xref: /titanic_50/usr/src/uts/intel/io/dktp/disk/cmdk.c (revision fc51f9bbbff02dbd8c3adf640b1a184ceeb58fa5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/scsi/scsi.h>
28 #include <sys/dktp/cm.h>
29 #include <sys/dktp/quetypes.h>
30 #include <sys/dktp/queue.h>
31 #include <sys/dktp/fctypes.h>
32 #include <sys/dktp/flowctrl.h>
33 #include <sys/dktp/cmdev.h>
34 #include <sys/dkio.h>
35 #include <sys/dktp/tgdk.h>
36 #include <sys/dktp/dadk.h>
37 #include <sys/dktp/bbh.h>
38 #include <sys/dktp/altsctr.h>
39 #include <sys/dktp/cmdk.h>
40 
41 #include <sys/stat.h>
42 #include <sys/vtoc.h>
43 #include <sys/file.h>
44 #include <sys/dktp/dadkio.h>
45 #include <sys/aio_req.h>
46 
47 #include <sys/cmlb.h>
48 
49 /*
50  * Local Static Data
51  */
52 #ifdef CMDK_DEBUG
53 #define	DENT	0x0001
54 #define	DIO	0x0002
55 
56 static	int	cmdk_debug = DIO;
57 #endif
58 
59 #ifndef	TRUE
60 #define	TRUE	1
61 #endif
62 
63 #ifndef	FALSE
64 #define	FALSE	0
65 #endif
66 
67 /*
68  * NDKMAP is the base number for accessing the fdisk partitions.
69  * c?d?p0 --> cmdk@?,?:q
70  */
71 #define	PARTITION0_INDEX	(NDKMAP + 0)
72 
73 #define	DKTP_DATA		(dkp->dk_tgobjp)->tg_data
74 #define	DKTP_EXT		(dkp->dk_tgobjp)->tg_ext
75 
76 void *cmdk_state;
77 
78 /*
79  * the cmdk_attach_mutex protects cmdk_max_instance in multi-threaded
80  * attach situations
81  */
82 static kmutex_t cmdk_attach_mutex;
83 static int cmdk_max_instance = 0;
84 
85 /*
86  * Panic dumpsys state
87  * There is only a single flag that is not mutex locked since
88  * the system is prevented from thread switching and cmdk_dump
89  * will only be called in a single threaded operation.
90  */
91 static int	cmdk_indump;
92 
93 /*
94  * Local Function Prototypes
95  */
96 static int cmdk_create_obj(dev_info_t *dip, struct cmdk *dkp);
97 static void cmdk_destroy_obj(dev_info_t *dip, struct cmdk *dkp);
98 static void cmdkmin(struct buf *bp);
99 static int cmdkrw(dev_t dev, struct uio *uio, int flag);
100 static int cmdkarw(dev_t dev, struct aio_req *aio, int flag);
101 
102 /*
103  * Bad Block Handling Functions Prototypes
104  */
105 static void cmdk_bbh_reopen(struct cmdk *dkp);
106 static opaque_t cmdk_bbh_gethandle(opaque_t bbh_data, struct buf *bp);
107 static bbh_cookie_t cmdk_bbh_htoc(opaque_t bbh_data, opaque_t handle);
108 static void cmdk_bbh_freehandle(opaque_t bbh_data, opaque_t handle);
109 static void cmdk_bbh_close(struct cmdk *dkp);
110 static void cmdk_bbh_setalts_idx(struct cmdk *dkp);
111 static int cmdk_bbh_bsearch(struct alts_ent *buf, int cnt, daddr32_t key);
112 
113 static struct bbh_objops cmdk_bbh_ops = {
114 	nulldev,
115 	nulldev,
116 	cmdk_bbh_gethandle,
117 	cmdk_bbh_htoc,
118 	cmdk_bbh_freehandle,
119 	0, 0
120 };
121 
122 static int cmdkopen(dev_t *dev_p, int flag, int otyp, cred_t *credp);
123 static int cmdkclose(dev_t dev, int flag, int otyp, cred_t *credp);
124 static int cmdkstrategy(struct buf *bp);
125 static int cmdkdump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
126 static int cmdkioctl(dev_t, int, intptr_t, int, cred_t *, int *);
127 static int cmdkread(dev_t dev, struct uio *uio, cred_t *credp);
128 static int cmdkwrite(dev_t dev, struct uio *uio, cred_t *credp);
129 static int cmdk_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
130     int mod_flags, char *name, caddr_t valuep, int *lengthp);
131 static int cmdkaread(dev_t dev, struct aio_req *aio, cred_t *credp);
132 static int cmdkawrite(dev_t dev, struct aio_req *aio, cred_t *credp);
133 
134 /*
135  * Device driver ops vector
136  */
137 
138 static struct cb_ops cmdk_cb_ops = {
139 	cmdkopen, 		/* open */
140 	cmdkclose, 		/* close */
141 	cmdkstrategy, 		/* strategy */
142 	nodev, 			/* print */
143 	cmdkdump, 		/* dump */
144 	cmdkread, 		/* read */
145 	cmdkwrite, 		/* write */
146 	cmdkioctl, 		/* ioctl */
147 	nodev, 			/* devmap */
148 	nodev, 			/* mmap */
149 	nodev, 			/* segmap */
150 	nochpoll, 		/* poll */
151 	cmdk_prop_op, 		/* cb_prop_op */
152 	0, 			/* streamtab  */
153 	D_64BIT | D_MP | D_NEW,	/* Driver comaptibility flag */
154 	CB_REV,			/* cb_rev */
155 	cmdkaread,		/* async read */
156 	cmdkawrite		/* async write */
157 };
158 
159 static int cmdkinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
160     void **result);
161 static int cmdkprobe(dev_info_t *dip);
162 static int cmdkattach(dev_info_t *dip, ddi_attach_cmd_t cmd);
163 static int cmdkdetach(dev_info_t *dip, ddi_detach_cmd_t cmd);
164 
165 static void cmdk_setup_pm(dev_info_t *dip, struct cmdk *dkp);
166 static int cmdkresume(dev_info_t *dip);
167 static int cmdksuspend(dev_info_t *dip);
168 static int cmdkpower(dev_info_t *dip, int component, int level);
169 
170 struct dev_ops cmdk_ops = {
171 	DEVO_REV, 		/* devo_rev, */
172 	0, 			/* refcnt  */
173 	cmdkinfo,		/* info */
174 	nulldev, 		/* identify */
175 	cmdkprobe, 		/* probe */
176 	cmdkattach, 		/* attach */
177 	cmdkdetach,		/* detach */
178 	nodev, 			/* reset */
179 	&cmdk_cb_ops, 		/* driver operations */
180 	(struct bus_ops *)0,	/* bus operations */
181 	cmdkpower,		/* power */
182 	ddi_quiesce_not_needed,	/* quiesce */
183 };
184 
185 /*
186  * This is the loadable module wrapper.
187  */
188 #include <sys/modctl.h>
189 
190 #ifndef XPV_HVM_DRIVER
191 static struct modldrv modldrv = {
192 	&mod_driverops,		/* Type of module. This one is a driver */
193 	"Common Direct Access Disk",
194 	&cmdk_ops,				/* driver ops 		*/
195 };
196 
197 static struct modlinkage modlinkage = {
198 	MODREV_1, (void *)&modldrv, NULL
199 };
200 
201 
202 #else /* XPV_HVM_DRIVER */
203 static struct modlmisc modlmisc = {
204 	&mod_miscops,		/* Type of module. This one is a misc */
205 	"HVM Common Direct Access Disk",
206 };
207 
208 static struct modlinkage modlinkage = {
209 	MODREV_1, (void *)&modlmisc, NULL
210 };
211 
212 #endif /* XPV_HVM_DRIVER */
213 
214 /* Function prototypes for cmlb callbacks */
215 
216 static int cmdk_lb_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr,
217     diskaddr_t start, size_t length, void *tg_cookie);
218 
219 static int cmdk_lb_getinfo(dev_info_t *dip, int cmd,  void *arg,
220     void *tg_cookie);
221 
222 static void cmdk_devid_setup(struct cmdk *dkp);
223 static int cmdk_devid_modser(struct cmdk *dkp);
224 static int cmdk_get_modser(struct cmdk *dkp, int ioccmd, char *buf, int len);
225 static int cmdk_devid_fabricate(struct cmdk *dkp);
226 static int cmdk_devid_read(struct cmdk *dkp);
227 
228 static cmlb_tg_ops_t cmdk_lb_ops = {
229 	TG_DK_OPS_VERSION_1,
230 	cmdk_lb_rdwr,
231 	cmdk_lb_getinfo
232 };
233 
234 static boolean_t
235 cmdk_isopen(struct cmdk *dkp, dev_t dev)
236 {
237 	int		part, otyp;
238 	ulong_t		partbit;
239 
240 	ASSERT(MUTEX_HELD((&dkp->dk_mutex)));
241 
242 	part = CMDKPART(dev);
243 	partbit = 1 << part;
244 
245 	/* account for close */
246 	if (dkp->dk_open_lyr[part] != 0)
247 		return (B_TRUE);
248 	for (otyp = 0; otyp < OTYPCNT; otyp++)
249 		if (dkp->dk_open_reg[otyp] & partbit)
250 			return (B_TRUE);
251 	return (B_FALSE);
252 }
253 
254 int
255 _init(void)
256 {
257 	int 	rval;
258 
259 #ifndef XPV_HVM_DRIVER
260 	if (rval = ddi_soft_state_init(&cmdk_state, sizeof (struct cmdk), 7))
261 		return (rval);
262 #endif /* !XPV_HVM_DRIVER */
263 
264 	mutex_init(&cmdk_attach_mutex, NULL, MUTEX_DRIVER, NULL);
265 	if ((rval = mod_install(&modlinkage)) != 0) {
266 		mutex_destroy(&cmdk_attach_mutex);
267 #ifndef XPV_HVM_DRIVER
268 		ddi_soft_state_fini(&cmdk_state);
269 #endif /* !XPV_HVM_DRIVER */
270 	}
271 	return (rval);
272 }
273 
274 int
275 _fini(void)
276 {
277 	return (EBUSY);
278 }
279 
280 int
281 _info(struct modinfo *modinfop)
282 {
283 	return (mod_info(&modlinkage, modinfop));
284 }
285 
286 /*
287  * Autoconfiguration Routines
288  */
289 static int
290 cmdkprobe(dev_info_t *dip)
291 {
292 	int 	instance;
293 	int	status;
294 	struct	cmdk	*dkp;
295 
296 	instance = ddi_get_instance(dip);
297 
298 #ifndef XPV_HVM_DRIVER
299 	if (ddi_get_soft_state(cmdk_state, instance))
300 		return (DDI_PROBE_PARTIAL);
301 
302 	if (ddi_soft_state_zalloc(cmdk_state, instance) != DDI_SUCCESS)
303 		return (DDI_PROBE_PARTIAL);
304 #endif /* !XPV_HVM_DRIVER */
305 
306 	if ((dkp = ddi_get_soft_state(cmdk_state, instance)) == NULL)
307 		return (DDI_PROBE_PARTIAL);
308 
309 	mutex_init(&dkp->dk_mutex, NULL, MUTEX_DRIVER, NULL);
310 	rw_init(&dkp->dk_bbh_mutex, NULL, RW_DRIVER, NULL);
311 	dkp->dk_dip = dip;
312 	mutex_enter(&dkp->dk_mutex);
313 
314 	dkp->dk_dev = makedevice(ddi_driver_major(dip),
315 	    ddi_get_instance(dip) << CMDK_UNITSHF);
316 
317 	/* linkage to dadk and strategy */
318 	if (cmdk_create_obj(dip, dkp) != DDI_SUCCESS) {
319 		mutex_exit(&dkp->dk_mutex);
320 		mutex_destroy(&dkp->dk_mutex);
321 		rw_destroy(&dkp->dk_bbh_mutex);
322 #ifndef XPV_HVM_DRIVER
323 		ddi_soft_state_free(cmdk_state, instance);
324 #endif /* !XPV_HVM_DRIVER */
325 		return (DDI_PROBE_PARTIAL);
326 	}
327 
328 	status = dadk_probe(DKTP_DATA, KM_NOSLEEP);
329 	if (status != DDI_PROBE_SUCCESS) {
330 		cmdk_destroy_obj(dip, dkp);	/* dadk/strategy linkage  */
331 		mutex_exit(&dkp->dk_mutex);
332 		mutex_destroy(&dkp->dk_mutex);
333 		rw_destroy(&dkp->dk_bbh_mutex);
334 #ifndef XPV_HVM_DRIVER
335 		ddi_soft_state_free(cmdk_state, instance);
336 #endif /* !XPV_HVM_DRIVER */
337 		return (status);
338 	}
339 
340 	mutex_exit(&dkp->dk_mutex);
341 #ifdef CMDK_DEBUG
342 	if (cmdk_debug & DENT)
343 		PRF("cmdkprobe: instance= %d name= `%s`\n",
344 		    instance, ddi_get_name_addr(dip));
345 #endif
346 	return (status);
347 }
348 
349 static int
350 cmdkattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
351 {
352 	int 		instance;
353 	struct		cmdk *dkp;
354 	char 		*node_type;
355 
356 	switch (cmd) {
357 	case DDI_ATTACH:
358 		break;
359 	case DDI_RESUME:
360 		return (cmdkresume(dip));
361 	default:
362 		return (DDI_FAILURE);
363 	}
364 
365 	instance = ddi_get_instance(dip);
366 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
367 		return (DDI_FAILURE);
368 
369 	dkp->dk_pm_level = CMDK_SPINDLE_UNINIT;
370 	mutex_init(&dkp->dk_mutex, NULL, MUTEX_DRIVER, NULL);
371 
372 	mutex_enter(&dkp->dk_mutex);
373 
374 	/* dadk_attach is an empty function that only returns SUCCESS */
375 	(void) dadk_attach(DKTP_DATA);
376 
377 	node_type = (DKTP_EXT->tg_nodetype);
378 
379 	/*
380 	 * this open allows cmlb to read the device
381 	 * and determine the label types
382 	 * so that cmlb can create minor nodes for device
383 	 */
384 
385 	/* open the target disk	 */
386 	if (dadk_open(DKTP_DATA, 0) != DDI_SUCCESS)
387 		goto fail2;
388 
389 #ifdef _ILP32
390 	{
391 		struct  tgdk_geom phyg;
392 		(void) dadk_getphygeom(DKTP_DATA, &phyg);
393 		if ((phyg.g_cap - 1) > DK_MAX_BLOCKS) {
394 			(void) dadk_close(DKTP_DATA);
395 			goto fail2;
396 		}
397 	}
398 #endif
399 
400 
401 	/* mark as having opened target */
402 	dkp->dk_flag |= CMDK_TGDK_OPEN;
403 
404 	cmlb_alloc_handle((cmlb_handle_t *)&dkp->dk_cmlbhandle);
405 
406 	if (cmlb_attach(dip,
407 	    &cmdk_lb_ops,
408 	    DTYPE_DIRECT,		/* device_type */
409 	    B_FALSE,			/* removable */
410 	    B_FALSE,			/* hot pluggable XXX */
411 	    node_type,
412 	    CMLB_CREATE_ALTSLICE_VTOC_16_DTYPE_DIRECT,	/* alter_behaviour */
413 	    dkp->dk_cmlbhandle,
414 	    0) != 0)
415 		goto fail1;
416 
417 	/* Calling validate will create minor nodes according to disk label */
418 	(void) cmlb_validate(dkp->dk_cmlbhandle, 0, 0);
419 
420 	/* set bbh (Bad Block Handling) */
421 	cmdk_bbh_reopen(dkp);
422 
423 	/* setup devid string */
424 	cmdk_devid_setup(dkp);
425 
426 	mutex_enter(&cmdk_attach_mutex);
427 	if (instance > cmdk_max_instance)
428 		cmdk_max_instance = instance;
429 	mutex_exit(&cmdk_attach_mutex);
430 
431 	mutex_exit(&dkp->dk_mutex);
432 
433 	/*
434 	 * Add a zero-length attribute to tell the world we support
435 	 * kernel ioctls (for layered drivers)
436 	 */
437 	(void) ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
438 	    DDI_KERNEL_IOCTL, NULL, 0);
439 	ddi_report_dev(dip);
440 
441 	/*
442 	 * Initialize power management
443 	 */
444 	mutex_init(&dkp->dk_pm_mutex, NULL, MUTEX_DRIVER, NULL);
445 	cv_init(&dkp->dk_suspend_cv,   NULL, CV_DRIVER, NULL);
446 	cmdk_setup_pm(dip, dkp);
447 
448 	return (DDI_SUCCESS);
449 
450 fail1:
451 	cmlb_free_handle(&dkp->dk_cmlbhandle);
452 	(void) dadk_close(DKTP_DATA);
453 fail2:
454 	cmdk_destroy_obj(dip, dkp);
455 	rw_destroy(&dkp->dk_bbh_mutex);
456 	mutex_exit(&dkp->dk_mutex);
457 	mutex_destroy(&dkp->dk_mutex);
458 #ifndef XPV_HVM_DRIVER
459 	ddi_soft_state_free(cmdk_state, instance);
460 #endif /* !XPV_HVM_DRIVER */
461 	return (DDI_FAILURE);
462 }
463 
464 
465 static int
466 cmdkdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
467 {
468 	struct cmdk	*dkp;
469 	int 		instance;
470 	int		max_instance;
471 
472 	switch (cmd) {
473 	case DDI_DETACH:
474 		/* return (DDI_FAILURE); */
475 		break;
476 	case DDI_SUSPEND:
477 		return (cmdksuspend(dip));
478 	default:
479 #ifdef CMDK_DEBUG
480 		if (cmdk_debug & DIO) {
481 			PRF("cmdkdetach: cmd = %d unknown\n", cmd);
482 		}
483 #endif
484 		return (DDI_FAILURE);
485 	}
486 
487 	mutex_enter(&cmdk_attach_mutex);
488 	max_instance = cmdk_max_instance;
489 	mutex_exit(&cmdk_attach_mutex);
490 
491 	/* check if any instance of driver is open */
492 	for (instance = 0; instance < max_instance; instance++) {
493 		dkp = ddi_get_soft_state(cmdk_state, instance);
494 		if (!dkp)
495 			continue;
496 		if (dkp->dk_flag & CMDK_OPEN)
497 			return (DDI_FAILURE);
498 	}
499 
500 	instance = ddi_get_instance(dip);
501 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
502 		return (DDI_SUCCESS);
503 
504 	mutex_enter(&dkp->dk_mutex);
505 
506 	/*
507 	 * The cmdk_part_info call at the end of cmdkattach may have
508 	 * caused cmdk_reopen to do a TGDK_OPEN, make sure we close on
509 	 * detach for case when cmdkopen/cmdkclose never occurs.
510 	 */
511 	if (dkp->dk_flag & CMDK_TGDK_OPEN) {
512 		dkp->dk_flag &= ~CMDK_TGDK_OPEN;
513 		(void) dadk_close(DKTP_DATA);
514 	}
515 
516 	cmlb_detach(dkp->dk_cmlbhandle, 0);
517 	cmlb_free_handle(&dkp->dk_cmlbhandle);
518 	ddi_prop_remove_all(dip);
519 
520 	cmdk_destroy_obj(dip, dkp);	/* dadk/strategy linkage  */
521 	mutex_exit(&dkp->dk_mutex);
522 	mutex_destroy(&dkp->dk_mutex);
523 	rw_destroy(&dkp->dk_bbh_mutex);
524 	mutex_destroy(&dkp->dk_pm_mutex);
525 	cv_destroy(&dkp->dk_suspend_cv);
526 #ifndef XPV_HVM_DRIVER
527 	ddi_soft_state_free(cmdk_state, instance);
528 #endif /* !XPV_HVM_DRIVER */
529 
530 	return (DDI_SUCCESS);
531 }
532 
533 static int
534 cmdkinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
535 {
536 	dev_t		dev = (dev_t)arg;
537 	int 		instance;
538 	struct	cmdk	*dkp;
539 
540 #ifdef lint
541 	dip = dip;	/* no one ever uses this */
542 #endif
543 #ifdef CMDK_DEBUG
544 	if (cmdk_debug & DENT)
545 		PRF("cmdkinfo: call\n");
546 #endif
547 	instance = CMDKUNIT(dev);
548 
549 	switch (infocmd) {
550 		case DDI_INFO_DEVT2DEVINFO:
551 			if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
552 				return (DDI_FAILURE);
553 			*result = (void *) dkp->dk_dip;
554 			break;
555 		case DDI_INFO_DEVT2INSTANCE:
556 			*result = (void *)(intptr_t)instance;
557 			break;
558 		default:
559 			return (DDI_FAILURE);
560 	}
561 	return (DDI_SUCCESS);
562 }
563 
564 /*
565  * Initialize the power management components
566  */
567 static void
568 cmdk_setup_pm(dev_info_t *dip, struct cmdk *dkp)
569 {
570 	char *pm_comp[] = { "NAME=cmdk", "0=off", "1=on", NULL };
571 
572 	/*
573 	 * Since the cmdk device does not the 'reg' property,
574 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
575 	 * The following code is to tell cpr that this device
576 	 * DOES need to be suspended and resumed.
577 	 */
578 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, dip,
579 	    "pm-hardware-state", "needs-suspend-resume");
580 
581 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, dip,
582 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
583 		if (pm_raise_power(dip, 0, CMDK_SPINDLE_ON) == DDI_SUCCESS) {
584 			mutex_enter(&dkp->dk_pm_mutex);
585 			dkp->dk_pm_level = CMDK_SPINDLE_ON;
586 			dkp->dk_pm_is_enabled = 1;
587 			mutex_exit(&dkp->dk_pm_mutex);
588 		} else {
589 			mutex_enter(&dkp->dk_pm_mutex);
590 			dkp->dk_pm_level = CMDK_SPINDLE_OFF;
591 			dkp->dk_pm_is_enabled = 0;
592 			mutex_exit(&dkp->dk_pm_mutex);
593 		}
594 	} else {
595 		mutex_enter(&dkp->dk_pm_mutex);
596 		dkp->dk_pm_level = CMDK_SPINDLE_UNINIT;
597 		dkp->dk_pm_is_enabled = 0;
598 		mutex_exit(&dkp->dk_pm_mutex);
599 	}
600 }
601 
602 /*
603  * suspend routine, it will be run when get the command
604  * DDI_SUSPEND at detach(9E) from system power management
605  */
606 static int
607 cmdksuspend(dev_info_t *dip)
608 {
609 	struct cmdk	*dkp;
610 	int		instance;
611 	clock_t		count = 0;
612 
613 	instance = ddi_get_instance(dip);
614 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
615 		return (DDI_FAILURE);
616 	mutex_enter(&dkp->dk_mutex);
617 	if (dkp->dk_flag & CMDK_SUSPEND) {
618 		mutex_exit(&dkp->dk_mutex);
619 		return (DDI_SUCCESS);
620 	}
621 	dkp->dk_flag |= CMDK_SUSPEND;
622 
623 	/* need to wait a while */
624 	while (dadk_getcmds(DKTP_DATA) != 0) {
625 		delay(drv_usectohz(1000000));
626 		if (count > 60) {
627 			dkp->dk_flag &= ~CMDK_SUSPEND;
628 			cv_broadcast(&dkp->dk_suspend_cv);
629 			mutex_exit(&dkp->dk_mutex);
630 			return (DDI_FAILURE);
631 		}
632 		count++;
633 	}
634 	mutex_exit(&dkp->dk_mutex);
635 	return (DDI_SUCCESS);
636 }
637 
638 /*
639  * resume routine, it will be run when get the command
640  * DDI_RESUME at attach(9E) from system power management
641  */
642 static int
643 cmdkresume(dev_info_t *dip)
644 {
645 	struct cmdk	*dkp;
646 	int		instance;
647 
648 	instance = ddi_get_instance(dip);
649 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
650 		return (DDI_FAILURE);
651 	mutex_enter(&dkp->dk_mutex);
652 	if (!(dkp->dk_flag & CMDK_SUSPEND)) {
653 		mutex_exit(&dkp->dk_mutex);
654 		return (DDI_FAILURE);
655 	}
656 	dkp->dk_pm_level = CMDK_SPINDLE_ON;
657 	dkp->dk_flag &= ~CMDK_SUSPEND;
658 	cv_broadcast(&dkp->dk_suspend_cv);
659 	mutex_exit(&dkp->dk_mutex);
660 	return (DDI_SUCCESS);
661 
662 }
663 
664 /*
665  * power management entry point, it was used to
666  * change power management component.
667  * Actually, the real hard drive suspend/resume
668  * was handled in ata, so this function is not
669  * doing any real work other than verifying that
670  * the disk is idle.
671  */
672 static int
673 cmdkpower(dev_info_t *dip, int component, int level)
674 {
675 	struct cmdk	*dkp;
676 	int		instance;
677 
678 	instance = ddi_get_instance(dip);
679 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)) ||
680 	    component != 0 || level > CMDK_SPINDLE_ON ||
681 	    level < CMDK_SPINDLE_OFF) {
682 		return (DDI_FAILURE);
683 	}
684 
685 	mutex_enter(&dkp->dk_pm_mutex);
686 	if (dkp->dk_pm_is_enabled && dkp->dk_pm_level == level) {
687 		mutex_exit(&dkp->dk_pm_mutex);
688 		return (DDI_SUCCESS);
689 	}
690 	mutex_exit(&dkp->dk_pm_mutex);
691 
692 	if ((level == CMDK_SPINDLE_OFF) &&
693 	    (dadk_getcmds(DKTP_DATA) != 0)) {
694 		return (DDI_FAILURE);
695 	}
696 
697 	mutex_enter(&dkp->dk_pm_mutex);
698 	dkp->dk_pm_level = level;
699 	mutex_exit(&dkp->dk_pm_mutex);
700 	return (DDI_SUCCESS);
701 }
702 
703 static int
704 cmdk_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
705     char *name, caddr_t valuep, int *lengthp)
706 {
707 	struct	cmdk	*dkp;
708 
709 #ifdef CMDK_DEBUG
710 	if (cmdk_debug & DENT)
711 		PRF("cmdk_prop_op: call\n");
712 #endif
713 
714 	dkp = ddi_get_soft_state(cmdk_state, ddi_get_instance(dip));
715 	if (dkp == NULL)
716 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
717 		    name, valuep, lengthp));
718 
719 	return (cmlb_prop_op(dkp->dk_cmlbhandle,
720 	    dev, dip, prop_op, mod_flags, name, valuep, lengthp,
721 	    CMDKPART(dev), NULL));
722 }
723 
724 /*
725  * dump routine
726  */
727 static int
728 cmdkdump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
729 {
730 	int 		instance;
731 	struct	cmdk	*dkp;
732 	diskaddr_t	p_lblksrt;
733 	diskaddr_t	p_lblkcnt;
734 	struct	buf	local;
735 	struct	buf	*bp;
736 
737 #ifdef CMDK_DEBUG
738 	if (cmdk_debug & DENT)
739 		PRF("cmdkdump: call\n");
740 #endif
741 	instance = CMDKUNIT(dev);
742 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)) || (blkno < 0))
743 		return (ENXIO);
744 
745 	if (cmlb_partinfo(
746 	    dkp->dk_cmlbhandle,
747 	    CMDKPART(dev),
748 	    &p_lblkcnt,
749 	    &p_lblksrt,
750 	    NULL,
751 	    NULL,
752 	    0)) {
753 		return (ENXIO);
754 	}
755 
756 	if ((blkno+nblk) > p_lblkcnt)
757 		return (EINVAL);
758 
759 	cmdk_indump = 1;	/* Tell disk targets we are panic dumpping */
760 
761 	bp = &local;
762 	bzero(bp, sizeof (*bp));
763 	bp->b_flags = B_BUSY;
764 	bp->b_un.b_addr = addr;
765 	bp->b_bcount = nblk << SCTRSHFT;
766 	SET_BP_SEC(bp, ((ulong_t)(p_lblksrt + blkno)));
767 
768 	(void) dadk_dump(DKTP_DATA, bp);
769 	return (bp->b_error);
770 }
771 
772 /*
773  * Copy in the dadkio_rwcmd according to the user's data model.  If needed,
774  * convert it for our internal use.
775  */
776 static int
777 rwcmd_copyin(struct dadkio_rwcmd *rwcmdp, caddr_t inaddr, int flag)
778 {
779 	switch (ddi_model_convert_from(flag)) {
780 		case DDI_MODEL_ILP32: {
781 			struct dadkio_rwcmd32 cmd32;
782 
783 			if (ddi_copyin(inaddr, &cmd32,
784 			    sizeof (struct dadkio_rwcmd32), flag)) {
785 				return (EFAULT);
786 			}
787 
788 			rwcmdp->cmd = cmd32.cmd;
789 			rwcmdp->flags = cmd32.flags;
790 			rwcmdp->blkaddr = (blkaddr_t)cmd32.blkaddr;
791 			rwcmdp->buflen = cmd32.buflen;
792 			rwcmdp->bufaddr = (caddr_t)(intptr_t)cmd32.bufaddr;
793 			/*
794 			 * Note: we do not convert the 'status' field,
795 			 * as it should not contain valid data at this
796 			 * point.
797 			 */
798 			bzero(&rwcmdp->status, sizeof (rwcmdp->status));
799 			break;
800 		}
801 		case DDI_MODEL_NONE: {
802 			if (ddi_copyin(inaddr, rwcmdp,
803 			    sizeof (struct dadkio_rwcmd), flag)) {
804 				return (EFAULT);
805 			}
806 		}
807 	}
808 	return (0);
809 }
810 
811 /*
812  * If necessary, convert the internal rwcmdp and status to the appropriate
813  * data model and copy it out to the user.
814  */
815 static int
816 rwcmd_copyout(struct dadkio_rwcmd *rwcmdp, caddr_t outaddr, int flag)
817 {
818 	switch (ddi_model_convert_from(flag)) {
819 		case DDI_MODEL_ILP32: {
820 			struct dadkio_rwcmd32 cmd32;
821 
822 			cmd32.cmd = rwcmdp->cmd;
823 			cmd32.flags = rwcmdp->flags;
824 			cmd32.blkaddr = rwcmdp->blkaddr;
825 			cmd32.buflen = rwcmdp->buflen;
826 			ASSERT64(((uintptr_t)rwcmdp->bufaddr >> 32) == 0);
827 			cmd32.bufaddr = (caddr32_t)(uintptr_t)rwcmdp->bufaddr;
828 
829 			cmd32.status.status = rwcmdp->status.status;
830 			cmd32.status.resid = rwcmdp->status.resid;
831 			cmd32.status.failed_blk_is_valid =
832 			    rwcmdp->status.failed_blk_is_valid;
833 			cmd32.status.failed_blk = rwcmdp->status.failed_blk;
834 			cmd32.status.fru_code_is_valid =
835 			    rwcmdp->status.fru_code_is_valid;
836 			cmd32.status.fru_code = rwcmdp->status.fru_code;
837 
838 			bcopy(rwcmdp->status.add_error_info,
839 			    cmd32.status.add_error_info, DADKIO_ERROR_INFO_LEN);
840 
841 			if (ddi_copyout(&cmd32, outaddr,
842 			    sizeof (struct dadkio_rwcmd32), flag))
843 				return (EFAULT);
844 			break;
845 		}
846 		case DDI_MODEL_NONE: {
847 			if (ddi_copyout(rwcmdp, outaddr,
848 			    sizeof (struct dadkio_rwcmd), flag))
849 			return (EFAULT);
850 		}
851 	}
852 	return (0);
853 }
854 
855 /*
856  * ioctl routine
857  */
858 static int
859 cmdkioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp, int *rvalp)
860 {
861 	int 		instance;
862 	struct scsi_device *devp;
863 	struct cmdk	*dkp;
864 	char 		data[NBPSCTR];
865 
866 	instance = CMDKUNIT(dev);
867 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
868 		return (ENXIO);
869 
870 	mutex_enter(&dkp->dk_mutex);
871 	while (dkp->dk_flag & CMDK_SUSPEND) {
872 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
873 	}
874 	mutex_exit(&dkp->dk_mutex);
875 
876 	bzero(data, sizeof (data));
877 
878 	switch (cmd) {
879 
880 	case DKIOCGMEDIAINFO: {
881 		struct dk_minfo	media_info;
882 		struct  tgdk_geom phyg;
883 
884 		/* dadk_getphygeom always returns success */
885 		(void) dadk_getphygeom(DKTP_DATA, &phyg);
886 
887 		media_info.dki_lbsize = phyg.g_secsiz;
888 		media_info.dki_capacity = phyg.g_cap;
889 		media_info.dki_media_type = DK_FIXED_DISK;
890 
891 		if (ddi_copyout(&media_info, (void *)arg,
892 		    sizeof (struct dk_minfo), flag)) {
893 			return (EFAULT);
894 		} else {
895 			return (0);
896 		}
897 	}
898 
899 	case DKIOCINFO: {
900 		struct dk_cinfo *info = (struct dk_cinfo *)data;
901 
902 		/* controller information */
903 		info->dki_ctype = (DKTP_EXT->tg_ctype);
904 		info->dki_cnum = ddi_get_instance(ddi_get_parent(dkp->dk_dip));
905 		(void) strcpy(info->dki_cname,
906 		    ddi_get_name(ddi_get_parent(dkp->dk_dip)));
907 
908 		/* Unit Information */
909 		info->dki_unit = ddi_get_instance(dkp->dk_dip);
910 		devp = ddi_get_driver_private(dkp->dk_dip);
911 		info->dki_slave = (CMDEV_TARG(devp)<<3) | CMDEV_LUN(devp);
912 		(void) strcpy(info->dki_dname, ddi_driver_name(dkp->dk_dip));
913 		info->dki_flags = DKI_FMTVOL;
914 		info->dki_partition = CMDKPART(dev);
915 
916 		info->dki_maxtransfer = maxphys / DEV_BSIZE;
917 		info->dki_addr = 1;
918 		info->dki_space = 0;
919 		info->dki_prio = 0;
920 		info->dki_vec = 0;
921 
922 		if (ddi_copyout(data, (void *)arg, sizeof (*info), flag))
923 			return (EFAULT);
924 		else
925 			return (0);
926 	}
927 
928 	case DKIOCSTATE: {
929 		int	state;
930 		int	rval;
931 		diskaddr_t	p_lblksrt;
932 		diskaddr_t	p_lblkcnt;
933 
934 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag))
935 			return (EFAULT);
936 
937 		/* dadk_check_media blocks until state changes */
938 		if (rval = dadk_check_media(DKTP_DATA, &state))
939 			return (rval);
940 
941 		if (state == DKIO_INSERTED) {
942 
943 			if (cmlb_validate(dkp->dk_cmlbhandle, 0, 0) != 0)
944 				return (ENXIO);
945 
946 			if (cmlb_partinfo(dkp->dk_cmlbhandle, CMDKPART(dev),
947 			    &p_lblkcnt, &p_lblksrt, NULL, NULL, 0))
948 				return (ENXIO);
949 
950 			if (p_lblkcnt <= 0)
951 				return (ENXIO);
952 		}
953 
954 		if (ddi_copyout(&state, (caddr_t)arg, sizeof (int), flag))
955 			return (EFAULT);
956 
957 		return (0);
958 	}
959 
960 	/*
961 	 * is media removable?
962 	 */
963 	case DKIOCREMOVABLE: {
964 		int i;
965 
966 		i = (DKTP_EXT->tg_rmb) ? 1 : 0;
967 
968 		if (ddi_copyout(&i, (caddr_t)arg, sizeof (int), flag))
969 			return (EFAULT);
970 
971 		return (0);
972 	}
973 
974 	case DKIOCADDBAD:
975 		/*
976 		 * This is not an update mechanism to add bad blocks
977 		 * to the bad block structures stored on disk.
978 		 *
979 		 * addbadsec(1M) will update the bad block data on disk
980 		 * and use this ioctl to force the driver to re-initialize
981 		 * the list of bad blocks in the driver.
982 		 */
983 
984 		/* start BBH */
985 		cmdk_bbh_reopen(dkp);
986 		return (0);
987 
988 	case DKIOCG_PHYGEOM:
989 	case DKIOCG_VIRTGEOM:
990 	case DKIOCGGEOM:
991 	case DKIOCSGEOM:
992 	case DKIOCGAPART:
993 	case DKIOCSAPART:
994 	case DKIOCGVTOC:
995 	case DKIOCSVTOC:
996 	case DKIOCPARTINFO:
997 	case DKIOCGEXTVTOC:
998 	case DKIOCSEXTVTOC:
999 	case DKIOCEXTPARTINFO:
1000 	case DKIOCGMBOOT:
1001 	case DKIOCSMBOOT:
1002 	case DKIOCGETEFI:
1003 	case DKIOCSETEFI:
1004 	case DKIOCPARTITION:
1005 	{
1006 		int rc;
1007 
1008 		rc = cmlb_ioctl(dkp->dk_cmlbhandle, dev, cmd, arg, flag,
1009 		    credp, rvalp, 0);
1010 		if (cmd == DKIOCSVTOC || cmd == DKIOCSEXTVTOC)
1011 			cmdk_devid_setup(dkp);
1012 		return (rc);
1013 	}
1014 
1015 	case DIOCTL_RWCMD: {
1016 		struct	dadkio_rwcmd *rwcmdp;
1017 		int	status;
1018 
1019 		rwcmdp = kmem_alloc(sizeof (struct dadkio_rwcmd), KM_SLEEP);
1020 
1021 		status = rwcmd_copyin(rwcmdp, (caddr_t)arg, flag);
1022 
1023 		if (status == 0) {
1024 			bzero(&(rwcmdp->status), sizeof (struct dadkio_status));
1025 			status = dadk_ioctl(DKTP_DATA,
1026 			    dev,
1027 			    cmd,
1028 			    (uintptr_t)rwcmdp,
1029 			    flag,
1030 			    credp,
1031 			    rvalp);
1032 		}
1033 		if (status == 0)
1034 			status = rwcmd_copyout(rwcmdp, (caddr_t)arg, flag);
1035 
1036 		kmem_free(rwcmdp, sizeof (struct dadkio_rwcmd));
1037 		return (status);
1038 	}
1039 
1040 	default:
1041 		return (dadk_ioctl(DKTP_DATA,
1042 		    dev,
1043 		    cmd,
1044 		    arg,
1045 		    flag,
1046 		    credp,
1047 		    rvalp));
1048 	}
1049 }
1050 
1051 /*ARGSUSED1*/
1052 static int
1053 cmdkclose(dev_t dev, int flag, int otyp, cred_t *credp)
1054 {
1055 	int		part;
1056 	ulong_t		partbit;
1057 	int 		instance;
1058 	struct cmdk	*dkp;
1059 	int		lastclose = 1;
1060 	int		i;
1061 
1062 	instance = CMDKUNIT(dev);
1063 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)) ||
1064 	    (otyp >= OTYPCNT))
1065 		return (ENXIO);
1066 
1067 	mutex_enter(&dkp->dk_mutex);
1068 
1069 	/* check if device has been opened */
1070 	ASSERT(cmdk_isopen(dkp, dev));
1071 	if (!(dkp->dk_flag & CMDK_OPEN)) {
1072 		mutex_exit(&dkp->dk_mutex);
1073 		return (ENXIO);
1074 	}
1075 
1076 	while (dkp->dk_flag & CMDK_SUSPEND) {
1077 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1078 	}
1079 
1080 	part = CMDKPART(dev);
1081 	partbit = 1 << part;
1082 
1083 	/* account for close */
1084 	if (otyp == OTYP_LYR) {
1085 		ASSERT(dkp->dk_open_lyr[part] > 0);
1086 		if (dkp->dk_open_lyr[part])
1087 			dkp->dk_open_lyr[part]--;
1088 	} else {
1089 		ASSERT((dkp->dk_open_reg[otyp] & partbit) != 0);
1090 		dkp->dk_open_reg[otyp] &= ~partbit;
1091 	}
1092 	dkp->dk_open_exl &= ~partbit;
1093 
1094 	for (i = 0; i < CMDK_MAXPART; i++)
1095 		if (dkp->dk_open_lyr[i] != 0) {
1096 			lastclose = 0;
1097 			break;
1098 		}
1099 
1100 	if (lastclose)
1101 		for (i = 0; i < OTYPCNT; i++)
1102 			if (dkp->dk_open_reg[i] != 0) {
1103 				lastclose = 0;
1104 				break;
1105 			}
1106 
1107 	mutex_exit(&dkp->dk_mutex);
1108 
1109 	if (lastclose)
1110 		cmlb_invalidate(dkp->dk_cmlbhandle, 0);
1111 
1112 	return (DDI_SUCCESS);
1113 }
1114 
1115 /*ARGSUSED3*/
1116 static int
1117 cmdkopen(dev_t *dev_p, int flag, int otyp, cred_t *credp)
1118 {
1119 	dev_t		dev = *dev_p;
1120 	int 		part;
1121 	ulong_t		partbit;
1122 	int 		instance;
1123 	struct	cmdk	*dkp;
1124 	diskaddr_t	p_lblksrt;
1125 	diskaddr_t	p_lblkcnt;
1126 	int		i;
1127 	int		nodelay;
1128 
1129 	instance = CMDKUNIT(dev);
1130 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
1131 		return (ENXIO);
1132 
1133 	if (otyp >= OTYPCNT)
1134 		return (EINVAL);
1135 
1136 	mutex_enter(&dkp->dk_mutex);
1137 	while (dkp->dk_flag & CMDK_SUSPEND) {
1138 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1139 	}
1140 	mutex_exit(&dkp->dk_mutex);
1141 
1142 	part = CMDKPART(dev);
1143 	partbit = 1 << part;
1144 	nodelay = (flag & (FNDELAY | FNONBLOCK));
1145 
1146 	mutex_enter(&dkp->dk_mutex);
1147 
1148 	if (cmlb_validate(dkp->dk_cmlbhandle, 0, 0) != 0) {
1149 
1150 		/* fail if not doing non block open */
1151 		if (!nodelay) {
1152 			mutex_exit(&dkp->dk_mutex);
1153 			return (ENXIO);
1154 		}
1155 	} else if (cmlb_partinfo(dkp->dk_cmlbhandle, part, &p_lblkcnt,
1156 	    &p_lblksrt, NULL, NULL, 0) == 0) {
1157 
1158 		if (p_lblkcnt <= 0 && (!nodelay || otyp != OTYP_CHR)) {
1159 			mutex_exit(&dkp->dk_mutex);
1160 			return (ENXIO);
1161 		}
1162 	} else {
1163 		/* fail if not doing non block open */
1164 		if (!nodelay) {
1165 			mutex_exit(&dkp->dk_mutex);
1166 			return (ENXIO);
1167 		}
1168 	}
1169 
1170 	if ((DKTP_EXT->tg_rdonly) && (flag & FWRITE)) {
1171 		mutex_exit(&dkp->dk_mutex);
1172 		return (EROFS);
1173 	}
1174 
1175 	/* check for part already opend exclusively */
1176 	if (dkp->dk_open_exl & partbit)
1177 		goto excl_open_fail;
1178 
1179 	/* check if we can establish exclusive open */
1180 	if (flag & FEXCL) {
1181 		if (dkp->dk_open_lyr[part])
1182 			goto excl_open_fail;
1183 		for (i = 0; i < OTYPCNT; i++) {
1184 			if (dkp->dk_open_reg[i] & partbit)
1185 				goto excl_open_fail;
1186 		}
1187 	}
1188 
1189 	/* open will succeed, account for open */
1190 	dkp->dk_flag |= CMDK_OPEN;
1191 	if (otyp == OTYP_LYR)
1192 		dkp->dk_open_lyr[part]++;
1193 	else
1194 		dkp->dk_open_reg[otyp] |= partbit;
1195 	if (flag & FEXCL)
1196 		dkp->dk_open_exl |= partbit;
1197 
1198 	mutex_exit(&dkp->dk_mutex);
1199 	return (DDI_SUCCESS);
1200 
1201 excl_open_fail:
1202 	mutex_exit(&dkp->dk_mutex);
1203 	return (EBUSY);
1204 }
1205 
1206 /*
1207  * read routine
1208  */
1209 /*ARGSUSED2*/
1210 static int
1211 cmdkread(dev_t dev, struct uio *uio, cred_t *credp)
1212 {
1213 	return (cmdkrw(dev, uio, B_READ));
1214 }
1215 
1216 /*
1217  * async read routine
1218  */
1219 /*ARGSUSED2*/
1220 static int
1221 cmdkaread(dev_t dev, struct aio_req *aio, cred_t *credp)
1222 {
1223 	return (cmdkarw(dev, aio, B_READ));
1224 }
1225 
1226 /*
1227  * write routine
1228  */
1229 /*ARGSUSED2*/
1230 static int
1231 cmdkwrite(dev_t dev, struct uio *uio, cred_t *credp)
1232 {
1233 	return (cmdkrw(dev, uio, B_WRITE));
1234 }
1235 
1236 /*
1237  * async write routine
1238  */
1239 /*ARGSUSED2*/
1240 static int
1241 cmdkawrite(dev_t dev, struct aio_req *aio, cred_t *credp)
1242 {
1243 	return (cmdkarw(dev, aio, B_WRITE));
1244 }
1245 
1246 static void
1247 cmdkmin(struct buf *bp)
1248 {
1249 	if (bp->b_bcount > DK_MAXRECSIZE)
1250 		bp->b_bcount = DK_MAXRECSIZE;
1251 }
1252 
1253 static int
1254 cmdkrw(dev_t dev, struct uio *uio, int flag)
1255 {
1256 	int 		instance;
1257 	struct	cmdk	*dkp;
1258 
1259 	instance = CMDKUNIT(dev);
1260 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
1261 		return (ENXIO);
1262 
1263 	mutex_enter(&dkp->dk_mutex);
1264 	while (dkp->dk_flag & CMDK_SUSPEND) {
1265 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1266 	}
1267 	mutex_exit(&dkp->dk_mutex);
1268 
1269 	return (physio(cmdkstrategy, (struct buf *)0, dev, flag, cmdkmin, uio));
1270 }
1271 
1272 static int
1273 cmdkarw(dev_t dev, struct aio_req *aio, int flag)
1274 {
1275 	int 		instance;
1276 	struct	cmdk	*dkp;
1277 
1278 	instance = CMDKUNIT(dev);
1279 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
1280 		return (ENXIO);
1281 
1282 	mutex_enter(&dkp->dk_mutex);
1283 	while (dkp->dk_flag & CMDK_SUSPEND) {
1284 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1285 	}
1286 	mutex_exit(&dkp->dk_mutex);
1287 
1288 	return (aphysio(cmdkstrategy, anocancel, dev, flag, cmdkmin, aio));
1289 }
1290 
1291 /*
1292  * strategy routine
1293  */
1294 static int
1295 cmdkstrategy(struct buf *bp)
1296 {
1297 	int 		instance;
1298 	struct	cmdk 	*dkp;
1299 	long		d_cnt;
1300 	diskaddr_t	p_lblksrt;
1301 	diskaddr_t	p_lblkcnt;
1302 
1303 	instance = CMDKUNIT(bp->b_edev);
1304 	if (cmdk_indump || !(dkp = ddi_get_soft_state(cmdk_state, instance)) ||
1305 	    (dkblock(bp) < 0)) {
1306 		bp->b_resid = bp->b_bcount;
1307 		SETBPERR(bp, ENXIO);
1308 		biodone(bp);
1309 		return (0);
1310 	}
1311 
1312 	mutex_enter(&dkp->dk_mutex);
1313 	ASSERT(cmdk_isopen(dkp, bp->b_edev));
1314 	while (dkp->dk_flag & CMDK_SUSPEND) {
1315 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1316 	}
1317 	mutex_exit(&dkp->dk_mutex);
1318 
1319 	bp->b_flags &= ~(B_DONE|B_ERROR);
1320 	bp->b_resid = 0;
1321 	bp->av_back = NULL;
1322 
1323 	/*
1324 	 * only re-read the vtoc if necessary (force == FALSE)
1325 	 */
1326 	if (cmlb_partinfo(dkp->dk_cmlbhandle, CMDKPART(bp->b_edev),
1327 	    &p_lblkcnt, &p_lblksrt, NULL, NULL, 0)) {
1328 		SETBPERR(bp, ENXIO);
1329 	}
1330 
1331 	if ((bp->b_bcount & (NBPSCTR-1)) || (dkblock(bp) > p_lblkcnt))
1332 		SETBPERR(bp, ENXIO);
1333 
1334 	if ((bp->b_flags & B_ERROR) || (dkblock(bp) == p_lblkcnt)) {
1335 		bp->b_resid = bp->b_bcount;
1336 		biodone(bp);
1337 		return (0);
1338 	}
1339 
1340 	d_cnt = bp->b_bcount >> SCTRSHFT;
1341 	if ((dkblock(bp) + d_cnt) > p_lblkcnt) {
1342 		bp->b_resid = ((dkblock(bp) + d_cnt) - p_lblkcnt) << SCTRSHFT;
1343 		bp->b_bcount -= bp->b_resid;
1344 	}
1345 
1346 	SET_BP_SEC(bp, ((ulong_t)(p_lblksrt + dkblock(bp))));
1347 	if (dadk_strategy(DKTP_DATA, bp) != DDI_SUCCESS) {
1348 		bp->b_resid += bp->b_bcount;
1349 		biodone(bp);
1350 	}
1351 	return (0);
1352 }
1353 
1354 static int
1355 cmdk_create_obj(dev_info_t *dip, struct cmdk *dkp)
1356 {
1357 	struct scsi_device *devp;
1358 	opaque_t	queobjp = NULL;
1359 	opaque_t	flcobjp = NULL;
1360 	char		que_keyvalp[64];
1361 	int		que_keylen;
1362 	char		flc_keyvalp[64];
1363 	int		flc_keylen;
1364 
1365 	ASSERT(mutex_owned(&dkp->dk_mutex));
1366 
1367 	/* Create linkage to queueing routines based on property */
1368 	que_keylen = sizeof (que_keyvalp);
1369 	if (ddi_prop_op(DDI_DEV_T_NONE, dip, PROP_LEN_AND_VAL_BUF,
1370 	    DDI_PROP_CANSLEEP, "queue", que_keyvalp, &que_keylen) !=
1371 	    DDI_PROP_SUCCESS) {
1372 		cmn_err(CE_WARN, "cmdk_create_obj: queue property undefined");
1373 		return (DDI_FAILURE);
1374 	}
1375 	que_keyvalp[que_keylen] = (char)0;
1376 
1377 	if (strcmp(que_keyvalp, "qfifo") == 0) {
1378 		queobjp = (opaque_t)qfifo_create();
1379 	} else if (strcmp(que_keyvalp, "qsort") == 0) {
1380 		queobjp = (opaque_t)qsort_create();
1381 	} else {
1382 		return (DDI_FAILURE);
1383 	}
1384 
1385 	/* Create linkage to dequeueing routines based on property */
1386 	flc_keylen = sizeof (flc_keyvalp);
1387 	if (ddi_prop_op(DDI_DEV_T_NONE, dip, PROP_LEN_AND_VAL_BUF,
1388 	    DDI_PROP_CANSLEEP, "flow_control", flc_keyvalp, &flc_keylen) !=
1389 	    DDI_PROP_SUCCESS) {
1390 		cmn_err(CE_WARN,
1391 		    "cmdk_create_obj: flow-control property undefined");
1392 		return (DDI_FAILURE);
1393 	}
1394 
1395 	flc_keyvalp[flc_keylen] = (char)0;
1396 
1397 	if (strcmp(flc_keyvalp, "dsngl") == 0) {
1398 		flcobjp = (opaque_t)dsngl_create();
1399 	} else if (strcmp(flc_keyvalp, "dmult") == 0) {
1400 		flcobjp = (opaque_t)dmult_create();
1401 	} else {
1402 		return (DDI_FAILURE);
1403 	}
1404 
1405 	/* populate bbh_obj object stored in dkp */
1406 	dkp->dk_bbh_obj.bbh_data = dkp;
1407 	dkp->dk_bbh_obj.bbh_ops = &cmdk_bbh_ops;
1408 
1409 	/* create linkage to dadk */
1410 	dkp->dk_tgobjp = (opaque_t)dadk_create();
1411 
1412 	devp = ddi_get_driver_private(dip);
1413 	(void) dadk_init(DKTP_DATA, devp, flcobjp, queobjp, &dkp->dk_bbh_obj,
1414 	    NULL);
1415 
1416 	return (DDI_SUCCESS);
1417 }
1418 
1419 static void
1420 cmdk_destroy_obj(dev_info_t *dip, struct cmdk *dkp)
1421 {
1422 	char		que_keyvalp[64];
1423 	int		que_keylen;
1424 	char		flc_keyvalp[64];
1425 	int		flc_keylen;
1426 
1427 	ASSERT(mutex_owned(&dkp->dk_mutex));
1428 
1429 	(void) dadk_free((dkp->dk_tgobjp));
1430 	dkp->dk_tgobjp = NULL;
1431 
1432 	que_keylen = sizeof (que_keyvalp);
1433 	if (ddi_prop_op(DDI_DEV_T_NONE, dip, PROP_LEN_AND_VAL_BUF,
1434 	    DDI_PROP_CANSLEEP, "queue", que_keyvalp, &que_keylen) !=
1435 	    DDI_PROP_SUCCESS) {
1436 		cmn_err(CE_WARN, "cmdk_destroy_obj: queue property undefined");
1437 		return;
1438 	}
1439 	que_keyvalp[que_keylen] = (char)0;
1440 
1441 	flc_keylen = sizeof (flc_keyvalp);
1442 	if (ddi_prop_op(DDI_DEV_T_NONE, dip, PROP_LEN_AND_VAL_BUF,
1443 	    DDI_PROP_CANSLEEP, "flow_control", flc_keyvalp, &flc_keylen) !=
1444 	    DDI_PROP_SUCCESS) {
1445 		cmn_err(CE_WARN,
1446 		    "cmdk_destroy_obj: flow-control property undefined");
1447 		return;
1448 	}
1449 	flc_keyvalp[flc_keylen] = (char)0;
1450 }
1451 /*ARGSUSED5*/
1452 static int
1453 cmdk_lb_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr,
1454     diskaddr_t start, size_t count, void *tg_cookie)
1455 {
1456 	struct cmdk	*dkp;
1457 	opaque_t	handle;
1458 	int		rc = 0;
1459 	char		*bufa;
1460 
1461 	dkp = ddi_get_soft_state(cmdk_state, ddi_get_instance(dip));
1462 	if (dkp == NULL)
1463 		return (ENXIO);
1464 
1465 	if (cmd != TG_READ && cmd != TG_WRITE)
1466 		return (EINVAL);
1467 
1468 	/* count must be multiple of 512 */
1469 	count = (count + NBPSCTR - 1) & -NBPSCTR;
1470 	handle = dadk_iob_alloc(DKTP_DATA, start, count, KM_SLEEP);
1471 	if (!handle)
1472 		return (ENOMEM);
1473 
1474 	if (cmd == TG_READ) {
1475 		bufa = dadk_iob_xfer(DKTP_DATA, handle, B_READ);
1476 		if (!bufa)
1477 			rc = EIO;
1478 		else
1479 			bcopy(bufa, bufaddr, count);
1480 	} else {
1481 		bufa = dadk_iob_htoc(DKTP_DATA, handle);
1482 		bcopy(bufaddr, bufa, count);
1483 		bufa = dadk_iob_xfer(DKTP_DATA, handle, B_WRITE);
1484 		if (!bufa)
1485 			rc = EIO;
1486 	}
1487 	(void) dadk_iob_free(DKTP_DATA, handle);
1488 
1489 	return (rc);
1490 }
1491 
1492 /*ARGSUSED3*/
1493 static int
1494 cmdk_lb_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie)
1495 {
1496 
1497 	struct cmdk		*dkp;
1498 	struct tgdk_geom	phyg;
1499 
1500 
1501 	dkp = ddi_get_soft_state(cmdk_state, ddi_get_instance(dip));
1502 	if (dkp == NULL)
1503 		return (ENXIO);
1504 
1505 	switch (cmd) {
1506 	case TG_GETPHYGEOM: {
1507 		cmlb_geom_t *phygeomp = (cmlb_geom_t *)arg;
1508 
1509 		/* dadk_getphygeom always returns success */
1510 		(void) dadk_getphygeom(DKTP_DATA, &phyg);
1511 
1512 		phygeomp->g_capacity	= phyg.g_cap;
1513 		phygeomp->g_nsect	= phyg.g_sec;
1514 		phygeomp->g_nhead	= phyg.g_head;
1515 		phygeomp->g_acyl	= phyg.g_acyl;
1516 		phygeomp->g_ncyl	= phyg.g_cyl;
1517 		phygeomp->g_secsize	= phyg.g_secsiz;
1518 		phygeomp->g_intrlv	= 1;
1519 		phygeomp->g_rpm		= 3600;
1520 
1521 		return (0);
1522 	}
1523 
1524 	case TG_GETVIRTGEOM: {
1525 		cmlb_geom_t *virtgeomp = (cmlb_geom_t *)arg;
1526 		diskaddr_t		capacity;
1527 
1528 		(void) dadk_getgeom(DKTP_DATA, &phyg);
1529 		capacity = phyg.g_cap;
1530 
1531 		/*
1532 		 * If the controller returned us something that doesn't
1533 		 * really fit into an Int 13/function 8 geometry
1534 		 * result, just fail the ioctl.  See PSARC 1998/313.
1535 		 */
1536 		if (capacity < 0 || capacity >= 63 * 254 * 1024)
1537 			return (EINVAL);
1538 
1539 		virtgeomp->g_capacity	= capacity;
1540 		virtgeomp->g_nsect	= 63;
1541 		virtgeomp->g_nhead	= 254;
1542 		virtgeomp->g_ncyl	= capacity / (63 * 254);
1543 		virtgeomp->g_acyl	= 0;
1544 		virtgeomp->g_secsize	= 512;
1545 		virtgeomp->g_intrlv	= 1;
1546 		virtgeomp->g_rpm	= 3600;
1547 
1548 		return (0);
1549 	}
1550 
1551 	case TG_GETCAPACITY:
1552 	case TG_GETBLOCKSIZE:
1553 	{
1554 
1555 		/* dadk_getphygeom always returns success */
1556 		(void) dadk_getphygeom(DKTP_DATA, &phyg);
1557 		if (cmd == TG_GETCAPACITY)
1558 			*(diskaddr_t *)arg = phyg.g_cap;
1559 		else
1560 			*(uint32_t *)arg = (uint32_t)phyg.g_secsiz;
1561 
1562 		return (0);
1563 	}
1564 
1565 	case TG_GETATTR: {
1566 		tg_attribute_t *tgattribute = (tg_attribute_t *)arg;
1567 		if ((DKTP_EXT->tg_rdonly))
1568 			tgattribute->media_is_writable = FALSE;
1569 		else
1570 			tgattribute->media_is_writable = TRUE;
1571 
1572 		return (0);
1573 	}
1574 
1575 	default:
1576 		return (ENOTTY);
1577 	}
1578 }
1579 
1580 
1581 
1582 
1583 
1584 /*
1585  * Create and register the devid.
1586  * There are 4 different ways we can get a device id:
1587  *    1. Already have one - nothing to do
1588  *    2. Build one from the drive's model and serial numbers
1589  *    3. Read one from the disk (first sector of last track)
1590  *    4. Fabricate one and write it on the disk.
1591  * If any of these succeeds, register the deviceid
1592  */
1593 static void
1594 cmdk_devid_setup(struct cmdk *dkp)
1595 {
1596 	int	rc;
1597 
1598 	/* Try options until one succeeds, or all have failed */
1599 
1600 	/* 1. All done if already registered */
1601 	if (dkp->dk_devid != NULL)
1602 		return;
1603 
1604 	/* 2. Build a devid from the model and serial number */
1605 	rc = cmdk_devid_modser(dkp);
1606 	if (rc != DDI_SUCCESS) {
1607 		/* 3. Read devid from the disk, if present */
1608 		rc = cmdk_devid_read(dkp);
1609 
1610 		/* 4. otherwise make one up and write it on the disk */
1611 		if (rc != DDI_SUCCESS)
1612 			rc = cmdk_devid_fabricate(dkp);
1613 	}
1614 
1615 	/* If we managed to get a devid any of the above ways, register it */
1616 	if (rc == DDI_SUCCESS)
1617 		(void) ddi_devid_register(dkp->dk_dip, dkp->dk_devid);
1618 
1619 }
1620 
1621 /*
1622  * Build a devid from the model and serial number
1623  * Return DDI_SUCCESS or DDI_FAILURE.
1624  */
1625 static int
1626 cmdk_devid_modser(struct cmdk *dkp)
1627 {
1628 	int	rc = DDI_FAILURE;
1629 	char	*hwid;
1630 	int	modlen;
1631 	int	serlen;
1632 
1633 	/*
1634 	 * device ID is a concatenation of model number, '=', serial number.
1635 	 */
1636 	hwid = kmem_alloc(CMDK_HWIDLEN, KM_SLEEP);
1637 	modlen = cmdk_get_modser(dkp, DIOCTL_GETMODEL, hwid, CMDK_HWIDLEN);
1638 	if (modlen == 0) {
1639 		rc = DDI_FAILURE;
1640 		goto err;
1641 	}
1642 	hwid[modlen++] = '=';
1643 	serlen = cmdk_get_modser(dkp, DIOCTL_GETSERIAL,
1644 	    hwid + modlen, CMDK_HWIDLEN - modlen);
1645 	if (serlen == 0) {
1646 		rc = DDI_FAILURE;
1647 		goto err;
1648 	}
1649 	hwid[modlen + serlen] = 0;
1650 
1651 	/* Initialize the device ID, trailing NULL not included */
1652 	rc = ddi_devid_init(dkp->dk_dip, DEVID_ATA_SERIAL, modlen + serlen,
1653 	    hwid, &dkp->dk_devid);
1654 	if (rc != DDI_SUCCESS) {
1655 		rc = DDI_FAILURE;
1656 		goto err;
1657 	}
1658 
1659 	rc = DDI_SUCCESS;
1660 
1661 err:
1662 	kmem_free(hwid, CMDK_HWIDLEN);
1663 	return (rc);
1664 }
1665 
1666 static int
1667 cmdk_get_modser(struct cmdk *dkp, int ioccmd, char *buf, int len)
1668 {
1669 	dadk_ioc_string_t strarg;
1670 	int		rval;
1671 	char		*s;
1672 	char		ch;
1673 	boolean_t	ret;
1674 	int		i;
1675 	int		tb;
1676 
1677 	strarg.is_buf = buf;
1678 	strarg.is_size = len;
1679 	if (dadk_ioctl(DKTP_DATA,
1680 	    dkp->dk_dev,
1681 	    ioccmd,
1682 	    (uintptr_t)&strarg,
1683 	    FNATIVE | FKIOCTL,
1684 	    NULL,
1685 	    &rval) != 0)
1686 		return (0);
1687 
1688 	/*
1689 	 * valid model/serial string must contain a non-zero non-space
1690 	 * trim trailing spaces/NULL
1691 	 */
1692 	ret = B_FALSE;
1693 	s = buf;
1694 	for (i = 0; i < strarg.is_size; i++) {
1695 		ch = *s++;
1696 		if (ch != ' ' && ch != '\0')
1697 			tb = i + 1;
1698 		if (ch != ' ' && ch != '\0' && ch != '0')
1699 			ret = B_TRUE;
1700 	}
1701 
1702 	if (ret == B_FALSE)
1703 		return (0);
1704 
1705 	return (tb);
1706 }
1707 
1708 /*
1709  * Read a devid from on the first block of the last track of
1710  * the last cylinder.  Make sure what we read is a valid devid.
1711  * Return DDI_SUCCESS or DDI_FAILURE.
1712  */
1713 static int
1714 cmdk_devid_read(struct cmdk *dkp)
1715 {
1716 	diskaddr_t	blk;
1717 	struct dk_devid *dkdevidp;
1718 	uint_t		*ip;
1719 	int		chksum;
1720 	int		i, sz;
1721 	tgdk_iob_handle	handle = NULL;
1722 	int		rc = DDI_FAILURE;
1723 
1724 	if (cmlb_get_devid_block(dkp->dk_cmlbhandle, &blk, 0))
1725 		goto err;
1726 
1727 	/* read the devid */
1728 	handle = dadk_iob_alloc(DKTP_DATA, blk, NBPSCTR, KM_SLEEP);
1729 	if (handle == NULL)
1730 		goto err;
1731 
1732 	dkdevidp = (struct dk_devid *)dadk_iob_xfer(DKTP_DATA, handle, B_READ);
1733 	if (dkdevidp == NULL)
1734 		goto err;
1735 
1736 	/* Validate the revision */
1737 	if ((dkdevidp->dkd_rev_hi != DK_DEVID_REV_MSB) ||
1738 	    (dkdevidp->dkd_rev_lo != DK_DEVID_REV_LSB))
1739 		goto err;
1740 
1741 	/* Calculate the checksum */
1742 	chksum = 0;
1743 	ip = (uint_t *)dkdevidp;
1744 	for (i = 0; i < ((NBPSCTR - sizeof (int))/sizeof (int)); i++)
1745 		chksum ^= ip[i];
1746 	if (DKD_GETCHKSUM(dkdevidp) != chksum)
1747 		goto err;
1748 
1749 	/* Validate the device id */
1750 	if (ddi_devid_valid((ddi_devid_t)dkdevidp->dkd_devid) != DDI_SUCCESS)
1751 		goto err;
1752 
1753 	/* keep a copy of the device id */
1754 	sz = ddi_devid_sizeof((ddi_devid_t)dkdevidp->dkd_devid);
1755 	dkp->dk_devid = kmem_alloc(sz, KM_SLEEP);
1756 	bcopy(dkdevidp->dkd_devid, dkp->dk_devid, sz);
1757 
1758 	rc = DDI_SUCCESS;
1759 
1760 err:
1761 	if (handle != NULL)
1762 		(void) dadk_iob_free(DKTP_DATA, handle);
1763 	return (rc);
1764 }
1765 
1766 /*
1767  * Create a devid and write it on the first block of the last track of
1768  * the last cylinder.
1769  * Return DDI_SUCCESS or DDI_FAILURE.
1770  */
1771 static int
1772 cmdk_devid_fabricate(struct cmdk *dkp)
1773 {
1774 	ddi_devid_t	devid = NULL;	/* devid made by ddi_devid_init  */
1775 	struct dk_devid	*dkdevidp;	/* devid struct stored on disk */
1776 	diskaddr_t	blk;
1777 	tgdk_iob_handle	handle = NULL;
1778 	uint_t		*ip, chksum;
1779 	int		i;
1780 	int		rc = DDI_FAILURE;
1781 
1782 	if (ddi_devid_init(dkp->dk_dip, DEVID_FAB, 0, NULL, &devid) !=
1783 	    DDI_SUCCESS)
1784 		goto err;
1785 
1786 	if (cmlb_get_devid_block(dkp->dk_cmlbhandle, &blk, 0)) {
1787 		/* no device id block address */
1788 		goto err;
1789 	}
1790 
1791 	handle = dadk_iob_alloc(DKTP_DATA, blk, NBPSCTR, KM_SLEEP);
1792 	if (!handle)
1793 		goto err;
1794 
1795 	/* Locate the buffer */
1796 	dkdevidp = (struct dk_devid *)dadk_iob_htoc(DKTP_DATA, handle);
1797 
1798 	/* Fill in the revision */
1799 	bzero(dkdevidp, NBPSCTR);
1800 	dkdevidp->dkd_rev_hi = DK_DEVID_REV_MSB;
1801 	dkdevidp->dkd_rev_lo = DK_DEVID_REV_LSB;
1802 
1803 	/* Copy in the device id */
1804 	i = ddi_devid_sizeof(devid);
1805 	if (i > DK_DEVID_SIZE)
1806 		goto err;
1807 	bcopy(devid, dkdevidp->dkd_devid, i);
1808 
1809 	/* Calculate the chksum */
1810 	chksum = 0;
1811 	ip = (uint_t *)dkdevidp;
1812 	for (i = 0; i < ((NBPSCTR - sizeof (int))/sizeof (int)); i++)
1813 		chksum ^= ip[i];
1814 
1815 	/* Fill in the checksum */
1816 	DKD_FORMCHKSUM(chksum, dkdevidp);
1817 
1818 	/* write the devid */
1819 	(void) dadk_iob_xfer(DKTP_DATA, handle, B_WRITE);
1820 
1821 	dkp->dk_devid = devid;
1822 
1823 	rc = DDI_SUCCESS;
1824 
1825 err:
1826 	if (handle != NULL)
1827 		(void) dadk_iob_free(DKTP_DATA, handle);
1828 
1829 	if (rc != DDI_SUCCESS && devid != NULL)
1830 		ddi_devid_free(devid);
1831 
1832 	return (rc);
1833 }
1834 
1835 static void
1836 cmdk_bbh_free_alts(struct cmdk *dkp)
1837 {
1838 	if (dkp->dk_alts_hdl) {
1839 		(void) dadk_iob_free(DKTP_DATA, dkp->dk_alts_hdl);
1840 		kmem_free(dkp->dk_slc_cnt,
1841 		    NDKMAP * (sizeof (uint32_t) + sizeof (struct alts_ent *)));
1842 		dkp->dk_alts_hdl = NULL;
1843 	}
1844 }
1845 
1846 static void
1847 cmdk_bbh_reopen(struct cmdk *dkp)
1848 {
1849 	tgdk_iob_handle 	handle = NULL;
1850 	diskaddr_t		slcb, slcn, slce;
1851 	struct	alts_parttbl	*ap;
1852 	struct	alts_ent	*enttblp;
1853 	uint32_t		altused;
1854 	uint32_t		altbase;
1855 	uint32_t		altlast;
1856 	int			alts;
1857 	uint16_t		vtoctag;
1858 	int			i, j;
1859 
1860 	/* find slice with V_ALTSCTR tag */
1861 	for (alts = 0; alts < NDKMAP; alts++) {
1862 		if (cmlb_partinfo(
1863 		    dkp->dk_cmlbhandle,
1864 		    alts,
1865 		    &slcn,
1866 		    &slcb,
1867 		    NULL,
1868 		    &vtoctag,
1869 		    0)) {
1870 			goto empty;	/* no partition table exists */
1871 		}
1872 
1873 		if (vtoctag == V_ALTSCTR && slcn > 1)
1874 			break;
1875 	}
1876 	if (alts >= NDKMAP) {
1877 		goto empty;	/* no V_ALTSCTR slice defined */
1878 	}
1879 
1880 	/* read in ALTS label block */
1881 	handle = dadk_iob_alloc(DKTP_DATA, slcb, NBPSCTR, KM_SLEEP);
1882 	if (!handle) {
1883 		goto empty;
1884 	}
1885 
1886 	ap = (struct alts_parttbl *)dadk_iob_xfer(DKTP_DATA, handle, B_READ);
1887 	if (!ap || (ap->alts_sanity != ALTS_SANITY)) {
1888 		goto empty;
1889 	}
1890 
1891 	altused = ap->alts_ent_used;	/* number of BB entries */
1892 	altbase = ap->alts_ent_base;	/* blk offset from begin slice */
1893 	altlast = ap->alts_ent_end;	/* blk offset to last block */
1894 	/* ((altused * sizeof (struct alts_ent) + NBPSCTR - 1) & ~NBPSCTR) */
1895 
1896 	if (altused == 0 ||
1897 	    altbase < 1 ||
1898 	    altbase > altlast ||
1899 	    altlast >= slcn) {
1900 		goto empty;
1901 	}
1902 	(void) dadk_iob_free(DKTP_DATA, handle);
1903 
1904 	/* read in ALTS remapping table */
1905 	handle = dadk_iob_alloc(DKTP_DATA,
1906 	    slcb + altbase,
1907 	    (altlast - altbase + 1) << SCTRSHFT, KM_SLEEP);
1908 	if (!handle) {
1909 		goto empty;
1910 	}
1911 
1912 	enttblp = (struct alts_ent *)dadk_iob_xfer(DKTP_DATA, handle, B_READ);
1913 	if (!enttblp) {
1914 		goto empty;
1915 	}
1916 
1917 	rw_enter(&dkp->dk_bbh_mutex, RW_WRITER);
1918 
1919 	/* allocate space for dk_slc_cnt and dk_slc_ent tables */
1920 	if (dkp->dk_slc_cnt == NULL) {
1921 		dkp->dk_slc_cnt = kmem_alloc(NDKMAP *
1922 		    (sizeof (long) + sizeof (struct alts_ent *)), KM_SLEEP);
1923 	}
1924 	dkp->dk_slc_ent = (struct alts_ent **)(dkp->dk_slc_cnt + NDKMAP);
1925 
1926 	/* free previous BB table (if any) */
1927 	if (dkp->dk_alts_hdl) {
1928 		(void) dadk_iob_free(DKTP_DATA, dkp->dk_alts_hdl);
1929 		dkp->dk_alts_hdl = NULL;
1930 		dkp->dk_altused = 0;
1931 	}
1932 
1933 	/* save linkage to new BB table */
1934 	dkp->dk_alts_hdl = handle;
1935 	dkp->dk_altused = altused;
1936 
1937 	/*
1938 	 * build indexes to BB table by slice
1939 	 * effectively we have
1940 	 *	struct alts_ent *enttblp[altused];
1941 	 *
1942 	 *	uint32_t	dk_slc_cnt[NDKMAP];
1943 	 *	struct alts_ent *dk_slc_ent[NDKMAP];
1944 	 */
1945 	for (i = 0; i < NDKMAP; i++) {
1946 		if (cmlb_partinfo(
1947 		    dkp->dk_cmlbhandle,
1948 		    i,
1949 		    &slcn,
1950 		    &slcb,
1951 		    NULL,
1952 		    NULL,
1953 		    0)) {
1954 			goto empty1;
1955 		}
1956 
1957 		dkp->dk_slc_cnt[i] = 0;
1958 		if (slcn == 0)
1959 			continue;	/* slice is not allocated */
1960 
1961 		/* last block in slice */
1962 		slce = slcb + slcn - 1;
1963 
1964 		/* find first remap entry in after beginnning of slice */
1965 		for (j = 0; j < altused; j++) {
1966 			if (enttblp[j].bad_start + enttblp[j].bad_end >= slcb)
1967 				break;
1968 		}
1969 		dkp->dk_slc_ent[i] = enttblp + j;
1970 
1971 		/* count remap entrys until end of slice */
1972 		for (; j < altused && enttblp[j].bad_start <= slce; j++) {
1973 			dkp->dk_slc_cnt[i] += 1;
1974 		}
1975 	}
1976 
1977 	rw_exit(&dkp->dk_bbh_mutex);
1978 	return;
1979 
1980 empty:
1981 	rw_enter(&dkp->dk_bbh_mutex, RW_WRITER);
1982 empty1:
1983 	if (handle && handle != dkp->dk_alts_hdl)
1984 		(void) dadk_iob_free(DKTP_DATA, handle);
1985 
1986 	if (dkp->dk_alts_hdl) {
1987 		(void) dadk_iob_free(DKTP_DATA, dkp->dk_alts_hdl);
1988 		dkp->dk_alts_hdl = NULL;
1989 	}
1990 
1991 	rw_exit(&dkp->dk_bbh_mutex);
1992 }
1993 
1994 /*ARGSUSED*/
1995 static bbh_cookie_t
1996 cmdk_bbh_htoc(opaque_t bbh_data, opaque_t handle)
1997 {
1998 	struct	bbh_handle *hp;
1999 	bbh_cookie_t ckp;
2000 
2001 	hp = (struct  bbh_handle *)handle;
2002 	ckp = hp->h_cktab + hp->h_idx;
2003 	hp->h_idx++;
2004 	return (ckp);
2005 }
2006 
2007 /*ARGSUSED*/
2008 static void
2009 cmdk_bbh_freehandle(opaque_t bbh_data, opaque_t handle)
2010 {
2011 	struct	bbh_handle *hp;
2012 
2013 	hp = (struct  bbh_handle *)handle;
2014 	kmem_free(handle, (sizeof (struct bbh_handle) +
2015 	    (hp->h_totck * (sizeof (struct bbh_cookie)))));
2016 }
2017 
2018 
2019 /*
2020  *	cmdk_bbh_gethandle remaps the bad sectors to alternates.
2021  *	There are 7 different cases when the comparison is made
2022  *	between the bad sector cluster and the disk section.
2023  *
2024  *	bad sector cluster	gggggggggggbbbbbbbggggggggggg
2025  *	case 1:			   ddddd
2026  *	case 2:				   -d-----
2027  *	case 3:					     ddddd
2028  *	case 4:			         dddddddddddd
2029  *	case 5:			      ddddddd-----
2030  *	case 6:			           ---ddddddd
2031  *	case 7:			           ddddddd
2032  *
2033  *	where:  g = good sector,	b = bad sector
2034  *		d = sector in disk section
2035  *		- = disk section may be extended to cover those disk area
2036  */
2037 
2038 static opaque_t
2039 cmdk_bbh_gethandle(opaque_t bbh_data, struct buf *bp)
2040 {
2041 	struct cmdk		*dkp = (struct cmdk *)bbh_data;
2042 	struct bbh_handle	*hp;
2043 	struct bbh_cookie	*ckp;
2044 	struct alts_ent		*altp;
2045 	uint32_t		alts_used;
2046 	uint32_t		part = CMDKPART(bp->b_edev);
2047 	daddr32_t		lastsec;
2048 	long			d_count;
2049 	int			i;
2050 	int			idx;
2051 	int			cnt;
2052 
2053 	if (part >= V_NUMPAR)
2054 		return (NULL);
2055 
2056 	/*
2057 	 * This if statement is atomic and it will succeed
2058 	 * if there are no bad blocks (almost always)
2059 	 *
2060 	 * so this if is performed outside of the rw_enter for speed
2061 	 * and then repeated inside the rw_enter for safety
2062 	 */
2063 	if (!dkp->dk_alts_hdl) {
2064 		return (NULL);
2065 	}
2066 
2067 	rw_enter(&dkp->dk_bbh_mutex, RW_READER);
2068 
2069 	if (dkp->dk_alts_hdl == NULL) {
2070 		rw_exit(&dkp->dk_bbh_mutex);
2071 		return (NULL);
2072 	}
2073 
2074 	alts_used = dkp->dk_slc_cnt[part];
2075 	if (alts_used == 0) {
2076 		rw_exit(&dkp->dk_bbh_mutex);
2077 		return (NULL);
2078 	}
2079 	altp = dkp->dk_slc_ent[part];
2080 
2081 	/*
2082 	 * binary search for the largest bad sector index in the alternate
2083 	 * entry table which overlaps or larger than the starting d_sec
2084 	 */
2085 	i = cmdk_bbh_bsearch(altp, alts_used, GET_BP_SEC(bp));
2086 	/* if starting sector is > the largest bad sector, return */
2087 	if (i == -1) {
2088 		rw_exit(&dkp->dk_bbh_mutex);
2089 		return (NULL);
2090 	}
2091 	/* i is the starting index.  Set altp to the starting entry addr */
2092 	altp += i;
2093 
2094 	d_count = bp->b_bcount >> SCTRSHFT;
2095 	lastsec = GET_BP_SEC(bp) + d_count - 1;
2096 
2097 	/* calculate the number of bad sectors */
2098 	for (idx = i, cnt = 0; idx < alts_used; idx++, altp++, cnt++) {
2099 		if (lastsec < altp->bad_start)
2100 			break;
2101 	}
2102 
2103 	if (!cnt) {
2104 		rw_exit(&dkp->dk_bbh_mutex);
2105 		return (NULL);
2106 	}
2107 
2108 	/* calculate the maximum number of reserved cookies */
2109 	cnt <<= 1;
2110 	cnt++;
2111 
2112 	/* allocate the handle */
2113 	hp = (struct bbh_handle *)kmem_zalloc((sizeof (*hp) +
2114 	    (cnt * sizeof (*ckp))), KM_SLEEP);
2115 
2116 	hp->h_idx = 0;
2117 	hp->h_totck = cnt;
2118 	ckp = hp->h_cktab = (struct bbh_cookie *)(hp + 1);
2119 	ckp[0].ck_sector = GET_BP_SEC(bp);
2120 	ckp[0].ck_seclen = d_count;
2121 
2122 	altp = dkp->dk_slc_ent[part];
2123 	altp += i;
2124 	for (idx = 0; i < alts_used; i++, altp++) {
2125 		/* CASE 1: */
2126 		if (lastsec < altp->bad_start)
2127 			break;
2128 
2129 		/* CASE 3: */
2130 		if (ckp[idx].ck_sector > altp->bad_end)
2131 			continue;
2132 
2133 		/* CASE 2 and 7: */
2134 		if ((ckp[idx].ck_sector >= altp->bad_start) &&
2135 		    (lastsec <= altp->bad_end)) {
2136 			ckp[idx].ck_sector = altp->good_start +
2137 			    ckp[idx].ck_sector - altp->bad_start;
2138 			break;
2139 		}
2140 
2141 		/* at least one bad sector in our section.  break it. */
2142 		/* CASE 5: */
2143 		if ((lastsec >= altp->bad_start) &&
2144 		    (lastsec <= altp->bad_end)) {
2145 			ckp[idx+1].ck_seclen = lastsec - altp->bad_start + 1;
2146 			ckp[idx].ck_seclen -= ckp[idx+1].ck_seclen;
2147 			ckp[idx+1].ck_sector = altp->good_start;
2148 			break;
2149 		}
2150 		/* CASE 6: */
2151 		if ((ckp[idx].ck_sector <= altp->bad_end) &&
2152 		    (ckp[idx].ck_sector >= altp->bad_start)) {
2153 			ckp[idx+1].ck_seclen = ckp[idx].ck_seclen;
2154 			ckp[idx].ck_seclen = altp->bad_end -
2155 			    ckp[idx].ck_sector + 1;
2156 			ckp[idx+1].ck_seclen -= ckp[idx].ck_seclen;
2157 			ckp[idx].ck_sector = altp->good_start +
2158 			    ckp[idx].ck_sector - altp->bad_start;
2159 			idx++;
2160 			ckp[idx].ck_sector = altp->bad_end + 1;
2161 			continue;	/* check rest of section */
2162 		}
2163 
2164 		/* CASE 4: */
2165 		ckp[idx].ck_seclen = altp->bad_start - ckp[idx].ck_sector;
2166 		ckp[idx+1].ck_sector = altp->good_start;
2167 		ckp[idx+1].ck_seclen = altp->bad_end - altp->bad_start + 1;
2168 		idx += 2;
2169 		ckp[idx].ck_sector = altp->bad_end + 1;
2170 		ckp[idx].ck_seclen = lastsec - altp->bad_end;
2171 	}
2172 
2173 	rw_exit(&dkp->dk_bbh_mutex);
2174 	return ((opaque_t)hp);
2175 }
2176 
2177 static int
2178 cmdk_bbh_bsearch(struct alts_ent *buf, int cnt, daddr32_t key)
2179 {
2180 	int	i;
2181 	int	ind;
2182 	int	interval;
2183 	int	mystatus = -1;
2184 
2185 	if (!cnt)
2186 		return (mystatus);
2187 
2188 	ind = 1; /* compiler complains about possible uninitialized var	*/
2189 	for (i = 1; i <= cnt; i <<= 1)
2190 		ind = i;
2191 
2192 	for (interval = ind; interval; ) {
2193 		if ((key >= buf[ind-1].bad_start) &&
2194 		    (key <= buf[ind-1].bad_end)) {
2195 			return (ind-1);
2196 		} else {
2197 			interval >>= 1;
2198 			if (key < buf[ind-1].bad_start) {
2199 				/* record the largest bad sector index */
2200 				mystatus = ind-1;
2201 				if (!interval)
2202 					break;
2203 				ind = ind - interval;
2204 			} else {
2205 				/*
2206 				 * if key is larger than the last element
2207 				 * then break
2208 				 */
2209 				if ((ind == cnt) || !interval)
2210 					break;
2211 				if ((ind+interval) <= cnt)
2212 					ind += interval;
2213 			}
2214 		}
2215 	}
2216 	return (mystatus);
2217 }
2218