591 	case (PROT_EXEC | PROT_WRITE):
4592 	case (PROT_EXEC | PROT_WRITE | PROT_READ):
4593 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
4594 		return (TTE_PRIV_INT | TTE_WRPRM_INT); 	/* set prv and wrt */
4595 	case (PROT_USER | PROT_READ):
4596 	case (PROT_USER | PROT_EXEC):
4597 	case (PROT_USER | PROT_EXEC | PROT_READ):
4598 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
4599 		return (0); 			/* clr prv and wrt */
4600 	case (PROT_USER | PROT_WRITE):
4601 	case (PROT_USER | PROT_WRITE | PROT_READ):
4602 	case (PROT_USER | PROT_EXEC | PROT_WRITE):
4603 	case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
4604 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
4605 		return (TTE_WRPRM_INT); 	/* clr prv and set wrt */
4606 	default:
4607 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
4608 	}
4609 	return (0);
4610 }
4611 
4612 /*
4613  * Alternate unload for very large virtual ranges. With a true 64 bit VA,
4614  * the normal algorithm would take too long for a very large VA range with
4615  * few real mappings. This routine just walks thru all HMEs in the global
4616  * hash table to find and remove mappings.
4617  */
4618 static void
4619 hat_unload_large_virtual(
4620 	struct hat		*sfmmup,
4621 	caddr_t			startaddr,
4622 	size_t			len,
4623 	uint_t			flags,
4624 	hat_callback_t		*callback)
4625 {
4626 	struct hmehash_bucket *hmebp;
4627 	struct hme_blk *hmeblkp;
4628 	struct hme_blk *pr_hblk = NULL;
4629 	struct hme_blk *nx_hblk;
4630 	struct hme_blk *list = NULL;
4631 	int i;
4632 	uint64_t hblkpa, prevpa, nx_pa;
4633 	hatlock_t	*hatlockp;
4634 	struct tsb_info	*tsbinfop;
4635 	struct ctx	*ctx;
4636 	caddr_t	endaddr = startaddr + len;
4637 	caddr_t	sa;
4638 	caddr_t	ea;
4639 	caddr_t	cb_sa[MAX_CB_ADDR];
4640 	caddr_t	cb_ea[MAX_CB_ADDR];
4641 	int	addr_cnt = 0;
4642 	int	a = 0;
4643 	int	cnum;
4644 
4645 	hatlockp = sfmmu_hat_enter(sfmmup);
4646 
4647 	/*
4648 	 * Since we know we're unmapping a huge range of addresses,
4649 	 * just throw away the context and switch to another.  It's
4650 	 * cheaper than trying to unmap all of the TTEs we may find
4651 	 * from the TLB individually, which is too expensive in terms
4652 	 * of xcalls.  Better yet, if we're exiting, no need to flush
4653 	 * anything at all!
4654 	 */
4655 	if (!sfmmup->sfmmu_free) {
4656 		ctx = sfmmutoctx(sfmmup);
4657 		rw_enter(&ctx->ctx_rwlock, RW_WRITER);
4658 		cnum = sfmmutoctxnum(sfmmup);
4659 		if (cnum != INVALID_CONTEXT) {
4660 			sfmmu_tlb_swap_ctx(sfmmup, ctx);
4661 		}
4662 		rw_exit(&ctx->ctx_rwlock);
4663 
4664 		for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
4665 		    tsbinfop = tsbinfop->tsb_next) {
4666 			if (tsbinfop->tsb_flags & TSB_SWAPPED)
4667 				continue;
4668 			sfmmu_inv_tsb(tsbinfop->tsb_va,
4669 			    TSB_BYTES(tsbinfop->tsb_szc));
4670 		}
4671 	}
4672 
4673 	/*
4674 	 * Loop through all the hash buckets of HME blocks looking for matches.
4675 	 */
4676 	for (i = 0; i <= UHMEHASH_SZ; i++) {
4677 		hmebp = &uhme_hash[i];
4678 		SFMMU_HASH_LOCK(hmebp);
4679 		hmeblkp = hmebp->hmeblkp;
4680 		hblkpa = hmebp->hmeh_nextpa;
4681 		prevpa = 0;
4682 		pr_hblk = NULL;
4683 		while (hmeblkp) {
4684 			nx_hblk = hmeblkp->hblk_next;
4685 			nx_pa = hmeblkp->hblk_nextpa;
4686 
4687 			/*
4688 			 * skip if not this context, if a shadow block or
4689 			 * if the mapping is not in the requested range
4690 			 */
4691 			if (hmeblkp->hblk_tag.htag_id != sfmmup ||
4692 			    hmeblkp->hblk_shw_bit ||
4693 			    (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
4694 			    (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
4695 				pr_hblk = hmeblkp;
4696 				prevpa = hblkpa;
4697 				goto next_block;
4698 			}
4699 
4700 			/*
4701 			 * unload if there are any current valid mappings
4702 			 */
4703 			if (hmeblkp->hblk_vcnt != 0 ||
4704 			    hmeblkp->hblk_hmecnt != 0)
4705 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
4706 				    sa, ea, NULL, flags);
4707 
4708 			/*
4709 			 * on unmap we also release the HME block itself, once
4710 			 * all mappings are gone.
4711 			 */
4712 			if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
4713 			    !hmeblkp->hblk_vcnt &&
4714 			    !hmeblkp->hblk_hmecnt) {
4715 				ASSERT(!hmeblkp->hblk_lckcnt);
4716 				sfmmu_hblk_hash_rm(hmebp, hmeblkp,
4717 					prevpa, pr_hblk);
4718 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
4719 			} else {
4720 				pr_hblk = hmeblkp;
4721 				prevpa = hblkpa;
4722 			}
4723 
4724 			if (callback == NULL)
4725 				goto next_block;
4726 
4727 			/*
4728 			 * HME blocks may span more than one page, but we may be
4729 			 * unmapping only one page, so check for a smaller range
4730 			 * for the callback
4731 			 */
4732 			if (sa < startaddr)
4733 				sa = startaddr;
4734 			if (--ea > endaddr)
4735 				ea = endaddr - 1;
4736 
4737 			cb_sa[addr_cnt] = sa;
4738 			cb_ea[addr_cnt] = ea;
4739 			if (++addr_cnt == MAX_CB_ADDR) {
4740 				for (a = 0; a < MAX_CB_ADDR; ++a) {
4741 					callback->hcb_start_addr = cb_sa[a];
4742 					callback->hcb_end_addr = cb_ea[a];
4743 					callback->hcb_function(callback);
4744 				}
4745 				addr_cnt = 0;
4746 			}
4747 
4748 next_block:
4749 			hmeblkp = nx_hblk;
4750 			hblkpa = nx_pa;
4751 		}
4752 		SFMMU_HASH_UNLOCK(hmebp);
4753 	}
4754 
4755 	sfmmu_hblks_list_purge(&list);
4756 
4757 	for (a = 0; a < addr_cnt; ++a) {
4758 		callback->hcb_start_addr = cb_sa[a];
4759 		callback->hcb_end_addr = cb_ea[a];
4760 		callback->hcb_function(callback);
4761 	}
4762 
4763 	sfmmu_hat_exit(hatlockp);
4764 
4765 	/*
4766 	 * Check TSB and TLB page sizes if the process isn't exiting.
4767 	 */
4768 	if (!sfmmup->sfmmu_free)
4769 		sfmmu_check_page_sizes(sfmmup, 0);
4770 }
4771 
4772 
4773 /*
4774  * Unload all the mappings in the range [addr..addr+len). addr and len must
4775  * be MMU_PAGESIZE aligned.
4776  */
4777 
4778 extern struct seg *segkmap;
4779 #define	ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
4780 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
4781 
4782 
4783 void
4784 hat_unload_callback(
4785 	struct hat *sfmmup,
4786 	caddr_t addr,
4787 	size_t len,
4788 	uint_t flags,
4789 	hat_callback_t *callback)
4790 {
4791 	struct hmehash_bucket *hmebp;
4792 	hmeblk_tag hblktag;
4793 	int hmeshift, hashno, iskernel;
4794 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
4795 	caddr_t endaddr;
4796 	cpuset_t cpuset;
4797 	uint64_t hblkpa, prevpa;
4798 	int addr_count = 0;
4799 	int a;
4800 	caddr_t cb_start_addr[MAX_CB_ADDR];
4801 	caddr_t cb_end_addr[MAX_CB_ADDR];
4802 	int issegkmap = ISSEGKMAP(sfmmup, addr);
4803 	demap_range_t dmr, *dmrp;
4804 
4805 	if (sfmmup->sfmmu_xhat_provider) {
4806 		XHAT_UNLOAD_CALLBACK(sfmmup, addr, len, flags, callback);
4807 		return;
4808 	} else {
4809 		/*
4810 		 * This must be a CPU HAT. If the address space has
4811 		 * XHATs attached, unload the mappings for all of them,
4812 		 * just in case
4813 		 */
4814 		ASSERT(sfmmup->sfmmu_as != NULL);
4815 		if (sfmmup->sfmmu_as->a_xhat != NULL)
4816 			xhat_unload_callback_all(sfmmup->sfmmu_as, addr,
4817 			    len, flags, callback);
4818 	}
4819 
4820 	ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
4821 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4822 
4823 	ASSERT(sfmmup != NULL);
4824 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4825 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
4826 
4827 	/*
4828 	 * Probing through a large VA range (say 63 bits) will be slow, even
4829 	 * at 4 Meg steps between the probes. So, when the virtual address range
4830 	 * is very large, search the HME entries for what to unload.
4831 	 *
4832 	 *	len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
4833 	 *
4834 	 *	UHMEHASH_SZ is number of hash buckets to examine
4835 	 *
4836 	 */
4837 	if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
4838 		hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
4839 		return;
4840 	}
4841 
4842 	CPUSET_ZERO(cpuset);
4843 
4844 	/*
4845 	 * If the process is exiting, we can save a lot of fuss since
4846 	 * we'll flush the TLB when we free the ctx anyway.
4847 	 */
4848 	if (sfmmup->sfmmu_free)
4849 		dmrp = NULL;
4850 	else
4851 		dmrp = &dmr;
4852 
4853 	DEMAP_RANGE_INIT(sfmmup, dmrp);
4854 	endaddr = addr + len;
4855 	hblktag.htag_id = sfmmup;
4856 
4857 	/*
4858 	 * It is likely for the vm to call unload over a wide range of
4859 	 * addresses that are actually very sparsely populated by
4860 	 * translations.  In order to speed this up the sfmmu hat supports
4861 	 * the concept of shadow hmeblks. Dummy large page hmeblks that
4862 	 * correspond to actual small translations are allocated at tteload
4863 	 * time and are referred to as shadow hmeblks.  Now, during unload
4864 	 * time, we first check if we have a shadow hmeblk for that
4865 	 * translation.  The absence of one means the corresponding address
4866 	 * range is empty and can be skipped.
4867 	 *
4868 	 * The kernel is an exception to above statement and that is why
4869 	 * we don't use shadow hmeblks and hash starting from the smallest
4870 	 * page size.
4871 	 */
4872 	if (sfmmup == KHATID) {
4873 		iskernel = 1;
4874 		hashno = TTE64K;
4875 	} else {
4876 		iskernel = 0;
4877 		if (mmu_page_sizes == max_mmu_page_sizes) {
4878 			hashno = TTE256M;
4879 		} else {
4880 			hashno = TTE4M;
4881 		}
4882 	}
4883 	while (addr < endaddr) {
4884 		hmeshift = HME_HASH_SHIFT(hashno);
4885 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4886 		hblktag.htag_rehash = hashno;
4887 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4888 
4889 		SFMMU_HASH_LOCK(hmebp);
4890 
4891 		HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, pr_hblk,
4892 			prevpa, &list);
4893 		if (hmeblkp == NULL) {
4894 			/*
4895 			 * didn't find an hmeblk. skip the appropiate
4896 			 * address range.
4897 			 */
4898 			SFMMU_HASH_UNLOCK(hmebp);
4899 			if (iskernel) {
4900 				if (hashno < mmu_hashcnt) {
4901 					hashno++;
4902 					continue;
4903 				} else {
4904 					hashno = TTE64K;
4905 					addr = (caddr_t)roundup((uintptr_t)addr
4906 						+ 1, MMU_PAGESIZE64K);
4907 					continue;
4908 				}
4909 			}
4910 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
4911 				(1 << hmeshift));
4912 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
4913 				ASSERT(hashno == TTE64K);
4914 				continue;
4915 			}
4916 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
4917 				hashno = TTE512K;
4918 				continue;
4919 			}
4920 			if (mmu_page_sizes == max_mmu_page_sizes) {
4921 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
4922 					hashno = TTE4M;
4923 					continue;
4924 				}
4925 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
4926 					hashno = TTE32M;
4927 					continue;
4928 				}
4929 				hashno = TTE256M;
4930 				continue;
4931 			} else {
4932 				hashno = TTE4M;
4933 				continue;
4934 			}
4935 		}
4936 		ASSERT(hmeblkp);
4937 		if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
4938 			/*
4939 			 * If the valid count is zero we can skip the range
4940 			 * mapped by this hmeblk.
4941 			 * We free hblks in the case of HAT_UNMAP.  HAT_UNMAP
4942 			 * is used by segment drivers as a hint
4943 			 * that the mapping resource won't be used any longer.
4944 			 * The best example of this is during exit().
4945 			 */
4946 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
4947 				get_hblk_span(hmeblkp));
4948 			if ((flags & HAT_UNLOAD_UNMAP) ||
4949 			    (iskernel && !issegkmap)) {
4950 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
4951 				    pr_hblk);
4952 				sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
4953 			}
4954 			SFMMU_HASH_UNLOCK(hmebp);
4955 
4956 			if (iskernel) {
4957 				hashno = TTE64K;
4958 				continue;
4959 			}
4960 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
4961 				ASSERT(hashno == TTE64K);
4962 				continue;
4963 			}
4964 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
4965 				hashno = TTE512K;
4966 				continue;
4967 			}
4968 			if (mmu_page_sizes == max_mmu_page_sizes) {
4969 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
4970 					hashno = TTE4M;
4971 					continue;
4972 				}
4973 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
4974 					hashno = TTE32M;
4975 					continue;
4976 				}
4977 				hashno = TTE256M;
4978 				continue;
4979 			} else {
4980 				hashno = TTE4M;
4981 				continue;
4982 			}
4983 		}
4984 		if (hmeblkp->hblk_shw_bit) {
4985 			/*
4986 			 * If we encounter a shadow hmeblk we know there is
4987 			 * smaller sized hmeblks mapping the same address space.
4988 			 * Decrement the hash size and rehash.
4989 			 */
4990 			ASSERT(sfmmup != KHATID);
4991 			hashno--;
4992 			SFMMU_HASH_UNLOCK(hmebp);
4993 			continue;
4994 		}
4995 
4996 		/*
4997 		 * track callback address ranges.
4998 		 * only start a new range when it's not contiguous
4999 		 */
5000 		if (callback != NULL) {
5001 			if (addr_count > 0 &&
5002 			    addr == cb_end_addr[addr_count - 1])
5003 				--addr_count;
5004 			else
5005 				cb_start_addr[addr_count] = addr;
5006 		}
5007 
5008 		addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
5009 				dmrp, flags);
5010 
5011 		if (callback != NULL)
5012 			cb_end_addr[addr_count++] = addr;
5013 
5014 		if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
5015 		    !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5016 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
5017 			    pr_hblk);
5018 			sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
5019 		}
5020 		SFMMU_HASH_UNLOCK(hmebp);
5021 
5022 		/*
5023 		 * Notify our caller as to exactly which pages
5024 		 * have been unloaded. We do these in clumps,
5025 		 * to minimize the number of xt_sync()s that need to occur.
5026 		 */
5027 		if (callback != NULL && addr_count == MAX_CB_ADDR) {
5028 			DEMAP_RANGE_FLUSH(dmrp);
5029 			if (dmrp != NULL) {
5030 				cpuset = sfmmup->sfmmu_cpusran;
5031 				xt_sync(cpuset);
5032 			}
5033 
5034 			for (a = 0; a < MAX_CB_ADDR; ++a) {
5035 				callback->hcb_start_addr = cb_start_addr[a];
5036 				callback->hcb_end_addr = cb_end_addr[a];
5037 				callback->hcb_function(callback);
5038 			}
5039 			addr_count = 0;
5040 		}
5041 		if (iskernel) {
5042 			hashno = TTE64K;
5043 			continue;
5044 		}
5045 		if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5046 			ASSERT(hashno == TTE64K);
5047 			continue;
5048 		}
5049 		if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5050 			hashno = TTE512K;
5051 			continue;
5052 		}
5053 		if (mmu_page_sizes == max_mmu_page_sizes) {
5054 			if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5055 				hashno = TTE4M;
5056 				continue;
5057 			}
5058 			if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5059 				hashno = TTE32M;
5060 				continue;
5061 			}
5062 			hashno = TTE256M;
5063 		} else {
5064 			hashno = TTE4M;
5065 		}
5066 	}
5067 
5068 	sfmmu_hblks_list_purge(&list);
5069 	DEMAP_RANGE_FLUSH(dmrp);
5070 	if (dmrp != NULL) {
5071 		cpuset = sfmmup->sfmmu_cpusran;
5072 		xt_sync(cpuset);
5073 	}
5074 	if (callback && addr_count != 0) {
5075 		for (a = 0; a < addr_count; ++a) {
5076 			callback->hcb_start_addr = cb_start_addr[a];
5077 			callback->hcb_end_addr = cb_end_addr[a];
5078 			callback->hcb_function(callback);
5079 		}
5080 	}
5081 
5082 	/*
5083 	 * Check TSB and TLB page sizes if the process isn't exiting.
5084 	 */
5085 	if (!sfmmup->sfmmu_free)
5086 		sfmmu_check_page_sizes(sfmmup, 0);
5087 }
5088 
5089 /*
5090  * Unload all the mappings in the range [addr..addr+len). addr and len must
5091  * be MMU_PAGESIZE aligned.
5092  */
5093 void
5094 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
5095 {
5096 	if (sfmmup->sfmmu_xhat_provider) {
5097 		XHAT_UNLOAD(sfmmup, addr, len, flags);
5098 		return;
5099 	}
5100 	hat_unload_callback(sfmmup, addr, len, flags, NULL);
5101 }
5102 
5103 
5104 /*
5105  * Find the largest mapping size for this page.
5106  */
5107 static int
5108 fnd_mapping_sz(page_t *pp)
5109 {
5110 	int sz;
5111 	int p_index;
5112 
5113 	p_index = PP_MAPINDEX(pp);
5114 
5115 	sz = 0;
5116 	p_index >>= 1;	/* don't care about 8K bit */
5117 	for (; p_index; p_index >>= 1) {
5118 		sz++;
5119 	}
5120 
5121 	return (sz);
5122 }
5123 
5124 /*
5125  * This function unloads a range of addresses for an hmeblk.
5126  * It returns the next address to be unloaded.
5127  * It should be called with the hash lock held.
5128  */
5129 static caddr_t
5130 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5131 	caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
5132 {
5133 	tte_t	tte, ttemod;
5134 	struct	sf_hment *sfhmep;
5135 	int	ttesz;
5136 	long	ttecnt;
5137 	page_t *pp;
5138 	kmutex_t *pml;
5139 	int ret;
5140 	int use_demap_range;
5141 
5142 	ASSERT(in_hblk_range(hmeblkp, addr));
5143 	ASSERT(!hmeblkp->hblk_shw_bit);
5144 #ifdef DEBUG
5145 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5146 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
5147 		panic("sfmmu_hblk_unload: partial unload of large page");
5148 	}
5149 #endif /* DEBUG */
5150 
5151 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5152 	ttesz = get_hblk_ttesz(hmeblkp);
5153 
5154 	use_demap_range = (do_virtual_coloring &&
5155 				TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
5156 	if (use_demap_range) {
5157 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5158 	} else {
5159 		DEMAP_RANGE_FLUSH(dmrp);
5160 	}
5161 	ttecnt = 0;
5162 	HBLKTOHME(sfhmep, hmeblkp, addr);
5163 
5164 	while (addr < endaddr) {
5165 		pml = NULL;
5166 again:
5167 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5168 		if (TTE_IS_VALID(&tte)) {
5169 			pp = sfhmep->hme_page;
5170 			if (pp && pml == NULL) {
5171 				pml = sfmmu_mlist_enter(pp);
5172 			}
5173 
5174 			/*
5175 			 * Verify if hme still points to 'pp' now that
5176 			 * we have p_mapping lock.
5177 			 */
5178 			if (sfhmep->hme_page != pp) {
5179 				if (pp != NULL && sfhmep->hme_page != NULL) {
5180 					if (pml) {
5181 						sfmmu_mlist_exit(pml);
5182 					}
5183 					/* Re-start this iteration. */
5184 					continue;
5185 				}
5186 				ASSERT((pp != NULL) &&
5187 				    (sfhmep->hme_page == NULL));
5188 				goto tte_unloaded;
5189 			}
5190 
5191 			/*
5192 			 * This point on we have both HASH and p_mapping
5193 			 * lock.
5194 			 */
5195 			ASSERT(pp == sfhmep->hme_page);
5196 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5197 
5198 			/*
5199 			 * We need to loop on modify tte because it is
5200 			 * possible for pagesync to come along and
5201 			 * change the software bits beneath us.
5202 			 *
5203 			 * Page_unload can also invalidate the tte after
5204 			 * we read tte outside of p_mapping lock.
5205 			 */
5206 			ttemod = tte;
5207 
5208 			TTE_SET_INVALID(&ttemod);
5209 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5210 			    &sfhmep->hme_tte);
5211 
5212 			if (ret <= 0) {
5213 				if (TTE_IS_VALID(&tte)) {
5214 					goto again;
5215 				} else {
5216 					/*
5217 					 * We read in a valid pte, but it
5218 					 * is unloaded by page_unload.
5219 					 * hme_page has become NULL and
5220 					 * we hold no p_mapping lock.
5221 					 */
5222 					ASSERT(pp == NULL && pml == NULL);
5223 					goto tte_unloaded;
5224 				}
5225 			}
5226 
5227 			if (!(flags & HAT_UNLOAD_NOSYNC)) {
5228 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
5229 			}
5230 
5231 			/*
5232 			 * Ok- we invalidated the tte. Do the rest of the job.
5233 			 */
5234 			ttecnt++;
5235 
5236 			if (flags & HAT_UNLOAD_UNLOCK) {
5237 				ASSERT(hmeblkp->hblk_lckcnt > 0);
5238 				atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
5239 				HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
5240 			}
5241 
5242 			/*
5243 			 * Normally we would need to flush the page
5244 			 * from the virtual cache at this point in
5245 			 * order to prevent a potential cache alias
5246 			 * inconsistency.
5247 			 * The particular scenario we need to worry
5248 			 * about is:
5249 			 * Given:  va1 and va2 are two virtual address
5250 			 * that alias and map the same physical
5251 			 * address.
5252 			 * 1.	mapping exists from va1 to pa and data
5253 			 * has been read into the cache.
5254 			 * 2.	unload va1.
5255 			 * 3.	load va2 and modify data using va2.
5256 			 * 4	unload va2.
5257 			 * 5.	load va1 and reference data.  Unless we
5258 			 * flush the data cache when we unload we will
5259 			 * get stale data.
5260 			 * Fortunately, page coloring eliminates the
5261 			 * above scenario by remembering the color a
5262 			 * physical page was last or is currently
5263 			 * mapped to.  Now, we delay the flush until
5264 			 * the loading of translations.  Only when the
5265 			 * new translation is of a different color
5266 			 * are we forced to flush.
5267 			 */
5268 			if (use_demap_range) {
5269 				/*
5270 				 * Mark this page as needing a demap.
5271 				 */
5272 				DEMAP_RANGE_MARKPG(dmrp, addr);
5273 			} else {
5274 				if (do_virtual_coloring) {
5275 					sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
5276 					    sfmmup->sfmmu_free, 0);
5277 				} else {
5278 					pfn_t pfnum;
5279 
5280 					pfnum = TTE_TO_PFN(addr, &tte);
5281 					sfmmu_tlbcache_demap(addr, sfmmup,
5282 					    hmeblkp, pfnum, sfmmup->sfmmu_free,
5283 					    FLUSH_NECESSARY_CPUS,
5284 					    CACHE_FLUSH, 0);
5285 				}
5286 			}
5287 
5288 			if (pp) {
5289 				/*
5290 				 * Remove the hment from the mapping list
5291 				 */
5292 				ASSERT(hmeblkp->hblk_hmecnt > 0);
5293 
5294 				/*
5295 				 * Again, we cannot
5296 				 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
5297 				 */
5298 				HME_SUB(sfhmep, pp);
5299 				membar_stst();
5300 				atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
5301 			}
5302 
5303 			ASSERT(hmeblkp->hblk_vcnt > 0);
5304 			atomic_add_16(&hmeblkp->hblk_vcnt, -1);
5305 
5306 			ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
5307 			    !hmeblkp->hblk_lckcnt);
5308 
5309 			if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
5310 				if (PP_ISTNC(pp)) {
5311 					/*
5312 					 * If page was temporary
5313 					 * uncached, try to recache
5314 					 * it. Note that HME_SUB() was
5315 					 * called above so p_index and
5316 					 * mlist had been updated.
5317 					 */
5318 					conv_tnc(pp, ttesz);
5319 				} else if (pp->p_mapping == NULL) {
5320 					ASSERT(kpm_enable);
5321 					/*
5322 					 * Page is marked to be in VAC conflict
5323 					 * to an existing kpm mapping and/or is
5324 					 * kpm mapped using only the regular
5325 					 * pagesize.
5326 					 */
5327 					sfmmu_kpm_hme_unload(pp);
5328 				}
5329 			}
5330 		} else if ((pp = sfhmep->hme_page) != NULL) {
5331 				/*
5332 				 * TTE is invalid but the hme
5333 				 * still exists. let pageunload
5334 				 * complete its job.
5335 				 */
5336 				ASSERT(pml == NULL);
5337 				pml = sfmmu_mlist_enter(pp);
5338 				if (sfhmep->hme_page != NULL) {
5339 					sfmmu_mlist_exit(pml);
5340 					pml = NULL;
5341 					goto again;
5342 				}
5343 				ASSERT(sfhmep->hme_page == NULL);
5344 		} else if (hmeblkp->hblk_hmecnt != 0) {
5345 			/*
5346 			 * pageunload may have not finished decrementing
5347 			 * hblk_vcnt and hblk_hmecnt. Find page_t if any and
5348 			 * wait for pageunload to finish. Rely on pageunload
5349 			 * to decrement hblk_hmecnt after hblk_vcnt.
5350 			 */
5351 			pfn_t pfn = TTE_TO_TTEPFN(&tte);
5352 			ASSERT(pml == NULL);
5353 			if (pf_is_memory(pfn)) {
5354 				pp = page_numtopp_nolock(pfn);
5355 				if (pp != NULL) {
5356 					pml = sfmmu_mlist_enter(pp);
5357 					sfmmu_mlist_exit(pml);
5358 					pml = NULL;
5359 				}
5360 			}
5361 		}
5362 
5363 tte_unloaded:
5364 		/*
5365 		 * At this point, the tte we are looking at
5366 		 * should be unloaded, and hme has been unlinked
5367 		 * from page too. This is important because in
5368 		 * pageunload, it does ttesync() then HME_SUB.
5369 		 * We need to make sure HME_SUB has been completed
5370 		 * so we know ttesync() has been completed. Otherwise,
5371 		 * at exit time, after return from hat layer, VM will
5372 		 * release as structure which hat_setstat() (called
5373 		 * by ttesync()) needs.
5374 		 */
5375 #ifdef DEBUG
5376 		{
5377 			tte_t	dtte;
5378 
5379 			ASSERT(sfhmep->hme_page == NULL);
5380 
5381 			sfmmu_copytte(&sfhmep->hme_tte, &dtte);
5382 			ASSERT(!TTE_IS_VALID(&dtte));
5383 		}
5384 #endif
5385 
5386 		if (pml) {
5387 			sfmmu_mlist_exit(pml);
5388 		}
5389 
5390 		addr += TTEBYTES(ttesz);
5391 		sfhmep++;
5392 		DEMAP_RANGE_NEXTPG(dmrp);
5393 	}
5394 	if (ttecnt > 0)
5395 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
5396 	return (addr);
5397 }
5398 
5399 /*
5400  * Synchronize all the mappings in the range [addr..addr+len).
5401  * Can be called with clearflag having two states:
5402  * HAT_SYNC_DONTZERO means just return the rm stats
5403  * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
5404  */
5405 void
5406 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
5407 {
5408 	struct hmehash_bucket *hmebp;
5409 	hmeblk_tag hblktag;
5410 	int hmeshift, hashno = 1;
5411 	struct hme_blk *hmeblkp, *list = NULL;
5412 	caddr_t endaddr;
5413 	cpuset_t cpuset;
5414 
5415 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
5416 	ASSERT((sfmmup == ksfmmup) ||
5417 		AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
5418 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5419 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
5420 		(clearflag == HAT_SYNC_ZERORM));
5421 
5422 	CPUSET_ZERO(cpuset);
5423 
5424 	endaddr = addr + len;
5425 	hblktag.htag_id = sfmmup;
5426 	/*
5427 	 * Spitfire supports 4 page sizes.
5428 	 * Most pages are expected to be of the smallest page
5429 	 * size (8K) and these will not need to be rehashed. 64K
5430 	 * pages also don't need to be rehashed because the an hmeblk
5431 	 * spans 64K of address space. 512K pages might need 1 rehash and
5432 	 * and 4M pages 2 rehashes.
5433 	 */
5434 	while (addr < endaddr) {
5435 		hmeshift = HME_HASH_SHIFT(hashno);
5436 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5437 		hblktag.htag_rehash = hashno;
5438 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5439 
5440 		SFMMU_HASH_LOCK(hmebp);
5441 
5442 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
5443 		if (hmeblkp != NULL) {
5444 			/*
5445 			 * We've encountered a shadow hmeblk so skip the range
5446 			 * of the next smaller mapping size.
5447 			 */
5448 			if (hmeblkp->hblk_shw_bit) {
5449 				ASSERT(sfmmup != ksfmmup);
5450 				ASSERT(hashno > 1);
5451 				addr = (caddr_t)P2END((uintptr_t)addr,
5452 					    TTEBYTES(hashno - 1));
5453 			} else {
5454 				addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
5455 				    addr, endaddr, clearflag);
5456 			}
5457 			SFMMU_HASH_UNLOCK(hmebp);
5458 			hashno = 1;
5459 			continue;
5460 		}
5461 		SFMMU_HASH_UNLOCK(hmebp);
5462 
5463 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
5464 			/*
5465 			 * We have traversed the whole list and rehashed
5466 			 * if necessary without finding the address to sync.
5467 			 * This is ok so we increment the address by the
5468 			 * smallest hmeblk range for kernel mappings and the
5469 			 * largest hmeblk range, to account for shadow hmeblks,
5470 			 * for user mappings and continue.
5471 			 */
5472 			if (sfmmup == ksfmmup)
5473 				addr = (caddr_t)P2END((uintptr_t)addr,
5474 					    TTEBYTES(1));
5475 			else
5476 				addr = (caddr_t)P2END((uintptr_t)addr,
5477 					    TTEBYTES(hashno));
5478 			hashno = 1;
5479 		} else {
5480 			hashno++;
5481 		}
5482 	}
5483 	sfmmu_hblks_list_purge(&list);
5484 	cpuset = sfmmup->sfmmu_cpusran;
5485 	xt_sync(cpuset);
5486 }
5487 
5488 static caddr_t
5489 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5490 	caddr_t endaddr, int clearflag)
5491 {
5492 	tte_t	tte, ttemod;
5493 	struct sf_hment *sfhmep;
5494 	int ttesz;
5495 	struct page *pp;
5496 	kmutex_t *pml;
5497 	int ret;
5498 
5499 	ASSERT(hmeblkp->hblk_shw_bit == 0);
5500 
5501 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5502 
5503 	ttesz = get_hblk_ttesz(hmeblkp);
5504 	HBLKTOHME(sfhmep, hmeblkp, addr);
5505 
5506 	while (addr < endaddr) {
5507 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5508 		if (TTE_IS_VALID(&tte)) {
5509 			pml = NULL;
5510 			pp = sfhmep->hme_page;
5511 			if (pp) {
5512 				pml = sfmmu_mlist_enter(pp);
5513 			}
5514 			if (pp != sfhmep->hme_page) {
5515 				/*
5516 				 * tte most have been unloaded
5517 				 * underneath us.  Recheck
5518 				 */
5519 				ASSERT(pml);
5520 				sfmmu_mlist_exit(pml);
5521 				continue;
5522 			}
5523 
5524 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5525 
5526 			if (clearflag == HAT_SYNC_ZERORM) {
5527 				ttemod = tte;
5528 				TTE_CLR_RM(&ttemod);
5529 				ret = sfmmu_modifytte_try(&tte, &ttemod,
5530 				    &sfhmep->hme_tte);
5531 				if (ret < 0) {
5532 					if (pml) {
5533 						sfmmu_mlist_exit(pml);
5534 					}
5535 					continue;
5536 				}
5537 
5538 				if (ret > 0) {
5539 					sfmmu_tlb_demap(addr, sfmmup,
5540 						hmeblkp, 0, 0);
5541 				}
5542 			}
5543 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
5544 			if (pml) {
5545 				sfmmu_mlist_exit(pml);
5546 			}
5547 		}
5548 		addr += TTEBYTES(ttesz);
5549 		sfhmep++;
5550 	}
5551 	return (addr);
5552 }
5553 
5554 /*
5555  * This function will sync a tte to the page struct and it will
5556  * update the hat stats. Currently it allows us to pass a NULL pp
5557  * and we will simply update the stats.  We may want to change this
5558  * so we only keep stats for pages backed by pp's.
5559  */
5560 static void
5561 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
5562 {
5563 	uint_t rm = 0;
5564 	int   	sz;
5565 	pgcnt_t	npgs;
5566 
5567 	ASSERT(TTE_IS_VALID(ttep));
5568 
5569 	if (TTE_IS_NOSYNC(ttep)) {
5570 		return;
5571 	}
5572 
5573 	if (TTE_IS_REF(ttep))  {
5574 		rm = P_REF;
5575 	}
5576 	if (TTE_IS_MOD(ttep))  {
5577 		rm |= P_MOD;
5578 	}
5579 
5580 	if (rm == 0) {
5581 		return;
5582 	}
5583 
5584 	sz = TTE_CSZ(ttep);
5585 	if (sfmmup->sfmmu_rmstat) {
5586 		int i;
5587 		caddr_t	vaddr = addr;
5588 
5589 		for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) {
5590 			hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm);
5591 		}
5592 
5593 	}
5594 
5595 	/*
5596 	 * XXX I want to use cas to update nrm bits but they
5597 	 * currently belong in common/vm and not in hat where
5598 	 * they should be.
5599 	 * The nrm bits are protected by the same mutex as
5600 	 * the one that protects the page's mapping list.
5601 	 */
5602 	if (!pp)
5603 		return;
5604 	ASSERT(sfmmu_mlist_held(pp));
5605 	/*
5606 	 * If the tte is for a large page, we need to sync all the
5607 	 * pages covered by the tte.
5608 	 */
5609 	if (sz != TTE8K) {
5610 		ASSERT(pp->p_szc != 0);
5611 		pp = PP_GROUPLEADER(pp, sz);
5612 		ASSERT(sfmmu_mlist_held(pp));
5613 	}
5614 
5615 	/* Get number of pages from tte size. */
5616 	npgs = TTEPAGES(sz);
5617 
5618 	do {
5619 		ASSERT(pp);
5620 		ASSERT(sfmmu_mlist_held(pp));
5621 		if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
5622 		    ((rm & P_MOD) != 0 && !PP_ISMOD(pp)))
5623 			hat_page_setattr(pp, rm);
5624 
5625 		/*
5626 		 * Are we done? If not, we must have a large mapping.
5627 		 * For large mappings we need to sync the rest of the pages
5628 		 * covered by this tte; goto the next page.
5629 		 */
5630 	} while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
5631 }
5632 
5633 /*
5634  * Execute pre-callback handler of each pa_hment linked to pp
5635  *
5636  * Inputs:
5637  *   flag: either HAT_PRESUSPEND or HAT_SUSPEND.
5638  *   capture_cpus: pointer to return value (below)
5639  *
5640  * Returns:
5641  *   Propagates the subsystem callback return values back to the caller;
5642  *   returns 0 on success.  If capture_cpus is non-NULL, the value returned
5643  *   is zero if all of the pa_hments are of a type that do not require
5644  *   capturing CPUs prior to suspending the mapping, else it is 1.
5645  */
5646 static int
5647 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
5648 {
5649 	struct sf_hment	*sfhmep;
5650 	struct pa_hment *pahmep;
5651 	int (*f)(caddr_t, uint_t, uint_t, void *);
5652 	int		ret;
5653 	id_t		id;
5654 	int		locked = 0;
5655 	kmutex_t	*pml;
5656 
5657 	ASSERT(PAGE_EXCL(pp));
5658 	if (!sfmmu_mlist_held(pp)) {
5659 		pml = sfmmu_mlist_enter(pp);
5660 		locked = 1;
5661 	}
5662 
5663 	if (capture_cpus)
5664 		*capture_cpus = 0;
5665 
5666 top:
5667 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5668 		/*
5669 		 * skip sf_hments corresponding to VA<->PA mappings;
5670 		 * for pa_hment's, hme_tte.ll is zero
5671 		 */
5672 		if (!IS_PAHME(sfhmep))
5673 			continue;
5674 
5675 		pahmep = sfhmep->hme_data;
5676 		ASSERT(pahmep != NULL);
5677 
5678 		/*
5679 		 * skip if pre-handler has been called earlier in this loop
5680 		 */
5681 		if (pahmep->flags & flag)
5682 			continue;
5683 
5684 		id = pahmep->cb_id;
5685 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
5686 		if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
5687 			*capture_cpus = 1;
5688 		if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
5689 			pahmep->flags |= flag;
5690 			continue;
5691 		}
5692 
5693 		/*
5694 		 * Drop the mapping list lock to avoid locking order issues.
5695 		 */
5696 		if (locked)
5697 			sfmmu_mlist_exit(pml);
5698 
5699 		ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
5700 		if (ret != 0)
5701 			return (ret);	/* caller must do the cleanup */
5702 
5703 		if (locked) {
5704 			pml = sfmmu_mlist_enter(pp);
5705 			pahmep->flags |= flag;
5706 			goto top;
5707 		}
5708 
5709 		pahmep->flags |= flag;
5710 	}
5711 
5712 	if (locked)
5713 		sfmmu_mlist_exit(pml);
5714 
5715 	return (0);
5716 }
5717 
5718 /*
5719  * Execute post-callback handler of each pa_hment linked to pp
5720  *
5721  * Same overall assumptions and restrictions apply as for
5722  * hat_pageprocess_precallbacks().
5723  */
5724 static void
5725 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
5726 {
5727 	pfn_t pgpfn = pp->p_pagenum;
5728 	pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
5729 	pfn_t newpfn;
5730 	struct sf_hment *sfhmep;
5731 	struct pa_hment *pahmep;
5732 	int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
5733 	id_t	id;
5734 	int	locked = 0;
5735 	kmutex_t *pml;
5736 
5737 	ASSERT(PAGE_EXCL(pp));
5738 	if (!sfmmu_mlist_held(pp)) {
5739 		pml = sfmmu_mlist_enter(pp);
5740 		locked = 1;
5741 	}
5742 
5743 top:
5744 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5745 		/*
5746 		 * skip sf_hments corresponding to VA<->PA mappings;
5747 		 * for pa_hment's, hme_tte.ll is zero
5748 		 */
5749 		if (!IS_PAHME(sfhmep))
5750 			continue;
5751 
5752 		pahmep = sfhmep->hme_data;
5753 		ASSERT(pahmep != NULL);
5754 
5755 		if ((pahmep->flags & flag) == 0)
5756 			continue;
5757 
5758 		pahmep->flags &= ~flag;
5759 
5760 		id = pahmep->cb_id;
5761 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
5762 		if ((f = sfmmu_cb_table[id].posthandler) == NULL)
5763 			continue;
5764 
5765 		/*
5766 		 * Convert the base page PFN into the constituent PFN
5767 		 * which is needed by the callback handler.
5768 		 */
5769 		newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
5770 
5771 		/*
5772 		 * Drop the mapping list lock to avoid locking order issues.
5773 		 */
5774 		if (locked)
5775 			sfmmu_mlist_exit(pml);
5776 
5777 		if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
5778 		    != 0)
5779 			panic("sfmmu: posthandler failed");
5780 
5781 		if (locked) {
5782 			pml = sfmmu_mlist_enter(pp);
5783 			goto top;
5784 		}
5785 	}
5786 
5787 	if (locked)
5788 		sfmmu_mlist_exit(pml);
5789 }
5790 
5791 /*
5792  * Suspend locked kernel mapping
5793  */
5794 void
5795 hat_pagesuspend(struct page *pp)
5796 {
5797 	struct sf_hment *sfhmep;
5798 	sfmmu_t *sfmmup;
5799 	tte_t tte, ttemod;
5800 	struct hme_blk *hmeblkp;
5801 	caddr_t addr;
5802 	int index, cons;
5803 	cpuset_t cpuset;
5804 
5805 	ASSERT(PAGE_EXCL(pp));
5806 	ASSERT(sfmmu_mlist_held(pp));
5807 
5808 	mutex_enter(&kpr_suspendlock);
5809 
5810 	/*
5811 	 * Call into dtrace to tell it we're about to suspend a
5812 	 * kernel mapping. This prevents us from running into issues
5813 	 * with probe context trying to touch a suspended page
5814 	 * in the relocation codepath itself.
5815 	 */
5816 	if (dtrace_kreloc_init)
5817 		(*dtrace_kreloc_init)();
5818 
5819 	index = PP_MAPINDEX(pp);
5820 	cons = TTE8K;
5821 
5822 retry:
5823 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
5824 
5825 		if (IS_PAHME(sfhmep))
5826 			continue;
5827 
5828 		if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
5829 			continue;
5830 
5831 		/*
5832 		 * Loop until we successfully set the suspend bit in
5833 		 * the TTE.
5834 		 */
5835 again:
5836 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5837 		ASSERT(TTE_IS_VALID(&tte));
5838 
5839 		ttemod = tte;
5840 		TTE_SET_SUSPEND(&ttemod);
5841 		if (sfmmu_modifytte_try(&tte, &ttemod,
5842 		    &sfhmep->hme_tte) < 0)
5843 			goto again;
5844 
5845 		/*
5846 		 * Invalidate TSB entry
5847 		 */
5848 		hmeblkp = sfmmu_hmetohblk(sfhmep);
5849 
5850 		sfmmup = hblktosfmmu(hmeblkp);
5851 		ASSERT(sfmmup == ksfmmup);
5852 
5853 		addr = tte_to_vaddr(hmeblkp, tte);
5854 
5855 		/*
5856 		 * No need to make sure that the TSB for this sfmmu is
5857 		 * not being relocated since it is ksfmmup and thus it
5858 		 * will never be relocated.
5859 		 */
5860 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
5861 
5862 		/*
5863 		 * Update xcall stats
5864 		 */
5865 		cpuset = cpu_ready_set;
5866 		CPUSET_DEL(cpuset, CPU->cpu_id);
5867 
5868 		/* LINTED: constant in conditional context */
5869 		SFMMU_XCALL_STATS(KCONTEXT);
5870 
5871 		/*
5872 		 * Flush TLB entry on remote CPU's
5873 		 */
5874 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, KCONTEXT);
5875 		xt_sync(cpuset);
5876 
5877 		/*
5878 		 * Flush TLB entry on local CPU
5879 		 */
5880 		vtag_flushpage(addr, KCONTEXT);
5881 	}
5882 
5883 	while (index != 0) {
5884 		index = index >> 1;
5885 		if (index != 0)
5886 			cons++;
5887 		if (index & 0x1) {
5888 			pp = PP_GROUPLEADER(pp, cons);
5889 			goto retry;
5890 		}
5891 	}
5892 }
5893 
5894 #ifdef	DEBUG
5895 
5896 #define	N_PRLE	1024
5897 struct prle {
5898 	page_t *targ;
5899 	page_t *repl;
5900 	int status;
5901 	int pausecpus;
5902 	hrtime_t whence;
5903 };
5904 
5905 static struct prle page_relocate_log[N_PRLE];
5906 static int prl_entry;
5907 static kmutex_t prl_mutex;
5908 
5909 #define	PAGE_RELOCATE_LOG(t, r, s, p)					\
5910 	mutex_enter(&prl_mutex);					\
5911 	page_relocate_log[prl_entry].targ = *(t);			\
5912 	page_relocate_log[prl_entry].repl = *(r);			\
5913 	page_relocate_log[prl_entry].status = (s);			\
5914 	page_relocate_log[prl_entry].pausecpus = (p);			\
5915 	page_relocate_log[prl_entry].whence = gethrtime();		\
5916 	prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1;	\
5917 	mutex_exit(&prl_mutex);
5918 
5919 #else	/* !DEBUG */
5920 #define	PAGE_RELOCATE_LOG(t, r, s, p)
5921 #endif
5922 
5923 /*
5924  * Core Kernel Page Relocation Algorithm
5925  *
5926  * Input:
5927  *
5928  * target : 	constituent pages are SE_EXCL locked.
5929  * replacement:	constituent pages are SE_EXCL locked.
5930  *
5931  * Output:
5932  *
5933  * nrelocp:	number of pages relocated
5934  */
5935 int
5936 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
5937 {
5938 	page_t		*targ, *repl;
5939 	page_t		*tpp, *rpp;
5940 	kmutex_t	*low, *high;
5941 	spgcnt_t	npages, i;
5942 	page_t		*pl = NULL;
5943 	int		old_pil;
5944 	cpuset_t	cpuset;
5945 	int		cap_cpus;
5946 	int		ret;
5947 
5948 	if (hat_kpr_enabled == 0 || !kcage_on || PP_ISNORELOC(*target)) {
5949 		PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
5950 		return (EAGAIN);
5951 	}
5952 
5953 	mutex_enter(&kpr_mutex);
5954 	kreloc_thread = curthread;
5955 
5956 	targ = *target;
5957 	repl = *replacement;
5958 	ASSERT(repl != NULL);
5959 	ASSERT(targ->p_szc == repl->p_szc);
5960 
5961 	npages = page_get_pagecnt(targ->p_szc);
5962 
5963 	/*
5964 	 * unload VA<->PA mappings that are not locked
5965 	 */
5966 	tpp = targ;
5967 	for (i = 0; i < npages; i++) {
5968 		(void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
5969 		tpp++;
5970 	}
5971 
5972 	/*
5973 	 * Do "presuspend" callbacks, in a context from which we can still
5974 	 * block as needed. Note that we don't hold the mapping list lock
5975 	 * of "targ" at this point due to potential locking order issues;
5976 	 * we assume that between the hat_pageunload() above and holding
5977 	 * the SE_EXCL lock that the mapping list *cannot* change at this
5978 	 * point.
5979 	 */
5980 	ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
5981 	if (ret != 0) {
5982 		/*
5983 		 * EIO translates to fatal error, for all others cleanup
5984 		 * and return EAGAIN.
5985 		 */
5986 		ASSERT(ret != EIO);
5987 		hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
5988 		PAGE_RELOCATE_LOG(target, replacement, ret, -1);
5989 		kreloc_thread = NULL;
5990 		mutex_exit(&kpr_mutex);
5991 		return (EAGAIN);
5992 	}
5993 
5994 	/*
5995 	 * acquire p_mapping list lock for both the target and replacement
5996 	 * root pages.
5997 	 *
5998 	 * low and high refer to the need to grab the mlist locks in a
5999 	 * specific order in order to prevent race conditions.  Thus the
6000 	 * lower lock must be grabbed before the higher lock.
6001 	 *
6002 	 * This will block hat_unload's accessing p_mapping list.  Since
6003 	 * we have SE_EXCL lock, hat_memload and hat_pageunload will be
6004 	 * blocked.  Thus, no one else will be accessing the p_mapping list
6005 	 * while we suspend and reload the locked mapping below.
6006 	 */
6007 	tpp = targ;
6008 	rpp = repl;
6009 	sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
6010 
6011 	kpreempt_disable();
6012 
6013 	/*
6014 	 * If the replacement page is of a different virtual color
6015 	 * than the page it is replacing, we need to handle the VAC
6016 	 * consistency for it just as we would if we were setting up
6017 	 * a new mapping to a page.
6018 	 */
6019 	if ((tpp->p_szc == 0) && (PP_GET_VCOLOR(rpp) != NO_VCOLOR)) {
6020 		if (tpp->p_vcolor != rpp->p_vcolor) {
6021 			sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
6022 			    rpp->p_pagenum);
6023 		}
6024 	}
6025 
6026 	/*
6027 	 * We raise our PIL to 13 so that we don't get captured by
6028 	 * another CPU or pinned by an interrupt thread.  We can't go to
6029 	 * PIL 14 since the nexus driver(s) may need to interrupt at
6030 	 * that level in the case of IOMMU pseudo mappings.
6031 	 */
6032 	cpuset = cpu_ready_set;
6033 	CPUSET_DEL(cpuset, CPU->cpu_id);
6034 	if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
6035 		old_pil = splr(XCALL_PIL);
6036 	} else {
6037 		old_pil = -1;
6038 		xc_attention(cpuset);
6039 	}
6040 	ASSERT(getpil() == XCALL_PIL);
6041 
6042 	/*
6043 	 * Now do suspend callbacks. In the case of an IOMMU mapping
6044 	 * this will suspend all DMA activity to the page while it is
6045 	 * being relocated. Since we are well above LOCK_LEVEL and CPUs
6046 	 * may be captured at this point we should have acquired any needed
6047 	 * locks in the presuspend callback.
6048 	 */
6049 	ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
6050 	if (ret != 0) {
6051 		repl = targ;
6052 		goto suspend_fail;
6053 	}
6054 
6055 	/*
6056 	 * Raise the PIL yet again, this time to block all high-level
6057 	 * interrupts on this CPU. This is necessary to prevent an
6058 	 * interrupt routine from pinning the thread which holds the
6059 	 * mapping suspended and then touching the suspended page.
6060 	 *
6061 	 * Once the page is suspended we also need to be careful to
6062 	 * avoid calling any functions which touch any seg_kmem memory
6063 	 * since that memory may be backed by the very page we are
6064 	 * relocating in here!
6065 	 */
6066 	hat_pagesuspend(targ);
6067 
6068 	/*
6069 	 * Now that we are confident everybody has stopped using this page,
6070 	 * copy the page contents.  Note we use a physical copy to prevent
6071 	 * locking issues and to avoid fpRAS because we can't handle it in
6072 	 * this context.
6073 	 */
6074 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6075 		/*
6076 		 * Copy the contents of the page.
6077 		 */
6078 		ppcopy_kernel(tpp, rpp);
6079 	}
6080 
6081 	tpp = targ;
6082 	rpp = repl;
6083 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6084 		/*
6085 		 * Copy attributes.  VAC consistency was handled above,
6086 		 * if required.
6087 		 */
6088 		rpp->p_nrm = tpp->p_nrm;
6089 		tpp->p_nrm = 0;
6090 		rpp->p_index = tpp->p_index;
6091 		tpp->p_index = 0;
6092 		rpp->p_vcolor = tpp->p_vcolor;
6093 	}
6094 
6095 	/*
6096 	 * First, unsuspend the page, if we set the suspend bit, and transfer
6097 	 * the mapping list from the target page to the replacement page.
6098 	 * Next process postcallbacks; since pa_hment's are linked only to the
6099 	 * p_mapping list of root page, we don't iterate over the constituent
6100 	 * pages.
6101 	 */
6102 	hat_pagereload(targ, repl);
6103 
6104 suspend_fail:
6105 	hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
6106 
6107 	/*
6108 	 * Now lower our PIL and release any captured CPUs since we
6109 	 * are out of the "danger zone".  After this it will again be
6110 	 * safe to acquire adaptive mutex locks, or to drop them...
6111 	 */
6112 	if (old_pil != -1) {
6113 		splx(old_pil);
6114 	} else {
6115 		xc_dismissed(cpuset);
6116 	}
6117 
6118 	kpreempt_enable();
6119 
6120 	sfmmu_mlist_reloc_exit(low, high);
6121 
6122 	/*
6123 	 * Postsuspend callbacks should drop any locks held across
6124 	 * the suspend callbacks.  As before, we don't hold the mapping
6125 	 * list lock at this point.. our assumption is that the mapping
6126 	 * list still can't change due to our holding SE_EXCL lock and
6127 	 * there being no unlocked mappings left. Hence the restriction
6128 	 * on calling context to hat_delete_callback()
6129 	 */
6130 	hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
6131 	if (ret != 0) {
6132 		/*
6133 		 * The second presuspend call failed: we got here through
6134 		 * the suspend_fail label above.
6135 		 */
6136 		ASSERT(ret != EIO);
6137 		PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
6138 		kreloc_thread = NULL;
6139 		mutex_exit(&kpr_mutex);
6140 		return (EAGAIN);
6141 	}
6142 
6143 	/*
6144 	 * Now that we're out of the performance critical section we can
6145 	 * take care of updating the hash table, since we still
6146 	 * hold all the pages locked SE_EXCL at this point we
6147 	 * needn't worry about things changing out from under us.
6148 	 */
6149 	tpp = targ;
6150 	rpp = repl;
6151 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6152 
6153 		/*
6154 		 * replace targ with replacement in page_hash table
6155 		 */
6156 		targ = tpp;
6157 		page_relocate_hash(rpp, targ);
6158 
6159 		/*
6160 		 * concatenate target; caller of platform_page_relocate()
6161 		 * expects target to be concatenated after returning.
6162 		 */
6163 		ASSERT(targ->p_next == targ);
6164 		ASSERT(targ->p_prev == targ);
6165 		page_list_concat(&pl, &targ);
6166 	}
6167 
6168 	ASSERT(*target == pl);
6169 	*nrelocp = npages;
6170 	PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
6171 	kreloc_thread = NULL;
6172 	mutex_exit(&kpr_mutex);
6173 	return (0);
6174 }
6175 
6176 /*
6177  * Called when stray pa_hments are found attached to a page which is
6178  * being freed.  Notify the subsystem which attached the pa_hment of
6179  * the error if it registered a suitable handler, else panic.
6180  */
6181 static void
6182 sfmmu_pahment_leaked(struct pa_hment *pahmep)
6183 {
6184 	id_t cb_id = pahmep->cb_id;
6185 
6186 	ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
6187 	if (sfmmu_cb_table[cb_id].errhandler != NULL) {
6188 		if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
6189 		    HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
6190 			return;		/* non-fatal */
6191 	}
6192 	panic("pa_hment leaked: 0x%p", pahmep);
6193 }
6194 
6195 /*
6196  * Remove all mappings to page 'pp'.
6197  */
6198 int
6199 hat_pageunload(struct page *pp, uint_t forceflag)
6200 {
6201 	struct page *origpp = pp;
6202 	struct sf_hment *sfhme, *tmphme;
6203 	struct hme_blk *hmeblkp;
6204 	kmutex_t *pml, *pmtx;
6205 	cpuset_t cpuset, tset;
6206 	int index, cons;
6207 	int xhme_blks;
6208 	int pa_hments;
6209 
6210 	ASSERT(PAGE_EXCL(pp));
6211 
6212 retry_xhat:
6213 	tmphme = NULL;
6214 	xhme_blks = 0;
6215 	pa_hments = 0;
6216 	CPUSET_ZERO(cpuset);
6217 
6218 	pml = sfmmu_mlist_enter(pp);
6219 
6220 	if (pp->p_kpmref)
6221 		sfmmu_kpm_pageunload(pp);
6222 	ASSERT(!PP_ISMAPPED_KPM(pp));
6223 
6224 	index = PP_MAPINDEX(pp);
6225 	cons = TTE8K;
6226 retry:
6227 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6228 		tmphme = sfhme->hme_next;
6229 
6230 		if (IS_PAHME(sfhme)) {
6231 			ASSERT(sfhme->hme_data != NULL);
6232 			pa_hments++;
6233 			continue;
6234 		}
6235 
6236 		hmeblkp = sfmmu_hmetohblk(sfhme);
6237 		if (hmeblkp->hblk_xhat_bit) {
6238 			struct xhat_hme_blk *xblk =
6239 			    (struct xhat_hme_blk *)hmeblkp;
6240 
6241 			(void) XHAT_PAGEUNLOAD(xblk->xhat_hme_blk_hat,
6242 			    pp, forceflag, XBLK2PROVBLK(xblk));
6243 
6244 			xhme_blks = 1;
6245 			continue;
6246 		}
6247 
6248 		/*
6249 		 * If there are kernel mappings don't unload them, they will
6250 		 * be suspended.
6251 		 */
6252 		if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
6253 		    hmeblkp->hblk_tag.htag_id == ksfmmup)
6254 			continue;
6255 
6256 		tset = sfmmu_pageunload(pp, sfhme, cons);
6257 		CPUSET_OR(cpuset, tset);
6258 	}
6259 
6260 	while (index != 0) {
6261 		index = index >> 1;
6262 		if (index != 0)
6263 			cons++;
6264 		if (index & 0x1) {
6265 			/* Go to leading page */
6266 			pp = PP_GROUPLEADER(pp, cons);
6267 			ASSERT(sfmmu_mlist_held(pp));
6268 			goto retry;
6269 		}
6270 	}
6271 
6272 	/*
6273 	 * cpuset may be empty if the page was only mapped by segkpm,
6274 	 * in which case we won't actually cross-trap.
6275 	 */
6276 	xt_sync(cpuset);
6277 
6278 	/*
6279 	 * The page should have no mappings at this point, unless
6280 	 * we were called from hat_page_relocate() in which case we
6281 	 * leave the locked mappings which will be suspended later.
6282 	 */
6283 	ASSERT(!PP_ISMAPPED(origpp) || xhme_blks || pa_hments ||
6284 	    (forceflag == SFMMU_KERNEL_RELOC));
6285 
6286 	if (PP_ISTNC(pp)) {
6287 		if (cons == TTE8K) {
6288 			pmtx = sfmmu_page_enter(pp);
6289 			PP_CLRTNC(pp);
6290 			sfmmu_page_exit(pmtx);
6291 		} else {
6292 			conv_tnc(pp, cons);
6293 		}
6294 	}
6295 
6296 	if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
6297 		/*
6298 		 * Unlink any pa_hments and free them, calling back
6299 		 * the responsible subsystem to notify it of the error.
6300 		 * This can occur in situations such as drivers leaking
6301 		 * DMA handles: naughty, but common enough that we'd like
6302 		 * to keep the system running rather than bringing it
6303 		 * down with an obscure error like "pa_hment leaked"
6304 		 * which doesn't aid the user in debugging their driver.
6305 		 */
6306 		for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6307 			tmphme = sfhme->hme_next;
6308 			if (IS_PAHME(sfhme)) {
6309 				struct pa_hment *pahmep = sfhme->hme_data;
6310 				sfmmu_pahment_leaked(pahmep);
6311 				HME_SUB(sfhme, pp);
6312 				kmem_cache_free(pa_hment_cache, pahmep);
6313 			}
6314 		}
6315 
6316 		ASSERT(!PP_ISMAPPED(origpp) || xhme_blks);
6317 	}
6318 
6319 	sfmmu_mlist_exit(pml);
6320 
6321 	/*
6322 	 * XHAT may not have finished unloading pages
6323 	 * because some other thread was waiting for
6324 	 * mlist lock and XHAT_PAGEUNLOAD let it do
6325 	 * the job.
6326 	 */
6327 	if (xhme_blks) {
6328 		pp = origpp;
6329 		goto retry_xhat;
6330 	}
6331 
6332 	return (0);
6333 }
6334 
6335 static cpuset_t
6336 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
6337 {
6338 	struct hme_blk *hmeblkp;
6339 	sfmmu_t *sfmmup;
6340 	tte_t tte, ttemod;
6341 #ifdef DEBUG
6342 	tte_t orig_old;
6343 #endif /* DEBUG */
6344 	caddr_t addr;
6345 	int ttesz;
6346 	int ret;
6347 	cpuset_t cpuset;
6348 
6349 	ASSERT(pp != NULL);
6350 	ASSERT(sfmmu_mlist_held(pp));
6351 	ASSERT(pp->p_vnode != &kvp);
6352 
6353 	CPUSET_ZERO(cpuset);
6354 
6355 	hmeblkp = sfmmu_hmetohblk(sfhme);
6356 
6357 readtte:
6358 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6359 	if (TTE_IS_VALID(&tte)) {
6360 		sfmmup = hblktosfmmu(hmeblkp);
6361 		ttesz = get_hblk_ttesz(hmeblkp);
6362 		/*
6363 		 * Only unload mappings of 'cons' size.
6364 		 */
6365 		if (ttesz != cons)
6366 			return (cpuset);
6367 
6368 		/*
6369 		 * Note that we have p_mapping lock, but no hash lock here.
6370 		 * hblk_unload() has to have both hash lock AND p_mapping
6371 		 * lock before it tries to modify tte. So, the tte could
6372 		 * not become invalid in the sfmmu_modifytte_try() below.
6373 		 */
6374 		ttemod = tte;
6375 #ifdef DEBUG
6376 		orig_old = tte;
6377 #endif /* DEBUG */
6378 
6379 		TTE_SET_INVALID(&ttemod);
6380 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
6381 		if (ret < 0) {
6382 #ifdef DEBUG
6383 			/* only R/M bits can change. */
6384 			chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
6385 #endif /* DEBUG */
6386 			goto readtte;
6387 		}
6388 
6389 		if (ret == 0) {
6390 			panic("pageunload: cas failed?");
6391 		}
6392 
6393 		addr = tte_to_vaddr(hmeblkp, tte);
6394 
6395 		sfmmu_ttesync(sfmmup, addr, &tte, pp);
6396 
6397 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -1);
6398 
6399 		/*
6400 		 * We need to flush the page from the virtual cache
6401 		 * in order to prevent a virtual cache alias
6402 		 * inconsistency. The particular scenario we need
6403 		 * to worry about is:
6404 		 * Given:  va1 and va2 are two virtual address that
6405 		 * alias and will map the same physical address.
6406 		 * 1.	mapping exists from va1 to pa and data has
6407 		 *	been read into the cache.
6408 		 * 2.	unload va1.
6409 		 * 3.	load va2 and modify data using va2.
6410 		 * 4	unload va2.
6411 		 * 5.	load va1 and reference data.  Unless we flush
6412 		 *	the data cache when we unload we will get
6413 		 *	stale data.
6414 		 * This scenario is taken care of by using virtual
6415 		 * page coloring.
6416 		 */
6417 		if (sfmmup->sfmmu_ismhat) {
6418 			/*
6419 			 * Flush TSBs, TLBs and caches
6420 			 * of every process
6421 			 * sharing this ism segment.
6422 			 */
6423 			sfmmu_hat_lock_all();
6424 			mutex_enter(&ism_mlist_lock);
6425 			kpreempt_disable();
6426 			if (do_virtual_coloring)
6427 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
6428 					pp->p_pagenum, CACHE_NO_FLUSH);
6429 			else
6430 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
6431 					pp->p_pagenum, CACHE_FLUSH);
6432 			kpreempt_enable();
6433 			mutex_exit(&ism_mlist_lock);
6434 			sfmmu_hat_unlock_all();
6435 			cpuset = cpu_ready_set;
6436 		} else if (do_virtual_coloring) {
6437 			sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6438 			cpuset = sfmmup->sfmmu_cpusran;
6439 		} else {
6440 			sfmmu_tlbcache_demap(addr, sfmmup, hmeblkp,
6441 				pp->p_pagenum, 0, FLUSH_NECESSARY_CPUS,
6442 				CACHE_FLUSH, 0);
6443 			cpuset = sfmmup->sfmmu_cpusran;
6444 		}
6445 
6446 		/*
6447 		 * Hme_sub has to run after ttesync() and a_rss update.
6448 		 * See hblk_unload().
6449 		 */
6450 		HME_SUB(sfhme, pp);
6451 		membar_stst();
6452 
6453 		/*
6454 		 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
6455 		 * since pteload may have done a HME_ADD() right after
6456 		 * we did the HME_SUB() above. Hmecnt is now maintained
6457 		 * by cas only. no lock guranteed its value. The only
6458 		 * gurantee we have is the hmecnt should not be less than
6459 		 * what it should be so the hblk will not be taken away.
6460 		 * It's also important that we decremented the hmecnt after
6461 		 * we are done with hmeblkp so that this hmeblk won't be
6462 		 * stolen.
6463 		 */
6464 		ASSERT(hmeblkp->hblk_hmecnt > 0);
6465 		ASSERT(hmeblkp->hblk_vcnt > 0);
6466 		atomic_add_16(&hmeblkp->hblk_vcnt, -1);
6467 		atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
6468 		/*
6469 		 * This is bug 4063182.
6470 		 * XXX: fixme
6471 		 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
6472 		 *	!hmeblkp->hblk_lckcnt);
6473 		 */
6474 	} else {
6475 		panic("invalid tte? pp %p &tte %p",
6476 		    (void *)pp, (void *)&tte);
6477 	}
6478 
6479 	return (cpuset);
6480 }
6481 
6482 /*
6483  * While relocating a kernel page, this function will move the mappings
6484  * from tpp to dpp and modify any associated data with these mappings.
6485  * It also unsuspends the suspended kernel mapping.
6486  */
6487 static void
6488 hat_pagereload(struct page *tpp, struct page *dpp)
6489 {
6490 	struct sf_hment *sfhme;
6491 	tte_t tte, ttemod;
6492 	int index, cons;
6493 
6494 	ASSERT(getpil() == PIL_MAX);
6495 	ASSERT(sfmmu_mlist_held(tpp));
6496 	ASSERT(sfmmu_mlist_held(dpp));
6497 
6498 	index = PP_MAPINDEX(tpp);
6499 	cons = TTE8K;
6500 
6501 	/* Update real mappings to the page */
6502 retry:
6503 	for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
6504 		if (IS_PAHME(sfhme))
6505 			continue;
6506 		sfmmu_copytte(&sfhme->hme_tte, &tte);
6507 		ttemod = tte;
6508 
6509 		/*
6510 		 * replace old pfn with new pfn in TTE
6511 		 */
6512 		PFN_TO_TTE(ttemod, dpp->p_pagenum);
6513 
6514 		/*
6515 		 * clear suspend bit
6516 		 */
6517 		ASSERT(TTE_IS_SUSPEND(&ttemod));
6518 		TTE_CLR_SUSPEND(&ttemod);
6519 
6520 		if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
6521 			panic("hat_pagereload(): sfmmu_modifytte_try() failed");
6522 
6523 		/*
6524 		 * set hme_page point to new page
6525 		 */
6526 		sfhme->hme_page = dpp;
6527 	}
6528 
6529 	/*
6530 	 * move p_mapping list from old page to new page
6531 	 */
6532 	dpp->p_mapping = tpp->p_mapping;
6533 	tpp->p_mapping = NULL;
6534 	dpp->p_share = tpp->p_share;
6535 	tpp->p_share = 0;
6536 
6537 	while (index != 0) {
6538 		index = index >> 1;
6539 		if (index != 0)
6540 			cons++;
6541 		if (index & 0x1) {
6542 			tpp = PP_GROUPLEADER(tpp, cons);
6543 			dpp = PP_GROUPLEADER(dpp, cons);
6544 			goto retry;
6545 		}
6546 	}
6547 
6548 	if (dtrace_kreloc_fini)
6549 		(*dtrace_kreloc_fini)();
6550 	mutex_exit(&kpr_suspendlock);
6551 }
6552 
6553 uint_t
6554 hat_pagesync(struct page *pp, uint_t clearflag)
6555 {
6556 	struct sf_hment *sfhme, *tmphme = NULL;
6557 	struct hme_blk *hmeblkp;
6558 	kmutex_t *pml;
6559 	cpuset_t cpuset, tset;
6560 	int	index, cons;
6561 	extern	ulong_t po_share;
6562 	page_t	*save_pp = pp;
6563 
6564 	CPUSET_ZERO(cpuset);
6565 
6566 	if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
6567 		return (PP_GENERIC_ATTR(pp));
6568 	}
6569 
6570 	if ((clearflag == (HAT_SYNC_STOPON_REF | HAT_SYNC_DONTZERO)) &&
6571 	    PP_ISREF(pp)) {
6572 		return (PP_GENERIC_ATTR(pp));
6573 	}
6574 
6575 	if ((clearflag == (HAT_SYNC_STOPON_MOD | HAT_SYNC_DONTZERO)) &&
6576 	    PP_ISMOD(pp)) {
6577 		return (PP_GENERIC_ATTR(pp));
6578 	}
6579 
6580 	if ((clearflag & HAT_SYNC_STOPON_SHARED) != 0 &&
6581 	    (pp->p_share > po_share) &&
6582 	    !(clearflag & HAT_SYNC_ZERORM)) {
6583 		if (PP_ISRO(pp))
6584 			hat_page_setattr(pp, P_REF);
6585 		return (PP_GENERIC_ATTR(pp));
6586 	}
6587 
6588 	clearflag &= ~HAT_SYNC_STOPON_SHARED;
6589 	pml = sfmmu_mlist_enter(pp);
6590 	index = PP_MAPINDEX(pp);
6591 	cons = TTE8K;
6592 retry:
6593 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6594 		/*
6595 		 * We need to save the next hment on the list since
6596 		 * it is possible for pagesync to remove an invalid hment
6597 		 * from the list.
6598 		 */
6599 		tmphme = sfhme->hme_next;
6600 		/*
6601 		 * If we are looking for large mappings and this hme doesn't
6602 		 * reach the range we are seeking, just ignore its.
6603 		 */
6604 		hmeblkp = sfmmu_hmetohblk(sfhme);
6605 		if (hmeblkp->hblk_xhat_bit)
6606 			continue;
6607 
6608 		if (hme_size(sfhme) < cons)
6609 			continue;
6610 		tset = sfmmu_pagesync(pp, sfhme,
6611 			clearflag & ~HAT_SYNC_STOPON_RM);
6612 		CPUSET_OR(cpuset, tset);
6613 		/*
6614 		 * If clearflag is HAT_SYNC_DONTZERO, break out as soon
6615 		 * as the "ref" or "mod" is set.
6616 		 */
6617 		if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
6618 		    ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
6619 		    ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp))) {
6620 			index = 0;
6621 			break;
6622 		}
6623 	}
6624 
6625 	while (index) {
6626 		index = index >> 1;
6627 		cons++;
6628 		if (index & 0x1) {
6629 			/* Go to leading page */
6630 			pp = PP_GROUPLEADER(pp, cons);
6631 			goto retry;
6632 		}
6633 	}
6634 
6635 	xt_sync(cpuset);
6636 	sfmmu_mlist_exit(pml);
6637 	return (PP_GENERIC_ATTR(save_pp));
6638 }
6639 
6640 /*
6641  * Get all the hardware dependent attributes for a page struct
6642  */
6643 static cpuset_t
6644 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
6645 	uint_t clearflag)
6646 {
6647 	caddr_t addr;
6648 	tte_t tte, ttemod;
6649 	struct hme_blk *hmeblkp;
6650 	int ret;
6651 	sfmmu_t *sfmmup;
6652 	cpuset_t cpuset;
6653 
6654 	ASSERT(pp != NULL);
6655 	ASSERT(sfmmu_mlist_held(pp));
6656 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
6657 		(clearflag == HAT_SYNC_ZERORM));
6658 
6659 	SFMMU_STAT(sf_pagesync);
6660 
6661 	CPUSET_ZERO(cpuset);
6662 
6663 sfmmu_pagesync_retry:
6664 
6665 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6666 	if (TTE_IS_VALID(&tte)) {
6667 		hmeblkp = sfmmu_hmetohblk(sfhme);
6668 		sfmmup = hblktosfmmu(hmeblkp);
6669 		addr = tte_to_vaddr(hmeblkp, tte);
6670 		if (clearflag == HAT_SYNC_ZERORM) {
6671 			ttemod = tte;
6672 			TTE_CLR_RM(&ttemod);
6673 			ret = sfmmu_modifytte_try(&tte, &ttemod,
6674 				&sfhme->hme_tte);
6675 			if (ret < 0) {
6676 				/*
6677 				 * cas failed and the new value is not what
6678 				 * we want.
6679 				 */
6680 				goto sfmmu_pagesync_retry;
6681 			}
6682 
6683 			if (ret > 0) {
6684 				/* we win the cas */
6685 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6686 				cpuset = sfmmup->sfmmu_cpusran;
6687 			}
6688 		}
6689 
6690 		sfmmu_ttesync(sfmmup, addr, &tte, pp);
6691 	}
6692 	return (cpuset);
6693 }
6694 
6695 /*
6696  * Remove write permission from a mappings to a page, so that
6697  * we can detect the next modification of it. This requires modifying
6698  * the TTE then invalidating (demap) any TLB entry using that TTE.
6699  * This code is similar to sfmmu_pagesync().
6700  */
6701 static cpuset_t
6702 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
6703 {
6704 	caddr_t addr;
6705 	tte_t tte;
6706 	tte_t ttemod;
6707 	struct hme_blk *hmeblkp;
6708 	int ret;
6709 	sfmmu_t *sfmmup;
6710 	cpuset_t cpuset;
6711 
6712 	ASSERT(pp != NULL);
6713 	ASSERT(sfmmu_mlist_held(pp));
6714 
6715 	CPUSET_ZERO(cpuset);
6716 	SFMMU_STAT(sf_clrwrt);
6717 
6718 retry:
6719 
6720 	sfmmu_copytte(&sfhme->hme_tte, &tte);
6721 	if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
6722 		hmeblkp = sfmmu_hmetohblk(sfhme);
6723 
6724 		/*
6725 		 * xhat mappings should never be to a VMODSORT page.
6726 		 */
6727 		ASSERT(hmeblkp->hblk_xhat_bit == 0);
6728 
6729 		sfmmup = hblktosfmmu(hmeblkp);
6730 		addr = tte_to_vaddr(hmeblkp, tte);
6731 
6732 		ttemod = tte;
6733 		TTE_CLR_WRT(&ttemod);
6734 		TTE_CLR_MOD(&ttemod);
6735 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
6736 
6737 		/*
6738 		 * if cas failed and the new value is not what
6739 		 * we want retry
6740 		 */
6741 		if (ret < 0)
6742 			goto retry;
6743 
6744 		/* we win the cas */
6745 		if (ret > 0) {
6746 			sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
6747 			cpuset = sfmmup->sfmmu_cpusran;
6748 		}
6749 	}
6750 
6751 	return (cpuset);
6752 }
6753 
6754 /*
6755  * Walk all mappings of a page, removing write permission and clearing the
6756  * ref/mod bits. This code is similar to hat_pagesync()
6757  */
6758 static void
6759 hat_page_clrwrt(page_t *pp)
6760 {
6761 	struct sf_hment *sfhme;
6762 	struct sf_hment *tmphme = NULL;
6763 	kmutex_t *pml;
6764 	cpuset_t cpuset;
6765 	cpuset_t tset;
6766 	int	index;
6767 	int	 cons;
6768 
6769 	CPUSET_ZERO(cpuset);
6770 
6771 	pml = sfmmu_mlist_enter(pp);
6772 	index = PP_MAPINDEX(pp);
6773 	cons = TTE8K;
6774 retry:
6775 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
6776 		tmphme = sfhme->hme_next;
6777 
6778 		/*
6779 		 * If we are looking for large mappings and this hme doesn't
6780 		 * reach the range we are seeking, just ignore its.
6781 		 */
6782 
6783 		if (hme_size(sfhme) < cons)
6784 			continue;
6785 
6786 		tset = sfmmu_pageclrwrt(pp, sfhme);
6787 		CPUSET_OR(cpuset, tset);
6788 	}
6789 
6790 	while (index) {
6791 		index = index >> 1;
6792 		cons++;
6793 		if (index & 0x1) {
6794 			/* Go to leading page */
6795 			pp = PP_GROUPLEADER(pp, cons);
6796 			goto retry;
6797 		}
6798 	}
6799 
6800 	xt_sync(cpuset);
6801 	sfmmu_mlist_exit(pml);
6802 }
6803 
6804 /*
6805  * Set the given REF/MOD/RO bits for the given page.
6806  * For a vnode with a sorted v_pages list, we need to change
6807  * the attributes and the v_pages list together under page_vnode_mutex.
6808  */
6809 void
6810 hat_page_setattr(page_t *pp, uint_t flag)
6811 {
6812 	vnode_t		*vp = pp->p_vnode;
6813 	page_t		**listp;
6814 	kmutex_t	*pmtx;
6815 	kmutex_t	*vphm = NULL;
6816 
6817 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
6818 
6819 	/*
6820 	 * nothing to do if attribute already set
6821 	 */
6822 	if ((pp->p_nrm & flag) == flag)
6823 		return;
6824 
6825 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
6826 		vphm = page_vnode_mutex(vp);
6827 		mutex_enter(vphm);
6828 	}
6829 
6830 	pmtx = sfmmu_page_enter(pp);
6831 	pp->p_nrm |= flag;
6832 	sfmmu_page_exit(pmtx);
6833 
6834 	if (vphm != NULL) {
6835 		/*
6836 		 * Some File Systems examine v_pages for NULL w/o
6837 		 * grabbing the vphm mutex. Must not let it become NULL when
6838 		 * pp is the only page on the list.
6839 		 */
6840 		if (pp->p_vpnext != pp) {
6841 			page_vpsub(&vp->v_pages, pp);
6842 			if (vp->v_pages != NULL)
6843 				listp = &vp->v_pages->p_vpprev->p_vpnext;
6844 			else
6845 				listp = &vp->v_pages;
6846 			page_vpadd(listp, pp);
6847 		}
6848 		mutex_exit(vphm);
6849 	}
6850 }
6851 
6852 void
6853 hat_page_clrattr(page_t *pp, uint_t flag)
6854 {
6855 	vnode_t		*vp = pp->p_vnode;
6856 	kmutex_t	*vphm = NULL;
6857 	kmutex_t	*pmtx;
6858 
6859 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
6860 
6861 	/*
6862 	 * For vnode with a sorted v_pages list, we need to change
6863 	 * the attributes and the v_pages list together under page_vnode_mutex.
6864 	 */
6865 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
6866 		vphm = page_vnode_mutex(vp);
6867 		mutex_enter(vphm);
6868 	}
6869 
6870 	pmtx = sfmmu_page_enter(pp);
6871 	pp->p_nrm &= ~flag;
6872 	sfmmu_page_exit(pmtx);
6873 
6874 	if (vphm != NULL) {
6875 		/*
6876 		 * Some File Systems examine v_pages for NULL w/o
6877 		 * grabbing the vphm mutex. Must not let it become NULL when
6878 		 * pp is the only page on the list.
6879 		 */
6880 		if (pp->p_vpnext != pp) {
6881 			page_vpsub(&vp->v_pages, pp);
6882 			page_vpadd(&vp->v_pages, pp);
6883 		}
6884 		mutex_exit(vphm);
6885 
6886 		/*
6887 		 * VMODSORT works by removing write permissions and getting
6888 		 * a fault when a page is made dirty. At this point
6889 		 * we need to remove write permission from all mappings
6890 		 * to this page.
6891 		 */
6892 		hat_page_clrwrt(pp);
6893 	}
6894 }
6895 
6896 
6897 uint_t
6898 hat_page_getattr(page_t *pp, uint_t flag)
6899 {
6900 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
6901 	return ((uint_t)(pp->p_nrm & flag));
6902 }
6903 
6904 /*
6905  * DEBUG kernels: verify that a kernel va<->pa translation
6906  * is safe by checking the underlying page_t is in a page
6907  * relocation-safe state.
6908  */
6909 #ifdef	DEBUG
6910 void
6911 sfmmu_check_kpfn(pfn_t pfn)
6912 {
6913 	page_t *pp;
6914 	int index, cons;
6915 
6916 	if (hat_check_vtop == 0)
6917 		return;
6918 
6919 	if (hat_kpr_enabled == 0 || kvseg.s_base == NULL || panicstr)
6920 		return;
6921 
6922 	pp = page_numtopp_nolock(pfn);
6923 	if (!pp)
6924 		return;
6925 
6926 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
6927 		return;
6928 
6929 	/*
6930 	 * Handed a large kernel page, we dig up the root page since we
6931 	 * know the root page might have the lock also.
6932 	 */
6933 	if (pp->p_szc != 0) {
6934 		index = PP_MAPINDEX(pp);
6935 		cons = TTE8K;
6936 again:
6937 		while (index != 0) {
6938 			index >>= 1;
6939 			if (index != 0)
6940 				cons++;
6941 			if (index & 0x1) {
6942 				pp = PP_GROUPLEADER(pp, cons);
6943 				goto again;
6944 			}
6945 		}
6946 	}
6947 
6948 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
6949 		return;
6950 
6951 	/*
6952 	 * Pages need to be locked or allocated "permanent" (either from
6953 	 * static_arena arena or explicitly setting PG_NORELOC when calling
6954 	 * page_create_va()) for VA->PA translations to be valid.
6955 	 */
6956 	if (!PP_ISNORELOC(pp))
6957 		panic("Illegal VA->PA translation, pp 0x%p not permanent", pp);
6958 	else
6959 		panic("Illegal VA->PA translation, pp 0x%p not locked", pp);
6960 }
6961 #endif	/* DEBUG */
6962 
6963 /*
6964  * Returns a page frame number for a given virtual address.
6965  * Returns PFN_INVALID to indicate an invalid mapping
6966  */
6967 pfn_t
6968 hat_getpfnum(struct hat *hat, caddr_t addr)
6969 {
6970 	pfn_t pfn;
6971 	tte_t tte;
6972 
6973 	/*
6974 	 * We would like to
6975 	 * ASSERT(AS_LOCK_HELD(as, &as->a_lock));
6976 	 * but we can't because the iommu driver will call this
6977 	 * routine at interrupt time and it can't grab the as lock
6978 	 * or it will deadlock: A thread could have the as lock
6979 	 * and be waiting for io.  The io can't complete
6980 	 * because the interrupt thread is blocked trying to grab
6981 	 * the as lock.
6982 	 */
6983 
6984 	ASSERT(hat->sfmmu_xhat_provider == NULL);
6985 
6986 	if (hat == ksfmmup) {
6987 		if (segkpm && IS_KPM_ADDR(addr))
6988 			return (sfmmu_kpm_vatopfn(addr));
6989 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
6990 		    == PFN_SUSPENDED) {
6991 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
6992 		}
6993 		sfmmu_check_kpfn(pfn);
6994 		return (pfn);
6995 	} else {
6996 		return (sfmmu_uvatopfn(addr, hat));
6997 	}
6998 }
6999 
7000 /*
7001  * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
7002  * Use hat_getpfnum(kas.a_hat, ...) instead.
7003  *
7004  * We'd like to return PFN_INVALID if the mappings have underlying page_t's
7005  * but can't right now due to the fact that some software has grown to use
7006  * this interface incorrectly. So for now when the interface is misused,
7007  * return a warning to the user that in the future it won't work in the
7008  * way they're abusing it, and carry on (after disabling page relocation).
7009  */
7010 pfn_t
7011 hat_getkpfnum(caddr_t addr)
7012 {
7013 	pfn_t pfn;
7014 	tte_t tte;
7015 	int badcaller = 0;
7016 	extern int segkmem_reloc;
7017 
7018 	if (segkpm && IS_KPM_ADDR(addr)) {
7019 		badcaller = 1;
7020 		pfn = sfmmu_kpm_vatopfn(addr);
7021 	} else {
7022 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7023 		    == PFN_SUSPENDED) {
7024 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7025 		}
7026 		badcaller = pf_is_memory(pfn);
7027 	}
7028 
7029 	if (badcaller) {
7030 		/*
7031 		 * We can't return PFN_INVALID or the caller may panic
7032 		 * or corrupt the system.  The only alternative is to
7033 		 * disable page relocation at this point for all kernel
7034 		 * memory.  This will impact any callers of page_relocate()
7035 		 * such as FMA or DR.
7036 		 *
7037 		 * RFE: Add junk here to spit out an ereport so the sysadmin
7038 		 * can be advised that he should upgrade his device driver
7039 		 * so that this doesn't happen.
7040 		 */
7041 		hat_getkpfnum_badcall(caller());
7042 		if (hat_kpr_enabled && segkmem_reloc) {
7043 			hat_kpr_enabled = 0;
7044 			segkmem_reloc = 0;
7045 			cmn_err(CE_WARN, "Kernel Page Relocation is DISABLED");
7046 		}
7047 	}
7048 	return (pfn);
7049 }
7050 
7051 pfn_t
7052 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup)
7053 {
7054 	struct hmehash_bucket *hmebp;
7055 	hmeblk_tag hblktag;
7056 	int hmeshift, hashno = 1;
7057 	struct hme_blk *hmeblkp = NULL;
7058 
7059 	struct sf_hment *sfhmep;
7060 	tte_t tte;
7061 	pfn_t pfn;
7062 
7063 	/* support for ISM */
7064 	ism_map_t	*ism_map;
7065 	ism_blk_t	*ism_blkp;
7066 	int		i;
7067 	sfmmu_t *ism_hatid = NULL;
7068 	sfmmu_t *locked_hatid = NULL;
7069 
7070 
7071 	ASSERT(sfmmup != ksfmmup);
7072 	SFMMU_STAT(sf_user_vtop);
7073 	/*
7074 	 * Set ism_hatid if vaddr falls in a ISM segment.
7075 	 */
7076 	ism_blkp = sfmmup->sfmmu_iblk;
7077 	if (ism_blkp) {
7078 		sfmmu_ismhat_enter(sfmmup, 0);
7079 		locked_hatid = sfmmup;
7080 	}
7081 	while (ism_blkp && ism_hatid == NULL) {
7082 		ism_map = ism_blkp->iblk_maps;
7083 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
7084 			if (vaddr >= ism_start(ism_map[i]) &&
7085 			    vaddr < ism_end(ism_map[i])) {
7086 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
7087 				vaddr = (caddr_t)(vaddr -
7088 					ism_start(ism_map[i]));
7089 				break;
7090 			}
7091 		}
7092 		ism_blkp = ism_blkp->iblk_next;
7093 	}
7094 	if (locked_hatid) {
7095 		sfmmu_ismhat_exit(locked_hatid, 0);
7096 	}
7097 
7098 	hblktag.htag_id = sfmmup;
7099 	do {
7100 		hmeshift = HME_HASH_SHIFT(hashno);
7101 		hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
7102 		hblktag.htag_rehash = hashno;
7103 		hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
7104 
7105 		SFMMU_HASH_LOCK(hmebp);
7106 
7107 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
7108 		if (hmeblkp != NULL) {
7109 			HBLKTOHME(sfhmep, hmeblkp, vaddr);
7110 			sfmmu_copytte(&sfhmep->hme_tte, &tte);
7111 			if (TTE_IS_VALID(&tte)) {
7112 				pfn = TTE_TO_PFN(vaddr, &tte);
7113 			} else {
7114 				pfn = PFN_INVALID;
7115 			}
7116 			SFMMU_HASH_UNLOCK(hmebp);
7117 			return (pfn);
7118 		}
7119 		SFMMU_HASH_UNLOCK(hmebp);
7120 		hashno++;
7121 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
7122 	return (PFN_INVALID);
7123 }
7124 
7125 
7126 /*
7127  * For compatability with AT&T and later optimizations
7128  */
7129 /* ARGSUSED */
7130 void
7131 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
7132 {
7133 	ASSERT(hat != NULL);
7134 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7135 }
7136 
7137 /*
7138  * Return the number of mappings to a particular page.
7139  * This number is an approximation of the number of
7140  * number of people sharing the page.
7141  */
7142 ulong_t
7143 hat_page_getshare(page_t *pp)
7144 {
7145 	page_t *spp = pp;	/* start page */
7146 	kmutex_t *pml;
7147 	ulong_t	cnt;
7148 	int index, sz = TTE64K;
7149 
7150 	/*
7151 	 * We need to grab the mlist lock to make sure any outstanding
7152 	 * load/unloads complete.  Otherwise we could return zero
7153 	 * even though the unload(s) hasn't finished yet.
7154 	 */
7155 	pml = sfmmu_mlist_enter(spp);
7156 	cnt = spp->p_share;
7157 
7158 	if (kpm_enable)
7159 		cnt += spp->p_kpmref;
7160 
7161 	/*
7162 	 * If we have any large mappings, we count the number of
7163 	 * mappings that this large page is part of.
7164 	 */
7165 	index = PP_MAPINDEX(spp);
7166 	index >>= 1;
7167 	while (index) {
7168 		pp = PP_GROUPLEADER(spp, sz);
7169 		if ((index & 0x1) && pp != spp) {
7170 			cnt += pp->p_share;
7171 			spp = pp;
7172 		}
7173 		index >>= 1;
7174 		sz++;
7175 	}
7176 	sfmmu_mlist_exit(pml);
7177 	return (cnt);
7178 }
7179 
7180 /*
7181  * Unload all large mappings to the pp and reset the p_szc field of every
7182  * constituent page according to the remaining mappings.
7183  *
7184  * pp must be locked SE_EXCL. Even though no other constituent pages are
7185  * locked it's legal to unload the large mappings to the pp because all
7186  * constituent pages of large locked mappings have to be locked SE_SHARED.
7187  * This means if we have SE_EXCL lock on one of constituent pages none of the
7188  * large mappings to pp are locked.
7189  *
7190  * Decrease p_szc field starting from the last constituent page and ending
7191  * with the root page. This method is used because other threads rely on the
7192  * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
7193  * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
7194  * ensures that p_szc changes of the constituent pages appears atomic for all
7195  * threads that use sfmmu_mlspl_enter() to examine p_szc field.
7196  *
7197  * This mechanism is only used for file system pages where it's not always
7198  * possible to get SE_EXCL locks on all constituent pages to demote the size
7199  * code (as is done for anonymous or kernel large pages).
7200  *
7201  * See more comments in front of sfmmu_mlspl_enter().
7202  */
7203 void
7204 hat_page_demote(page_t *pp)
7205 {
7206 	int index;
7207 	int sz;
7208 	cpuset_t cpuset;
7209 	int sync = 0;
7210 	page_t *rootpp;
7211 	struct sf_hment *sfhme;
7212 	struct sf_hment *tmphme = NULL;
7213 	struct hme_blk *hmeblkp;
7214 	uint_t pszc;
7215 	page_t *lastpp;
7216 	cpuset_t tset;
7217 	pgcnt_t npgs;
7218 	kmutex_t *pml;
7219 	kmutex_t *pmtx;
7220 
7221 	ASSERT(PAGE_EXCL(pp));
7222 	ASSERT(!PP_ISFREE(pp));
7223 	ASSERT(page_szc_lock_assert(pp));
7224 	pml = sfmmu_mlist_enter(pp);
7225 	pmtx = sfmmu_page_enter(pp);
7226 
7227 	pszc = pp->p_szc;
7228 	if (pszc == 0) {
7229 		goto out;
7230 	}
7231 
7232 	index = PP_MAPINDEX(pp) >> 1;
7233 
7234 	if (index) {
7235 		CPUSET_ZERO(cpuset);
7236 		sz = TTE64K;
7237 		sync = 1;
7238 	}
7239 
7240 	while (index) {
7241 		if (!(index & 0x1)) {
7242 			index >>= 1;
7243 			sz++;
7244 			continue;
7245 		}
7246 		ASSERT(sz <= pszc);
7247 		rootpp = PP_GROUPLEADER(pp, sz);
7248 		for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
7249 			tmphme = sfhme->hme_next;
7250 			hmeblkp = sfmmu_hmetohblk(sfhme);
7251 			if (hme_size(sfhme) != sz) {
7252 				continue;
7253 			}
7254 			if (hmeblkp->hblk_xhat_bit) {
7255 				cmn_err(CE_PANIC,
7256 				    "hat_page_demote: xhat hmeblk");
7257 			}
7258 			tset = sfmmu_pageunload(rootpp, sfhme, sz);
7259 			CPUSET_OR(cpuset, tset);
7260 		}
7261 		if (index >>= 1) {
7262 			sz++;
7263 		}
7264 	}
7265 
7266 	ASSERT(!PP_ISMAPPED_LARGE(pp));
7267 
7268 	if (sync) {
7269 		xt_sync(cpuset);
7270 		if (PP_ISTNC(pp)) {
7271 			conv_tnc(rootpp, sz);
7272 		}
7273 	}
7274 
7275 	ASSERT(pp->p_szc == pszc);
7276 	rootpp = PP_PAGEROOT(pp);
7277 	ASSERT(rootpp->p_szc == pszc);
7278 	lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
7279 
7280 	while (lastpp != rootpp) {
7281 		sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
7282 		ASSERT(sz < pszc);
7283 		npgs = (sz == 0) ? 1 : TTEPAGES(sz);
7284 		ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
7285 		while (--npgs > 0) {
7286 			lastpp->p_szc = (uchar_t)sz;
7287 			lastpp = PP_PAGEPREV(lastpp);
7288 		}
7289 		if (sz) {
7290 			/*
7291 			 * make sure before current root's pszc
7292 			 * is updated all updates to constituent pages pszc
7293 			 * fields are globally visible.
7294 			 */
7295 			membar_producer();
7296 		}
7297 		lastpp->p_szc = sz;
7298 		ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
7299 		if (lastpp != rootpp) {
7300 			lastpp = PP_PAGEPREV(lastpp);
7301 		}
7302 	}
7303 	if (sz == 0) {
7304 		/* the loop above doesn't cover this case */
7305 		rootpp->p_szc = 0;
7306 	}
7307 out:
7308 	ASSERT(pp->p_szc == 0);
7309 	sfmmu_page_exit(pmtx);
7310 	sfmmu_mlist_exit(pml);
7311 }
7312 
7313 /*
7314  * Refresh the HAT ismttecnt[] element for size szc.
7315  * Caller must have set ISM busy flag to prevent mapping
7316  * lists from changing while we're traversing them.
7317  */
7318 pgcnt_t
7319 ism_tsb_entries(sfmmu_t *sfmmup, int szc)
7320 {
7321 	ism_blk_t	*ism_blkp = sfmmup->sfmmu_iblk;
7322 	ism_map_t	*ism_map;
7323 	pgcnt_t		npgs = 0;
7324 	int		j;
7325 
7326 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
7327 	for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
7328 		ism_map = ism_blkp->iblk_maps;
7329 		for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++)
7330 			npgs += ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
7331 	}
7332 	sfmmup->sfmmu_ismttecnt[szc] = npgs;
7333 	return (npgs);
7334 }
7335 
7336 /*
7337  * Yield the memory claim requirement for an address space.
7338  *
7339  * This is currently implemented as the number of bytes that have active
7340  * hardware translations that have page structures.  Therefore, it can
7341  * underestimate the traditional resident set size, eg, if the
7342  * physical page is present and the hardware translation is missing;
7343  * and it can overestimate the rss, eg, if there are active
7344  * translations to a frame buffer with page structs.
7345  * Also, it does not take sharing into account.
7346  *
7347  * Note that we don't acquire locks here since this function is most often
7348  * called from the clock thread.
7349  */
7350 size_t
7351 hat_get_mapped_size(struct hat *hat)
7352 {
7353 	size_t		assize = 0;
7354 	int 		i;
7355 
7356 	if (hat == NULL)
7357 		return (0);
7358 
7359 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7360 
7361 	for (i = 0; i < mmu_page_sizes; i++)
7362 		assize += (pgcnt_t)hat->sfmmu_ttecnt[i] * TTEBYTES(i);
7363 
7364 	if (hat->sfmmu_iblk == NULL)
7365 		return (assize);
7366 
7367 	for (i = 0; i < mmu_page_sizes; i++)
7368 		assize += (pgcnt_t)hat->sfmmu_ismttecnt[i] * TTEBYTES(i);
7369 
7370 	return (assize);
7371 }
7372 
7373 int
7374 hat_stats_enable(struct hat *hat)
7375 {
7376 	hatlock_t	*hatlockp;
7377 
7378 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7379 
7380 	hatlockp = sfmmu_hat_enter(hat);
7381 	hat->sfmmu_rmstat++;
7382 	sfmmu_hat_exit(hatlockp);
7383 	return (1);
7384 }
7385 
7386 void
7387 hat_stats_disable(struct hat *hat)
7388 {
7389 	hatlock_t	*hatlockp;
7390 
7391 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7392 
7393 	hatlockp = sfmmu_hat_enter(hat);
7394 	hat->sfmmu_rmstat--;
7395 	sfmmu_hat_exit(hatlockp);
7396 }
7397 
7398 /*
7399  * Routines for entering or removing  ourselves from the
7400  * ism_hat's mapping list.
7401  */
7402 static void
7403 iment_add(struct ism_ment *iment,  struct hat *ism_hat)
7404 {
7405 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
7406 
7407 	iment->iment_prev = NULL;
7408 	iment->iment_next = ism_hat->sfmmu_iment;
7409 	if (ism_hat->sfmmu_iment) {
7410 		ism_hat->sfmmu_iment->iment_prev = iment;
7411 	}
7412 	ism_hat->sfmmu_iment = iment;
7413 }
7414 
7415 static void
7416 iment_sub(struct ism_ment *iment, struct hat *ism_hat)
7417 {
7418 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
7419 
7420 	if (ism_hat->sfmmu_iment == NULL) {
7421 		panic("ism map entry remove - no entries");
7422 	}
7423 
7424 	if (iment->iment_prev) {
7425 		ASSERT(ism_hat->sfmmu_iment != iment);
7426 		iment->iment_prev->iment_next = iment->iment_next;
7427 	} else {
7428 		ASSERT(ism_hat->sfmmu_iment == iment);
7429 		ism_hat->sfmmu_iment = iment->iment_next;
7430 	}
7431 
7432 	if (iment->iment_next) {
7433 		iment->iment_next->iment_prev = iment->iment_prev;
7434 	}
7435 
7436 	/*
7437 	 * zero out the entry
7438 	 */
7439 	iment->iment_next = NULL;
7440 	iment->iment_prev = NULL;
7441 	iment->iment_hat =  NULL;
7442 }
7443 
7444 /*
7445  * Hat_share()/unshare() return an (non-zero) error
7446  * when saddr and daddr are not properly aligned.
7447  *
7448  * The top level mapping element determines the alignment
7449  * requirement for saddr and daddr, depending on different
7450  * architectures.
7451  *
7452  * When hat_share()/unshare() are not supported,
7453  * HATOP_SHARE()/UNSHARE() return 0
7454  */
7455 int
7456 hat_share(struct hat *sfmmup, caddr_t addr,
7457 	struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc)
7458 {
7459 	ism_blk_t	*ism_blkp;
7460 	ism_blk_t	*new_iblk;
7461 	ism_map_t 	*ism_map;
7462 	ism_ment_t	*ism_ment;
7463 	int		i, added;
7464 	hatlock_t	*hatlockp;
7465 	int		reload_mmu = 0;
7466 	uint_t		ismshift = page_get_shift(ismszc);
7467 	size_t		ismpgsz = page_get_pagesize(ismszc);
7468 	uint_t		ismmask = (uint_t)ismpgsz - 1;
7469 	size_t		sh_size = ISM_SHIFT(ismshift, len);
7470 	ushort_t	ismhatflag;
7471 
7472 #ifdef DEBUG
7473 	caddr_t		eaddr = addr + len;
7474 #endif /* DEBUG */
7475 
7476 	ASSERT(ism_hatid != NULL && sfmmup != NULL);
7477 	ASSERT(sptaddr == ISMID_STARTADDR);
7478 	/*
7479 	 * Check the alignment.
7480 	 */
7481 	if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
7482 		return (EINVAL);
7483 
7484 	/*
7485 	 * Check size alignment.
7486 	 */
7487 	if (!ISM_ALIGNED(ismshift, len))
7488 		return (EINVAL);
7489 
7490 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
7491 
7492 	/*
7493 	 * Allocate ism_ment for the ism_hat's mapping list, and an
7494 	 * ism map blk in case we need one.  We must do our
7495 	 * allocations before acquiring locks to prevent a deadlock
7496 	 * in the kmem allocator on the mapping list lock.
7497 	 */
7498 	new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
7499 	ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
7500 
7501 	/*
7502 	 * Serialize ISM mappings with the ISM busy flag, and also the
7503 	 * trap handlers.
7504 	 */
7505 	sfmmu_ismhat_enter(sfmmup, 0);
7506 
7507 	/*
7508 	 * Allocate an ism map blk if necessary.
7509 	 */
7510 	if (sfmmup->sfmmu_iblk == NULL) {
7511 		sfmmup->sfmmu_iblk = new_iblk;
7512 		bzero(new_iblk, sizeof (*new_iblk));
7513 		new_iblk->iblk_nextpa = (uint64_t)-1;
7514 		membar_stst();	/* make sure next ptr visible to all CPUs */
7515 		sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
7516 		reload_mmu = 1;
7517 		new_iblk = NULL;
7518 	}
7519 
7520 #ifdef DEBUG
7521 	/*
7522 	 * Make sure mapping does not already exist.
7523 	 */
7524 	ism_blkp = sfmmup->sfmmu_iblk;
7525 	while (ism_blkp) {
7526 		ism_map = ism_blkp->iblk_maps;
7527 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
7528 			if ((addr >= ism_start(ism_map[i]) &&
7529 			    addr < ism_end(ism_map[i])) ||
7530 			    eaddr > ism_start(ism_map[i]) &&
7531 			    eaddr <= ism_end(ism_map[i])) {
7532 				panic("sfmmu_share: Already mapped!");
7533 			}
7534 		}
7535 		ism_blkp = ism_blkp->iblk_next;
7536 	}
7537 #endif /* DEBUG */
7538 
7539 	ASSERT(ismszc >= TTE4M);
7540 	if (ismszc == TTE4M) {
7541 		ismhatflag = HAT_4M_FLAG;
7542 	} else if (ismszc == TTE32M) {
7543 		ismhatflag = HAT_32M_FLAG;
7544 	} else if (ismszc == TTE256M) {
7545 		ismhatflag = HAT_256M_FLAG;
7546 	}
7547 	/*
7548 	 * Add mapping to first available mapping slot.
7549 	 */
7550 	ism_blkp = sfmmup->sfmmu_iblk;
7551 	added = 0;
7552 	while (!added) {
7553 		ism_map = ism_blkp->iblk_maps;
7554 		for (i = 0; i < ISM_MAP_SLOTS; i++)  {
7555 			if (ism_map[i].imap_ismhat == NULL) {
7556 
7557 				ism_map[i].imap_ismhat = ism_hatid;
7558 				ism_map[i].imap_vb_shift = (ushort_t)ismshift;
7559 				ism_map[i].imap_hatflags = ismhatflag;
7560 				ism_map[i].imap_sz_mask = ismmask;
7561 				/*
7562 				 * imap_seg is checked in ISM_CHECK to see if
7563 				 * non-NULL, then other info assumed valid.
7564 				 */
7565 				membar_stst();
7566 				ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
7567 				ism_map[i].imap_ment = ism_ment;
7568 
7569 				/*
7570 				 * Now add ourselves to the ism_hat's
7571 				 * mapping list.
7572 				 */
7573 				ism_ment->iment_hat = sfmmup;
7574 				ism_ment->iment_base_va = addr;
7575 				ism_hatid->sfmmu_ismhat = 1;
7576 				ism_hatid->sfmmu_flags = 0;
7577 				mutex_enter(&ism_mlist_lock);
7578 				iment_add(ism_ment, ism_hatid);
7579 				mutex_exit(&ism_mlist_lock);
7580 				added = 1;
7581 				break;
7582 			}
7583 		}
7584 		if (!added && ism_blkp->iblk_next == NULL) {
7585 			ism_blkp->iblk_next = new_iblk;
7586 			new_iblk = NULL;
7587 			bzero(ism_blkp->iblk_next,
7588 			    sizeof (*ism_blkp->iblk_next));
7589 			ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
7590 			membar_stst();
7591 			ism_blkp->iblk_nextpa =
7592 				va_to_pa((caddr_t)ism_blkp->iblk_next);
7593 		}
7594 		ism_blkp = ism_blkp->iblk_next;
7595 	}
7596 
7597 	/*
7598 	 * Update our counters for this sfmmup's ism mappings.
7599 	 */
7600 	for (i = 0; i <= ismszc; i++) {
7601 		if (!(disable_ism_large_pages & (1 << i)))
7602 			(void) ism_tsb_entries(sfmmup, i);
7603 	}
7604 
7605 	hatlockp = sfmmu_hat_enter(sfmmup);
7606 
7607 	/*
7608 	 * For ISM and DISM we do not support 512K pages, so we only
7609 	 * only search the 4M and 8K/64K hashes for 4 pagesize cpus, and search
7610 	 * the 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
7611 	 */
7612 	ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
7613 
7614 	if (ismszc > TTE4M && !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG))
7615 		SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
7616 
7617 	if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG))
7618 		SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
7619 
7620 	/*
7621 	 * If we updated the ismblkpa for this HAT or we need
7622 	 * to start searching the 256M or 32M or 4M hash, we must
7623 	 * make sure all CPUs running this process reload their
7624 	 * tsbmiss area.  Otherwise they will fail to load the mappings
7625 	 * in the tsbmiss handler and will loop calling pagefault().
7626 	 */
7627 	switch (ismszc) {
7628 	case TTE256M:
7629 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
7630 			SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
7631 			sfmmu_sync_mmustate(sfmmup);
7632 		}
7633 		break;
7634 	case TTE32M:
7635 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
7636 			SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
7637 			sfmmu_sync_mmustate(sfmmup);
7638 		}
7639 		break;
7640 	case TTE4M:
7641 		if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
7642 			SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
7643 			sfmmu_sync_mmustate(sfmmup);
7644 		}
7645 		break;
7646 	default:
7647 		break;
7648 	}
7649 
7650 	/*
7651 	 * Now we can drop the locks.
7652 	 */
7653 	sfmmu_ismhat_exit(sfmmup, 1);
7654 	sfmmu_hat_exit(hatlockp);
7655 
7656 	/*
7657 	 * Free up ismblk if we didn't use it.
7658 	 */
7659 	if (new_iblk != NULL)
7660 		kmem_cache_free(ism_blk_cache, new_iblk);
7661 
7662 	/*
7663 	 * Check TSB and TLB page sizes.
7664 	 */
7665 	sfmmu_check_page_sizes(sfmmup, 1);
7666 
7667 	return (0);
7668 }
7669 
7670 /*
7671  * hat_unshare removes exactly one ism_map from
7672  * this process's as.  It expects multiple calls
7673  * to hat_unshare for multiple shm segments.
7674  */
7675 void
7676 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
7677 {
7678 	ism_map_t 	*ism_map;
7679 	ism_ment_t	*free_ment = NULL;
7680 	ism_blk_t	*ism_blkp;
7681 	struct hat	*ism_hatid;
7682 	struct ctx	*ctx;
7683 	int 		cnum, found, i;
7684 	hatlock_t	*hatlockp;
7685 	struct tsb_info	*tsbinfo;
7686 	uint_t		ismshift = page_get_shift(ismszc);
7687 	size_t		sh_size = ISM_SHIFT(ismshift, len);
7688 
7689 	ASSERT(ISM_ALIGNED(ismshift, addr));
7690 	ASSERT(ISM_ALIGNED(ismshift, len));
7691 	ASSERT(sfmmup != NULL);
7692 	ASSERT(sfmmup != ksfmmup);
7693 
7694 	if (sfmmup->sfmmu_xhat_provider) {
7695 		XHAT_UNSHARE(sfmmup, addr, len);
7696 		return;
7697 	} else {
7698 		/*
7699 		 * This must be a CPU HAT. If the address space has
7700 		 * XHATs attached, inform all XHATs that ISM segment
7701 		 * is going away
7702 		 */
7703 		ASSERT(sfmmup->sfmmu_as != NULL);
7704 		if (sfmmup->sfmmu_as->a_xhat != NULL)
7705 			xhat_unshare_all(sfmmup->sfmmu_as, addr, len);
7706 	}
7707 
7708 	/*
7709 	 * Make sure that during the entire time ISM mappings are removed,
7710 	 * the trap handlers serialize behind us, and that no one else
7711 	 * can be mucking with ISM mappings.  This also lets us get away
7712 	 * with not doing expensive cross calls to flush the TLB -- we
7713 	 * just discard the context, flush the entire TSB, and call it
7714 	 * a day.
7715 	 */
7716 	sfmmu_ismhat_enter(sfmmup, 0);
7717 
7718 	/*
7719 	 * Remove the mapping.
7720 	 *
7721 	 * We can't have any holes in the ism map.
7722 	 * The tsb miss code while searching the ism map will
7723 	 * stop on an empty map slot.  So we must move
7724 	 * everyone past the hole up 1 if any.
7725 	 *
7726 	 * Also empty ism map blks are not freed until the
7727 	 * process exits. This is to prevent a MT race condition
7728 	 * between sfmmu_unshare() and sfmmu_tsbmiss_exception().
7729 	 */
7730 	found = 0;
7731 	ism_blkp = sfmmup->sfmmu_iblk;
7732 	while (!found && ism_blkp) {
7733 		ism_map = ism_blkp->iblk_maps;
7734 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
7735 			if (addr == ism_start(ism_map[i]) &&
7736 			    sh_size == (size_t)(ism_size(ism_map[i]))) {
7737 				found = 1;
7738 				break;
7739 			}
7740 		}
7741 		if (!found)
7742 			ism_blkp = ism_blkp->iblk_next;
7743 	}
7744 
7745 	if (found) {
7746 		ism_hatid = ism_map[i].imap_ismhat;
7747 		ASSERT(ism_hatid != NULL);
7748 		ASSERT(ism_hatid->sfmmu_ismhat == 1);
7749 		ASSERT(ism_hatid->sfmmu_cnum == INVALID_CONTEXT);
7750 
7751 		/*
7752 		 * First remove ourselves from the ism mapping list.
7753 		 */
7754 		mutex_enter(&ism_mlist_lock);
7755 		iment_sub(ism_map[i].imap_ment, ism_hatid);
7756 		mutex_exit(&ism_mlist_lock);
7757 		free_ment = ism_map[i].imap_ment;
7758 
7759 		/*
7760 		 * Now gurantee that any other cpu
7761 		 * that tries to process an ISM miss
7762 		 * will go to tl=0.
7763 		 */
7764 		hatlockp = sfmmu_hat_enter(sfmmup);
7765 		ctx = sfmmutoctx(sfmmup);
7766 		rw_enter(&ctx->ctx_rwlock, RW_WRITER);
7767 		cnum = sfmmutoctxnum(sfmmup);
7768 
7769 		if (cnum != INVALID_CONTEXT) {
7770 			sfmmu_tlb_swap_ctx(sfmmup, ctx);
7771 		}
7772 		rw_exit(&ctx->ctx_rwlock);
7773 		sfmmu_hat_exit(hatlockp);
7774 
7775 		/*
7776 		 * We delete the ism map by copying
7777 		 * the next map over the current one.
7778 		 * We will take the next one in the maps
7779 		 * array or from the next ism_blk.
7780 		 */
7781 		while (ism_blkp) {
7782 			ism_map = ism_blkp->iblk_maps;
7783 			while (i < (ISM_MAP_SLOTS - 1)) {
7784 				ism_map[i] = ism_map[i + 1];
7785 				i++;
7786 			}
7787 			/* i == (ISM_MAP_SLOTS - 1) */
7788 			ism_blkp = ism_blkp->iblk_next;
7789 			if (ism_blkp) {
7790 				ism_map[i] = ism_blkp->iblk_maps[0];
7791 				i = 0;
7792 			} else {
7793 				ism_map[i].imap_seg = 0;
7794 				ism_map[i].imap_vb_shift = 0;
7795 				ism_map[i].imap_hatflags = 0;
7796 				ism_map[i].imap_sz_mask = 0;
7797 				ism_map[i].imap_ismhat = NULL;
7798 				ism_map[i].imap_ment = NULL;
7799 			}
7800 		}
7801 
7802 		/*
7803 		 * Now flush entire TSB for the process, since
7804 		 * demapping page by page can be too expensive.
7805 		 * We don't have to flush the TLB here anymore
7806 		 * since we switch to a new TLB ctx instead.
7807 		 * Also, there is no need to flush if the process
7808 		 * is exiting since the TSB will be freed later.
7809 		 */
7810 		if (!sfmmup->sfmmu_free) {
7811 			hatlockp = sfmmu_hat_enter(sfmmup);
7812 			for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
7813 			    tsbinfo = tsbinfo->tsb_next) {
7814 				if (tsbinfo->tsb_flags & TSB_SWAPPED)
7815 					continue;
7816 				sfmmu_inv_tsb(tsbinfo->tsb_va,
7817 				    TSB_BYTES(tsbinfo->tsb_szc));
7818 			}
7819 			sfmmu_hat_exit(hatlockp);
7820 		}
7821 	}
7822 
7823 	/*
7824 	 * Update our counters for this sfmmup's ism mappings.
7825 	 */
7826 	for (i = 0; i <= ismszc; i++) {
7827 		if (!(disable_ism_large_pages & (1 << i)))
7828 			(void) ism_tsb_entries(sfmmup, i);
7829 	}
7830 
7831 	sfmmu_ismhat_exit(sfmmup, 0);
7832 
7833 	/*
7834 	 * We must do our freeing here after dropping locks
7835 	 * to prevent a deadlock in the kmem allocator on the
7836 	 * mapping list lock.
7837 	 */
7838 	if (free_ment != NULL)
7839 		kmem_cache_free(ism_ment_cache, free_ment);
7840 
7841 	/*
7842 	 * Check TSB and TLB page sizes if the process isn't exiting.
7843 	 */
7844 	if (!sfmmup->sfmmu_free)
7845 		sfmmu_check_page_sizes(sfmmup, 0);
7846 }
7847 
7848 /* ARGSUSED */
7849 static int
7850 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
7851 {
7852 	/* void *buf is sfmmu_t pointer */
7853 	return (0);
7854 }
7855 
7856 /* ARGSUSED */
7857 static void
7858 sfmmu_idcache_destructor(void *buf, void *cdrarg)
7859 {
7860 	/* void *buf is sfmmu_t pointer */
7861 }
7862 
7863 /*
7864  * setup kmem hmeblks by bzeroing all members and initializing the nextpa
7865  * field to be the pa of this hmeblk
7866  */
7867 /* ARGSUSED */
7868 static int
7869 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
7870 {
7871 	struct hme_blk *hmeblkp;
7872 
7873 	bzero(buf, (size_t)cdrarg);
7874 	hmeblkp = (struct hme_blk *)buf;
7875 	hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
7876 
7877 #ifdef	HBLK_TRACE
7878 	mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
7879 #endif	/* HBLK_TRACE */
7880 
7881 	return (0);
7882 }
7883 
7884 /* ARGSUSED */
7885 static void
7886 sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
7887 {
7888 
7889 #ifdef	HBLK_TRACE
7890 
7891 	struct hme_blk *hmeblkp;
7892 
7893 	hmeblkp = (struct hme_blk *)buf;
7894 	mutex_destroy(&hmeblkp->hblk_audit_lock);
7895 
7896 #endif	/* HBLK_TRACE */
7897 }
7898 
7899 #define	SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
7900 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
7901 /*
7902  * The kmem allocator will callback into our reclaim routine when the system
7903  * is running low in memory.  We traverse the hash and free up all unused but
7904  * still cached hme_blks.  We also traverse the free list and free them up
7905  * as well.
7906  */
7907 /*ARGSUSED*/
7908 static void
7909 sfmmu_hblkcache_reclaim(void *cdrarg)
7910 {
7911 	int i;
7912 	uint64_t hblkpa, prevpa, nx_pa;
7913 	struct hmehash_bucket *hmebp;
7914 	struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
7915 	static struct hmehash_bucket *uhmehash_reclaim_hand;
7916 	static struct hmehash_bucket *khmehash_reclaim_hand;
7917 	struct hme_blk *list = NULL;
7918 
7919 	hmebp = uhmehash_reclaim_hand;
7920 	if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
7921 		uhmehash_reclaim_hand = hmebp = uhme_hash;
7922 	uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
7923 
7924 	for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
7925 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
7926 			hmeblkp = hmebp->hmeblkp;
7927 			hblkpa = hmebp->hmeh_nextpa;
7928 			prevpa = 0;
7929 			pr_hblk = NULL;
7930 			while (hmeblkp) {
7931 				nx_hblk = hmeblkp->hblk_next;
7932 				nx_pa = hmeblkp->hblk_nextpa;
7933 				if (!hmeblkp->hblk_vcnt &&
7934 				    !hmeblkp->hblk_hmecnt) {
7935 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
7936 						prevpa, pr_hblk);
7937 					sfmmu_hblk_free(hmebp, hmeblkp,
7938 					    hblkpa, &list);
7939 				} else {
7940 					pr_hblk = hmeblkp;
7941 					prevpa = hblkpa;
7942 				}
7943 				hmeblkp = nx_hblk;
7944 				hblkpa = nx_pa;
7945 			}
7946 			SFMMU_HASH_UNLOCK(hmebp);
7947 		}
7948 		if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
7949 			hmebp = uhme_hash;
7950 	}
7951 
7952 	hmebp = khmehash_reclaim_hand;
7953 	if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
7954 		khmehash_reclaim_hand = hmebp = khme_hash;
7955 	khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
7956 
7957 	for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
7958 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
7959 			hmeblkp = hmebp->hmeblkp;
7960 			hblkpa = hmebp->hmeh_nextpa;
7961 			prevpa = 0;
7962 			pr_hblk = NULL;
7963 			while (hmeblkp) {
7964 				nx_hblk = hmeblkp->hblk_next;
7965 				nx_pa = hmeblkp->hblk_nextpa;
7966 				if (!hmeblkp->hblk_vcnt &&
7967 				    !hmeblkp->hblk_hmecnt) {
7968 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
7969 						prevpa, pr_hblk);
7970 					sfmmu_hblk_free(hmebp, hmeblkp,
7971 					    hblkpa, &list);
7972 				} else {
7973 					pr_hblk = hmeblkp;
7974 					prevpa = hblkpa;
7975 				}
7976 				hmeblkp = nx_hblk;
7977 				hblkpa = nx_pa;
7978 			}
7979 			SFMMU_HASH_UNLOCK(hmebp);
7980 		}
7981 		if (hmebp++ == &khme_hash[KHMEHASH_SZ])
7982 			hmebp = khme_hash;
7983 	}
7984 	sfmmu_hblks_list_purge(&list);
7985 }
7986 
7987 /*
7988  * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
7989  * same goes for sfmmu_get_addrvcolor().
7990  *
7991  * This function will return the virtual color for the specified page. The
7992  * virtual color corresponds to this page current mapping or its last mapping.
7993  * It is used by memory allocators to choose addresses with the correct
7994  * alignment so vac consistency is automatically maintained.  If the page
7995  * has no color it returns -1.
7996  */
7997 int
7998 sfmmu_get_ppvcolor(struct page *pp)
7999 {
8000 	int color;
8001 
8002 	if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
8003 		return (-1);
8004 	}
8005 	color = PP_GET_VCOLOR(pp);
8006 	ASSERT(color < mmu_btop(shm_alignment));
8007 	return (color);
8008 }
8009 
8010 /*
8011  * This function will return the desired alignment for vac consistency
8012  * (vac color) given a virtual address.  If no vac is present it returns -1.
8013  */
8014 int
8015 sfmmu_get_addrvcolor(caddr_t vaddr)
8016 {
8017 	if (cache & CACHE_VAC) {
8018 		return (addr_to_vcolor(vaddr));
8019 	} else {
8020 		return (-1);
8021 	}
8022 
8023 }
8024 
8025 /*
8026  * Check for conflicts.
8027  * A conflict exists if the new and existent mappings do not match in
8028  * their "shm_alignment fields. If conflicts exist, the existant mappings
8029  * are flushed unless one of them is locked. If one of them is locked, then
8030  * the mappings are flushed and converted to non-cacheable mappings.
8031  */
8032 static void
8033 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
8034 {
8035 	struct hat *tmphat;
8036 	struct sf_hment *sfhmep, *tmphme = NULL;
8037 	struct hme_blk *hmeblkp;
8038 	int vcolor;
8039 	tte_t tte;
8040 
8041 	ASSERT(sfmmu_mlist_held(pp));
8042 	ASSERT(!PP_ISNC(pp));		/* page better be cacheable */
8043 
8044 	vcolor = addr_to_vcolor(addr);
8045 	if (PP_NEWPAGE(pp)) {
8046 		PP_SET_VCOLOR(pp, vcolor);
8047 		return;
8048 	}
8049 
8050 	if (PP_GET_VCOLOR(pp) == vcolor) {
8051 		return;
8052 	}
8053 
8054 	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
8055 		/*
8056 		 * Previous user of page had a different color
8057 		 * but since there are no current users
8058 		 * we just flush the cache and change the color.
8059 		 */
8060 		SFMMU_STAT(sf_pgcolor_conflict);
8061 		sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
8062 		PP_SET_VCOLOR(pp, vcolor);
8063 		return;
8064 	}
8065 
8066 	/*
8067 	 * If we get here we have a vac conflict with a current
8068 	 * mapping.  VAC conflict policy is as follows.
8069 	 * - The default is to unload the other mappings unless:
8070 	 * - If we have a large mapping we uncache the page.
8071 	 * We need to uncache the rest of the large page too.
8072 	 * - If any of the mappings are locked we uncache the page.
8073 	 * - If the requested mapping is inconsistent
8074 	 * with another mapping and that mapping
8075 	 * is in the same address space we have to
8076 	 * make it non-cached.  The default thing
8077 	 * to do is unload the inconsistent mapping
8078 	 * but if they are in the same address space
8079 	 * we run the risk of unmapping the pc or the
8080 	 * stack which we will use as we return to the user,
8081 	 * in which case we can then fault on the thing
8082 	 * we just unloaded and get into an infinite loop.
8083 	 */
8084 	if (PP_ISMAPPED_LARGE(pp)) {
8085 		int sz;
8086 
8087 		/*
8088 		 * Existing mapping is for big pages. We don't unload
8089 		 * existing big mappings to satisfy new mappings.
8090 		 * Always convert all mappings to TNC.
8091 		 */
8092 		sz = fnd_mapping_sz(pp);
8093 		pp = PP_GROUPLEADER(pp, sz);
8094 		SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
8095 		sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
8096 			TTEPAGES(sz));
8097 
8098 		return;
8099 	}
8100 
8101 	/*
8102 	 * check if any mapping is in same as or if it is locked
8103 	 * since in that case we need to uncache.
8104 	 */
8105 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
8106 		tmphme = sfhmep->hme_next;
8107 		hmeblkp = sfmmu_hmetohblk(sfhmep);
8108 		if (hmeblkp->hblk_xhat_bit)
8109 			continue;
8110 		tmphat = hblktosfmmu(hmeblkp);
8111 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
8112 		ASSERT(TTE_IS_VALID(&tte));
8113 		if ((tmphat == hat) || hmeblkp->hblk_lckcnt) {
8114 			/*
8115 			 * We have an uncache conflict
8116 			 */
8117 			SFMMU_STAT(sf_uncache_conflict);
8118 			sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
8119 			return;
8120 		}
8121 	}
8122 
8123 	/*
8124 	 * We have an unload conflict
8125 	 * We have already checked for LARGE mappings, therefore
8126 	 * the remaining mapping(s) must be TTE8K.
8127 	 */
8128 	SFMMU_STAT(sf_unload_conflict);
8129 
8130 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
8131 		tmphme = sfhmep->hme_next;
8132 		hmeblkp = sfmmu_hmetohblk(sfhmep);
8133 		if (hmeblkp->hblk_xhat_bit)
8134 			continue;
8135 		(void) sfmmu_pageunload(pp, sfhmep, TTE8K);
8136 	}
8137 
8138 	if (PP_ISMAPPED_KPM(pp))
8139 		sfmmu_kpm_vac_unload(pp, addr);
8140 
8141 	/*
8142 	 * Unloads only do TLB flushes so we need to flush the
8143 	 * cache here.
8144 	 */
8145 	sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
8146 	PP_SET_VCOLOR(pp, vcolor);
8147 }
8148 
8149 /*
8150  * Whenever a mapping is unloaded and the page is in TNC state,
8151  * we see if the page can be made cacheable again. 'pp' is
8152  * the page that we just unloaded a mapping from, the size
8153  * of mapping that was unloaded is 'ottesz'.
8154  * Remark:
8155  * The recache policy for mpss pages can leave a performance problem
8156  * under the following circumstances:
8157  * . A large page in uncached mode has just been unmapped.
8158  * . All constituent pages are TNC due to a conflicting small mapping.
8159  * . There are many other, non conflicting, small mappings around for
8160  *   a lot of the constituent pages.
8161  * . We're called w/ the "old" groupleader page and the old ottesz,
8162  *   but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
8163  *   we end up w/ TTE8K or npages == 1.
8164  * . We call tst_tnc w/ the old groupleader only, and if there is no
8165  *   conflict, we re-cache only this page.
8166  * . All other small mappings are not checked and will be left in TNC mode.
8167  * The problem is not very serious because:
8168  * . mpss is actually only defined for heap and stack, so the probability
8169  *   is not very high that a large page mapping exists in parallel to a small
8170  *   one (this is possible, but seems to be bad programming style in the
8171  *   appl).
8172  * . The problem gets a little bit more serious, when those TNC pages
8173  *   have to be mapped into kernel space, e.g. for networking.
8174  * . When VAC alias conflicts occur in applications, this is regarded
8175  *   as an application bug. So if kstat's show them, the appl should
8176  *   be changed anyway.
8177  */
8178 static void
8179 conv_tnc(page_t *pp, int ottesz)
8180 {
8181 	int cursz, dosz;
8182 	pgcnt_t curnpgs, dopgs;
8183 	pgcnt_t pg64k;
8184 	page_t *pp2;
8185 
8186 	/*
8187 	 * Determine how big a range we check for TNC and find
8188 	 * leader page. cursz is the size of the biggest
8189 	 * mapping that still exist on 'pp'.
8190 	 */
8191 	if (PP_ISMAPPED_LARGE(pp)) {
8192 		cursz = fnd_mapping_sz(pp);
8193 	} else {
8194 		cursz = TTE8K;
8195 	}
8196 
8197 	if (ottesz >= cursz) {
8198 		dosz = ottesz;
8199 		pp2 = pp;
8200 	} else {
8201 		dosz = cursz;
8202 		pp2 = PP_GROUPLEADER(pp, dosz);
8203 	}
8204 
8205 	pg64k = TTEPAGES(TTE64K);
8206 	dopgs = TTEPAGES(dosz);
8207 
8208 	ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
8209 
8210 	while (dopgs != 0) {
8211 		curnpgs = TTEPAGES(cursz);
8212 		if (tst_tnc(pp2, curnpgs)) {
8213 			SFMMU_STAT_ADD(sf_recache, curnpgs);
8214 			sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
8215 				curnpgs);
8216 		}
8217 
8218 		ASSERT(dopgs >= curnpgs);
8219 		dopgs -= curnpgs;
8220 
8221 		if (dopgs == 0) {
8222 			break;
8223 		}
8224 
8225 		pp2 = PP_PAGENEXT_N(pp2, curnpgs);
8226 		if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
8227 			cursz = fnd_mapping_sz(pp2);
8228 		} else {
8229 			cursz = TTE8K;
8230 		}
8231 	}
8232 }
8233 
8234 /*
8235  * Returns 1 if page(s) can be converted from TNC to cacheable setting,
8236  * returns 0 otherwise. Note that oaddr argument is valid for only
8237  * 8k pages.
8238  */
8239 static int
8240 tst_tnc(page_t *pp, pgcnt_t npages)
8241 {
8242 	struct	sf_hment *sfhme;
8243 	struct	hme_blk *hmeblkp;
8244 	tte_t	tte;
8245 	caddr_t	vaddr;
8246 	int	clr_valid = 0;
8247 	int 	color, color1, bcolor;
8248 	int	i, ncolors;
8249 
8250 	ASSERT(pp != NULL);
8251 	ASSERT(!(cache & CACHE_WRITEBACK));
8252 
8253 	if (npages > 1) {
8254 		ncolors = CACHE_NUM_COLOR;
8255 	}
8256 
8257 	for (i = 0; i < npages; i++) {
8258 		ASSERT(sfmmu_mlist_held(pp));
8259 		ASSERT(PP_ISTNC(pp));
8260 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
8261 
8262 		if (PP_ISPNC(pp)) {
8263 			return (0);
8264 		}
8265 
8266 		clr_valid = 0;
8267 		if (PP_ISMAPPED_KPM(pp)) {
8268 			caddr_t kpmvaddr;
8269 
8270 			ASSERT(kpm_enable);
8271 			kpmvaddr = hat_kpm_page2va(pp, 1);
8272 			ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
8273 			color1 = addr_to_vcolor(kpmvaddr);
8274 			clr_valid = 1;
8275 		}
8276 
8277 		for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
8278 			hmeblkp = sfmmu_hmetohblk(sfhme);
8279 			if (hmeblkp->hblk_xhat_bit)
8280 				continue;
8281 
8282 			sfmmu_copytte(&sfhme->hme_tte, &tte);
8283 			ASSERT(TTE_IS_VALID(&tte));
8284 
8285 			vaddr = tte_to_vaddr(hmeblkp, tte);
8286 			color = addr_to_vcolor(vaddr);
8287 
8288 			if (npages > 1) {
8289 				/*
8290 				 * If there is a big mapping, make sure
8291 				 * 8K mapping is consistent with the big
8292 				 * mapping.
8293 				 */
8294 				bcolor = i % ncolors;
8295 				if (color != bcolor) {
8296 					return (0);
8297 				}
8298 			}
8299 			if (!clr_valid) {
8300 				clr_valid = 1;
8301 				color1 = color;
8302 			}
8303 
8304 			if (color1 != color) {
8305 				return (0);
8306 			}
8307 		}
8308 
8309 		pp = PP_PAGENEXT(pp);
8310 	}
8311 
8312 	return (1);
8313 }
8314 
8315 static void
8316 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
8317 	pgcnt_t npages)
8318 {
8319 	kmutex_t *pmtx;
8320 	int i, ncolors, bcolor;
8321 	kpm_hlk_t *kpmp;
8322 	cpuset_t cpuset;
8323 
8324 	ASSERT(pp != NULL);
8325 	ASSERT(!(cache & CACHE_WRITEBACK));
8326 
8327 	kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
8328 	pmtx = sfmmu_page_enter(pp);
8329 
8330 	/*
8331 	 * Fast path caching single unmapped page
8332 	 */
8333 	if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
8334 	    flags == HAT_CACHE) {
8335 		PP_CLRTNC(pp);
8336 		PP_CLRPNC(pp);
8337 		sfmmu_page_exit(pmtx);
8338 		sfmmu_kpm_kpmp_exit(kpmp);
8339 		return;
8340 	}
8341 
8342 	/*
8343 	 * We need to capture all cpus in order to change cacheability
8344 	 * because we can't allow one cpu to access the same physical
8345 	 * page using a cacheable and a non-cachebale mapping at the same
8346 	 * time. Since we may end up walking the ism mapping list
8347 	 * have to grab it's lock now since we can't after all the
8348 	 * cpus have been captured.
8349 	 */
8350 	sfmmu_hat_lock_all();
8351 	mutex_enter(&ism_mlist_lock);
8352 	kpreempt_disable();
8353 	cpuset = cpu_ready_set;
8354 	xc_attention(cpuset);
8355 
8356 	if (npages > 1) {
8357 		/*
8358 		 * Make sure all colors are flushed since the
8359 		 * sfmmu_page_cache() only flushes one color-
8360 		 * it does not know big pages.
8361 		 */
8362 		ncolors = CACHE_NUM_COLOR;
8363 		if (flags & HAT_TMPNC) {
8364 			for (i = 0; i < ncolors; i++) {
8365 				sfmmu_cache_flushcolor(i, pp->p_pagenum);
8366 			}
8367 			cache_flush_flag = CACHE_NO_FLUSH;
8368 		}
8369 	}
8370 
8371 	for (i = 0; i < npages; i++) {
8372 
8373 		ASSERT(sfmmu_mlist_held(pp));
8374 
8375 		if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
8376 
8377 			if (npages > 1) {
8378 				bcolor = i % ncolors;
8379 			} else {
8380 				bcolor = NO_VCOLOR;
8381 			}
8382 
8383 			sfmmu_page_cache(pp, flags, cache_flush_flag,
8384 			    bcolor);
8385 		}
8386 
8387 		pp = PP_PAGENEXT(pp);
8388 	}
8389 
8390 	xt_sync(cpuset);
8391 	xc_dismissed(cpuset);
8392 	mutex_exit(&ism_mlist_lock);
8393 	sfmmu_hat_unlock_all();
8394 	sfmmu_page_exit(pmtx);
8395 	sfmmu_kpm_kpmp_exit(kpmp);
8396 	kpreempt_enable();
8397 }
8398 
8399 /*
8400  * This function changes the virtual cacheability of all mappings to a
8401  * particular page.  When changing from uncache to cacheable the mappings will
8402  * only be changed if all of them have the same virtual color.
8403  * We need to flush the cache in all cpus.  It is possible that
8404  * a process referenced a page as cacheable but has sinced exited
8405  * and cleared the mapping list.  We still to flush it but have no
8406  * state so all cpus is the only alternative.
8407  */
8408 static void
8409 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
8410 {
8411 	struct	sf_hment *sfhme;
8412 	struct	hme_blk *hmeblkp;
8413 	sfmmu_t *sfmmup;
8414 	tte_t	tte, ttemod;
8415 	caddr_t	vaddr;
8416 	int	ret, color;
8417 	pfn_t	pfn;
8418 
8419 	color = bcolor;
8420 	pfn = pp->p_pagenum;
8421 
8422 	for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
8423 
8424 		hmeblkp = sfmmu_hmetohblk(sfhme);
8425 
8426 		if (hmeblkp->hblk_xhat_bit)
8427 			continue;
8428 
8429 		sfmmu_copytte(&sfhme->hme_tte, &tte);
8430 		ASSERT(TTE_IS_VALID(&tte));
8431 		vaddr = tte_to_vaddr(hmeblkp, tte);
8432 		color = addr_to_vcolor(vaddr);
8433 
8434 #ifdef DEBUG
8435 		if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
8436 			ASSERT(color == bcolor);
8437 		}
8438 #endif
8439 
8440 		ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
8441 
8442 		ttemod = tte;
8443 		if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
8444 			TTE_CLR_VCACHEABLE(&ttemod);
8445 		} else {	/* flags & HAT_CACHE */
8446 			TTE_SET_VCACHEABLE(&ttemod);
8447 		}
8448 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
8449 		if (ret < 0) {
8450 			/*
8451 			 * Since all cpus are captured modifytte should not
8452 			 * fail.
8453 			 */
8454 			panic("sfmmu_page_cache: write to tte failed");
8455 		}
8456 
8457 		sfmmup = hblktosfmmu(hmeblkp);
8458 		if (cache_flush_flag == CACHE_FLUSH) {
8459 			/*
8460 			 * Flush TSBs, TLBs and caches
8461 			 */
8462 			if (sfmmup->sfmmu_ismhat) {
8463 				if (flags & HAT_CACHE) {
8464 					SFMMU_STAT(sf_ism_recache);
8465 				} else {
8466 					SFMMU_STAT(sf_ism_uncache);
8467 				}
8468 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
8469 				    pfn, CACHE_FLUSH);
8470 			} else {
8471 				sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
8472 				    pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
8473 			}
8474 
8475 			/*
8476 			 * all cache entries belonging to this pfn are
8477 			 * now flushed.
8478 			 */
8479 			cache_flush_flag = CACHE_NO_FLUSH;
8480 		} else {
8481 
8482 			/*
8483 			 * Flush only TSBs and TLBs.
8484 			 */
8485 			if (sfmmup->sfmmu_ismhat) {
8486 				if (flags & HAT_CACHE) {
8487 					SFMMU_STAT(sf_ism_recache);
8488 				} else {
8489 					SFMMU_STAT(sf_ism_uncache);
8490 				}
8491 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
8492 				    pfn, CACHE_NO_FLUSH);
8493 			} else {
8494 				sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
8495 			}
8496 		}
8497 	}
8498 
8499 	if (PP_ISMAPPED_KPM(pp))
8500 		sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
8501 
8502 	switch (flags) {
8503 
8504 		default:
8505 			panic("sfmmu_pagecache: unknown flags");
8506 			break;
8507 
8508 		case HAT_CACHE:
8509 			PP_CLRTNC(pp);
8510 			PP_CLRPNC(pp);
8511 			PP_SET_VCOLOR(pp, color);
8512 			break;
8513 
8514 		case HAT_TMPNC:
8515 			PP_SETTNC(pp);
8516 			PP_SET_VCOLOR(pp, NO_VCOLOR);
8517 			break;
8518 
8519 		case HAT_UNCACHE:
8520 			PP_SETPNC(pp);
8521 			PP_CLRTNC(pp);
8522 			PP_SET_VCOLOR(pp, NO_VCOLOR);
8523 			break;
8524 	}
8525 }
8526 
8527 /*
8528  * This routine gets called when the system has run out of free contexts.
8529  * This will simply choose context passed to it to be stolen and reused.
8530  */
8531 /* ARGSUSED */
8532 static void
8533 sfmmu_reuse_ctx(struct ctx *ctx, sfmmu_t *sfmmup)
8534 {
8535 	sfmmu_t *stolen_sfmmup;
8536 	cpuset_t cpuset;
8537 	ushort_t	cnum = ctxtoctxnum(ctx);
8538 
8539 	ASSERT(cnum != KCONTEXT);
8540 	ASSERT(rw_read_locked(&ctx->ctx_rwlock) == 0);	/* write locked */
8541 
8542 	/*
8543 	 * simply steal and reuse the ctx passed to us.
8544 	 */
8545 	stolen_sfmmup = ctx->ctx_sfmmu;
8546 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8547 	ASSERT(stolen_sfmmup->sfmmu_cnum == cnum);
8548 	ASSERT(stolen_sfmmup != ksfmmup);
8549 
8550 	TRACE_CTXS(&ctx_trace_mutex, ctx_trace_ptr, cnum, stolen_sfmmup,
8551 	    sfmmup, CTX_TRC_STEAL);
8552 	SFMMU_STAT(sf_ctxsteal);
8553 
8554 	/*
8555 	 * Update sfmmu and ctx structs. After this point all threads
8556 	 * belonging to this hat/proc will fault and not use the ctx
8557 	 * being stolen.
8558 	 */
8559 	kpreempt_disable();
8560 	/*
8561 	 * Enforce reverse order of assignments from sfmmu_get_ctx().  This
8562 	 * is done to prevent a race where a thread faults with the context
8563 	 * but the TSB has changed.
8564 	 */
8565 	stolen_sfmmup->sfmmu_cnum = INVALID_CONTEXT;
8566 	membar_enter();
8567 	ctx->ctx_sfmmu = NULL;
8568 
8569 	/*
8570 	 * 1. flush TLB in all CPUs that ran the process whose ctx
8571 	 * we are stealing.
8572 	 * 2. change context for all other CPUs to INVALID_CONTEXT,
8573 	 * if they are running in the context that we are going to steal.
8574 	 */
8575 	cpuset = stolen_sfmmup->sfmmu_cpusran;
8576 	CPUSET_DEL(cpuset, CPU->cpu_id);
8577 	CPUSET_AND(cpuset, cpu_ready_set);
8578 	SFMMU_XCALL_STATS(cnum);
8579 	xt_some(cpuset, sfmmu_ctx_steal_tl1, cnum, INVALID_CONTEXT);
8580 	xt_sync(cpuset);
8581 
8582 	/*
8583 	 * flush TLB of local processor
8584 	 */
8585 	vtag_flushctx(cnum);
8586 
8587 	/*
8588 	 * If we just stole the ctx from the current process
8589 	 * on local cpu then we also invalidate his context
8590 	 * here.
8591 	 */
8592 	if (sfmmu_getctx_sec() == cnum) {
8593 		sfmmu_setctx_sec(INVALID_CONTEXT);
8594 		sfmmu_clear_utsbinfo();
8595 	}
8596 
8597 	kpreempt_enable();
8598 	SFMMU_STAT(sf_tlbflush_ctx);
8599 }
8600 
8601 /*
8602  * Returns a context with the reader lock held.
8603  *
8604  * We maintain 2 different list of contexts.  The first list
8605  * is the free list and it is headed by ctxfree.  These contexts
8606  * are ready to use.  The second list is the dirty list and is
8607  * headed by ctxdirty. These contexts have been freed but haven't
8608  * been flushed from the TLB.
8609  *
8610  * It's the responsibility of the caller to guarantee that the
8611  * process serializes on calls here by taking the HAT lock for
8612  * the hat.
8613  *
8614  * Changing the page size is a rather complicated process, so
8615  * rather than jump through lots of hoops to special case it,
8616  * the easiest way to go about it is to tell the MMU we want
8617  * to change page sizes and then switch to using a different
8618  * context.  When we program the context registers for the
8619  * process, we can take care of setting up the (new) page size
8620  * for that context at that point.
8621  */
8622 
8623 static struct ctx *
8624 sfmmu_get_ctx(sfmmu_t *sfmmup)
8625 {
8626 	struct ctx *ctx;
8627 	ushort_t cnum;
8628 	struct ctx *lastctx = &ctxs[nctxs-1];
8629 	struct ctx *firstctx = &ctxs[NUM_LOCKED_CTXS];
8630 	uint_t	found_stealable_ctx;
8631 	uint_t	retry_count = 0;
8632 
8633 #define	NEXT_CTX(ctx)   (((ctx) >= lastctx) ? firstctx : ((ctx) + 1))
8634 
8635 retry:
8636 
8637 	ASSERT(sfmmup->sfmmu_cnum != KCONTEXT);
8638 	/*
8639 	 * Check to see if this process has already got a ctx.
8640 	 * In that case just set the sec-ctx, grab a readers lock, and
8641 	 * return.
8642 	 *
8643 	 * We have to double check after we get the readers lock on the
8644 	 * context, since it could be stolen in this short window.
8645 	 */
8646 	if (sfmmup->sfmmu_cnum >= NUM_LOCKED_CTXS) {
8647 		ctx = sfmmutoctx(sfmmup);
8648 		rw_enter(&ctx->ctx_rwlock, RW_READER);
8649 		if (ctx->ctx_sfmmu == sfmmup) {
8650 			return (ctx);
8651 		} else {
8652 			rw_exit(&ctx->ctx_rwlock);
8653 		}
8654 	}
8655 
8656 	found_stealable_ctx = 0;
8657 	mutex_enter(&ctx_list_lock);
8658 	if ((ctx = ctxfree) != NULL) {
8659 		/*
8660 		 * Found a ctx in free list. Delete it from the list and
8661 		 * use it.  There's a short window where the stealer can
8662 		 * look at the context before we grab the lock on the
8663 		 * context, so we have to handle that with the free flag.
8664 		 */
8665 		SFMMU_STAT(sf_ctxfree);
8666 		ctxfree = ctx->ctx_free;
8667 		ctx->ctx_sfmmu = NULL;
8668 		mutex_exit(&ctx_list_lock);
8669 		rw_enter(&ctx->ctx_rwlock, RW_WRITER);
8670 		ASSERT(ctx->ctx_sfmmu == NULL);
8671 		ASSERT((ctx->ctx_flags & CTX_FREE_FLAG) != 0);
8672 	} else if ((ctx = ctxdirty) != NULL) {
8673 		/*
8674 		 * No free contexts.  If we have at least one dirty ctx
8675 		 * then flush the TLBs on all cpus if necessary and move
8676 		 * the dirty list to the free list.
8677 		 */
8678 		SFMMU_STAT(sf_ctxdirty);
8679 		ctxdirty = NULL;
8680 		if (delay_tlb_flush)
8681 			sfmmu_tlb_all_demap();
8682 		ctxfree = ctx->ctx_free;
8683 		ctx->ctx_sfmmu = NULL;
8684 		mutex_exit(&ctx_list_lock);
8685 		rw_enter(&ctx->ctx_rwlock, RW_WRITER);
8686 		ASSERT(ctx->ctx_sfmmu == NULL);
8687 		ASSERT((ctx->ctx_flags & CTX_FREE_FLAG) != 0);
8688 	} else {
8689 		/*
8690 		 * No free context available, so steal one.
8691 		 *
8692 		 * The policy to choose the appropriate context is simple;
8693 		 * just sweep all the ctxs using ctxhand. This will steal
8694 		 * the LRU ctx.
8695 		 *
8696 		 * We however only steal a non-free context that can be
8697 		 * write locked.  Keep searching till we find a stealable
8698 		 * ctx.
8699 		 */
8700 		mutex_exit(&ctx_list_lock);
8701 		ctx = ctxhand;
8702 		do {
8703 			/*
8704 			 * If you get the writers lock, and the ctx isn't
8705 			 * a free ctx, THEN you can steal this ctx.
8706 			 */
8707 			if ((ctx->ctx_flags & CTX_FREE_FLAG) == 0 &&
8708 			    rw_tryenter(&ctx->ctx_rwlock, RW_WRITER) != 0) {
8709 				if (ctx->ctx_flags & CTX_FREE_FLAG) {
8710 					/* let the first guy have it */
8711 					rw_exit(&ctx->ctx_rwlock);
8712 				} else {
8713 					found_stealable_ctx = 1;
8714 					break;
8715 				}
8716 			}
8717 			ctx = NEXT_CTX(ctx);
8718 		} while (ctx != ctxhand);
8719 
8720 		if (found_stealable_ctx) {
8721 			/*
8722 			 * Try and reuse the ctx.
8723 			 */
8724 			sfmmu_reuse_ctx(ctx, sfmmup);
8725 
8726 		} else if (retry_count++ < GET_CTX_RETRY_CNT) {
8727 			goto retry;
8728 
8729 		} else {
8730 			panic("Can't find any stealable context");
8731 		}
8732 	}
8733 
8734 	ASSERT(rw_read_locked(&ctx->ctx_rwlock) == 0);	/* write locked */
8735 	ctx->ctx_sfmmu = sfmmup;
8736 
8737 	/*
8738 	 * Clear the ctx_flags field.
8739 	 */
8740 	ctx->ctx_flags = 0;
8741 
8742 	cnum = ctxtoctxnum(ctx);
8743 	membar_exit();
8744 	sfmmup->sfmmu_cnum = cnum;
8745 
8746 	/*
8747 	 * Let the MMU set up the page sizes to use for
8748 	 * this context in the TLB. Don't program 2nd dtlb for ism hat.
8749 	 */
8750 	if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0))
8751 		mmu_set_ctx_page_sizes(sfmmup);
8752 
8753 	/*
8754 	 * Downgrade to reader's lock.
8755 	 */
8756 	rw_downgrade(&ctx->ctx_rwlock);
8757 
8758 	/*
8759 	 * If this value doesn't get set to what we want
8760 	 * it won't matter, so don't worry about locking.
8761 	 */
8762 	ctxhand = NEXT_CTX(ctx);
8763 
8764 	/*
8765 	 * Better not have been stolen while we held the ctx'
8766 	 * lock or we're hosed.
8767 	 */
8768 	ASSERT(sfmmup == sfmmutoctx(sfmmup)->ctx_sfmmu);
8769 
8770 	return (ctx);
8771 
8772 #undef NEXT_CTX
8773 }
8774 
8775 
8776 /*
8777  * Set the process context to INVALID_CONTEXT (but
8778  * without stealing the ctx) so that it faults and
8779  * reloads the MMU state from TL=0.  Caller must
8780  * hold the hat lock since we don't acquire it here.
8781  */
8782 static void
8783 sfmmu_sync_mmustate(sfmmu_t *sfmmup)
8784 {
8785 	int cnum;
8786 	cpuset_t cpuset;
8787 
8788 	ASSERT(sfmmup != ksfmmup);
8789 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8790 
8791 	kpreempt_disable();
8792 
8793 	cnum = sfmmutoctxnum(sfmmup);
8794 	if (cnum != INVALID_CONTEXT) {
8795 		cpuset = sfmmup->sfmmu_cpusran;
8796 		CPUSET_DEL(cpuset, CPU->cpu_id);
8797 		CPUSET_AND(cpuset, cpu_ready_set);
8798 		SFMMU_XCALL_STATS(cnum);
8799 
8800 		xt_some(cpuset, sfmmu_raise_tsb_exception,
8801 		    cnum, INVALID_CONTEXT);
8802 		xt_sync(cpuset);
8803 
8804 		/*
8805 		 * If the process is running on the local CPU
8806 		 * we need to update the MMU state here as well.
8807 		 */
8808 		if (sfmmu_getctx_sec() == cnum)
8809 			sfmmu_load_mmustate(sfmmup);
8810 
8811 		SFMMU_STAT(sf_tsb_raise_exception);
8812 	}
8813 
8814 	kpreempt_enable();
8815 }
8816 
8817 
8818 /*
8819  * Replace the specified TSB with a new TSB.  This function gets called when
8820  * we grow, shrink or swapin a TSB.  When swapping in a TSB (TSB_SWAPIN), the
8821  * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
8822  * (8K).
8823  *
8824  * Caller must hold the HAT lock, but should assume any tsb_info
8825  * pointers it has are no longer valid after calling this function.
8826  *
8827  * Return values:
8828  *	TSB_ALLOCFAIL	Failed to allocate a TSB, due to memory constraints
8829  *	TSB_LOSTRACE	HAT is busy, i.e. another thread is already doing
8830  *			something to this tsbinfo/TSB
8831  *	TSB_SUCCESS	Operation succeeded
8832  */
8833 static tsb_replace_rc_t
8834 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
8835     hatlock_t *hatlockp, uint_t flags)
8836 {
8837 	struct tsb_info *new_tsbinfo = NULL;
8838 	struct tsb_info *curtsb, *prevtsb;
8839 	uint_t tte_sz_mask;
8840 	cpuset_t cpuset;
8841 	struct ctx *ctx = NULL;
8842 	int ctxnum;
8843 
8844 	ASSERT(sfmmup != ksfmmup);
8845 	ASSERT(sfmmup->sfmmu_ismhat == 0);
8846 	ASSERT(sfmmu_hat_lock_held(sfmmup));
8847 	ASSERT(szc <= tsb_max_growsize);
8848 
8849 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
8850 		return (TSB_LOSTRACE);
8851 
8852 	/*
8853 	 * Find the tsb_info ahead of this one in the list, and
8854 	 * also make sure that the tsb_info passed in really
8855 	 * exists!
8856 	 */
8857 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
8858 	    curtsb != old_tsbinfo && curtsb != NULL;
8859 	    prevtsb = curtsb, curtsb = curtsb->tsb_next);
8860 	ASSERT(curtsb != NULL);
8861 
8862 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
8863 		/*
8864 		 * The process is swapped out, so just set the new size
8865 		 * code.  When it swaps back in, we'll allocate a new one
8866 		 * of the new chosen size.
8867 		 */
8868 		curtsb->tsb_szc = szc;
8869 		return (TSB_SUCCESS);
8870 	}
8871 	SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
8872 
8873 	tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
8874 
8875 	/*
8876 	 * All initialization is done inside of sfmmu_tsbinfo_alloc().
8877 	 * If we fail to allocate a TSB, exit.
8878 	 */
8879 	sfmmu_hat_exit(hatlockp);
8880 	if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc, tte_sz_mask,
8881 	    flags, sfmmup)) {
8882 		(void) sfmmu_hat_enter(sfmmup);
8883 		if (!(flags & TSB_SWAPIN))
8884 			SFMMU_STAT(sf_tsb_resize_failures);
8885 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
8886 		return (TSB_ALLOCFAIL);
8887 	}
8888 	(void) sfmmu_hat_enter(sfmmup);
8889 
8890 	/*
8891 	 * Re-check to make sure somebody else didn't muck with us while we
8892 	 * didn't hold the HAT lock.  If the process swapped out, fine, just
8893 	 * exit; this can happen if we try to shrink the TSB from the context
8894 	 * of another process (such as on an ISM unmap), though it is rare.
8895 	 */
8896 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
8897 		SFMMU_STAT(sf_tsb_resize_failures);
8898 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
8899 		sfmmu_hat_exit(hatlockp);
8900 		sfmmu_tsbinfo_free(new_tsbinfo);
8901 		(void) sfmmu_hat_enter(sfmmup);
8902 		return (TSB_LOSTRACE);
8903 	}
8904 
8905 #ifdef	DEBUG
8906 	/* Reverify that the tsb_info still exists.. for debugging only */
8907 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
8908 	    curtsb != old_tsbinfo && curtsb != NULL;
8909 	    prevtsb = curtsb, curtsb = curtsb->tsb_next);
8910 	ASSERT(curtsb != NULL);
8911 #endif	/* DEBUG */
8912 
8913 	/*
8914 	 * Quiesce any CPUs running this process on their next TLB miss
8915 	 * so they atomically see the new tsb_info.  We temporarily set the
8916 	 * context to invalid context so new threads that come on processor
8917 	 * after we do the xcall to cpusran will also serialize behind the
8918 	 * HAT lock on TLB miss and will see the new TSB.  Since this short
8919 	 * race with a new thread coming on processor is relatively rare,
8920 	 * this synchronization mechanism should be cheaper than always
8921 	 * pausing all CPUs for the duration of the setup, which is what
8922 	 * the old implementation did.  This is particuarly true if we are
8923 	 * copying a huge chunk of memory around during that window.
8924 	 *
8925 	 * The memory barriers are to make sure things stay consistent
8926 	 * with resume() since it does not hold the HAT lock while
8927 	 * walking the list of tsb_info structures.
8928 	 */
8929 	if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
8930 		/* The TSB is either growing or shrinking. */
8931 		ctx = sfmmutoctx(sfmmup);
8932 		rw_enter(&ctx->ctx_rwlock, RW_WRITER);
8933 
8934 		ctxnum = sfmmutoctxnum(sfmmup);
8935 		sfmmup->sfmmu_cnum = INVALID_CONTEXT;
8936 		membar_enter();	/* make sure visible on all CPUs */
8937 
8938 		kpreempt_disable();
8939 		if (ctxnum != INVALID_CONTEXT) {
8940 			cpuset = sfmmup->sfmmu_cpusran;
8941 			CPUSET_DEL(cpuset, CPU->cpu_id);
8942 			CPUSET_AND(cpuset, cpu_ready_set);
8943 			SFMMU_XCALL_STATS(ctxnum);
8944 
8945 			xt_some(cpuset, sfmmu_raise_tsb_exception,
8946 			    ctxnum, INVALID_CONTEXT);
8947 			xt_sync(cpuset);
8948 
8949 			SFMMU_STAT(sf_tsb_raise_exception);
8950 		}
8951 		kpreempt_enable();
8952 	} else {
8953 		/*
8954 		 * It is illegal to swap in TSBs from a process other
8955 		 * than a process being swapped in.  This in turn
8956 		 * implies we do not have a valid MMU context here
8957 		 * since a process needs one to resolve translation
8958 		 * misses.
8959 		 */
8960 		ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
8961 		ASSERT(sfmmutoctxnum(sfmmup) == INVALID_CONTEXT);
8962 	}
8963 
8964 	new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
8965 	membar_stst();	/* strict ordering required */
8966 	if (prevtsb)
8967 		prevtsb->tsb_next = new_tsbinfo;
8968 	else
8969 		sfmmup->sfmmu_tsb = new_tsbinfo;
8970 	membar_enter();	/* make sure new TSB globally visible */
8971 	sfmmu_setup_tsbinfo(sfmmup);
8972 
8973 	/*
8974 	 * We need to migrate TSB entries from the old TSB to the new TSB
8975 	 * if tsb_remap_ttes is set and the TSB is growing.
8976 	 */
8977 	if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
8978 		sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
8979 
8980 	if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
8981 		kpreempt_disable();
8982 		membar_exit();
8983 		sfmmup->sfmmu_cnum = ctxnum;
8984 		if (ctxnum != INVALID_CONTEXT &&
8985 		    sfmmu_getctx_sec() == ctxnum) {
8986 			sfmmu_load_mmustate(sfmmup);
8987 		}
8988 		kpreempt_enable();
8989 		rw_exit(&ctx->ctx_rwlock);
8990 	}
8991 
8992 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
8993 
8994 	/*
8995 	 * Drop the HAT lock to free our old tsb_info.
8996 	 */
8997 	sfmmu_hat_exit(hatlockp);
8998 
8999 	if ((flags & TSB_GROW) == TSB_GROW) {
9000 		SFMMU_STAT(sf_tsb_grow);
9001 	} else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
9002 		SFMMU_STAT(sf_tsb_shrink);
9003 	}
9004 
9005 	sfmmu_tsbinfo_free(old_tsbinfo);
9006 
9007 	(void) sfmmu_hat_enter(sfmmup);
9008 	return (TSB_SUCCESS);
9009 }
9010 
9011 /*
9012  * Steal context from process, forcing the process to switch to another
9013  * context on the next TLB miss, and therefore start using the TLB that
9014  * is reprogrammed for the new page sizes.
9015  */
9016 void
9017 sfmmu_steal_context(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
9018 {
9019 	struct ctx *ctx;
9020 	int i, cnum;
9021 	hatlock_t *hatlockp = NULL;
9022 
9023 	hatlockp = sfmmu_hat_enter(sfmmup);
9024 	/* USIII+-IV+ optimization, requires hat lock */
9025 	if (tmp_pgsz) {
9026 		for (i = 0; i < mmu_page_sizes; i++)
9027 			sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
9028 	}
9029 	SFMMU_STAT(sf_tlb_reprog_pgsz);
9030 	ctx = sfmmutoctx(sfmmup);
9031 	rw_enter(&ctx->ctx_rwlock, RW_WRITER);
9032 	cnum = sfmmutoctxnum(sfmmup);
9033 
9034 	if (cnum != INVALID_CONTEXT) {
9035 		sfmmu_tlb_swap_ctx(sfmmup, ctx);
9036 	}
9037 	rw_exit(&ctx->ctx_rwlock);
9038 	sfmmu_hat_exit(hatlockp);
9039 }
9040 
9041 /*
9042  * This function assumes that there are either four or six supported page
9043  * sizes and at most two programmable TLBs, so we need to decide which
9044  * page sizes are most important and then tell the MMU layer so it
9045  * can adjust the TLB page sizes accordingly (if supported).
9046  *
9047  * If these assumptions change, this function will need to be
9048  * updated to support whatever the new limits are.
9049  *
9050  * The growing flag is nonzero if we are growing the address space,
9051  * and zero if it is shrinking.  This allows us to decide whether
9052  * to grow or shrink our TSB, depending upon available memory
9053  * conditions.
9054  */
9055 static void
9056 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
9057 {
9058 	uint64_t ttecnt[MMU_PAGE_SIZES];
9059 	uint64_t tte8k_cnt, tte4m_cnt;
9060 	uint8_t i;
9061 	int sectsb_thresh;
9062 
9063 	/*
9064 	 * Kernel threads, processes with small address spaces not using
9065 	 * large pages, and dummy ISM HATs need not apply.
9066 	 */
9067 	if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL)
9068 		return;
9069 
9070 	if ((sfmmup->sfmmu_flags & HAT_LGPG_FLAGS) == 0 &&
9071 	    sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
9072 		return;
9073 
9074 	for (i = 0; i < mmu_page_sizes; i++) {
9075 		ttecnt[i] = SFMMU_TTE_CNT(sfmmup, i);
9076 	}
9077 
9078 	/* Check pagesizes in use, and possibly reprogram DTLB. */
9079 	if (&mmu_check_page_sizes)
9080 		mmu_check_page_sizes(sfmmup, ttecnt);
9081 
9082 	/*
9083 	 * Calculate the number of 8k ttes to represent the span of these
9084 	 * pages.
9085 	 */
9086 	tte8k_cnt = ttecnt[TTE8K] +
9087 	    (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
9088 	    (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
9089 	if (mmu_page_sizes == max_mmu_page_sizes) {
9090 		tte4m_cnt = ttecnt[TTE4M] +
9091 		    (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
9092 		    (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
9093 	} else {
9094 		tte4m_cnt = ttecnt[TTE4M];
9095 	}
9096 
9097 	/*
9098 	 * Inflate TSB sizes by a factor of 2 if this process
9099 	 * uses 4M text pages to minimize extra conflict misses
9100 	 * in the first TSB since without counting text pages
9101 	 * 8K TSB may become too small.
9102 	 *
9103 	 * Also double the size of the second TSB to minimize
9104 	 * extra conflict misses due to competition between 4M text pages
9105 	 * and data pages.
9106 	 *
9107 	 * We need to adjust the second TSB allocation threshold by the
9108 	 * inflation factor, since there is no point in creating a second
9109 	 * TSB when we know all the mappings can fit in the I/D TLBs.
9110 	 */
9111 	sectsb_thresh = tsb_sectsb_threshold;
9112 	if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
9113 		tte8k_cnt <<= 1;
9114 		tte4m_cnt <<= 1;
9115 		sectsb_thresh <<= 1;
9116 	}
9117 
9118 	/*
9119 	 * Check to see if our TSB is the right size; we may need to
9120 	 * grow or shrink it.  If the process is small, our work is
9121 	 * finished at this point.
9122 	 */
9123 	if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
9124 		return;
9125 	}
9126 	sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
9127 }
9128 
9129 static void
9130 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
9131 	uint64_t tte4m_cnt, int sectsb_thresh)
9132 {
9133 	int tsb_bits;
9134 	uint_t tsb_szc;
9135 	struct tsb_info *tsbinfop;
9136 	hatlock_t *hatlockp = NULL;
9137 
9138 	hatlockp = sfmmu_hat_enter(sfmmup);
9139 	ASSERT(hatlockp != NULL);
9140 	tsbinfop = sfmmup->sfmmu_tsb;
9141 	ASSERT(tsbinfop != NULL);
9142 
9143 	/*
9144 	 * If we're growing, select the size based on RSS.  If we're
9145 	 * shrinking, leave some room so we don't have to turn around and
9146 	 * grow again immediately.
9147 	 */
9148 	if (growing)
9149 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
9150 	else
9151 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
9152 
9153 	if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
9154 	    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
9155 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
9156 		    hatlockp, TSB_SHRINK);
9157 	} else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
9158 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
9159 		    hatlockp, TSB_GROW);
9160 	}
9161 	tsbinfop = sfmmup->sfmmu_tsb;
9162 
9163 	/*
9164 	 * With the TLB and first TSB out of the way, we need to see if
9165 	 * we need a second TSB for 4M pages.  If we managed to reprogram
9166 	 * the TLB page sizes above, the process will start using this new
9167 	 * TSB right away; otherwise, it will start using it on the next
9168 	 * context switch.  Either way, it's no big deal so there's no
9169 	 * synchronization with the trap handlers here unless we grow the
9170 	 * TSB (in which case it's required to prevent using the old one
9171 	 * after it's freed). Note: second tsb is required for 32M/256M
9172 	 * page sizes.
9173 	 */
9174 	if (tte4m_cnt > sectsb_thresh) {
9175 		/*
9176 		 * If we're growing, select the size based on RSS.  If we're
9177 		 * shrinking, leave some room so we don't have to turn
9178 		 * around and grow again immediately.
9179 		 */
9180 		if (growing)
9181 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
9182 		else
9183 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
9184 		if (tsbinfop->tsb_next == NULL) {
9185 			struct tsb_info *newtsb;
9186 			int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
9187 			    0 : TSB_ALLOC;
9188 
9189 			sfmmu_hat_exit(hatlockp);
9190 
9191 			/*
9192 			 * Try to allocate a TSB for 4[32|256]M pages.  If we
9193 			 * can't get the size we want, retry w/a minimum sized
9194 			 * TSB.  If that still didn't work, give up; we can
9195 			 * still run without one.
9196 			 */
9197 			tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
9198 			    TSB4M|TSB32M|TSB256M:TSB4M;
9199 			if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
9200 			    allocflags, sfmmup) != 0) &&
9201 			    (sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
9202 			    tsb_bits, allocflags, sfmmup) != 0)) {
9203 				return;
9204 			}
9205 
9206 			hatlockp = sfmmu_hat_enter(sfmmup);
9207 
9208 			if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
9209 				sfmmup->sfmmu_tsb->tsb_next = newtsb;
9210 				SFMMU_STAT(sf_tsb_sectsb_create);
9211 				sfmmu_setup_tsbinfo(sfmmup);
9212 				sfmmu_hat_exit(hatlockp);
9213 				return;
9214 			} else {
9215 				/*
9216 				 * It's annoying, but possible for us
9217 				 * to get here.. we dropped the HAT lock
9218 				 * because of locking order in the kmem
9219 				 * allocator, and while we were off getting
9220 				 * our memory, some other thread decided to
9221 				 * do us a favor and won the race to get a
9222 				 * second TSB for this process.  Sigh.
9223 				 */
9224 				sfmmu_hat_exit(hatlockp);
9225 				sfmmu_tsbinfo_free(newtsb);
9226 				return;
9227 			}
9228 		}
9229 
9230 		/*
9231 		 * We have a second TSB, see if it's big enough.
9232 		 */
9233 		tsbinfop = tsbinfop->tsb_next;
9234 
9235 		/*
9236 		 * Check to see if our second TSB is the right size;
9237 		 * we may need to grow or shrink it.
9238 		 * To prevent thrashing (e.g. growing the TSB on a
9239 		 * subsequent map operation), only try to shrink if
9240 		 * the TSB reach exceeds twice the virtual address
9241 		 * space size.
9242 		 */
9243 		if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
9244 		    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
9245 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
9246 			    tsb_szc, hatlockp, TSB_SHRINK);
9247 		} else if (growing && tsb_szc > tsbinfop->tsb_szc &&
9248 		    TSB_OK_GROW()) {
9249 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
9250 			    tsb_szc, hatlockp, TSB_GROW);
9251 		}
9252 	}
9253 
9254 	sfmmu_hat_exit(hatlockp);
9255 }
9256 
9257 /*
9258  * Get the preferred page size code for a hat.
9259  * This is only advice, so locking is not done;
9260  * this transitory information could change
9261  * following the call anyway.  This interface is
9262  * sun4 private.
9263  */
9264 /*ARGSUSED*/
9265 uint_t
9266 hat_preferred_pgsz(struct hat *hat, caddr_t vaddr, size_t maplen, int maptype)
9267 {
9268 	sfmmu_t *sfmmup = (sfmmu_t *)hat;
9269 	uint_t szc, maxszc = mmu_page_sizes - 1;
9270 	size_t pgsz;
9271 
9272 	if (maptype == MAPPGSZ_ISM) {
9273 		for (szc = maxszc; szc >= TTE4M; szc--) {
9274 			if (disable_ism_large_pages & (1 << szc))
9275 				continue;
9276 
9277 			pgsz = hw_page_array[szc].hp_size;
9278 			if ((maplen >= pgsz) && IS_P2ALIGNED(vaddr, pgsz))
9279 				return (szc);
9280 		}
9281 		return (TTE4M);
9282 	} else if (&mmu_preferred_pgsz) { /* USIII+-USIV+ */
9283 		return (mmu_preferred_pgsz(sfmmup, vaddr, maplen));
9284 	} else {	/* USIII, USII, Niagara */
9285 		for (szc = maxszc; szc > TTE8K; szc--) {
9286 			if (disable_large_pages & (1 << szc))
9287 				continue;
9288 
9289 			pgsz = hw_page_array[szc].hp_size;
9290 			if ((maplen >= pgsz) && IS_P2ALIGNED(vaddr, pgsz))
9291 				return (szc);
9292 		}
9293 		return (TTE8K);
9294 	}
9295 }
9296 
9297 /*
9298  * Free up a ctx
9299  */
9300 static void
9301 sfmmu_free_ctx(sfmmu_t *sfmmup, struct ctx *ctx)
9302 {
9303 	int ctxnum;
9304 
9305 	rw_enter(&ctx->ctx_rwlock, RW_WRITER);
9306 
9307 	TRACE_CTXS(&ctx_trace_mutex, ctx_trace_ptr, sfmmup->sfmmu_cnum,
9308 	    sfmmup, 0, CTX_TRC_FREE);
9309 
9310 	if (sfmmup->sfmmu_cnum == INVALID_CONTEXT) {
9311 		CPUSET_ZERO(sfmmup->sfmmu_cpusran);
9312 		rw_exit(&ctx->ctx_rwlock);
9313 		return;
9314 	}
9315 
9316 	ASSERT(sfmmup == ctx->ctx_sfmmu);
9317 
9318 	ctx->ctx_sfmmu = NULL;
9319 	ctx->ctx_flags = 0;
9320 	sfmmup->sfmmu_cnum = INVALID_CONTEXT;
9321 	membar_enter();
9322 	CPUSET_ZERO(sfmmup->sfmmu_cpusran);
9323 	ctxnum = sfmmu_getctx_sec();
9324 	if (ctxnum == ctxtoctxnum(ctx)) {
9325 		sfmmu_setctx_sec(INVALID_CONTEXT);
9326 		sfmmu_clear_utsbinfo();
9327 	}
9328 
9329 	/*
9330 	 * Put the freed ctx on the dirty list
9331 	 */
9332 	mutex_enter(&ctx_list_lock);
9333 	CTX_SET_FLAGS(ctx, CTX_FREE_FLAG);
9334 	ctx->ctx_free = ctxdirty;
9335 	ctxdirty = ctx;
9336 	mutex_exit(&ctx_list_lock);
9337 
9338 	rw_exit(&ctx->ctx_rwlock);
9339 }
9340 
9341 /*
9342  * Free up a sfmmu
9343  * Since the sfmmu is currently embedded in the hat struct we simply zero
9344  * out our fields and free up the ism map blk list if any.
9345  */
9346 static void
9347 sfmmu_free_sfmmu(sfmmu_t *sfmmup)
9348 {
9349 	ism_blk_t	*blkp, *nx_blkp;
9350 #ifdef	DEBUG
9351 	ism_map_t	*map;
9352 	int 		i;
9353 #endif
9354 
9355 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
9356 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
9357 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
9358 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
9359 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
9360 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
9361 	ASSERT(sfmmup->sfmmu_cnum == INVALID_CONTEXT);
9362 	sfmmup->sfmmu_free = 0;
9363 	sfmmup->sfmmu_ismhat = 0;
9364 
9365 	blkp = sfmmup->sfmmu_iblk;
9366 	sfmmup->sfmmu_iblk = NULL;
9367 
9368 	while (blkp) {
9369 #ifdef	DEBUG
9370 		map = blkp->iblk_maps;
9371 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
9372 			ASSERT(map[i].imap_seg == 0);
9373 			ASSERT(map[i].imap_ismhat == NULL);
9374 			ASSERT(map[i].imap_ment == NULL);
9375 		}
9376 #endif
9377 		nx_blkp = blkp->iblk_next;
9378 		blkp->iblk_next = NULL;
9379 		blkp->iblk_nextpa = (uint64_t)-1;
9380 		kmem_cache_free(ism_blk_cache, blkp);
9381 		blkp = nx_blkp;
9382 	}
9383 }
9384 
9385 /*
9386  * Locking primitves accessed by HATLOCK macros
9387  */
9388 
9389 #define	SFMMU_SPL_MTX	(0x0)
9390 #define	SFMMU_ML_MTX	(0x1)
9391 
9392 #define	SFMMU_MLSPL_MTX(type, pg)	(((type) == SFMMU_SPL_MTX) ? \
9393 					    SPL_HASH(pg) : MLIST_HASH(pg))
9394 
9395 kmutex_t *
9396 sfmmu_page_enter(struct page *pp)
9397 {
9398 	return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
9399 }
9400 
9401 static void
9402 sfmmu_page_exit(kmutex_t *spl)
9403 {
9404 	mutex_exit(spl);
9405 }
9406 
9407 static int
9408 sfmmu_page_spl_held(struct page *pp)
9409 {
9410 	return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
9411 }
9412 
9413 kmutex_t *
9414 sfmmu_mlist_enter(struct page *pp)
9415 {
9416 	return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
9417 }
9418 
9419 void
9420 sfmmu_mlist_exit(kmutex_t *mml)
9421 {
9422 	mutex_exit(mml);
9423 }
9424 
9425 int
9426 sfmmu_mlist_held(struct page *pp)
9427 {
9428 
9429 	return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
9430 }
9431 
9432 /*
9433  * Common code for sfmmu_mlist_enter() and sfmmu_page_enter().  For
9434  * sfmmu_mlist_enter() case mml_table lock array is used and for
9435  * sfmmu_page_enter() sfmmu_page_lock lock array is used.
9436  *
9437  * The lock is taken on a root page so that it protects an operation on all
9438  * constituent pages of a large page pp belongs to.
9439  *
9440  * The routine takes a lock from the appropriate array. The lock is determined
9441  * by hashing the root page. After taking the lock this routine checks if the
9442  * root page has the same size code that was used to determine the root (i.e
9443  * that root hasn't changed).  If root page has the expected p_szc field we
9444  * have the right lock and it's returned to the caller. If root's p_szc
9445  * decreased we release the lock and retry from the beginning.  This case can
9446  * happen due to hat_page_demote() decreasing p_szc between our load of p_szc
9447  * value and taking the lock. The number of retries due to p_szc decrease is
9448  * limited by the maximum p_szc value. If p_szc is 0 we return the lock
9449  * determined by hashing pp itself.
9450  *
9451  * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
9452  * possible that p_szc can increase. To increase p_szc a thread has to lock
9453  * all constituent pages EXCL and do hat_pageunload() on all of them. All the
9454  * callers that don't hold a page locked recheck if hmeblk through which pp
9455  * was found still maps this pp.  If it doesn't map it anymore returned lock
9456  * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
9457  * p_szc increase after taking the lock it returns this lock without further
9458  * retries because in this case the caller doesn't care about which lock was
9459  * taken. The caller will drop it right away.
9460  *
9461  * After the routine returns it's guaranteed that hat_page_demote() can't
9462  * change p_szc field of any of constituent pages of a large page pp belongs
9463  * to as long as pp was either locked at least SHARED prior to this call or
9464  * the caller finds that hment that pointed to this pp still references this
9465  * pp (this also assumes that the caller holds hme hash bucket lock so that
9466  * the same pp can't be remapped into the same hmeblk after it was unmapped by
9467  * hat_pageunload()).
9468  */
9469 static kmutex_t *
9470 sfmmu_mlspl_enter(struct page *pp, int type)
9471 {
9472 	kmutex_t	*mtx;
9473 	uint_t		prev_rszc = UINT_MAX;
9474 	page_t		*rootpp;
9475 	uint_t		szc;
9476 	uint_t		rszc;
9477 	uint_t		pszc = pp->p_szc;
9478 
9479 	ASSERT(pp != NULL);
9480 
9481 again:
9482 	if (pszc == 0) {
9483 		mtx = SFMMU_MLSPL_MTX(type, pp);
9484 		mutex_enter(mtx);
9485 		return (mtx);
9486 	}
9487 
9488 	/* The lock lives in the root page */
9489 	rootpp = PP_GROUPLEADER(pp, pszc);
9490 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
9491 	mutex_enter(mtx);
9492 
9493 	/*
9494 	 * Return mml in the following 3 cases:
9495 	 *
9496 	 * 1) If pp itself is root since if its p_szc decreased before we took
9497 	 * the lock pp is still the root of smaller szc page. And if its p_szc
9498 	 * increased it doesn't matter what lock we return (see comment in
9499 	 * front of this routine).
9500 	 *
9501 	 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
9502 	 * large page we have the right lock since any previous potential
9503 	 * hat_page_demote() is done demoting from greater than current root's
9504 	 * p_szc because hat_page_demote() changes root's p_szc last. No
9505 	 * further hat_page_demote() can start or be in progress since it
9506 	 * would need the same lock we currently hold.
9507 	 *
9508 	 * 3) If rootpp's p_szc increased since previous iteration it doesn't
9509 	 * matter what lock we return (see comment in front of this routine).
9510 	 */
9511 	if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
9512 	    rszc >= prev_rszc) {
9513 		return (mtx);
9514 	}
9515 
9516 	/*
9517 	 * hat_page_demote() could have decreased root's p_szc.
9518 	 * In this case pp's p_szc must also be smaller than pszc.
9519 	 * Retry.
9520 	 */
9521 	if (rszc < pszc) {
9522 		szc = pp->p_szc;
9523 		if (szc < pszc) {
9524 			mutex_exit(mtx);
9525 			pszc = szc;
9526 			goto again;
9527 		}
9528 		/*
9529 		 * pp's p_szc increased after it was decreased.
9530 		 * page cannot be mapped. Return current lock. The caller
9531 		 * will drop it right away.
9532 		 */
9533 		return (mtx);
9534 	}
9535 
9536 	/*
9537 	 * root's p_szc is greater than pp's p_szc.
9538 	 * hat_page_demote() is not done with all pages
9539 	 * yet. Wait for it to complete.
9540 	 */
9541 	mutex_exit(mtx);
9542 	rootpp = PP_GROUPLEADER(rootpp, rszc);
9543 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
9544 	mutex_enter(mtx);
9545 	mutex_exit(mtx);
9546 	prev_rszc = rszc;
9547 	goto again;
9548 }
9549 
9550 static int
9551 sfmmu_mlspl_held(struct page *pp, int type)
9552 {
9553 	kmutex_t	*mtx;
9554 
9555 	ASSERT(pp != NULL);
9556 	/* The lock lives in the root page */
9557 	pp = PP_PAGEROOT(pp);
9558 	ASSERT(pp != NULL);
9559 
9560 	mtx = SFMMU_MLSPL_MTX(type, pp);
9561 	return (MUTEX_HELD(mtx));
9562 }
9563 
9564 static uint_t
9565 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
9566 {
9567 	struct  hme_blk *hblkp;
9568 
9569 	if (freehblkp != NULL) {
9570 		mutex_enter(&freehblkp_lock);
9571 		if (freehblkp != NULL) {
9572 			/*
9573 			 * If the current thread is owning hblk_reserve,
9574 			 * let it succede even if freehblkcnt is really low.
9575 			 */
9576 			if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
9577 				SFMMU_STAT(sf_get_free_throttle);
9578 				mutex_exit(&freehblkp_lock);
9579 				return (0);
9580 			}
9581 			freehblkcnt--;
9582 			*hmeblkpp = freehblkp;
9583 			hblkp = *hmeblkpp;
9584 			freehblkp = hblkp->hblk_next;
9585 			mutex_exit(&freehblkp_lock);
9586 			hblkp->hblk_next = NULL;
9587 			SFMMU_STAT(sf_get_free_success);
9588 			return (1);
9589 		}
9590 		mutex_exit(&freehblkp_lock);
9591 	}
9592 	SFMMU_STAT(sf_get_free_fail);
9593 	return (0);
9594 }
9595 
9596 static uint_t
9597 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
9598 {
9599 	struct  hme_blk *hblkp;
9600 
9601 	/*
9602 	 * If the current thread is mapping into kernel space,
9603 	 * let it succede even if freehblkcnt is max
9604 	 * so that it will avoid freeing it to kmem.
9605 	 * This will prevent stack overflow due to
9606 	 * possible recursion since kmem_cache_free()
9607 	 * might require creation of a slab which
9608 	 * in turn needs an hmeblk to map that slab;
9609 	 * let's break this vicious chain at the first
9610 	 * opportunity.
9611 	 */
9612 	if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
9613 		mutex_enter(&freehblkp_lock);
9614 		if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
9615 			SFMMU_STAT(sf_put_free_success);
9616 			freehblkcnt++;
9617 			hmeblkp->hblk_next = freehblkp;
9618 			freehblkp = hmeblkp;
9619 			mutex_exit(&freehblkp_lock);
9620 			return (1);
9621 		}
9622 		mutex_exit(&freehblkp_lock);
9623 	}
9624 
9625 	/*
9626 	 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
9627 	 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
9628 	 * we are not in the process of mapping into kernel space.
9629 	 */
9630 	ASSERT(!critical);
9631 	while (freehblkcnt > HBLK_RESERVE_CNT) {
9632 		mutex_enter(&freehblkp_lock);
9633 		if (freehblkcnt > HBLK_RESERVE_CNT) {
9634 			freehblkcnt--;
9635 			hblkp = freehblkp;
9636 			freehblkp = hblkp->hblk_next;
9637 			mutex_exit(&freehblkp_lock);
9638 			ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
9639 			kmem_cache_free(sfmmu8_cache, hblkp);
9640 			continue;
9641 		}
9642 		mutex_exit(&freehblkp_lock);
9643 	}
9644 	SFMMU_STAT(sf_put_free_fail);
9645 	return (0);
9646 }
9647 
9648 static void
9649 sfmmu_hblk_swap(struct hme_blk *new)
9650 {
9651 	struct hme_blk *old, *hblkp, *prev;
9652 	uint64_t hblkpa, prevpa, newpa;
9653 	caddr_t	base, vaddr, endaddr;
9654 	struct hmehash_bucket *hmebp;
9655 	struct sf_hment *osfhme, *nsfhme;
9656 	page_t *pp;
9657 	kmutex_t *pml;
9658 	tte_t tte;
9659 
9660 #ifdef	DEBUG
9661 	hmeblk_tag		hblktag;
9662 	struct hme_blk		*found;
9663 #endif
9664 	old = HBLK_RESERVE;
9665 
9666 	/*
9667 	 * save pa before bcopy clobbers it
9668 	 */
9669 	newpa = new->hblk_nextpa;
9670 
9671 	base = (caddr_t)get_hblk_base(old);
9672 	endaddr = base + get_hblk_span(old);
9673 
9674 	/*
9675 	 * acquire hash bucket lock.
9676 	 */
9677 	hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K);
9678 
9679 	/*
9680 	 * copy contents from old to new
9681 	 */
9682 	bcopy((void *)old, (void *)new, HME8BLK_SZ);
9683 
9684 	/*
9685 	 * add new to hash chain
9686 	 */
9687 	sfmmu_hblk_hash_add(hmebp, new, newpa);
9688 
9689 	/*
9690 	 * search hash chain for hblk_reserve; this needs to be performed
9691 	 * after adding new, otherwise prevpa and prev won't correspond
9692 	 * to the hblk which is prior to old in hash chain when we call
9693 	 * sfmmu_hblk_hash_rm to remove old later.
9694 	 */
9695 	for (prevpa = 0, prev = NULL,
9696 	    hblkpa = hmebp->hmeh_nextpa, hblkp = hmebp->hmeblkp;
9697 	    hblkp != NULL && hblkp != old;
9698 	    prevpa = hblkpa, prev = hblkp,
9699 	    hblkpa = hblkp->hblk_nextpa, hblkp = hblkp->hblk_next);
9700 
9701 	if (hblkp != old)
9702 		panic("sfmmu_hblk_swap: hblk_reserve not found");
9703 
9704 	/*
9705 	 * p_mapping list is still pointing to hments in hblk_reserve;
9706 	 * fix up p_mapping list so that they point to hments in new.
9707 	 *
9708 	 * Since all these mappings are created by hblk_reserve_thread
9709 	 * on the way and it's using at least one of the buffers from each of
9710 	 * the newly minted slabs, there is no danger of any of these
9711 	 * mappings getting unloaded by another thread.
9712 	 *
9713 	 * tsbmiss could only modify ref/mod bits of hments in old/new.
9714 	 * Since all of these hments hold mappings established by segkmem
9715 	 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
9716 	 * have no meaning for the mappings in hblk_reserve.  hments in
9717 	 * old and new are identical except for ref/mod bits.
9718 	 */
9719 	for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
9720 
9721 		HBLKTOHME(osfhme, old, vaddr);
9722 		sfmmu_copytte(&osfhme->hme_tte, &tte);
9723 
9724 		if (TTE_IS_VALID(&tte)) {
9725 			if ((pp = osfhme->hme_page) == NULL)
9726 				panic("sfmmu_hblk_swap: page not mapped");
9727 
9728 			pml = sfmmu_mlist_enter(pp);
9729 
9730 			if (pp != osfhme->hme_page)
9731 				panic("sfmmu_hblk_swap: mapping changed");
9732 
9733 			HBLKTOHME(nsfhme, new, vaddr);
9734 
9735 			HME_ADD(nsfhme, pp);
9736 			HME_SUB(osfhme, pp);
9737 
9738 			sfmmu_mlist_exit(pml);
9739 		}
9740 	}
9741 
9742 	/*
9743 	 * remove old from hash chain
9744 	 */
9745 	sfmmu_hblk_hash_rm(hmebp, old, prevpa, prev);
9746 
9747 #ifdef	DEBUG
9748 
9749 	hblktag.htag_id = ksfmmup;
9750 	hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
9751 	hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
9752 	HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
9753 
9754 	if (found != new)
9755 		panic("sfmmu_hblk_swap: new hblk not found");
9756 #endif
9757 
9758 	SFMMU_HASH_UNLOCK(hmebp);
9759 
9760 	/*
9761 	 * Reset hblk_reserve
9762 	 */
9763 	bzero((void *)old, HME8BLK_SZ);
9764 	old->hblk_nextpa = va_to_pa((caddr_t)old);
9765 }
9766 
9767 /*
9768  * Grab the mlist mutex for both pages passed in.
9769  *
9770  * low and high will be returned as pointers to the mutexes for these pages.
9771  * low refers to the mutex residing in the lower bin of the mlist hash, while
9772  * high refers to the mutex residing in the higher bin of the mlist hash.  This
9773  * is due to the locking order restrictions on the same thread grabbing
9774  * multiple mlist mutexes.  The low lock must be acquired before the high lock.
9775  *
9776  * If both pages hash to the same mutex, only grab that single mutex, and
9777  * high will be returned as NULL
9778  * If the pages hash to different bins in the hash, grab the lower addressed
9779  * lock first and then the higher addressed lock in order to follow the locking
9780  * rules involved with the same thread grabbing multiple mlist mutexes.
9781  * low and high will both have non-NULL values.
9782  */
9783 static void
9784 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
9785     kmutex_t **low, kmutex_t **high)
9786 {
9787 	kmutex_t	*mml_targ, *mml_repl;
9788 
9789 	/*
9790 	 * no need to do the dance around szc as in sfmmu_mlist_enter()
9791 	 * because this routine is only called by hat_page_relocate() and all
9792 	 * targ and repl pages are already locked EXCL so szc can't change.
9793 	 */
9794 
9795 	mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
9796 	mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
9797 
9798 	if (mml_targ == mml_repl) {
9799 		*low = mml_targ;
9800 		*high = NULL;
9801 	} else {
9802 		if (mml_targ < mml_repl) {
9803 			*low = mml_targ;
9804 			*high = mml_repl;
9805 		} else {
9806 			*low = mml_repl;
9807 			*high = mml_targ;
9808 		}
9809 	}
9810 
9811 	mutex_enter(*low);
9812 	if (*high)
9813 		mutex_enter(*high);
9814 }
9815 
9816 static void
9817 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
9818 {
9819 	if (high)
9820 		mutex_exit(high);
9821 	mutex_exit(low);
9822 }
9823 
9824 static hatlock_t *
9825 sfmmu_hat_enter(sfmmu_t *sfmmup)
9826 {
9827 	hatlock_t	*hatlockp;
9828 
9829 	if (sfmmup != ksfmmup) {
9830 		hatlockp = TSB_HASH(sfmmup);
9831 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
9832 		return (hatlockp);
9833 	}
9834 	return (NULL);
9835 }
9836 
9837 static hatlock_t *
9838 sfmmu_hat_tryenter(sfmmu_t *sfmmup)
9839 {
9840 	hatlock_t	*hatlockp;
9841 
9842 	if (sfmmup != ksfmmup) {
9843 		hatlockp = TSB_HASH(sfmmup);
9844 		if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
9845 			return (NULL);
9846 		return (hatlockp);
9847 	}
9848 	return (NULL);
9849 }
9850 
9851 static void
9852 sfmmu_hat_exit(hatlock_t *hatlockp)
9853 {
9854 	if (hatlockp != NULL)
9855 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
9856 }
9857 
9858 static void
9859 sfmmu_hat_lock_all(void)
9860 {
9861 	int i;
9862 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
9863 		mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
9864 }
9865 
9866 static void
9867 sfmmu_hat_unlock_all(void)
9868 {
9869 	int i;
9870 	for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
9871 		mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
9872 }
9873 
9874 int
9875 sfmmu_hat_lock_held(sfmmu_t *sfmmup)
9876 {
9877 	ASSERT(sfmmup != ksfmmup);
9878 	return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
9879 }
9880 
9881 /*
9882  * Locking primitives to provide consistency between ISM unmap
9883  * and other operations.  Since ISM unmap can take a long time, we
9884  * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
9885  * contention on the hatlock buckets while ISM segments are being
9886  * unmapped.  The tradeoff is that the flags don't prevent priority
9887  * inversion from occurring, so we must request kernel priority in
9888  * case we have to sleep to keep from getting buried while holding
9889  * the HAT_ISMBUSY flag set, which in turn could block other kernel
9890  * threads from running (for example, in sfmmu_uvatopfn()).
9891  */
9892 static void
9893 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
9894 {
9895 	hatlock_t *hatlockp;
9896 
9897 	THREAD_KPRI_REQUEST();
9898 	if (!hatlock_held)
9899 		hatlockp = sfmmu_hat_enter(sfmmup);
9900 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
9901 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
9902 	SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
9903 	if (!hatlock_held)
9904 		sfmmu_hat_exit(hatlockp);
9905 }
9906 
9907 static void
9908 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
9909 {
9910 	hatlock_t *hatlockp;
9911 
9912 	if (!hatlock_held)
9913 		hatlockp = sfmmu_hat_enter(sfmmup);
9914 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
9915 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
9916 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
9917 	if (!hatlock_held)
9918 		sfmmu_hat_exit(hatlockp);
9919 	THREAD_KPRI_RELEASE();
9920 }
9921 
9922 /*
9923  *
9924  * Algorithm:
9925  *
9926  * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
9927  *	hblks.
9928  *
9929  * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
9930  *
9931  * 		(a) try to return an hblk from reserve pool of free hblks;
9932  *		(b) if the reserve pool is empty, acquire hblk_reserve_lock
9933  *		    and return hblk_reserve.
9934  *
9935  * (3) call kmem_cache_alloc() to allocate hblk;
9936  *
9937  *		(a) if hblk_reserve_lock is held by the current thread,
9938  *		    atomically replace hblk_reserve by the hblk that is
9939  *		    returned by kmem_cache_alloc; release hblk_reserve_lock
9940  *		    and call kmem_cache_alloc() again.
9941  *		(b) if reserve pool is not full, add the hblk that is
9942  *		    returned by kmem_cache_alloc to reserve pool and
9943  *		    call kmem_cache_alloc again.
9944  *
9945  */
9946 static struct hme_blk *
9947 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
9948 	struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
9949 	uint_t flags)
9950 {
9951 	struct hme_blk *hmeblkp = NULL;
9952 	struct hme_blk *newhblkp;
9953 	struct hme_blk *shw_hblkp = NULL;
9954 	struct kmem_cache *sfmmu_cache = NULL;
9955 	uint64_t hblkpa;
9956 	ulong_t index;
9957 	uint_t owner;		/* set to 1 if using hblk_reserve */
9958 	uint_t forcefree;
9959 	int sleep;
9960 
9961 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
9962 
9963 	/*
9964 	 * If segkmem is not created yet, allocate from static hmeblks
9965 	 * created at the end of startup_modules().  See the block comment
9966 	 * in startup_modules() describing how we estimate the number of
9967 	 * static hmeblks that will be needed during re-map.
9968 	 */
9969 	if (!hblk_alloc_dynamic) {
9970 
9971 		if (size == TTE8K) {
9972 			index = nucleus_hblk8.index;
9973 			if (index >= nucleus_hblk8.len) {
9974 				/*
9975 				 * If we panic here, see startup_modules() to
9976 				 * make sure that we are calculating the
9977 				 * number of hblk8's that we need correctly.
9978 				 */
9979 				panic("no nucleus hblk8 to allocate");
9980 			}
9981 			hmeblkp =
9982 			    (struct hme_blk *)&nucleus_hblk8.list[index];
9983 			nucleus_hblk8.index++;
9984 			SFMMU_STAT(sf_hblk8_nalloc);
9985 		} else {
9986 			index = nucleus_hblk1.index;
9987 			if (nucleus_hblk1.index >= nucleus_hblk1.len) {
9988 				/*
9989 				 * If we panic here, see startup_modules()
9990 				 * and H8TOH1; most likely you need to
9991 				 * update the calculation of the number
9992 				 * of hblk1's the kernel needs to boot.
9993 				 */
9994 				panic("no nucleus hblk1 to allocate");
9995 			}
9996 			hmeblkp =
9997 			    (struct hme_blk *)&nucleus_hblk1.list[index];
9998 			nucleus_hblk1.index++;
9999 			SFMMU_STAT(sf_hblk1_nalloc);
10000 		}
10001 
10002 		goto hblk_init;
10003 	}
10004 
10005 	SFMMU_HASH_UNLOCK(hmebp);
10006 
10007 	if (sfmmup != KHATID) {
10008 		if (mmu_page_sizes == max_mmu_page_sizes) {
10009 			if (size < TTE256M)
10010 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
10011 				    size, flags);
10012 		} else {
10013 			if (size < TTE4M)
10014 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
10015 				    size, flags);
10016 		}
10017 	}
10018 
10019 fill_hblk:
10020 	owner = (hblk_reserve_thread == curthread) ? 1 : 0;
10021 
10022 	if (owner && size == TTE8K) {
10023 
10024 		/*
10025 		 * We are really in a tight spot. We already own
10026 		 * hblk_reserve and we need another hblk.  In anticipation
10027 		 * of this kind of scenario, we specifically set aside
10028 		 * HBLK_RESERVE_MIN number of hblks to be used exclusively
10029 		 * by owner of hblk_reserve.
10030 		 */
10031 		SFMMU_STAT(sf_hblk_recurse_cnt);
10032 
10033 		if (!sfmmu_get_free_hblk(&hmeblkp, 1))
10034 			panic("sfmmu_hblk_alloc: reserve list is empty");
10035 
10036 		goto hblk_verify;
10037 	}
10038 
10039 	ASSERT(!owner);
10040 
10041 	if ((flags & HAT_NO_KALLOC) == 0) {
10042 
10043 		sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
10044 		sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
10045 
10046 		if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
10047 			hmeblkp = sfmmu_hblk_steal(size);
10048 		} else {
10049 			/*
10050 			 * if we are the owner of hblk_reserve,
10051 			 * swap hblk_reserve with hmeblkp and
10052 			 * start a fresh life.  Hope things go
10053 			 * better this time.
10054 			 */
10055 			if (hblk_reserve_thread == curthread) {
10056 				ASSERT(sfmmu_cache == sfmmu8_cache);
10057 				sfmmu_hblk_swap(hmeblkp);
10058 				hblk_reserve_thread = NULL;
10059 				mutex_exit(&hblk_reserve_lock);
10060 				goto fill_hblk;
10061 			}
10062 			/*
10063 			 * let's donate this hblk to our reserve list if
10064 			 * we are not mapping kernel range
10065 			 */
10066 			if (size == TTE8K && sfmmup != KHATID)
10067 				if (sfmmu_put_free_hblk(hmeblkp, 0))
10068 					goto fill_hblk;
10069 		}
10070 	} else {
10071 		/*
10072 		 * We are here to map the slab in sfmmu8_cache; let's
10073 		 * check if we could tap our reserve list; if successful,
10074 		 * this will avoid the pain of going thru sfmmu_hblk_swap
10075 		 */
10076 		SFMMU_STAT(sf_hblk_slab_cnt);
10077 		if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
10078 			/*
10079 			 * let's start hblk_reserve dance
10080 			 */
10081 			SFMMU_STAT(sf_hblk_reserve_cnt);
10082 			owner = 1;
10083 			mutex_enter(&hblk_reserve_lock);
10084 			hmeblkp = HBLK_RESERVE;
10085 			hblk_reserve_thread = curthread;
10086 		}
10087 	}
10088 
10089 hblk_verify:
10090 	ASSERT(hmeblkp != NULL);
10091 	set_hblk_sz(hmeblkp, size);
10092 	ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
10093 	SFMMU_HASH_LOCK(hmebp);
10094 	HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
10095 	if (newhblkp != NULL) {
10096 		SFMMU_HASH_UNLOCK(hmebp);
10097 		if (hmeblkp != HBLK_RESERVE) {
10098 			/*
10099 			 * This is really tricky!
10100 			 *
10101 			 * vmem_alloc(vmem_seg_arena)
10102 			 *  vmem_alloc(vmem_internal_arena)
10103 			 *   segkmem_alloc(heap_arena)
10104 			 *    vmem_alloc(heap_arena)
10105 			 *    page_create()
10106 			 *    hat_memload()
10107 			 *	kmem_cache_free()
10108 			 *	 kmem_cache_alloc()
10109 			 *	  kmem_slab_create()
10110 			 *	   vmem_alloc(kmem_internal_arena)
10111 			 *	    segkmem_alloc(heap_arena)
10112 			 *		vmem_alloc(heap_arena)
10113 			 *		page_create()
10114 			 *		hat_memload()
10115 			 *		  kmem_cache_free()
10116 			 *		...
10117 			 *
10118 			 * Thus, hat_memload() could call kmem_cache_free
10119 			 * for enough number of times that we could easily
10120 			 * hit the bottom of the stack or run out of reserve
10121 			 * list of vmem_seg structs.  So, we must donate
10122 			 * this hblk to reserve list if it's allocated
10123 			 * from sfmmu8_cache *and* mapping kernel range.
10124 			 * We don't need to worry about freeing hmeblk1's
10125 			 * to kmem since they don't map any kmem slabs.
10126 			 *
10127 			 * Note: When segkmem supports largepages, we must
10128 			 * free hmeblk1's to reserve list as well.
10129 			 */
10130 			forcefree = (sfmmup == KHATID) ? 1 : 0;
10131 			if (size == TTE8K &&
10132 			    sfmmu_put_free_hblk(hmeblkp, forcefree)) {
10133 				goto re_verify;
10134 			}
10135 			ASSERT(sfmmup != KHATID);
10136 			kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
10137 		} else {
10138 			/*
10139 			 * Hey! we don't need hblk_reserve any more.
10140 			 */
10141 			ASSERT(owner);
10142 			hblk_reserve_thread = NULL;
10143 			mutex_exit(&hblk_reserve_lock);
10144 			owner = 0;
10145 		}
10146 re_verify:
10147 		/*
10148 		 * let's check if the goodies are still present
10149 		 */
10150 		SFMMU_HASH_LOCK(hmebp);
10151 		HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
10152 		if (newhblkp != NULL) {
10153 			/*
10154 			 * return newhblkp if it's not hblk_reserve;
10155 			 * if newhblkp is hblk_reserve, return it
10156 			 * _only if_ we are the owner of hblk_reserve.
10157 			 */
10158 			if (newhblkp != HBLK_RESERVE || owner) {
10159 				return (newhblkp);
10160 			} else {
10161 				/*
10162 				 * we just hit hblk_reserve in the hash and
10163 				 * we are not the owner of that;
10164 				 *
10165 				 * block until hblk_reserve_thread completes
10166 				 * swapping hblk_reserve and try the dance
10167 				 * once again.
10168 				 */
10169 				SFMMU_HASH_UNLOCK(hmebp);
10170 				mutex_enter(&hblk_reserve_lock);
10171 				mutex_exit(&hblk_reserve_lock);
10172 				SFMMU_STAT(sf_hblk_reserve_hit);
10173 				goto fill_hblk;
10174 			}
10175 		} else {
10176 			/*
10177 			 * it's no more! try the dance once again.
10178 			 */
10179 			SFMMU_HASH_UNLOCK(hmebp);
10180 			goto fill_hblk;
10181 		}
10182 	}
10183 
10184 hblk_init:
10185 	set_hblk_sz(hmeblkp, size);
10186 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10187 	hmeblkp->hblk_next = (struct hme_blk *)NULL;
10188 	hmeblkp->hblk_tag = hblktag;
10189 	hmeblkp->hblk_shadow = shw_hblkp;
10190 	hblkpa = hmeblkp->hblk_nextpa;
10191 	hmeblkp->hblk_nextpa = 0;
10192 
10193 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
10194 	ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
10195 	ASSERT(hmeblkp->hblk_hmecnt == 0);
10196 	ASSERT(hmeblkp->hblk_vcnt == 0);
10197 	ASSERT(hmeblkp->hblk_lckcnt == 0);
10198 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
10199 	sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
10200 	return (hmeblkp);
10201 }
10202 
10203 /*
10204  * This function performs any cleanup required on the hme_blk
10205  * and returns it to the free list.
10206  */
10207 /* ARGSUSED */
10208 static void
10209 sfmmu_hblk_free(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
10210 	uint64_t hblkpa, struct hme_blk **listp)
10211 {
10212 	int shw_size, vshift;
10213 	struct hme_blk *shw_hblkp;
10214 	uint_t		shw_mask, newshw_mask;
10215 	uintptr_t	vaddr;
10216 	int		size;
10217 	uint_t		critical;
10218 
10219 	ASSERT(hmeblkp);
10220 	ASSERT(!hmeblkp->hblk_hmecnt);
10221 	ASSERT(!hmeblkp->hblk_vcnt);
10222 	ASSERT(!hmeblkp->hblk_lckcnt);
10223 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
10224 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
10225 
10226 	critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
10227 
10228 	size = get_hblk_ttesz(hmeblkp);
10229 	shw_hblkp = hmeblkp->hblk_shadow;
10230 	if (shw_hblkp) {
10231 		ASSERT(hblktosfmmu(hmeblkp) != KHATID);
10232 		if (mmu_page_sizes == max_mmu_page_sizes) {
10233 			ASSERT(size < TTE256M);
10234 		} else {
10235 			ASSERT(size < TTE4M);
10236 		}
10237 
10238 		shw_size = get_hblk_ttesz(shw_hblkp);
10239 		vaddr = get_hblk_base(hmeblkp);
10240 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
10241 		ASSERT(vshift < 8);
10242 		/*
10243 		 * Atomically clear shadow mask bit
10244 		 */
10245 		do {
10246 			shw_mask = shw_hblkp->hblk_shw_mask;
10247 			ASSERT(shw_mask & (1 << vshift));
10248 			newshw_mask = shw_mask & ~(1 << vshift);
10249 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
10250 				shw_mask, newshw_mask);
10251 		} while (newshw_mask != shw_mask);
10252 		hmeblkp->hblk_shadow = NULL;
10253 	}
10254 	hmeblkp->hblk_next = NULL;
10255 	hmeblkp->hblk_nextpa = hblkpa;
10256 	hmeblkp->hblk_shw_bit = 0;
10257 
10258 	if (hmeblkp->hblk_nuc_bit == 0) {
10259 
10260 		if (size == TTE8K && sfmmu_put_free_hblk(hmeblkp, critical))
10261 			return;
10262 
10263 		hmeblkp->hblk_next = *listp;
10264 		*listp = hmeblkp;
10265 	}
10266 }
10267 
10268 static void
10269 sfmmu_hblks_list_purge(struct hme_blk **listp)
10270 {
10271 	struct hme_blk	*hmeblkp;
10272 
10273 	while ((hmeblkp = *listp) != NULL) {
10274 		*listp = hmeblkp->hblk_next;
10275 		kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
10276 	}
10277 }
10278 
10279 #define	BUCKETS_TO_SEARCH_BEFORE_UNLOAD	30
10280 
10281 static uint_t sfmmu_hblk_steal_twice;
10282 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
10283 
10284 /*
10285  * Steal a hmeblk
10286  * Enough hmeblks were allocated at startup (nucleus hmeblks) and also
10287  * hmeblks were added dynamically. We should never ever not be able to
10288  * find one. Look for an unused/unlocked hmeblk in user hash table.
10289  */
10290 static struct hme_blk *
10291 sfmmu_hblk_steal(int size)
10292 {
10293 	static struct hmehash_bucket *uhmehash_steal_hand = NULL;
10294 	struct hmehash_bucket *hmebp;
10295 	struct hme_blk *hmeblkp = NULL, *pr_hblk;
10296 	uint64_t hblkpa, prevpa;
10297 	int i;
10298 
10299 	for (;;) {
10300 		hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
10301 			uhmehash_steal_hand;
10302 		ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
10303 
10304 		for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
10305 		    BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
10306 			SFMMU_HASH_LOCK(hmebp);
10307 			hmeblkp = hmebp->hmeblkp;
10308 			hblkpa = hmebp->hmeh_nextpa;
10309 			prevpa = 0;
10310 			pr_hblk = NULL;
10311 			while (hmeblkp) {
10312 				/*
10313 				 * check if it is a hmeblk that is not locked
10314 				 * and not shared. skip shadow hmeblks with
10315 				 * shadow_mask set i.e valid count non zero.
10316 				 */
10317 				if ((get_hblk_ttesz(hmeblkp) == size) &&
10318 				    (hmeblkp->hblk_shw_bit == 0 ||
10319 					hmeblkp->hblk_vcnt == 0) &&
10320 				    (hmeblkp->hblk_lckcnt == 0)) {
10321 					/*
10322 					 * there is a high probability that we
10323 					 * will find a free one. search some
10324 					 * buckets for a free hmeblk initially
10325 					 * before unloading a valid hmeblk.
10326 					 */
10327 					if ((hmeblkp->hblk_vcnt == 0 &&
10328 					    hmeblkp->hblk_hmecnt == 0) || (i >=
10329 					    BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
10330 						if (sfmmu_steal_this_hblk(hmebp,
10331 						    hmeblkp, hblkpa, prevpa,
10332 						    pr_hblk)) {
10333 							/*
10334 							 * Hblk is unloaded
10335 							 * successfully
10336 							 */
10337 							break;
10338 						}
10339 					}
10340 				}
10341 				pr_hblk = hmeblkp;
10342 				prevpa = hblkpa;
10343 				hblkpa = hmeblkp->hblk_nextpa;
10344 				hmeblkp = hmeblkp->hblk_next;
10345 			}
10346 
10347 			SFMMU_HASH_UNLOCK(hmebp);
10348 			if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
10349 				hmebp = uhme_hash;
10350 		}
10351 		uhmehash_steal_hand = hmebp;
10352 
10353 		if (hmeblkp != NULL)
10354 			break;
10355 
10356 		/*
10357 		 * in the worst case, look for a free one in the kernel
10358 		 * hash table.
10359 		 */
10360 		for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
10361 			SFMMU_HASH_LOCK(hmebp);
10362 			hmeblkp = hmebp->hmeblkp;
10363 			hblkpa = hmebp->hmeh_nextpa;
10364 			prevpa = 0;
10365 			pr_hblk = NULL;
10366 			while (hmeblkp) {
10367 				/*
10368 				 * check if it is free hmeblk
10369 				 */
10370 				if ((get_hblk_ttesz(hmeblkp) == size) &&
10371 				    (hmeblkp->hblk_lckcnt == 0) &&
10372 				    (hmeblkp->hblk_vcnt == 0) &&
10373 				    (hmeblkp->hblk_hmecnt == 0)) {
10374 					if (sfmmu_steal_this_hblk(hmebp,
10375 					    hmeblkp, hblkpa, prevpa, pr_hblk)) {
10376 						break;
10377 					} else {
10378 						/*
10379 						 * Cannot fail since we have
10380 						 * hash lock.
10381 						 */
10382 						panic("fail to steal?");
10383 					}
10384 				}
10385 
10386 				pr_hblk = hmeblkp;
10387 				prevpa = hblkpa;
10388 				hblkpa = hmeblkp->hblk_nextpa;
10389 				hmeblkp = hmeblkp->hblk_next;
10390 			}
10391 
10392 			SFMMU_HASH_UNLOCK(hmebp);
10393 			if (hmebp++ == &khme_hash[KHMEHASH_SZ])
10394 				hmebp = khme_hash;
10395 		}
10396 
10397 		if (hmeblkp != NULL)
10398 			break;
10399 		sfmmu_hblk_steal_twice++;
10400 	}
10401 	return (hmeblkp);
10402 }
10403 
10404 /*
10405  * This routine does real work to prepare a hblk to be "stolen" by
10406  * unloading the mappings, updating shadow counts ....
10407  * It returns 1 if the block is ready to be reused (stolen), or 0
10408  * means the block cannot be stolen yet- pageunload is still working
10409  * on this hblk.
10410  */
10411 static int
10412 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
10413 	uint64_t hblkpa, uint64_t prevpa, struct hme_blk *pr_hblk)
10414 {
10415 	int shw_size, vshift;
10416 	struct hme_blk *shw_hblkp;
10417 	uintptr_t vaddr;
10418 	uint_t shw_mask, newshw_mask;
10419 
10420 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10421 
10422 	/*
10423 	 * check if the hmeblk is free, unload if necessary
10424 	 */
10425 	if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
10426 		sfmmu_t *sfmmup;
10427 		demap_range_t dmr;
10428 
10429 		sfmmup = hblktosfmmu(hmeblkp);
10430 		DEMAP_RANGE_INIT(sfmmup, &dmr);
10431 		(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
10432 		    (caddr_t)get_hblk_base(hmeblkp),
10433 		    get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
10434 		DEMAP_RANGE_FLUSH(&dmr);
10435 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
10436 			/*
10437 			 * Pageunload is working on the same hblk.
10438 			 */
10439 			return (0);
10440 		}
10441 
10442 		sfmmu_hblk_steal_unload_count++;
10443 	}
10444 
10445 	ASSERT(hmeblkp->hblk_lckcnt == 0);
10446 	ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
10447 
10448 	sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
10449 	hmeblkp->hblk_nextpa = hblkpa;
10450 
10451 	shw_hblkp = hmeblkp->hblk_shadow;
10452 	if (shw_hblkp) {
10453 		shw_size = get_hblk_ttesz(shw_hblkp);
10454 		vaddr = get_hblk_base(hmeblkp);
10455 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
10456 		ASSERT(vshift < 8);
10457 		/*
10458 		 * Atomically clear shadow mask bit
10459 		 */
10460 		do {
10461 			shw_mask = shw_hblkp->hblk_shw_mask;
10462 			ASSERT(shw_mask & (1 << vshift));
10463 			newshw_mask = shw_mask & ~(1 << vshift);
10464 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
10465 				shw_mask, newshw_mask);
10466 		} while (newshw_mask != shw_mask);
10467 		hmeblkp->hblk_shadow = NULL;
10468 	}
10469 
10470 	/*
10471 	 * remove shadow bit if we are stealing an unused shadow hmeblk.
10472 	 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if
10473 	 * we are indeed allocating a shadow hmeblk.
10474 	 */
10475 	hmeblkp->hblk_shw_bit = 0;
10476 
10477 	sfmmu_hblk_steal_count++;
10478 	SFMMU_STAT(sf_steal_count);
10479 
10480 	return (1);
10481 }
10482 
10483 struct hme_blk *
10484 sfmmu_hmetohblk(struct sf_hment *sfhme)
10485 {
10486 	struct hme_blk *hmeblkp;
10487 	struct sf_hment *sfhme0;
10488 	struct hme_blk *hblk_dummy = 0;
10489 
10490 	/*
10491 	 * No dummy sf_hments, please.
10492 	 */
10493 	ASSERT(sfhme->hme_tte.ll != 0);
10494 
10495 	sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
10496 	hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
10497 		(uintptr_t)&hblk_dummy->hblk_hme[0]);
10498 
10499 	return (hmeblkp);
10500 }
10501 
10502 /*
10503  * Make sure that there is a valid ctx, if not get a ctx.
10504  * Also, get a readers lock on the ctx, so that the ctx cannot
10505  * be stolen underneath us.
10506  */
10507 static void
10508 sfmmu_disallow_ctx_steal(sfmmu_t *sfmmup)
10509 {
10510 	struct	ctx *ctx;
10511 
10512 	ASSERT(sfmmup != ksfmmup);
10513 	ASSERT(sfmmup->sfmmu_ismhat == 0);
10514 
10515 	/*
10516 	 * If ctx has been stolen, get a ctx.
10517 	 */
10518 	if (sfmmup->sfmmu_cnum == INVALID_CONTEXT) {
10519 		/*
10520 		 * Our ctx was stolen. Get a ctx with rlock.
10521 		 */
10522 		ctx = sfmmu_get_ctx(sfmmup);
10523 		return;
10524 	} else {
10525 		ctx = sfmmutoctx(sfmmup);
10526 	}
10527 
10528 	/*
10529 	 * Get the reader lock.
10530 	 */
10531 	rw_enter(&ctx->ctx_rwlock, RW_READER);
10532 	if (ctx->ctx_sfmmu != sfmmup) {
10533 		/*
10534 		 * The ctx got stolen, so spin again.
10535 		 */
10536 		rw_exit(&ctx->ctx_rwlock);
10537 		ctx = sfmmu_get_ctx(sfmmup);
10538 	}
10539 
10540 	ASSERT(sfmmup->sfmmu_cnum >= NUM_LOCKED_CTXS);
10541 }
10542 
10543 /*
10544  * Decrement reference count for our ctx. If the reference count
10545  * becomes 0, our ctx can be stolen by someone.
10546  */
10547 static void
10548 sfmmu_allow_ctx_steal(sfmmu_t *sfmmup)
10549 {
10550 	struct	ctx *ctx;
10551 
10552 	ASSERT(sfmmup != ksfmmup);
10553 	ASSERT(sfmmup->sfmmu_ismhat == 0);
10554 	ctx = sfmmutoctx(sfmmup);
10555 
10556 	ASSERT(sfmmup == ctx->ctx_sfmmu);
10557 	ASSERT(sfmmup->sfmmu_cnum != INVALID_CONTEXT);
10558 	rw_exit(&ctx->ctx_rwlock);
10559 }
10560 
10561 /*
10562  * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
10563  * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
10564  * KM_SLEEP allocation.
10565  *
10566  * Return 0 on success, -1 otherwise.
10567  */
10568 static void
10569 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
10570 {
10571 	struct tsb_info *tsbinfop, *next;
10572 	tsb_replace_rc_t rc;
10573 	boolean_t gotfirst = B_FALSE;
10574 
10575 	ASSERT(sfmmup != ksfmmup);
10576 	ASSERT(sfmmu_hat_lock_held(sfmmup));
10577 
10578 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
10579 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
10580 	}
10581 
10582 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10583 		SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
10584 	} else {
10585 		return;
10586 	}
10587 
10588 	ASSERT(sfmmup->sfmmu_tsb != NULL);
10589 
10590 	/*
10591 	 * Loop over all tsbinfo's replacing them with ones that actually have
10592 	 * a TSB.  If any of the replacements ever fail, bail out of the loop.
10593 	 */
10594 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
10595 		ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
10596 		next = tsbinfop->tsb_next;
10597 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
10598 		    hatlockp, TSB_SWAPIN);
10599 		if (rc != TSB_SUCCESS) {
10600 			break;
10601 		}
10602 		gotfirst = B_TRUE;
10603 	}
10604 
10605 	switch (rc) {
10606 	case TSB_SUCCESS:
10607 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
10608 		cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10609 		return;
10610 	case TSB_ALLOCFAIL:
10611 		break;
10612 	default:
10613 		panic("sfmmu_replace_tsb returned unrecognized failure code "
10614 		    "%d", rc);
10615 	}
10616 
10617 	/*
10618 	 * In this case, we failed to get one of our TSBs.  If we failed to
10619 	 * get the first TSB, get one of minimum size (8KB).  Walk the list
10620 	 * and throw away the tsbinfos, starting where the allocation failed;
10621 	 * we can get by with just one TSB as long as we don't leave the
10622 	 * SWAPPED tsbinfo structures lying around.
10623 	 */
10624 	tsbinfop = sfmmup->sfmmu_tsb;
10625 	next = tsbinfop->tsb_next;
10626 	tsbinfop->tsb_next = NULL;
10627 
10628 	sfmmu_hat_exit(hatlockp);
10629 	for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
10630 		next = tsbinfop->tsb_next;
10631 		sfmmu_tsbinfo_free(tsbinfop);
10632 	}
10633 	hatlockp = sfmmu_hat_enter(sfmmup);
10634 
10635 	/*
10636 	 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
10637 	 * pages.
10638 	 */
10639 	if (!gotfirst) {
10640 		tsbinfop = sfmmup->sfmmu_tsb;
10641 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
10642 		    hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
10643 		ASSERT(rc == TSB_SUCCESS);
10644 	}
10645 
10646 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
10647 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10648 }
10649 
10650 /*
10651  * Handle exceptions for low level tsb_handler.
10652  *
10653  * There are many scenarios that could land us here:
10654  *
10655  *	1) Process has no context.  In this case, ctx is
10656  *         INVALID_CONTEXT and sfmmup->sfmmu_cnum == 1 so
10657  *         we will acquire a context before returning.
10658  *      2) Need to re-load our MMU state.  In this case,
10659  *         ctx is INVALID_CONTEXT and sfmmup->sfmmu_cnum != 1.
10660  *      3) ISM mappings are being updated.  This is handled
10661  *         just like case #2.
10662  *      4) We wish to program a new page size into the TLB.
10663  *         This is handled just like case #1, since changing
10664  *         TLB page size requires us to flush the TLB.
10665  *	5) Window fault and no valid translation found.
10666  *
10667  * Cases 1-4, ctx is INVALID_CONTEXT so we handle it and then
10668  * exit which will retry the trapped instruction.  Case #5 we
10669  * punt to trap() which will raise us a trap level and handle
10670  * the fault before unwinding.
10671  *
10672  * Note that the process will run in INVALID_CONTEXT before
10673  * faulting into here and subsequently loading the MMU registers
10674  * (including the TSB base register) associated with this process.
10675  * For this reason, the trap handlers must all test for
10676  * INVALID_CONTEXT before attempting to access any registers other
10677  * than the context registers.
10678  */
10679 void
10680 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
10681 {
10682 	sfmmu_t *sfmmup;
10683 	uint_t ctxnum;
10684 	klwp_id_t lwp;
10685 	char lwp_save_state;
10686 	hatlock_t *hatlockp;
10687 	struct tsb_info *tsbinfop;
10688 
10689 	SFMMU_STAT(sf_tsb_exceptions);
10690 	sfmmup = astosfmmu(curthread->t_procp->p_as);
10691 	ctxnum = tagaccess & TAGACC_CTX_MASK;
10692 
10693 	ASSERT(sfmmup != ksfmmup && ctxnum != KCONTEXT);
10694 	ASSERT(sfmmup->sfmmu_ismhat == 0);
10695 	/*
10696 	 * First, make sure we come out of here with a valid ctx,
10697 	 * since if we don't get one we'll simply loop on the
10698 	 * faulting instruction.
10699 	 *
10700 	 * If the ISM mappings are changing, the TSB is being relocated, or
10701 	 * the process is swapped out we serialize behind the controlling
10702 	 * thread with the sfmmu_flags and sfmmu_tsb_cv condition variable.
10703 	 * Otherwise we synchronize with the context stealer or the thread
10704 	 * that required us to change out our MMU registers (such
10705 	 * as a thread changing out our TSB while we were running) by
10706 	 * locking the HAT and grabbing the rwlock on the context as a
10707 	 * reader temporarily.
10708 	 */
10709 	if (ctxnum == INVALID_CONTEXT ||
10710 	    SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10711 		/*
10712 		 * Must set lwp state to LWP_SYS before
10713 		 * trying to acquire any adaptive lock
10714 		 */
10715 		lwp = ttolwp(curthread);
10716 		ASSERT(lwp);
10717 		lwp_save_state = lwp->lwp_state;
10718 		lwp->lwp_state = LWP_SYS;
10719 
10720 		hatlockp = sfmmu_hat_enter(sfmmup);
10721 retry:
10722 		for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
10723 		    tsbinfop = tsbinfop->tsb_next) {
10724 			if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
10725 				cv_wait(&sfmmup->sfmmu_tsb_cv,
10726 				    HATLOCK_MUTEXP(hatlockp));
10727 				goto retry;
10728 			}
10729 		}
10730 
10731 		/*
10732 		 * Wait for ISM maps to be updated.
10733 		 */
10734 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
10735 			cv_wait(&sfmmup->sfmmu_tsb_cv,
10736 				    HATLOCK_MUTEXP(hatlockp));
10737 			goto retry;
10738 		}
10739 
10740 		/*
10741 		 * If we're swapping in, get TSB(s).  Note that we must do
10742 		 * this before we get a ctx or load the MMU state.  Once
10743 		 * we swap in we have to recheck to make sure the TSB(s) and
10744 		 * ISM mappings didn't change while we slept.
10745 		 */
10746 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10747 			sfmmu_tsb_swapin(sfmmup, hatlockp);
10748 			goto retry;
10749 		}
10750 
10751 		sfmmu_disallow_ctx_steal(sfmmup);
10752 		ctxnum = sfmmup->sfmmu_cnum;
10753 		kpreempt_disable();
10754 		sfmmu_setctx_sec(ctxnum);
10755 		sfmmu_load_mmustate(sfmmup);
10756 		kpreempt_enable();
10757 		sfmmu_allow_ctx_steal(sfmmup);
10758 		sfmmu_hat_exit(hatlockp);
10759 		/*
10760 		 * Must restore lwp_state if not calling
10761 		 * trap() for further processing. Restore
10762 		 * it anyway.
10763 		 */
10764 		lwp->lwp_state = lwp_save_state;
10765 		if (sfmmup->sfmmu_ttecnt[TTE8K] != 0 ||
10766 		    sfmmup->sfmmu_ttecnt[TTE64K] != 0 ||
10767 		    sfmmup->sfmmu_ttecnt[TTE512K] != 0 ||
10768 		    sfmmup->sfmmu_ttecnt[TTE4M] != 0 ||
10769 		    sfmmup->sfmmu_ttecnt[TTE32M] != 0 ||
10770 		    sfmmup->sfmmu_ttecnt[TTE256M] != 0) {
10771 			return;
10772 		}
10773 		if (traptype == T_DATA_PROT) {
10774 			traptype = T_DATA_MMU_MISS;
10775 		}
10776 	}
10777 	trap(rp, (caddr_t)tagaccess, traptype, 0);
10778 }
10779 
10780 /*
10781  * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
10782  * TTE_SUSPENDED bit set in tte we block on aquiring a page lock
10783  * rather than spinning to avoid send mondo timeouts with
10784  * interrupts enabled. When the lock is acquired it is immediately
10785  * released and we return back to sfmmu_vatopfn just after
10786  * the GET_TTE call.
10787  */
10788 void
10789 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
10790 {
10791 	struct page	**pp;
10792 
10793 	(void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
10794 	as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
10795 }
10796 
10797 /*
10798  * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
10799  * TTE_SUSPENDED bit set in tte. We do this so that we can handle
10800  * cross traps which cannot be handled while spinning in the
10801  * trap handlers. Simply enter and exit the kpr_suspendlock spin
10802  * mutex, which is held by the holder of the suspend bit, and then
10803  * retry the trapped instruction after unwinding.
10804  */
10805 /*ARGSUSED*/
10806 void
10807 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
10808 {
10809 	ASSERT(curthread != kreloc_thread);
10810 	mutex_enter(&kpr_suspendlock);
10811 	mutex_exit(&kpr_suspendlock);
10812 }
10813 
10814 /*
10815  * Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
10816  * This routine may be called with all cpu's captured. Therefore, the
10817  * caller is responsible for holding all locks and disabling kernel
10818  * preemption.
10819  */
10820 /* ARGSUSED */
10821 static void
10822 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
10823 	struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
10824 {
10825 	cpuset_t 	cpuset;
10826 	caddr_t 	va;
10827 	ism_ment_t	*ment;
10828 	sfmmu_t		*sfmmup;
10829 	int 		ctxnum;
10830 	int 		vcolor;
10831 	int		ttesz;
10832 
10833 	/*
10834 	 * Walk the ism_hat's mapping list and flush the page
10835 	 * from every hat sharing this ism_hat. This routine
10836 	 * may be called while all cpu's have been captured.
10837 	 * Therefore we can't attempt to grab any locks. For now
10838 	 * this means we will protect the ism mapping list under
10839 	 * a single lock which will be grabbed by the caller.
10840 	 * If hat_share/unshare scalibility becomes a performance
10841 	 * problem then we may need to re-think ism mapping list locking.
10842 	 */
10843 	ASSERT(ism_sfmmup->sfmmu_ismhat);
10844 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
10845 	addr = addr - ISMID_STARTADDR;
10846 	for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
10847 
10848 		sfmmup = ment->iment_hat;
10849 		ctxnum = sfmmup->sfmmu_cnum;
10850 		va = ment->iment_base_va;
10851 		va = (caddr_t)((uintptr_t)va  + (uintptr_t)addr);
10852 
10853 		/*
10854 		 * Flush TSB of ISM mappings.
10855 		 */
10856 		ttesz = get_hblk_ttesz(hmeblkp);
10857 		if (ttesz == TTE8K || ttesz == TTE4M) {
10858 			sfmmu_unload_tsb(sfmmup, va, ttesz);
10859 		} else {
10860 			caddr_t sva = va;
10861 			caddr_t eva;
10862 			ASSERT(addr == (caddr_t)get_hblk_base(hmeblkp));
10863 			eva = sva + get_hblk_span(hmeblkp);
10864 			sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);
10865 		}
10866 
10867 		if (ctxnum != INVALID_CONTEXT) {
10868 			/*
10869 			 * Flush TLBs.  We don't need to do this for
10870 			 * invalid context since the flushing is already
10871 			 * done as part of context stealing.
10872 			 */
10873 			cpuset = sfmmup->sfmmu_cpusran;
10874 			CPUSET_AND(cpuset, cpu_ready_set);
10875 			CPUSET_DEL(cpuset, CPU->cpu_id);
10876 			SFMMU_XCALL_STATS(ctxnum);
10877 			xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
10878 			    ctxnum);
10879 			vtag_flushpage(va, ctxnum);
10880 		}
10881 
10882 		/*
10883 		 * Flush D$
10884 		 * When flushing D$ we must flush all
10885 		 * cpu's. See sfmmu_cache_flush().
10886 		 */
10887 		if (cache_flush_flag == CACHE_FLUSH) {
10888 			cpuset = cpu_ready_set;
10889 			CPUSET_DEL(cpuset, CPU->cpu_id);
10890 			SFMMU_XCALL_STATS(ctxnum);
10891 			vcolor = addr_to_vcolor(va);
10892 			xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
10893 			vac_flushpage(pfnum, vcolor);
10894 		}
10895 	}
10896 }
10897 
10898 /*
10899  * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
10900  * a particular virtual address and ctx.  If noflush is set we do not
10901  * flush the TLB/TSB.  This function may or may not be called with the
10902  * HAT lock held.
10903  */
10904 static void
10905 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
10906 	pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
10907 	int hat_lock_held)
10908 {
10909 	int ctxnum, vcolor;
10910 	cpuset_t cpuset;
10911 	hatlock_t *hatlockp;
10912 
10913 	/*
10914 	 * There is no longer a need to protect against ctx being
10915 	 * stolen here since we don't store the ctx in the TSB anymore.
10916 	 */
10917 	vcolor = addr_to_vcolor(addr);
10918 
10919 	kpreempt_disable();
10920 	if (!tlb_noflush) {
10921 		/*
10922 		 * Flush the TSB.
10923 		 */
10924 		if (!hat_lock_held)
10925 			hatlockp = sfmmu_hat_enter(sfmmup);
10926 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
10927 		ctxnum = (int)sfmmutoctxnum(sfmmup);
10928 		if (!hat_lock_held)
10929 			sfmmu_hat_exit(hatlockp);
10930 
10931 		if (ctxnum != INVALID_CONTEXT) {
10932 			/*
10933 			 * Flush TLBs.  We don't need to do this if our
10934 			 * context is invalid context.  Since we hold the
10935 			 * HAT lock the context must have been stolen and
10936 			 * hence will be flushed before re-use.
10937 			 */
10938 			cpuset = sfmmup->sfmmu_cpusran;
10939 			CPUSET_AND(cpuset, cpu_ready_set);
10940 			CPUSET_DEL(cpuset, CPU->cpu_id);
10941 			SFMMU_XCALL_STATS(ctxnum);
10942 			xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
10943 				ctxnum);
10944 			vtag_flushpage(addr, ctxnum);
10945 		}
10946 	}
10947 
10948 	/*
10949 	 * Flush the D$
10950 	 *
10951 	 * Even if the ctx is stolen, we need to flush the
10952 	 * cache. Our ctx stealer only flushes the TLBs.
10953 	 */
10954 	if (cache_flush_flag == CACHE_FLUSH) {
10955 		if (cpu_flag & FLUSH_ALL_CPUS) {
10956 			cpuset = cpu_ready_set;
10957 		} else {
10958 			cpuset = sfmmup->sfmmu_cpusran;
10959 			CPUSET_AND(cpuset, cpu_ready_set);
10960 		}
10961 		CPUSET_DEL(cpuset, CPU->cpu_id);
10962 		SFMMU_XCALL_STATS(sfmmutoctxnum(sfmmup));
10963 		xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
10964 		vac_flushpage(pfnum, vcolor);
10965 	}
10966 	kpreempt_enable();
10967 }
10968 
10969 /*
10970  * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
10971  * address and ctx.  If noflush is set we do not currently do anything.
10972  * This function may or may not be called with the HAT lock held.
10973  */
10974 static void
10975 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
10976 	int tlb_noflush, int hat_lock_held)
10977 {
10978 	int ctxnum;
10979 	cpuset_t cpuset;
10980 	hatlock_t *hatlockp;
10981 
10982 	/*
10983 	 * If the process is exiting we have nothing to do.
10984 	 */
10985 	if (tlb_noflush)
10986 		return;
10987 
10988 	/*
10989 	 * Flush TSB.
10990 	 */
10991 	if (!hat_lock_held)
10992 		hatlockp = sfmmu_hat_enter(sfmmup);
10993 	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
10994 	ctxnum = sfmmutoctxnum(sfmmup);
10995 	if (!hat_lock_held)
10996 		sfmmu_hat_exit(hatlockp);
10997 
10998 	/*
10999 	 * Flush TLBs.  We don't need to do this if our context is invalid
11000 	 * context.  Since we hold the HAT lock the context must have been
11001 	 * stolen and hence will be flushed before re-use.
11002 	 */
11003 	if (ctxnum != INVALID_CONTEXT) {
11004 		/*
11005 		 * There is no need to protect against ctx being stolen.
11006 		 * If the ctx is stolen we will simply get an extra flush.
11007 		 */
11008 		kpreempt_disable();
11009 		cpuset = sfmmup->sfmmu_cpusran;
11010 		CPUSET_AND(cpuset, cpu_ready_set);
11011 		CPUSET_DEL(cpuset, CPU->cpu_id);
11012 		SFMMU_XCALL_STATS(ctxnum);
11013 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, ctxnum);
11014 		vtag_flushpage(addr, ctxnum);
11015 		kpreempt_enable();
11016 	}
11017 }
11018 
11019 /*
11020  * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
11021  * call handler that can flush a range of pages to save on xcalls.
11022  */
11023 static int sfmmu_xcall_save;
11024 
11025 static void
11026 sfmmu_tlb_range_demap(demap_range_t *dmrp)
11027 {
11028 	sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
11029 	int ctxnum;
11030 	hatlock_t *hatlockp;
11031 	cpuset_t cpuset;
11032 	uint64_t ctx_pgcnt;
11033 	pgcnt_t pgcnt = 0;
11034 	int pgunload = 0;
11035 	int dirtypg = 0;
11036 	caddr_t addr = dmrp->dmr_addr;
11037 	caddr_t eaddr;
11038 	uint64_t bitvec = dmrp->dmr_bitvec;
11039 
11040 	ASSERT(bitvec & 1);
11041 
11042 	/*
11043 	 * Flush TSB and calculate number of pages to flush.
11044 	 */
11045 	while (bitvec != 0) {
11046 		dirtypg = 0;
11047 		/*
11048 		 * Find the first page to flush and then count how many
11049 		 * pages there are after it that also need to be flushed.
11050 		 * This way the number of TSB flushes is minimized.
11051 		 */
11052 		while ((bitvec & 1) == 0) {
11053 			pgcnt++;
11054 			addr += MMU_PAGESIZE;
11055 			bitvec >>= 1;
11056 		}
11057 		while (bitvec & 1) {
11058 			dirtypg++;
11059 			bitvec >>= 1;
11060 		}
11061 		eaddr = addr + ptob(dirtypg);
11062 		hatlockp = sfmmu_hat_enter(sfmmup);
11063 		sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
11064 		sfmmu_hat_exit(hatlockp);
11065 		pgunload += dirtypg;
11066 		addr = eaddr;
11067 		pgcnt += dirtypg;
11068 	}
11069 
11070 	/*
11071 	 * In the case where context is invalid context, bail.
11072 	 * We hold the hat lock while checking the ctx to prevent
11073 	 * a race with sfmmu_replace_tsb() which temporarily sets
11074 	 * the ctx to INVALID_CONTEXT to force processes to enter
11075 	 * sfmmu_tsbmiss_exception().
11076 	 */
11077 	hatlockp = sfmmu_hat_enter(sfmmup);
11078 	ctxnum = sfmmutoctxnum(sfmmup);
11079 	sfmmu_hat_exit(hatlockp);
11080 	if (ctxnum == INVALID_CONTEXT) {
11081 		dmrp->dmr_bitvec = 0;
11082 		return;
11083 	}
11084 
11085 	ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
11086 	if (sfmmup->sfmmu_free == 0) {
11087 		addr = dmrp->dmr_addr;
11088 		bitvec = dmrp->dmr_bitvec;
11089 		ctx_pgcnt = (uint64_t)((ctxnum << 16) | pgcnt);
11090 		kpreempt_disable();
11091 		cpuset = sfmmup->sfmmu_cpusran;
11092 		CPUSET_AND(cpuset, cpu_ready_set);
11093 		CPUSET_DEL(cpuset, CPU->cpu_id);
11094 		SFMMU_XCALL_STATS(ctxnum);
11095 		xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
11096 			ctx_pgcnt);
11097 		for (; bitvec != 0; bitvec >>= 1) {
11098 			if (bitvec & 1)
11099 				vtag_flushpage(addr, ctxnum);
11100 			addr += MMU_PAGESIZE;
11101 		}
11102 		kpreempt_enable();
11103 		sfmmu_xcall_save += (pgunload-1);
11104 	}
11105 	dmrp->dmr_bitvec = 0;
11106 }
11107 
11108 /*
11109  * Flushes only TLB.
11110  */
11111 static void
11112 sfmmu_tlb_ctx_demap(sfmmu_t *sfmmup)
11113 {
11114 	int ctxnum;
11115 	cpuset_t cpuset;
11116 
11117 	ctxnum = (int)sfmmutoctxnum(sfmmup);
11118 	if (ctxnum == INVALID_CONTEXT) {
11119 		/*
11120 		 * if ctx was stolen then simply return
11121 		 * whoever stole ctx is responsible for flush.
11122 		 */
11123 		return;
11124 	}
11125 	ASSERT(ctxnum != KCONTEXT);
11126 	/*
11127 	 * There is no need to protect against ctx being stolen.  If the
11128 	 * ctx is stolen we will simply get an extra flush.
11129 	 */
11130 	kpreempt_disable();
11131 
11132 	cpuset = sfmmup->sfmmu_cpusran;
11133 	CPUSET_DEL(cpuset, CPU->cpu_id);
11134 	CPUSET_AND(cpuset, cpu_ready_set);
11135 	SFMMU_XCALL_STATS(ctxnum);
11136 
11137 	/*
11138 	 * Flush TLB.
11139 	 * RFE: it might be worth delaying the TLB flush as well. In that
11140 	 * case each cpu would have to traverse the dirty list and flush
11141 	 * each one of those ctx from the TLB.
11142 	 */
11143 	vtag_flushctx(ctxnum);
11144 	xt_some(cpuset, vtag_flushctx_tl1, ctxnum, 0);
11145 
11146 	kpreempt_enable();
11147 	SFMMU_STAT(sf_tlbflush_ctx);
11148 }
11149 
11150 /*
11151  * Flushes all TLBs.
11152  */
11153 static void
11154 sfmmu_tlb_all_demap(void)
11155 {
11156 	cpuset_t cpuset;
11157 
11158 	/*
11159 	 * There is no need to protect against ctx being stolen.  If the
11160 	 * ctx is stolen we will simply get an extra flush.
11161 	 */
11162 	kpreempt_disable();
11163 
11164 	cpuset = cpu_ready_set;
11165 	CPUSET_DEL(cpuset, CPU->cpu_id);
11166 	/* LINTED: constant in conditional context */
11167 	SFMMU_XCALL_STATS(INVALID_CONTEXT);
11168 
11169 	vtag_flushall();
11170 	xt_some(cpuset, vtag_flushall_tl1, 0, 0);
11171 	xt_sync(cpuset);
11172 
11173 	kpreempt_enable();
11174 	SFMMU_STAT(sf_tlbflush_all);
11175 }
11176 
11177 /*
11178  * In cases where we need to synchronize with TLB/TSB miss trap
11179  * handlers, _and_ need to flush the TLB, it's a lot easier to
11180  * steal the context from the process and free it than to do a
11181  * special song and dance to keep things consistent for the
11182  * handlers.
11183  *
11184  * Since the process suddenly ends up without a context and our caller
11185  * holds the hat lock, threads that fault after this function is called
11186  * will pile up on the lock.  We can then do whatever we need to
11187  * atomically from the context of the caller.  The first blocked thread
11188  * to resume executing will get the process a new context, and the
11189  * process will resume executing.
11190  *
11191  * One added advantage of this approach is that on MMUs that
11192  * support a "flush all" operation, we will delay the flush until
11193  * we run out of contexts, and then flush the TLB one time.  This
11194  * is rather rare, so it's a lot less expensive than making 8000
11195  * x-calls to flush the TLB 8000 times.  Another is that we can do
11196  * all of this without pausing CPUs, due to some knowledge of how
11197  * resume() loads processes onto the processor; it sets the thread
11198  * into cpusran, and _then_ looks at cnum.  Because we do things in
11199  * the reverse order here, we guarantee exactly one of the following
11200  * statements is always true:
11201  *
11202  *   1) Nobody is in resume() so we have nothing to worry about anyway.
11203  *   2) The thread in resume() isn't in cpusran when we do the xcall,
11204  *      so we know when it does set itself it'll see cnum is
11205  *      INVALID_CONTEXT.
11206  *   3) The thread in resume() is in cpusran, and already might have
11207  *      looked at the old cnum.  That's OK, because we'll xcall it
11208  *      and, if necessary, flush the TLB along with the rest of the
11209  *      crowd.
11210  */
11211 static void
11212 sfmmu_tlb_swap_ctx(sfmmu_t *sfmmup, struct ctx *ctx)
11213 {
11214 	cpuset_t cpuset;
11215 	int cnum;
11216 
11217 	if (sfmmup->sfmmu_cnum == INVALID_CONTEXT)
11218 		return;
11219 
11220 	SFMMU_STAT(sf_ctx_swap);
11221 
11222 	kpreempt_disable();
11223 
11224 	ASSERT(rw_read_locked(&ctx->ctx_rwlock) == 0);
11225 	ASSERT(ctx->ctx_sfmmu == sfmmup);
11226 
11227 	cnum = ctxtoctxnum(ctx);
11228 	ASSERT(sfmmup->sfmmu_cnum == cnum);
11229 	ASSERT(cnum >= NUM_LOCKED_CTXS);
11230 
11231 	sfmmup->sfmmu_cnum = INVALID_CONTEXT;
11232 	membar_enter();	/* make sure visible on all CPUs */
11233 	ctx->ctx_sfmmu = NULL;
11234 
11235 	cpuset = sfmmup->sfmmu_cpusran;
11236 	CPUSET_DEL(cpuset, CPU->cpu_id);
11237 	CPUSET_AND(cpuset, cpu_ready_set);
11238 	SFMMU_XCALL_STATS(cnum);
11239 
11240 	/*
11241 	 * Force anybody running this process on CPU
11242 	 * to enter sfmmu_tsbmiss_exception() on the
11243 	 * next TLB miss, synchronize behind us on
11244 	 * the HAT lock, and grab a new context.  At
11245 	 * that point the new page size will become
11246 	 * active in the TLB for the new context.
11247 	 * See sfmmu_get_ctx() for details.
11248 	 */
11249 	if (delay_tlb_flush) {
11250 		xt_some(cpuset, sfmmu_raise_tsb_exception,
11251 		    cnum, INVALID_CONTEXT);
11252 		SFMMU_STAT(sf_tlbflush_deferred);
11253 	} else {
11254 		xt_some(cpuset, sfmmu_ctx_steal_tl1, cnum, INVALID_CONTEXT);
11255 		vtag_flushctx(cnum);
11256 		SFMMU_STAT(sf_tlbflush_ctx);
11257 	}
11258 	xt_sync(cpuset);
11259 
11260 	/*
11261 	 * If we just stole the ctx from the current
11262 	 * process on local CPU we need to invalidate
11263 	 * this CPU context as well.
11264 	 */
11265 	if (sfmmu_getctx_sec() == cnum) {
11266 		sfmmu_setctx_sec(INVALID_CONTEXT);
11267 		sfmmu_clear_utsbinfo();
11268 	}
11269 
11270 	kpreempt_enable();
11271 
11272 	/*
11273 	 * Now put old ctx on the dirty list since we may not
11274 	 * have flushed the context out of the TLB.  We'll let
11275 	 * the next guy who uses this ctx flush it instead.
11276 	 */
11277 	mutex_enter(&ctx_list_lock);
11278 	CTX_SET_FLAGS(ctx, CTX_FREE_FLAG);
11279 	ctx->ctx_free = ctxdirty;
11280 	ctxdirty = ctx;
11281 	mutex_exit(&ctx_list_lock);
11282 }
11283 
11284 /*
11285  * We need to flush the cache in all cpus.  It is possible that
11286  * a process referenced a page as cacheable but has sinced exited
11287  * and cleared the mapping list.  We still to flush it but have no
11288  * state so all cpus is the only alternative.
11289  */
11290 void
11291 sfmmu_cache_flush(pfn_t pfnum, int vcolor)
11292 {
11293 	cpuset_t cpuset;
11294 	int	ctxnum = INVALID_CONTEXT;
11295 
11296 	kpreempt_disable();
11297 	cpuset = cpu_ready_set;
11298 	CPUSET_DEL(cpuset, CPU->cpu_id);
11299 	SFMMU_XCALL_STATS(ctxnum);	/* account to any ctx */
11300 	xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
11301 	xt_sync(cpuset);
11302 	vac_flushpage(pfnum, vcolor);
11303 	kpreempt_enable();
11304 }
11305 
11306 void
11307 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
11308 {
11309 	cpuset_t cpuset;
11310 	int	ctxnum = INVALID_CONTEXT;
11311 
11312 	ASSERT(vcolor >= 0);
11313 
11314 	kpreempt_disable();
11315 	cpuset = cpu_ready_set;
11316 	CPUSET_DEL(cpuset, CPU->cpu_id);
11317 	SFMMU_XCALL_STATS(ctxnum);	/* account to any ctx */
11318 	xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
11319 	xt_sync(cpuset);
11320 	vac_flushcolor(vcolor, pfnum);
11321 	kpreempt_enable();
11322 }
11323 
11324 /*
11325  * We need to prevent processes from accessing the TSB using a cached physical
11326  * address.  It's alright if they try to access the TSB via virtual address
11327  * since they will just fault on that virtual address once the mapping has
11328  * been suspended.
11329  */
11330 #pragma weak sendmondo_in_recover
11331 
11332 /* ARGSUSED */
11333 static int
11334 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
11335 {
11336 	hatlock_t *hatlockp;
11337 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
11338 	sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
11339 	struct ctx *ctx;
11340 	int cnum;
11341 	extern uint32_t sendmondo_in_recover;
11342 
11343 	if (flags != HAT_PRESUSPEND)
11344 		return (0);
11345 
11346 	hatlockp = sfmmu_hat_enter(sfmmup);
11347 
11348 	tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
11349 
11350 	/*
11351 	 * For Cheetah+ Erratum 25:
11352 	 * Wait for any active recovery to finish.  We can't risk
11353 	 * relocating the TSB of the thread running mondo_recover_proc()
11354 	 * since, if we did that, we would deadlock.  The scenario we are
11355 	 * trying to avoid is as follows:
11356 	 *
11357 	 * THIS CPU			RECOVER CPU
11358 	 * --------			-----------
11359 	 *				Begins recovery, walking through TSB
11360 	 * hat_pagesuspend() TSB TTE
11361 	 *				TLB miss on TSB TTE, spins at TL1
11362 	 * xt_sync()
11363 	 *	send_mondo_timeout()
11364 	 *	mondo_recover_proc()
11365 	 *	((deadlocked))
11366 	 *
11367 	 * The second half of the workaround is that mondo_recover_proc()
11368 	 * checks to see if the tsb_info has the RELOC flag set, and if it
11369 	 * does, it skips over that TSB without ever touching tsbinfop->tsb_va
11370 	 * and hence avoiding the TLB miss that could result in a deadlock.
11371 	 */
11372 	if (&sendmondo_in_recover) {
11373 		membar_enter();	/* make sure RELOC flag visible */
11374 		while (sendmondo_in_recover) {
11375 			drv_usecwait(1);
11376 			membar_consumer();
11377 		}
11378 	}
11379 
11380 	ctx = sfmmutoctx(sfmmup);
11381 	rw_enter(&ctx->ctx_rwlock, RW_WRITER);
11382 	cnum = sfmmutoctxnum(sfmmup);
11383 
11384 	if (cnum != INVALID_CONTEXT) {
11385 		/*
11386 		 * Force all threads for this sfmmu to sfmmu_tsbmiss_exception
11387 		 * on their next TLB miss.
11388 		 */
11389 		sfmmu_tlb_swap_ctx(sfmmup, ctx);
11390 	}
11391 
11392 	rw_exit(&ctx->ctx_rwlock);
11393 
11394 	sfmmu_hat_exit(hatlockp);
11395 
11396 	return (0);
11397 }
11398 
11399 /* ARGSUSED */
11400 static int
11401 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
11402 	void *tsbinfo, pfn_t newpfn)
11403 {
11404 	hatlock_t *hatlockp;
11405 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
11406 	sfmmu_t	*sfmmup = tsbinfop->tsb_sfmmu;
11407 
11408 	if (flags != HAT_POSTUNSUSPEND)
11409 		return (0);
11410 
11411 	hatlockp = sfmmu_hat_enter(sfmmup);
11412 
11413 	SFMMU_STAT(sf_tsb_reloc);
11414 
11415 	/*
11416 	 * The process may have swapped out while we were relocating one
11417 	 * of its TSBs.  If so, don't bother doing the setup since the
11418 	 * process can't be using the memory anymore.
11419 	 */
11420 	if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
11421 		ASSERT(va == tsbinfop->tsb_va);
11422 		sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
11423 		sfmmu_setup_tsbinfo(sfmmup);
11424 
11425 		if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
11426 			sfmmu_inv_tsb(tsbinfop->tsb_va,
11427 			    TSB_BYTES(tsbinfop->tsb_szc));
11428 			tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
11429 		}
11430 	}
11431 
11432 	membar_exit();
11433 	tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
11434 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11435 
11436 	sfmmu_hat_exit(hatlockp);
11437 
11438 	return (0);
11439 }
11440 
11441 /*
11442  * Allocate and initialize a tsb_info structure.  Note that we may or may not
11443  * allocate a TSB here, depending on the flags passed in.
11444  */
11445 static int
11446 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
11447 	uint_t flags, sfmmu_t *sfmmup)
11448 {
11449 	int err;
11450 
11451 	*tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
11452 	    sfmmu_tsbinfo_cache, KM_SLEEP);
11453 
11454 	if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
11455 	    tsb_szc, flags, sfmmup)) != 0) {
11456 		kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
11457 		SFMMU_STAT(sf_tsb_allocfail);
11458 		*tsbinfopp = NULL;
11459 		return (err);
11460 	}
11461 	SFMMU_STAT(sf_tsb_alloc);
11462 
11463 	/*
11464 	 * Bump the TSB size counters for this TSB size.
11465 	 */
11466 	(*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
11467 	return (0);
11468 }
11469 
11470 static void
11471 sfmmu_tsb_free(struct tsb_info *tsbinfo)
11472 {
11473 	caddr_t tsbva = tsbinfo->tsb_va;
11474 	uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
11475 	struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
11476 	vmem_t	*vmp = tsbinfo->tsb_vmp;
11477 
11478 	/*
11479 	 * If we allocated this TSB from relocatable kernel memory, then we
11480 	 * need to uninstall the callback handler.
11481 	 */
11482 	if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
11483 		uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
11484 		caddr_t slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
11485 		page_t **ppl;
11486 		int ret;
11487 
11488 		ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
11489 		ASSERT(ret == 0);
11490 		hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
11491 		    0);
11492 		as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
11493 	}
11494 
11495 	if (kmem_cachep != NULL) {
11496 		kmem_cache_free(kmem_cachep, tsbva);
11497 	} else {
11498 		vmem_xfree(vmp, (void *)tsbva, tsb_size);
11499 	}
11500 	tsbinfo->tsb_va = (caddr_t)0xbad00bad;
11501 	atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
11502 }
11503 
11504 static void
11505 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
11506 {
11507 	if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
11508 		sfmmu_tsb_free(tsbinfo);
11509 	}
11510 	kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
11511 
11512 }
11513 
11514 /*
11515  * Setup all the references to physical memory for this tsbinfo.
11516  * The underlying page(s) must be locked.
11517  */
11518 static void
11519 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
11520 {
11521 	ASSERT(pfn != PFN_INVALID);
11522 	ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
11523 
11524 #ifndef sun4v
11525 	if (tsbinfo->tsb_szc == 0) {
11526 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
11527 		    PROT_WRITE|PROT_READ, TTE8K);
11528 	} else {
11529 		/*
11530 		 * Round down PA and use a large mapping; the handlers will
11531 		 * compute the TSB pointer at the correct offset into the
11532 		 * big virtual page.  NOTE: this assumes all TSBs larger
11533 		 * than 8K must come from physically contiguous slabs of
11534 		 * size tsb_slab_size.
11535 		 */
11536 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
11537 		    PROT_WRITE|PROT_READ, tsb_slab_ttesz);
11538 	}
11539 	tsbinfo->tsb_pa = ptob(pfn);
11540 
11541 	TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
11542 	TTE_SET_MOD(&tsbinfo->tsb_tte);    /* enable writes */
11543 
11544 	ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
11545 	ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
11546 #else /* sun4v */
11547 	tsbinfo->tsb_pa = ptob(pfn);
11548 #endif /* sun4v */
11549 }
11550 
11551 
11552 /*
11553  * Returns zero on success, ENOMEM if over the high water mark,
11554  * or EAGAIN if the caller needs to retry with a smaller TSB
11555  * size (or specify TSB_FORCEALLOC if the allocation can't fail).
11556  *
11557  * This call cannot fail to allocate a TSB if TSB_FORCEALLOC
11558  * is specified and the TSB requested is PAGESIZE, though it
11559  * may sleep waiting for memory if sufficient memory is not
11560  * available.
11561  */
11562 static int
11563 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
11564     int tsbcode, uint_t flags, sfmmu_t *sfmmup)
11565 {
11566 	caddr_t vaddr = NULL;
11567 	caddr_t slab_vaddr;
11568 	uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
11569 	int tsbbytes = TSB_BYTES(tsbcode);
11570 	int lowmem = 0;
11571 	struct kmem_cache *kmem_cachep = NULL;
11572 	vmem_t *vmp = NULL;
11573 	lgrp_id_t lgrpid = LGRP_NONE;
11574 	pfn_t pfn;
11575 	uint_t cbflags = HAC_SLEEP;
11576 	page_t **pplist;
11577 	int ret;
11578 
11579 	if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
11580 		flags |= TSB_ALLOC;
11581 
11582 	ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
11583 
11584 	tsbinfo->tsb_sfmmu = sfmmup;
11585 
11586 	/*
11587 	 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
11588 	 * return.
11589 	 */
11590 	if ((flags & TSB_ALLOC) == 0) {
11591 		tsbinfo->tsb_szc = tsbcode;
11592 		tsbinfo->tsb_ttesz_mask = tteszmask;
11593 		tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
11594 		tsbinfo->tsb_pa = -1;
11595 		tsbinfo->tsb_tte.ll = 0;
11596 		tsbinfo->tsb_next = NULL;
11597 		tsbinfo->tsb_flags = TSB_SWAPPED;
11598 		tsbinfo->tsb_cache = NULL;
11599 		tsbinfo->tsb_vmp = NULL;
11600 		return (0);
11601 	}
11602 
11603 #ifdef DEBUG
11604 	/*
11605 	 * For debugging:
11606 	 * Randomly force allocation failures every tsb_alloc_mtbf
11607 	 * tries if TSB_FORCEALLOC is not specified.  This will
11608 	 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
11609 	 * it is even, to allow testing of both failure paths...
11610 	 */
11611 	if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
11612 	    (tsb_alloc_count++ == tsb_alloc_mtbf)) {
11613 		tsb_alloc_count = 0;
11614 		tsb_alloc_fail_mtbf++;
11615 		return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
11616 	}
11617 #endif	/* DEBUG */
11618 
11619 	/*
11620 	 * Enforce high water mark if we are not doing a forced allocation
11621 	 * and are not shrinking a process' TSB.
11622 	 */
11623 	if ((flags & TSB_SHRINK) == 0 &&
11624 	    (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
11625 		if ((flags & TSB_FORCEALLOC) == 0)
11626 			return (ENOMEM);
11627 		lowmem = 1;
11628 	}
11629 
11630 	/*
11631 	 * Allocate from the correct location based upon the size of the TSB
11632 	 * compared to the base page size, and what memory conditions dictate.
11633 	 * Note we always do nonblocking allocations from the TSB arena since
11634 	 * we don't want memory fragmentation to cause processes to block
11635 	 * indefinitely waiting for memory; until the kernel algorithms that
11636 	 * coalesce large pages are improved this is our best option.
11637 	 *
11638 	 * Algorithm:
11639 	 *	If allocating a "large" TSB (>8K), allocate from the
11640 	 *		appropriate kmem_tsb_default_arena vmem arena
11641 	 *	else if low on memory or the TSB_FORCEALLOC flag is set or
11642 	 *	tsb_forceheap is set
11643 	 *		Allocate from kernel heap via sfmmu_tsb8k_cache with
11644 	 *		KM_SLEEP (never fails)
11645 	 *	else
11646 	 *		Allocate from appropriate sfmmu_tsb_cache with
11647 	 *		KM_NOSLEEP
11648 	 *	endif
11649 	 */
11650 	if (tsb_lgrp_affinity)
11651 		lgrpid = lgrp_home_id(curthread);
11652 	if (lgrpid == LGRP_NONE)
11653 		lgrpid = 0;	/* use lgrp of boot CPU */
11654 
11655 	if (tsbbytes > MMU_PAGESIZE) {
11656 		vmp = kmem_tsb_default_arena[lgrpid];
11657 		vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes, 0, 0,
11658 		    NULL, NULL, VM_NOSLEEP);
11659 #ifdef	DEBUG
11660 	} else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
11661 #else	/* !DEBUG */
11662 	} else if (lowmem || (flags & TSB_FORCEALLOC)) {
11663 #endif	/* DEBUG */
11664 		kmem_cachep = sfmmu_tsb8k_cache;
11665 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
11666 		ASSERT(vaddr != NULL);
11667 	} else {
11668 		kmem_cachep = sfmmu_tsb_cache[lgrpid];
11669 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
11670 	}
11671 
11672 	tsbinfo->tsb_cache = kmem_cachep;
11673 	tsbinfo->tsb_vmp = vmp;
11674 
11675 	if (vaddr == NULL) {
11676 		return (EAGAIN);
11677 	}
11678 
11679 	atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
11680 	kmem_cachep = tsbinfo->tsb_cache;
11681 
11682 	/*
11683 	 * If we are allocating from outside the cage, then we need to
11684 	 * register a relocation callback handler.  Note that for now
11685 	 * since pseudo mappings always hang off of the slab's root page,
11686 	 * we need only lock the first 8K of the TSB slab.  This is a bit
11687 	 * hacky but it is good for performance.
11688 	 */
11689 	if (kmem_cachep != sfmmu_tsb8k_cache) {
11690 		slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
11691 		ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
11692 		ASSERT(ret == 0);
11693 		ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
11694 		    cbflags, (void *)tsbinfo, &pfn);
11695 
11696 		/*
11697 		 * Need to free up resources if we could not successfully
11698 		 * add the callback function and return an error condition.
11699 		 */
11700 		if (ret != 0) {
11701 			if (kmem_cachep) {
11702 				kmem_cache_free(kmem_cachep, vaddr);
11703 			} else {
11704 				vmem_xfree(vmp, (void *)vaddr, tsbbytes);
11705 			}
11706 			as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
11707 			    S_WRITE);
11708 			return (EAGAIN);
11709 		}
11710 	} else {
11711 		/*
11712 		 * Since allocation of 8K TSBs from heap is rare and occurs
11713 		 * during memory pressure we allocate them from permanent
11714 		 * memory rather than using callbacks to get the PFN.
11715 		 */
11716 		pfn = hat_getpfnum(kas.a_hat, vaddr);
11717 	}
11718 
11719 	tsbinfo->tsb_va = vaddr;
11720 	tsbinfo->tsb_szc = tsbcode;
11721 	tsbinfo->tsb_ttesz_mask = tteszmask;
11722 	tsbinfo->tsb_next = NULL;
11723 	tsbinfo->tsb_flags = 0;
11724 
11725 	sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
11726 
11727 	if (kmem_cachep != sfmmu_tsb8k_cache) {
11728 		as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
11729 	}
11730 
11731 	sfmmu_inv_tsb(vaddr, tsbbytes);
11732 	return (0);
11733 }
11734 
11735 /*
11736  * Initialize per cpu tsb and per cpu tsbmiss_area
11737  */
11738 void
11739 sfmmu_init_tsbs(void)
11740 {
11741 	int i;
11742 	struct tsbmiss	*tsbmissp;
11743 	struct kpmtsbm	*kpmtsbmp;
11744 #ifndef sun4v
11745 	extern int	dcache_line_mask;
11746 #endif /* sun4v */
11747 	extern uint_t	vac_colors;
11748 
11749 	/*
11750 	 * Init. tsb miss area.
11751 	 */
11752 	tsbmissp = tsbmiss_area;
11753 
11754 	for (i = 0; i < NCPU; tsbmissp++, i++) {
11755 		/*
11756 		 * initialize the tsbmiss area.
11757 		 * Do this for all possible CPUs as some may be added
11758 		 * while the system is running. There is no cost to this.
11759 		 */
11760 		tsbmissp->ksfmmup = ksfmmup;
11761 #ifndef sun4v
11762 		tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
11763 #endif /* sun4v */
11764 		tsbmissp->khashstart =
11765 		    (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
11766 		tsbmissp->uhashstart =
11767 		    (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
11768 		tsbmissp->khashsz = khmehash_num;
11769 		tsbmissp->uhashsz = uhmehash_num;
11770 	}
11771 
11772 	if (kpm_enable == 0)
11773 		return;
11774 
11775 	if (kpm_smallpages) {
11776 		/*
11777 		 * If we're using base pagesize pages for seg_kpm
11778 		 * mappings, we use the kernel TSB since we can't afford
11779 		 * to allocate a second huge TSB for these mappings.
11780 		 */
11781 		kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
11782 		kpm_tsbsz = ktsb_szcode;
11783 		kpmsm_tsbbase = kpm_tsbbase;
11784 		kpmsm_tsbsz = kpm_tsbsz;
11785 	} else {
11786 		/*
11787 		 * In VAC conflict case, just put the entries in the
11788 		 * kernel 8K indexed TSB for now so we can find them.
11789 		 * This could really be changed in the future if we feel
11790 		 * the need...
11791 		 */
11792 		kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
11793 		kpmsm_tsbsz = ktsb_szcode;
11794 		kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
11795 		kpm_tsbsz = ktsb4m_szcode;
11796 	}
11797 
11798 	kpmtsbmp = kpmtsbm_area;
11799 	for (i = 0; i < NCPU; kpmtsbmp++, i++) {
11800 		/*
11801 		 * Initialize the kpmtsbm area.
11802 		 * Do this for all possible CPUs as some may be added
11803 		 * while the system is running. There is no cost to this.
11804 		 */
11805 		kpmtsbmp->vbase = kpm_vbase;
11806 		kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
11807 		kpmtsbmp->sz_shift = kpm_size_shift;
11808 		kpmtsbmp->kpmp_shift = kpmp_shift;
11809 		kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
11810 		if (kpm_smallpages == 0) {
11811 			kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
11812 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
11813 		} else {
11814 			kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
11815 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
11816 		}
11817 		kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
11818 		kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
11819 #ifdef	DEBUG
11820 		kpmtsbmp->flags |= (kpm_tsbmtl) ?  KPMTSBM_TLTSBM_FLAG : 0;
11821 #endif	/* DEBUG */
11822 		if (ktsb_phys)
11823 			kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
11824 	}
11825 
11826 	sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
11827 	    sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
11828 }
11829 
11830 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
11831 struct tsb_info ktsb_info[2];
11832 
11833 /*
11834  * Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
11835  */
11836 void
11837 sfmmu_init_ktsbinfo()
11838 {
11839 	ASSERT(ksfmmup != NULL);
11840 	ASSERT(ksfmmup->sfmmu_tsb == NULL);
11841 	/*
11842 	 * Allocate tsbinfos for kernel and copy in data
11843 	 * to make debug easier and sun4v setup easier.
11844 	 */
11845 	ktsb_info[0].tsb_sfmmu = ksfmmup;
11846 	ktsb_info[0].tsb_szc = ktsb_szcode;
11847 	ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
11848 	ktsb_info[0].tsb_va = ktsb_base;
11849 	ktsb_info[0].tsb_pa = ktsb_pbase;
11850 	ktsb_info[0].tsb_flags = 0;
11851 	ktsb_info[0].tsb_tte.ll = 0;
11852 	ktsb_info[0].tsb_cache = NULL;
11853 
11854 	ktsb_info[1].tsb_sfmmu = ksfmmup;
11855 	ktsb_info[1].tsb_szc = ktsb4m_szcode;
11856 	ktsb_info[1].tsb_ttesz_mask = TSB4M;
11857 	ktsb_info[1].tsb_va = ktsb4m_base;
11858 	ktsb_info[1].tsb_pa = ktsb4m_pbase;
11859 	ktsb_info[1].tsb_flags = 0;
11860 	ktsb_info[1].tsb_tte.ll = 0;
11861 	ktsb_info[1].tsb_cache = NULL;
11862 
11863 	/* Link them into ksfmmup. */
11864 	ktsb_info[0].tsb_next = &ktsb_info[1];
11865 	ktsb_info[1].tsb_next = NULL;
11866 	ksfmmup->sfmmu_tsb = &ktsb_info[0];
11867 
11868 	sfmmu_setup_tsbinfo(ksfmmup);
11869 }
11870 
11871 /*
11872  * Cache the last value returned from va_to_pa().  If the VA specified
11873  * in the current call to cached_va_to_pa() maps to the same Page (as the
11874  * previous call to cached_va_to_pa()), then compute the PA using
11875  * cached info, else call va_to_pa().
11876  *
11877  * Note: this function is neither MT-safe nor consistent in the presence
11878  * of multiple, interleaved threads.  This function was created to enable
11879  * an optimization used during boot (at a point when there's only one thread
11880  * executing on the "boot CPU", and before startup_vm() has been called).
11881  */
11882 static uint64_t
11883 cached_va_to_pa(void *vaddr)
11884 {
11885 	static uint64_t prev_vaddr_base = 0;
11886 	static uint64_t prev_pfn = 0;
11887 
11888 	if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
11889 		return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
11890 	} else {
11891 		uint64_t pa = va_to_pa(vaddr);
11892 
11893 		if (pa != ((uint64_t)-1)) {
11894 			/*
11895 			 * Computed physical address is valid.  Cache its
11896 			 * related info for the next cached_va_to_pa() call.
11897 			 */
11898 			prev_pfn = pa & MMU_PAGEMASK;
11899 			prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
11900 		}
11901 
11902 		return (pa);
11903 	}
11904 }
11905 
11906 /*
11907  * Carve up our nucleus hblk region.  We may allocate more hblks than
11908  * asked due to rounding errors but we are guaranteed to have at least
11909  * enough space to allocate the requested number of hblk8's and hblk1's.
11910  */
11911 void
11912 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
11913 {
11914 	struct hme_blk *hmeblkp;
11915 	size_t hme8blk_sz, hme1blk_sz;
11916 	size_t i;
11917 	size_t hblk8_bound;
11918 	ulong_t j = 0, k = 0;
11919 
11920 	ASSERT(addr != NULL && size != 0);
11921 
11922 	/* Need to use proper structure alignment */
11923 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
11924 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
11925 
11926 	nucleus_hblk8.list = (void *)addr;
11927 	nucleus_hblk8.index = 0;
11928 
11929 	/*
11930 	 * Use as much memory as possible for hblk8's since we
11931 	 * expect all bop_alloc'ed memory to be allocated in 8k chunks.
11932 	 * We need to hold back enough space for the hblk1's which
11933 	 * we'll allocate next.
11934 	 */
11935 	hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
11936 	for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
11937 		hmeblkp = (struct hme_blk *)addr;
11938 		addr += hme8blk_sz;
11939 		hmeblkp->hblk_nuc_bit = 1;
11940 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
11941 	}
11942 	nucleus_hblk8.len = j;
11943 	ASSERT(j >= nhblk8);
11944 	SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
11945 
11946 	nucleus_hblk1.list = (void *)addr;
11947 	nucleus_hblk1.index = 0;
11948 	for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
11949 		hmeblkp = (struct hme_blk *)addr;
11950 		addr += hme1blk_sz;
11951 		hmeblkp->hblk_nuc_bit = 1;
11952 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
11953 	}
11954 	ASSERT(k >= nhblk1);
11955 	nucleus_hblk1.len = k;
11956 	SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
11957 }
11958 
11959 /*
11960  * This function is currently not supported on this platform. For what
11961  * it's supposed to do, see hat.c and hat_srmmu.c
11962  */
11963 /* ARGSUSED */
11964 faultcode_t
11965 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
11966     uint_t flags)
11967 {
11968 	ASSERT(hat->sfmmu_xhat_provider == NULL);
11969 	return (FC_NOSUPPORT);
11970 }
11971 
11972 /*
11973  * Searchs the mapping list of the page for a mapping of the same size. If not
11974  * found the corresponding bit is cleared in the p_index field. When large
11975  * pages are more prevalent in the system, we can maintain the mapping list
11976  * in order and we don't have to traverse the list each time. Just check the
11977  * next and prev entries, and if both are of different size, we clear the bit.
11978  */
11979 static void
11980 sfmmu_rm_large_mappings(page_t *pp, int ttesz)
11981 {
11982 	struct sf_hment *sfhmep;
11983 	struct hme_blk *hmeblkp;
11984 	int	index;
11985 	pgcnt_t	npgs;
11986 
11987 	ASSERT(ttesz > TTE8K);
11988 
11989 	ASSERT(sfmmu_mlist_held(pp));
11990 
11991 	ASSERT(PP_ISMAPPED_LARGE(pp));
11992 
11993 	/*
11994 	 * Traverse mapping list looking for another mapping of same size.
11995 	 * since we only want to clear index field if all mappings of
11996 	 * that size are gone.
11997 	 */
11998 
11999 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
12000 		hmeblkp = sfmmu_hmetohblk(sfhmep);
12001 		if (hmeblkp->hblk_xhat_bit)
12002 			continue;
12003 		if (hme_size(sfhmep) == ttesz) {
12004 			/*
12005 			 * another mapping of the same size. don't clear index.
12006 			 */
12007 			return;
12008 		}
12009 	}
12010 
12011 	/*
12012 	 * Clear the p_index bit for large page.
12013 	 */
12014 	index = PAGESZ_TO_INDEX(ttesz);
12015 	npgs = TTEPAGES(ttesz);
12016 	while (npgs-- > 0) {
12017 		ASSERT(pp->p_index & index);
12018 		pp->p_index &= ~index;
12019 		pp = PP_PAGENEXT(pp);
12020 	}
12021 }
12022 
12023 /*
12024  * return supported features
12025  */
12026 /* ARGSUSED */
12027 int
12028 hat_supported(enum hat_features feature, void *arg)
12029 {
12030 	switch (feature) {
12031 	case    HAT_SHARED_PT:
12032 	case	HAT_DYNAMIC_ISM_UNMAP:
12033 	case	HAT_VMODSORT:
12034 		return (1);
12035 	default:
12036 		return (0);
12037 	}
12038 }
12039 
12040 void
12041 hat_enter(struct hat *hat)
12042 {
12043 	hatlock_t	*hatlockp;
12044 
12045 	if (hat != ksfmmup) {
12046 		hatlockp = TSB_HASH(hat);
12047 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
12048 	}
12049 }
12050 
12051 void
12052 hat_exit(struct hat *hat)
12053 {
12054 	hatlock_t	*hatlockp;
12055 
12056 	if (hat != ksfmmup) {
12057 		hatlockp = TSB_HASH(hat);
12058 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
12059 	}
12060 }
12061 
12062 /*ARGSUSED*/
12063 void
12064 hat_reserve(struct as *as, caddr_t addr, size_t len)
12065 {
12066 }
12067 
12068 static void
12069 hat_kstat_init(void)
12070 {
12071 	kstat_t *ksp;
12072 
12073 	ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
12074 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
12075 		KSTAT_FLAG_VIRTUAL);
12076 	if (ksp) {
12077 		ksp->ks_data = (void *) &sfmmu_global_stat;
12078 		kstat_install(ksp);
12079 	}
12080 	ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
12081 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
12082 		KSTAT_FLAG_VIRTUAL);
12083 	if (ksp) {
12084 		ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
12085 		kstat_install(ksp);
12086 	}
12087 	ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
12088 		KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
12089 		KSTAT_FLAG_WRITABLE);
12090 	if (ksp) {
12091 		ksp->ks_update = sfmmu_kstat_percpu_update;
12092 		kstat_install(ksp);
12093 	}
12094 }
12095 
12096 /* ARGSUSED */
12097 static int
12098 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
12099 {
12100 	struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
12101 	struct tsbmiss *tsbm = tsbmiss_area;
12102 	struct kpmtsbm *kpmtsbm = kpmtsbm_area;
12103 	int i;
12104 
12105 	ASSERT(cpu_kstat);
12106 	if (rw == KSTAT_READ) {
12107 		for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
12108 			cpu_kstat->sf_itlb_misses = tsbm->itlb_misses;
12109 			cpu_kstat->sf_dtlb_misses = tsbm->dtlb_misses;
12110 			cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
12111 				tsbm->uprot_traps;
12112 			cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
12113 				kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
12114 
12115 			if (tsbm->itlb_misses > 0 && tsbm->dtlb_misses > 0) {
12116 				cpu_kstat->sf_tsb_hits =
12117 				(tsbm->itlb_misses + tsbm->dtlb_misses) -
12118 				(tsbm->utsb_misses + tsbm->ktsb_misses +
12119 				kpmtsbm->kpm_tsb_misses);
12120 			} else {
12121 				cpu_kstat->sf_tsb_hits = 0;
12122 			}
12123 			cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
12124 			cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
12125 		}
12126 	} else {
12127 		/* KSTAT_WRITE is used to clear stats */
12128 		for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
12129 			tsbm->itlb_misses = 0;
12130 			tsbm->dtlb_misses = 0;
12131 			tsbm->utsb_misses = 0;
12132 			tsbm->ktsb_misses = 0;
12133 			tsbm->uprot_traps = 0;
12134 			tsbm->kprot_traps = 0;
12135 			kpmtsbm->kpm_dtlb_misses = 0;
12136 			kpmtsbm->kpm_tsb_misses = 0;
12137 		}
12138 	}
12139 	return (0);
12140 }
12141 
12142 #ifdef	DEBUG
12143 
12144 tte_t  *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
12145 
12146 /*
12147  * A tte checker. *orig_old is the value we read before cas.
12148  *	*cur is the value returned by cas.
12149  *	*new is the desired value when we do the cas.
12150  *
12151  *	*hmeblkp is currently unused.
12152  */
12153 
12154 /* ARGSUSED */
12155 void
12156 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
12157 {
12158 	uint_t i, j, k;
12159 	int cpuid = CPU->cpu_id;
12160 
12161 	gorig[cpuid] = orig_old;
12162 	gcur[cpuid] = cur;
12163 	gnew[cpuid] = new;
12164 
12165 #ifdef lint
12166 	hmeblkp = hmeblkp;
12167 #endif
12168 
12169 	if (TTE_IS_VALID(orig_old)) {
12170 		if (TTE_IS_VALID(cur)) {
12171 			i = TTE_TO_TTEPFN(orig_old);
12172 			j = TTE_TO_TTEPFN(cur);
12173 			k = TTE_TO_TTEPFN(new);
12174 			if (i != j) {
12175 				/* remap error? */
12176 				panic("chk_tte: bad pfn, 0x%x, 0x%x",
12177 					i, j);
12178 			}
12179 
12180 			if (i != k) {
12181 				/* remap error? */
12182 				panic("chk_tte: bad pfn2, 0x%x, 0x%x",
12183 					i, k);
12184 			}
12185 		} else {
12186 			if (TTE_IS_VALID(new)) {
12187 				panic("chk_tte: invalid cur? ");
12188 			}
12189 
12190 			i = TTE_TO_TTEPFN(orig_old);
12191 			k = TTE_TO_TTEPFN(new);
12192 			if (i != k) {
12193 				panic("chk_tte: bad pfn3, 0x%x, 0x%x",
12194 					i, k);
12195 			}
12196 		}
12197 	} else {
12198 		if (TTE_IS_VALID(cur)) {
12199 			j = TTE_TO_TTEPFN(cur);
12200 			if (TTE_IS_VALID(new)) {
12201 				k = TTE_TO_TTEPFN(new);
12202 				if (j != k) {
12203 					panic("chk_tte: bad pfn4, 0x%x, 0x%x",
12204 						j, k);
12205 				}
12206 			} else {
12207 				panic("chk_tte: why here?");
12208 			}
12209 		} else {
12210 			if (!TTE_IS_VALID(new)) {
12211 				panic("chk_tte: why here2 ?");
12212 			}
12213 		}
12214 	}
12215 }
12216 
12217 #endif /* DEBUG */
12218 
12219 extern void prefetch_tsbe_read(struct tsbe *);
12220 extern void prefetch_tsbe_write(struct tsbe *);
12221 
12222 
12223 /*
12224  * We want to prefetch 7 cache lines ahead for our read prefetch.  This gives
12225  * us optimal performance on Cheetah+.  You can only have 8 outstanding
12226  * prefetches at any one time, so we opted for 7 read prefetches and 1 write
12227  * prefetch to make the most utilization of the prefetch capability.
12228  */
12229 #define	TSBE_PREFETCH_STRIDE (7)
12230 
12231 void
12232 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
12233 {
12234 	int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
12235 	int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
12236 	int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
12237 	int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
12238 	struct tsbe *old;
12239 	struct tsbe *new;
12240 	struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
12241 	uint64_t va;
12242 	int new_offset;
12243 	int i;
12244 	int vpshift;
12245 	int last_prefetch;
12246 
12247 	if (old_bytes == new_bytes) {
12248 		bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
12249 	} else {
12250 
12251 		/*
12252 		 * A TSBE is 16 bytes which means there are four TSBE's per
12253 		 * P$ line (64 bytes), thus every 4 TSBE's we prefetch.
12254 		 */
12255 		old = (struct tsbe *)old_tsbinfo->tsb_va;
12256 		last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
12257 		for (i = 0; i < old_entries; i++, old++) {
12258 			if (((i & (4-1)) == 0) && (i < last_prefetch))
12259 				prefetch_tsbe_read(old);
12260 			if (!old->tte_tag.tag_invalid) {
12261 				/*
12262 				 * We have a valid TTE to remap.  Check the
12263 				 * size.  We won't remap 64K or 512K TTEs
12264 				 * because they span more than one TSB entry
12265 				 * and are indexed using an 8K virt. page.
12266 				 * Ditto for 32M and 256M TTEs.
12267 				 */
12268 				if (TTE_CSZ(&old->tte_data) == TTE64K ||
12269 				    TTE_CSZ(&old->tte_data) == TTE512K)
12270 					continue;
12271 				if (mmu_page_sizes == max_mmu_page_sizes) {
12272 				    if (TTE_CSZ(&old->tte_data) == TTE32M ||
12273 					TTE_CSZ(&old->tte_data) == TTE256M)
12274 					    continue;
12275 				}
12276 
12277 				/* clear the lower 22 bits of the va */
12278 				va = *(uint64_t *)old << 22;
12279 				/* turn va into a virtual pfn */
12280 				va >>= 22 - TSB_START_SIZE;
12281 				/*
12282 				 * or in bits from the offset in the tsb
12283 				 * to get the real virtual pfn. These
12284 				 * correspond to bits [21:13] in the va
12285 				 */
12286 				vpshift =
12287 				    TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
12288 				    0x1ff;
12289 				va |= (i << vpshift);
12290 				va >>= vpshift;
12291 				new_offset = va & (new_entries - 1);
12292 				new = new_base + new_offset;
12293 				prefetch_tsbe_write(new);
12294 				*new = *old;
12295 			}
12296 		}
12297 	}
12298 }
12299 
12300 /*
12301  * Kernel Physical Mapping (kpm) facility
12302  */
12303 
12304 /* -- hat_kpm interface section -- */
12305 
12306 /*
12307  * Mapin a locked page and return the vaddr.
12308  * When a kpme is provided by the caller it is added to
12309  * the page p_kpmelist. The page to be mapped in must
12310  * be at least read locked (p_selock).
12311  */
12312 caddr_t
12313 hat_kpm_mapin(struct page *pp, struct kpme *kpme)
12314 {
12315 	kmutex_t	*pml;
12316 	caddr_t		vaddr;
12317 
12318 	if (kpm_enable == 0) {
12319 		cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set");
12320 		return ((caddr_t)NULL);
12321 	}
12322 
12323 	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
12324 		cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked");
12325 		return ((caddr_t)NULL);
12326 	}
12327 
12328 	pml = sfmmu_mlist_enter(pp);
12329 	ASSERT(pp->p_kpmref >= 0);
12330 
12331 	vaddr = (pp->p_kpmref == 0) ?
12332 		sfmmu_kpm_mapin(pp) : hat_kpm_page2va(pp, 1);
12333 
12334 	if (kpme != NULL) {
12335 		/*
12336 		 * Tolerate multiple mapins for the same kpme to avoid
12337 		 * the need for an extra serialization.
12338 		 */
12339 		if ((sfmmu_kpme_lookup(kpme, pp)) == 0)
12340 			sfmmu_kpme_add(kpme, pp);
12341 
12342 		ASSERT(pp->p_kpmref > 0);
12343 
12344 	} else {
12345 		pp->p_kpmref++;
12346 	}
12347 
12348 	sfmmu_mlist_exit(pml);
12349 	return (vaddr);
12350 }
12351 
12352 /*
12353  * Mapout a locked page.
12354  * When a kpme is provided by the caller it is removed from
12355  * the page p_kpmelist. The page to be mapped out must be at
12356  * least read locked (p_selock).
12357  * Note: The seg_kpm layer provides a mapout interface for the
12358  * case that a kpme is used and the underlying page is unlocked.
12359  * This can be used instead of calling this function directly.
12360  */
12361 void
12362 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr)
12363 {
12364 	kmutex_t	*pml;
12365 
12366 	if (kpm_enable == 0) {
12367 		cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set");
12368 		return;
12369 	}
12370 
12371 	if (IS_KPM_ADDR(vaddr) == 0) {
12372 		cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address");
12373 		return;
12374 	}
12375 
12376 	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
12377 		cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked");
12378 		return;
12379 	}
12380 
12381 	if (kpme != NULL) {
12382 		ASSERT(pp == kpme->kpe_page);
12383 		pp = kpme->kpe_page;
12384 		pml = sfmmu_mlist_enter(pp);
12385 
12386 		if (sfmmu_kpme_lookup(kpme, pp) == 0)
12387 			panic("hat_kpm_mapout: kpme not found pp=%p",
12388 				(void *)pp);
12389 
12390 		ASSERT(pp->p_kpmref > 0);
12391 		sfmmu_kpme_sub(kpme, pp);
12392 
12393 	} else {
12394 		pml = sfmmu_mlist_enter(pp);
12395 		pp->p_kpmref--;
12396 	}
12397 
12398 	ASSERT(pp->p_kpmref >= 0);
12399 	if (pp->p_kpmref == 0)
12400 		sfmmu_kpm_mapout(pp, vaddr);
12401 
12402 	sfmmu_mlist_exit(pml);
12403 }
12404 
12405 /*
12406  * Return the kpm virtual address for the page at pp.
12407  * If checkswap is non zero and the page is backed by a
12408  * swap vnode the physical address is used rather than
12409  * p_offset to determine the kpm region.
12410  * Note: The function has to be used w/ extreme care. The
12411  * stability of the page identity is in the responsibility
12412  * of the caller.
12413  */
12414 caddr_t
12415 hat_kpm_page2va(struct page *pp, int checkswap)
12416 {
12417 	int		vcolor, vcolor_pa;
12418 	uintptr_t	paddr, vaddr;
12419 
12420 	ASSERT(kpm_enable);
12421 
12422 	paddr = ptob(pp->p_pagenum);
12423 	vcolor_pa = addr_to_vcolor(paddr);
12424 
12425 	if (checkswap && pp->p_vnode && IS_SWAPFSVP(pp->p_vnode))
12426 		vcolor = (PP_ISNC(pp)) ? vcolor_pa : PP_GET_VCOLOR(pp);
12427 	else
12428 		vcolor = addr_to_vcolor(pp->p_offset);
12429 
12430 	vaddr = (uintptr_t)kpm_vbase + paddr;
12431 
12432 	if (vcolor_pa != vcolor) {
12433 		vaddr += ((uintptr_t)(vcolor - vcolor_pa) << MMU_PAGESHIFT);
12434 		vaddr += (vcolor_pa > vcolor) ?
12435 			((uintptr_t)vcolor_pa << kpm_size_shift) :
12436 			((uintptr_t)(vcolor - vcolor_pa) << kpm_size_shift);
12437 	}
12438 
12439 	return ((caddr_t)vaddr);
12440 }
12441 
12442 /*
12443  * Return the page for the kpm virtual address vaddr.
12444  * Caller is responsible for the kpm mapping and lock
12445  * state of the page.
12446  */
12447 page_t *
12448 hat_kpm_vaddr2page(caddr_t vaddr)
12449 {
12450 	uintptr_t	paddr;
12451 	pfn_t		pfn;
12452 
12453 	ASSERT(IS_KPM_ADDR(vaddr));
12454 
12455 	SFMMU_KPM_VTOP(vaddr, paddr);
12456 	pfn = (pfn_t)btop(paddr);
12457 
12458 	return (page_numtopp_nolock(pfn));
12459 }
12460 
12461 /* page to kpm_page */
12462 #define	PP2KPMPG(pp, kp) {						\
12463 	struct memseg	*mseg;						\
12464 	pgcnt_t		inx;						\
12465 	pfn_t		pfn;						\
12466 									\
12467 	pfn = pp->p_pagenum;						\
12468 	mseg = page_numtomemseg_nolock(pfn);				\
12469 	ASSERT(mseg);							\
12470 	inx = ptokpmp(kpmptop(ptokpmp(pfn)) - mseg->kpm_pbase);		\
12471 	ASSERT(inx < mseg->kpm_nkpmpgs);				\
12472 	kp = &mseg->kpm_pages[inx];					\
12473 }
12474 
12475 /* page to kpm_spage */
12476 #define	PP2KPMSPG(pp, ksp) {						\
12477 	struct memseg	*mseg;						\
12478 	pgcnt_t		inx;						\
12479 	pfn_t		pfn;						\
12480 									\
12481 	pfn = pp->p_pagenum;						\
12482 	mseg = page_numtomemseg_nolock(pfn);				\
12483 	ASSERT(mseg);							\
12484 	inx = pfn - mseg->kpm_pbase;					\
12485 	ksp = &mseg->kpm_spages[inx];					\
12486 }
12487 
12488 /*
12489  * hat_kpm_fault is called from segkpm_fault when a kpm tsbmiss occurred
12490  * which could not be resolved by the trap level tsbmiss handler for the
12491  * following reasons:
12492  * . The vaddr is in VAC alias range (always PAGESIZE mapping size).
12493  * . The kpm (s)page range of vaddr is in a VAC alias prevention state.
12494  * . tsbmiss handling at trap level is not desired (DEBUG kernel only,
12495  *   kpm_tsbmtl == 0).
12496  */
12497 int
12498 hat_kpm_fault(struct hat *hat, caddr_t vaddr)
12499 {
12500 	int		error;
12501 	uintptr_t	paddr;
12502 	pfn_t		pfn;
12503 	struct memseg	*mseg;
12504 	page_t	*pp;
12505 
12506 	if (kpm_enable == 0) {
12507 		cmn_err(CE_WARN, "hat_kpm_fault: kpm_enable not set");
12508 		return (ENOTSUP);
12509 	}
12510 
12511 	ASSERT(hat == ksfmmup);
12512 	ASSERT(IS_KPM_ADDR(vaddr));
12513 
12514 	SFMMU_KPM_VTOP(vaddr, paddr);
12515 	pfn = (pfn_t)btop(paddr);
12516 	mseg = page_numtomemseg_nolock(pfn);
12517 	if (mseg == NULL)
12518 		return (EFAULT);
12519 
12520 	pp = &mseg->pages[(pgcnt_t)(pfn - mseg->pages_base)];
12521 	ASSERT((pfn_t)pp->p_pagenum == pfn);
12522 
12523 	if (!PAGE_LOCKED(pp))
12524 		return (EFAULT);
12525 
12526 	if (kpm_smallpages == 0)
12527 		error = sfmmu_kpm_fault(vaddr, mseg, pp);
12528 	else
12529 		error = sfmmu_kpm_fault_small(vaddr, mseg, pp);
12530 
12531 	return (error);
12532 }
12533 
12534 extern  krwlock_t memsegslock;
12535 
12536 /*
12537  * memseg_hash[] was cleared, need to clear memseg_phash[] too.
12538  */
12539 void
12540 hat_kpm_mseghash_clear(int nentries)
12541 {
12542 	pgcnt_t i;
12543 
12544 	if (kpm_enable == 0)
12545 		return;
12546 
12547 	for (i = 0; i < nentries; i++)
12548 		memseg_phash[i] = MSEG_NULLPTR_PA;
12549 }
12550 
12551 /*
12552  * Update memseg_phash[inx] when memseg_hash[inx] was changed.
12553  */
12554 void
12555 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp)
12556 {
12557 	if (kpm_enable == 0)
12558 		return;
12559 
12560 	memseg_phash[inx] = (msp) ? va_to_pa(msp) : MSEG_NULLPTR_PA;
12561 }
12562 
12563 /*
12564  * Update kpm memseg members from basic memseg info.
12565  */
12566 void
12567 hat_kpm_addmem_mseg_update(struct memseg *msp, pgcnt_t nkpmpgs,
12568 	offset_t kpm_pages_off)
12569 {
12570 	if (kpm_enable == 0)
12571 		return;
12572 
12573 	msp->kpm_pages = (kpm_page_t *)((caddr_t)msp->pages + kpm_pages_off);
12574 	msp->kpm_nkpmpgs = nkpmpgs;
12575 	msp->kpm_pbase = kpmptop(ptokpmp(msp->pages_base));
12576 	msp->pagespa = va_to_pa(msp->pages);
12577 	msp->epagespa = va_to_pa(msp->epages);
12578 	msp->kpm_pagespa = va_to_pa(msp->kpm_pages);
12579 }
12580 
12581 /*
12582  * Setup nextpa when a memseg is inserted.
12583  * Assumes that the memsegslock is already held.
12584  */
12585 void
12586 hat_kpm_addmem_mseg_insert(struct memseg *msp)
12587 {
12588 	if (kpm_enable == 0)
12589 		return;
12590 
12591 	ASSERT(RW_LOCK_HELD(&memsegslock));
12592 	msp->nextpa = (memsegs) ? va_to_pa(memsegs) : MSEG_NULLPTR_PA;
12593 }
12594 
12595 /*
12596  * Setup memsegspa when a memseg is (head) inserted.
12597  * Called before memsegs is updated to complete a
12598  * memseg insert operation.
12599  * Assumes that the memsegslock is already held.
12600  */
12601 void
12602 hat_kpm_addmem_memsegs_update(struct memseg *msp)
12603 {
12604 	if (kpm_enable == 0)
12605 		return;
12606 
12607 	ASSERT(RW_LOCK_HELD(&memsegslock));
12608 	ASSERT(memsegs);
12609 	memsegspa = va_to_pa(msp);
12610 }
12611 
12612 /*
12613  * Return end of metadata for an already setup memseg.
12614  *
12615  * Note: kpm_pages and kpm_spages are aliases and the underlying
12616  * member of struct memseg is a union, therefore they always have
12617  * the same address within a memseg. They must be differentiated
12618  * when pointer arithmetic is used with them.
12619  */
12620 caddr_t
12621 hat_kpm_mseg_reuse(struct memseg *msp)
12622 {
12623 	caddr_t end;
12624 
12625 	if (kpm_smallpages == 0)
12626 		end = (caddr_t)(msp->kpm_pages + msp->kpm_nkpmpgs);
12627 	else
12628 		end = (caddr_t)(msp->kpm_spages + msp->kpm_nkpmpgs);
12629 
12630 	return (end);
12631 }
12632 
12633 /*
12634  * Update memsegspa (when first memseg in list
12635  * is deleted) or nextpa  when a memseg deleted.
12636  * Assumes that the memsegslock is already held.
12637  */
12638 void
12639 hat_kpm_delmem_mseg_update(struct memseg *msp, struct memseg **mspp)
12640 {
12641 	struct memseg *lmsp;
12642 
12643 	if (kpm_enable == 0)
12644 		return;
12645 
12646 	ASSERT(RW_LOCK_HELD(&memsegslock));
12647 
12648 	if (mspp == &memsegs) {
12649 		memsegspa = (msp->next) ?
12650 				va_to_pa(msp->next) : MSEG_NULLPTR_PA;
12651 	} else {
12652 		lmsp = (struct memseg *)
12653 			((uint64_t)mspp - offsetof(struct memseg, next));
12654 		lmsp->nextpa = (msp->next) ?
12655 				va_to_pa(msp->next) : MSEG_NULLPTR_PA;
12656 	}
12657 }
12658 
12659 /*
12660  * Update kpm members for all memseg's involved in a split operation
12661  * and do the atomic update of the physical memseg chain.
12662  *
12663  * Note: kpm_pages and kpm_spages are aliases and the underlying member
12664  * of struct memseg is a union, therefore they always have the same
12665  * address within a memseg. With that the direct assignments and
12666  * va_to_pa conversions below don't have to be distinguished wrt. to
12667  * kpm_smallpages. They must be differentiated when pointer arithmetic
12668  * is used with them.
12669  *
12670  * Assumes that the memsegslock is already held.
12671  */
12672 void
12673 hat_kpm_split_mseg_update(struct memseg *msp, struct memseg **mspp,
12674 	struct memseg *lo, struct memseg *mid, struct memseg *hi)
12675 {
12676 	pgcnt_t start, end, kbase, kstart, num;
12677 	struct memseg *lmsp;
12678 
12679 	if (kpm_enable == 0)
12680 		return;
12681 
12682 	ASSERT(RW_LOCK_HELD(&memsegslock));
12683 	ASSERT(msp && mid && msp->kpm_pages);
12684 
12685 	kbase = ptokpmp(msp->kpm_pbase);
12686 
12687 	if (lo) {
12688 		num = lo->pages_end - lo->pages_base;
12689 		start = kpmptop(ptokpmp(lo->pages_base));
12690 		/* align end to kpm page size granularity */
12691 		end = kpmptop(ptokpmp(start + num - 1)) + kpmpnpgs;
12692 		lo->kpm_pbase = start;
12693 		lo->kpm_nkpmpgs = ptokpmp(end - start);
12694 		lo->kpm_pages = msp->kpm_pages;
12695 		lo->kpm_pagespa = va_to_pa(lo->kpm_pages);
12696 		lo->pagespa = va_to_pa(lo->pages);
12697 		lo->epagespa = va_to_pa(lo->epages);
12698 		lo->nextpa = va_to_pa(lo->next);
12699 	}
12700 
12701 	/* mid */
12702 	num = mid->pages_end - mid->pages_base;
12703 	kstart = ptokpmp(mid->pages_base);
12704 	start = kpmptop(kstart);
12705 	/* align end to kpm page size granularity */
12706 	end = kpmptop(ptokpmp(start + num - 1)) + kpmpnpgs;
12707 	mid->kpm_pbase = start;
12708 	mid->kpm_nkpmpgs = ptokpmp(end - start);
12709 	if (kpm_smallpages == 0) {
12710 		mid->kpm_pages = msp->kpm_pages + (kstart - kbase);
12711 	} else {
12712 		mid->kpm_spages = msp->kpm_spages + (kstart - kbase);
12713 	}
12714 	mid->kpm_pagespa = va_to_pa(mid->kpm_pages);
12715 	mid->pagespa = va_to_pa(mid->pages);
12716 	mid->epagespa = va_to_pa(mid->epages);
12717 	mid->nextpa = (mid->next) ?  va_to_pa(mid->next) : MSEG_NULLPTR_PA;
12718 
12719 	if (hi) {
12720 		num = hi->pages_end - hi->pages_base;
12721 		kstart = ptokpmp(hi->pages_base);
12722 		start = kpmptop(kstart);
12723 		/* align end to kpm page size granularity */
12724 		end = kpmptop(ptokpmp(start + num - 1)) + kpmpnpgs;
12725 		hi->kpm_pbase = start;
12726 		hi->kpm_nkpmpgs = ptokpmp(end - start);
12727 		if (kpm_smallpages == 0) {
12728 			hi->kpm_pages = msp->kpm_pages + (kstart - kbase);
12729 		} else {
12730 			hi->kpm_spages = msp->kpm_spages + (kstart - kbase);
12731 		}
12732 		hi->kpm_pagespa = va_to_pa(hi->kpm_pages);
12733 		hi->pagespa = va_to_pa(hi->pages);
12734 		hi->epagespa = va_to_pa(hi->epages);
12735 		hi->nextpa = (hi->next) ? va_to_pa(hi->next) : MSEG_NULLPTR_PA;
12736 	}
12737 
12738 	/*
12739 	 * Atomic update of the physical memseg chain
12740 	 */
12741 	if (mspp == &memsegs) {
12742 		memsegspa = (lo) ? va_to_pa(lo) : va_to_pa(mid);
12743 	} else {
12744 		lmsp = (struct memseg *)
12745 			((uint64_t)mspp - offsetof(struct memseg, next));
12746 		lmsp->nextpa = (lo) ? va_to_pa(lo) : va_to_pa(mid);
12747 	}
12748 }
12749 
12750 /*
12751  * Walk the memsegs chain, applying func to each memseg span and vcolor.
12752  */
12753 void
12754 hat_kpm_walk(void (*func)(void *, void *, size_t), void *arg)
12755 {
12756 	pfn_t	pbase, pend;
12757 	int	vcolor;
12758 	void	*base;
12759 	size_t	size;
12760 	struct memseg *msp;
12761 	extern uint_t vac_colors;
12762 
12763 	for (msp = memsegs; msp; msp = msp->next) {
12764 		pbase = msp->pages_base;
12765 		pend = msp->pages_end;
12766 		for (vcolor = 0; vcolor < vac_colors; vcolor++) {
12767 			base = ptob(pbase) + kpm_vbase + kpm_size * vcolor;
12768 			size = ptob(pend - pbase);
12769 			func(arg, base, size);
12770 		}
12771 	}
12772 }
12773 
12774 
12775 /* -- sfmmu_kpm internal section -- */
12776 
12777 /*
12778  * Return the page frame number if a valid segkpm mapping exists
12779  * for vaddr, otherwise return PFN_INVALID. No locks are grabbed.
12780  * Should only be used by other sfmmu routines.
12781  */
12782 pfn_t
12783 sfmmu_kpm_vatopfn(caddr_t vaddr)
12784 {
12785 	uintptr_t	paddr;
12786 	pfn_t		pfn;
12787 	page_t	*pp;
12788 
12789 	ASSERT(kpm_enable && IS_KPM_ADDR(vaddr));
12790 
12791 	SFMMU_KPM_VTOP(vaddr, paddr);
12792 	pfn = (pfn_t)btop(paddr);
12793 	pp = page_numtopp_nolock(pfn);
12794 	if (pp && pp->p_kpmref)
12795 		return (pfn);
12796 	else
12797 		return ((pfn_t)PFN_INVALID);
12798 }
12799 
12800 /*
12801  * Lookup a kpme in the p_kpmelist.
12802  */
12803 static int
12804 sfmmu_kpme_lookup(struct kpme *kpme, page_t *pp)
12805 {
12806 	struct kpme	*p;
12807 
12808 	for (p = pp->p_kpmelist; p; p = p->kpe_next) {
12809 		if (p == kpme)
12810 			return (1);
12811 	}
12812 	return (0);
12813 }
12814 
12815 /*
12816  * Insert a kpme into the p_kpmelist and increment
12817  * the per page kpm reference count.
12818  */
12819 static void
12820 sfmmu_kpme_add(struct kpme *kpme, page_t *pp)
12821 {
12822 	ASSERT(pp->p_kpmref >= 0);
12823 
12824 	/* head insert */
12825 	kpme->kpe_prev = NULL;
12826 	kpme->kpe_next = pp->p_kpmelist;
12827 
12828 	if (pp->p_kpmelist)
12829 		pp->p_kpmelist->kpe_prev = kpme;
12830 
12831 	pp->p_kpmelist = kpme;
12832 	kpme->kpe_page = pp;
12833 	pp->p_kpmref++;
12834 }
12835 
12836 /*
12837  * Remove a kpme from the p_kpmelist and decrement
12838  * the per page kpm reference count.
12839  */
12840 static void
12841 sfmmu_kpme_sub(struct kpme *kpme, page_t *pp)
12842 {
12843 	ASSERT(pp->p_kpmref > 0);
12844 
12845 	if (kpme->kpe_prev) {
12846 		ASSERT(pp->p_kpmelist != kpme);
12847 		ASSERT(kpme->kpe_prev->kpe_page == pp);
12848 		kpme->kpe_prev->kpe_next = kpme->kpe_next;
12849 	} else {
12850 		ASSERT(pp->p_kpmelist == kpme);
12851 		pp->p_kpmelist = kpme->kpe_next;
12852 	}
12853 
12854 	if (kpme->kpe_next) {
12855 		ASSERT(kpme->kpe_next->kpe_page == pp);
12856 		kpme->kpe_next->kpe_prev = kpme->kpe_prev;
12857 	}
12858 
12859 	kpme->kpe_next = kpme->kpe_prev = NULL;
12860 	kpme->kpe_page = NULL;
12861 	pp->p_kpmref--;
12862 }
12863 
12864 /*
12865  * Mapin a single page, it is called every time a page changes it's state
12866  * from kpm-unmapped to kpm-mapped. It may not be called, when only a new
12867  * kpm instance does a mapin and wants to share the mapping.
12868  * Assumes that the mlist mutex is already grabbed.
12869  */
12870 static caddr_t
12871 sfmmu_kpm_mapin(page_t *pp)
12872 {
12873 	kpm_page_t	*kp;
12874 	kpm_hlk_t	*kpmp;
12875 	caddr_t		vaddr;
12876 	int		kpm_vac_range;
12877 	pfn_t		pfn;
12878 	tte_t		tte;
12879 	kmutex_t	*pmtx;
12880 	int		uncached;
12881 	kpm_spage_t	*ksp;
12882 	kpm_shlk_t	*kpmsp;
12883 	int		oldval;
12884 
12885 	ASSERT(sfmmu_mlist_held(pp));
12886 	ASSERT(pp->p_kpmref == 0);
12887 
12888 	vaddr = sfmmu_kpm_getvaddr(pp, &kpm_vac_range);
12889 
12890 	ASSERT(IS_KPM_ADDR(vaddr));
12891 	uncached = PP_ISNC(pp);
12892 	pfn = pp->p_pagenum;
12893 
12894 	if (kpm_smallpages)
12895 		goto smallpages_mapin;
12896 
12897 	PP2KPMPG(pp, kp);
12898 
12899 	kpmp = KPMP_HASH(kp);
12900 	mutex_enter(&kpmp->khl_mutex);
12901 
12902 	ASSERT(PP_ISKPMC(pp) == 0);
12903 	ASSERT(PP_ISKPMS(pp) == 0);
12904 
12905 	if (uncached) {
12906 		/* ASSERT(pp->p_share); XXX use hat_page_getshare */
12907 		if (kpm_vac_range == 0) {
12908 			if (kp->kp_refcnts == 0) {
12909 				/*
12910 				 * Must remove large page mapping if it exists.
12911 				 * Pages in uncached state can only be mapped
12912 				 * small (PAGESIZE) within the regular kpm
12913 				 * range.
12914 				 */
12915 				if (kp->kp_refcntc == -1) {
12916 					/* remove go indication */
12917 					sfmmu_kpm_tsbmtl(&kp->kp_refcntc,
12918 						&kpmp->khl_lock, KPMTSBM_STOP);
12919 				}
12920 				if (kp->kp_refcnt > 0 && kp->kp_refcntc == 0)
12921 					sfmmu_kpm_demap_large(vaddr);
12922 			}
12923 			ASSERT(kp->kp_refcntc >= 0);
12924 			kp->kp_refcntc++;
12925 		}
12926 		pmtx = sfmmu_page_enter(pp);
12927 		PP_SETKPMC(pp);
12928 		sfmmu_page_exit(pmtx);
12929 	}
12930 
12931 	if ((kp->kp_refcntc > 0 || kp->kp_refcnts > 0) && kpm_vac_range == 0) {
12932 		/*
12933 		 * Have to do a small (PAGESIZE) mapin within this kpm_page
12934 		 * range since it is marked to be in VAC conflict mode or
12935 		 * when there are still other small mappings around.
12936 		 */
12937 
12938 		/* tte assembly */
12939 		if (uncached == 0)
12940 			KPM_TTE_VCACHED(tte.ll, pfn, TTE8K);
12941 		else
12942 			KPM_TTE_VUNCACHED(tte.ll, pfn, TTE8K);
12943 
12944 		/* tsb dropin */
12945 		sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT);
12946 
12947 		pmtx = sfmmu_page_enter(pp);
12948 		PP_SETKPMS(pp);
12949 		sfmmu_page_exit(pmtx);
12950 
12951 		kp->kp_refcnts++;
12952 		ASSERT(kp->kp_refcnts > 0);
12953 		goto exit;
12954 	}
12955 
12956 	if (kpm_vac_range == 0) {
12957 		/*
12958 		 * Fast path / regular case, no VAC conflict handling
12959 		 * in progress within this kpm_page range.
12960 		 */
12961 		if (kp->kp_refcnt == 0) {
12962 
12963 			/* tte assembly */
12964 			KPM_TTE_VCACHED(tte.ll, pfn, TTE4M);
12965 
12966 			/* tsb dropin */
12967 			sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT4M);
12968 
12969 			/* Set go flag for TL tsbmiss handler */
12970 			if (kp->kp_refcntc == 0)
12971 				sfmmu_kpm_tsbmtl(&kp->kp_refcntc,
12972 						&kpmp->khl_lock, KPMTSBM_START);
12973 
12974 			ASSERT(kp->kp_refcntc == -1);
12975 		}
12976 		kp->kp_refcnt++;
12977 		ASSERT(kp->kp_refcnt);
12978 
12979 	} else {
12980 		/*
12981 		 * The page is not setup according to the common VAC
12982 		 * prevention rules for the regular and kpm mapping layer
12983 		 * E.g. the page layer was not able to deliver a right
12984 		 * vcolor'ed page for a given vaddr corresponding to
12985 		 * the wanted p_offset. It has to be mapped in small in
12986 		 * within the corresponding kpm vac range in order to
12987 		 * prevent VAC alias conflicts.
12988 		 */
12989 
12990 		/* tte assembly */
12991 		if (uncached == 0) {
12992 			KPM_TTE_VCACHED(tte.ll, pfn, TTE8K);
12993 		} else {
12994 			KPM_TTE_VUNCACHED(tte.ll, pfn, TTE8K);
12995 		}
12996 
12997 		/* tsb dropin */
12998 		sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT);
12999 
13000 		kp->kp_refcnta++;
13001 		if (kp->kp_refcntc == -1) {
13002 			ASSERT(kp->kp_refcnt > 0);
13003 
13004 			/* remove go indication */
13005 			sfmmu_kpm_tsbmtl(&kp->kp_refcntc, &kpmp->khl_lock,
13006 					KPMTSBM_STOP);
13007 		}
13008 		ASSERT(kp->kp_refcntc >= 0);
13009 	}
13010 exit:
13011 	mutex_exit(&kpmp->khl_mutex);
13012 	return (vaddr);
13013 
13014 smallpages_mapin:
13015 	if (uncached == 0) {
13016 		/* tte assembly */
13017 		KPM_TTE_VCACHED(tte.ll, pfn, TTE8K);
13018 	} else {
13019 		/* ASSERT(pp->p_share); XXX use hat_page_getshare */
13020 		pmtx = sfmmu_page_enter(pp);
13021 		PP_SETKPMC(pp);
13022 		sfmmu_page_exit(pmtx);
13023 		/* tte assembly */
13024 		KPM_TTE_VUNCACHED(tte.ll, pfn, TTE8K);
13025 	}
13026 
13027 	/* tsb dropin */
13028 	sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT);
13029 
13030 	PP2KPMSPG(pp, ksp);
13031 	kpmsp = KPMP_SHASH(ksp);
13032 
13033 	oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped, &kpmsp->kshl_lock,
13034 				(uncached) ? KPM_MAPPEDSC : KPM_MAPPEDS);
13035 
13036 	if (oldval != 0)
13037 		panic("sfmmu_kpm_mapin: stale smallpages mapping");
13038 
13039 	return (vaddr);
13040 }
13041 
13042 /*
13043  * Mapout a single page, it is called every time a page changes it's state
13044  * from kpm-mapped to kpm-unmapped. It may not be called, when only a kpm
13045  * instance calls mapout and there are still other instances mapping the
13046  * page. Assumes that the mlist mutex is already grabbed.
13047  *
13048  * Note: In normal mode (no VAC conflict prevention pending) TLB's are
13049  * not flushed. This is the core segkpm behavior to avoid xcalls. It is
13050  * no problem because a translation from a segkpm virtual address to a
13051  * physical address is always the same. The only downside is a slighty
13052  * increased window of vulnerability for misbehaving _kernel_ modules.
13053  */
13054 static void
13055 sfmmu_kpm_mapout(page_t *pp, caddr_t vaddr)
13056 {
13057 	kpm_page_t	*kp;
13058 	kpm_hlk_t	*kpmp;
13059 	int		alias_range;
13060 	kmutex_t	*pmtx;
13061 	kpm_spage_t	*ksp;
13062 	kpm_shlk_t	*kpmsp;
13063 	int		oldval;
13064 
13065 	ASSERT(sfmmu_mlist_held(pp));
13066 	ASSERT(pp->p_kpmref == 0);
13067 
13068 	alias_range = IS_KPM_ALIAS_RANGE(vaddr);
13069 
13070 	if (kpm_smallpages)
13071 		goto smallpages_mapout;
13072 
13073 	PP2KPMPG(pp, kp);
13074 	kpmp = KPMP_HASH(kp);
13075 	mutex_enter(&kpmp->khl_mutex);
13076 
13077 	if (alias_range) {
13078 		ASSERT(PP_ISKPMS(pp) == 0);
13079 		if (kp->kp_refcnta <= 0) {
13080 			panic("sfmmu_kpm_mapout: bad refcnta kp=%p",
13081 				(void *)kp);
13082 		}
13083 
13084 		if (PP_ISTNC(pp))  {
13085 			if (PP_ISKPMC(pp) == 0) {
13086 				/*
13087 				 * Uncached kpm mappings must always have
13088 				 * forced "small page" mode.
13089 				 */
13090 				panic("sfmmu_kpm_mapout: uncached page not "
13091 					"kpm marked");
13092 			}
13093 			sfmmu_kpm_demap_small(vaddr);
13094 
13095 			pmtx = sfmmu_page_enter(pp);
13096 			PP_CLRKPMC(pp);
13097 			sfmmu_page_exit(pmtx);
13098 
13099 			/*
13100 			 * Check if we can resume cached mode. This might
13101 			 * be the case if the kpm mapping was the only
13102 			 * mapping in conflict with other non rule
13103 			 * compliant mappings. The page is no more marked
13104 			 * as kpm mapped, so the conv_tnc path will not
13105 			 * change kpm state.
13106 			 */
13107 			conv_tnc(pp, TTE8K);
13108 
13109 		} else if (PP_ISKPMC(pp) == 0) {
13110 			/* remove TSB entry only */
13111 			sfmmu_kpm_unload_tsb(vaddr, MMU_PAGESHIFT);
13112 
13113 		} else {
13114 			/* already demapped */
13115 			pmtx = sfmmu_page_enter(pp);
13116 			PP_CLRKPMC(pp);
13117 			sfmmu_page_exit(pmtx);
13118 		}
13119 		kp->kp_refcnta--;
13120 		goto exit;
13121 	}
13122 
13123 	if (kp->kp_refcntc <= 0 && kp->kp_refcnts == 0) {
13124 		/*
13125 		 * Fast path / regular case.
13126 		 */
13127 		ASSERT(kp->kp_refcntc >= -1);
13128 		ASSERT(!(pp->p_nrm & (P_KPMC | P_KPMS | P_TNC | P_PNC)));
13129 
13130 		if (kp->kp_refcnt <= 0)
13131 			panic("sfmmu_kpm_mapout: bad refcnt kp=%p", (void *)kp);
13132 
13133 		if (--kp->kp_refcnt == 0) {
13134 			/* remove go indication */
13135 			if (kp->kp_refcntc == -1) {
13136 				sfmmu_kpm_tsbmtl(&kp->kp_refcntc,
13137 					&kpmp->khl_lock, KPMTSBM_STOP);
13138 			}
13139 			ASSERT(kp->kp_refcntc == 0);
13140 
13141 			/* remove TSB entry */
13142 			sfmmu_kpm_unload_tsb(vaddr, MMU_PAGESHIFT4M);
13143 #ifdef	DEBUG
13144 			if (kpm_tlb_flush)
13145 				sfmmu_kpm_demap_tlbs(vaddr, KCONTEXT);
13146 #endif
13147 		}
13148 
13149 	} else {
13150 		/*
13151 		 * The VAC alias path.
13152 		 * We come here if the kpm vaddr is not in any alias_range
13153 		 * and we are unmapping a page within the regular kpm_page
13154 		 * range. The kpm_page either holds conflict pages and/or
13155 		 * is in "small page" mode. If the page is not marked
13156 		 * P_KPMS it couldn't have a valid PAGESIZE sized TSB
13157 		 * entry. Dcache flushing is done lazy and follows the
13158 		 * rules of the regular virtual page coloring scheme.
13159 		 *
13160 		 * Per page states and required actions:
13161 		 *   P_KPMC: remove a kpm mapping that is conflicting.
13162 		 *   P_KPMS: remove a small kpm mapping within a kpm_page.
13163 		 *   P_TNC:  check if we can re-cache the page.
13164 		 *   P_PNC:  we cannot re-cache, sorry.
13165 		 * Per kpm_page:
13166 		 *   kp_refcntc > 0: page is part of a kpm_page with conflicts.
13167 		 *   kp_refcnts > 0: rm a small mapped page within a kpm_page.
13168 		 */
13169 
13170 		if (PP_ISKPMS(pp)) {
13171 			if (kp->kp_refcnts < 1) {
13172 				panic("sfmmu_kpm_mapout: bad refcnts kp=%p",
13173 					(void *)kp);
13174 			}
13175 			sfmmu_kpm_demap_small(vaddr);
13176 
13177 			/*
13178 			 * Check if we can resume cached mode. This might
13179 			 * be the case if the kpm mapping was the only
13180 			 * mapping in conflict with other non rule
13181 			 * compliant mappings. The page is no more marked
13182 			 * as kpm mapped, so the conv_tnc path will not
13183 			 * change kpm state.
13184 			 */
13185 			if (PP_ISTNC(pp))  {
13186 				if (!PP_ISKPMC(pp)) {
13187 					/*
13188 					 * Uncached kpm mappings must always
13189 					 * have forced "small page" mode.
13190 					 */
13191 					panic("sfmmu_kpm_mapout: uncached "
13192 						"page not kpm marked");
13193 				}
13194 				conv_tnc(pp, TTE8K);
13195 			}
13196 			kp->kp_refcnts--;
13197 			kp->kp_refcnt++;
13198 			pmtx = sfmmu_page_enter(pp);
13199 			PP_CLRKPMS(pp);
13200 			sfmmu_page_exit(pmtx);
13201 		}
13202 
13203 		if (PP_ISKPMC(pp)) {
13204 			if (kp->kp_refcntc < 1) {
13205 				panic("sfmmu_kpm_mapout: bad refcntc kp=%p",
13206 					(void *)kp);
13207 			}
13208 			pmtx = sfmmu_page_enter(pp);
13209 			PP_CLRKPMC(pp);
13210 			sfmmu_page_exit(pmtx);
13211 			kp->kp_refcntc--;
13212 		}
13213 
13214 		if (kp->kp_refcnt-- < 1)
13215 			panic("sfmmu_kpm_mapout: bad refcnt kp=%p", (void *)kp);
13216 	}
13217 exit:
13218 	mutex_exit(&kpmp->khl_mutex);
13219 	return;
13220 
13221 smallpages_mapout:
13222 	PP2KPMSPG(pp, ksp);
13223 	kpmsp = KPMP_SHASH(ksp);
13224 
13225 	if (PP_ISKPMC(pp) == 0) {
13226 		oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped,
13227 					&kpmsp->kshl_lock, 0);
13228 
13229 		if (oldval != KPM_MAPPEDS) {
13230 			/*
13231 			 * When we're called after sfmmu_kpm_hme_unload,
13232 			 * KPM_MAPPEDSC is valid too.
13233 			 */
13234 			if (oldval != KPM_MAPPEDSC)
13235 				panic("sfmmu_kpm_mapout: incorrect mapping");
13236 		}
13237 
13238 		/* remove TSB entry */
13239 		sfmmu_kpm_unload_tsb(vaddr, MMU_PAGESHIFT);
13240 #ifdef	DEBUG
13241 		if (kpm_tlb_flush)
13242 			sfmmu_kpm_demap_tlbs(vaddr, KCONTEXT);
13243 #endif
13244 
13245 	} else if (PP_ISTNC(pp)) {
13246 		oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped,
13247 					&kpmsp->kshl_lock, 0);
13248 
13249 		if (oldval != KPM_MAPPEDSC || PP_ISKPMC(pp) == 0)
13250 			panic("sfmmu_kpm_mapout: inconsistent TNC mapping");
13251 
13252 		sfmmu_kpm_demap_small(vaddr);
13253 
13254 		pmtx = sfmmu_page_enter(pp);
13255 		PP_CLRKPMC(pp);
13256 		sfmmu_page_exit(pmtx);
13257 
13258 		/*
13259 		 * Check if we can resume cached mode. This might be
13260 		 * the case if the kpm mapping was the only mapping
13261 		 * in conflict with other non rule compliant mappings.
13262 		 * The page is no more marked as kpm mapped, so the
13263 		 * conv_tnc path will not change the kpm state.
13264 		 */
13265 		conv_tnc(pp, TTE8K);
13266 
13267 	} else {
13268 		oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped,
13269 					&kpmsp->kshl_lock, 0);
13270 
13271 		if (oldval != KPM_MAPPEDSC)
13272 			panic("sfmmu_kpm_mapout: inconsistent mapping");
13273 
13274 		pmtx = sfmmu_page_enter(pp);
13275 		PP_CLRKPMC(pp);
13276 		sfmmu_page_exit(pmtx);
13277 	}
13278 }
13279 
13280 #define	abs(x)  ((x) < 0 ? -(x) : (x))
13281 
13282 /*
13283  * Determine appropriate kpm mapping address and handle any kpm/hme
13284  * conflicts. Page mapping list and its vcolor parts must be protected.
13285  */
13286 static caddr_t
13287 sfmmu_kpm_getvaddr(page_t *pp, int *kpm_vac_rangep)
13288 {
13289 	int		vcolor, vcolor_pa;
13290 	caddr_t		vaddr;
13291 	uintptr_t	paddr;
13292 
13293 
13294 	ASSERT(sfmmu_mlist_held(pp));
13295 
13296 	paddr = ptob(pp->p_pagenum);
13297 	vcolor_pa = addr_to_vcolor(paddr);
13298 
13299 	if (IS_SWAPFSVP(pp->p_vnode)) {
13300 		vcolor = (PP_NEWPAGE(pp) || PP_ISNC(pp)) ?
13301 		    vcolor_pa : PP_GET_VCOLOR(pp);
13302 	} else {
13303 		vcolor = addr_to_vcolor(pp->p_offset);
13304 	}
13305 
13306 	vaddr = kpm_vbase + paddr;
13307 	*kpm_vac_rangep = 0;
13308 
13309 	if (vcolor_pa != vcolor) {
13310 		*kpm_vac_rangep = abs(vcolor - vcolor_pa);
13311 		vaddr += ((uintptr_t)(vcolor - vcolor_pa) << MMU_PAGESHIFT);
13312 		vaddr += (vcolor_pa > vcolor) ?
13313 			((uintptr_t)vcolor_pa << kpm_size_shift) :
13314 			((uintptr_t)(vcolor - vcolor_pa) << kpm_size_shift);
13315 
13316 		ASSERT(!PP_ISMAPPED_LARGE(pp));
13317 	}
13318 
13319 	if (PP_ISNC(pp))
13320 		return (vaddr);
13321 
13322 	if (PP_NEWPAGE(pp)) {
13323 		PP_SET_VCOLOR(pp, vcolor);
13324 		return (vaddr);
13325 	}
13326 
13327 	if (PP_GET_VCOLOR(pp) == vcolor)
13328 		return (vaddr);
13329 
13330 	ASSERT(!PP_ISMAPPED_KPM(pp));
13331 	sfmmu_kpm_vac_conflict(pp, vaddr);
13332 
13333 	return (vaddr);
13334 }
13335 
13336 /*
13337  * VAC conflict state bit values.
13338  * The following defines are used to make the handling of the
13339  * various input states more concise. For that the kpm states
13340  * per kpm_page and per page are combined in a summary state.
13341  * Each single state has a corresponding bit value in the
13342  * summary state. These defines only apply for kpm large page
13343  * mappings. Within comments the abbreviations "kc, c, ks, s"
13344  * are used as short form of the actual state, e.g. "kc" for
13345  * "kp_refcntc > 0", etc.
13346  */
13347 #define	KPM_KC	0x00000008	/* kpm_page: kp_refcntc > 0 */
13348 #define	KPM_C	0x00000004	/* page: P_KPMC set */
13349 #define	KPM_KS	0x00000002	/* kpm_page: kp_refcnts > 0 */
13350 #define	KPM_S	0x00000001	/* page: P_KPMS set */
13351 
13352 /*
13353  * Summary states used in sfmmu_kpm_fault (KPM_TSBM_*).
13354  * See also more detailed comments within in the sfmmu_kpm_fault switch.
13355  * Abbreviations used:
13356  * CONFL: VAC conflict(s) within a kpm_page.
13357  * MAPS:  Mapped small: Page mapped in using a regular page size kpm mapping.
13358  * RASM:  Re-assembling of a large page mapping possible.
13359  * RPLS:  Replace: TSB miss due to TSB replacement only.
13360  * BRKO:  Breakup Other: A large kpm mapping has to be broken because another
13361  *        page within the kpm_page is already involved in a VAC conflict.
13362  * BRKT:  Breakup This: A large kpm mapping has to be broken, this page is
13363  *        is involved in a VAC conflict.
13364  */
13365 #define	KPM_TSBM_CONFL_GONE	(0)
13366 #define	KPM_TSBM_MAPS_RASM	(KPM_KS)
13367 #define	KPM_TSBM_RPLS_RASM	(KPM_KS | KPM_S)
13368 #define	KPM_TSBM_MAPS_BRKO	(KPM_KC)
13369 #define	KPM_TSBM_MAPS		(KPM_KC | KPM_KS)
13370 #define	KPM_TSBM_RPLS		(KPM_KC | KPM_KS | KPM_S)
13371 #define	KPM_TSBM_MAPS_BRKT	(KPM_KC | KPM_C)
13372 #define	KPM_TSBM_MAPS_CONFL	(KPM_KC | KPM_C | KPM_KS)
13373 #define	KPM_TSBM_RPLS_CONFL	(KPM_KC | KPM_C | KPM_KS | KPM_S)
13374 
13375 /*
13376  * kpm fault handler for mappings with large page size.
13377  */
13378 int
13379 sfmmu_kpm_fault(caddr_t vaddr, struct memseg *mseg, page_t *pp)
13380 {
13381 	int		error;
13382 	pgcnt_t		inx;
13383 	kpm_page_t	*kp;
13384 	tte_t		tte;
13385 	pfn_t		pfn = pp->p_pagenum;
13386 	kpm_hlk_t	*kpmp;
13387 	kmutex_t	*pml;
13388 	int		alias_range;
13389 	int		uncached = 0;
13390 	kmutex_t	*pmtx;
13391 	int		badstate;
13392 	uint_t		tsbmcase;
13393 
13394 	alias_range = IS_KPM_ALIAS_RANGE(vaddr);
13395 
13396 	inx = ptokpmp(kpmptop(ptokpmp(pfn)) - mseg->kpm_pbase);
13397 	if (inx >= mseg->kpm_nkpmpgs) {
13398 		cmn_err(CE_PANIC, "sfmmu_kpm_fault: kpm overflow in memseg "
13399 			"0x%p  pp 0x%p", (void *)mseg, (void *)pp);
13400 	}
13401 
13402 	kp = &mseg->kpm_pages[inx];
13403 	kpmp = KPMP_HASH(kp);
13404 
13405 	pml = sfmmu_mlist_enter(pp);
13406 
13407 	if (!PP_ISMAPPED_KPM(pp)) {
13408 		sfmmu_mlist_exit(pml);
13409 		return (EFAULT);
13410 	}
13411 
13412 	mutex_enter(&kpmp->khl_mutex);
13413 
13414 	if (alias_range) {
13415 		ASSERT(!PP_ISMAPPED_LARGE(pp));
13416 		if (kp->kp_refcnta > 0) {
13417 			if (PP_ISKPMC(pp)) {
13418 				pmtx = sfmmu_page_enter(pp);
13419 				PP_CLRKPMC(pp);
13420 				sfmmu_page_exit(pmtx);
13421 			}
13422 			/*
13423 			 * Check for vcolor conflicts. Return here
13424 			 * w/ either no conflict (fast path), removed hme
13425 			 * mapping chains (unload conflict) or uncached
13426 			 * (uncache conflict). VACaches are cleaned and
13427 			 * p_vcolor and PP_TNC are set accordingly for the
13428 			 * conflict cases.  Drop kpmp for uncache conflict
13429 			 * cases since it will be grabbed within
13430 			 * sfmmu_kpm_page_cache in case of an uncache
13431 			 * conflict.
13432 			 */
13433 			mutex_exit(&kpmp->khl_mutex);
13434 			sfmmu_kpm_vac_conflict(pp, vaddr);
13435 			mutex_enter(&kpmp->khl_mutex);
13436 
13437 			if (PP_ISNC(pp)) {
13438 				uncached = 1;
13439 				pmtx = sfmmu_page_enter(pp);
13440 				PP_SETKPMC(pp);
13441 				sfmmu_page_exit(pmtx);
13442 			}
13443 			goto smallexit;
13444 
13445 		} else {
13446 			/*
13447 			 * We got a tsbmiss on a not active kpm_page range.
13448 			 * Let segkpm_fault decide how to panic.
13449 			 */
13450 			error = EFAULT;
13451 		}
13452 		goto exit;
13453 	}
13454 
13455 	badstate = (kp->kp_refcnt < 0 || kp->kp_refcnts < 0);
13456 	if (kp->kp_refcntc == -1) {
13457 		/*
13458 		 * We should come here only if trap level tsb miss
13459 		 * handler is disabled.
13460 		 */
13461 		badstate |= (kp->kp_refcnt == 0 || kp->kp_refcnts > 0 ||
13462 			PP_ISKPMC(pp) || PP_ISKPMS(pp) || PP_ISNC(pp));
13463 
13464 		if (badstate == 0)
13465 			goto largeexit;
13466 	}
13467 
13468 	if (badstate || kp->kp_refcntc < 0)
13469 		goto badstate_exit;
13470 
13471 	/*
13472 	 * Combine the per kpm_page and per page kpm VAC states to
13473 	 * a summary state in order to make the kpm fault handling
13474 	 * more concise.
13475 	 */
13476 	tsbmcase = (((kp->kp_refcntc > 0) ? KPM_KC : 0) |
13477 			((kp->kp_refcnts > 0) ? KPM_KS : 0) |
13478 			(PP_ISKPMC(pp) ? KPM_C : 0) |
13479 			(PP_ISKPMS(pp) ? KPM_S : 0));
13480 
13481 	switch (tsbmcase) {
13482 	case KPM_TSBM_CONFL_GONE:		/* - - - - */
13483 		/*
13484 		 * That's fine, we either have no more vac conflict in
13485 		 * this kpm page or someone raced in and has solved the
13486 		 * vac conflict for us -- call sfmmu_kpm_vac_conflict
13487 		 * to take care for correcting the vcolor and flushing
13488 		 * the dcache if required.
13489 		 */
13490 		mutex_exit(&kpmp->khl_mutex);
13491 		sfmmu_kpm_vac_conflict(pp, vaddr);
13492 		mutex_enter(&kpmp->khl_mutex);
13493 
13494 		if (PP_ISNC(pp) || kp->kp_refcnt <= 0 ||
13495 		    addr_to_vcolor(vaddr) != PP_GET_VCOLOR(pp)) {
13496 			panic("sfmmu_kpm_fault: inconsistent CONFL_GONE "
13497 				"state, pp=%p", (void *)pp);
13498 		}
13499 		goto largeexit;
13500 
13501 	case KPM_TSBM_MAPS_RASM:		/* - - ks - */
13502 		/*
13503 		 * All conflicts in this kpm page are gone but there are
13504 		 * already small mappings around, so we also map this
13505 		 * page small. This could be the trigger case for a
13506 		 * small mapping reaper, if this is really needed.
13507 		 * For now fall thru to the KPM_TSBM_MAPS handling.
13508 		 */
13509 
13510 	case KPM_TSBM_MAPS:			/* kc - ks - */
13511 		/*
13512 		 * Large page mapping is already broken, this page is not
13513 		 * conflicting, so map it small. Call sfmmu_kpm_vac_conflict
13514 		 * to take care for correcting the vcolor and flushing
13515 		 * the dcache if required.
13516 		 */
13517 		mutex_exit(&kpmp->khl_mutex);
13518 		sfmmu_kpm_vac_conflict(pp, vaddr);
13519 		mutex_enter(&kpmp->khl_mutex);
13520 
13521 		if (PP_ISNC(pp) || kp->kp_refcnt <= 0 ||
13522 		    addr_to_vcolor(vaddr) != PP_GET_VCOLOR(pp)) {
13523 			panic("sfmmu_kpm_fault:  inconsistent MAPS state, "
13524 				"pp=%p", (void *)pp);
13525 		}
13526 		kp->kp_refcnt--;
13527 		kp->kp_refcnts++;
13528 		pmtx = sfmmu_page_enter(pp);
13529 		PP_SETKPMS(pp);
13530 		sfmmu_page_exit(pmtx);
13531 		goto smallexit;
13532 
13533 	case KPM_TSBM_RPLS_RASM:		/* - - ks s */
13534 		/*
13535 		 * All conflicts in this kpm page are gone but this page
13536 		 * is mapped small. This could be the trigger case for a
13537 		 * small mapping reaper, if this is really needed.
13538 		 * For now we drop it in small again. Fall thru to the
13539 		 * KPM_TSBM_RPLS handling.
13540 		 */
13541 
13542 	case KPM_TSBM_RPLS:			/* kc - ks s */
13543 		/*
13544 		 * Large page mapping is already broken, this page is not
13545 		 * conflicting but already mapped small, so drop it in
13546 		 * small again.
13547 		 */
13548 		if (PP_ISNC(pp) ||
13549 		    addr_to_vcolor(vaddr) != PP_GET_VCOLOR(pp)) {
13550 			panic("sfmmu_kpm_fault:  inconsistent RPLS state, "
13551 				"pp=%p", (void *)pp);
13552 		}
13553 		goto smallexit;
13554 
13555 	case KPM_TSBM_MAPS_BRKO:		/* kc - - - */
13556 		/*
13557 		 * The kpm page where we live in is marked conflicting
13558 		 * but this page is not conflicting. So we have to map it
13559 		 * in small. Call sfmmu_kpm_vac_conflict to take care for
13560 		 * correcting the vcolor and flushing the dcache if required.
13561 		 */
13562 		mutex_exit(&kpmp->khl_mutex);
13563 		sfmmu_kpm_vac_conflict(pp, vaddr);
13564 		mutex_enter(&kpmp->khl_mutex);
13565 
13566 		if (PP_ISNC(pp) || kp->kp_refcnt <= 0 ||
13567 		    addr_to_vcolor(vaddr) != PP_GET_VCOLOR(pp)) {
13568 			panic("sfmmu_kpm_fault:  inconsistent MAPS_BRKO state, "
13569 				"pp=%p", (void *)pp);
13570 		}
13571 		kp->kp_refcnt--;
13572 		kp->kp_refcnts++;
13573 		pmtx = sfmmu_page_enter(pp);
13574 		PP_SETKPMS(pp);
13575 		sfmmu_page_exit(pmtx);
13576 		goto smallexit;
13577 
13578 	case KPM_TSBM_MAPS_BRKT:		/* kc c - - */
13579 	case KPM_TSBM_MAPS_CONFL:		/* kc c ks - */
13580 		if (!PP_ISMAPPED(pp)) {
13581 			/*
13582 			 * We got a tsbmiss on kpm large page range that is
13583 			 * marked to contain vac conflicting pages introduced
13584 			 * by hme mappings. The hme mappings are all gone and
13585 			 * must have bypassed the kpm alias prevention logic.
13586 			 */
13587 			panic("sfmmu_kpm_fault: stale VAC conflict, pp=%p",
13588 				(void *)pp);
13589 		}
13590 
13591 		/*
13592 		 * Check for vcolor conflicts. Return here w/ either no
13593 		 * conflict (fast path), removed hme mapping chains
13594 		 * (unload conflict) or uncached (uncache conflict).
13595 		 * Dcache is cleaned and p_vcolor and P_TNC are set
13596 		 * accordingly. Drop kpmp for uncache conflict cases
13597 		 * since it will be grabbed within sfmmu_kpm_page_cache
13598 		 * in case of an uncache conflict.
13599 		 */
13600 		mutex_exit(&kpmp->khl_mutex);
13601 		sfmmu_kpm_vac_conflict(pp, vaddr);
13602 		mutex_enter(&kpmp->khl_mutex);
13603 
13604 		if (kp->kp_refcnt <= 0)
13605 			panic("sfmmu_kpm_fault: bad refcnt kp=%p", (void *)kp);
13606 
13607 		if (PP_ISNC(pp)) {
13608 			uncached = 1;
13609 		} else {
13610 			/*
13611 			 * When an unload conflict is solved and there are
13612 			 * no other small mappings around, we can resume
13613 			 * largepage mode. Otherwise we have to map or drop
13614 			 * in small. This could be a trigger for a small
13615 			 * mapping reaper when this was the last conflict
13616 			 * within the kpm page and when there are only
13617 			 * other small mappings around.
13618 			 */
13619 			ASSERT(addr_to_vcolor(vaddr) == PP_GET_VCOLOR(pp));
13620 			ASSERT(kp->kp_refcntc > 0);
13621 			kp->kp_refcntc--;
13622 			pmtx = sfmmu_page_enter(pp);
13623 			PP_CLRKPMC(pp);
13624 			sfmmu_page_exit(pmtx);
13625 			ASSERT(PP_ISKPMS(pp) == 0);
13626 			if (kp->kp_refcntc == 0 && kp->kp_refcnts == 0)
13627 				goto largeexit;
13628 		}
13629 
13630 		kp->kp_refcnt--;
13631 		kp->kp_refcnts++;
13632 		pmtx = sfmmu_page_enter(pp);
13633 		PP_SETKPMS(pp);
13634 		sfmmu_page_exit(pmtx);
13635 		goto smallexit;
13636 
13637 	case KPM_TSBM_RPLS_CONFL:		/* kc c ks s */
13638 		if (!PP_ISMAPPED(pp)) {
13639 			/*
13640 			 * We got a tsbmiss on kpm large page range that is
13641 			 * marked to contain vac conflicting pages introduced
13642 			 * by hme mappings. They are all gone and must have
13643 			 * somehow bypassed the kpm alias prevention logic.
13644 			 */
13645 			panic("sfmmu_kpm_fault: stale VAC conflict, pp=%p",
13646 				(void *)pp);
13647 		}
13648 
13649 		/*
13650 		 * This state is only possible for an uncached mapping.
13651 		 */
13652 		if (!PP_ISNC(pp)) {
13653 			panic("sfmmu_kpm_fault: page not uncached, pp=%p",
13654 				(void *)pp);
13655 		}
13656 		uncached = 1;
13657 		goto smallexit;
13658 
13659 	default:
13660 badstate_exit:
13661 		panic("sfmmu_kpm_fault: inconsistent VAC state, vaddr=%p kp=%p "
13662 			"pp=%p", (void *)vaddr, (void *)kp, (void *)pp);
13663 	}
13664 
13665 smallexit:
13666 	/* tte assembly */
13667 	if (uncached == 0)
13668 		KPM_TTE_VCACHED(tte.ll, pfn, TTE8K);
13669 	else
13670 		KPM_TTE_VUNCACHED(tte.ll, pfn, TTE8K);
13671 
13672 	/* tsb dropin */
13673 	sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT);
13674 
13675 	error = 0;
13676 	goto exit;
13677 
13678 largeexit:
13679 	if (kp->kp_refcnt > 0) {
13680 
13681 		/* tte assembly */
13682 		KPM_TTE_VCACHED(tte.ll, pfn, TTE4M);
13683 
13684 		/* tsb dropin */
13685 		sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT4M);
13686 
13687 		if (kp->kp_refcntc == 0) {
13688 			/* Set "go" flag for TL tsbmiss handler */
13689 			sfmmu_kpm_tsbmtl(&kp->kp_refcntc, &kpmp->khl_lock,
13690 					KPMTSBM_START);
13691 		}
13692 		ASSERT(kp->kp_refcntc == -1);
13693 		error = 0;
13694 
13695 	} else
13696 		error = EFAULT;
13697 exit:
13698 	mutex_exit(&kpmp->khl_mutex);
13699 	sfmmu_mlist_exit(pml);
13700 	return (error);
13701 }
13702 
13703 /*
13704  * kpm fault handler for mappings with small page size.
13705  */
13706 int
13707 sfmmu_kpm_fault_small(caddr_t vaddr, struct memseg *mseg, page_t *pp)
13708 {
13709 	int		error = 0;
13710 	pgcnt_t		inx;
13711 	kpm_spage_t	*ksp;
13712 	kpm_shlk_t	*kpmsp;
13713 	kmutex_t	*pml;
13714 	pfn_t		pfn = pp->p_pagenum;
13715 	tte_t		tte;
13716 	kmutex_t	*pmtx;
13717 	int		oldval;
13718 
13719 	inx = pfn - mseg->kpm_pbase;
13720 	ksp = &mseg->kpm_spages[inx];
13721 	kpmsp = KPMP_SHASH(ksp);
13722 
13723 	pml = sfmmu_mlist_enter(pp);
13724 
13725 	if (!PP_ISMAPPED_KPM(pp)) {
13726 		sfmmu_mlist_exit(pml);
13727 		return (EFAULT);
13728 	}
13729 
13730 	/*
13731 	 * kp_mapped lookup protected by mlist mutex
13732 	 */
13733 	if (ksp->kp_mapped == KPM_MAPPEDS) {
13734 		/*
13735 		 * Fast path tsbmiss
13736 		 */
13737 		ASSERT(!PP_ISKPMC(pp));
13738 		ASSERT(!PP_ISNC(pp));
13739 
13740 		/* tte assembly */
13741 		KPM_TTE_VCACHED(tte.ll, pfn, TTE8K);
13742 
13743 		/* tsb dropin */
13744 		sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT);
13745 
13746 	} else if (ksp->kp_mapped == KPM_MAPPEDSC) {
13747 		/*
13748 		 * Got here due to existing or gone kpm/hme VAC conflict.
13749 		 * Recheck for vcolor conflicts. Return here w/ either
13750 		 * no conflict, removed hme mapping chain (unload
13751 		 * conflict) or uncached (uncache conflict). VACaches
13752 		 * are cleaned and p_vcolor and PP_TNC are set accordingly
13753 		 * for the conflict cases.
13754 		 */
13755 		sfmmu_kpm_vac_conflict(pp, vaddr);
13756 
13757 		if (PP_ISNC(pp)) {
13758 			/* ASSERT(pp->p_share); XXX use hat_page_getshare */
13759 
13760 			/* tte assembly */
13761 			KPM_TTE_VUNCACHED(tte.ll, pfn, TTE8K);
13762 
13763 			/* tsb dropin */
13764 			sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT);
13765 
13766 		} else {
13767 			if (PP_ISKPMC(pp)) {
13768 				pmtx = sfmmu_page_enter(pp);
13769 				PP_CLRKPMC(pp);
13770 				sfmmu_page_exit(pmtx);
13771 			}
13772 
13773 			/* tte assembly */
13774 			KPM_TTE_VCACHED(tte.ll, pfn, TTE8K);
13775 
13776 			/* tsb dropin */
13777 			sfmmu_kpm_load_tsb(vaddr, &tte, MMU_PAGESHIFT);
13778 
13779 			oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped,
13780 					&kpmsp->kshl_lock, KPM_MAPPEDS);
13781 
13782 			if (oldval != KPM_MAPPEDSC)
13783 				panic("sfmmu_kpm_fault_small: "
13784 					"stale smallpages mapping");
13785 		}
13786 
13787 	} else {
13788 		/*
13789 		 * We got a tsbmiss on a not active kpm_page range.
13790 		 * Let decide segkpm_fault how to panic.
13791 		 */
13792 		error = EFAULT;
13793 	}
13794 
13795 	sfmmu_mlist_exit(pml);
13796 	return (error);
13797 }
13798 
13799 /*
13800  * Check/handle potential hme/kpm mapping conflicts
13801  */
13802 static void
13803 sfmmu_kpm_vac_conflict(page_t *pp, caddr_t vaddr)
13804 {
13805 	int		vcolor;
13806 	struct sf_hment	*sfhmep;
13807 	struct hat	*tmphat;
13808 	struct sf_hment	*tmphme = NULL;
13809 	struct hme_blk	*hmeblkp;
13810 	tte_t		tte;
13811 
13812 	ASSERT(sfmmu_mlist_held(pp));
13813 
13814 	if (PP_ISNC(pp))
13815 		return;
13816 
13817 	vcolor = addr_to_vcolor(vaddr);
13818 	if (PP_GET_VCOLOR(pp) == vcolor)
13819 		return;
13820 
13821 	/*
13822 	 * There could be no vcolor conflict between a large cached
13823 	 * hme page and a non alias range kpm page (neither large nor
13824 	 * small mapped). So if a hme conflict already exists between
13825 	 * a constituent page of a large hme mapping and a shared small
13826 	 * conflicting hme mapping, both mappings must be already
13827 	 * uncached at this point.
13828 	 */
13829 	ASSERT(!PP_ISMAPPED_LARGE(pp));
13830 
13831 	if (!PP_ISMAPPED(pp)) {
13832 		/*
13833 		 * Previous hme user of page had a different color
13834 		 * but since there are no current users
13835 		 * we just flush the cache and change the color.
13836 		 */
13837 		SFMMU_STAT(sf_pgcolor_conflict);
13838 		sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
13839 		PP_SET_VCOLOR(pp, vcolor);
13840 		return;
13841 	}
13842 
13843 	/*
13844 	 * If we get here we have a vac conflict with a current hme
13845 	 * mapping. This must have been established by forcing a wrong
13846 	 * colored mapping, e.g. by using mmap(2) with MAP_FIXED.
13847 	 */
13848 
13849 	/*
13850 	 * Check if any mapping is in same as or if it is locked
13851 	 * since in that case we need to uncache.
13852 	 */
13853 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
13854 		tmphme = sfhmep->hme_next;
13855 		hmeblkp = sfmmu_hmetohblk(sfhmep);
13856 		if (hmeblkp->hblk_xhat_bit)
13857 			continue;
13858 		tmphat = hblktosfmmu(hmeblkp);
13859 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
13860 		ASSERT(TTE_IS_VALID(&tte));
13861 		if ((tmphat == ksfmmup) || hmeblkp->hblk_lckcnt) {
13862 			/*
13863 			 * We have an uncache conflict
13864 			 */
13865 			SFMMU_STAT(sf_uncache_conflict);
13866 			sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
13867 			return;
13868 		}
13869 	}
13870 
13871 	/*
13872 	 * We have an unload conflict
13873 	 */
13874 	SFMMU_STAT(sf_unload_conflict);
13875 
13876 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
13877 		tmphme = sfhmep->hme_next;
13878 		hmeblkp = sfmmu_hmetohblk(sfhmep);
13879 		if (hmeblkp->hblk_xhat_bit)
13880 			continue;
13881 		(void) sfmmu_pageunload(pp, sfhmep, TTE8K);
13882 	}
13883 
13884 	/*
13885 	 * Unloads only does tlb flushes so we need to flush the
13886 	 * dcache vcolor here.
13887 	 */
13888 	sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
13889 	PP_SET_VCOLOR(pp, vcolor);
13890 }
13891 
13892 /*
13893  * Remove all kpm mappings using kpme's for pp and check that
13894  * all kpm mappings (w/ and w/o kpme's) are gone.
13895  */
13896 static void
13897 sfmmu_kpm_pageunload(page_t *pp)
13898 {
13899 	caddr_t		vaddr;
13900 	struct kpme	*kpme, *nkpme;
13901 
13902 	ASSERT(pp != NULL);
13903 	ASSERT(pp->p_kpmref);
13904 	ASSERT(sfmmu_mlist_held(pp));
13905 
13906 	vaddr = hat_kpm_page2va(pp, 1);
13907 
13908 	for (kpme = pp->p_kpmelist; kpme; kpme = nkpme) {
13909 		ASSERT(kpme->kpe_page == pp);
13910 
13911 		if (pp->p_kpmref == 0)
13912 			panic("sfmmu_kpm_pageunload: stale p_kpmref pp=%p "
13913 				"kpme=%p", (void *)pp, (void *)kpme);
13914 
13915 		nkpme = kpme->kpe_next;
13916 
13917 		/* Add instance callback here here if needed later */
13918 		sfmmu_kpme_sub(kpme, pp);
13919 	}
13920 
13921 	/*
13922 	 * Also correct after mixed kpme/nonkpme mappings. If nonkpme
13923 	 * segkpm clients have unlocked the page and forgot to mapout
13924 	 * we panic here.
13925 	 */
13926 	if (pp->p_kpmref != 0)
13927 		panic("sfmmu_kpm_pageunload: bad refcnt pp=%p", (void *)pp);
13928 
13929 	sfmmu_kpm_mapout(pp, vaddr);
13930 }
13931 
13932 /*
13933  * Remove a large kpm mapping from kernel TSB and all TLB's.
13934  */
13935 static void
13936 sfmmu_kpm_demap_large(caddr_t vaddr)
13937 {
13938 	sfmmu_kpm_unload_tsb(vaddr, MMU_PAGESHIFT4M);
13939 	sfmmu_kpm_demap_tlbs(vaddr, KCONTEXT);
13940 }
13941 
13942 /*
13943  * Remove a small kpm mapping from kernel TSB and all TLB's.
13944  */
13945 static void
13946 sfmmu_kpm_demap_small(caddr_t vaddr)
13947 {
13948 	sfmmu_kpm_unload_tsb(vaddr, MMU_PAGESHIFT);
13949 	sfmmu_kpm_demap_tlbs(vaddr, KCONTEXT);
13950 }
13951 
13952 /*
13953  * Demap a kpm mapping in all TLB's.
13954  */
13955 static void
13956 sfmmu_kpm_demap_tlbs(caddr_t vaddr, int ctxnum)
13957 {
13958 	cpuset_t cpuset;
13959 
13960 	kpreempt_disable();
13961 	cpuset = ksfmmup->sfmmu_cpusran;
13962 	CPUSET_AND(cpuset, cpu_ready_set);
13963 	CPUSET_DEL(cpuset, CPU->cpu_id);
13964 	SFMMU_XCALL_STATS(ctxnum);
13965 	xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)vaddr, ctxnum);
13966 	vtag_flushpage(vaddr, ctxnum);
13967 	kpreempt_enable();
13968 }
13969 
13970 /*
13971  * Summary states used in sfmmu_kpm_vac_unload (KPM_VUL__*).
13972  * See also more detailed comments within in the sfmmu_kpm_vac_unload switch.
13973  * Abbreviations used:
13974  * BIG:   Large page kpm mapping in use.
13975  * CONFL: VAC conflict(s) within a kpm_page.
13976  * INCR:  Count of conflicts within a kpm_page is going to be incremented.
13977  * DECR:  Count of conflicts within a kpm_page is going to be decremented.
13978  * UNMAP_SMALL: A small (regular page size) mapping is going to be unmapped.
13979  * TNC:   Temporary non cached: a kpm mapped page is mapped in TNC state.
13980  */
13981 #define	KPM_VUL_BIG		(0)
13982 #define	KPM_VUL_CONFL_INCR1	(KPM_KS)
13983 #define	KPM_VUL_UNMAP_SMALL1	(KPM_KS | KPM_S)
13984 #define	KPM_VUL_CONFL_INCR2	(KPM_KC)
13985 #define	KPM_VUL_CONFL_INCR3	(KPM_KC | KPM_KS)
13986 #define	KPM_VUL_UNMAP_SMALL2	(KPM_KC | KPM_KS | KPM_S)
13987 #define	KPM_VUL_CONFL_DECR1	(KPM_KC | KPM_C)
13988 #define	KPM_VUL_CONFL_DECR2	(KPM_KC | KPM_C | KPM_KS)
13989 #define	KPM_VUL_TNC		(KPM_KC | KPM_C | KPM_KS | KPM_S)
13990 
13991 /*
13992  * Handle VAC unload conflicts introduced by hme mappings or vice
13993  * versa when a hme conflict mapping is replaced by a non conflict
13994  * one. Perform actions and state transitions according to the
13995  * various page and kpm_page entry states. VACache flushes are in
13996  * the responsibiliy of the caller. We still hold the mlist lock.
13997  */
13998 static void
13999 sfmmu_kpm_vac_unload(page_t *pp, caddr_t vaddr)
14000 {
14001 	kpm_page_t	*kp;
14002 	kpm_hlk_t	*kpmp;
14003 	caddr_t		kpmvaddr = hat_kpm_page2va(pp, 1);
14004 	int		newcolor;
14005 	kmutex_t	*pmtx;
14006 	uint_t		vacunlcase;
14007 	int		badstate = 0;
14008 	kpm_spage_t	*ksp;
14009 	kpm_shlk_t	*kpmsp;
14010 
14011 	ASSERT(PAGE_LOCKED(pp));
14012 	ASSERT(sfmmu_mlist_held(pp));
14013 	ASSERT(!PP_ISNC(pp));
14014 
14015 	newcolor = addr_to_vcolor(kpmvaddr) != addr_to_vcolor(vaddr);
14016 	if (kpm_smallpages)
14017 		goto smallpages_vac_unload;
14018 
14019 	PP2KPMPG(pp, kp);
14020 	kpmp = KPMP_HASH(kp);
14021 	mutex_enter(&kpmp->khl_mutex);
14022 
14023 	if (IS_KPM_ALIAS_RANGE(kpmvaddr)) {
14024 		if (kp->kp_refcnta < 1) {
14025 			panic("sfmmu_kpm_vac_unload: bad refcnta kpm_page=%p\n",
14026 				(void *)kp);
14027 		}
14028 
14029 		if (PP_ISKPMC(pp) == 0) {
14030 			if (newcolor == 0)
14031 				goto exit;
14032 			sfmmu_kpm_demap_small(kpmvaddr);
14033 			pmtx = sfmmu_page_enter(pp);
14034 			PP_SETKPMC(pp);
14035 			sfmmu_page_exit(pmtx);
14036 
14037 		} else if (newcolor == 0) {
14038 			pmtx = sfmmu_page_enter(pp);
14039 			PP_CLRKPMC(pp);
14040 			sfmmu_page_exit(pmtx);
14041 
14042 		} else {
14043 			badstate++;
14044 		}
14045 
14046 		goto exit;
14047 	}
14048 
14049 	badstate = (kp->kp_refcnt < 0 || kp->kp_refcnts < 0);
14050 	if (kp->kp_refcntc == -1) {
14051 		/*
14052 		 * We should come here only if trap level tsb miss
14053 		 * handler is disabled.
14054 		 */
14055 		badstate |= (kp->kp_refcnt == 0 || kp->kp_refcnts > 0 ||
14056 			PP_ISKPMC(pp) || PP_ISKPMS(pp) || PP_ISNC(pp));
14057 	} else {
14058 		badstate |= (kp->kp_refcntc < 0);
14059 	}
14060 
14061 	if (badstate)
14062 		goto exit;
14063 
14064 	if (PP_ISKPMC(pp) == 0 && newcolor == 0) {
14065 		ASSERT(PP_ISKPMS(pp) == 0);
14066 		goto exit;
14067 	}
14068 
14069 	/*
14070 	 * Combine the per kpm_page and per page kpm VAC states
14071 	 * to a summary state in order to make the vac unload
14072 	 * handling more concise.
14073 	 */
14074 	vacunlcase = (((kp->kp_refcntc > 0) ? KPM_KC : 0) |
14075 			((kp->kp_refcnts > 0) ? KPM_KS : 0) |
14076 			(PP_ISKPMC(pp) ? KPM_C : 0) |
14077 			(PP_ISKPMS(pp) ? KPM_S : 0));
14078 
14079 	switch (vacunlcase) {
14080 	case KPM_VUL_BIG:				/* - - - - */
14081 		/*
14082 		 * Have to breakup the large page mapping to be
14083 		 * able to handle the conflicting hme vaddr.
14084 		 */
14085 		if (kp->kp_refcntc == -1) {
14086 			/* remove go indication */
14087 			sfmmu_kpm_tsbmtl(&kp->kp_refcntc,
14088 					&kpmp->khl_lock, KPMTSBM_STOP);
14089 		}
14090 		sfmmu_kpm_demap_large(kpmvaddr);
14091 
14092 		ASSERT(kp->kp_refcntc == 0);
14093 		kp->kp_refcntc++;
14094 		pmtx = sfmmu_page_enter(pp);
14095 		PP_SETKPMC(pp);
14096 		sfmmu_page_exit(pmtx);
14097 		break;
14098 
14099 	case KPM_VUL_UNMAP_SMALL1:			/* -  - ks s */
14100 	case KPM_VUL_UNMAP_SMALL2:			/* kc - ks s */
14101 		/*
14102 		 * New conflict w/ an active kpm page, actually mapped
14103 		 * in by small TSB/TLB entries. Remove the mapping and
14104 		 * update states.
14105 		 */
14106 		ASSERT(newcolor);
14107 		sfmmu_kpm_demap_small(kpmvaddr);
14108 		kp->kp_refcnts--;
14109 		kp->kp_refcnt++;
14110 		kp->kp_refcntc++;
14111 		pmtx = sfmmu_page_enter(pp);
14112 		PP_CLRKPMS(pp);
14113 		PP_SETKPMC(pp);
14114 		sfmmu_page_exit(pmtx);
14115 		break;
14116 
14117 	case KPM_VUL_CONFL_INCR1:			/* -  - ks - */
14118 	case KPM_VUL_CONFL_INCR2:			/* kc - -  - */
14119 	case KPM_VUL_CONFL_INCR3:			/* kc - ks - */
14120 		/*
14121 		 * New conflict on a active kpm mapped page not yet in
14122 		 * TSB/TLB. Mark page and increment the kpm_page conflict
14123 		 * count.
14124 		 */
14125 		ASSERT(newcolor);
14126 		kp->kp_refcntc++;
14127 		pmtx = sfmmu_page_enter(pp);
14128 		PP_SETKPMC(pp);
14129 		sfmmu_page_exit(pmtx);
14130 		break;
14131 
14132 	case KPM_VUL_CONFL_DECR1:			/* kc c -  - */
14133 	case KPM_VUL_CONFL_DECR2:			/* kc c ks - */
14134 		/*
14135 		 * A conflicting hme mapping is removed for an active
14136 		 * kpm page not yet in TSB/TLB. Unmark page and decrement
14137 		 * the kpm_page conflict count.
14138 		 */
14139 		ASSERT(newcolor == 0);
14140 		kp->kp_refcntc--;
14141 		pmtx = sfmmu_page_enter(pp);
14142 		PP_CLRKPMC(pp);
14143 		sfmmu_page_exit(pmtx);
14144 		break;
14145 
14146 	case KPM_VUL_TNC:				/* kc c ks s */
14147 		cmn_err(CE_NOTE, "sfmmu_kpm_vac_unload: "
14148 			"page not in NC state");
14149 		/* FALLTHRU */
14150 
14151 	default:
14152 		badstate++;
14153 	}
14154 exit:
14155 	if (badstate) {
14156 		panic("sfmmu_kpm_vac_unload: inconsistent VAC state, "
14157 			"kpmvaddr=%p kp=%p pp=%p",
14158 			(void *)kpmvaddr, (void *)kp, (void *)pp);
14159 	}
14160 	mutex_exit(&kpmp->khl_mutex);
14161 
14162 	return;
14163 
14164 smallpages_vac_unload:
14165 	if (newcolor == 0)
14166 		return;
14167 
14168 	PP2KPMSPG(pp, ksp);
14169 	kpmsp = KPMP_SHASH(ksp);
14170 
14171 	if (PP_ISKPMC(pp) == 0) {
14172 		if (ksp->kp_mapped == KPM_MAPPEDS) {
14173 			/*
14174 			 * Stop TL tsbmiss handling
14175 			 */
14176 			(void) sfmmu_kpm_stsbmtl(&ksp->kp_mapped,
14177 					&kpmsp->kshl_lock, KPM_MAPPEDSC);
14178 
14179 			sfmmu_kpm_demap_small(kpmvaddr);
14180 
14181 		} else if (ksp->kp_mapped != KPM_MAPPEDSC) {
14182 			panic("sfmmu_kpm_vac_unload: inconsistent mapping");
14183 		}
14184 
14185 		pmtx = sfmmu_page_enter(pp);
14186 		PP_SETKPMC(pp);
14187 		sfmmu_page_exit(pmtx);
14188 
14189 	} else {
14190 		if (ksp->kp_mapped != KPM_MAPPEDSC)
14191 			panic("sfmmu_kpm_vac_unload: inconsistent mapping");
14192 	}
14193 }
14194 
14195 /*
14196  * Page is marked to be in VAC conflict to an existing kpm mapping
14197  * or is kpm mapped using only the regular pagesize. Called from
14198  * sfmmu_hblk_unload when a mlist is completely removed.
14199  */
14200 static void
14201 sfmmu_kpm_hme_unload(page_t *pp)
14202 {
14203 	/* tte assembly */
14204 	kpm_page_t	*kp;
14205 	kpm_hlk_t	*kpmp;
14206 	caddr_t		vaddr;
14207 	kmutex_t	*pmtx;
14208 	uint_t		flags;
14209 	kpm_spage_t	*ksp;
14210 
14211 	ASSERT(sfmmu_mlist_held(pp));
14212 	ASSERT(PP_ISMAPPED_KPM(pp));
14213 
14214 	flags = pp->p_nrm & (P_KPMC | P_KPMS);
14215 	if (kpm_smallpages)
14216 		goto smallpages_hme_unload;
14217 
14218 	if (flags == (P_KPMC | P_KPMS)) {
14219 		panic("sfmmu_kpm_hme_unload: page should be uncached");
14220 
14221 	} else if (flags == P_KPMS) {
14222 		/*
14223 		 * Page mapped small but not involved in VAC conflict
14224 		 */
14225 		return;
14226 	}
14227 
14228 	vaddr = hat_kpm_page2va(pp, 1);
14229 
14230 	PP2KPMPG(pp, kp);
14231 	kpmp = KPMP_HASH(kp);
14232 	mutex_enter(&kpmp->khl_mutex);
14233 
14234 	if (IS_KPM_ALIAS_RANGE(vaddr)) {
14235 		if (kp->kp_refcnta < 1) {
14236 			panic("sfmmu_kpm_hme_unload: bad refcnta kpm_page=%p\n",
14237 				(void *)kp);
14238 		}
14239 
14240 	} else {
14241 		if (kp->kp_refcntc < 1) {
14242 			panic("sfmmu_kpm_hme_unload: bad refcntc kpm_page=%p\n",
14243 				(void *)kp);
14244 		}
14245 		kp->kp_refcntc--;
14246 	}
14247 
14248 	pmtx = sfmmu_page_enter(pp);
14249 	PP_CLRKPMC(pp);
14250 	sfmmu_page_exit(pmtx);
14251 
14252 	mutex_exit(&kpmp->khl_mutex);
14253 	return;
14254 
14255 smallpages_hme_unload:
14256 	if (flags != P_KPMC)
14257 		panic("sfmmu_kpm_hme_unload: page should be uncached");
14258 
14259 	vaddr = hat_kpm_page2va(pp, 1);
14260 	PP2KPMSPG(pp, ksp);
14261 
14262 	if (ksp->kp_mapped != KPM_MAPPEDSC)
14263 		panic("sfmmu_kpm_hme_unload: inconsistent mapping");
14264 
14265 	/*
14266 	 * Keep KPM_MAPPEDSC until the next kpm tsbmiss where it
14267 	 * prevents TL tsbmiss handling and force a hat_kpm_fault.
14268 	 * There we can start over again.
14269 	 */
14270 
14271 	pmtx = sfmmu_page_enter(pp);
14272 	PP_CLRKPMC(pp);
14273 	sfmmu_page_exit(pmtx);
14274 }
14275 
14276 /*
14277  * Special hooks for sfmmu_page_cache_array() when changing the
14278  * cacheability of a page. It is used to obey the hat_kpm lock
14279  * ordering (mlist -> kpmp -> spl, and back).
14280  */
14281 static kpm_hlk_t *
14282 sfmmu_kpm_kpmp_enter(page_t *pp, pgcnt_t npages)
14283 {
14284 	kpm_page_t	*kp;
14285 	kpm_hlk_t	*kpmp;
14286 
14287 	ASSERT(sfmmu_mlist_held(pp));
14288 
14289 	if (kpm_smallpages || PP_ISMAPPED_KPM(pp) == 0)
14290 		return (NULL);
14291 
14292 	ASSERT(npages <= kpmpnpgs);
14293 
14294 	PP2KPMPG(pp, kp);
14295 	kpmp = KPMP_HASH(kp);
14296 	mutex_enter(&kpmp->khl_mutex);
14297 
14298 	return (kpmp);
14299 }
14300 
14301 static void
14302 sfmmu_kpm_kpmp_exit(kpm_hlk_t *kpmp)
14303 {
14304 	if (kpm_smallpages || kpmp == NULL)
14305 		return;
14306 
14307 	mutex_exit(&kpmp->khl_mutex);
14308 }
14309 
14310 /*
14311  * Summary states used in sfmmu_kpm_page_cache (KPM_*).
14312  * See also more detailed comments within in the sfmmu_kpm_page_cache switch.
14313  * Abbreviations used:
14314  * UNC:     Input state for an uncache request.
14315  *   BIG:     Large page kpm mapping in use.
14316  *   SMALL:   Page has a small kpm mapping within a kpm_page range.
14317  *   NODEMAP: No demap needed.
14318  *   NOP:     No operation needed on this input state.
14319  * CACHE:   Input state for a re-cache request.
14320  *   MAPS:    Page is in TNC and kpm VAC conflict state and kpm mapped small.
14321  *   NOMAP:   Page is in TNC and kpm VAC conflict state, but not small kpm
14322  *            mapped.
14323  *   NOMAPO:  Page is in TNC and kpm VAC conflict state, but not small kpm
14324  *            mapped. There are also other small kpm mappings within this
14325  *            kpm_page.
14326  */
14327 #define	KPM_UNC_BIG		(0)
14328 #define	KPM_UNC_NODEMAP1	(KPM_KS)
14329 #define	KPM_UNC_SMALL1		(KPM_KS | KPM_S)
14330 #define	KPM_UNC_NODEMAP2	(KPM_KC)
14331 #define	KPM_UNC_NODEMAP3	(KPM_KC | KPM_KS)
14332 #define	KPM_UNC_SMALL2		(KPM_KC | KPM_KS | KPM_S)
14333 #define	KPM_UNC_NOP1		(KPM_KC | KPM_C)
14334 #define	KPM_UNC_NOP2		(KPM_KC | KPM_C | KPM_KS)
14335 #define	KPM_CACHE_NOMAP		(KPM_KC | KPM_C)
14336 #define	KPM_CACHE_NOMAPO	(KPM_KC | KPM_C | KPM_KS)
14337 #define	KPM_CACHE_MAPS		(KPM_KC | KPM_C | KPM_KS | KPM_S)
14338 
14339 /*
14340  * This function is called when the virtual cacheability of a page
14341  * is changed and the page has an actice kpm mapping. The mlist mutex,
14342  * the spl hash lock and the kpmp mutex (if needed) are already grabbed.
14343  */
14344 static void
14345 sfmmu_kpm_page_cache(page_t *pp, int flags, int cache_flush_tag)
14346 {
14347 	kpm_page_t	*kp;
14348 	kpm_hlk_t	*kpmp;
14349 	caddr_t		kpmvaddr;
14350 	int		badstate = 0;
14351 	uint_t		pgcacase;
14352 	kpm_spage_t	*ksp;
14353 	kpm_shlk_t	*kpmsp;
14354 	int		oldval;
14355 
14356 	ASSERT(PP_ISMAPPED_KPM(pp));
14357 	ASSERT(sfmmu_mlist_held(pp));
14358 	ASSERT(sfmmu_page_spl_held(pp));
14359 
14360 	if (flags != HAT_TMPNC && flags != HAT_CACHE)
14361 		panic("sfmmu_kpm_page_cache: bad flags");
14362 
14363 	kpmvaddr = hat_kpm_page2va(pp, 1);
14364 
14365 	if (flags == HAT_TMPNC && cache_flush_tag == CACHE_FLUSH) {
14366 		pfn_t pfn = pp->p_pagenum;
14367 		int vcolor = addr_to_vcolor(kpmvaddr);
14368 		cpuset_t cpuset = cpu_ready_set;
14369 
14370 		/* Flush vcolor in DCache */
14371 		CPUSET_DEL(cpuset, CPU->cpu_id);
14372 		SFMMU_XCALL_STATS(ksfmmup->sfmmu_cnum);
14373 		xt_some(cpuset, vac_flushpage_tl1, pfn, vcolor);
14374 		vac_flushpage(pfn, vcolor);
14375 	}
14376 
14377 	if (kpm_smallpages)
14378 		goto smallpages_page_cache;
14379 
14380 	PP2KPMPG(pp, kp);
14381 	kpmp = KPMP_HASH(kp);
14382 	ASSERT(MUTEX_HELD(&kpmp->khl_mutex));
14383 
14384 	if (IS_KPM_ALIAS_RANGE(kpmvaddr)) {
14385 		if (kp->kp_refcnta < 1) {
14386 			panic("sfmmu_kpm_page_cache: bad refcnta "
14387 				"kpm_page=%p\n", (void *)kp);
14388 		}
14389 		sfmmu_kpm_demap_small(kpmvaddr);
14390 		if (flags == HAT_TMPNC) {
14391 			PP_SETKPMC(pp);
14392 			ASSERT(!PP_ISKPMS(pp));
14393 		} else {
14394 			ASSERT(PP_ISKPMC(pp));
14395 			PP_CLRKPMC(pp);
14396 		}
14397 		goto exit;
14398 	}
14399 
14400 	badstate = (kp->kp_refcnt < 0 || kp->kp_refcnts < 0);
14401 	if (kp->kp_refcntc == -1) {
14402 		/*
14403 		 * We should come here only if trap level tsb miss
14404 		 * handler is disabled.
14405 		 */
14406 		badstate |= (kp->kp_refcnt == 0 || kp->kp_refcnts > 0 ||
14407 			PP_ISKPMC(pp) || PP_ISKPMS(pp) || PP_ISNC(pp));
14408 	} else {
14409 		badstate |= (kp->kp_refcntc < 0);
14410 	}
14411 
14412 	if (badstate)
14413 		goto exit;
14414 
14415 	/*
14416 	 * Combine the per kpm_page and per page kpm VAC states to
14417 	 * a summary state in order to make the VAC cache/uncache
14418 	 * handling more concise.
14419 	 */
14420 	pgcacase = (((kp->kp_refcntc > 0) ? KPM_KC : 0) |
14421 			((kp->kp_refcnts > 0) ? KPM_KS : 0) |
14422 			(PP_ISKPMC(pp) ? KPM_C : 0) |
14423 			(PP_ISKPMS(pp) ? KPM_S : 0));
14424 
14425 	if (flags == HAT_CACHE) {
14426 		switch (pgcacase) {
14427 		case KPM_CACHE_MAPS:			/* kc c ks s */
14428 			sfmmu_kpm_demap_small(kpmvaddr);
14429 			if (kp->kp_refcnts < 1) {
14430 				panic("sfmmu_kpm_page_cache: bad refcnts "
14431 				"kpm_page=%p\n", (void *)kp);
14432 			}
14433 			kp->kp_refcnts--;
14434 			kp->kp_refcnt++;
14435 			PP_CLRKPMS(pp);
14436 			/* FALLTHRU */
14437 
14438 		case KPM_CACHE_NOMAP:			/* kc c -  - */
14439 		case KPM_CACHE_NOMAPO:			/* kc c ks - */
14440 			kp->kp_refcntc--;
14441 			PP_CLRKPMC(pp);
14442 			break;
14443 
14444 		default:
14445 			badstate++;
14446 		}
14447 		goto exit;
14448 	}
14449 
14450 	switch (pgcacase) {
14451 	case KPM_UNC_BIG:				/* - - - - */
14452 		if (kp->kp_refcnt < 1) {
14453 			panic("sfmmu_kpm_page_cache: bad refcnt "
14454 				"kpm_page=%p\n", (void *)kp);
14455 		}
14456 
14457 		/*
14458 		 * Have to breakup the large page mapping in preparation
14459 		 * to the upcoming TNC mode handled by small mappings.
14460 		 * The demap can already be done due to another conflict
14461 		 * within the kpm_page.
14462 		 */
14463 		if (kp->kp_refcntc == -1) {
14464 			/* remove go indication */
14465 			sfmmu_kpm_tsbmtl(&kp->kp_refcntc,
14466 				&kpmp->khl_lock, KPMTSBM_STOP);
14467 		}
14468 		ASSERT(kp->kp_refcntc == 0);
14469 		sfmmu_kpm_demap_large(kpmvaddr);
14470 		kp->kp_refcntc++;
14471 		PP_SETKPMC(pp);
14472 		break;
14473 
14474 	case KPM_UNC_SMALL1:				/* -  - ks s */
14475 	case KPM_UNC_SMALL2:				/* kc - ks s */
14476 		/*
14477 		 * Have to demap an already small kpm mapping in preparation
14478 		 * to the upcoming TNC mode. The demap can already be done
14479 		 * due to another conflict within the kpm_page.
14480 		 */
14481 		sfmmu_kpm_demap_small(kpmvaddr);
14482 		kp->kp_refcntc++;
14483 		kp->kp_refcnts--;
14484 		kp->kp_refcnt++;
14485 		PP_CLRKPMS(pp);
14486 		PP_SETKPMC(pp);
14487 		break;
14488 
14489 	case KPM_UNC_NODEMAP1:				/* -  - ks - */
14490 		/* fallthru */
14491 
14492 	case KPM_UNC_NODEMAP2:				/* kc - -  - */
14493 	case KPM_UNC_NODEMAP3:				/* kc - ks - */
14494 		kp->kp_refcntc++;
14495 		PP_SETKPMC(pp);
14496 		break;
14497 
14498 	case KPM_UNC_NOP1:				/* kc c -  - */
14499 	case KPM_UNC_NOP2:				/* kc c ks - */
14500 		break;
14501 
14502 	default:
14503 		badstate++;
14504 	}
14505 exit:
14506 	if (badstate) {
14507 		panic("sfmmu_kpm_page_cache: inconsistent VAC state "
14508 			"kpmvaddr=%p kp=%p pp=%p", (void *)kpmvaddr,
14509 			(void *)kp, (void *)pp);
14510 	}
14511 	return;
14512 
14513 smallpages_page_cache:
14514 	PP2KPMSPG(pp, ksp);
14515 	kpmsp = KPMP_SHASH(ksp);
14516 
14517 	oldval = sfmmu_kpm_stsbmtl(&ksp->kp_mapped,
14518 				&kpmsp->kshl_lock, KPM_MAPPEDSC);
14519 
14520 	if (!(oldval == KPM_MAPPEDS || oldval == KPM_MAPPEDSC))
14521 		panic("smallpages_page_cache: inconsistent mapping");
14522 
14523 	sfmmu_kpm_demap_small(kpmvaddr);
14524 
14525 	if (flags == HAT_TMPNC) {
14526 		PP_SETKPMC(pp);
14527 		ASSERT(!PP_ISKPMS(pp));
14528 
14529 	} else {
14530 		ASSERT(PP_ISKPMC(pp));
14531 		PP_CLRKPMC(pp);
14532 	}
14533 
14534 	/*
14535 	 * Keep KPM_MAPPEDSC until the next kpm tsbmiss where it
14536 	 * prevents TL tsbmiss handling and force a hat_kpm_fault.
14537 	 * There we can start over again.
14538 	 */
14539 }
14540 
14541 /*
14542  * unused in sfmmu
14543  */
14544 void
14545 hat_dump(void)
14546 {
14547 }
14548 
14549 /*
14550  * Called when a thread is exiting and we have switched to the kernel address
14551  * space.  Perform the same VM initialization resume() uses when switching
14552  * processes.
14553  *
14554  * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
14555  * we call it anyway in case the semantics change in the future.
14556  */
14557 /*ARGSUSED*/
14558 void
14559 hat_thread_exit(kthread_t *thd)
14560 {
14561 	ASSERT(thd->t_procp->p_as == &kas);
14562 
14563 	sfmmu_setctx_sec(KCONTEXT);
14564 	sfmmu_load_mmustate(ksfmmup);
14565 }
14566