xref: /titanic_50/usr/src/uts/intel/io/acpica/osl.c (revision 0bb073995ac5a95bd35f2dd790df1ea3d8c2d507)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /*
27  * ACPI CA OSL for Solaris x86
28  */
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 
33 #include <sys/types.h>
34 #include <sys/kmem.h>
35 #include <sys/psm.h>
36 #include <sys/pci_cfgspace.h>
37 #include <sys/ddi.h>
38 #include <sys/sunndi.h>
39 #include <sys/pci.h>
40 #include <sys/kobj.h>
41 #include <sys/taskq.h>
42 #include <sys/strlog.h>
43 #include <sys/note.h>
44 
45 #include <sys/acpi/acpi.h>
46 #include <sys/acpica.h>
47 #include <sys/acpi/acinterp.h>
48 
49 #define	MAX_DAT_FILE_SIZE	(64*1024)
50 
51 /* local functions */
52 static int CompressEisaID(char *np);
53 
54 static void scan_d2a_map(void);
55 static void scan_d2a_subtree(dev_info_t *dip, ACPI_HANDLE acpiobj, int bus);
56 static void acpica_tag_devinfo(dev_info_t *dip, ACPI_HANDLE acpiobj);
57 
58 static int acpica_query_bbn_problem(void);
59 static int acpica_find_pcibus(int busno, ACPI_HANDLE *rh);
60 static int acpica_eval_hid(ACPI_HANDLE dev, char *method, int *rint);
61 static ACPI_STATUS acpica_set_devinfo(ACPI_HANDLE, dev_info_t *);
62 static void acpica_devinfo_handler(ACPI_HANDLE, UINT32, void *);
63 
64 /*
65  * Event queue vars
66  */
67 int acpica_eventq_thread_count = 1;
68 int acpica_eventq_init = 0;
69 ddi_taskq_t *osl_eventq[OSL_EC_BURST_HANDLER+1];
70 
71 /*
72  * Note, if you change this path, you need to update
73  * /boot/grub/filelist.ramdisk and pkg SUNWckr/prototype_i386
74  */
75 static char *acpi_table_path = "/boot/acpi/tables/";
76 
77 /* non-zero while scan_d2a_map() is working */
78 static int scanning_d2a_map = 0;
79 static int d2a_done = 0;
80 
81 /* set by acpi_poweroff() in PSMs */
82 int acpica_powering_off = 0;
83 
84 /* CPU mapping data */
85 struct cpu_map_item {
86 	UINT32		proc_id;
87 	ACPI_HANDLE	obj;
88 };
89 
90 static struct cpu_map_item **cpu_map = NULL;
91 static int cpu_map_count = 0;
92 static int cpu_map_built = 0;
93 
94 static int acpi_has_broken_bbn = -1;
95 
96 /* buffer for AcpiOsVprintf() */
97 #define	ACPI_OSL_PR_BUFLEN	1024
98 static char *acpi_osl_pr_buffer = NULL;
99 static int acpi_osl_pr_buflen;
100 
101 #define	D2A_DEBUG
102 
103 /*
104  *
105  */
106 static void
107 discard_event_queues()
108 {
109 	int	i;
110 
111 	/*
112 	 * destroy event queues
113 	 */
114 	for (i = OSL_GLOBAL_LOCK_HANDLER; i <= OSL_EC_BURST_HANDLER; i++) {
115 		if (osl_eventq[i])
116 			ddi_taskq_destroy(osl_eventq[i]);
117 	}
118 }
119 
120 
121 /*
122  *
123  */
124 static ACPI_STATUS
125 init_event_queues()
126 {
127 	char	namebuf[32];
128 	int	i, error = 0;
129 
130 	/*
131 	 * Initialize event queues
132 	 */
133 
134 	for (i = OSL_GLOBAL_LOCK_HANDLER; i <= OSL_EC_BURST_HANDLER; i++) {
135 		snprintf(namebuf, 32, "ACPI%d", i);
136 		osl_eventq[i] = ddi_taskq_create(NULL, namebuf,
137 		    acpica_eventq_thread_count, TASKQ_DEFAULTPRI, 0);
138 		if (osl_eventq[i] == NULL)
139 			error++;
140 	}
141 
142 	if (error != 0) {
143 		discard_event_queues();
144 #ifdef	DEBUG
145 		cmn_err(CE_WARN, "!acpica: could not initialize event queues");
146 #endif
147 		return (AE_ERROR);
148 	}
149 
150 	acpica_eventq_init = 1;
151 	return (AE_OK);
152 }
153 
154 /*
155  * One-time initialization of OSL layer
156  */
157 ACPI_STATUS
158 AcpiOsInitialize(void)
159 {
160 	/*
161 	 * Allocate buffer for AcpiOsVprintf() here to avoid
162 	 * kmem_alloc()/kmem_free() at high PIL
163 	 */
164 	acpi_osl_pr_buffer = kmem_alloc(ACPI_OSL_PR_BUFLEN, KM_SLEEP);
165 	if (acpi_osl_pr_buffer != NULL)
166 		acpi_osl_pr_buflen = ACPI_OSL_PR_BUFLEN;
167 
168 	return (AE_OK);
169 }
170 
171 /*
172  * One-time shut-down of OSL layer
173  */
174 ACPI_STATUS
175 AcpiOsTerminate(void)
176 {
177 
178 	if (acpi_osl_pr_buffer != NULL)
179 		kmem_free(acpi_osl_pr_buffer, acpi_osl_pr_buflen);
180 
181 	discard_event_queues();
182 	return (AE_OK);
183 }
184 
185 
186 ACPI_STATUS
187 AcpiOsGetRootPointer(UINT32 Flags, ACPI_POINTER *Address)
188 {
189 	uint_t acpi_root_tab;
190 
191 	/*
192 	 * For EFI firmware, the root pointer is defined in EFI systab.
193 	 * The boot code process the table and put the physical address
194 	 * in the acpi-root-tab property.
195 	 */
196 	acpi_root_tab = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0,
197 	    "acpi-root-tab", 0);
198 	if (acpi_root_tab != 0) {
199 		Address->PointerType = ACPI_PHYSICAL_POINTER;
200 		Address->Pointer.Physical = acpi_root_tab;
201 		return (AE_OK);
202 	}
203 	return (AcpiFindRootPointer(Flags, Address));
204 }
205 
206 /*ARGSUSED*/
207 ACPI_STATUS
208 AcpiOsPredefinedOverride(const ACPI_PREDEFINED_NAMES *InitVal,
209 				ACPI_STRING *NewVal)
210 {
211 
212 	*NewVal = 0;
213 	return (AE_OK);
214 }
215 
216 static void
217 acpica_strncpy(char *dest, const char *src, int len)
218 {
219 
220 	/*LINTED*/
221 	while ((*dest++ = *src++) && (--len > 0))
222 		/* copy the string */;
223 	*dest = '\0';
224 }
225 
226 ACPI_STATUS
227 AcpiOsTableOverride(ACPI_TABLE_HEADER *ExistingTable,
228 			ACPI_TABLE_HEADER **NewTable)
229 {
230 	char signature[5];
231 	char oemid[7];
232 	char oemtableid[9];
233 	struct _buf *file;
234 	char *buf1, *buf2;
235 	int count;
236 	char acpi_table_loc[128];
237 
238 	acpica_strncpy(signature, ExistingTable->Signature, 4);
239 	acpica_strncpy(oemid, ExistingTable->OemId, 6);
240 	acpica_strncpy(oemtableid, ExistingTable->OemTableId, 8);
241 
242 #ifdef	DEBUG
243 	cmn_err(CE_NOTE, "!acpica: table [%s] v%d OEM ID [%s]"
244 	    " OEM TABLE ID [%s] OEM rev %x",
245 	    signature, ExistingTable->Revision, oemid, oemtableid,
246 	    ExistingTable->OemRevision);
247 #endif
248 
249 	/* File name format is "signature_oemid_oemtableid.dat" */
250 	(void) strcpy(acpi_table_loc, acpi_table_path);
251 	(void) strcat(acpi_table_loc, signature); /* for example, DSDT */
252 	(void) strcat(acpi_table_loc, "_");
253 	(void) strcat(acpi_table_loc, oemid); /* for example, IntelR */
254 	(void) strcat(acpi_table_loc, "_");
255 	(void) strcat(acpi_table_loc, oemtableid); /* for example, AWRDACPI */
256 	(void) strcat(acpi_table_loc, ".dat");
257 
258 	file = kobj_open_file(acpi_table_loc);
259 	if (file == (struct _buf *)-1) {
260 		*NewTable = 0;
261 		return (AE_OK);
262 	} else {
263 		buf1 = (char *)kmem_alloc(MAX_DAT_FILE_SIZE, KM_SLEEP);
264 		count = kobj_read_file(file, buf1, MAX_DAT_FILE_SIZE-1, 0);
265 		if (count >= MAX_DAT_FILE_SIZE) {
266 			cmn_err(CE_WARN, "!acpica: table %s file size too big",
267 			    acpi_table_loc);
268 			*NewTable = 0;
269 		} else {
270 			buf2 = (char *)kmem_alloc(count, KM_SLEEP);
271 			(void) memcpy(buf2, buf1, count);
272 			*NewTable = (ACPI_TABLE_HEADER *)buf2;
273 			cmn_err(CE_NOTE, "!acpica: replacing table: %s",
274 			    acpi_table_loc);
275 		}
276 	}
277 	kobj_close_file(file);
278 	kmem_free(buf1, MAX_DAT_FILE_SIZE);
279 
280 	return (AE_OK);
281 }
282 
283 
284 /*
285  * ACPI semaphore implementation
286  */
287 typedef struct {
288 	kmutex_t	mutex;
289 	kcondvar_t	cv;
290 	uint32_t	available;
291 	uint32_t	initial;
292 	uint32_t	maximum;
293 } acpi_sema_t;
294 
295 /*
296  *
297  */
298 void
299 acpi_sema_init(acpi_sema_t *sp, unsigned max, unsigned count)
300 {
301 	mutex_init(&sp->mutex, NULL, MUTEX_DRIVER, NULL);
302 	cv_init(&sp->cv, NULL, CV_DRIVER, NULL);
303 	/* no need to enter mutex here at creation */
304 	sp->available = count;
305 	sp->initial = count;
306 	sp->maximum = max;
307 }
308 
309 /*
310  *
311  */
312 void
313 acpi_sema_destroy(acpi_sema_t *sp)
314 {
315 
316 	cv_destroy(&sp->cv);
317 	mutex_destroy(&sp->mutex);
318 }
319 
320 /*
321  *
322  */
323 ACPI_STATUS
324 acpi_sema_p(acpi_sema_t *sp, unsigned count, uint16_t wait_time)
325 {
326 	ACPI_STATUS rv = AE_OK;
327 	clock_t deadline;
328 
329 	mutex_enter(&sp->mutex);
330 
331 	if (sp->available >= count) {
332 		/*
333 		 * Enough units available, no blocking
334 		 */
335 		sp->available -= count;
336 		mutex_exit(&sp->mutex);
337 		return (rv);
338 	} else if (wait_time == 0) {
339 		/*
340 		 * Not enough units available and timeout
341 		 * specifies no blocking
342 		 */
343 		rv = AE_TIME;
344 		mutex_exit(&sp->mutex);
345 		return (rv);
346 	}
347 
348 	/*
349 	 * Not enough units available and timeout specifies waiting
350 	 */
351 	if (wait_time != ACPI_WAIT_FOREVER)
352 		deadline = ddi_get_lbolt() +
353 		    (clock_t)drv_usectohz(wait_time * 1000);
354 
355 	do {
356 		if (wait_time == ACPI_WAIT_FOREVER)
357 			cv_wait(&sp->cv, &sp->mutex);
358 		else if (cv_timedwait(&sp->cv, &sp->mutex, deadline) < 0) {
359 			rv = AE_TIME;
360 			break;
361 		}
362 	} while (sp->available < count);
363 
364 	/* if we dropped out of the wait with AE_OK, we got the units */
365 	if (rv == AE_OK)
366 		sp->available -= count;
367 
368 	mutex_exit(&sp->mutex);
369 	return (rv);
370 }
371 
372 /*
373  *
374  */
375 void
376 acpi_sema_v(acpi_sema_t *sp, unsigned count)
377 {
378 	mutex_enter(&sp->mutex);
379 	sp->available += count;
380 	cv_broadcast(&sp->cv);
381 	mutex_exit(&sp->mutex);
382 }
383 
384 
385 ACPI_STATUS
386 AcpiOsCreateSemaphore(UINT32 MaxUnits, UINT32 InitialUnits,
387 ACPI_HANDLE *OutHandle)
388 {
389 	acpi_sema_t *sp;
390 
391 	if ((OutHandle == NULL) || (InitialUnits > MaxUnits))
392 		return (AE_BAD_PARAMETER);
393 
394 	sp = (acpi_sema_t *)kmem_alloc(sizeof (acpi_sema_t), KM_SLEEP);
395 	acpi_sema_init(sp, MaxUnits, InitialUnits);
396 	*OutHandle = (ACPI_HANDLE)sp;
397 	return (AE_OK);
398 }
399 
400 
401 ACPI_STATUS
402 AcpiOsDeleteSemaphore(ACPI_HANDLE Handle)
403 {
404 
405 	if (Handle == NULL)
406 		return (AE_BAD_PARAMETER);
407 
408 	acpi_sema_destroy((acpi_sema_t *)Handle);
409 	kmem_free((void *)Handle, sizeof (acpi_sema_t));
410 	return (AE_OK);
411 }
412 
413 ACPI_STATUS
414 AcpiOsWaitSemaphore(ACPI_HANDLE Handle, UINT32 Units, UINT16 Timeout)
415 {
416 
417 	if ((Handle == NULL) || (Units < 1))
418 		return (AE_BAD_PARAMETER);
419 
420 	return (acpi_sema_p((acpi_sema_t *)Handle, Units, Timeout));
421 }
422 
423 ACPI_STATUS
424 AcpiOsSignalSemaphore(ACPI_HANDLE Handle, UINT32 Units)
425 {
426 
427 	if ((Handle == NULL) || (Units < 1))
428 		return (AE_BAD_PARAMETER);
429 
430 	acpi_sema_v((acpi_sema_t *)Handle, Units);
431 	return (AE_OK);
432 }
433 
434 ACPI_STATUS
435 AcpiOsCreateLock(ACPI_HANDLE *OutHandle)
436 {
437 	kmutex_t *mp;
438 
439 	if (OutHandle == NULL)
440 		return (AE_BAD_PARAMETER);
441 
442 	mp = (kmutex_t *)kmem_alloc(sizeof (kmutex_t), KM_SLEEP);
443 	mutex_init(mp, NULL, MUTEX_DRIVER, NULL);
444 	*OutHandle = (ACPI_HANDLE)mp;
445 	return (AE_OK);
446 }
447 
448 void
449 AcpiOsDeleteLock(ACPI_HANDLE Handle)
450 {
451 
452 	if (Handle == NULL)
453 		return;
454 
455 	mutex_destroy((kmutex_t *)Handle);
456 	kmem_free((void *)Handle, sizeof (kmutex_t));
457 }
458 
459 ACPI_NATIVE_UINT
460 AcpiOsAcquireLock(ACPI_HANDLE Handle)
461 {
462 
463 	if (Handle == NULL)
464 		return (AE_BAD_PARAMETER);
465 
466 	mutex_enter((kmutex_t *)Handle);
467 	return (AE_OK);
468 }
469 
470 void
471 AcpiOsReleaseLock(ACPI_HANDLE Handle, ACPI_NATIVE_UINT Flags)
472 {
473 	_NOTE(ARGUNUSED(Flags))
474 
475 	if (Handle == NULL)
476 		return;
477 
478 	mutex_exit((kmutex_t *)Handle);
479 }
480 
481 
482 void *
483 AcpiOsAllocate(ACPI_SIZE Size)
484 {
485 	ACPI_SIZE *tmp_ptr;
486 
487 	Size += sizeof (Size);
488 	tmp_ptr = (ACPI_SIZE *)kmem_zalloc(Size, KM_SLEEP);
489 	*tmp_ptr++ = Size;
490 	return (tmp_ptr);
491 }
492 
493 void
494 AcpiOsFree(void *Memory)
495 {
496 	ACPI_SIZE	size, *tmp_ptr;
497 
498 	tmp_ptr = (ACPI_SIZE *)Memory;
499 	tmp_ptr -= 1;
500 	size = *tmp_ptr;
501 	kmem_free(tmp_ptr, size);
502 }
503 
504 ACPI_STATUS
505 AcpiOsMapMemory(ACPI_PHYSICAL_ADDRESS PhysicalAddress,
506 		    ACPI_SIZE Size, void **LogicalAddress)
507 {
508 	/* FUTUREWORK: test PhysicalAddress for > 32 bits */
509 	*LogicalAddress = psm_map_new((paddr_t)PhysicalAddress,
510 	    (size_t)Size, PSM_PROT_WRITE | PSM_PROT_READ);
511 
512 	return (*LogicalAddress == NULL ? AE_NO_MEMORY : AE_OK);
513 }
514 
515 void
516 AcpiOsUnmapMemory(void *LogicalAddress, ACPI_SIZE Size)
517 {
518 
519 	psm_unmap((caddr_t)LogicalAddress, (size_t)Size);
520 }
521 
522 /*ARGSUSED*/
523 ACPI_STATUS
524 AcpiOsGetPhysicalAddress(void *LogicalAddress,
525 			ACPI_PHYSICAL_ADDRESS *PhysicalAddress)
526 {
527 
528 	/* UNIMPLEMENTED: not invoked by ACPI CA code */
529 	return (AE_NOT_IMPLEMENTED);
530 }
531 
532 
533 ACPI_OSD_HANDLER acpi_isr;
534 void *acpi_isr_context;
535 
536 uint_t
537 acpi_wrapper_isr(char *arg)
538 {
539 	_NOTE(ARGUNUSED(arg))
540 
541 	int	status;
542 
543 	status = (*acpi_isr)(acpi_isr_context);
544 
545 	if (status == ACPI_INTERRUPT_HANDLED) {
546 		return (DDI_INTR_CLAIMED);
547 	} else {
548 		return (DDI_INTR_UNCLAIMED);
549 	}
550 }
551 
552 static int acpi_intr_hooked = 0;
553 
554 ACPI_STATUS
555 AcpiOsInstallInterruptHandler(UINT32 InterruptNumber,
556 		ACPI_OSD_HANDLER ServiceRoutine,
557 		void *Context)
558 {
559 	_NOTE(ARGUNUSED(InterruptNumber))
560 
561 	int retval;
562 	int sci_vect;
563 	iflag_t sci_flags;
564 
565 	acpi_isr = ServiceRoutine;
566 	acpi_isr_context = Context;
567 
568 	/*
569 	 * Get SCI (adjusted for PIC/APIC mode if necessary)
570 	 */
571 	if (acpica_get_sci(&sci_vect, &sci_flags) != AE_OK) {
572 		return (AE_ERROR);
573 	}
574 
575 #ifdef	DEBUG
576 	cmn_err(CE_NOTE, "!acpica: attaching SCI %d", sci_vect);
577 #endif
578 
579 	retval = add_avintr(NULL, SCI_IPL, (avfunc)acpi_wrapper_isr,
580 	    "ACPI SCI", sci_vect, NULL, NULL, NULL, NULL);
581 	if (retval) {
582 		acpi_intr_hooked = 1;
583 		return (AE_OK);
584 	} else
585 		return (AE_BAD_PARAMETER);
586 }
587 
588 ACPI_STATUS
589 AcpiOsRemoveInterruptHandler(UINT32 InterruptNumber,
590 			ACPI_OSD_HANDLER ServiceRoutine)
591 {
592 	_NOTE(ARGUNUSED(ServiceRoutine))
593 
594 #ifdef	DEBUG
595 	cmn_err(CE_NOTE, "!acpica: detaching SCI %d", InterruptNumber);
596 #endif
597 	if (acpi_intr_hooked) {
598 		rem_avintr(NULL, LOCK_LEVEL - 1, (avfunc)acpi_wrapper_isr,
599 		    InterruptNumber);
600 		acpi_intr_hooked = 0;
601 	}
602 	return (AE_OK);
603 }
604 
605 
606 ACPI_THREAD_ID
607 AcpiOsGetThreadId(void)
608 {
609 	/*
610 	 * ACPI CA regards thread ID as an error, but it's valid
611 	 * on Solaris during kernel initialization.  Thus, 1 is added
612 	 * to the kernel thread ID to avoid returning 0
613 	 */
614 	return (ddi_get_kt_did() + 1);
615 }
616 
617 /*
618  *
619  */
620 ACPI_STATUS
621 AcpiOsExecute(ACPI_EXECUTE_TYPE Type, ACPI_OSD_EXEC_CALLBACK  Function,
622     void *Context)
623 {
624 
625 	if (!acpica_eventq_init) {
626 		/*
627 		 * Create taskqs for event handling
628 		 */
629 		if (init_event_queues() != AE_OK)
630 			return (AE_ERROR);
631 	}
632 
633 	if (ddi_taskq_dispatch(osl_eventq[Type], Function, Context,
634 	    DDI_NOSLEEP) == DDI_FAILURE) {
635 #ifdef	DEBUG
636 		cmn_err(CE_WARN, "!acpica: unable to dispatch event");
637 #endif
638 		return (AE_ERROR);
639 	}
640 	return (AE_OK);
641 
642 }
643 
644 void
645 AcpiOsSleep(ACPI_INTEGER Milliseconds)
646 {
647 	/*
648 	 * During kernel startup, before the first
649 	 * tick interrupt has taken place, we can't call
650 	 * delay; very late in kernel shutdown, clock interrupts
651 	 * are blocked, so delay doesn't work then either.
652 	 * So we busy wait if lbolt == 0 (kernel startup)
653 	 * or if psm_shutdown() has set acpi_powering_off to
654 	 * a non-zero value.
655 	 */
656 	if ((ddi_get_lbolt() == 0) || acpica_powering_off)
657 		drv_usecwait(Milliseconds * 1000);
658 	else
659 		delay(drv_usectohz(Milliseconds * 1000));
660 }
661 
662 void
663 AcpiOsStall(UINT32 Microseconds)
664 {
665 	drv_usecwait(Microseconds);
666 }
667 
668 
669 /*
670  * Implementation of "Windows 2001" compatible I/O permission map
671  *
672  */
673 #define	OSL_IO_NONE	(0)
674 #define	OSL_IO_READ	(1<<0)
675 #define	OSL_IO_WRITE	(1<<1)
676 #define	OSL_IO_RW	(OSL_IO_READ | OSL_IO_WRITE)
677 #define	OSL_IO_TERM	(1<<2)
678 #define	OSL_IO_DEFAULT	OSL_IO_RW
679 
680 static struct io_perm  {
681 	ACPI_IO_ADDRESS	low;
682 	ACPI_IO_ADDRESS	high;
683 	uint8_t		perm;
684 } osl_io_perm[] = {
685 	{ 0xcf8, 0xd00, OSL_IO_NONE | OSL_IO_TERM }
686 };
687 
688 
689 /*
690  *
691  */
692 static struct io_perm *
693 osl_io_find_perm(ACPI_IO_ADDRESS addr)
694 {
695 	struct io_perm *p;
696 
697 	p = osl_io_perm;
698 	while (p != NULL) {
699 		if ((p->low <= addr) && (addr <= p->high))
700 			break;
701 		p = (p->perm & OSL_IO_TERM) ? NULL : p+1;
702 	}
703 
704 	return (p);
705 }
706 
707 /*
708  *
709  */
710 ACPI_STATUS
711 AcpiOsReadPort(ACPI_IO_ADDRESS Address, UINT32 *Value, UINT32 Width)
712 {
713 	struct io_perm *p;
714 
715 	/* verify permission */
716 	p = osl_io_find_perm(Address);
717 	if (p && (p->perm & OSL_IO_READ) == 0) {
718 		cmn_err(CE_WARN, "!AcpiOsReadPort: %lx %u not permitted",
719 		    (long)Address, Width);
720 		*Value = 0xffffffff;
721 		return (AE_ERROR);
722 	}
723 
724 	switch (Width) {
725 	case 8:
726 		*Value = inb(Address);
727 		break;
728 	case 16:
729 		*Value = inw(Address);
730 		break;
731 	case 32:
732 		*Value = inl(Address);
733 		break;
734 	default:
735 		cmn_err(CE_WARN, "!AcpiOsReadPort: %lx %u failed",
736 		    (long)Address, Width);
737 		return (AE_BAD_PARAMETER);
738 	}
739 	return (AE_OK);
740 }
741 
742 ACPI_STATUS
743 AcpiOsWritePort(ACPI_IO_ADDRESS Address, UINT32 Value, UINT32 Width)
744 {
745 	struct io_perm *p;
746 
747 	/* verify permission */
748 	p = osl_io_find_perm(Address);
749 	if (p && (p->perm & OSL_IO_WRITE) == 0) {
750 		cmn_err(CE_WARN, "!AcpiOsWritePort: %lx %u not permitted",
751 		    (long)Address, Width);
752 		return (AE_ERROR);
753 	}
754 
755 	switch (Width) {
756 	case 8:
757 		outb(Address, Value);
758 		break;
759 	case 16:
760 		outw(Address, Value);
761 		break;
762 	case 32:
763 		outl(Address, Value);
764 		break;
765 	default:
766 		cmn_err(CE_WARN, "!AcpiOsWritePort: %lx %u failed",
767 		    (long)Address, Width);
768 		return (AE_BAD_PARAMETER);
769 	}
770 	return (AE_OK);
771 }
772 
773 
774 /*
775  *
776  */
777 
778 #define	OSL_RW(ptr, val, type, rw) \
779 	{ if (rw) *((type *)(ptr)) = *((type *) val); \
780 	    else *((type *) val) = *((type *)(ptr)); }
781 
782 
783 static void
784 osl_rw_memory(ACPI_PHYSICAL_ADDRESS Address, UINT32 *Value,
785     UINT32 Width, int write)
786 {
787 	size_t	maplen = Width / 8;
788 	caddr_t	ptr;
789 
790 	ptr = psm_map_new((paddr_t)Address, maplen,
791 	    PSM_PROT_WRITE | PSM_PROT_READ);
792 
793 	switch (maplen) {
794 	case 1:
795 		OSL_RW(ptr, Value, uint8_t, write);
796 		break;
797 	case 2:
798 		OSL_RW(ptr, Value, uint16_t, write);
799 		break;
800 	case 4:
801 		OSL_RW(ptr, Value, uint32_t, write);
802 		break;
803 	default:
804 		cmn_err(CE_WARN, "!osl_rw_memory: invalid size %d",
805 		    Width);
806 		break;
807 	}
808 
809 	psm_unmap(ptr, maplen);
810 }
811 
812 ACPI_STATUS
813 AcpiOsReadMemory(ACPI_PHYSICAL_ADDRESS Address,
814 		UINT32 *Value, UINT32 Width)
815 {
816 	osl_rw_memory(Address, Value, Width, 0);
817 	return (AE_OK);
818 }
819 
820 ACPI_STATUS
821 AcpiOsWriteMemory(ACPI_PHYSICAL_ADDRESS Address,
822 		UINT32 Value, UINT32 Width)
823 {
824 	osl_rw_memory(Address, &Value, Width, 1);
825 	return (AE_OK);
826 }
827 
828 
829 ACPI_STATUS
830 AcpiOsReadPciConfiguration(ACPI_PCI_ID *PciId, UINT32 Register,
831 			void *Value, UINT32 Width)
832 {
833 
834 	switch (Width) {
835 	case 8:
836 		*((UINT64 *)Value) = (UINT64)(*pci_getb_func)
837 		    (PciId->Bus, PciId->Device, PciId->Function, Register);
838 		break;
839 	case 16:
840 		*((UINT64 *)Value) = (UINT64)(*pci_getw_func)
841 		    (PciId->Bus, PciId->Device, PciId->Function, Register);
842 		break;
843 	case 32:
844 		*((UINT64 *)Value) = (UINT64)(*pci_getl_func)
845 		    (PciId->Bus, PciId->Device, PciId->Function, Register);
846 		break;
847 	case 64:
848 	default:
849 		cmn_err(CE_WARN, "!AcpiOsReadPciConfiguration: %x %u failed",
850 		    Register, Width);
851 		return (AE_BAD_PARAMETER);
852 	}
853 	return (AE_OK);
854 }
855 
856 /*
857  *
858  */
859 int acpica_write_pci_config_ok = 1;
860 
861 ACPI_STATUS
862 AcpiOsWritePciConfiguration(ACPI_PCI_ID *PciId, UINT32 Register,
863 		ACPI_INTEGER Value, UINT32 Width)
864 {
865 
866 	if (!acpica_write_pci_config_ok) {
867 		cmn_err(CE_NOTE, "!write to PCI cfg %x/%x/%x %x"
868 		    " %lx %d not permitted", PciId->Bus, PciId->Device,
869 		    PciId->Function, Register, (long)Value, Width);
870 		return (AE_OK);
871 	}
872 
873 	switch (Width) {
874 	case 8:
875 		(*pci_putb_func)(PciId->Bus, PciId->Device, PciId->Function,
876 		    Register, (uint8_t)Value);
877 		break;
878 	case 16:
879 		(*pci_putw_func)(PciId->Bus, PciId->Device, PciId->Function,
880 		    Register, (uint16_t)Value);
881 		break;
882 	case 32:
883 		(*pci_putl_func)(PciId->Bus, PciId->Device, PciId->Function,
884 		    Register, (uint32_t)Value);
885 		break;
886 	case 64:
887 	default:
888 		cmn_err(CE_WARN, "!AcpiOsWritePciConfiguration: %x %u failed",
889 		    Register, Width);
890 		return (AE_BAD_PARAMETER);
891 	}
892 	return (AE_OK);
893 }
894 
895 /*
896  * Called with ACPI_HANDLEs for both a PCI Config Space
897  * OpRegion and (what ACPI CA thinks is) the PCI device
898  * to which this ConfigSpace OpRegion belongs.  Since
899  * ACPI CA depends on a valid _BBN object being present
900  * and this is not always true (one old x86 had broken _BBN),
901  * we go ahead and get the correct PCI bus number using the
902  * devinfo mapping (which compensates for broken _BBN).
903  *
904  * Default values for bus, segment, device and function are
905  * all 0 when ACPI CA can't figure them out.
906  *
907  * Some BIOSes implement _BBN() by reading PCI config space
908  * on bus #0 - which means that we'll recurse when we attempt
909  * to create the devinfo-to-ACPI map.  If Derive is called during
910  * scan_d2a_map, we don't translate the bus # and return.
911  *
912  * We get the parent of the OpRegion, which must be a PCI
913  * node, fetch the associated devinfo node and snag the
914  * b/d/f from it.
915  */
916 void
917 AcpiOsDerivePciId(ACPI_HANDLE rhandle, ACPI_HANDLE chandle,
918 		ACPI_PCI_ID **PciId)
919 {
920 	ACPI_HANDLE handle;
921 	dev_info_t *dip;
922 	int bus, device, func, devfn;
923 
924 
925 	/*
926 	 * See above - avoid recursing during scanning_d2a_map.
927 	 */
928 	if (scanning_d2a_map)
929 		return;
930 
931 	/*
932 	 * Get the OpRegion's parent
933 	 */
934 	if (AcpiGetParent(chandle, &handle) != AE_OK)
935 		return;
936 
937 	/*
938 	 * If we've mapped the ACPI node to the devinfo
939 	 * tree, use the devinfo reg property
940 	 */
941 	if (acpica_get_devinfo(handle, &dip) == AE_OK) {
942 		(void) acpica_get_bdf(dip, &bus, &device, &func);
943 		(*PciId)->Bus = bus;
944 		(*PciId)->Device = device;
945 		(*PciId)->Function = func;
946 	} else if (acpica_eval_int(handle, "_ADR", &devfn) == AE_OK) {
947 		/* no devinfo node - just confirm the d/f */
948 		(*PciId)->Device = (devfn >> 16) & 0xFFFF;
949 		(*PciId)->Function = devfn & 0xFFFF;
950 	}
951 }
952 
953 
954 /*ARGSUSED*/
955 BOOLEAN
956 AcpiOsReadable(void *Pointer, ACPI_SIZE Length)
957 {
958 
959 	/* Always says yes; all mapped memory assumed readable */
960 	return (1);
961 }
962 
963 /*ARGSUSED*/
964 BOOLEAN
965 AcpiOsWritable(void *Pointer, ACPI_SIZE Length)
966 {
967 
968 	/* Always says yes; all mapped memory assumed writable */
969 	return (1);
970 }
971 
972 UINT64
973 AcpiOsGetTimer(void)
974 {
975 	/* gethrtime() returns 1nS resolution; convert to 100nS granules */
976 	return ((gethrtime() + 50) / 100);
977 }
978 
979 /*ARGSUSED*/
980 ACPI_STATUS
981 AcpiOsValidateInterface(char *interface)
982 {
983 	return (AE_SUPPORT);
984 }
985 
986 /*ARGSUSED*/
987 ACPI_STATUS
988 AcpiOsValidateAddress(UINT8 spaceid, ACPI_PHYSICAL_ADDRESS addr,
989     ACPI_SIZE length)
990 {
991 	return (AE_OK);
992 }
993 
994 ACPI_STATUS
995 AcpiOsSignal(UINT32 Function, void *Info)
996 {
997 	_NOTE(ARGUNUSED(Function, Info))
998 
999 	/* FUTUREWORK: debugger support */
1000 
1001 	cmn_err(CE_NOTE, "!OsSignal unimplemented");
1002 	return (AE_OK);
1003 }
1004 
1005 void ACPI_INTERNAL_VAR_XFACE
1006 AcpiOsPrintf(const char *Format, ...)
1007 {
1008 	va_list ap;
1009 
1010 	va_start(ap, Format);
1011 	AcpiOsVprintf(Format, ap);
1012 	va_end(ap);
1013 }
1014 
1015 /*
1016  * When != 0, sends output to console
1017  * Patchable with kmdb or /etc/system.
1018  */
1019 int acpica_console_out = 0;
1020 
1021 #define	ACPICA_OUTBUF_LEN	160
1022 char	acpica_outbuf[ACPICA_OUTBUF_LEN];
1023 int	acpica_outbuf_offset;
1024 
1025 /*
1026  *
1027  */
1028 static void
1029 acpica_pr_buf(char *buf)
1030 {
1031 	char c, *bufp, *outp;
1032 	int	out_remaining;
1033 
1034 	/*
1035 	 * copy the supplied buffer into the output buffer
1036 	 * when we hit a '\n' or overflow the output buffer,
1037 	 * output and reset the output buffer
1038 	 */
1039 	bufp = buf;
1040 	outp = acpica_outbuf + acpica_outbuf_offset;
1041 	out_remaining = ACPICA_OUTBUF_LEN - acpica_outbuf_offset - 1;
1042 	while (c = *bufp++) {
1043 		*outp++ = c;
1044 		if (c == '\n' || --out_remaining == 0) {
1045 			*outp = '\0';
1046 			if (acpica_console_out)
1047 				printf(acpica_outbuf);
1048 			else
1049 				(void) strlog(0, 0, 0,
1050 				    SL_CONSOLE | SL_NOTE | SL_LOGONLY,
1051 				    acpica_outbuf);
1052 			acpica_outbuf_offset = 0;
1053 			outp = acpica_outbuf;
1054 			out_remaining = ACPICA_OUTBUF_LEN - 1;
1055 		}
1056 	}
1057 
1058 	acpica_outbuf_offset = outp - acpica_outbuf;
1059 }
1060 
1061 void
1062 AcpiOsVprintf(const char *Format, va_list Args)
1063 {
1064 
1065 	/*
1066 	 * If AcpiOsInitialize() failed to allocate a string buffer,
1067 	 * resort to vprintf().
1068 	 */
1069 	if (acpi_osl_pr_buffer == NULL) {
1070 		vprintf(Format, Args);
1071 		return;
1072 	}
1073 
1074 	/*
1075 	 * It is possible that a very long debug output statement will
1076 	 * be truncated; this is silently ignored.
1077 	 */
1078 	(void) vsnprintf(acpi_osl_pr_buffer, acpi_osl_pr_buflen, Format, Args);
1079 	acpica_pr_buf(acpi_osl_pr_buffer);
1080 }
1081 
1082 void
1083 AcpiOsRedirectOutput(void *Destination)
1084 {
1085 	_NOTE(ARGUNUSED(Destination))
1086 
1087 	/* FUTUREWORK: debugger support */
1088 
1089 #ifdef	DEBUG
1090 	cmn_err(CE_WARN, "!acpica: AcpiOsRedirectOutput called");
1091 #endif
1092 }
1093 
1094 
1095 UINT32
1096 AcpiOsGetLine(char *Buffer)
1097 {
1098 	_NOTE(ARGUNUSED(Buffer))
1099 
1100 	/* FUTUREWORK: debugger support */
1101 
1102 	return (0);
1103 }
1104 
1105 
1106 
1107 
1108 /*
1109  * Device tree binding
1110  */
1111 
1112 static int
1113 acpica_find_pcibus(int busno, ACPI_HANDLE *rh)
1114 {
1115 	ACPI_HANDLE sbobj, busobj;
1116 	int hid, bbn;
1117 
1118 	/* initialize static flag by querying ACPI namespace for bug */
1119 	if (acpi_has_broken_bbn == -1)
1120 		acpi_has_broken_bbn = acpica_query_bbn_problem();
1121 
1122 	busobj = NULL;
1123 	AcpiGetHandle(NULL, "\\_SB", &sbobj);
1124 	while (AcpiGetNextObject(ACPI_TYPE_DEVICE, sbobj, busobj,
1125 	    &busobj) == AE_OK) {
1126 		if (acpica_eval_hid(busobj, "_HID", &hid) == AE_OK &&
1127 		    (hid == HID_PCI_BUS || hid == HID_PCI_EXPRESS_BUS)) {
1128 			if (acpi_has_broken_bbn) {
1129 				ACPI_BUFFER rb;
1130 				rb.Pointer = NULL;
1131 				rb.Length = ACPI_ALLOCATE_BUFFER;
1132 
1133 				/* Decree _BBN == n from PCI<n> */
1134 				if (AcpiGetName(busobj, ACPI_SINGLE_NAME, &rb)
1135 				    != AE_OK) {
1136 					return (AE_ERROR);
1137 				}
1138 				bbn = ((char *)rb.Pointer)[3] - '0';
1139 				AcpiOsFree(rb.Pointer);
1140 				if (bbn == busno || busno == 0) {
1141 					*rh = busobj;
1142 					return (AE_OK);
1143 				}
1144 			} else {
1145 				if (acpica_eval_int(busobj, "_BBN", &bbn) ==
1146 				    AE_OK) {
1147 					if (bbn == busno) {
1148 						*rh = busobj;
1149 						return (AE_OK);
1150 					}
1151 				} else if (busno == 0) {
1152 					*rh = busobj;
1153 					return (AE_OK);
1154 				}
1155 			}
1156 		}
1157 	}
1158 	return (AE_ERROR);
1159 }
1160 
1161 
1162 /*
1163  * Look for ACPI problem where _BBN is zero for multiple PCI buses
1164  * This is a clear ACPI bug, but we have a workaround in acpica_find_pcibus()
1165  * below if it exists.
1166  */
1167 static int
1168 acpica_query_bbn_problem(void)
1169 {
1170 	ACPI_HANDLE sbobj, busobj;
1171 	int hid, bbn;
1172 	int zerobbncnt;
1173 
1174 	busobj = NULL;
1175 	zerobbncnt = 0;
1176 
1177 	AcpiGetHandle(NULL, "\\_SB", &sbobj);
1178 
1179 	while (AcpiGetNextObject(ACPI_TYPE_DEVICE, sbobj, busobj,
1180 	    &busobj) == AE_OK) {
1181 		if ((acpica_eval_hid(busobj, "_HID", &hid) == AE_OK) &&
1182 		    (hid == HID_PCI_BUS || hid == HID_PCI_EXPRESS_BUS) &&
1183 		    (acpica_eval_int(busobj, "_BBN", &bbn) == AE_OK)) {
1184 			if (bbn == 0) {
1185 			/*
1186 			 * If we find more than one bus with a 0 _BBN
1187 			 * we have the problem that BigBear's BIOS shows
1188 			 */
1189 				if (++zerobbncnt > 1)
1190 					return (1);
1191 			}
1192 		}
1193 	}
1194 	return (0);
1195 }
1196 
1197 static const char hextab[] = "0123456789ABCDEF";
1198 
1199 static int
1200 hexdig(int c)
1201 {
1202 	/*
1203 	 *  Get hex digit:
1204 	 *
1205 	 *  Returns the 4-bit hex digit named by the input character.  Returns
1206 	 *  zero if the input character is not valid hex!
1207 	 */
1208 
1209 	int x = ((c < 'a') || (c > 'z')) ? c : (c - ' ');
1210 	int j = sizeof (hextab);
1211 
1212 	while (--j && (x != hextab[j])) {
1213 	}
1214 	return (j);
1215 }
1216 
1217 static int
1218 CompressEisaID(char *np)
1219 {
1220 	/*
1221 	 *  Compress an EISA device name:
1222 	 *
1223 	 *  This routine converts a 7-byte ASCII device name into the 4-byte
1224 	 *  compressed form used by EISA (50 bytes of ROM to save 1 byte of
1225 	 *  NV-RAM!)
1226 	 */
1227 
1228 	union { char octets[4]; int retval; } myu;
1229 
1230 	myu.octets[0] = ((np[0] & 0x1F) << 2) + ((np[1] >> 3) & 0x03);
1231 	myu.octets[1] = ((np[1] & 0x07) << 5) + (np[2] & 0x1F);
1232 	myu.octets[2] = (hexdig(np[3]) << 4) + hexdig(np[4]);
1233 	myu.octets[3] = (hexdig(np[5]) << 4) + hexdig(np[6]);
1234 
1235 	return (myu.retval);
1236 }
1237 
1238 ACPI_STATUS
1239 acpica_eval_int(ACPI_HANDLE dev, char *method, int *rint)
1240 {
1241 	ACPI_STATUS status;
1242 	ACPI_BUFFER rb;
1243 	ACPI_OBJECT ro;
1244 
1245 	rb.Pointer = &ro;
1246 	rb.Length = sizeof (ro);
1247 	if ((status = AcpiEvaluateObjectTyped(dev, method, NULL, &rb,
1248 	    ACPI_TYPE_INTEGER)) == AE_OK)
1249 		*rint = ro.Integer.Value;
1250 
1251 	return (status);
1252 }
1253 
1254 static int
1255 acpica_eval_hid(ACPI_HANDLE dev, char *method, int *rint)
1256 {
1257 	ACPI_BUFFER rb;
1258 	ACPI_OBJECT *rv;
1259 
1260 	rb.Pointer = NULL;
1261 	rb.Length = ACPI_ALLOCATE_BUFFER;
1262 	if (AcpiEvaluateObject(dev, method, NULL, &rb) == AE_OK) {
1263 		rv = rb.Pointer;
1264 		if (rv->Type == ACPI_TYPE_INTEGER) {
1265 			*rint = rv->Integer.Value;
1266 			AcpiOsFree(rv);
1267 			return (AE_OK);
1268 		} else if (rv->Type == ACPI_TYPE_STRING) {
1269 			char *stringData;
1270 
1271 			/* Convert the string into an EISA ID */
1272 			if (rv->String.Pointer == NULL) {
1273 				AcpiOsFree(rv);
1274 				return (AE_ERROR);
1275 			}
1276 
1277 			stringData = rv->String.Pointer;
1278 
1279 			/*
1280 			 * If the string is an EisaID, it must be 7
1281 			 * characters; if it's an ACPI ID, it will be 8
1282 			 * (and we don't care about ACPI ids here).
1283 			 */
1284 			if (strlen(stringData) != 7) {
1285 				AcpiOsFree(rv);
1286 				return (AE_ERROR);
1287 			}
1288 
1289 			*rint = CompressEisaID(stringData);
1290 			AcpiOsFree(rv);
1291 			return (AE_OK);
1292 		} else
1293 			AcpiOsFree(rv);
1294 	}
1295 	return (AE_ERROR);
1296 }
1297 
1298 /*
1299  * Create linkage between devinfo nodes and ACPI nodes
1300  */
1301 static void
1302 acpica_tag_devinfo(dev_info_t *dip, ACPI_HANDLE acpiobj)
1303 {
1304 	ACPI_STATUS status;
1305 	ACPI_BUFFER rb;
1306 
1307 	/*
1308 	 * Tag the ACPI node with the dip
1309 	 */
1310 	status = acpica_set_devinfo(acpiobj, dip);
1311 	ASSERT(status == AE_OK);
1312 
1313 	/*
1314 	 * Tag the devinfo node with the ACPI name
1315 	 */
1316 	rb.Pointer = NULL;
1317 	rb.Length = ACPI_ALLOCATE_BUFFER;
1318 	if (AcpiGetName(acpiobj, ACPI_FULL_PATHNAME, &rb) == AE_OK) {
1319 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1320 		    "acpi-namespace", (char *)rb.Pointer);
1321 		AcpiOsFree(rb.Pointer);
1322 	} else {
1323 		cmn_err(CE_WARN, "acpica: could not get ACPI path!");
1324 	}
1325 }
1326 
1327 static void
1328 acpica_add_processor_to_map(UINT32 acpi_id, ACPI_HANDLE obj)
1329 {
1330 	int	cpu_id;
1331 
1332 	/*
1333 	 * Special case: if we're a uppc system, there won't be
1334 	 * a CPU map yet.  So we create one and use the passed-in
1335 	 * processor as CPU 0
1336 	 */
1337 	if (cpu_map == NULL) {
1338 		cpu_map = kmem_zalloc(sizeof (cpu_map[0]) * NCPU, KM_SLEEP);
1339 		cpu_map[0] = kmem_zalloc(sizeof (*cpu_map[0]), KM_SLEEP);
1340 		cpu_map[0]->obj = obj;
1341 		cpu_map_count = 1;
1342 		return;
1343 	}
1344 
1345 	for (cpu_id = 0; cpu_id < NCPU; cpu_id++) {
1346 		if (cpu_map[cpu_id] == NULL)
1347 			continue;
1348 
1349 		if (cpu_map[cpu_id]->proc_id == acpi_id) {
1350 			if (cpu_map[cpu_id]->obj == NULL)
1351 				cpu_map[cpu_id]->obj = obj;
1352 			break;
1353 		}
1354 	}
1355 
1356 }
1357 
1358 /*
1359  * Return the ACPI device node matching the CPU dev_info node.
1360  */
1361 ACPI_STATUS
1362 acpica_get_handle_cpu(dev_info_t *dip, ACPI_HANDLE *rh)
1363 {
1364 	char	*device_type_prop;
1365 	int	cpu_id;
1366 
1367 	/*
1368 	 * if "device_type" != "cpu", error
1369 	 */
1370 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, 0,
1371 	    "device_type", &device_type_prop) != DDI_PROP_SUCCESS)
1372 		return (AE_ERROR);
1373 
1374 	if (strcmp("cpu", device_type_prop) != 0) {
1375 		ddi_prop_free(device_type_prop);
1376 		return (AE_ERROR);
1377 	}
1378 	ddi_prop_free(device_type_prop);
1379 
1380 	/*
1381 	 * if cpu_map itself is NULL, we're a uppc system and
1382 	 * acpica_build_processor_map() hasn't been called yet.
1383 	 * So call it here
1384 	 */
1385 	if (cpu_map == NULL) {
1386 		(void) acpica_build_processor_map();
1387 		if (cpu_map == NULL)
1388 			return (AE_ERROR);
1389 	}
1390 
1391 	/*
1392 	 * get 'reg' and get obj from cpu_map
1393 	 */
1394 	cpu_id = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
1395 	    "reg", -1);
1396 	if ((cpu_id < 0) || (cpu_map[cpu_id] == NULL) ||
1397 	    (cpu_map[cpu_id]->obj == NULL))
1398 		return (AE_ERROR);
1399 
1400 	/*
1401 	 * tag devinfo and obj
1402 	 */
1403 	(void) acpica_tag_devinfo(dip, cpu_map[cpu_id]->obj);
1404 	*rh = cpu_map[cpu_id]->obj;
1405 	return (AE_OK);
1406 }
1407 
1408 /*
1409  * Determine if this object is a processor
1410  */
1411 static ACPI_STATUS
1412 acpica_probe_processor(ACPI_HANDLE obj, UINT32 level, void *ctx, void **rv)
1413 {
1414 	ACPI_STATUS status;
1415 	ACPI_OBJECT_TYPE objtype;
1416 	UINT32 acpi_id;
1417 	ACPI_BUFFER rb;
1418 
1419 	if (AcpiGetType(obj, &objtype) != AE_OK)
1420 		return (AE_OK);
1421 
1422 	if (objtype == ACPI_TYPE_PROCESSOR) {
1423 		/* process a Processor */
1424 		rb.Pointer = NULL;
1425 		rb.Length = ACPI_ALLOCATE_BUFFER;
1426 		status = AcpiEvaluateObject(obj, NULL, NULL, &rb);
1427 		if (status != AE_OK) {
1428 			cmn_err(CE_WARN, "acpica: error probing Processor");
1429 			return (status);
1430 		}
1431 		ASSERT(((ACPI_OBJECT *)rb.Pointer)->Type ==
1432 		    ACPI_TYPE_PROCESSOR);
1433 		acpi_id = ((ACPI_OBJECT *)rb.Pointer)->Processor.ProcId;
1434 		AcpiOsFree(rb.Pointer);
1435 	} else if (objtype == ACPI_TYPE_DEVICE) {
1436 		/* process a processor Device */
1437 		rb.Pointer = NULL;
1438 		rb.Length = ACPI_ALLOCATE_BUFFER;
1439 		status = AcpiGetObjectInfo(obj, &rb);
1440 		if (status != AE_OK) {
1441 			cmn_err(CE_WARN,
1442 			    "acpica: error probing Processor Device\n");
1443 			return (status);
1444 		}
1445 		ASSERT(((ACPI_OBJECT *)rb.Pointer)->Type ==
1446 		    ACPI_TYPE_DEVICE);
1447 		acpi_id = AcpiExStringToUnsignedInteger(
1448 		    ((ACPI_DEVICE_INFO *)rb.Pointer)->UniqueId.Value);
1449 		AcpiOsFree(rb.Pointer);
1450 	}
1451 
1452 	acpica_add_processor_to_map(acpi_id, obj);
1453 	return (AE_OK);
1454 }
1455 
1456 
1457 static void
1458 scan_d2a_map(void)
1459 {
1460 	dev_info_t *dip, *cdip;
1461 	ACPI_HANDLE acpiobj;
1462 	char *device_type_prop;
1463 	int bus;
1464 	static int map_error = 0;
1465 
1466 	if (map_error)
1467 		return;
1468 
1469 	scanning_d2a_map = 1;
1470 
1471 	/*
1472 	 * Find all child-of-root PCI buses, and find their corresponding
1473 	 * ACPI child-of-root PCI nodes.  For each one, add to the
1474 	 * d2a table.
1475 	 */
1476 
1477 	for (dip = ddi_get_child(ddi_root_node());
1478 	    dip != NULL;
1479 	    dip = ddi_get_next_sibling(dip)) {
1480 
1481 		/* prune non-PCI nodes */
1482 		if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, 0,
1483 		    "device_type", &device_type_prop) != DDI_PROP_SUCCESS)
1484 			continue;
1485 
1486 		if ((strcmp("pci", device_type_prop) != 0) &&
1487 		    (strcmp("pciex", device_type_prop) != 0)) {
1488 			ddi_prop_free(device_type_prop);
1489 			continue;
1490 		}
1491 
1492 		ddi_prop_free(device_type_prop);
1493 
1494 		/*
1495 		 * To get bus number of dip, get first child and get its
1496 		 * bus number.  If NULL, just continue, because we don't
1497 		 * care about bus nodes with no children anyway.
1498 		 */
1499 		if ((cdip = ddi_get_child(dip)) == NULL)
1500 			continue;
1501 
1502 		if (acpica_get_bdf(cdip, &bus, NULL, NULL) < 0) {
1503 #ifdef D2ADEBUG
1504 			cmn_err(CE_WARN, "Can't get bus number of PCI child?");
1505 #endif
1506 			map_error = 1;
1507 			scanning_d2a_map = 0;
1508 			d2a_done = 1;
1509 			return;
1510 		}
1511 
1512 		if (acpica_find_pcibus(bus, &acpiobj) == AE_ERROR) {
1513 #ifdef D2ADEBUG
1514 			cmn_err(CE_WARN, "No ACPI bus obj for bus %d?\n", bus);
1515 #endif
1516 			map_error = 1;
1517 			continue;
1518 		}
1519 
1520 		acpica_tag_devinfo(dip, acpiobj);
1521 
1522 		/* call recursively to enumerate subtrees */
1523 		scan_d2a_subtree(dip, acpiobj, bus);
1524 	}
1525 
1526 	scanning_d2a_map = 0;
1527 	d2a_done = 1;
1528 }
1529 
1530 /*
1531  * For all acpi child devices of acpiobj, find their matching
1532  * dip under "dip" argument.  (matching means "matches dev/fn").
1533  * bus is assumed to already be a match from caller, and is
1534  * used here only to record in the d2a entry.  Recurse if necessary.
1535  */
1536 static void
1537 scan_d2a_subtree(dev_info_t *dip, ACPI_HANDLE acpiobj, int bus)
1538 {
1539 	int acpi_devfn, hid;
1540 	ACPI_HANDLE acld;
1541 	dev_info_t *dcld;
1542 	int dcld_b, dcld_d, dcld_f;
1543 	int dev, func;
1544 	char *device_type_prop;
1545 
1546 	acld = NULL;
1547 	while (AcpiGetNextObject(ACPI_TYPE_DEVICE, acpiobj, acld, &acld)
1548 	    == AE_OK) {
1549 		/* get the dev/func we're looking for in the devinfo tree */
1550 		if (acpica_eval_int(acld, "_ADR", &acpi_devfn) != AE_OK)
1551 			continue;
1552 		dev = (acpi_devfn >> 16) & 0xFFFF;
1553 		func = acpi_devfn & 0xFFFF;
1554 
1555 		/* look through all the immediate children of dip */
1556 		for (dcld = ddi_get_child(dip); dcld != NULL;
1557 		    dcld = ddi_get_next_sibling(dcld)) {
1558 			if (acpica_get_bdf(dcld, &dcld_b, &dcld_d, &dcld_f) < 0)
1559 				continue;
1560 
1561 			/* dev must match; function must match or wildcard */
1562 			if (dcld_d != dev ||
1563 			    (func != 0xFFFF && func != dcld_f))
1564 				continue;
1565 			bus = dcld_b;
1566 
1567 			/* found a match, record it */
1568 			acpica_tag_devinfo(dcld, acld);
1569 
1570 			/* if we find a bridge, recurse from here */
1571 			if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dcld, 0,
1572 			    "device_type", &device_type_prop) ==
1573 			    DDI_PROP_SUCCESS) {
1574 				if ((strcmp("pci", device_type_prop) == 0) ||
1575 				    (strcmp("pciex", device_type_prop) == 0))
1576 					scan_d2a_subtree(dcld, acld, bus);
1577 				ddi_prop_free(device_type_prop);
1578 			}
1579 
1580 			/* done finding a match, so break now */
1581 			break;
1582 		}
1583 	}
1584 }
1585 
1586 /*
1587  * Return bus/dev/fn for PCI dip (note: not the parent "pci" node).
1588  */
1589 int
1590 acpica_get_bdf(dev_info_t *dip, int *bus, int *device, int *func)
1591 {
1592 	pci_regspec_t *pci_rp;
1593 	int len;
1594 
1595 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
1596 	    "reg", (int **)&pci_rp, (uint_t *)&len) != DDI_SUCCESS)
1597 		return (-1);
1598 
1599 	if (len < (sizeof (pci_regspec_t) / sizeof (int))) {
1600 		ddi_prop_free(pci_rp);
1601 		return (-1);
1602 	}
1603 	if (bus != NULL)
1604 		*bus = (int)PCI_REG_BUS_G(pci_rp->pci_phys_hi);
1605 	if (device != NULL)
1606 		*device = (int)PCI_REG_DEV_G(pci_rp->pci_phys_hi);
1607 	if (func != NULL)
1608 		*func = (int)PCI_REG_FUNC_G(pci_rp->pci_phys_hi);
1609 	ddi_prop_free(pci_rp);
1610 	return (0);
1611 }
1612 
1613 /*
1614  * Return the ACPI device node matching this dev_info node, if it
1615  * exists in the ACPI tree.
1616  */
1617 ACPI_STATUS
1618 acpica_get_handle(dev_info_t *dip, ACPI_HANDLE *rh)
1619 {
1620 	ACPI_STATUS status;
1621 	char *acpiname;
1622 
1623 	if (!d2a_done)
1624 		scan_d2a_map();
1625 
1626 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
1627 	    "acpi-namespace", &acpiname) != DDI_PROP_SUCCESS) {
1628 		return (acpica_get_handle_cpu(dip, rh));
1629 	}
1630 
1631 	status = AcpiGetHandle(NULL, acpiname, rh);
1632 	ddi_prop_free((void *)acpiname);
1633 	return (status);
1634 }
1635 
1636 
1637 
1638 /*
1639  * Manage OS data attachment to ACPI nodes
1640  */
1641 
1642 /*
1643  * Return the (dev_info_t *) associated with the ACPI node.
1644  */
1645 ACPI_STATUS
1646 acpica_get_devinfo(ACPI_HANDLE obj, dev_info_t **dipp)
1647 {
1648 	ACPI_STATUS status;
1649 	void *ptr;
1650 
1651 	status = AcpiGetData(obj, acpica_devinfo_handler, &ptr);
1652 	if (status == AE_OK)
1653 		*dipp = (dev_info_t *)ptr;
1654 
1655 	return (status);
1656 }
1657 
1658 /*
1659  * Set the dev_info_t associated with the ACPI node.
1660  */
1661 static ACPI_STATUS
1662 acpica_set_devinfo(ACPI_HANDLE obj, dev_info_t *dip)
1663 {
1664 	ACPI_STATUS status;
1665 
1666 	status = AcpiAttachData(obj, acpica_devinfo_handler, (void *)dip);
1667 	return (status);
1668 }
1669 
1670 
1671 /*
1672  *
1673  */
1674 void
1675 acpica_devinfo_handler(ACPI_HANDLE obj, UINT32 func, void *data)
1676 {
1677 	/* noop */
1678 }
1679 
1680 
1681 /*
1682  *
1683  */
1684 void
1685 acpica_map_cpu(processorid_t cpuid, UINT32 proc_id)
1686 {
1687 	struct cpu_map_item *item;
1688 
1689 	if (cpu_map == NULL)
1690 		cpu_map = kmem_zalloc(sizeof (item) * NCPU, KM_SLEEP);
1691 
1692 	item = kmem_zalloc(sizeof (*item), KM_SLEEP);
1693 	item->proc_id = proc_id;
1694 	item->obj = NULL;
1695 	cpu_map[cpuid] = item;
1696 	cpu_map_count++;
1697 }
1698 
1699 void
1700 acpica_build_processor_map()
1701 {
1702 	ACPI_STATUS status;
1703 	void *rv;
1704 
1705 	/*
1706 	 * shouldn't be called more than once anyway
1707 	 */
1708 	if (cpu_map_built)
1709 		return;
1710 
1711 	/*
1712 	 * Look for Processor objects
1713 	 */
1714 	status = AcpiWalkNamespace(ACPI_TYPE_PROCESSOR,
1715 	    ACPI_ROOT_OBJECT,
1716 	    4,
1717 	    acpica_probe_processor,
1718 	    NULL,
1719 	    &rv);
1720 	ASSERT(status == AE_OK);
1721 
1722 	/*
1723 	 * Look for processor Device objects
1724 	 */
1725 	status = AcpiGetDevices("ACPI0007",
1726 	    acpica_probe_processor,
1727 	    NULL,
1728 	    &rv);
1729 	ASSERT(status == AE_OK);
1730 	cpu_map_built = 1;
1731 }
1732