xref: /titanic_50/usr/src/uts/intel/io/dktp/disk/cmdk.c (revision 356f72340a69936724c69f2f87fffa6f5887f885)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 #include <sys/scsi/scsi.h>
27 #include <sys/dktp/cm.h>
28 #include <sys/dktp/quetypes.h>
29 #include <sys/dktp/queue.h>
30 #include <sys/dktp/fctypes.h>
31 #include <sys/dktp/flowctrl.h>
32 #include <sys/dktp/cmdev.h>
33 #include <sys/dkio.h>
34 #include <sys/dktp/tgdk.h>
35 #include <sys/dktp/dadk.h>
36 #include <sys/dktp/bbh.h>
37 #include <sys/dktp/altsctr.h>
38 #include <sys/dktp/cmdk.h>
39 
40 #include <sys/stat.h>
41 #include <sys/vtoc.h>
42 #include <sys/file.h>
43 #include <sys/dktp/dadkio.h>
44 #include <sys/aio_req.h>
45 
46 #include <sys/cmlb.h>
47 
48 /*
49  * Local Static Data
50  */
51 #ifdef CMDK_DEBUG
52 #define	DENT	0x0001
53 #define	DIO	0x0002
54 
55 static	int	cmdk_debug = DIO;
56 #endif
57 
58 #ifndef	TRUE
59 #define	TRUE	1
60 #endif
61 
62 #ifndef	FALSE
63 #define	FALSE	0
64 #endif
65 
66 /*
67  * NDKMAP is the base number for accessing the fdisk partitions.
68  * c?d?p0 --> cmdk@?,?:q
69  */
70 #define	PARTITION0_INDEX	(NDKMAP + 0)
71 
72 #define	DKTP_DATA		(dkp->dk_tgobjp)->tg_data
73 #define	DKTP_EXT		(dkp->dk_tgobjp)->tg_ext
74 
75 void *cmdk_state;
76 
77 /*
78  * the cmdk_attach_mutex protects cmdk_max_instance in multi-threaded
79  * attach situations
80  */
81 static kmutex_t cmdk_attach_mutex;
82 static int cmdk_max_instance = 0;
83 
84 /*
85  * Panic dumpsys state
86  * There is only a single flag that is not mutex locked since
87  * the system is prevented from thread switching and cmdk_dump
88  * will only be called in a single threaded operation.
89  */
90 static int	cmdk_indump;
91 
92 /*
93  * Local Function Prototypes
94  */
95 static int cmdk_create_obj(dev_info_t *dip, struct cmdk *dkp);
96 static void cmdk_destroy_obj(dev_info_t *dip, struct cmdk *dkp);
97 static void cmdkmin(struct buf *bp);
98 static int cmdkrw(dev_t dev, struct uio *uio, int flag);
99 static int cmdkarw(dev_t dev, struct aio_req *aio, int flag);
100 
101 /*
102  * Bad Block Handling Functions Prototypes
103  */
104 static void cmdk_bbh_reopen(struct cmdk *dkp);
105 static opaque_t cmdk_bbh_gethandle(opaque_t bbh_data, struct buf *bp);
106 static bbh_cookie_t cmdk_bbh_htoc(opaque_t bbh_data, opaque_t handle);
107 static void cmdk_bbh_freehandle(opaque_t bbh_data, opaque_t handle);
108 static void cmdk_bbh_close(struct cmdk *dkp);
109 static void cmdk_bbh_setalts_idx(struct cmdk *dkp);
110 static int cmdk_bbh_bsearch(struct alts_ent *buf, int cnt, daddr32_t key);
111 
112 static struct bbh_objops cmdk_bbh_ops = {
113 	nulldev,
114 	nulldev,
115 	cmdk_bbh_gethandle,
116 	cmdk_bbh_htoc,
117 	cmdk_bbh_freehandle,
118 	0, 0
119 };
120 
121 static int cmdkopen(dev_t *dev_p, int flag, int otyp, cred_t *credp);
122 static int cmdkclose(dev_t dev, int flag, int otyp, cred_t *credp);
123 static int cmdkstrategy(struct buf *bp);
124 static int cmdkdump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
125 static int cmdkioctl(dev_t, int, intptr_t, int, cred_t *, int *);
126 static int cmdkread(dev_t dev, struct uio *uio, cred_t *credp);
127 static int cmdkwrite(dev_t dev, struct uio *uio, cred_t *credp);
128 static int cmdk_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
129     int mod_flags, char *name, caddr_t valuep, int *lengthp);
130 static int cmdkaread(dev_t dev, struct aio_req *aio, cred_t *credp);
131 static int cmdkawrite(dev_t dev, struct aio_req *aio, cred_t *credp);
132 
133 /*
134  * Device driver ops vector
135  */
136 
137 static struct cb_ops cmdk_cb_ops = {
138 	cmdkopen, 		/* open */
139 	cmdkclose, 		/* close */
140 	cmdkstrategy, 		/* strategy */
141 	nodev, 			/* print */
142 	cmdkdump, 		/* dump */
143 	cmdkread, 		/* read */
144 	cmdkwrite, 		/* write */
145 	cmdkioctl, 		/* ioctl */
146 	nodev, 			/* devmap */
147 	nodev, 			/* mmap */
148 	nodev, 			/* segmap */
149 	nochpoll, 		/* poll */
150 	cmdk_prop_op, 		/* cb_prop_op */
151 	0, 			/* streamtab  */
152 	D_64BIT | D_MP | D_NEW,	/* Driver comaptibility flag */
153 	CB_REV,			/* cb_rev */
154 	cmdkaread,		/* async read */
155 	cmdkawrite		/* async write */
156 };
157 
158 static int cmdkinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
159     void **result);
160 static int cmdkprobe(dev_info_t *dip);
161 static int cmdkattach(dev_info_t *dip, ddi_attach_cmd_t cmd);
162 static int cmdkdetach(dev_info_t *dip, ddi_detach_cmd_t cmd);
163 
164 static void cmdk_setup_pm(dev_info_t *dip, struct cmdk *dkp);
165 static int cmdkresume(dev_info_t *dip);
166 static int cmdksuspend(dev_info_t *dip);
167 static int cmdkpower(dev_info_t *dip, int component, int level);
168 
169 struct dev_ops cmdk_ops = {
170 	DEVO_REV, 		/* devo_rev, */
171 	0, 			/* refcnt  */
172 	cmdkinfo,		/* info */
173 	nulldev, 		/* identify */
174 	cmdkprobe, 		/* probe */
175 	cmdkattach, 		/* attach */
176 	cmdkdetach,		/* detach */
177 	nodev, 			/* reset */
178 	&cmdk_cb_ops, 		/* driver operations */
179 	(struct bus_ops *)0,	/* bus operations */
180 	cmdkpower,		/* power */
181 	ddi_quiesce_not_needed,	/* quiesce */
182 };
183 
184 /*
185  * This is the loadable module wrapper.
186  */
187 #include <sys/modctl.h>
188 
189 #ifndef XPV_HVM_DRIVER
190 static struct modldrv modldrv = {
191 	&mod_driverops,		/* Type of module. This one is a driver */
192 	"Common Direct Access Disk",
193 	&cmdk_ops,				/* driver ops 		*/
194 };
195 
196 static struct modlinkage modlinkage = {
197 	MODREV_1, (void *)&modldrv, NULL
198 };
199 
200 
201 #else /* XPV_HVM_DRIVER */
202 static struct modlmisc modlmisc = {
203 	&mod_miscops,		/* Type of module. This one is a misc */
204 	"HVM Common Direct Access Disk",
205 };
206 
207 static struct modlinkage modlinkage = {
208 	MODREV_1, (void *)&modlmisc, NULL
209 };
210 
211 #endif /* XPV_HVM_DRIVER */
212 
213 /* Function prototypes for cmlb callbacks */
214 
215 static int cmdk_lb_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr,
216     diskaddr_t start, size_t length, void *tg_cookie);
217 
218 static int cmdk_lb_getinfo(dev_info_t *dip, int cmd,  void *arg,
219     void *tg_cookie);
220 
221 static void cmdk_devid_setup(struct cmdk *dkp);
222 static int cmdk_devid_modser(struct cmdk *dkp);
223 static int cmdk_get_modser(struct cmdk *dkp, int ioccmd, char *buf, int len);
224 static int cmdk_devid_fabricate(struct cmdk *dkp);
225 static int cmdk_devid_read(struct cmdk *dkp);
226 
227 static cmlb_tg_ops_t cmdk_lb_ops = {
228 	TG_DK_OPS_VERSION_1,
229 	cmdk_lb_rdwr,
230 	cmdk_lb_getinfo
231 };
232 
233 static boolean_t
234 cmdk_isopen(struct cmdk *dkp, dev_t dev)
235 {
236 	int		part, otyp;
237 	ulong_t		partbit;
238 
239 	ASSERT(MUTEX_HELD((&dkp->dk_mutex)));
240 
241 	part = CMDKPART(dev);
242 	partbit = 1 << part;
243 
244 	/* account for close */
245 	if (dkp->dk_open_lyr[part] != 0)
246 		return (B_TRUE);
247 	for (otyp = 0; otyp < OTYPCNT; otyp++)
248 		if (dkp->dk_open_reg[otyp] & partbit)
249 			return (B_TRUE);
250 	return (B_FALSE);
251 }
252 
253 int
254 _init(void)
255 {
256 	int 	rval;
257 
258 #ifndef XPV_HVM_DRIVER
259 	if (rval = ddi_soft_state_init(&cmdk_state, sizeof (struct cmdk), 7))
260 		return (rval);
261 #endif /* !XPV_HVM_DRIVER */
262 
263 	mutex_init(&cmdk_attach_mutex, NULL, MUTEX_DRIVER, NULL);
264 	if ((rval = mod_install(&modlinkage)) != 0) {
265 		mutex_destroy(&cmdk_attach_mutex);
266 #ifndef XPV_HVM_DRIVER
267 		ddi_soft_state_fini(&cmdk_state);
268 #endif /* !XPV_HVM_DRIVER */
269 	}
270 	return (rval);
271 }
272 
273 int
274 _fini(void)
275 {
276 	return (EBUSY);
277 }
278 
279 int
280 _info(struct modinfo *modinfop)
281 {
282 	return (mod_info(&modlinkage, modinfop));
283 }
284 
285 /*
286  * Autoconfiguration Routines
287  */
288 static int
289 cmdkprobe(dev_info_t *dip)
290 {
291 	int 	instance;
292 	int	status;
293 	struct	cmdk	*dkp;
294 
295 	instance = ddi_get_instance(dip);
296 
297 #ifndef XPV_HVM_DRIVER
298 	if (ddi_get_soft_state(cmdk_state, instance))
299 		return (DDI_PROBE_PARTIAL);
300 
301 	if (ddi_soft_state_zalloc(cmdk_state, instance) != DDI_SUCCESS)
302 		return (DDI_PROBE_PARTIAL);
303 #endif /* !XPV_HVM_DRIVER */
304 
305 	if ((dkp = ddi_get_soft_state(cmdk_state, instance)) == NULL)
306 		return (DDI_PROBE_PARTIAL);
307 
308 	mutex_init(&dkp->dk_mutex, NULL, MUTEX_DRIVER, NULL);
309 	rw_init(&dkp->dk_bbh_mutex, NULL, RW_DRIVER, NULL);
310 	dkp->dk_dip = dip;
311 	mutex_enter(&dkp->dk_mutex);
312 
313 	dkp->dk_dev = makedevice(ddi_driver_major(dip),
314 	    ddi_get_instance(dip) << CMDK_UNITSHF);
315 
316 	/* linkage to dadk and strategy */
317 	if (cmdk_create_obj(dip, dkp) != DDI_SUCCESS) {
318 		mutex_exit(&dkp->dk_mutex);
319 		mutex_destroy(&dkp->dk_mutex);
320 		rw_destroy(&dkp->dk_bbh_mutex);
321 #ifndef XPV_HVM_DRIVER
322 		ddi_soft_state_free(cmdk_state, instance);
323 #endif /* !XPV_HVM_DRIVER */
324 		return (DDI_PROBE_PARTIAL);
325 	}
326 
327 	status = dadk_probe(DKTP_DATA, KM_NOSLEEP);
328 	if (status != DDI_PROBE_SUCCESS) {
329 		cmdk_destroy_obj(dip, dkp);	/* dadk/strategy linkage  */
330 		mutex_exit(&dkp->dk_mutex);
331 		mutex_destroy(&dkp->dk_mutex);
332 		rw_destroy(&dkp->dk_bbh_mutex);
333 #ifndef XPV_HVM_DRIVER
334 		ddi_soft_state_free(cmdk_state, instance);
335 #endif /* !XPV_HVM_DRIVER */
336 		return (status);
337 	}
338 
339 	mutex_exit(&dkp->dk_mutex);
340 #ifdef CMDK_DEBUG
341 	if (cmdk_debug & DENT)
342 		PRF("cmdkprobe: instance= %d name= `%s`\n",
343 		    instance, ddi_get_name_addr(dip));
344 #endif
345 	return (status);
346 }
347 
348 static int
349 cmdkattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
350 {
351 	int 		instance;
352 	struct		cmdk *dkp;
353 	char 		*node_type;
354 
355 	switch (cmd) {
356 	case DDI_ATTACH:
357 		break;
358 	case DDI_RESUME:
359 		return (cmdkresume(dip));
360 	default:
361 		return (DDI_FAILURE);
362 	}
363 
364 	instance = ddi_get_instance(dip);
365 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
366 		return (DDI_FAILURE);
367 
368 	dkp->dk_pm_level = CMDK_SPINDLE_UNINIT;
369 	mutex_init(&dkp->dk_mutex, NULL, MUTEX_DRIVER, NULL);
370 
371 	mutex_enter(&dkp->dk_mutex);
372 
373 	/* dadk_attach is an empty function that only returns SUCCESS */
374 	(void) dadk_attach(DKTP_DATA);
375 
376 	node_type = (DKTP_EXT->tg_nodetype);
377 
378 	/*
379 	 * this open allows cmlb to read the device
380 	 * and determine the label types
381 	 * so that cmlb can create minor nodes for device
382 	 */
383 
384 	/* open the target disk	 */
385 	if (dadk_open(DKTP_DATA, 0) != DDI_SUCCESS)
386 		goto fail2;
387 
388 #ifdef _ILP32
389 	{
390 		struct  tgdk_geom phyg;
391 		(void) dadk_getphygeom(DKTP_DATA, &phyg);
392 		if ((phyg.g_cap - 1) > DK_MAX_BLOCKS) {
393 			(void) dadk_close(DKTP_DATA);
394 			goto fail2;
395 		}
396 	}
397 #endif
398 
399 
400 	/* mark as having opened target */
401 	dkp->dk_flag |= CMDK_TGDK_OPEN;
402 
403 	cmlb_alloc_handle((cmlb_handle_t *)&dkp->dk_cmlbhandle);
404 
405 	if (cmlb_attach(dip,
406 	    &cmdk_lb_ops,
407 	    DTYPE_DIRECT,		/* device_type */
408 	    B_FALSE,			/* removable */
409 	    B_FALSE,			/* hot pluggable XXX */
410 	    node_type,
411 	    CMLB_CREATE_ALTSLICE_VTOC_16_DTYPE_DIRECT,	/* alter_behaviour */
412 	    dkp->dk_cmlbhandle,
413 	    0) != 0)
414 		goto fail1;
415 
416 	/* Calling validate will create minor nodes according to disk label */
417 	(void) cmlb_validate(dkp->dk_cmlbhandle, 0, 0);
418 
419 	/* set bbh (Bad Block Handling) */
420 	cmdk_bbh_reopen(dkp);
421 
422 	/* setup devid string */
423 	cmdk_devid_setup(dkp);
424 
425 	mutex_enter(&cmdk_attach_mutex);
426 	if (instance > cmdk_max_instance)
427 		cmdk_max_instance = instance;
428 	mutex_exit(&cmdk_attach_mutex);
429 
430 	mutex_exit(&dkp->dk_mutex);
431 
432 	/*
433 	 * Add a zero-length attribute to tell the world we support
434 	 * kernel ioctls (for layered drivers)
435 	 */
436 	(void) ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
437 	    DDI_KERNEL_IOCTL, NULL, 0);
438 	ddi_report_dev(dip);
439 
440 	/*
441 	 * Initialize power management
442 	 */
443 	mutex_init(&dkp->dk_pm_mutex, NULL, MUTEX_DRIVER, NULL);
444 	cv_init(&dkp->dk_suspend_cv,   NULL, CV_DRIVER, NULL);
445 	cmdk_setup_pm(dip, dkp);
446 
447 	return (DDI_SUCCESS);
448 
449 fail1:
450 	cmlb_free_handle(&dkp->dk_cmlbhandle);
451 	(void) dadk_close(DKTP_DATA);
452 fail2:
453 	cmdk_destroy_obj(dip, dkp);
454 	rw_destroy(&dkp->dk_bbh_mutex);
455 	mutex_exit(&dkp->dk_mutex);
456 	mutex_destroy(&dkp->dk_mutex);
457 #ifndef XPV_HVM_DRIVER
458 	ddi_soft_state_free(cmdk_state, instance);
459 #endif /* !XPV_HVM_DRIVER */
460 	return (DDI_FAILURE);
461 }
462 
463 
464 static int
465 cmdkdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
466 {
467 	struct cmdk	*dkp;
468 	int 		instance;
469 	int		max_instance;
470 
471 	switch (cmd) {
472 	case DDI_DETACH:
473 		/* return (DDI_FAILURE); */
474 		break;
475 	case DDI_SUSPEND:
476 		return (cmdksuspend(dip));
477 	default:
478 #ifdef CMDK_DEBUG
479 		if (cmdk_debug & DIO) {
480 			PRF("cmdkdetach: cmd = %d unknown\n", cmd);
481 		}
482 #endif
483 		return (DDI_FAILURE);
484 	}
485 
486 	mutex_enter(&cmdk_attach_mutex);
487 	max_instance = cmdk_max_instance;
488 	mutex_exit(&cmdk_attach_mutex);
489 
490 	/* check if any instance of driver is open */
491 	for (instance = 0; instance < max_instance; instance++) {
492 		dkp = ddi_get_soft_state(cmdk_state, instance);
493 		if (!dkp)
494 			continue;
495 		if (dkp->dk_flag & CMDK_OPEN)
496 			return (DDI_FAILURE);
497 	}
498 
499 	instance = ddi_get_instance(dip);
500 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
501 		return (DDI_SUCCESS);
502 
503 	mutex_enter(&dkp->dk_mutex);
504 
505 	/*
506 	 * The cmdk_part_info call at the end of cmdkattach may have
507 	 * caused cmdk_reopen to do a TGDK_OPEN, make sure we close on
508 	 * detach for case when cmdkopen/cmdkclose never occurs.
509 	 */
510 	if (dkp->dk_flag & CMDK_TGDK_OPEN) {
511 		dkp->dk_flag &= ~CMDK_TGDK_OPEN;
512 		(void) dadk_close(DKTP_DATA);
513 	}
514 
515 	cmlb_detach(dkp->dk_cmlbhandle, 0);
516 	cmlb_free_handle(&dkp->dk_cmlbhandle);
517 	ddi_prop_remove_all(dip);
518 
519 	cmdk_destroy_obj(dip, dkp);	/* dadk/strategy linkage  */
520 
521 	/*
522 	 * free the devid structure if allocated before
523 	 */
524 	if (dkp->dk_devid) {
525 		ddi_devid_free(dkp->dk_devid);
526 		dkp->dk_devid = NULL;
527 	}
528 
529 	mutex_exit(&dkp->dk_mutex);
530 	mutex_destroy(&dkp->dk_mutex);
531 	rw_destroy(&dkp->dk_bbh_mutex);
532 	mutex_destroy(&dkp->dk_pm_mutex);
533 	cv_destroy(&dkp->dk_suspend_cv);
534 #ifndef XPV_HVM_DRIVER
535 	ddi_soft_state_free(cmdk_state, instance);
536 #endif /* !XPV_HVM_DRIVER */
537 
538 	return (DDI_SUCCESS);
539 }
540 
541 static int
542 cmdkinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
543 {
544 	dev_t		dev = (dev_t)arg;
545 	int 		instance;
546 	struct	cmdk	*dkp;
547 
548 #ifdef lint
549 	dip = dip;	/* no one ever uses this */
550 #endif
551 #ifdef CMDK_DEBUG
552 	if (cmdk_debug & DENT)
553 		PRF("cmdkinfo: call\n");
554 #endif
555 	instance = CMDKUNIT(dev);
556 
557 	switch (infocmd) {
558 		case DDI_INFO_DEVT2DEVINFO:
559 			if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
560 				return (DDI_FAILURE);
561 			*result = (void *) dkp->dk_dip;
562 			break;
563 		case DDI_INFO_DEVT2INSTANCE:
564 			*result = (void *)(intptr_t)instance;
565 			break;
566 		default:
567 			return (DDI_FAILURE);
568 	}
569 	return (DDI_SUCCESS);
570 }
571 
572 /*
573  * Initialize the power management components
574  */
575 static void
576 cmdk_setup_pm(dev_info_t *dip, struct cmdk *dkp)
577 {
578 	char *pm_comp[] = { "NAME=cmdk", "0=off", "1=on", NULL };
579 
580 	/*
581 	 * Since the cmdk device does not the 'reg' property,
582 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
583 	 * The following code is to tell cpr that this device
584 	 * DOES need to be suspended and resumed.
585 	 */
586 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, dip,
587 	    "pm-hardware-state", "needs-suspend-resume");
588 
589 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, dip,
590 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
591 		if (pm_raise_power(dip, 0, CMDK_SPINDLE_ON) == DDI_SUCCESS) {
592 			mutex_enter(&dkp->dk_pm_mutex);
593 			dkp->dk_pm_level = CMDK_SPINDLE_ON;
594 			dkp->dk_pm_is_enabled = 1;
595 			mutex_exit(&dkp->dk_pm_mutex);
596 		} else {
597 			mutex_enter(&dkp->dk_pm_mutex);
598 			dkp->dk_pm_level = CMDK_SPINDLE_OFF;
599 			dkp->dk_pm_is_enabled = 0;
600 			mutex_exit(&dkp->dk_pm_mutex);
601 		}
602 	} else {
603 		mutex_enter(&dkp->dk_pm_mutex);
604 		dkp->dk_pm_level = CMDK_SPINDLE_UNINIT;
605 		dkp->dk_pm_is_enabled = 0;
606 		mutex_exit(&dkp->dk_pm_mutex);
607 	}
608 }
609 
610 /*
611  * suspend routine, it will be run when get the command
612  * DDI_SUSPEND at detach(9E) from system power management
613  */
614 static int
615 cmdksuspend(dev_info_t *dip)
616 {
617 	struct cmdk	*dkp;
618 	int		instance;
619 	clock_t		count = 0;
620 
621 	instance = ddi_get_instance(dip);
622 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
623 		return (DDI_FAILURE);
624 	mutex_enter(&dkp->dk_mutex);
625 	if (dkp->dk_flag & CMDK_SUSPEND) {
626 		mutex_exit(&dkp->dk_mutex);
627 		return (DDI_SUCCESS);
628 	}
629 	dkp->dk_flag |= CMDK_SUSPEND;
630 
631 	/* need to wait a while */
632 	while (dadk_getcmds(DKTP_DATA) != 0) {
633 		delay(drv_usectohz(1000000));
634 		if (count > 60) {
635 			dkp->dk_flag &= ~CMDK_SUSPEND;
636 			cv_broadcast(&dkp->dk_suspend_cv);
637 			mutex_exit(&dkp->dk_mutex);
638 			return (DDI_FAILURE);
639 		}
640 		count++;
641 	}
642 	mutex_exit(&dkp->dk_mutex);
643 	return (DDI_SUCCESS);
644 }
645 
646 /*
647  * resume routine, it will be run when get the command
648  * DDI_RESUME at attach(9E) from system power management
649  */
650 static int
651 cmdkresume(dev_info_t *dip)
652 {
653 	struct cmdk	*dkp;
654 	int		instance;
655 
656 	instance = ddi_get_instance(dip);
657 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
658 		return (DDI_FAILURE);
659 	mutex_enter(&dkp->dk_mutex);
660 	if (!(dkp->dk_flag & CMDK_SUSPEND)) {
661 		mutex_exit(&dkp->dk_mutex);
662 		return (DDI_FAILURE);
663 	}
664 	dkp->dk_pm_level = CMDK_SPINDLE_ON;
665 	dkp->dk_flag &= ~CMDK_SUSPEND;
666 	cv_broadcast(&dkp->dk_suspend_cv);
667 	mutex_exit(&dkp->dk_mutex);
668 	return (DDI_SUCCESS);
669 
670 }
671 
672 /*
673  * power management entry point, it was used to
674  * change power management component.
675  * Actually, the real hard drive suspend/resume
676  * was handled in ata, so this function is not
677  * doing any real work other than verifying that
678  * the disk is idle.
679  */
680 static int
681 cmdkpower(dev_info_t *dip, int component, int level)
682 {
683 	struct cmdk	*dkp;
684 	int		instance;
685 
686 	instance = ddi_get_instance(dip);
687 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)) ||
688 	    component != 0 || level > CMDK_SPINDLE_ON ||
689 	    level < CMDK_SPINDLE_OFF) {
690 		return (DDI_FAILURE);
691 	}
692 
693 	mutex_enter(&dkp->dk_pm_mutex);
694 	if (dkp->dk_pm_is_enabled && dkp->dk_pm_level == level) {
695 		mutex_exit(&dkp->dk_pm_mutex);
696 		return (DDI_SUCCESS);
697 	}
698 	mutex_exit(&dkp->dk_pm_mutex);
699 
700 	if ((level == CMDK_SPINDLE_OFF) &&
701 	    (dadk_getcmds(DKTP_DATA) != 0)) {
702 		return (DDI_FAILURE);
703 	}
704 
705 	mutex_enter(&dkp->dk_pm_mutex);
706 	dkp->dk_pm_level = level;
707 	mutex_exit(&dkp->dk_pm_mutex);
708 	return (DDI_SUCCESS);
709 }
710 
711 static int
712 cmdk_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
713     char *name, caddr_t valuep, int *lengthp)
714 {
715 	struct	cmdk	*dkp;
716 
717 #ifdef CMDK_DEBUG
718 	if (cmdk_debug & DENT)
719 		PRF("cmdk_prop_op: call\n");
720 #endif
721 
722 	dkp = ddi_get_soft_state(cmdk_state, ddi_get_instance(dip));
723 	if (dkp == NULL)
724 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
725 		    name, valuep, lengthp));
726 
727 	return (cmlb_prop_op(dkp->dk_cmlbhandle,
728 	    dev, dip, prop_op, mod_flags, name, valuep, lengthp,
729 	    CMDKPART(dev), NULL));
730 }
731 
732 /*
733  * dump routine
734  */
735 static int
736 cmdkdump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
737 {
738 	int 		instance;
739 	struct	cmdk	*dkp;
740 	diskaddr_t	p_lblksrt;
741 	diskaddr_t	p_lblkcnt;
742 	struct	buf	local;
743 	struct	buf	*bp;
744 
745 #ifdef CMDK_DEBUG
746 	if (cmdk_debug & DENT)
747 		PRF("cmdkdump: call\n");
748 #endif
749 	instance = CMDKUNIT(dev);
750 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)) || (blkno < 0))
751 		return (ENXIO);
752 
753 	if (cmlb_partinfo(
754 	    dkp->dk_cmlbhandle,
755 	    CMDKPART(dev),
756 	    &p_lblkcnt,
757 	    &p_lblksrt,
758 	    NULL,
759 	    NULL,
760 	    0)) {
761 		return (ENXIO);
762 	}
763 
764 	if ((blkno+nblk) > p_lblkcnt)
765 		return (EINVAL);
766 
767 	cmdk_indump = 1;	/* Tell disk targets we are panic dumpping */
768 
769 	bp = &local;
770 	bzero(bp, sizeof (*bp));
771 	bp->b_flags = B_BUSY;
772 	bp->b_un.b_addr = addr;
773 	bp->b_bcount = nblk << SCTRSHFT;
774 	SET_BP_SEC(bp, ((ulong_t)(p_lblksrt + blkno)));
775 
776 	(void) dadk_dump(DKTP_DATA, bp);
777 	return (bp->b_error);
778 }
779 
780 /*
781  * Copy in the dadkio_rwcmd according to the user's data model.  If needed,
782  * convert it for our internal use.
783  */
784 static int
785 rwcmd_copyin(struct dadkio_rwcmd *rwcmdp, caddr_t inaddr, int flag)
786 {
787 	switch (ddi_model_convert_from(flag)) {
788 		case DDI_MODEL_ILP32: {
789 			struct dadkio_rwcmd32 cmd32;
790 
791 			if (ddi_copyin(inaddr, &cmd32,
792 			    sizeof (struct dadkio_rwcmd32), flag)) {
793 				return (EFAULT);
794 			}
795 
796 			rwcmdp->cmd = cmd32.cmd;
797 			rwcmdp->flags = cmd32.flags;
798 			rwcmdp->blkaddr = (blkaddr_t)cmd32.blkaddr;
799 			rwcmdp->buflen = cmd32.buflen;
800 			rwcmdp->bufaddr = (caddr_t)(intptr_t)cmd32.bufaddr;
801 			/*
802 			 * Note: we do not convert the 'status' field,
803 			 * as it should not contain valid data at this
804 			 * point.
805 			 */
806 			bzero(&rwcmdp->status, sizeof (rwcmdp->status));
807 			break;
808 		}
809 		case DDI_MODEL_NONE: {
810 			if (ddi_copyin(inaddr, rwcmdp,
811 			    sizeof (struct dadkio_rwcmd), flag)) {
812 				return (EFAULT);
813 			}
814 		}
815 	}
816 	return (0);
817 }
818 
819 /*
820  * If necessary, convert the internal rwcmdp and status to the appropriate
821  * data model and copy it out to the user.
822  */
823 static int
824 rwcmd_copyout(struct dadkio_rwcmd *rwcmdp, caddr_t outaddr, int flag)
825 {
826 	switch (ddi_model_convert_from(flag)) {
827 		case DDI_MODEL_ILP32: {
828 			struct dadkio_rwcmd32 cmd32;
829 
830 			cmd32.cmd = rwcmdp->cmd;
831 			cmd32.flags = rwcmdp->flags;
832 			cmd32.blkaddr = rwcmdp->blkaddr;
833 			cmd32.buflen = rwcmdp->buflen;
834 			ASSERT64(((uintptr_t)rwcmdp->bufaddr >> 32) == 0);
835 			cmd32.bufaddr = (caddr32_t)(uintptr_t)rwcmdp->bufaddr;
836 
837 			cmd32.status.status = rwcmdp->status.status;
838 			cmd32.status.resid = rwcmdp->status.resid;
839 			cmd32.status.failed_blk_is_valid =
840 			    rwcmdp->status.failed_blk_is_valid;
841 			cmd32.status.failed_blk = rwcmdp->status.failed_blk;
842 			cmd32.status.fru_code_is_valid =
843 			    rwcmdp->status.fru_code_is_valid;
844 			cmd32.status.fru_code = rwcmdp->status.fru_code;
845 
846 			bcopy(rwcmdp->status.add_error_info,
847 			    cmd32.status.add_error_info, DADKIO_ERROR_INFO_LEN);
848 
849 			if (ddi_copyout(&cmd32, outaddr,
850 			    sizeof (struct dadkio_rwcmd32), flag))
851 				return (EFAULT);
852 			break;
853 		}
854 		case DDI_MODEL_NONE: {
855 			if (ddi_copyout(rwcmdp, outaddr,
856 			    sizeof (struct dadkio_rwcmd), flag))
857 			return (EFAULT);
858 		}
859 	}
860 	return (0);
861 }
862 
863 /*
864  * ioctl routine
865  */
866 static int
867 cmdkioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp, int *rvalp)
868 {
869 	int 		instance;
870 	struct scsi_device *devp;
871 	struct cmdk	*dkp;
872 	char 		data[NBPSCTR];
873 
874 	instance = CMDKUNIT(dev);
875 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
876 		return (ENXIO);
877 
878 	mutex_enter(&dkp->dk_mutex);
879 	while (dkp->dk_flag & CMDK_SUSPEND) {
880 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
881 	}
882 	mutex_exit(&dkp->dk_mutex);
883 
884 	bzero(data, sizeof (data));
885 
886 	switch (cmd) {
887 
888 	case DKIOCGMEDIAINFO: {
889 		struct dk_minfo	media_info;
890 		struct  tgdk_geom phyg;
891 
892 		/* dadk_getphygeom always returns success */
893 		(void) dadk_getphygeom(DKTP_DATA, &phyg);
894 
895 		media_info.dki_lbsize = phyg.g_secsiz;
896 		media_info.dki_capacity = phyg.g_cap;
897 		media_info.dki_media_type = DK_FIXED_DISK;
898 
899 		if (ddi_copyout(&media_info, (void *)arg,
900 		    sizeof (struct dk_minfo), flag)) {
901 			return (EFAULT);
902 		} else {
903 			return (0);
904 		}
905 	}
906 
907 	case DKIOCINFO: {
908 		struct dk_cinfo *info = (struct dk_cinfo *)data;
909 
910 		/* controller information */
911 		info->dki_ctype = (DKTP_EXT->tg_ctype);
912 		info->dki_cnum = ddi_get_instance(ddi_get_parent(dkp->dk_dip));
913 		(void) strcpy(info->dki_cname,
914 		    ddi_get_name(ddi_get_parent(dkp->dk_dip)));
915 
916 		/* Unit Information */
917 		info->dki_unit = ddi_get_instance(dkp->dk_dip);
918 		devp = ddi_get_driver_private(dkp->dk_dip);
919 		info->dki_slave = (CMDEV_TARG(devp)<<3) | CMDEV_LUN(devp);
920 		(void) strcpy(info->dki_dname, ddi_driver_name(dkp->dk_dip));
921 		info->dki_flags = DKI_FMTVOL;
922 		info->dki_partition = CMDKPART(dev);
923 
924 		info->dki_maxtransfer = maxphys / DEV_BSIZE;
925 		info->dki_addr = 1;
926 		info->dki_space = 0;
927 		info->dki_prio = 0;
928 		info->dki_vec = 0;
929 
930 		if (ddi_copyout(data, (void *)arg, sizeof (*info), flag))
931 			return (EFAULT);
932 		else
933 			return (0);
934 	}
935 
936 	case DKIOCSTATE: {
937 		int	state;
938 		int	rval;
939 		diskaddr_t	p_lblksrt;
940 		diskaddr_t	p_lblkcnt;
941 
942 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag))
943 			return (EFAULT);
944 
945 		/* dadk_check_media blocks until state changes */
946 		if (rval = dadk_check_media(DKTP_DATA, &state))
947 			return (rval);
948 
949 		if (state == DKIO_INSERTED) {
950 
951 			if (cmlb_validate(dkp->dk_cmlbhandle, 0, 0) != 0)
952 				return (ENXIO);
953 
954 			if (cmlb_partinfo(dkp->dk_cmlbhandle, CMDKPART(dev),
955 			    &p_lblkcnt, &p_lblksrt, NULL, NULL, 0))
956 				return (ENXIO);
957 
958 			if (p_lblkcnt <= 0)
959 				return (ENXIO);
960 		}
961 
962 		if (ddi_copyout(&state, (caddr_t)arg, sizeof (int), flag))
963 			return (EFAULT);
964 
965 		return (0);
966 	}
967 
968 	/*
969 	 * is media removable?
970 	 */
971 	case DKIOCREMOVABLE: {
972 		int i;
973 
974 		i = (DKTP_EXT->tg_rmb) ? 1 : 0;
975 
976 		if (ddi_copyout(&i, (caddr_t)arg, sizeof (int), flag))
977 			return (EFAULT);
978 
979 		return (0);
980 	}
981 
982 	case DKIOCADDBAD:
983 		/*
984 		 * This is not an update mechanism to add bad blocks
985 		 * to the bad block structures stored on disk.
986 		 *
987 		 * addbadsec(1M) will update the bad block data on disk
988 		 * and use this ioctl to force the driver to re-initialize
989 		 * the list of bad blocks in the driver.
990 		 */
991 
992 		/* start BBH */
993 		cmdk_bbh_reopen(dkp);
994 		return (0);
995 
996 	case DKIOCG_PHYGEOM:
997 	case DKIOCG_VIRTGEOM:
998 	case DKIOCGGEOM:
999 	case DKIOCSGEOM:
1000 	case DKIOCGAPART:
1001 	case DKIOCSAPART:
1002 	case DKIOCGVTOC:
1003 	case DKIOCSVTOC:
1004 	case DKIOCPARTINFO:
1005 	case DKIOCGEXTVTOC:
1006 	case DKIOCSEXTVTOC:
1007 	case DKIOCEXTPARTINFO:
1008 	case DKIOCGMBOOT:
1009 	case DKIOCSMBOOT:
1010 	case DKIOCGETEFI:
1011 	case DKIOCSETEFI:
1012 	case DKIOCPARTITION:
1013 	case DKIOCSETEXTPART:
1014 	{
1015 		int rc;
1016 
1017 		rc = cmlb_ioctl(dkp->dk_cmlbhandle, dev, cmd, arg, flag,
1018 		    credp, rvalp, 0);
1019 		if (cmd == DKIOCSVTOC || cmd == DKIOCSEXTVTOC)
1020 			cmdk_devid_setup(dkp);
1021 		return (rc);
1022 	}
1023 
1024 	case DIOCTL_RWCMD: {
1025 		struct	dadkio_rwcmd *rwcmdp;
1026 		int	status;
1027 
1028 		rwcmdp = kmem_alloc(sizeof (struct dadkio_rwcmd), KM_SLEEP);
1029 
1030 		status = rwcmd_copyin(rwcmdp, (caddr_t)arg, flag);
1031 
1032 		if (status == 0) {
1033 			bzero(&(rwcmdp->status), sizeof (struct dadkio_status));
1034 			status = dadk_ioctl(DKTP_DATA,
1035 			    dev,
1036 			    cmd,
1037 			    (uintptr_t)rwcmdp,
1038 			    flag,
1039 			    credp,
1040 			    rvalp);
1041 		}
1042 		if (status == 0)
1043 			status = rwcmd_copyout(rwcmdp, (caddr_t)arg, flag);
1044 
1045 		kmem_free(rwcmdp, sizeof (struct dadkio_rwcmd));
1046 		return (status);
1047 	}
1048 
1049 	default:
1050 		return (dadk_ioctl(DKTP_DATA,
1051 		    dev,
1052 		    cmd,
1053 		    arg,
1054 		    flag,
1055 		    credp,
1056 		    rvalp));
1057 	}
1058 }
1059 
1060 /*ARGSUSED1*/
1061 static int
1062 cmdkclose(dev_t dev, int flag, int otyp, cred_t *credp)
1063 {
1064 	int		part;
1065 	ulong_t		partbit;
1066 	int 		instance;
1067 	struct cmdk	*dkp;
1068 	int		lastclose = 1;
1069 	int		i;
1070 
1071 	instance = CMDKUNIT(dev);
1072 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)) ||
1073 	    (otyp >= OTYPCNT))
1074 		return (ENXIO);
1075 
1076 	mutex_enter(&dkp->dk_mutex);
1077 
1078 	/* check if device has been opened */
1079 	ASSERT(cmdk_isopen(dkp, dev));
1080 	if (!(dkp->dk_flag & CMDK_OPEN)) {
1081 		mutex_exit(&dkp->dk_mutex);
1082 		return (ENXIO);
1083 	}
1084 
1085 	while (dkp->dk_flag & CMDK_SUSPEND) {
1086 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1087 	}
1088 
1089 	part = CMDKPART(dev);
1090 	partbit = 1 << part;
1091 
1092 	/* account for close */
1093 	if (otyp == OTYP_LYR) {
1094 		ASSERT(dkp->dk_open_lyr[part] > 0);
1095 		if (dkp->dk_open_lyr[part])
1096 			dkp->dk_open_lyr[part]--;
1097 	} else {
1098 		ASSERT((dkp->dk_open_reg[otyp] & partbit) != 0);
1099 		dkp->dk_open_reg[otyp] &= ~partbit;
1100 	}
1101 	dkp->dk_open_exl &= ~partbit;
1102 
1103 	for (i = 0; i < CMDK_MAXPART; i++)
1104 		if (dkp->dk_open_lyr[i] != 0) {
1105 			lastclose = 0;
1106 			break;
1107 		}
1108 
1109 	if (lastclose)
1110 		for (i = 0; i < OTYPCNT; i++)
1111 			if (dkp->dk_open_reg[i] != 0) {
1112 				lastclose = 0;
1113 				break;
1114 			}
1115 
1116 	mutex_exit(&dkp->dk_mutex);
1117 
1118 	if (lastclose)
1119 		cmlb_invalidate(dkp->dk_cmlbhandle, 0);
1120 
1121 	return (DDI_SUCCESS);
1122 }
1123 
1124 /*ARGSUSED3*/
1125 static int
1126 cmdkopen(dev_t *dev_p, int flag, int otyp, cred_t *credp)
1127 {
1128 	dev_t		dev = *dev_p;
1129 	int 		part;
1130 	ulong_t		partbit;
1131 	int 		instance;
1132 	struct	cmdk	*dkp;
1133 	diskaddr_t	p_lblksrt;
1134 	diskaddr_t	p_lblkcnt;
1135 	int		i;
1136 	int		nodelay;
1137 
1138 	instance = CMDKUNIT(dev);
1139 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
1140 		return (ENXIO);
1141 
1142 	if (otyp >= OTYPCNT)
1143 		return (EINVAL);
1144 
1145 	mutex_enter(&dkp->dk_mutex);
1146 	while (dkp->dk_flag & CMDK_SUSPEND) {
1147 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1148 	}
1149 	mutex_exit(&dkp->dk_mutex);
1150 
1151 	part = CMDKPART(dev);
1152 	partbit = 1 << part;
1153 	nodelay = (flag & (FNDELAY | FNONBLOCK));
1154 
1155 	mutex_enter(&dkp->dk_mutex);
1156 
1157 	if (cmlb_validate(dkp->dk_cmlbhandle, 0, 0) != 0) {
1158 
1159 		/* fail if not doing non block open */
1160 		if (!nodelay) {
1161 			mutex_exit(&dkp->dk_mutex);
1162 			return (ENXIO);
1163 		}
1164 	} else if (cmlb_partinfo(dkp->dk_cmlbhandle, part, &p_lblkcnt,
1165 	    &p_lblksrt, NULL, NULL, 0) == 0) {
1166 
1167 		if (p_lblkcnt <= 0 && (!nodelay || otyp != OTYP_CHR)) {
1168 			mutex_exit(&dkp->dk_mutex);
1169 			return (ENXIO);
1170 		}
1171 	} else {
1172 		/* fail if not doing non block open */
1173 		if (!nodelay) {
1174 			mutex_exit(&dkp->dk_mutex);
1175 			return (ENXIO);
1176 		}
1177 	}
1178 
1179 	if ((DKTP_EXT->tg_rdonly) && (flag & FWRITE)) {
1180 		mutex_exit(&dkp->dk_mutex);
1181 		return (EROFS);
1182 	}
1183 
1184 	/* check for part already opend exclusively */
1185 	if (dkp->dk_open_exl & partbit)
1186 		goto excl_open_fail;
1187 
1188 	/* check if we can establish exclusive open */
1189 	if (flag & FEXCL) {
1190 		if (dkp->dk_open_lyr[part])
1191 			goto excl_open_fail;
1192 		for (i = 0; i < OTYPCNT; i++) {
1193 			if (dkp->dk_open_reg[i] & partbit)
1194 				goto excl_open_fail;
1195 		}
1196 	}
1197 
1198 	/* open will succeed, account for open */
1199 	dkp->dk_flag |= CMDK_OPEN;
1200 	if (otyp == OTYP_LYR)
1201 		dkp->dk_open_lyr[part]++;
1202 	else
1203 		dkp->dk_open_reg[otyp] |= partbit;
1204 	if (flag & FEXCL)
1205 		dkp->dk_open_exl |= partbit;
1206 
1207 	mutex_exit(&dkp->dk_mutex);
1208 	return (DDI_SUCCESS);
1209 
1210 excl_open_fail:
1211 	mutex_exit(&dkp->dk_mutex);
1212 	return (EBUSY);
1213 }
1214 
1215 /*
1216  * read routine
1217  */
1218 /*ARGSUSED2*/
1219 static int
1220 cmdkread(dev_t dev, struct uio *uio, cred_t *credp)
1221 {
1222 	return (cmdkrw(dev, uio, B_READ));
1223 }
1224 
1225 /*
1226  * async read routine
1227  */
1228 /*ARGSUSED2*/
1229 static int
1230 cmdkaread(dev_t dev, struct aio_req *aio, cred_t *credp)
1231 {
1232 	return (cmdkarw(dev, aio, B_READ));
1233 }
1234 
1235 /*
1236  * write routine
1237  */
1238 /*ARGSUSED2*/
1239 static int
1240 cmdkwrite(dev_t dev, struct uio *uio, cred_t *credp)
1241 {
1242 	return (cmdkrw(dev, uio, B_WRITE));
1243 }
1244 
1245 /*
1246  * async write routine
1247  */
1248 /*ARGSUSED2*/
1249 static int
1250 cmdkawrite(dev_t dev, struct aio_req *aio, cred_t *credp)
1251 {
1252 	return (cmdkarw(dev, aio, B_WRITE));
1253 }
1254 
1255 static void
1256 cmdkmin(struct buf *bp)
1257 {
1258 	if (bp->b_bcount > DK_MAXRECSIZE)
1259 		bp->b_bcount = DK_MAXRECSIZE;
1260 }
1261 
1262 static int
1263 cmdkrw(dev_t dev, struct uio *uio, int flag)
1264 {
1265 	int 		instance;
1266 	struct	cmdk	*dkp;
1267 
1268 	instance = CMDKUNIT(dev);
1269 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
1270 		return (ENXIO);
1271 
1272 	mutex_enter(&dkp->dk_mutex);
1273 	while (dkp->dk_flag & CMDK_SUSPEND) {
1274 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1275 	}
1276 	mutex_exit(&dkp->dk_mutex);
1277 
1278 	return (physio(cmdkstrategy, (struct buf *)0, dev, flag, cmdkmin, uio));
1279 }
1280 
1281 static int
1282 cmdkarw(dev_t dev, struct aio_req *aio, int flag)
1283 {
1284 	int 		instance;
1285 	struct	cmdk	*dkp;
1286 
1287 	instance = CMDKUNIT(dev);
1288 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
1289 		return (ENXIO);
1290 
1291 	mutex_enter(&dkp->dk_mutex);
1292 	while (dkp->dk_flag & CMDK_SUSPEND) {
1293 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1294 	}
1295 	mutex_exit(&dkp->dk_mutex);
1296 
1297 	return (aphysio(cmdkstrategy, anocancel, dev, flag, cmdkmin, aio));
1298 }
1299 
1300 /*
1301  * strategy routine
1302  */
1303 static int
1304 cmdkstrategy(struct buf *bp)
1305 {
1306 	int 		instance;
1307 	struct	cmdk 	*dkp;
1308 	long		d_cnt;
1309 	diskaddr_t	p_lblksrt;
1310 	diskaddr_t	p_lblkcnt;
1311 
1312 	instance = CMDKUNIT(bp->b_edev);
1313 	if (cmdk_indump || !(dkp = ddi_get_soft_state(cmdk_state, instance)) ||
1314 	    (dkblock(bp) < 0)) {
1315 		bp->b_resid = bp->b_bcount;
1316 		SETBPERR(bp, ENXIO);
1317 		biodone(bp);
1318 		return (0);
1319 	}
1320 
1321 	mutex_enter(&dkp->dk_mutex);
1322 	ASSERT(cmdk_isopen(dkp, bp->b_edev));
1323 	while (dkp->dk_flag & CMDK_SUSPEND) {
1324 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1325 	}
1326 	mutex_exit(&dkp->dk_mutex);
1327 
1328 	bp->b_flags &= ~(B_DONE|B_ERROR);
1329 	bp->b_resid = 0;
1330 	bp->av_back = NULL;
1331 
1332 	/*
1333 	 * only re-read the vtoc if necessary (force == FALSE)
1334 	 */
1335 	if (cmlb_partinfo(dkp->dk_cmlbhandle, CMDKPART(bp->b_edev),
1336 	    &p_lblkcnt, &p_lblksrt, NULL, NULL, 0)) {
1337 		SETBPERR(bp, ENXIO);
1338 	}
1339 
1340 	if ((bp->b_bcount & (NBPSCTR-1)) || (dkblock(bp) > p_lblkcnt))
1341 		SETBPERR(bp, ENXIO);
1342 
1343 	if ((bp->b_flags & B_ERROR) || (dkblock(bp) == p_lblkcnt)) {
1344 		bp->b_resid = bp->b_bcount;
1345 		biodone(bp);
1346 		return (0);
1347 	}
1348 
1349 	d_cnt = bp->b_bcount >> SCTRSHFT;
1350 	if ((dkblock(bp) + d_cnt) > p_lblkcnt) {
1351 		bp->b_resid = ((dkblock(bp) + d_cnt) - p_lblkcnt) << SCTRSHFT;
1352 		bp->b_bcount -= bp->b_resid;
1353 	}
1354 
1355 	SET_BP_SEC(bp, ((ulong_t)(p_lblksrt + dkblock(bp))));
1356 	if (dadk_strategy(DKTP_DATA, bp) != DDI_SUCCESS) {
1357 		bp->b_resid += bp->b_bcount;
1358 		biodone(bp);
1359 	}
1360 	return (0);
1361 }
1362 
1363 static int
1364 cmdk_create_obj(dev_info_t *dip, struct cmdk *dkp)
1365 {
1366 	struct scsi_device *devp;
1367 	opaque_t	queobjp = NULL;
1368 	opaque_t	flcobjp = NULL;
1369 	char		que_keyvalp[64];
1370 	int		que_keylen;
1371 	char		flc_keyvalp[64];
1372 	int		flc_keylen;
1373 
1374 	ASSERT(mutex_owned(&dkp->dk_mutex));
1375 
1376 	/* Create linkage to queueing routines based on property */
1377 	que_keylen = sizeof (que_keyvalp);
1378 	if (ddi_prop_op(DDI_DEV_T_NONE, dip, PROP_LEN_AND_VAL_BUF,
1379 	    DDI_PROP_CANSLEEP, "queue", que_keyvalp, &que_keylen) !=
1380 	    DDI_PROP_SUCCESS) {
1381 		cmn_err(CE_WARN, "cmdk_create_obj: queue property undefined");
1382 		return (DDI_FAILURE);
1383 	}
1384 	que_keyvalp[que_keylen] = (char)0;
1385 
1386 	if (strcmp(que_keyvalp, "qfifo") == 0) {
1387 		queobjp = (opaque_t)qfifo_create();
1388 	} else if (strcmp(que_keyvalp, "qsort") == 0) {
1389 		queobjp = (opaque_t)qsort_create();
1390 	} else {
1391 		return (DDI_FAILURE);
1392 	}
1393 
1394 	/* Create linkage to dequeueing routines based on property */
1395 	flc_keylen = sizeof (flc_keyvalp);
1396 	if (ddi_prop_op(DDI_DEV_T_NONE, dip, PROP_LEN_AND_VAL_BUF,
1397 	    DDI_PROP_CANSLEEP, "flow_control", flc_keyvalp, &flc_keylen) !=
1398 	    DDI_PROP_SUCCESS) {
1399 		cmn_err(CE_WARN,
1400 		    "cmdk_create_obj: flow-control property undefined");
1401 		return (DDI_FAILURE);
1402 	}
1403 
1404 	flc_keyvalp[flc_keylen] = (char)0;
1405 
1406 	if (strcmp(flc_keyvalp, "dsngl") == 0) {
1407 		flcobjp = (opaque_t)dsngl_create();
1408 	} else if (strcmp(flc_keyvalp, "dmult") == 0) {
1409 		flcobjp = (opaque_t)dmult_create();
1410 	} else {
1411 		return (DDI_FAILURE);
1412 	}
1413 
1414 	/* populate bbh_obj object stored in dkp */
1415 	dkp->dk_bbh_obj.bbh_data = dkp;
1416 	dkp->dk_bbh_obj.bbh_ops = &cmdk_bbh_ops;
1417 
1418 	/* create linkage to dadk */
1419 	dkp->dk_tgobjp = (opaque_t)dadk_create();
1420 
1421 	devp = ddi_get_driver_private(dip);
1422 	(void) dadk_init(DKTP_DATA, devp, flcobjp, queobjp, &dkp->dk_bbh_obj,
1423 	    NULL);
1424 
1425 	return (DDI_SUCCESS);
1426 }
1427 
1428 static void
1429 cmdk_destroy_obj(dev_info_t *dip, struct cmdk *dkp)
1430 {
1431 	char		que_keyvalp[64];
1432 	int		que_keylen;
1433 	char		flc_keyvalp[64];
1434 	int		flc_keylen;
1435 
1436 	ASSERT(mutex_owned(&dkp->dk_mutex));
1437 
1438 	(void) dadk_free((dkp->dk_tgobjp));
1439 	dkp->dk_tgobjp = NULL;
1440 
1441 	que_keylen = sizeof (que_keyvalp);
1442 	if (ddi_prop_op(DDI_DEV_T_NONE, dip, PROP_LEN_AND_VAL_BUF,
1443 	    DDI_PROP_CANSLEEP, "queue", que_keyvalp, &que_keylen) !=
1444 	    DDI_PROP_SUCCESS) {
1445 		cmn_err(CE_WARN, "cmdk_destroy_obj: queue property undefined");
1446 		return;
1447 	}
1448 	que_keyvalp[que_keylen] = (char)0;
1449 
1450 	flc_keylen = sizeof (flc_keyvalp);
1451 	if (ddi_prop_op(DDI_DEV_T_NONE, dip, PROP_LEN_AND_VAL_BUF,
1452 	    DDI_PROP_CANSLEEP, "flow_control", flc_keyvalp, &flc_keylen) !=
1453 	    DDI_PROP_SUCCESS) {
1454 		cmn_err(CE_WARN,
1455 		    "cmdk_destroy_obj: flow-control property undefined");
1456 		return;
1457 	}
1458 	flc_keyvalp[flc_keylen] = (char)0;
1459 }
1460 /*ARGSUSED5*/
1461 static int
1462 cmdk_lb_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr,
1463     diskaddr_t start, size_t count, void *tg_cookie)
1464 {
1465 	struct cmdk	*dkp;
1466 	opaque_t	handle;
1467 	int		rc = 0;
1468 	char		*bufa;
1469 	size_t		buflen;
1470 
1471 	dkp = ddi_get_soft_state(cmdk_state, ddi_get_instance(dip));
1472 	if (dkp == NULL)
1473 		return (ENXIO);
1474 
1475 	if (cmd != TG_READ && cmd != TG_WRITE)
1476 		return (EINVAL);
1477 
1478 	/* buflen must be multiple of 512 */
1479 	buflen = (count + NBPSCTR - 1) & -NBPSCTR;
1480 	handle = dadk_iob_alloc(DKTP_DATA, start, buflen, KM_SLEEP);
1481 	if (!handle)
1482 		return (ENOMEM);
1483 
1484 	if (cmd == TG_READ) {
1485 		bufa = dadk_iob_xfer(DKTP_DATA, handle, B_READ);
1486 		if (!bufa)
1487 			rc = EIO;
1488 		else
1489 			bcopy(bufa, bufaddr, count);
1490 	} else {
1491 		bufa = dadk_iob_htoc(DKTP_DATA, handle);
1492 		bcopy(bufaddr, bufa, count);
1493 		bufa = dadk_iob_xfer(DKTP_DATA, handle, B_WRITE);
1494 		if (!bufa)
1495 			rc = EIO;
1496 	}
1497 	(void) dadk_iob_free(DKTP_DATA, handle);
1498 
1499 	return (rc);
1500 }
1501 
1502 /*ARGSUSED3*/
1503 static int
1504 cmdk_lb_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie)
1505 {
1506 
1507 	struct cmdk		*dkp;
1508 	struct tgdk_geom	phyg;
1509 
1510 
1511 	dkp = ddi_get_soft_state(cmdk_state, ddi_get_instance(dip));
1512 	if (dkp == NULL)
1513 		return (ENXIO);
1514 
1515 	switch (cmd) {
1516 	case TG_GETPHYGEOM: {
1517 		cmlb_geom_t *phygeomp = (cmlb_geom_t *)arg;
1518 
1519 		/* dadk_getphygeom always returns success */
1520 		(void) dadk_getphygeom(DKTP_DATA, &phyg);
1521 
1522 		phygeomp->g_capacity	= phyg.g_cap;
1523 		phygeomp->g_nsect	= phyg.g_sec;
1524 		phygeomp->g_nhead	= phyg.g_head;
1525 		phygeomp->g_acyl	= phyg.g_acyl;
1526 		phygeomp->g_ncyl	= phyg.g_cyl;
1527 		phygeomp->g_secsize	= phyg.g_secsiz;
1528 		phygeomp->g_intrlv	= 1;
1529 		phygeomp->g_rpm		= 3600;
1530 
1531 		return (0);
1532 	}
1533 
1534 	case TG_GETVIRTGEOM: {
1535 		cmlb_geom_t *virtgeomp = (cmlb_geom_t *)arg;
1536 		diskaddr_t		capacity;
1537 
1538 		(void) dadk_getgeom(DKTP_DATA, &phyg);
1539 		capacity = phyg.g_cap;
1540 
1541 		/*
1542 		 * If the controller returned us something that doesn't
1543 		 * really fit into an Int 13/function 8 geometry
1544 		 * result, just fail the ioctl.  See PSARC 1998/313.
1545 		 */
1546 		if (capacity < 0 || capacity >= 63 * 254 * 1024)
1547 			return (EINVAL);
1548 
1549 		virtgeomp->g_capacity	= capacity;
1550 		virtgeomp->g_nsect	= 63;
1551 		virtgeomp->g_nhead	= 254;
1552 		virtgeomp->g_ncyl	= capacity / (63 * 254);
1553 		virtgeomp->g_acyl	= 0;
1554 		virtgeomp->g_secsize	= 512;
1555 		virtgeomp->g_intrlv	= 1;
1556 		virtgeomp->g_rpm	= 3600;
1557 
1558 		return (0);
1559 	}
1560 
1561 	case TG_GETCAPACITY:
1562 	case TG_GETBLOCKSIZE:
1563 	{
1564 
1565 		/* dadk_getphygeom always returns success */
1566 		(void) dadk_getphygeom(DKTP_DATA, &phyg);
1567 		if (cmd == TG_GETCAPACITY)
1568 			*(diskaddr_t *)arg = phyg.g_cap;
1569 		else
1570 			*(uint32_t *)arg = (uint32_t)phyg.g_secsiz;
1571 
1572 		return (0);
1573 	}
1574 
1575 	case TG_GETATTR: {
1576 		tg_attribute_t *tgattribute = (tg_attribute_t *)arg;
1577 		if ((DKTP_EXT->tg_rdonly))
1578 			tgattribute->media_is_writable = FALSE;
1579 		else
1580 			tgattribute->media_is_writable = TRUE;
1581 		tgattribute->media_is_rotational = TRUE;
1582 
1583 		return (0);
1584 	}
1585 
1586 	default:
1587 		return (ENOTTY);
1588 	}
1589 }
1590 
1591 
1592 
1593 
1594 
1595 /*
1596  * Create and register the devid.
1597  * There are 4 different ways we can get a device id:
1598  *    1. Already have one - nothing to do
1599  *    2. Build one from the drive's model and serial numbers
1600  *    3. Read one from the disk (first sector of last track)
1601  *    4. Fabricate one and write it on the disk.
1602  * If any of these succeeds, register the deviceid
1603  */
1604 static void
1605 cmdk_devid_setup(struct cmdk *dkp)
1606 {
1607 	int	rc;
1608 
1609 	/* Try options until one succeeds, or all have failed */
1610 
1611 	/* 1. All done if already registered */
1612 	if (dkp->dk_devid != NULL)
1613 		return;
1614 
1615 	/* 2. Build a devid from the model and serial number */
1616 	rc = cmdk_devid_modser(dkp);
1617 	if (rc != DDI_SUCCESS) {
1618 		/* 3. Read devid from the disk, if present */
1619 		rc = cmdk_devid_read(dkp);
1620 
1621 		/* 4. otherwise make one up and write it on the disk */
1622 		if (rc != DDI_SUCCESS)
1623 			rc = cmdk_devid_fabricate(dkp);
1624 	}
1625 
1626 	/* If we managed to get a devid any of the above ways, register it */
1627 	if (rc == DDI_SUCCESS)
1628 		(void) ddi_devid_register(dkp->dk_dip, dkp->dk_devid);
1629 
1630 }
1631 
1632 /*
1633  * Build a devid from the model and serial number
1634  * Return DDI_SUCCESS or DDI_FAILURE.
1635  */
1636 static int
1637 cmdk_devid_modser(struct cmdk *dkp)
1638 {
1639 	int	rc = DDI_FAILURE;
1640 	char	*hwid;
1641 	int	modlen;
1642 	int	serlen;
1643 
1644 	/*
1645 	 * device ID is a concatenation of model number, '=', serial number.
1646 	 */
1647 	hwid = kmem_alloc(CMDK_HWIDLEN, KM_SLEEP);
1648 	modlen = cmdk_get_modser(dkp, DIOCTL_GETMODEL, hwid, CMDK_HWIDLEN);
1649 	if (modlen == 0) {
1650 		rc = DDI_FAILURE;
1651 		goto err;
1652 	}
1653 	hwid[modlen++] = '=';
1654 	serlen = cmdk_get_modser(dkp, DIOCTL_GETSERIAL,
1655 	    hwid + modlen, CMDK_HWIDLEN - modlen);
1656 	if (serlen == 0) {
1657 		rc = DDI_FAILURE;
1658 		goto err;
1659 	}
1660 	hwid[modlen + serlen] = 0;
1661 
1662 	/* Initialize the device ID, trailing NULL not included */
1663 	rc = ddi_devid_init(dkp->dk_dip, DEVID_ATA_SERIAL, modlen + serlen,
1664 	    hwid, &dkp->dk_devid);
1665 	if (rc != DDI_SUCCESS) {
1666 		rc = DDI_FAILURE;
1667 		goto err;
1668 	}
1669 
1670 	rc = DDI_SUCCESS;
1671 
1672 err:
1673 	kmem_free(hwid, CMDK_HWIDLEN);
1674 	return (rc);
1675 }
1676 
1677 static int
1678 cmdk_get_modser(struct cmdk *dkp, int ioccmd, char *buf, int len)
1679 {
1680 	dadk_ioc_string_t strarg;
1681 	int		rval;
1682 	char		*s;
1683 	char		ch;
1684 	boolean_t	ret;
1685 	int		i;
1686 	int		tb;
1687 
1688 	strarg.is_buf = buf;
1689 	strarg.is_size = len;
1690 	if (dadk_ioctl(DKTP_DATA,
1691 	    dkp->dk_dev,
1692 	    ioccmd,
1693 	    (uintptr_t)&strarg,
1694 	    FNATIVE | FKIOCTL,
1695 	    NULL,
1696 	    &rval) != 0)
1697 		return (0);
1698 
1699 	/*
1700 	 * valid model/serial string must contain a non-zero non-space
1701 	 * trim trailing spaces/NULL
1702 	 */
1703 	ret = B_FALSE;
1704 	s = buf;
1705 	for (i = 0; i < strarg.is_size; i++) {
1706 		ch = *s++;
1707 		if (ch != ' ' && ch != '\0')
1708 			tb = i + 1;
1709 		if (ch != ' ' && ch != '\0' && ch != '0')
1710 			ret = B_TRUE;
1711 	}
1712 
1713 	if (ret == B_FALSE)
1714 		return (0);
1715 
1716 	return (tb);
1717 }
1718 
1719 /*
1720  * Read a devid from on the first block of the last track of
1721  * the last cylinder.  Make sure what we read is a valid devid.
1722  * Return DDI_SUCCESS or DDI_FAILURE.
1723  */
1724 static int
1725 cmdk_devid_read(struct cmdk *dkp)
1726 {
1727 	diskaddr_t	blk;
1728 	struct dk_devid *dkdevidp;
1729 	uint_t		*ip;
1730 	int		chksum;
1731 	int		i, sz;
1732 	tgdk_iob_handle	handle = NULL;
1733 	int		rc = DDI_FAILURE;
1734 
1735 	if (cmlb_get_devid_block(dkp->dk_cmlbhandle, &blk, 0))
1736 		goto err;
1737 
1738 	/* read the devid */
1739 	handle = dadk_iob_alloc(DKTP_DATA, blk, NBPSCTR, KM_SLEEP);
1740 	if (handle == NULL)
1741 		goto err;
1742 
1743 	dkdevidp = (struct dk_devid *)dadk_iob_xfer(DKTP_DATA, handle, B_READ);
1744 	if (dkdevidp == NULL)
1745 		goto err;
1746 
1747 	/* Validate the revision */
1748 	if ((dkdevidp->dkd_rev_hi != DK_DEVID_REV_MSB) ||
1749 	    (dkdevidp->dkd_rev_lo != DK_DEVID_REV_LSB))
1750 		goto err;
1751 
1752 	/* Calculate the checksum */
1753 	chksum = 0;
1754 	ip = (uint_t *)dkdevidp;
1755 	for (i = 0; i < ((NBPSCTR - sizeof (int))/sizeof (int)); i++)
1756 		chksum ^= ip[i];
1757 	if (DKD_GETCHKSUM(dkdevidp) != chksum)
1758 		goto err;
1759 
1760 	/* Validate the device id */
1761 	if (ddi_devid_valid((ddi_devid_t)dkdevidp->dkd_devid) != DDI_SUCCESS)
1762 		goto err;
1763 
1764 	/* keep a copy of the device id */
1765 	sz = ddi_devid_sizeof((ddi_devid_t)dkdevidp->dkd_devid);
1766 	dkp->dk_devid = kmem_alloc(sz, KM_SLEEP);
1767 	bcopy(dkdevidp->dkd_devid, dkp->dk_devid, sz);
1768 
1769 	rc = DDI_SUCCESS;
1770 
1771 err:
1772 	if (handle != NULL)
1773 		(void) dadk_iob_free(DKTP_DATA, handle);
1774 	return (rc);
1775 }
1776 
1777 /*
1778  * Create a devid and write it on the first block of the last track of
1779  * the last cylinder.
1780  * Return DDI_SUCCESS or DDI_FAILURE.
1781  */
1782 static int
1783 cmdk_devid_fabricate(struct cmdk *dkp)
1784 {
1785 	ddi_devid_t	devid = NULL;	/* devid made by ddi_devid_init  */
1786 	struct dk_devid	*dkdevidp;	/* devid struct stored on disk */
1787 	diskaddr_t	blk;
1788 	tgdk_iob_handle	handle = NULL;
1789 	uint_t		*ip, chksum;
1790 	int		i;
1791 	int		rc = DDI_FAILURE;
1792 
1793 	if (ddi_devid_init(dkp->dk_dip, DEVID_FAB, 0, NULL, &devid) !=
1794 	    DDI_SUCCESS)
1795 		goto err;
1796 
1797 	if (cmlb_get_devid_block(dkp->dk_cmlbhandle, &blk, 0)) {
1798 		/* no device id block address */
1799 		goto err;
1800 	}
1801 
1802 	handle = dadk_iob_alloc(DKTP_DATA, blk, NBPSCTR, KM_SLEEP);
1803 	if (!handle)
1804 		goto err;
1805 
1806 	/* Locate the buffer */
1807 	dkdevidp = (struct dk_devid *)dadk_iob_htoc(DKTP_DATA, handle);
1808 
1809 	/* Fill in the revision */
1810 	bzero(dkdevidp, NBPSCTR);
1811 	dkdevidp->dkd_rev_hi = DK_DEVID_REV_MSB;
1812 	dkdevidp->dkd_rev_lo = DK_DEVID_REV_LSB;
1813 
1814 	/* Copy in the device id */
1815 	i = ddi_devid_sizeof(devid);
1816 	if (i > DK_DEVID_SIZE)
1817 		goto err;
1818 	bcopy(devid, dkdevidp->dkd_devid, i);
1819 
1820 	/* Calculate the chksum */
1821 	chksum = 0;
1822 	ip = (uint_t *)dkdevidp;
1823 	for (i = 0; i < ((NBPSCTR - sizeof (int))/sizeof (int)); i++)
1824 		chksum ^= ip[i];
1825 
1826 	/* Fill in the checksum */
1827 	DKD_FORMCHKSUM(chksum, dkdevidp);
1828 
1829 	/* write the devid */
1830 	(void) dadk_iob_xfer(DKTP_DATA, handle, B_WRITE);
1831 
1832 	dkp->dk_devid = devid;
1833 
1834 	rc = DDI_SUCCESS;
1835 
1836 err:
1837 	if (handle != NULL)
1838 		(void) dadk_iob_free(DKTP_DATA, handle);
1839 
1840 	if (rc != DDI_SUCCESS && devid != NULL)
1841 		ddi_devid_free(devid);
1842 
1843 	return (rc);
1844 }
1845 
1846 static void
1847 cmdk_bbh_free_alts(struct cmdk *dkp)
1848 {
1849 	if (dkp->dk_alts_hdl) {
1850 		(void) dadk_iob_free(DKTP_DATA, dkp->dk_alts_hdl);
1851 		kmem_free(dkp->dk_slc_cnt,
1852 		    NDKMAP * (sizeof (uint32_t) + sizeof (struct alts_ent *)));
1853 		dkp->dk_alts_hdl = NULL;
1854 	}
1855 }
1856 
1857 static void
1858 cmdk_bbh_reopen(struct cmdk *dkp)
1859 {
1860 	tgdk_iob_handle 	handle = NULL;
1861 	diskaddr_t		slcb, slcn, slce;
1862 	struct	alts_parttbl	*ap;
1863 	struct	alts_ent	*enttblp;
1864 	uint32_t		altused;
1865 	uint32_t		altbase;
1866 	uint32_t		altlast;
1867 	int			alts;
1868 	uint16_t		vtoctag;
1869 	int			i, j;
1870 
1871 	/* find slice with V_ALTSCTR tag */
1872 	for (alts = 0; alts < NDKMAP; alts++) {
1873 		if (cmlb_partinfo(
1874 		    dkp->dk_cmlbhandle,
1875 		    alts,
1876 		    &slcn,
1877 		    &slcb,
1878 		    NULL,
1879 		    &vtoctag,
1880 		    0)) {
1881 			goto empty;	/* no partition table exists */
1882 		}
1883 
1884 		if (vtoctag == V_ALTSCTR && slcn > 1)
1885 			break;
1886 	}
1887 	if (alts >= NDKMAP) {
1888 		goto empty;	/* no V_ALTSCTR slice defined */
1889 	}
1890 
1891 	/* read in ALTS label block */
1892 	handle = dadk_iob_alloc(DKTP_DATA, slcb, NBPSCTR, KM_SLEEP);
1893 	if (!handle) {
1894 		goto empty;
1895 	}
1896 
1897 	ap = (struct alts_parttbl *)dadk_iob_xfer(DKTP_DATA, handle, B_READ);
1898 	if (!ap || (ap->alts_sanity != ALTS_SANITY)) {
1899 		goto empty;
1900 	}
1901 
1902 	altused = ap->alts_ent_used;	/* number of BB entries */
1903 	altbase = ap->alts_ent_base;	/* blk offset from begin slice */
1904 	altlast = ap->alts_ent_end;	/* blk offset to last block */
1905 	/* ((altused * sizeof (struct alts_ent) + NBPSCTR - 1) & ~NBPSCTR) */
1906 
1907 	if (altused == 0 ||
1908 	    altbase < 1 ||
1909 	    altbase > altlast ||
1910 	    altlast >= slcn) {
1911 		goto empty;
1912 	}
1913 	(void) dadk_iob_free(DKTP_DATA, handle);
1914 
1915 	/* read in ALTS remapping table */
1916 	handle = dadk_iob_alloc(DKTP_DATA,
1917 	    slcb + altbase,
1918 	    (altlast - altbase + 1) << SCTRSHFT, KM_SLEEP);
1919 	if (!handle) {
1920 		goto empty;
1921 	}
1922 
1923 	enttblp = (struct alts_ent *)dadk_iob_xfer(DKTP_DATA, handle, B_READ);
1924 	if (!enttblp) {
1925 		goto empty;
1926 	}
1927 
1928 	rw_enter(&dkp->dk_bbh_mutex, RW_WRITER);
1929 
1930 	/* allocate space for dk_slc_cnt and dk_slc_ent tables */
1931 	if (dkp->dk_slc_cnt == NULL) {
1932 		dkp->dk_slc_cnt = kmem_alloc(NDKMAP *
1933 		    (sizeof (long) + sizeof (struct alts_ent *)), KM_SLEEP);
1934 	}
1935 	dkp->dk_slc_ent = (struct alts_ent **)(dkp->dk_slc_cnt + NDKMAP);
1936 
1937 	/* free previous BB table (if any) */
1938 	if (dkp->dk_alts_hdl) {
1939 		(void) dadk_iob_free(DKTP_DATA, dkp->dk_alts_hdl);
1940 		dkp->dk_alts_hdl = NULL;
1941 		dkp->dk_altused = 0;
1942 	}
1943 
1944 	/* save linkage to new BB table */
1945 	dkp->dk_alts_hdl = handle;
1946 	dkp->dk_altused = altused;
1947 
1948 	/*
1949 	 * build indexes to BB table by slice
1950 	 * effectively we have
1951 	 *	struct alts_ent *enttblp[altused];
1952 	 *
1953 	 *	uint32_t	dk_slc_cnt[NDKMAP];
1954 	 *	struct alts_ent *dk_slc_ent[NDKMAP];
1955 	 */
1956 	for (i = 0; i < NDKMAP; i++) {
1957 		if (cmlb_partinfo(
1958 		    dkp->dk_cmlbhandle,
1959 		    i,
1960 		    &slcn,
1961 		    &slcb,
1962 		    NULL,
1963 		    NULL,
1964 		    0)) {
1965 			goto empty1;
1966 		}
1967 
1968 		dkp->dk_slc_cnt[i] = 0;
1969 		if (slcn == 0)
1970 			continue;	/* slice is not allocated */
1971 
1972 		/* last block in slice */
1973 		slce = slcb + slcn - 1;
1974 
1975 		/* find first remap entry in after beginnning of slice */
1976 		for (j = 0; j < altused; j++) {
1977 			if (enttblp[j].bad_start + enttblp[j].bad_end >= slcb)
1978 				break;
1979 		}
1980 		dkp->dk_slc_ent[i] = enttblp + j;
1981 
1982 		/* count remap entrys until end of slice */
1983 		for (; j < altused && enttblp[j].bad_start <= slce; j++) {
1984 			dkp->dk_slc_cnt[i] += 1;
1985 		}
1986 	}
1987 
1988 	rw_exit(&dkp->dk_bbh_mutex);
1989 	return;
1990 
1991 empty:
1992 	rw_enter(&dkp->dk_bbh_mutex, RW_WRITER);
1993 empty1:
1994 	if (handle && handle != dkp->dk_alts_hdl)
1995 		(void) dadk_iob_free(DKTP_DATA, handle);
1996 
1997 	if (dkp->dk_alts_hdl) {
1998 		(void) dadk_iob_free(DKTP_DATA, dkp->dk_alts_hdl);
1999 		dkp->dk_alts_hdl = NULL;
2000 	}
2001 
2002 	rw_exit(&dkp->dk_bbh_mutex);
2003 }
2004 
2005 /*ARGSUSED*/
2006 static bbh_cookie_t
2007 cmdk_bbh_htoc(opaque_t bbh_data, opaque_t handle)
2008 {
2009 	struct	bbh_handle *hp;
2010 	bbh_cookie_t ckp;
2011 
2012 	hp = (struct  bbh_handle *)handle;
2013 	ckp = hp->h_cktab + hp->h_idx;
2014 	hp->h_idx++;
2015 	return (ckp);
2016 }
2017 
2018 /*ARGSUSED*/
2019 static void
2020 cmdk_bbh_freehandle(opaque_t bbh_data, opaque_t handle)
2021 {
2022 	struct	bbh_handle *hp;
2023 
2024 	hp = (struct  bbh_handle *)handle;
2025 	kmem_free(handle, (sizeof (struct bbh_handle) +
2026 	    (hp->h_totck * (sizeof (struct bbh_cookie)))));
2027 }
2028 
2029 
2030 /*
2031  *	cmdk_bbh_gethandle remaps the bad sectors to alternates.
2032  *	There are 7 different cases when the comparison is made
2033  *	between the bad sector cluster and the disk section.
2034  *
2035  *	bad sector cluster	gggggggggggbbbbbbbggggggggggg
2036  *	case 1:			   ddddd
2037  *	case 2:				   -d-----
2038  *	case 3:					     ddddd
2039  *	case 4:			         dddddddddddd
2040  *	case 5:			      ddddddd-----
2041  *	case 6:			           ---ddddddd
2042  *	case 7:			           ddddddd
2043  *
2044  *	where:  g = good sector,	b = bad sector
2045  *		d = sector in disk section
2046  *		- = disk section may be extended to cover those disk area
2047  */
2048 
2049 static opaque_t
2050 cmdk_bbh_gethandle(opaque_t bbh_data, struct buf *bp)
2051 {
2052 	struct cmdk		*dkp = (struct cmdk *)bbh_data;
2053 	struct bbh_handle	*hp;
2054 	struct bbh_cookie	*ckp;
2055 	struct alts_ent		*altp;
2056 	uint32_t		alts_used;
2057 	uint32_t		part = CMDKPART(bp->b_edev);
2058 	daddr32_t		lastsec;
2059 	long			d_count;
2060 	int			i;
2061 	int			idx;
2062 	int			cnt;
2063 
2064 	if (part >= V_NUMPAR)
2065 		return (NULL);
2066 
2067 	/*
2068 	 * This if statement is atomic and it will succeed
2069 	 * if there are no bad blocks (almost always)
2070 	 *
2071 	 * so this if is performed outside of the rw_enter for speed
2072 	 * and then repeated inside the rw_enter for safety
2073 	 */
2074 	if (!dkp->dk_alts_hdl) {
2075 		return (NULL);
2076 	}
2077 
2078 	rw_enter(&dkp->dk_bbh_mutex, RW_READER);
2079 
2080 	if (dkp->dk_alts_hdl == NULL) {
2081 		rw_exit(&dkp->dk_bbh_mutex);
2082 		return (NULL);
2083 	}
2084 
2085 	alts_used = dkp->dk_slc_cnt[part];
2086 	if (alts_used == 0) {
2087 		rw_exit(&dkp->dk_bbh_mutex);
2088 		return (NULL);
2089 	}
2090 	altp = dkp->dk_slc_ent[part];
2091 
2092 	/*
2093 	 * binary search for the largest bad sector index in the alternate
2094 	 * entry table which overlaps or larger than the starting d_sec
2095 	 */
2096 	i = cmdk_bbh_bsearch(altp, alts_used, GET_BP_SEC(bp));
2097 	/* if starting sector is > the largest bad sector, return */
2098 	if (i == -1) {
2099 		rw_exit(&dkp->dk_bbh_mutex);
2100 		return (NULL);
2101 	}
2102 	/* i is the starting index.  Set altp to the starting entry addr */
2103 	altp += i;
2104 
2105 	d_count = bp->b_bcount >> SCTRSHFT;
2106 	lastsec = GET_BP_SEC(bp) + d_count - 1;
2107 
2108 	/* calculate the number of bad sectors */
2109 	for (idx = i, cnt = 0; idx < alts_used; idx++, altp++, cnt++) {
2110 		if (lastsec < altp->bad_start)
2111 			break;
2112 	}
2113 
2114 	if (!cnt) {
2115 		rw_exit(&dkp->dk_bbh_mutex);
2116 		return (NULL);
2117 	}
2118 
2119 	/* calculate the maximum number of reserved cookies */
2120 	cnt <<= 1;
2121 	cnt++;
2122 
2123 	/* allocate the handle */
2124 	hp = (struct bbh_handle *)kmem_zalloc((sizeof (*hp) +
2125 	    (cnt * sizeof (*ckp))), KM_SLEEP);
2126 
2127 	hp->h_idx = 0;
2128 	hp->h_totck = cnt;
2129 	ckp = hp->h_cktab = (struct bbh_cookie *)(hp + 1);
2130 	ckp[0].ck_sector = GET_BP_SEC(bp);
2131 	ckp[0].ck_seclen = d_count;
2132 
2133 	altp = dkp->dk_slc_ent[part];
2134 	altp += i;
2135 	for (idx = 0; i < alts_used; i++, altp++) {
2136 		/* CASE 1: */
2137 		if (lastsec < altp->bad_start)
2138 			break;
2139 
2140 		/* CASE 3: */
2141 		if (ckp[idx].ck_sector > altp->bad_end)
2142 			continue;
2143 
2144 		/* CASE 2 and 7: */
2145 		if ((ckp[idx].ck_sector >= altp->bad_start) &&
2146 		    (lastsec <= altp->bad_end)) {
2147 			ckp[idx].ck_sector = altp->good_start +
2148 			    ckp[idx].ck_sector - altp->bad_start;
2149 			break;
2150 		}
2151 
2152 		/* at least one bad sector in our section.  break it. */
2153 		/* CASE 5: */
2154 		if ((lastsec >= altp->bad_start) &&
2155 		    (lastsec <= altp->bad_end)) {
2156 			ckp[idx+1].ck_seclen = lastsec - altp->bad_start + 1;
2157 			ckp[idx].ck_seclen -= ckp[idx+1].ck_seclen;
2158 			ckp[idx+1].ck_sector = altp->good_start;
2159 			break;
2160 		}
2161 		/* CASE 6: */
2162 		if ((ckp[idx].ck_sector <= altp->bad_end) &&
2163 		    (ckp[idx].ck_sector >= altp->bad_start)) {
2164 			ckp[idx+1].ck_seclen = ckp[idx].ck_seclen;
2165 			ckp[idx].ck_seclen = altp->bad_end -
2166 			    ckp[idx].ck_sector + 1;
2167 			ckp[idx+1].ck_seclen -= ckp[idx].ck_seclen;
2168 			ckp[idx].ck_sector = altp->good_start +
2169 			    ckp[idx].ck_sector - altp->bad_start;
2170 			idx++;
2171 			ckp[idx].ck_sector = altp->bad_end + 1;
2172 			continue;	/* check rest of section */
2173 		}
2174 
2175 		/* CASE 4: */
2176 		ckp[idx].ck_seclen = altp->bad_start - ckp[idx].ck_sector;
2177 		ckp[idx+1].ck_sector = altp->good_start;
2178 		ckp[idx+1].ck_seclen = altp->bad_end - altp->bad_start + 1;
2179 		idx += 2;
2180 		ckp[idx].ck_sector = altp->bad_end + 1;
2181 		ckp[idx].ck_seclen = lastsec - altp->bad_end;
2182 	}
2183 
2184 	rw_exit(&dkp->dk_bbh_mutex);
2185 	return ((opaque_t)hp);
2186 }
2187 
2188 static int
2189 cmdk_bbh_bsearch(struct alts_ent *buf, int cnt, daddr32_t key)
2190 {
2191 	int	i;
2192 	int	ind;
2193 	int	interval;
2194 	int	mystatus = -1;
2195 
2196 	if (!cnt)
2197 		return (mystatus);
2198 
2199 	ind = 1; /* compiler complains about possible uninitialized var	*/
2200 	for (i = 1; i <= cnt; i <<= 1)
2201 		ind = i;
2202 
2203 	for (interval = ind; interval; ) {
2204 		if ((key >= buf[ind-1].bad_start) &&
2205 		    (key <= buf[ind-1].bad_end)) {
2206 			return (ind-1);
2207 		} else {
2208 			interval >>= 1;
2209 			if (key < buf[ind-1].bad_start) {
2210 				/* record the largest bad sector index */
2211 				mystatus = ind-1;
2212 				if (!interval)
2213 					break;
2214 				ind = ind - interval;
2215 			} else {
2216 				/*
2217 				 * if key is larger than the last element
2218 				 * then break
2219 				 */
2220 				if ((ind == cnt) || !interval)
2221 					break;
2222 				if ((ind+interval) <= cnt)
2223 					ind += interval;
2224 			}
2225 		}
2226 	}
2227 	return (mystatus);
2228 }
2229