xref: /titanic_50/usr/src/uts/intel/ia32/os/archdep.c (revision 96c4a178a18cd52ee5001195f1552d9cef0c38f0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 #include <sys/param.h>
30 #include <sys/types.h>
31 #include <sys/vmparam.h>
32 #include <sys/systm.h>
33 #include <sys/signal.h>
34 #include <sys/stack.h>
35 #include <sys/regset.h>
36 #include <sys/privregs.h>
37 #include <sys/frame.h>
38 #include <sys/proc.h>
39 #include <sys/psw.h>
40 #include <sys/siginfo.h>
41 #include <sys/cpuvar.h>
42 #include <sys/asm_linkage.h>
43 #include <sys/kmem.h>
44 #include <sys/errno.h>
45 #include <sys/bootconf.h>
46 #include <sys/archsystm.h>
47 #include <sys/debug.h>
48 #include <sys/elf.h>
49 #include <sys/spl.h>
50 #include <sys/time.h>
51 #include <sys/atomic.h>
52 #include <sys/sysmacros.h>
53 #include <sys/cmn_err.h>
54 #include <sys/modctl.h>
55 #include <sys/kobj.h>
56 #include <sys/panic.h>
57 #include <sys/reboot.h>
58 #include <sys/time.h>
59 #include <sys/fp.h>
60 #include <sys/x86_archext.h>
61 #include <sys/auxv.h>
62 #include <sys/auxv_386.h>
63 #include <sys/dtrace.h>
64 #include <sys/brand.h>
65 #include <sys/machbrand.h>
66 
67 extern const struct fnsave_state x87_initial;
68 extern const struct fxsave_state sse_initial;
69 
70 /*
71  * Map an fnsave-formatted save area into an fxsave-formatted save area.
72  *
73  * Most fields are the same width, content and semantics.  However
74  * the tag word is compressed.
75  */
76 static void
77 fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx)
78 {
79 	uint_t i, tagbits;
80 
81 	fx->fx_fcw = fn->f_fcw;
82 	fx->fx_fsw = fn->f_fsw;
83 
84 	/*
85 	 * copy element by element (because of holes)
86 	 */
87 	for (i = 0; i < 8; i++)
88 		bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0],
89 		    sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
90 
91 	/*
92 	 * synthesize compressed tag bits
93 	 */
94 	fx->fx_fctw = 0;
95 	for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2)
96 		if ((tagbits & 3) != 3)
97 			fx->fx_fctw |= (1 << i);
98 
99 	fx->fx_fop = fn->f_fop;
100 
101 #if defined(__amd64)
102 	fx->fx_rip = (uint64_t)fn->f_eip;
103 	fx->fx_rdp = (uint64_t)fn->f_dp;
104 #else
105 	fx->fx_eip = fn->f_eip;
106 	fx->fx_cs = fn->f_cs;
107 	fx->__fx_ign0 = 0;
108 	fx->fx_dp = fn->f_dp;
109 	fx->fx_ds = fn->f_ds;
110 	fx->__fx_ign1 = 0;
111 #endif
112 }
113 
114 /*
115  * Map from an fxsave-format save area to an fnsave-format save area.
116  */
117 static void
118 fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn)
119 {
120 	uint_t i, top, tagbits;
121 
122 	fn->f_fcw = fx->fx_fcw;
123 	fn->__f_ign0 = 0;
124 	fn->f_fsw = fx->fx_fsw;
125 	fn->__f_ign1 = 0;
126 
127 	top = (fx->fx_fsw & FPS_TOP) >> 11;
128 
129 	/*
130 	 * copy element by element (because of holes)
131 	 */
132 	for (i = 0; i < 8; i++)
133 		bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0],
134 		    sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
135 
136 	/*
137 	 * synthesize uncompressed tag bits
138 	 */
139 	fn->f_ftw = 0;
140 	for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) {
141 		uint_t ibit, expo;
142 		const uint16_t *fpp;
143 		static const uint16_t zero[5] = { 0, 0, 0, 0, 0 };
144 
145 		if ((tagbits & 1) == 0) {
146 			fn->f_ftw |= 3 << (i << 1);	/* empty */
147 			continue;
148 		}
149 
150 		/*
151 		 * (tags refer to *physical* registers)
152 		 */
153 		fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0];
154 		ibit = fpp[3] >> 15;
155 		expo = fpp[4] & 0x7fff;
156 
157 		if (ibit && expo != 0 && expo != 0x7fff)
158 			continue;			/* valid fp number */
159 
160 		if (bcmp(fpp, &zero, sizeof (zero)))
161 			fn->f_ftw |= 2 << (i << 1);	/* NaN */
162 		else
163 			fn->f_ftw |= 1 << (i << 1);	/* fp zero */
164 	}
165 
166 	fn->f_fop = fx->fx_fop;
167 
168 	fn->__f_ign2 = 0;
169 #if defined(__amd64)
170 	fn->f_eip = (uint32_t)fx->fx_rip;
171 	fn->f_cs = U32CS_SEL;
172 	fn->f_dp = (uint32_t)fx->fx_rdp;
173 	fn->f_ds = UDS_SEL;
174 #else
175 	fn->f_eip = fx->fx_eip;
176 	fn->f_cs = fx->fx_cs;
177 	fn->f_dp = fx->fx_dp;
178 	fn->f_ds = fx->fx_ds;
179 #endif
180 	fn->__f_ign3 = 0;
181 }
182 
183 /*
184  * Map from an fpregset_t into an fxsave-format save area
185  */
186 static void
187 fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx)
188 {
189 #if defined(__amd64)
190 	bcopy(fp, fx, sizeof (*fx));
191 #else
192 	const struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state;
193 
194 	fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
195 	fx->fx_mxcsr = fc->mxcsr;
196 	bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
197 #endif
198 	/*
199 	 * avoid useless #gp exceptions - mask reserved bits
200 	 */
201 	fx->fx_mxcsr &= sse_mxcsr_mask;
202 }
203 
204 /*
205  * Map from an fxsave-format save area into a fpregset_t
206  */
207 static void
208 fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp)
209 {
210 #if defined(__amd64)
211 	bcopy(fx, fp, sizeof (*fx));
212 #else
213 	struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state;
214 
215 	fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
216 	fc->mxcsr = fx->fx_mxcsr;
217 	bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
218 #endif
219 }
220 
221 #if defined(_SYSCALL32_IMPL)
222 static void
223 fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx)
224 {
225 	const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
226 
227 	fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
228 	/*
229 	 * avoid useless #gp exceptions - mask reserved bits
230 	 */
231 	fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr;
232 	bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
233 }
234 
235 static void
236 fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp)
237 {
238 	struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
239 
240 	fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
241 	fc->mxcsr = fx->fx_mxcsr;
242 	bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
243 }
244 
245 static void
246 fpregset_nto32(const fpregset_t *src, fpregset32_t *dst)
247 {
248 	fxsave_to_fpregset32((struct fxsave_state *)src, dst);
249 	dst->fp_reg_set.fpchip_state.status =
250 	    src->fp_reg_set.fpchip_state.status;
251 	dst->fp_reg_set.fpchip_state.xstatus =
252 	    src->fp_reg_set.fpchip_state.xstatus;
253 }
254 
255 static void
256 fpregset_32ton(const fpregset32_t *src, fpregset_t *dst)
257 {
258 	fpregset32_to_fxsave(src, (struct fxsave_state *)dst);
259 	dst->fp_reg_set.fpchip_state.status =
260 	    src->fp_reg_set.fpchip_state.status;
261 	dst->fp_reg_set.fpchip_state.xstatus =
262 	    src->fp_reg_set.fpchip_state.xstatus;
263 }
264 #endif
265 
266 /*
267  * Set floating-point registers from a native fpregset_t.
268  */
269 void
270 setfpregs(klwp_t *lwp, fpregset_t *fp)
271 {
272 	struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
273 
274 	if (fpu->fpu_flags & FPU_EN) {
275 		if (!(fpu->fpu_flags & FPU_VALID)) {
276 			/*
277 			 * FPU context is still active, release the
278 			 * ownership.
279 			 */
280 			fp_free(fpu, 0);
281 		}
282 #if !defined(__amd64)
283 		if (fp_kind == __FP_SSE) {
284 #endif
285 			fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx);
286 			fpu->fpu_regs.kfpu_xstatus =
287 			    fp->fp_reg_set.fpchip_state.xstatus;
288 #if !defined(__amd64)
289 		} else
290 			bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn,
291 			    sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
292 #endif
293 		fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status;
294 		fpu->fpu_flags |= FPU_VALID;
295 	} else {
296 		/*
297 		 * If we are trying to change the FPU state of a thread which
298 		 * hasn't yet initialized floating point, store the state in
299 		 * the pcb and indicate that the state is valid.  When the
300 		 * thread enables floating point, it will use this state instead
301 		 * of the default state.
302 		 */
303 #if !defined(__amd64)
304 		if (fp_kind == __FP_SSE) {
305 #endif
306 			fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx);
307 			fpu->fpu_regs.kfpu_xstatus =
308 			    fp->fp_reg_set.fpchip_state.xstatus;
309 #if !defined(__amd64)
310 		} else
311 			bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn,
312 			    sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
313 #endif
314 		fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status;
315 		fpu->fpu_flags |= FPU_VALID;
316 	}
317 }
318 
319 /*
320  * Get floating-point registers into a native fpregset_t.
321  */
322 void
323 getfpregs(klwp_t *lwp, fpregset_t *fp)
324 {
325 	struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
326 
327 	kpreempt_disable();
328 	if (fpu->fpu_flags & FPU_EN) {
329 		/*
330 		 * If we have FPU hw and the thread's pcb doesn't have
331 		 * a valid FPU state then get the state from the hw.
332 		 */
333 		if (fpu_exists && ttolwp(curthread) == lwp &&
334 		    !(fpu->fpu_flags & FPU_VALID))
335 			fp_save(fpu); /* get the current FPU state */
336 	}
337 
338 	/*
339 	 * There are 3 possible cases we have to be aware of here:
340 	 *
341 	 * 1. FPU is enabled.  FPU state is stored in the current LWP.
342 	 *
343 	 * 2. FPU is not enabled, and there have been no intervening /proc
344 	 *    modifications.  Return initial FPU state.
345 	 *
346 	 * 3. FPU is not enabled, but a /proc consumer has modified FPU state.
347 	 *    FPU state is stored in the current LWP.
348 	 */
349 	if ((fpu->fpu_flags & FPU_EN) || (fpu->fpu_flags & FPU_VALID)) {
350 		/*
351 		 * Cases 1 and 3.
352 		 */
353 #if !defined(__amd64)
354 		if (fp_kind == __FP_SSE) {
355 #endif
356 			fxsave_to_fpregset(&fpu->fpu_regs.kfpu_u.kfpu_fx, fp);
357 			fp->fp_reg_set.fpchip_state.xstatus =
358 			    fpu->fpu_regs.kfpu_xstatus;
359 #if !defined(__amd64)
360 		} else
361 			bcopy(&fpu->fpu_regs.kfpu_u.kfpu_fn, fp,
362 			    sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
363 #endif
364 		fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
365 	} else {
366 		/*
367 		 * Case 2.
368 		 */
369 #if !defined(__amd64)
370 		if (fp_kind == __FP_SSE) {
371 #endif
372 			fxsave_to_fpregset(&sse_initial, fp);
373 			fp->fp_reg_set.fpchip_state.xstatus =
374 			    fpu->fpu_regs.kfpu_xstatus;
375 #if !defined(__amd64)
376 		} else
377 			bcopy(&x87_initial, fp, sizeof (x87_initial));
378 #endif
379 		fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
380 	}
381 	kpreempt_enable();
382 }
383 
384 #if defined(_SYSCALL32_IMPL)
385 
386 /*
387  * Set floating-point registers from an fpregset32_t.
388  */
389 void
390 setfpregs32(klwp_t *lwp, fpregset32_t *fp)
391 {
392 	fpregset_t fpregs;
393 
394 	fpregset_32ton(fp, &fpregs);
395 	setfpregs(lwp, &fpregs);
396 }
397 
398 /*
399  * Get floating-point registers into an fpregset32_t.
400  */
401 void
402 getfpregs32(klwp_t *lwp, fpregset32_t *fp)
403 {
404 	fpregset_t fpregs;
405 
406 	getfpregs(lwp, &fpregs);
407 	fpregset_nto32(&fpregs, fp);
408 }
409 
410 #endif	/* _SYSCALL32_IMPL */
411 
412 /*
413  * Return the general registers
414  */
415 void
416 getgregs(klwp_t *lwp, gregset_t grp)
417 {
418 	struct regs *rp = lwptoregs(lwp);
419 #if defined(__amd64)
420 	struct pcb *pcb = &lwp->lwp_pcb;
421 	int thisthread = lwptot(lwp) == curthread;
422 
423 	grp[REG_RDI] = rp->r_rdi;
424 	grp[REG_RSI] = rp->r_rsi;
425 	grp[REG_RDX] = rp->r_rdx;
426 	grp[REG_RCX] = rp->r_rcx;
427 	grp[REG_R8] = rp->r_r8;
428 	grp[REG_R9] = rp->r_r9;
429 	grp[REG_RAX] = rp->r_rax;
430 	grp[REG_RBX] = rp->r_rbx;
431 	grp[REG_RBP] = rp->r_rbp;
432 	grp[REG_R10] = rp->r_r10;
433 	grp[REG_R11] = rp->r_r11;
434 	grp[REG_R12] = rp->r_r12;
435 	grp[REG_R13] = rp->r_r13;
436 	grp[REG_R14] = rp->r_r14;
437 	grp[REG_R15] = rp->r_r15;
438 	grp[REG_FSBASE] = pcb->pcb_fsbase;
439 	grp[REG_GSBASE] = pcb->pcb_gsbase;
440 	if (thisthread)
441 		kpreempt_disable();
442 	if (pcb->pcb_rupdate == 1) {
443 		grp[REG_DS] = pcb->pcb_ds;
444 		grp[REG_ES] = pcb->pcb_es;
445 		grp[REG_FS] = pcb->pcb_fs;
446 		grp[REG_GS] = pcb->pcb_gs;
447 	} else {
448 		grp[REG_DS] = rp->r_ds;
449 		grp[REG_ES] = rp->r_es;
450 		grp[REG_FS] = rp->r_fs;
451 		grp[REG_GS] = rp->r_gs;
452 	}
453 	if (thisthread)
454 		kpreempt_enable();
455 	grp[REG_TRAPNO] = rp->r_trapno;
456 	grp[REG_ERR] = rp->r_err;
457 	grp[REG_RIP] = rp->r_rip;
458 	grp[REG_CS] = rp->r_cs;
459 	grp[REG_SS] = rp->r_ss;
460 	grp[REG_RFL] = rp->r_rfl;
461 	grp[REG_RSP] = rp->r_rsp;
462 #else
463 	bcopy(&rp->r_gs, grp, sizeof (gregset_t));
464 #endif
465 }
466 
467 #if defined(_SYSCALL32_IMPL)
468 
469 void
470 getgregs32(klwp_t *lwp, gregset32_t grp)
471 {
472 	struct regs *rp = lwptoregs(lwp);
473 	struct pcb *pcb = &lwp->lwp_pcb;
474 	int thisthread = lwptot(lwp) == curthread;
475 
476 	if (thisthread)
477 		kpreempt_disable();
478 	if (pcb->pcb_rupdate == 1) {
479 		grp[GS] = (uint16_t)pcb->pcb_gs;
480 		grp[FS] = (uint16_t)pcb->pcb_fs;
481 		grp[DS] = (uint16_t)pcb->pcb_ds;
482 		grp[ES] = (uint16_t)pcb->pcb_es;
483 	} else {
484 		grp[GS] = (uint16_t)rp->r_gs;
485 		grp[FS] = (uint16_t)rp->r_fs;
486 		grp[DS] = (uint16_t)rp->r_ds;
487 		grp[ES] = (uint16_t)rp->r_es;
488 	}
489 	if (thisthread)
490 		kpreempt_enable();
491 	grp[EDI] = (greg32_t)rp->r_rdi;
492 	grp[ESI] = (greg32_t)rp->r_rsi;
493 	grp[EBP] = (greg32_t)rp->r_rbp;
494 	grp[ESP] = 0;
495 	grp[EBX] = (greg32_t)rp->r_rbx;
496 	grp[EDX] = (greg32_t)rp->r_rdx;
497 	grp[ECX] = (greg32_t)rp->r_rcx;
498 	grp[EAX] = (greg32_t)rp->r_rax;
499 	grp[TRAPNO] = (greg32_t)rp->r_trapno;
500 	grp[ERR] = (greg32_t)rp->r_err;
501 	grp[EIP] = (greg32_t)rp->r_rip;
502 	grp[CS] = (uint16_t)rp->r_cs;
503 	grp[EFL] = (greg32_t)rp->r_rfl;
504 	grp[UESP] = (greg32_t)rp->r_rsp;
505 	grp[SS] = (uint16_t)rp->r_ss;
506 }
507 
508 void
509 ucontext_32ton(const ucontext32_t *src, ucontext_t *dst)
510 {
511 	mcontext_t *dmc = &dst->uc_mcontext;
512 	const mcontext32_t *smc = &src->uc_mcontext;
513 
514 	bzero(dst, sizeof (*dst));
515 	dst->uc_flags = src->uc_flags;
516 	dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link;
517 
518 	bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask));
519 
520 	dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp;
521 	dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size;
522 	dst->uc_stack.ss_flags = src->uc_stack.ss_flags;
523 
524 	dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS];
525 	dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS];
526 	dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES];
527 	dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS];
528 	dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI];
529 	dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI];
530 	dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP];
531 	dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX];
532 	dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX];
533 	dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX];
534 	dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX];
535 	dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO];
536 	dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR];
537 	dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP];
538 	dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS];
539 	dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL];
540 	dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP];
541 	dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS];
542 
543 	/*
544 	 * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set
545 	 * otherwise there is no guarantee that anything in fpregs is valid.
546 	 */
547 	if (src->uc_flags & UC_FPU)
548 		fpregset_32ton(&src->uc_mcontext.fpregs,
549 		    &dst->uc_mcontext.fpregs);
550 }
551 
552 #endif	/* _SYSCALL32_IMPL */
553 
554 /*
555  * Return the user-level PC.
556  * If in a system call, return the address of the syscall trap.
557  */
558 greg_t
559 getuserpc()
560 {
561 	greg_t upc = lwptoregs(ttolwp(curthread))->r_pc;
562 	uint32_t insn;
563 
564 	if (curthread->t_sysnum == 0)
565 		return (upc);
566 
567 	/*
568 	 * We might've gotten here from sysenter (0xf 0x34),
569 	 * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0).
570 	 *
571 	 * Go peek at the binary to figure it out..
572 	 */
573 	if (fuword32((void *)(upc - 2), &insn) != -1 &&
574 	    (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f)
575 		return (upc - 2);
576 	return (upc - 7);
577 }
578 
579 /*
580  * Protect segment registers from non-user privilege levels and GDT selectors
581  * other than USER_CS, USER_DS and lwp FS and GS values.  If the segment
582  * selector is non-null and not USER_CS/USER_DS, we make sure that the
583  * TI bit is set to point into the LDT and that the RPL is set to 3.
584  *
585  * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we
586  * also explicitly zero the top 16 bits since they may be coming from the
587  * user's address space via setcontext(2) or /proc.
588  *
589  * Note about null selector. When running on the hypervisor if we allow a
590  * process to set its %cs to null selector with RPL of 0 the hypervisor will
591  * crash the domain. If running on bare metal we would get a #gp fault and
592  * be able to kill the process and continue on. Therefore we make sure to
593  * force RPL to SEL_UPL even for null selector when setting %cs.
594  */
595 
596 #if defined(IS_CS) || defined(IS_NOT_CS)
597 #error	"IS_CS and IS_NOT_CS already defined"
598 #endif
599 
600 #define	IS_CS		1
601 #define	IS_NOT_CS	0
602 
603 /*ARGSUSED*/
604 static greg_t
605 fix_segreg(greg_t sr, int iscs, model_t datamodel)
606 {
607 	kthread_t *t = curthread;
608 
609 	switch (sr &= 0xffff) {
610 
611 	case 0:
612 		if (iscs == IS_CS)
613 			return (0 | SEL_UPL);
614 		else
615 			return (0);
616 
617 #if defined(__amd64)
618 	/*
619 	 * If lwp attempts to switch data model then force their
620 	 * code selector to be null selector.
621 	 */
622 	case U32CS_SEL:
623 		if (datamodel == DATAMODEL_NATIVE)
624 			return (0 | SEL_UPL);
625 		else
626 			return (sr);
627 
628 	case UCS_SEL:
629 		if (datamodel == DATAMODEL_ILP32)
630 			return (0 | SEL_UPL);
631 #elif defined(__i386)
632 	case UCS_SEL:
633 #endif
634 	/*FALLTHROUGH*/
635 	case UDS_SEL:
636 	case LWPFS_SEL:
637 	case LWPGS_SEL:
638 	case SEL_UPL:
639 		return (sr);
640 	default:
641 		break;
642 	}
643 
644 	/*
645 	 * Allow this process's brand to do any necessary segment register
646 	 * manipulation.
647 	 */
648 	if (PROC_IS_BRANDED(t->t_procp) && BRMOP(t->t_procp)->b_fixsegreg) {
649 		greg_t bsr = BRMOP(t->t_procp)->b_fixsegreg(sr, datamodel);
650 
651 		if (bsr == 0 && iscs == IS_CS)
652 			return (0 | SEL_UPL);
653 		else
654 			return (bsr);
655 	}
656 
657 	/*
658 	 * Force it into the LDT in ring 3 for 32-bit processes, which by
659 	 * default do not have an LDT, so that any attempt to use an invalid
660 	 * selector will reference the (non-existant) LDT, and cause a #gp
661 	 * fault for the process.
662 	 *
663 	 * 64-bit processes get the null gdt selector since they
664 	 * are not allowed to have a private LDT.
665 	 */
666 #if defined(__amd64)
667 	if (datamodel == DATAMODEL_ILP32) {
668 		return (sr | SEL_TI_LDT | SEL_UPL);
669 	} else {
670 		if (iscs == IS_CS)
671 			return (0 | SEL_UPL);
672 		else
673 			return (0);
674 	}
675 
676 #elif defined(__i386)
677 	return (sr | SEL_TI_LDT | SEL_UPL);
678 #endif
679 }
680 
681 /*
682  * Set general registers.
683  */
684 void
685 setgregs(klwp_t *lwp, gregset_t grp)
686 {
687 	struct regs *rp = lwptoregs(lwp);
688 	model_t	datamodel = lwp_getdatamodel(lwp);
689 
690 #if defined(__amd64)
691 	struct pcb *pcb = &lwp->lwp_pcb;
692 	int thisthread = lwptot(lwp) == curthread;
693 
694 	if (datamodel == DATAMODEL_NATIVE) {
695 
696 		if (thisthread)
697 			(void) save_syscall_args();	/* copy the args */
698 
699 		rp->r_rdi = grp[REG_RDI];
700 		rp->r_rsi = grp[REG_RSI];
701 		rp->r_rdx = grp[REG_RDX];
702 		rp->r_rcx = grp[REG_RCX];
703 		rp->r_r8 = grp[REG_R8];
704 		rp->r_r9 = grp[REG_R9];
705 		rp->r_rax = grp[REG_RAX];
706 		rp->r_rbx = grp[REG_RBX];
707 		rp->r_rbp = grp[REG_RBP];
708 		rp->r_r10 = grp[REG_R10];
709 		rp->r_r11 = grp[REG_R11];
710 		rp->r_r12 = grp[REG_R12];
711 		rp->r_r13 = grp[REG_R13];
712 		rp->r_r14 = grp[REG_R14];
713 		rp->r_r15 = grp[REG_R15];
714 		rp->r_trapno = grp[REG_TRAPNO];
715 		rp->r_err = grp[REG_ERR];
716 		rp->r_rip = grp[REG_RIP];
717 		/*
718 		 * Setting %cs or %ss to anything else is quietly but
719 		 * quite definitely forbidden!
720 		 */
721 		rp->r_cs = UCS_SEL;
722 		rp->r_ss = UDS_SEL;
723 		rp->r_rsp = grp[REG_RSP];
724 
725 		if (thisthread)
726 			kpreempt_disable();
727 
728 		pcb->pcb_ds = UDS_SEL;
729 		pcb->pcb_es = UDS_SEL;
730 
731 		/*
732 		 * 64-bit processes -are- allowed to set their fsbase/gsbase
733 		 * values directly, but only if they're using the segment
734 		 * selectors that allow that semantic.
735 		 *
736 		 * (32-bit processes must use lwp_set_private().)
737 		 */
738 		pcb->pcb_fsbase = grp[REG_FSBASE];
739 		pcb->pcb_gsbase = grp[REG_GSBASE];
740 		pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
741 		pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
742 
743 		/*
744 		 * Ensure that we go out via update_sregs
745 		 */
746 		pcb->pcb_rupdate = 1;
747 		lwptot(lwp)->t_post_sys = 1;
748 		if (thisthread)
749 			kpreempt_enable();
750 #if defined(_SYSCALL32_IMPL)
751 	} else {
752 		rp->r_rdi = (uint32_t)grp[REG_RDI];
753 		rp->r_rsi = (uint32_t)grp[REG_RSI];
754 		rp->r_rdx = (uint32_t)grp[REG_RDX];
755 		rp->r_rcx = (uint32_t)grp[REG_RCX];
756 		rp->r_rax = (uint32_t)grp[REG_RAX];
757 		rp->r_rbx = (uint32_t)grp[REG_RBX];
758 		rp->r_rbp = (uint32_t)grp[REG_RBP];
759 		rp->r_trapno = (uint32_t)grp[REG_TRAPNO];
760 		rp->r_err = (uint32_t)grp[REG_ERR];
761 		rp->r_rip = (uint32_t)grp[REG_RIP];
762 
763 		rp->r_cs = fix_segreg(grp[REG_CS], IS_CS, datamodel);
764 		rp->r_ss = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
765 
766 		rp->r_rsp = (uint32_t)grp[REG_RSP];
767 
768 		if (thisthread)
769 			kpreempt_disable();
770 
771 		pcb->pcb_ds = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
772 		pcb->pcb_es = fix_segreg(grp[REG_ES], IS_NOT_CS, datamodel);
773 
774 		/*
775 		 * (See fsbase/gsbase commentary above)
776 		 */
777 		pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
778 		pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
779 
780 		/*
781 		 * Ensure that we go out via update_sregs
782 		 */
783 		pcb->pcb_rupdate = 1;
784 		lwptot(lwp)->t_post_sys = 1;
785 		if (thisthread)
786 			kpreempt_enable();
787 #endif
788 	}
789 
790 	/*
791 	 * Only certain bits of the flags register can be modified.
792 	 */
793 	rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) |
794 	    (grp[REG_RFL] & PSL_USERMASK);
795 
796 #elif defined(__i386)
797 
798 	/*
799 	 * Only certain bits of the flags register can be modified.
800 	 */
801 	grp[EFL] = (rp->r_efl & ~PSL_USERMASK) | (grp[EFL] & PSL_USERMASK);
802 
803 	/*
804 	 * Copy saved registers from user stack.
805 	 */
806 	bcopy(grp, &rp->r_gs, sizeof (gregset_t));
807 
808 	rp->r_cs = fix_segreg(rp->r_cs, IS_CS, datamodel);
809 	rp->r_ss = fix_segreg(rp->r_ss, IS_NOT_CS, datamodel);
810 	rp->r_ds = fix_segreg(rp->r_ds, IS_NOT_CS, datamodel);
811 	rp->r_es = fix_segreg(rp->r_es, IS_NOT_CS, datamodel);
812 	rp->r_fs = fix_segreg(rp->r_fs, IS_NOT_CS, datamodel);
813 	rp->r_gs = fix_segreg(rp->r_gs, IS_NOT_CS, datamodel);
814 
815 #endif	/* __i386 */
816 }
817 
818 /*
819  * Determine whether eip is likely to have an interrupt frame
820  * on the stack.  We do this by comparing the address to the
821  * range of addresses spanned by several well-known routines.
822  */
823 extern void _interrupt();
824 extern void _allsyscalls();
825 extern void _cmntrap();
826 extern void fakesoftint();
827 
828 extern size_t _interrupt_size;
829 extern size_t _allsyscalls_size;
830 extern size_t _cmntrap_size;
831 extern size_t _fakesoftint_size;
832 
833 /*
834  * Get a pc-only stacktrace.  Used for kmem_alloc() buffer ownership tracking.
835  * Returns MIN(current stack depth, pcstack_limit).
836  */
837 int
838 getpcstack(pc_t *pcstack, int pcstack_limit)
839 {
840 	struct frame *fp = (struct frame *)getfp();
841 	struct frame *nextfp, *minfp, *stacktop;
842 	int depth = 0;
843 	int on_intr;
844 	uintptr_t pc;
845 
846 	if ((on_intr = CPU_ON_INTR(CPU)) != 0)
847 		stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME));
848 	else
849 		stacktop = (struct frame *)curthread->t_stk;
850 	minfp = fp;
851 
852 	pc = ((struct regs *)fp)->r_pc;
853 
854 	while (depth < pcstack_limit) {
855 		nextfp = (struct frame *)fp->fr_savfp;
856 		pc = fp->fr_savpc;
857 		if (nextfp <= minfp || nextfp >= stacktop) {
858 			if (on_intr) {
859 				/*
860 				 * Hop from interrupt stack to thread stack.
861 				 */
862 				stacktop = (struct frame *)curthread->t_stk;
863 				minfp = (struct frame *)curthread->t_stkbase;
864 				on_intr = 0;
865 				continue;
866 			}
867 			break;
868 		}
869 		pcstack[depth++] = (pc_t)pc;
870 		fp = nextfp;
871 		minfp = fp;
872 	}
873 	return (depth);
874 }
875 
876 /*
877  * The following ELF header fields are defined as processor-specific
878  * in the V8 ABI:
879  *
880  *	e_ident[EI_DATA]	encoding of the processor-specific
881  *				data in the object file
882  *	e_machine		processor identification
883  *	e_flags			processor-specific flags associated
884  *				with the file
885  */
886 
887 /*
888  * The value of at_flags reflects a platform's cpu module support.
889  * at_flags is used to check for allowing a binary to execute and
890  * is passed as the value of the AT_FLAGS auxiliary vector.
891  */
892 int at_flags = 0;
893 
894 /*
895  * Check the processor-specific fields of an ELF header.
896  *
897  * returns 1 if the fields are valid, 0 otherwise
898  */
899 /*ARGSUSED2*/
900 int
901 elfheadcheck(
902 	unsigned char e_data,
903 	Elf32_Half e_machine,
904 	Elf32_Word e_flags)
905 {
906 	if (e_data != ELFDATA2LSB)
907 		return (0);
908 #if defined(__amd64)
909 	if (e_machine == EM_AMD64)
910 		return (1);
911 #endif
912 	return (e_machine == EM_386);
913 }
914 
915 uint_t auxv_hwcap_include = 0;	/* patch to enable unrecognized features */
916 uint_t auxv_hwcap_exclude = 0;	/* patch for broken cpus, debugging */
917 #if defined(_SYSCALL32_IMPL)
918 uint_t auxv_hwcap32_include = 0;	/* ditto for 32-bit apps */
919 uint_t auxv_hwcap32_exclude = 0;	/* ditto for 32-bit apps */
920 #endif
921 
922 /*
923  * Gather information about the processor and place it into auxv_hwcap
924  * so that it can be exported to the linker via the aux vector.
925  *
926  * We use this seemingly complicated mechanism so that we can ensure
927  * that /etc/system can be used to override what the system can or
928  * cannot discover for itself.
929  */
930 void
931 bind_hwcap(void)
932 {
933 	uint_t cpu_hwcap_flags = cpuid_pass4(NULL);
934 
935 	auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags) &
936 	    ~auxv_hwcap_exclude;
937 
938 #if defined(__amd64)
939 	/*
940 	 * On AMD processors, sysenter just doesn't work at all
941 	 * when the kernel is in long mode.  On IA-32e processors
942 	 * it does, but there's no real point in all the alternate
943 	 * mechanism when syscall works on both.
944 	 *
945 	 * Besides, the kernel's sysenter handler is expecting a
946 	 * 32-bit lwp ...
947 	 */
948 	auxv_hwcap &= ~AV_386_SEP;
949 #else
950 	/*
951 	 * 32-bit processes can -always- use the lahf/sahf instructions
952 	 */
953 	auxv_hwcap |= AV_386_AHF;
954 #endif
955 
956 	if (auxv_hwcap_include || auxv_hwcap_exclude)
957 		cmn_err(CE_CONT, "?user ABI extensions: %b\n",
958 		    auxv_hwcap, FMT_AV_386);
959 
960 #if defined(_SYSCALL32_IMPL)
961 	auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags) &
962 	    ~auxv_hwcap32_exclude;
963 
964 #if defined(__amd64)
965 	/*
966 	 * If this is an amd64 architecture machine from Intel, then
967 	 * syscall -doesn't- work in compatibility mode, only sysenter does.
968 	 *
969 	 * Sigh.
970 	 */
971 	if (!cpuid_syscall32_insn(NULL))
972 		auxv_hwcap32 &= ~AV_386_AMD_SYSC;
973 
974 	/*
975 	 * 32-bit processes can -always- use the lahf/sahf instructions
976 	 */
977 	auxv_hwcap32 |= AV_386_AHF;
978 #endif
979 
980 	if (auxv_hwcap32_include || auxv_hwcap32_exclude)
981 		cmn_err(CE_CONT, "?32-bit user ABI extensions: %b\n",
982 		    auxv_hwcap32, FMT_AV_386);
983 #endif
984 }
985 
986 /*
987  *	sync_icache() - this is called
988  *	in proc/fs/prusrio.c. x86 has an unified cache and therefore
989  *	this is a nop.
990  */
991 /* ARGSUSED */
992 void
993 sync_icache(caddr_t addr, uint_t len)
994 {
995 	/* Do nothing for now */
996 }
997 
998 /*ARGSUSED*/
999 void
1000 sync_data_memory(caddr_t va, size_t len)
1001 {
1002 	/* Not implemented for this platform */
1003 }
1004 
1005 int
1006 __ipltospl(int ipl)
1007 {
1008 	return (ipltospl(ipl));
1009 }
1010 
1011 /*
1012  * The panic code invokes panic_saveregs() to record the contents of a
1013  * regs structure into the specified panic_data structure for debuggers.
1014  */
1015 void
1016 panic_saveregs(panic_data_t *pdp, struct regs *rp)
1017 {
1018 	panic_nv_t *pnv = PANICNVGET(pdp);
1019 
1020 	struct cregs	creg;
1021 
1022 	getcregs(&creg);
1023 
1024 #if defined(__amd64)
1025 	PANICNVADD(pnv, "rdi", rp->r_rdi);
1026 	PANICNVADD(pnv, "rsi", rp->r_rsi);
1027 	PANICNVADD(pnv, "rdx", rp->r_rdx);
1028 	PANICNVADD(pnv, "rcx", rp->r_rcx);
1029 	PANICNVADD(pnv, "r8", rp->r_r8);
1030 	PANICNVADD(pnv, "r9", rp->r_r9);
1031 	PANICNVADD(pnv, "rax", rp->r_rax);
1032 	PANICNVADD(pnv, "rbx", rp->r_rbx);
1033 	PANICNVADD(pnv, "rbp", rp->r_rbp);
1034 	PANICNVADD(pnv, "r10", rp->r_r10);
1035 	PANICNVADD(pnv, "r10", rp->r_r10);
1036 	PANICNVADD(pnv, "r11", rp->r_r11);
1037 	PANICNVADD(pnv, "r12", rp->r_r12);
1038 	PANICNVADD(pnv, "r13", rp->r_r13);
1039 	PANICNVADD(pnv, "r14", rp->r_r14);
1040 	PANICNVADD(pnv, "r15", rp->r_r15);
1041 	PANICNVADD(pnv, "fsbase", rdmsr(MSR_AMD_FSBASE));
1042 	PANICNVADD(pnv, "gsbase", rdmsr(MSR_AMD_GSBASE));
1043 	PANICNVADD(pnv, "ds", rp->r_ds);
1044 	PANICNVADD(pnv, "es", rp->r_es);
1045 	PANICNVADD(pnv, "fs", rp->r_fs);
1046 	PANICNVADD(pnv, "gs", rp->r_gs);
1047 	PANICNVADD(pnv, "trapno", rp->r_trapno);
1048 	PANICNVADD(pnv, "err", rp->r_err);
1049 	PANICNVADD(pnv, "rip", rp->r_rip);
1050 	PANICNVADD(pnv, "cs", rp->r_cs);
1051 	PANICNVADD(pnv, "rflags", rp->r_rfl);
1052 	PANICNVADD(pnv, "rsp", rp->r_rsp);
1053 	PANICNVADD(pnv, "ss", rp->r_ss);
1054 	PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3]));
1055 	PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0]));
1056 	PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3]));
1057 	PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0]));
1058 #elif defined(__i386)
1059 	PANICNVADD(pnv, "gs", (uint32_t)rp->r_gs);
1060 	PANICNVADD(pnv, "fs", (uint32_t)rp->r_fs);
1061 	PANICNVADD(pnv, "es", (uint32_t)rp->r_es);
1062 	PANICNVADD(pnv, "ds", (uint32_t)rp->r_ds);
1063 	PANICNVADD(pnv, "edi", (uint32_t)rp->r_edi);
1064 	PANICNVADD(pnv, "esi", (uint32_t)rp->r_esi);
1065 	PANICNVADD(pnv, "ebp", (uint32_t)rp->r_ebp);
1066 	PANICNVADD(pnv, "esp", (uint32_t)rp->r_esp);
1067 	PANICNVADD(pnv, "ebx", (uint32_t)rp->r_ebx);
1068 	PANICNVADD(pnv, "edx", (uint32_t)rp->r_edx);
1069 	PANICNVADD(pnv, "ecx", (uint32_t)rp->r_ecx);
1070 	PANICNVADD(pnv, "eax", (uint32_t)rp->r_eax);
1071 	PANICNVADD(pnv, "trapno", (uint32_t)rp->r_trapno);
1072 	PANICNVADD(pnv, "err", (uint32_t)rp->r_err);
1073 	PANICNVADD(pnv, "eip", (uint32_t)rp->r_eip);
1074 	PANICNVADD(pnv, "cs", (uint32_t)rp->r_cs);
1075 	PANICNVADD(pnv, "eflags", (uint32_t)rp->r_efl);
1076 	PANICNVADD(pnv, "uesp", (uint32_t)rp->r_uesp);
1077 	PANICNVADD(pnv, "ss", (uint32_t)rp->r_ss);
1078 	PANICNVADD(pnv, "gdt", creg.cr_gdt);
1079 	PANICNVADD(pnv, "idt", creg.cr_idt);
1080 #endif	/* __i386 */
1081 
1082 	PANICNVADD(pnv, "ldt", creg.cr_ldt);
1083 	PANICNVADD(pnv, "task", creg.cr_task);
1084 	PANICNVADD(pnv, "cr0", creg.cr_cr0);
1085 	PANICNVADD(pnv, "cr2", creg.cr_cr2);
1086 	PANICNVADD(pnv, "cr3", creg.cr_cr3);
1087 	if (creg.cr_cr4)
1088 		PANICNVADD(pnv, "cr4", creg.cr_cr4);
1089 
1090 	PANICNVSET(pdp, pnv);
1091 }
1092 
1093 #define	TR_ARG_MAX 6	/* Max args to print, same as SPARC */
1094 
1095 #if !defined(__amd64)
1096 
1097 /*
1098  * Given a return address (%eip), determine the likely number of arguments
1099  * that were pushed on the stack prior to its execution.  We do this by
1100  * expecting that a typical call sequence consists of pushing arguments on
1101  * the stack, executing a call instruction, and then performing an add
1102  * on %esp to restore it to the value prior to pushing the arguments for
1103  * the call.  We attempt to detect such an add, and divide the addend
1104  * by the size of a word to determine the number of pushed arguments.
1105  *
1106  * If we do not find such an add, we punt and return TR_ARG_MAX. It is not
1107  * possible to reliably determine if a function took no arguments (i.e. was
1108  * void) because assembler routines do not reliably perform an add on %esp
1109  * immediately upon returning (eg. _sys_call()), so returning TR_ARG_MAX is
1110  * safer than returning 0.
1111  */
1112 static ulong_t
1113 argcount(uintptr_t eip)
1114 {
1115 	const uint8_t *ins = (const uint8_t *)eip;
1116 	ulong_t n;
1117 
1118 	enum {
1119 		M_MODRM_ESP = 0xc4,	/* Mod/RM byte indicates %esp */
1120 		M_ADD_IMM32 = 0x81,	/* ADD imm32 to r/m32 */
1121 		M_ADD_IMM8  = 0x83	/* ADD imm8 to r/m32 */
1122 	};
1123 
1124 	if (eip < KERNELBASE || ins[1] != M_MODRM_ESP)
1125 		return (TR_ARG_MAX);
1126 
1127 	switch (ins[0]) {
1128 	case M_ADD_IMM32:
1129 		n = ins[2] + (ins[3] << 8) + (ins[4] << 16) + (ins[5] << 24);
1130 		break;
1131 
1132 	case M_ADD_IMM8:
1133 		n = ins[2];
1134 		break;
1135 
1136 	default:
1137 		return (TR_ARG_MAX);
1138 	}
1139 
1140 	n /= sizeof (long);
1141 	return (MIN(n, TR_ARG_MAX));
1142 }
1143 
1144 #endif	/* !__amd64 */
1145 
1146 /*
1147  * Print a stack backtrace using the specified frame pointer.  We delay two
1148  * seconds before continuing, unless this is the panic traceback.  Note
1149  * that the frame for the starting stack pointer value is omitted because
1150  * the corresponding %eip is not known.
1151  */
1152 #if defined(__amd64)
1153 
1154 void
1155 traceback(caddr_t fpreg)
1156 {
1157 	struct frame	*fp = (struct frame *)fpreg;
1158 	struct frame	*nextfp;
1159 	uintptr_t	pc, nextpc;
1160 	ulong_t		off;
1161 	char		args[TR_ARG_MAX * 2 + 16], *sym;
1162 
1163 	if (!panicstr)
1164 		printf("traceback: %%fp = %p\n", (void *)fp);
1165 
1166 	fp = (struct frame *)plat_traceback(fpreg);
1167 	if ((uintptr_t)fp < KERNELBASE)
1168 		goto out;
1169 
1170 	pc = fp->fr_savpc;
1171 	fp = (struct frame *)fp->fr_savfp;
1172 
1173 	while ((uintptr_t)fp >= KERNELBASE) {
1174 		/*
1175 		 * XX64 Until port is complete tolerate 8-byte aligned
1176 		 * frame pointers but flag with a warning so they can
1177 		 * be fixed.
1178 		 */
1179 		if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) {
1180 			if (((uintptr_t)fp & (8 - 1)) == 0) {
1181 				printf("  >> warning! 8-byte"
1182 				    " aligned %%fp = %p\n", (void *)fp);
1183 			} else {
1184 				printf(
1185 				    "  >> mis-aligned %%fp = %p\n", (void *)fp);
1186 				break;
1187 			}
1188 		}
1189 
1190 		args[0] = '\0';
1191 		nextpc = (uintptr_t)fp->fr_savpc;
1192 		nextfp = (struct frame *)fp->fr_savfp;
1193 		if ((sym = kobj_getsymname(pc, &off)) != NULL) {
1194 			printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
1195 			    mod_containing_pc((caddr_t)pc), sym, off, args);
1196 		} else {
1197 			printf("%016lx %lx (%s)\n",
1198 			    (uintptr_t)fp, pc, args);
1199 		}
1200 
1201 		pc = nextpc;
1202 		fp = nextfp;
1203 	}
1204 out:
1205 	if (!panicstr) {
1206 		printf("end of traceback\n");
1207 		DELAY(2 * MICROSEC);
1208 	}
1209 }
1210 
1211 #elif defined(__i386)
1212 
1213 void
1214 traceback(caddr_t fpreg)
1215 {
1216 	struct frame *fp = (struct frame *)fpreg;
1217 	struct frame *nextfp, *minfp, *stacktop;
1218 	uintptr_t pc, nextpc;
1219 
1220 	cpu_t *cpu;
1221 
1222 	/*
1223 	 * args[] holds TR_ARG_MAX hex long args, plus ", " or '\0'.
1224 	 */
1225 	char args[TR_ARG_MAX * 2 + 8], *p;
1226 
1227 	int on_intr;
1228 	ulong_t off;
1229 	char *sym;
1230 
1231 	if (!panicstr)
1232 		printf("traceback: %%fp = %p\n", (void *)fp);
1233 
1234 	/*
1235 	 * If we are panicking, all high-level interrupt information in
1236 	 * CPU was overwritten.  panic_cpu has the correct values.
1237 	 */
1238 	kpreempt_disable();			/* prevent migration */
1239 
1240 	cpu = (panicstr && CPU->cpu_id == panic_cpu.cpu_id)? &panic_cpu : CPU;
1241 
1242 	if ((on_intr = CPU_ON_INTR(cpu)) != 0)
1243 		stacktop = (struct frame *)(cpu->cpu_intr_stack + SA(MINFRAME));
1244 	else
1245 		stacktop = (struct frame *)curthread->t_stk;
1246 
1247 	kpreempt_enable();
1248 
1249 	fp = (struct frame *)plat_traceback(fpreg);
1250 	if ((uintptr_t)fp < KERNELBASE)
1251 		goto out;
1252 
1253 	minfp = fp;	/* Baseline minimum frame pointer */
1254 	pc = fp->fr_savpc;
1255 	fp = (struct frame *)fp->fr_savfp;
1256 
1257 	while ((uintptr_t)fp >= KERNELBASE) {
1258 		ulong_t argc;
1259 		long *argv;
1260 
1261 		if (fp <= minfp || fp >= stacktop) {
1262 			if (on_intr) {
1263 				/*
1264 				 * Hop from interrupt stack to thread stack.
1265 				 */
1266 				stacktop = (struct frame *)curthread->t_stk;
1267 				minfp = (struct frame *)curthread->t_stkbase;
1268 				on_intr = 0;
1269 				continue;
1270 			}
1271 			break; /* we're outside of the expected range */
1272 		}
1273 
1274 		if ((uintptr_t)fp & (STACK_ALIGN - 1)) {
1275 			printf("  >> mis-aligned %%fp = %p\n", (void *)fp);
1276 			break;
1277 		}
1278 
1279 		nextpc = fp->fr_savpc;
1280 		nextfp = (struct frame *)fp->fr_savfp;
1281 		argc = argcount(nextpc);
1282 		argv = (long *)((char *)fp + sizeof (struct frame));
1283 
1284 		args[0] = '\0';
1285 		p = args;
1286 		while (argc-- > 0 && argv < (long *)stacktop) {
1287 			p += snprintf(p, args + sizeof (args) - p,
1288 			    "%s%lx", (p == args) ? "" : ", ", *argv++);
1289 		}
1290 
1291 		if ((sym = kobj_getsymname(pc, &off)) != NULL) {
1292 			printf("%08lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
1293 			    mod_containing_pc((caddr_t)pc), sym, off, args);
1294 		} else {
1295 			printf("%08lx %lx (%s)\n",
1296 			    (uintptr_t)fp, pc, args);
1297 		}
1298 
1299 		minfp = fp;
1300 		pc = nextpc;
1301 		fp = nextfp;
1302 	}
1303 out:
1304 	if (!panicstr) {
1305 		printf("end of traceback\n");
1306 		DELAY(2 * MICROSEC);
1307 	}
1308 }
1309 
1310 #endif	/* __i386 */
1311 
1312 /*
1313  * Generate a stack backtrace from a saved register set.
1314  */
1315 void
1316 traceregs(struct regs *rp)
1317 {
1318 	traceback((caddr_t)rp->r_fp);
1319 }
1320 
1321 void
1322 exec_set_sp(size_t stksize)
1323 {
1324 	klwp_t *lwp = ttolwp(curthread);
1325 
1326 	lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize;
1327 }
1328 
1329 hrtime_t
1330 gethrtime_waitfree(void)
1331 {
1332 	return (dtrace_gethrtime());
1333 }
1334 
1335 hrtime_t
1336 gethrtime(void)
1337 {
1338 	return (gethrtimef());
1339 }
1340 
1341 hrtime_t
1342 gethrtime_unscaled(void)
1343 {
1344 	return (gethrtimeunscaledf());
1345 }
1346 
1347 void
1348 scalehrtime(hrtime_t *hrt)
1349 {
1350 	scalehrtimef(hrt);
1351 }
1352 
1353 uint64_t
1354 unscalehrtime(hrtime_t nsecs)
1355 {
1356 	return (unscalehrtimef(nsecs));
1357 }
1358 
1359 void
1360 gethrestime(timespec_t *tp)
1361 {
1362 	gethrestimef(tp);
1363 }
1364 
1365 #if defined(__amd64)
1366 /*
1367  * Part of the implementation of hres_tick(); this routine is
1368  * easier in C than assembler .. called with the hres_lock held.
1369  *
1370  * XX64	Many of these timekeeping variables need to be extern'ed in a header
1371  */
1372 
1373 #include <sys/time.h>
1374 #include <sys/machlock.h>
1375 
1376 extern int one_sec;
1377 extern int max_hres_adj;
1378 
1379 void
1380 __adj_hrestime(void)
1381 {
1382 	long long adj;
1383 
1384 	if (hrestime_adj == 0)
1385 		adj = 0;
1386 	else if (hrestime_adj > 0) {
1387 		if (hrestime_adj < max_hres_adj)
1388 			adj = hrestime_adj;
1389 		else
1390 			adj = max_hres_adj;
1391 	} else {
1392 		if (hrestime_adj < -max_hres_adj)
1393 			adj = -max_hres_adj;
1394 		else
1395 			adj = hrestime_adj;
1396 	}
1397 
1398 	timedelta -= adj;
1399 	hrestime_adj = timedelta;
1400 	hrestime.tv_nsec += adj;
1401 
1402 	while (hrestime.tv_nsec >= NANOSEC) {
1403 		one_sec++;
1404 		hrestime.tv_sec++;
1405 		hrestime.tv_nsec -= NANOSEC;
1406 	}
1407 }
1408 #endif
1409 
1410 /*
1411  * Wrapper functions to maintain backwards compability
1412  */
1413 int
1414 xcopyin(const void *uaddr, void *kaddr, size_t count)
1415 {
1416 	return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED));
1417 }
1418 
1419 int
1420 xcopyout(const void *kaddr, void *uaddr, size_t count)
1421 {
1422 	return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED));
1423 }
1424