xref: /titanic_50/usr/src/uts/intel/ia32/os/archdep.c (revision 7b07063d906859b2be1e88791f801b3c96e432f6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
26 /*	  All Rights Reserved  	*/
27 /*
28  * Copyright (c) 2012, Joyent, Inc.  All rights reserved.
29  * Copyright 2012 Nexenta Systems, Inc.  All rights reserved.
30  */
31 
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/vmparam.h>
35 #include <sys/systm.h>
36 #include <sys/signal.h>
37 #include <sys/stack.h>
38 #include <sys/regset.h>
39 #include <sys/privregs.h>
40 #include <sys/frame.h>
41 #include <sys/proc.h>
42 #include <sys/psw.h>
43 #include <sys/siginfo.h>
44 #include <sys/cpuvar.h>
45 #include <sys/asm_linkage.h>
46 #include <sys/kmem.h>
47 #include <sys/errno.h>
48 #include <sys/bootconf.h>
49 #include <sys/archsystm.h>
50 #include <sys/debug.h>
51 #include <sys/elf.h>
52 #include <sys/spl.h>
53 #include <sys/time.h>
54 #include <sys/atomic.h>
55 #include <sys/sysmacros.h>
56 #include <sys/cmn_err.h>
57 #include <sys/modctl.h>
58 #include <sys/kobj.h>
59 #include <sys/panic.h>
60 #include <sys/reboot.h>
61 #include <sys/time.h>
62 #include <sys/fp.h>
63 #include <sys/x86_archext.h>
64 #include <sys/auxv.h>
65 #include <sys/auxv_386.h>
66 #include <sys/dtrace.h>
67 #include <sys/brand.h>
68 #include <sys/machbrand.h>
69 #include <sys/cmn_err.h>
70 
71 extern const struct fnsave_state x87_initial;
72 extern const struct fxsave_state sse_initial;
73 
74 /*
75  * Map an fnsave-formatted save area into an fxsave-formatted save area.
76  *
77  * Most fields are the same width, content and semantics.  However
78  * the tag word is compressed.
79  */
80 static void
81 fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx)
82 {
83 	uint_t i, tagbits;
84 
85 	fx->fx_fcw = fn->f_fcw;
86 	fx->fx_fsw = fn->f_fsw;
87 
88 	/*
89 	 * copy element by element (because of holes)
90 	 */
91 	for (i = 0; i < 8; i++)
92 		bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0],
93 		    sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
94 
95 	/*
96 	 * synthesize compressed tag bits
97 	 */
98 	fx->fx_fctw = 0;
99 	for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2)
100 		if ((tagbits & 3) != 3)
101 			fx->fx_fctw |= (1 << i);
102 
103 	fx->fx_fop = fn->f_fop;
104 
105 #if defined(__amd64)
106 	fx->fx_rip = (uint64_t)fn->f_eip;
107 	fx->fx_rdp = (uint64_t)fn->f_dp;
108 #else
109 	fx->fx_eip = fn->f_eip;
110 	fx->fx_cs = fn->f_cs;
111 	fx->__fx_ign0 = 0;
112 	fx->fx_dp = fn->f_dp;
113 	fx->fx_ds = fn->f_ds;
114 	fx->__fx_ign1 = 0;
115 #endif
116 }
117 
118 /*
119  * Map from an fxsave-format save area to an fnsave-format save area.
120  */
121 static void
122 fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn)
123 {
124 	uint_t i, top, tagbits;
125 
126 	fn->f_fcw = fx->fx_fcw;
127 	fn->__f_ign0 = 0;
128 	fn->f_fsw = fx->fx_fsw;
129 	fn->__f_ign1 = 0;
130 
131 	top = (fx->fx_fsw & FPS_TOP) >> 11;
132 
133 	/*
134 	 * copy element by element (because of holes)
135 	 */
136 	for (i = 0; i < 8; i++)
137 		bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0],
138 		    sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
139 
140 	/*
141 	 * synthesize uncompressed tag bits
142 	 */
143 	fn->f_ftw = 0;
144 	for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) {
145 		uint_t ibit, expo;
146 		const uint16_t *fpp;
147 		static const uint16_t zero[5] = { 0, 0, 0, 0, 0 };
148 
149 		if ((tagbits & 1) == 0) {
150 			fn->f_ftw |= 3 << (i << 1);	/* empty */
151 			continue;
152 		}
153 
154 		/*
155 		 * (tags refer to *physical* registers)
156 		 */
157 		fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0];
158 		ibit = fpp[3] >> 15;
159 		expo = fpp[4] & 0x7fff;
160 
161 		if (ibit && expo != 0 && expo != 0x7fff)
162 			continue;			/* valid fp number */
163 
164 		if (bcmp(fpp, &zero, sizeof (zero)))
165 			fn->f_ftw |= 2 << (i << 1);	/* NaN */
166 		else
167 			fn->f_ftw |= 1 << (i << 1);	/* fp zero */
168 	}
169 
170 	fn->f_fop = fx->fx_fop;
171 
172 	fn->__f_ign2 = 0;
173 #if defined(__amd64)
174 	fn->f_eip = (uint32_t)fx->fx_rip;
175 	fn->f_cs = U32CS_SEL;
176 	fn->f_dp = (uint32_t)fx->fx_rdp;
177 	fn->f_ds = UDS_SEL;
178 #else
179 	fn->f_eip = fx->fx_eip;
180 	fn->f_cs = fx->fx_cs;
181 	fn->f_dp = fx->fx_dp;
182 	fn->f_ds = fx->fx_ds;
183 #endif
184 	fn->__f_ign3 = 0;
185 }
186 
187 /*
188  * Map from an fpregset_t into an fxsave-format save area
189  */
190 static void
191 fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx)
192 {
193 #if defined(__amd64)
194 	bcopy(fp, fx, sizeof (*fx));
195 #else
196 	const struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state;
197 
198 	fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
199 	fx->fx_mxcsr = fc->mxcsr;
200 	bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
201 #endif
202 	/*
203 	 * avoid useless #gp exceptions - mask reserved bits
204 	 */
205 	fx->fx_mxcsr &= sse_mxcsr_mask;
206 }
207 
208 /*
209  * Map from an fxsave-format save area into a fpregset_t
210  */
211 static void
212 fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp)
213 {
214 #if defined(__amd64)
215 	bcopy(fx, fp, sizeof (*fx));
216 #else
217 	struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state;
218 
219 	fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
220 	fc->mxcsr = fx->fx_mxcsr;
221 	bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
222 #endif
223 }
224 
225 #if defined(_SYSCALL32_IMPL)
226 static void
227 fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx)
228 {
229 	const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
230 
231 	fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
232 	/*
233 	 * avoid useless #gp exceptions - mask reserved bits
234 	 */
235 	fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr;
236 	bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
237 }
238 
239 static void
240 fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp)
241 {
242 	struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
243 
244 	fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
245 	fc->mxcsr = fx->fx_mxcsr;
246 	bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
247 }
248 
249 static void
250 fpregset_nto32(const fpregset_t *src, fpregset32_t *dst)
251 {
252 	fxsave_to_fpregset32((struct fxsave_state *)src, dst);
253 	dst->fp_reg_set.fpchip_state.status =
254 	    src->fp_reg_set.fpchip_state.status;
255 	dst->fp_reg_set.fpchip_state.xstatus =
256 	    src->fp_reg_set.fpchip_state.xstatus;
257 }
258 
259 static void
260 fpregset_32ton(const fpregset32_t *src, fpregset_t *dst)
261 {
262 	fpregset32_to_fxsave(src, (struct fxsave_state *)dst);
263 	dst->fp_reg_set.fpchip_state.status =
264 	    src->fp_reg_set.fpchip_state.status;
265 	dst->fp_reg_set.fpchip_state.xstatus =
266 	    src->fp_reg_set.fpchip_state.xstatus;
267 }
268 #endif
269 
270 /*
271  * Set floating-point registers from a native fpregset_t.
272  */
273 void
274 setfpregs(klwp_t *lwp, fpregset_t *fp)
275 {
276 	struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
277 
278 	if (fpu->fpu_flags & FPU_EN) {
279 		if (!(fpu->fpu_flags & FPU_VALID)) {
280 			/*
281 			 * FPU context is still active, release the
282 			 * ownership.
283 			 */
284 			fp_free(fpu, 0);
285 		}
286 	}
287 	/*
288 	 * Else: if we are trying to change the FPU state of a thread which
289 	 * hasn't yet initialized floating point, store the state in
290 	 * the pcb and indicate that the state is valid.  When the
291 	 * thread enables floating point, it will use this state instead
292 	 * of the default state.
293 	 */
294 
295 	switch (fp_save_mech) {
296 #if defined(__i386)
297 	case FP_FNSAVE:
298 		bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn,
299 		    sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
300 		break;
301 #endif
302 	case FP_FXSAVE:
303 		fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx);
304 		fpu->fpu_regs.kfpu_xstatus =
305 		    fp->fp_reg_set.fpchip_state.xstatus;
306 		break;
307 
308 	case FP_XSAVE:
309 		fpregset_to_fxsave(fp,
310 		    &fpu->fpu_regs.kfpu_u.kfpu_xs.xs_fxsave);
311 		fpu->fpu_regs.kfpu_xstatus =
312 		    fp->fp_reg_set.fpchip_state.xstatus;
313 		fpu->fpu_regs.kfpu_u.kfpu_xs.xs_xstate_bv |=
314 		    (XFEATURE_LEGACY_FP | XFEATURE_SSE);
315 		break;
316 	default:
317 		panic("Invalid fp_save_mech");
318 		/*NOTREACHED*/
319 	}
320 
321 	fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status;
322 	fpu->fpu_flags |= FPU_VALID;
323 }
324 
325 /*
326  * Get floating-point registers into a native fpregset_t.
327  */
328 void
329 getfpregs(klwp_t *lwp, fpregset_t *fp)
330 {
331 	struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
332 
333 	kpreempt_disable();
334 	if (fpu->fpu_flags & FPU_EN) {
335 		/*
336 		 * If we have FPU hw and the thread's pcb doesn't have
337 		 * a valid FPU state then get the state from the hw.
338 		 */
339 		if (fpu_exists && ttolwp(curthread) == lwp &&
340 		    !(fpu->fpu_flags & FPU_VALID))
341 			fp_save(fpu); /* get the current FPU state */
342 	}
343 
344 	/*
345 	 * There are 3 possible cases we have to be aware of here:
346 	 *
347 	 * 1. FPU is enabled.  FPU state is stored in the current LWP.
348 	 *
349 	 * 2. FPU is not enabled, and there have been no intervening /proc
350 	 *    modifications.  Return initial FPU state.
351 	 *
352 	 * 3. FPU is not enabled, but a /proc consumer has modified FPU state.
353 	 *    FPU state is stored in the current LWP.
354 	 */
355 	if ((fpu->fpu_flags & FPU_EN) || (fpu->fpu_flags & FPU_VALID)) {
356 		/*
357 		 * Cases 1 and 3.
358 		 */
359 		switch (fp_save_mech) {
360 #if defined(__i386)
361 		case FP_FNSAVE:
362 			bcopy(&fpu->fpu_regs.kfpu_u.kfpu_fn, fp,
363 			    sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
364 			break;
365 #endif
366 		case FP_FXSAVE:
367 			fxsave_to_fpregset(&fpu->fpu_regs.kfpu_u.kfpu_fx, fp);
368 			fp->fp_reg_set.fpchip_state.xstatus =
369 			    fpu->fpu_regs.kfpu_xstatus;
370 			break;
371 		case FP_XSAVE:
372 			fxsave_to_fpregset(
373 			    &fpu->fpu_regs.kfpu_u.kfpu_xs.xs_fxsave, fp);
374 			fp->fp_reg_set.fpchip_state.xstatus =
375 			    fpu->fpu_regs.kfpu_xstatus;
376 			break;
377 		default:
378 			panic("Invalid fp_save_mech");
379 			/*NOTREACHED*/
380 		}
381 		fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
382 	} else {
383 		/*
384 		 * Case 2.
385 		 */
386 		switch (fp_save_mech) {
387 #if defined(__i386)
388 		case FP_FNSAVE:
389 			bcopy(&x87_initial, fp, sizeof (x87_initial));
390 			break;
391 #endif
392 		case FP_FXSAVE:
393 		case FP_XSAVE:
394 			/*
395 			 * For now, we don't have any AVX specific field in ABI.
396 			 * If we add any in the future, we need to initial them
397 			 * as well.
398 			 */
399 			fxsave_to_fpregset(&sse_initial, fp);
400 			fp->fp_reg_set.fpchip_state.xstatus =
401 			    fpu->fpu_regs.kfpu_xstatus;
402 			break;
403 		default:
404 			panic("Invalid fp_save_mech");
405 			/*NOTREACHED*/
406 		}
407 		fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
408 	}
409 	kpreempt_enable();
410 }
411 
412 #if defined(_SYSCALL32_IMPL)
413 
414 /*
415  * Set floating-point registers from an fpregset32_t.
416  */
417 void
418 setfpregs32(klwp_t *lwp, fpregset32_t *fp)
419 {
420 	fpregset_t fpregs;
421 
422 	fpregset_32ton(fp, &fpregs);
423 	setfpregs(lwp, &fpregs);
424 }
425 
426 /*
427  * Get floating-point registers into an fpregset32_t.
428  */
429 void
430 getfpregs32(klwp_t *lwp, fpregset32_t *fp)
431 {
432 	fpregset_t fpregs;
433 
434 	getfpregs(lwp, &fpregs);
435 	fpregset_nto32(&fpregs, fp);
436 }
437 
438 #endif	/* _SYSCALL32_IMPL */
439 
440 /*
441  * Return the general registers
442  */
443 void
444 getgregs(klwp_t *lwp, gregset_t grp)
445 {
446 	struct regs *rp = lwptoregs(lwp);
447 #if defined(__amd64)
448 	struct pcb *pcb = &lwp->lwp_pcb;
449 	int thisthread = lwptot(lwp) == curthread;
450 
451 	grp[REG_RDI] = rp->r_rdi;
452 	grp[REG_RSI] = rp->r_rsi;
453 	grp[REG_RDX] = rp->r_rdx;
454 	grp[REG_RCX] = rp->r_rcx;
455 	grp[REG_R8] = rp->r_r8;
456 	grp[REG_R9] = rp->r_r9;
457 	grp[REG_RAX] = rp->r_rax;
458 	grp[REG_RBX] = rp->r_rbx;
459 	grp[REG_RBP] = rp->r_rbp;
460 	grp[REG_R10] = rp->r_r10;
461 	grp[REG_R11] = rp->r_r11;
462 	grp[REG_R12] = rp->r_r12;
463 	grp[REG_R13] = rp->r_r13;
464 	grp[REG_R14] = rp->r_r14;
465 	grp[REG_R15] = rp->r_r15;
466 	grp[REG_FSBASE] = pcb->pcb_fsbase;
467 	grp[REG_GSBASE] = pcb->pcb_gsbase;
468 	if (thisthread)
469 		kpreempt_disable();
470 	if (pcb->pcb_rupdate == 1) {
471 		grp[REG_DS] = pcb->pcb_ds;
472 		grp[REG_ES] = pcb->pcb_es;
473 		grp[REG_FS] = pcb->pcb_fs;
474 		grp[REG_GS] = pcb->pcb_gs;
475 	} else {
476 		grp[REG_DS] = rp->r_ds;
477 		grp[REG_ES] = rp->r_es;
478 		grp[REG_FS] = rp->r_fs;
479 		grp[REG_GS] = rp->r_gs;
480 	}
481 	if (thisthread)
482 		kpreempt_enable();
483 	grp[REG_TRAPNO] = rp->r_trapno;
484 	grp[REG_ERR] = rp->r_err;
485 	grp[REG_RIP] = rp->r_rip;
486 	grp[REG_CS] = rp->r_cs;
487 	grp[REG_SS] = rp->r_ss;
488 	grp[REG_RFL] = rp->r_rfl;
489 	grp[REG_RSP] = rp->r_rsp;
490 #else
491 	bcopy(&rp->r_gs, grp, sizeof (gregset_t));
492 #endif
493 }
494 
495 #if defined(_SYSCALL32_IMPL)
496 
497 void
498 getgregs32(klwp_t *lwp, gregset32_t grp)
499 {
500 	struct regs *rp = lwptoregs(lwp);
501 	struct pcb *pcb = &lwp->lwp_pcb;
502 	int thisthread = lwptot(lwp) == curthread;
503 
504 	if (thisthread)
505 		kpreempt_disable();
506 	if (pcb->pcb_rupdate == 1) {
507 		grp[GS] = (uint16_t)pcb->pcb_gs;
508 		grp[FS] = (uint16_t)pcb->pcb_fs;
509 		grp[DS] = (uint16_t)pcb->pcb_ds;
510 		grp[ES] = (uint16_t)pcb->pcb_es;
511 	} else {
512 		grp[GS] = (uint16_t)rp->r_gs;
513 		grp[FS] = (uint16_t)rp->r_fs;
514 		grp[DS] = (uint16_t)rp->r_ds;
515 		grp[ES] = (uint16_t)rp->r_es;
516 	}
517 	if (thisthread)
518 		kpreempt_enable();
519 	grp[EDI] = (greg32_t)rp->r_rdi;
520 	grp[ESI] = (greg32_t)rp->r_rsi;
521 	grp[EBP] = (greg32_t)rp->r_rbp;
522 	grp[ESP] = 0;
523 	grp[EBX] = (greg32_t)rp->r_rbx;
524 	grp[EDX] = (greg32_t)rp->r_rdx;
525 	grp[ECX] = (greg32_t)rp->r_rcx;
526 	grp[EAX] = (greg32_t)rp->r_rax;
527 	grp[TRAPNO] = (greg32_t)rp->r_trapno;
528 	grp[ERR] = (greg32_t)rp->r_err;
529 	grp[EIP] = (greg32_t)rp->r_rip;
530 	grp[CS] = (uint16_t)rp->r_cs;
531 	grp[EFL] = (greg32_t)rp->r_rfl;
532 	grp[UESP] = (greg32_t)rp->r_rsp;
533 	grp[SS] = (uint16_t)rp->r_ss;
534 }
535 
536 void
537 ucontext_32ton(const ucontext32_t *src, ucontext_t *dst)
538 {
539 	mcontext_t *dmc = &dst->uc_mcontext;
540 	const mcontext32_t *smc = &src->uc_mcontext;
541 
542 	bzero(dst, sizeof (*dst));
543 	dst->uc_flags = src->uc_flags;
544 	dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link;
545 
546 	bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask));
547 
548 	dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp;
549 	dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size;
550 	dst->uc_stack.ss_flags = src->uc_stack.ss_flags;
551 
552 	dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS];
553 	dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS];
554 	dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES];
555 	dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS];
556 	dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI];
557 	dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI];
558 	dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP];
559 	dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX];
560 	dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX];
561 	dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX];
562 	dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX];
563 	dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO];
564 	dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR];
565 	dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP];
566 	dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS];
567 	dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL];
568 	dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP];
569 	dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS];
570 
571 	/*
572 	 * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set
573 	 * otherwise there is no guarantee that anything in fpregs is valid.
574 	 */
575 	if (src->uc_flags & UC_FPU)
576 		fpregset_32ton(&src->uc_mcontext.fpregs,
577 		    &dst->uc_mcontext.fpregs);
578 }
579 
580 #endif	/* _SYSCALL32_IMPL */
581 
582 /*
583  * Return the user-level PC.
584  * If in a system call, return the address of the syscall trap.
585  */
586 greg_t
587 getuserpc()
588 {
589 	greg_t upc = lwptoregs(ttolwp(curthread))->r_pc;
590 	uint32_t insn;
591 
592 	if (curthread->t_sysnum == 0)
593 		return (upc);
594 
595 	/*
596 	 * We might've gotten here from sysenter (0xf 0x34),
597 	 * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0).
598 	 *
599 	 * Go peek at the binary to figure it out..
600 	 */
601 	if (fuword32((void *)(upc - 2), &insn) != -1 &&
602 	    (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f)
603 		return (upc - 2);
604 	return (upc - 7);
605 }
606 
607 /*
608  * Protect segment registers from non-user privilege levels and GDT selectors
609  * other than USER_CS, USER_DS and lwp FS and GS values.  If the segment
610  * selector is non-null and not USER_CS/USER_DS, we make sure that the
611  * TI bit is set to point into the LDT and that the RPL is set to 3.
612  *
613  * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we
614  * also explicitly zero the top 16 bits since they may be coming from the
615  * user's address space via setcontext(2) or /proc.
616  *
617  * Note about null selector. When running on the hypervisor if we allow a
618  * process to set its %cs to null selector with RPL of 0 the hypervisor will
619  * crash the domain. If running on bare metal we would get a #gp fault and
620  * be able to kill the process and continue on. Therefore we make sure to
621  * force RPL to SEL_UPL even for null selector when setting %cs.
622  */
623 
624 #if defined(IS_CS) || defined(IS_NOT_CS)
625 #error	"IS_CS and IS_NOT_CS already defined"
626 #endif
627 
628 #define	IS_CS		1
629 #define	IS_NOT_CS	0
630 
631 /*ARGSUSED*/
632 static greg_t
633 fix_segreg(greg_t sr, int iscs, model_t datamodel)
634 {
635 	switch (sr &= 0xffff) {
636 
637 	case 0:
638 		if (iscs == IS_CS)
639 			return (0 | SEL_UPL);
640 		else
641 			return (0);
642 
643 #if defined(__amd64)
644 	/*
645 	 * If lwp attempts to switch data model then force their
646 	 * code selector to be null selector.
647 	 */
648 	case U32CS_SEL:
649 		if (datamodel == DATAMODEL_NATIVE)
650 			return (0 | SEL_UPL);
651 		else
652 			return (sr);
653 
654 	case UCS_SEL:
655 		if (datamodel == DATAMODEL_ILP32)
656 			return (0 | SEL_UPL);
657 #elif defined(__i386)
658 	case UCS_SEL:
659 #endif
660 	/*FALLTHROUGH*/
661 	case UDS_SEL:
662 	case LWPFS_SEL:
663 	case LWPGS_SEL:
664 	case SEL_UPL:
665 		return (sr);
666 	default:
667 		break;
668 	}
669 
670 	/*
671 	 * Force it into the LDT in ring 3 for 32-bit processes, which by
672 	 * default do not have an LDT, so that any attempt to use an invalid
673 	 * selector will reference the (non-existant) LDT, and cause a #gp
674 	 * fault for the process.
675 	 *
676 	 * 64-bit processes get the null gdt selector since they
677 	 * are not allowed to have a private LDT.
678 	 */
679 #if defined(__amd64)
680 	if (datamodel == DATAMODEL_ILP32) {
681 		return (sr | SEL_TI_LDT | SEL_UPL);
682 	} else {
683 		if (iscs == IS_CS)
684 			return (0 | SEL_UPL);
685 		else
686 			return (0);
687 	}
688 
689 #elif defined(__i386)
690 	return (sr | SEL_TI_LDT | SEL_UPL);
691 #endif
692 }
693 
694 /*
695  * Set general registers.
696  */
697 void
698 setgregs(klwp_t *lwp, gregset_t grp)
699 {
700 	struct regs *rp = lwptoregs(lwp);
701 	model_t	datamodel = lwp_getdatamodel(lwp);
702 
703 #if defined(__amd64)
704 	struct pcb *pcb = &lwp->lwp_pcb;
705 	int thisthread = lwptot(lwp) == curthread;
706 
707 	if (datamodel == DATAMODEL_NATIVE) {
708 
709 		if (thisthread)
710 			(void) save_syscall_args();	/* copy the args */
711 
712 		rp->r_rdi = grp[REG_RDI];
713 		rp->r_rsi = grp[REG_RSI];
714 		rp->r_rdx = grp[REG_RDX];
715 		rp->r_rcx = grp[REG_RCX];
716 		rp->r_r8 = grp[REG_R8];
717 		rp->r_r9 = grp[REG_R9];
718 		rp->r_rax = grp[REG_RAX];
719 		rp->r_rbx = grp[REG_RBX];
720 		rp->r_rbp = grp[REG_RBP];
721 		rp->r_r10 = grp[REG_R10];
722 		rp->r_r11 = grp[REG_R11];
723 		rp->r_r12 = grp[REG_R12];
724 		rp->r_r13 = grp[REG_R13];
725 		rp->r_r14 = grp[REG_R14];
726 		rp->r_r15 = grp[REG_R15];
727 		rp->r_trapno = grp[REG_TRAPNO];
728 		rp->r_err = grp[REG_ERR];
729 		rp->r_rip = grp[REG_RIP];
730 		/*
731 		 * Setting %cs or %ss to anything else is quietly but
732 		 * quite definitely forbidden!
733 		 */
734 		rp->r_cs = UCS_SEL;
735 		rp->r_ss = UDS_SEL;
736 		rp->r_rsp = grp[REG_RSP];
737 
738 		if (thisthread)
739 			kpreempt_disable();
740 
741 		pcb->pcb_ds = UDS_SEL;
742 		pcb->pcb_es = UDS_SEL;
743 
744 		/*
745 		 * 64-bit processes -are- allowed to set their fsbase/gsbase
746 		 * values directly, but only if they're using the segment
747 		 * selectors that allow that semantic.
748 		 *
749 		 * (32-bit processes must use lwp_set_private().)
750 		 */
751 		pcb->pcb_fsbase = grp[REG_FSBASE];
752 		pcb->pcb_gsbase = grp[REG_GSBASE];
753 		pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
754 		pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
755 
756 		/*
757 		 * Ensure that we go out via update_sregs
758 		 */
759 		pcb->pcb_rupdate = 1;
760 		lwptot(lwp)->t_post_sys = 1;
761 		if (thisthread)
762 			kpreempt_enable();
763 #if defined(_SYSCALL32_IMPL)
764 	} else {
765 		rp->r_rdi = (uint32_t)grp[REG_RDI];
766 		rp->r_rsi = (uint32_t)grp[REG_RSI];
767 		rp->r_rdx = (uint32_t)grp[REG_RDX];
768 		rp->r_rcx = (uint32_t)grp[REG_RCX];
769 		rp->r_rax = (uint32_t)grp[REG_RAX];
770 		rp->r_rbx = (uint32_t)grp[REG_RBX];
771 		rp->r_rbp = (uint32_t)grp[REG_RBP];
772 		rp->r_trapno = (uint32_t)grp[REG_TRAPNO];
773 		rp->r_err = (uint32_t)grp[REG_ERR];
774 		rp->r_rip = (uint32_t)grp[REG_RIP];
775 
776 		rp->r_cs = fix_segreg(grp[REG_CS], IS_CS, datamodel);
777 		rp->r_ss = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
778 
779 		rp->r_rsp = (uint32_t)grp[REG_RSP];
780 
781 		if (thisthread)
782 			kpreempt_disable();
783 
784 		pcb->pcb_ds = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
785 		pcb->pcb_es = fix_segreg(grp[REG_ES], IS_NOT_CS, datamodel);
786 
787 		/*
788 		 * (See fsbase/gsbase commentary above)
789 		 */
790 		pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
791 		pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
792 
793 		/*
794 		 * Ensure that we go out via update_sregs
795 		 */
796 		pcb->pcb_rupdate = 1;
797 		lwptot(lwp)->t_post_sys = 1;
798 		if (thisthread)
799 			kpreempt_enable();
800 #endif
801 	}
802 
803 	/*
804 	 * Only certain bits of the flags register can be modified.
805 	 */
806 	rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) |
807 	    (grp[REG_RFL] & PSL_USERMASK);
808 
809 #elif defined(__i386)
810 
811 	/*
812 	 * Only certain bits of the flags register can be modified.
813 	 */
814 	grp[EFL] = (rp->r_efl & ~PSL_USERMASK) | (grp[EFL] & PSL_USERMASK);
815 
816 	/*
817 	 * Copy saved registers from user stack.
818 	 */
819 	bcopy(grp, &rp->r_gs, sizeof (gregset_t));
820 
821 	rp->r_cs = fix_segreg(rp->r_cs, IS_CS, datamodel);
822 	rp->r_ss = fix_segreg(rp->r_ss, IS_NOT_CS, datamodel);
823 	rp->r_ds = fix_segreg(rp->r_ds, IS_NOT_CS, datamodel);
824 	rp->r_es = fix_segreg(rp->r_es, IS_NOT_CS, datamodel);
825 	rp->r_fs = fix_segreg(rp->r_fs, IS_NOT_CS, datamodel);
826 	rp->r_gs = fix_segreg(rp->r_gs, IS_NOT_CS, datamodel);
827 
828 #endif	/* __i386 */
829 }
830 
831 /*
832  * Determine whether eip is likely to have an interrupt frame
833  * on the stack.  We do this by comparing the address to the
834  * range of addresses spanned by several well-known routines.
835  */
836 extern void _interrupt();
837 extern void _allsyscalls();
838 extern void _cmntrap();
839 extern void fakesoftint();
840 
841 extern size_t _interrupt_size;
842 extern size_t _allsyscalls_size;
843 extern size_t _cmntrap_size;
844 extern size_t _fakesoftint_size;
845 
846 /*
847  * Get a pc-only stacktrace.  Used for kmem_alloc() buffer ownership tracking.
848  * Returns MIN(current stack depth, pcstack_limit).
849  */
850 int
851 getpcstack(pc_t *pcstack, int pcstack_limit)
852 {
853 	struct frame *fp = (struct frame *)getfp();
854 	struct frame *nextfp, *minfp, *stacktop;
855 	int depth = 0;
856 	int on_intr;
857 	uintptr_t pc;
858 
859 	if ((on_intr = CPU_ON_INTR(CPU)) != 0)
860 		stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME));
861 	else
862 		stacktop = (struct frame *)curthread->t_stk;
863 	minfp = fp;
864 
865 	pc = ((struct regs *)fp)->r_pc;
866 
867 	while (depth < pcstack_limit) {
868 		nextfp = (struct frame *)fp->fr_savfp;
869 		pc = fp->fr_savpc;
870 		if (nextfp <= minfp || nextfp >= stacktop) {
871 			if (on_intr) {
872 				/*
873 				 * Hop from interrupt stack to thread stack.
874 				 */
875 				stacktop = (struct frame *)curthread->t_stk;
876 				minfp = (struct frame *)curthread->t_stkbase;
877 				on_intr = 0;
878 				continue;
879 			}
880 			break;
881 		}
882 		pcstack[depth++] = (pc_t)pc;
883 		fp = nextfp;
884 		minfp = fp;
885 	}
886 	return (depth);
887 }
888 
889 /*
890  * The following ELF header fields are defined as processor-specific
891  * in the V8 ABI:
892  *
893  *	e_ident[EI_DATA]	encoding of the processor-specific
894  *				data in the object file
895  *	e_machine		processor identification
896  *	e_flags			processor-specific flags associated
897  *				with the file
898  */
899 
900 /*
901  * The value of at_flags reflects a platform's cpu module support.
902  * at_flags is used to check for allowing a binary to execute and
903  * is passed as the value of the AT_FLAGS auxiliary vector.
904  */
905 int at_flags = 0;
906 
907 /*
908  * Check the processor-specific fields of an ELF header.
909  *
910  * returns 1 if the fields are valid, 0 otherwise
911  */
912 /*ARGSUSED2*/
913 int
914 elfheadcheck(
915 	unsigned char e_data,
916 	Elf32_Half e_machine,
917 	Elf32_Word e_flags)
918 {
919 	if (e_data != ELFDATA2LSB)
920 		return (0);
921 #if defined(__amd64)
922 	if (e_machine == EM_AMD64)
923 		return (1);
924 #endif
925 	return (e_machine == EM_386);
926 }
927 
928 uint_t auxv_hwcap_include = 0;	/* patch to enable unrecognized features */
929 uint_t auxv_hwcap_include_2 = 0;	/* second word */
930 uint_t auxv_hwcap_exclude = 0;	/* patch for broken cpus, debugging */
931 uint_t auxv_hwcap_exclude_2 = 0;	/* second word */
932 #if defined(_SYSCALL32_IMPL)
933 uint_t auxv_hwcap32_include = 0;	/* ditto for 32-bit apps */
934 uint_t auxv_hwcap32_include_2 = 0;	/* ditto for 32-bit apps */
935 uint_t auxv_hwcap32_exclude = 0;	/* ditto for 32-bit apps */
936 uint_t auxv_hwcap32_exclude_2 = 0;	/* ditto for 32-bit apps */
937 #endif
938 
939 /*
940  * Gather information about the processor and place it into auxv_hwcap
941  * so that it can be exported to the linker via the aux vector.
942  *
943  * We use this seemingly complicated mechanism so that we can ensure
944  * that /etc/system can be used to override what the system can or
945  * cannot discover for itself.
946  */
947 void
948 bind_hwcap(void)
949 {
950 	uint_t cpu_hwcap_flags[2];
951 	cpuid_pass4(NULL, cpu_hwcap_flags);
952 
953 	auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags[0]) &
954 	    ~auxv_hwcap_exclude;
955 	auxv_hwcap_2 = (auxv_hwcap_include_2 | cpu_hwcap_flags[1]) &
956 	    ~auxv_hwcap_exclude_2;
957 
958 #if defined(__amd64)
959 	/*
960 	 * On AMD processors, sysenter just doesn't work at all
961 	 * when the kernel is in long mode.  On IA-32e processors
962 	 * it does, but there's no real point in all the alternate
963 	 * mechanism when syscall works on both.
964 	 *
965 	 * Besides, the kernel's sysenter handler is expecting a
966 	 * 32-bit lwp ...
967 	 */
968 	auxv_hwcap &= ~AV_386_SEP;
969 #else
970 	/*
971 	 * 32-bit processes can -always- use the lahf/sahf instructions
972 	 */
973 	auxv_hwcap |= AV_386_AHF;
974 #endif
975 
976 	if (auxv_hwcap_include || auxv_hwcap_exclude || auxv_hwcap_include_2 ||
977 	    auxv_hwcap_exclude_2) {
978 		/*
979 		 * The below assignment is regrettably required to get lint
980 		 * to accept the validity of our format string.  The format
981 		 * string is in fact valid, but whatever intelligence in lint
982 		 * understands the cmn_err()-specific %b appears to have an
983 		 * off-by-one error:  it (mistakenly) complains about bit
984 		 * number 32 (even though this is explicitly permitted).
985 		 * Normally, one would will away such warnings with a "LINTED"
986 		 * directive, but for reasons unclear and unknown, lint
987 		 * refuses to be assuaged in this case.  Fortunately, lint
988 		 * doesn't pretend to have solved the Halting Problem --
989 		 * and as soon as the format string is programmatic, it
990 		 * knows enough to shut up.
991 		 */
992 		char *fmt = "?user ABI extensions: %b\n";
993 		cmn_err(CE_CONT, fmt, auxv_hwcap, FMT_AV_386);
994 		fmt = "?user ABI extensions (word 2): %b\n";
995 		cmn_err(CE_CONT, fmt, auxv_hwcap_2, FMT_AV_386_2);
996 	}
997 
998 #if defined(_SYSCALL32_IMPL)
999 	auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags[0]) &
1000 	    ~auxv_hwcap32_exclude;
1001 	auxv_hwcap32_2 = (auxv_hwcap32_include_2 | cpu_hwcap_flags[1]) &
1002 	    ~auxv_hwcap32_exclude_2;
1003 
1004 #if defined(__amd64)
1005 	/*
1006 	 * If this is an amd64 architecture machine from Intel, then
1007 	 * syscall -doesn't- work in compatibility mode, only sysenter does.
1008 	 *
1009 	 * Sigh.
1010 	 */
1011 	if (!cpuid_syscall32_insn(NULL))
1012 		auxv_hwcap32 &= ~AV_386_AMD_SYSC;
1013 
1014 	/*
1015 	 * 32-bit processes can -always- use the lahf/sahf instructions
1016 	 */
1017 	auxv_hwcap32 |= AV_386_AHF;
1018 #endif
1019 
1020 	if (auxv_hwcap32_include || auxv_hwcap32_exclude ||
1021 	    auxv_hwcap32_include_2 || auxv_hwcap32_exclude_2) {
1022 		/*
1023 		 * See the block comment in the cmn_err() of auxv_hwcap, above.
1024 		 */
1025 		char *fmt = "?32-bit user ABI extensions: %b\n";
1026 		cmn_err(CE_CONT, fmt, auxv_hwcap32, FMT_AV_386);
1027 		fmt = "?32-bit user ABI extensions (word 2): %b\n";
1028 		cmn_err(CE_CONT, fmt, auxv_hwcap32_2, FMT_AV_386_2);
1029 	}
1030 #endif
1031 }
1032 
1033 /*
1034  *	sync_icache() - this is called
1035  *	in proc/fs/prusrio.c. x86 has an unified cache and therefore
1036  *	this is a nop.
1037  */
1038 /* ARGSUSED */
1039 void
1040 sync_icache(caddr_t addr, uint_t len)
1041 {
1042 	/* Do nothing for now */
1043 }
1044 
1045 /*ARGSUSED*/
1046 void
1047 sync_data_memory(caddr_t va, size_t len)
1048 {
1049 	/* Not implemented for this platform */
1050 }
1051 
1052 int
1053 __ipltospl(int ipl)
1054 {
1055 	return (ipltospl(ipl));
1056 }
1057 
1058 /*
1059  * The panic code invokes panic_saveregs() to record the contents of a
1060  * regs structure into the specified panic_data structure for debuggers.
1061  */
1062 void
1063 panic_saveregs(panic_data_t *pdp, struct regs *rp)
1064 {
1065 	panic_nv_t *pnv = PANICNVGET(pdp);
1066 
1067 	struct cregs	creg;
1068 
1069 	getcregs(&creg);
1070 
1071 #if defined(__amd64)
1072 	PANICNVADD(pnv, "rdi", rp->r_rdi);
1073 	PANICNVADD(pnv, "rsi", rp->r_rsi);
1074 	PANICNVADD(pnv, "rdx", rp->r_rdx);
1075 	PANICNVADD(pnv, "rcx", rp->r_rcx);
1076 	PANICNVADD(pnv, "r8", rp->r_r8);
1077 	PANICNVADD(pnv, "r9", rp->r_r9);
1078 	PANICNVADD(pnv, "rax", rp->r_rax);
1079 	PANICNVADD(pnv, "rbx", rp->r_rbx);
1080 	PANICNVADD(pnv, "rbp", rp->r_rbp);
1081 	PANICNVADD(pnv, "r10", rp->r_r10);
1082 	PANICNVADD(pnv, "r11", rp->r_r11);
1083 	PANICNVADD(pnv, "r12", rp->r_r12);
1084 	PANICNVADD(pnv, "r13", rp->r_r13);
1085 	PANICNVADD(pnv, "r14", rp->r_r14);
1086 	PANICNVADD(pnv, "r15", rp->r_r15);
1087 	PANICNVADD(pnv, "fsbase", rdmsr(MSR_AMD_FSBASE));
1088 	PANICNVADD(pnv, "gsbase", rdmsr(MSR_AMD_GSBASE));
1089 	PANICNVADD(pnv, "ds", rp->r_ds);
1090 	PANICNVADD(pnv, "es", rp->r_es);
1091 	PANICNVADD(pnv, "fs", rp->r_fs);
1092 	PANICNVADD(pnv, "gs", rp->r_gs);
1093 	PANICNVADD(pnv, "trapno", rp->r_trapno);
1094 	PANICNVADD(pnv, "err", rp->r_err);
1095 	PANICNVADD(pnv, "rip", rp->r_rip);
1096 	PANICNVADD(pnv, "cs", rp->r_cs);
1097 	PANICNVADD(pnv, "rflags", rp->r_rfl);
1098 	PANICNVADD(pnv, "rsp", rp->r_rsp);
1099 	PANICNVADD(pnv, "ss", rp->r_ss);
1100 	PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3]));
1101 	PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0]));
1102 	PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3]));
1103 	PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0]));
1104 #elif defined(__i386)
1105 	PANICNVADD(pnv, "gs", (uint32_t)rp->r_gs);
1106 	PANICNVADD(pnv, "fs", (uint32_t)rp->r_fs);
1107 	PANICNVADD(pnv, "es", (uint32_t)rp->r_es);
1108 	PANICNVADD(pnv, "ds", (uint32_t)rp->r_ds);
1109 	PANICNVADD(pnv, "edi", (uint32_t)rp->r_edi);
1110 	PANICNVADD(pnv, "esi", (uint32_t)rp->r_esi);
1111 	PANICNVADD(pnv, "ebp", (uint32_t)rp->r_ebp);
1112 	PANICNVADD(pnv, "esp", (uint32_t)rp->r_esp);
1113 	PANICNVADD(pnv, "ebx", (uint32_t)rp->r_ebx);
1114 	PANICNVADD(pnv, "edx", (uint32_t)rp->r_edx);
1115 	PANICNVADD(pnv, "ecx", (uint32_t)rp->r_ecx);
1116 	PANICNVADD(pnv, "eax", (uint32_t)rp->r_eax);
1117 	PANICNVADD(pnv, "trapno", (uint32_t)rp->r_trapno);
1118 	PANICNVADD(pnv, "err", (uint32_t)rp->r_err);
1119 	PANICNVADD(pnv, "eip", (uint32_t)rp->r_eip);
1120 	PANICNVADD(pnv, "cs", (uint32_t)rp->r_cs);
1121 	PANICNVADD(pnv, "eflags", (uint32_t)rp->r_efl);
1122 	PANICNVADD(pnv, "uesp", (uint32_t)rp->r_uesp);
1123 	PANICNVADD(pnv, "ss", (uint32_t)rp->r_ss);
1124 	PANICNVADD(pnv, "gdt", creg.cr_gdt);
1125 	PANICNVADD(pnv, "idt", creg.cr_idt);
1126 #endif	/* __i386 */
1127 
1128 	PANICNVADD(pnv, "ldt", creg.cr_ldt);
1129 	PANICNVADD(pnv, "task", creg.cr_task);
1130 	PANICNVADD(pnv, "cr0", creg.cr_cr0);
1131 	PANICNVADD(pnv, "cr2", creg.cr_cr2);
1132 	PANICNVADD(pnv, "cr3", creg.cr_cr3);
1133 	if (creg.cr_cr4)
1134 		PANICNVADD(pnv, "cr4", creg.cr_cr4);
1135 
1136 	PANICNVSET(pdp, pnv);
1137 }
1138 
1139 #define	TR_ARG_MAX 6	/* Max args to print, same as SPARC */
1140 
1141 #if !defined(__amd64)
1142 
1143 /*
1144  * Given a return address (%eip), determine the likely number of arguments
1145  * that were pushed on the stack prior to its execution.  We do this by
1146  * expecting that a typical call sequence consists of pushing arguments on
1147  * the stack, executing a call instruction, and then performing an add
1148  * on %esp to restore it to the value prior to pushing the arguments for
1149  * the call.  We attempt to detect such an add, and divide the addend
1150  * by the size of a word to determine the number of pushed arguments.
1151  *
1152  * If we do not find such an add, we punt and return TR_ARG_MAX. It is not
1153  * possible to reliably determine if a function took no arguments (i.e. was
1154  * void) because assembler routines do not reliably perform an add on %esp
1155  * immediately upon returning (eg. _sys_call()), so returning TR_ARG_MAX is
1156  * safer than returning 0.
1157  */
1158 static ulong_t
1159 argcount(uintptr_t eip)
1160 {
1161 	const uint8_t *ins = (const uint8_t *)eip;
1162 	ulong_t n;
1163 
1164 	enum {
1165 		M_MODRM_ESP = 0xc4,	/* Mod/RM byte indicates %esp */
1166 		M_ADD_IMM32 = 0x81,	/* ADD imm32 to r/m32 */
1167 		M_ADD_IMM8  = 0x83	/* ADD imm8 to r/m32 */
1168 	};
1169 
1170 	if (eip < KERNELBASE || ins[1] != M_MODRM_ESP)
1171 		return (TR_ARG_MAX);
1172 
1173 	switch (ins[0]) {
1174 	case M_ADD_IMM32:
1175 		n = ins[2] + (ins[3] << 8) + (ins[4] << 16) + (ins[5] << 24);
1176 		break;
1177 
1178 	case M_ADD_IMM8:
1179 		n = ins[2];
1180 		break;
1181 
1182 	default:
1183 		return (TR_ARG_MAX);
1184 	}
1185 
1186 	n /= sizeof (long);
1187 	return (MIN(n, TR_ARG_MAX));
1188 }
1189 
1190 #endif	/* !__amd64 */
1191 
1192 /*
1193  * Print a stack backtrace using the specified frame pointer.  We delay two
1194  * seconds before continuing, unless this is the panic traceback.
1195  * If we are in the process of panicking, we also attempt to write the
1196  * stack backtrace to a staticly assigned buffer, to allow the panic
1197  * code to find it and write it in to uncompressed pages within the
1198  * system crash dump.
1199  * Note that the frame for the starting stack pointer value is omitted because
1200  * the corresponding %eip is not known.
1201  */
1202 
1203 extern char *dump_stack_scratch;
1204 
1205 #if defined(__amd64)
1206 
1207 void
1208 traceback(caddr_t fpreg)
1209 {
1210 	struct frame	*fp = (struct frame *)fpreg;
1211 	struct frame	*nextfp;
1212 	uintptr_t	pc, nextpc;
1213 	ulong_t		off;
1214 	char		args[TR_ARG_MAX * 2 + 16], *sym;
1215 	uint_t	  offset = 0;
1216 	uint_t	  next_offset = 0;
1217 	char	    stack_buffer[1024];
1218 
1219 	if (!panicstr)
1220 		printf("traceback: %%fp = %p\n", (void *)fp);
1221 
1222 	if (panicstr && !dump_stack_scratch) {
1223 		printf("Warning - stack not written to the dump buffer\n");
1224 	}
1225 
1226 	fp = (struct frame *)plat_traceback(fpreg);
1227 	if ((uintptr_t)fp < KERNELBASE)
1228 		goto out;
1229 
1230 	pc = fp->fr_savpc;
1231 	fp = (struct frame *)fp->fr_savfp;
1232 
1233 	while ((uintptr_t)fp >= KERNELBASE) {
1234 		/*
1235 		 * XX64 Until port is complete tolerate 8-byte aligned
1236 		 * frame pointers but flag with a warning so they can
1237 		 * be fixed.
1238 		 */
1239 		if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) {
1240 			if (((uintptr_t)fp & (8 - 1)) == 0) {
1241 				printf("  >> warning! 8-byte"
1242 				    " aligned %%fp = %p\n", (void *)fp);
1243 			} else {
1244 				printf(
1245 				    "  >> mis-aligned %%fp = %p\n", (void *)fp);
1246 				break;
1247 			}
1248 		}
1249 
1250 		args[0] = '\0';
1251 		nextpc = (uintptr_t)fp->fr_savpc;
1252 		nextfp = (struct frame *)fp->fr_savfp;
1253 		if ((sym = kobj_getsymname(pc, &off)) != NULL) {
1254 			printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
1255 			    mod_containing_pc((caddr_t)pc), sym, off, args);
1256 			(void) snprintf(stack_buffer, sizeof (stack_buffer),
1257 			    "%s:%s+%lx (%s) | ",
1258 			    mod_containing_pc((caddr_t)pc), sym, off, args);
1259 		} else {
1260 			printf("%016lx %lx (%s)\n",
1261 			    (uintptr_t)fp, pc, args);
1262 			(void) snprintf(stack_buffer, sizeof (stack_buffer),
1263 			    "%lx (%s) | ", pc, args);
1264 		}
1265 
1266 		if (panicstr && dump_stack_scratch) {
1267 			next_offset = offset + strlen(stack_buffer);
1268 			if (next_offset < STACK_BUF_SIZE) {
1269 				bcopy(stack_buffer, dump_stack_scratch + offset,
1270 				    strlen(stack_buffer));
1271 				offset = next_offset;
1272 			} else {
1273 				/*
1274 				 * In attempting to save the panic stack
1275 				 * to the dumpbuf we have overflowed that area.
1276 				 * Print a warning and continue to printf the
1277 				 * stack to the msgbuf
1278 				 */
1279 				printf("Warning: stack in the dump buffer"
1280 				    " may be incomplete\n");
1281 				offset = next_offset;
1282 			}
1283 		}
1284 
1285 		pc = nextpc;
1286 		fp = nextfp;
1287 	}
1288 out:
1289 	if (!panicstr) {
1290 		printf("end of traceback\n");
1291 		DELAY(2 * MICROSEC);
1292 	} else if (dump_stack_scratch) {
1293 		dump_stack_scratch[offset] = '\0';
1294 	}
1295 }
1296 
1297 #elif defined(__i386)
1298 
1299 void
1300 traceback(caddr_t fpreg)
1301 {
1302 	struct frame *fp = (struct frame *)fpreg;
1303 	struct frame *nextfp, *minfp, *stacktop;
1304 	uintptr_t pc, nextpc;
1305 	uint_t	  offset = 0;
1306 	uint_t	  next_offset = 0;
1307 	char	    stack_buffer[1024];
1308 
1309 	cpu_t *cpu;
1310 
1311 	/*
1312 	 * args[] holds TR_ARG_MAX hex long args, plus ", " or '\0'.
1313 	 */
1314 	char args[TR_ARG_MAX * 2 + 8], *p;
1315 
1316 	int on_intr;
1317 	ulong_t off;
1318 	char *sym;
1319 
1320 	if (!panicstr)
1321 		printf("traceback: %%fp = %p\n", (void *)fp);
1322 
1323 	if (panicstr && !dump_stack_scratch) {
1324 		printf("Warning - stack not written to the dumpbuf\n");
1325 	}
1326 
1327 	/*
1328 	 * If we are panicking, all high-level interrupt information in
1329 	 * CPU was overwritten.  panic_cpu has the correct values.
1330 	 */
1331 	kpreempt_disable();			/* prevent migration */
1332 
1333 	cpu = (panicstr && CPU->cpu_id == panic_cpu.cpu_id)? &panic_cpu : CPU;
1334 
1335 	if ((on_intr = CPU_ON_INTR(cpu)) != 0)
1336 		stacktop = (struct frame *)(cpu->cpu_intr_stack + SA(MINFRAME));
1337 	else
1338 		stacktop = (struct frame *)curthread->t_stk;
1339 
1340 	kpreempt_enable();
1341 
1342 	fp = (struct frame *)plat_traceback(fpreg);
1343 	if ((uintptr_t)fp < KERNELBASE)
1344 		goto out;
1345 
1346 	minfp = fp;	/* Baseline minimum frame pointer */
1347 	pc = fp->fr_savpc;
1348 	fp = (struct frame *)fp->fr_savfp;
1349 
1350 	while ((uintptr_t)fp >= KERNELBASE) {
1351 		ulong_t argc;
1352 		long *argv;
1353 
1354 		if (fp <= minfp || fp >= stacktop) {
1355 			if (on_intr) {
1356 				/*
1357 				 * Hop from interrupt stack to thread stack.
1358 				 */
1359 				stacktop = (struct frame *)curthread->t_stk;
1360 				minfp = (struct frame *)curthread->t_stkbase;
1361 				on_intr = 0;
1362 				continue;
1363 			}
1364 			break; /* we're outside of the expected range */
1365 		}
1366 
1367 		if ((uintptr_t)fp & (STACK_ALIGN - 1)) {
1368 			printf("  >> mis-aligned %%fp = %p\n", (void *)fp);
1369 			break;
1370 		}
1371 
1372 		nextpc = fp->fr_savpc;
1373 		nextfp = (struct frame *)fp->fr_savfp;
1374 		argc = argcount(nextpc);
1375 		argv = (long *)((char *)fp + sizeof (struct frame));
1376 
1377 		args[0] = '\0';
1378 		p = args;
1379 		while (argc-- > 0 && argv < (long *)stacktop) {
1380 			p += snprintf(p, args + sizeof (args) - p,
1381 			    "%s%lx", (p == args) ? "" : ", ", *argv++);
1382 		}
1383 
1384 		if ((sym = kobj_getsymname(pc, &off)) != NULL) {
1385 			printf("%08lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
1386 			    mod_containing_pc((caddr_t)pc), sym, off, args);
1387 			(void) snprintf(stack_buffer, sizeof (stack_buffer),
1388 			    "%s:%s+%lx (%s) | ",
1389 			    mod_containing_pc((caddr_t)pc), sym, off, args);
1390 
1391 		} else {
1392 			printf("%08lx %lx (%s)\n",
1393 			    (uintptr_t)fp, pc, args);
1394 			(void) snprintf(stack_buffer, sizeof (stack_buffer),
1395 			    "%lx (%s) | ", pc, args);
1396 
1397 		}
1398 
1399 		if (panicstr && dump_stack_scratch) {
1400 			next_offset = offset + strlen(stack_buffer);
1401 			if (next_offset < STACK_BUF_SIZE) {
1402 				bcopy(stack_buffer, dump_stack_scratch + offset,
1403 				    strlen(stack_buffer));
1404 				offset = next_offset;
1405 			} else {
1406 				/*
1407 				 * In attempting to save the panic stack
1408 				 * to the dumpbuf we have overflowed that area.
1409 				 * Print a warning and continue to printf the
1410 				 * stack to the msgbuf
1411 				 */
1412 				printf("Warning: stack in the dumpbuf"
1413 				    " may be incomplete\n");
1414 				offset = next_offset;
1415 			}
1416 		}
1417 
1418 		minfp = fp;
1419 		pc = nextpc;
1420 		fp = nextfp;
1421 	}
1422 out:
1423 	if (!panicstr) {
1424 		printf("end of traceback\n");
1425 		DELAY(2 * MICROSEC);
1426 	} else if (dump_stack_scratch) {
1427 		dump_stack_scratch[offset] = '\0';
1428 	}
1429 
1430 }
1431 
1432 #endif	/* __i386 */
1433 
1434 /*
1435  * Generate a stack backtrace from a saved register set.
1436  */
1437 void
1438 traceregs(struct regs *rp)
1439 {
1440 	traceback((caddr_t)rp->r_fp);
1441 }
1442 
1443 void
1444 exec_set_sp(size_t stksize)
1445 {
1446 	klwp_t *lwp = ttolwp(curthread);
1447 
1448 	lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize;
1449 }
1450 
1451 hrtime_t
1452 gethrtime_waitfree(void)
1453 {
1454 	return (dtrace_gethrtime());
1455 }
1456 
1457 hrtime_t
1458 gethrtime(void)
1459 {
1460 	return (gethrtimef());
1461 }
1462 
1463 hrtime_t
1464 gethrtime_unscaled(void)
1465 {
1466 	return (gethrtimeunscaledf());
1467 }
1468 
1469 void
1470 scalehrtime(hrtime_t *hrt)
1471 {
1472 	scalehrtimef(hrt);
1473 }
1474 
1475 uint64_t
1476 unscalehrtime(hrtime_t nsecs)
1477 {
1478 	return (unscalehrtimef(nsecs));
1479 }
1480 
1481 void
1482 gethrestime(timespec_t *tp)
1483 {
1484 	gethrestimef(tp);
1485 }
1486 
1487 #if defined(__amd64)
1488 /*
1489  * Part of the implementation of hres_tick(); this routine is
1490  * easier in C than assembler .. called with the hres_lock held.
1491  *
1492  * XX64	Many of these timekeeping variables need to be extern'ed in a header
1493  */
1494 
1495 #include <sys/time.h>
1496 #include <sys/machlock.h>
1497 
1498 extern int one_sec;
1499 extern int max_hres_adj;
1500 
1501 void
1502 __adj_hrestime(void)
1503 {
1504 	long long adj;
1505 
1506 	if (hrestime_adj == 0)
1507 		adj = 0;
1508 	else if (hrestime_adj > 0) {
1509 		if (hrestime_adj < max_hres_adj)
1510 			adj = hrestime_adj;
1511 		else
1512 			adj = max_hres_adj;
1513 	} else {
1514 		if (hrestime_adj < -max_hres_adj)
1515 			adj = -max_hres_adj;
1516 		else
1517 			adj = hrestime_adj;
1518 	}
1519 
1520 	timedelta -= adj;
1521 	hrestime_adj = timedelta;
1522 	hrestime.tv_nsec += adj;
1523 
1524 	while (hrestime.tv_nsec >= NANOSEC) {
1525 		one_sec++;
1526 		hrestime.tv_sec++;
1527 		hrestime.tv_nsec -= NANOSEC;
1528 	}
1529 }
1530 #endif
1531 
1532 /*
1533  * Wrapper functions to maintain backwards compability
1534  */
1535 int
1536 xcopyin(const void *uaddr, void *kaddr, size_t count)
1537 {
1538 	return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED));
1539 }
1540 
1541 int
1542 xcopyout(const void *kaddr, void *uaddr, size_t count)
1543 {
1544 	return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED));
1545 }
1546