1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/param.h> 33 #include <sys/types.h> 34 #include <sys/vmparam.h> 35 #include <sys/systm.h> 36 #include <sys/signal.h> 37 #include <sys/stack.h> 38 #include <sys/regset.h> 39 #include <sys/privregs.h> 40 #include <sys/frame.h> 41 #include <sys/proc.h> 42 #include <sys/psw.h> 43 #include <sys/siginfo.h> 44 #include <sys/cpuvar.h> 45 #include <sys/asm_linkage.h> 46 #include <sys/kmem.h> 47 #include <sys/errno.h> 48 #include <sys/bootconf.h> 49 #include <sys/archsystm.h> 50 #include <sys/debug.h> 51 #include <sys/elf.h> 52 #include <sys/spl.h> 53 #include <sys/time.h> 54 #include <sys/atomic.h> 55 #include <sys/sysmacros.h> 56 #include <sys/cmn_err.h> 57 #include <sys/modctl.h> 58 #include <sys/kobj.h> 59 #include <sys/panic.h> 60 #include <sys/reboot.h> 61 #include <sys/time.h> 62 #include <sys/fp.h> 63 #include <sys/x86_archext.h> 64 #include <sys/auxv.h> 65 #include <sys/auxv_386.h> 66 #include <sys/dtrace.h> 67 #include <sys/brand.h> 68 #include <sys/machbrand.h> 69 70 extern const struct fnsave_state x87_initial; 71 extern const struct fxsave_state sse_initial; 72 73 /* 74 * Map an fnsave-formatted save area into an fxsave-formatted save area. 75 * 76 * Most fields are the same width, content and semantics. However 77 * the tag word is compressed. 78 */ 79 static void 80 fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx) 81 { 82 uint_t i, tagbits; 83 84 fx->fx_fcw = fn->f_fcw; 85 fx->fx_fsw = fn->f_fsw; 86 87 /* 88 * copy element by element (because of holes) 89 */ 90 for (i = 0; i < 8; i++) 91 bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0], 92 sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */ 93 94 /* 95 * synthesize compressed tag bits 96 */ 97 fx->fx_fctw = 0; 98 for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2) 99 if ((tagbits & 3) != 3) 100 fx->fx_fctw |= (1 << i); 101 102 fx->fx_fop = fn->f_fop; 103 104 #if defined(__amd64) 105 fx->fx_rip = (uint64_t)fn->f_eip; 106 fx->fx_rdp = (uint64_t)fn->f_dp; 107 #else 108 fx->fx_eip = fn->f_eip; 109 fx->fx_cs = fn->f_cs; 110 fx->__fx_ign0 = 0; 111 fx->fx_dp = fn->f_dp; 112 fx->fx_ds = fn->f_ds; 113 fx->__fx_ign1 = 0; 114 #endif 115 } 116 117 /* 118 * Map from an fxsave-format save area to an fnsave-format save area. 119 */ 120 static void 121 fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn) 122 { 123 uint_t i, top, tagbits; 124 125 fn->f_fcw = fx->fx_fcw; 126 fn->__f_ign0 = 0; 127 fn->f_fsw = fx->fx_fsw; 128 fn->__f_ign1 = 0; 129 130 top = (fx->fx_fsw & FPS_TOP) >> 11; 131 132 /* 133 * copy element by element (because of holes) 134 */ 135 for (i = 0; i < 8; i++) 136 bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0], 137 sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */ 138 139 /* 140 * synthesize uncompressed tag bits 141 */ 142 fn->f_ftw = 0; 143 for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) { 144 uint_t ibit, expo; 145 const uint16_t *fpp; 146 static const uint16_t zero[5] = { 0, 0, 0, 0, 0 }; 147 148 if ((tagbits & 1) == 0) { 149 fn->f_ftw |= 3 << (i << 1); /* empty */ 150 continue; 151 } 152 153 /* 154 * (tags refer to *physical* registers) 155 */ 156 fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0]; 157 ibit = fpp[3] >> 15; 158 expo = fpp[4] & 0x7fff; 159 160 if (ibit && expo != 0 && expo != 0x7fff) 161 continue; /* valid fp number */ 162 163 if (bcmp(fpp, &zero, sizeof (zero))) 164 fn->f_ftw |= 2 << (i << 1); /* NaN */ 165 else 166 fn->f_ftw |= 1 << (i << 1); /* fp zero */ 167 } 168 169 fn->f_fop = fx->fx_fop; 170 171 fn->__f_ign2 = 0; 172 #if defined(__amd64) 173 fn->f_eip = (uint32_t)fx->fx_rip; 174 fn->f_cs = U32CS_SEL; 175 fn->f_dp = (uint32_t)fx->fx_rdp; 176 fn->f_ds = UDS_SEL; 177 #else 178 fn->f_eip = fx->fx_eip; 179 fn->f_cs = fx->fx_cs; 180 fn->f_dp = fx->fx_dp; 181 fn->f_ds = fx->fx_ds; 182 #endif 183 fn->__f_ign3 = 0; 184 } 185 186 /* 187 * Map from an fpregset_t into an fxsave-format save area 188 */ 189 static void 190 fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx) 191 { 192 #if defined(__amd64) 193 bcopy(fp, fx, sizeof (*fx)); 194 #else 195 const struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state; 196 197 fnsave_to_fxsave((const struct fnsave_state *)fc, fx); 198 fx->fx_mxcsr = fc->mxcsr; 199 bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm)); 200 #endif 201 /* 202 * avoid useless #gp exceptions - mask reserved bits 203 */ 204 fx->fx_mxcsr &= sse_mxcsr_mask; 205 } 206 207 /* 208 * Map from an fxsave-format save area into a fpregset_t 209 */ 210 static void 211 fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp) 212 { 213 #if defined(__amd64) 214 bcopy(fx, fp, sizeof (*fx)); 215 #else 216 struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state; 217 218 fxsave_to_fnsave(fx, (struct fnsave_state *)fc); 219 fc->mxcsr = fx->fx_mxcsr; 220 bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm)); 221 #endif 222 } 223 224 #if defined(_SYSCALL32_IMPL) 225 static void 226 fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx) 227 { 228 const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state; 229 230 fnsave_to_fxsave((const struct fnsave_state *)fc, fx); 231 /* 232 * avoid useless #gp exceptions - mask reserved bits 233 */ 234 fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr; 235 bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm)); 236 } 237 238 static void 239 fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp) 240 { 241 struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state; 242 243 fxsave_to_fnsave(fx, (struct fnsave_state *)fc); 244 fc->mxcsr = fx->fx_mxcsr; 245 bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm)); 246 } 247 248 static void 249 fpregset_nto32(const fpregset_t *src, fpregset32_t *dst) 250 { 251 fxsave_to_fpregset32((struct fxsave_state *)src, dst); 252 dst->fp_reg_set.fpchip_state.status = 253 src->fp_reg_set.fpchip_state.status; 254 dst->fp_reg_set.fpchip_state.xstatus = 255 src->fp_reg_set.fpchip_state.xstatus; 256 } 257 258 static void 259 fpregset_32ton(const fpregset32_t *src, fpregset_t *dst) 260 { 261 fpregset32_to_fxsave(src, (struct fxsave_state *)dst); 262 dst->fp_reg_set.fpchip_state.status = 263 src->fp_reg_set.fpchip_state.status; 264 dst->fp_reg_set.fpchip_state.xstatus = 265 src->fp_reg_set.fpchip_state.xstatus; 266 } 267 #endif 268 269 /* 270 * Set floating-point registers from a native fpregset_t. 271 */ 272 void 273 setfpregs(klwp_t *lwp, fpregset_t *fp) 274 { 275 struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu; 276 277 if (fpu->fpu_flags & FPU_EN) { 278 if (!(fpu->fpu_flags & FPU_VALID)) { 279 /* 280 * FPU context is still active, release the 281 * ownership. 282 */ 283 fp_free(fpu, 0); 284 } 285 #if !defined(__amd64) 286 if (fp_kind == __FP_SSE) { 287 #endif 288 fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx); 289 fpu->fpu_regs.kfpu_xstatus = 290 fp->fp_reg_set.fpchip_state.xstatus; 291 #if !defined(__amd64) 292 } else 293 bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn, 294 sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn)); 295 #endif 296 fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status; 297 fpu->fpu_flags |= FPU_VALID; 298 } else { 299 /* 300 * If we are trying to change the FPU state of a thread which 301 * hasn't yet initialized floating point, store the state in 302 * the pcb and indicate that the state is valid. When the 303 * thread enables floating point, it will use this state instead 304 * of the default state. 305 */ 306 #if !defined(__amd64) 307 if (fp_kind == __FP_SSE) { 308 #endif 309 fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx); 310 fpu->fpu_regs.kfpu_xstatus = 311 fp->fp_reg_set.fpchip_state.xstatus; 312 #if !defined(__amd64) 313 } else 314 bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn, 315 sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn)); 316 #endif 317 fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status; 318 fpu->fpu_flags |= FPU_VALID; 319 } 320 } 321 322 /* 323 * Get floating-point registers into a native fpregset_t. 324 */ 325 void 326 getfpregs(klwp_t *lwp, fpregset_t *fp) 327 { 328 struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu; 329 330 kpreempt_disable(); 331 if (fpu->fpu_flags & FPU_EN) { 332 /* 333 * If we have FPU hw and the thread's pcb doesn't have 334 * a valid FPU state then get the state from the hw. 335 */ 336 if (fpu_exists && ttolwp(curthread) == lwp && 337 !(fpu->fpu_flags & FPU_VALID)) 338 fp_save(fpu); /* get the current FPU state */ 339 } 340 341 /* 342 * There are 3 possible cases we have to be aware of here: 343 * 344 * 1. FPU is enabled. FPU state is stored in the current LWP. 345 * 346 * 2. FPU is not enabled, and there have been no intervening /proc 347 * modifications. Return initial FPU state. 348 * 349 * 3. FPU is not enabled, but a /proc consumer has modified FPU state. 350 * FPU state is stored in the current LWP. 351 */ 352 if ((fpu->fpu_flags & FPU_EN) || (fpu->fpu_flags & FPU_VALID)) { 353 /* 354 * Cases 1 and 3. 355 */ 356 #if !defined(__amd64) 357 if (fp_kind == __FP_SSE) { 358 #endif 359 fxsave_to_fpregset(&fpu->fpu_regs.kfpu_u.kfpu_fx, fp); 360 fp->fp_reg_set.fpchip_state.xstatus = 361 fpu->fpu_regs.kfpu_xstatus; 362 #if !defined(__amd64) 363 } else 364 bcopy(&fpu->fpu_regs.kfpu_u.kfpu_fn, fp, 365 sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn)); 366 #endif 367 fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status; 368 } else { 369 /* 370 * Case 2. 371 */ 372 #if !defined(__amd64) 373 if (fp_kind == __FP_SSE) { 374 #endif 375 fxsave_to_fpregset(&sse_initial, fp); 376 fp->fp_reg_set.fpchip_state.xstatus = 377 fpu->fpu_regs.kfpu_xstatus; 378 #if !defined(__amd64) 379 } else 380 bcopy(&x87_initial, fp, sizeof (x87_initial)); 381 #endif 382 fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status; 383 } 384 kpreempt_enable(); 385 } 386 387 #if defined(_SYSCALL32_IMPL) 388 389 /* 390 * Set floating-point registers from an fpregset32_t. 391 */ 392 void 393 setfpregs32(klwp_t *lwp, fpregset32_t *fp) 394 { 395 fpregset_t fpregs; 396 397 fpregset_32ton(fp, &fpregs); 398 setfpregs(lwp, &fpregs); 399 } 400 401 /* 402 * Get floating-point registers into an fpregset32_t. 403 */ 404 void 405 getfpregs32(klwp_t *lwp, fpregset32_t *fp) 406 { 407 fpregset_t fpregs; 408 409 getfpregs(lwp, &fpregs); 410 fpregset_nto32(&fpregs, fp); 411 } 412 413 #endif /* _SYSCALL32_IMPL */ 414 415 /* 416 * Return the general registers 417 */ 418 void 419 getgregs(klwp_t *lwp, gregset_t grp) 420 { 421 struct regs *rp = lwptoregs(lwp); 422 #if defined(__amd64) 423 struct pcb *pcb = &lwp->lwp_pcb; 424 int thisthread = lwptot(lwp) == curthread; 425 426 grp[REG_RDI] = rp->r_rdi; 427 grp[REG_RSI] = rp->r_rsi; 428 grp[REG_RDX] = rp->r_rdx; 429 grp[REG_RCX] = rp->r_rcx; 430 grp[REG_R8] = rp->r_r8; 431 grp[REG_R9] = rp->r_r9; 432 grp[REG_RAX] = rp->r_rax; 433 grp[REG_RBX] = rp->r_rbx; 434 grp[REG_RBP] = rp->r_rbp; 435 grp[REG_R10] = rp->r_r10; 436 grp[REG_R11] = rp->r_r11; 437 grp[REG_R12] = rp->r_r12; 438 grp[REG_R13] = rp->r_r13; 439 grp[REG_R14] = rp->r_r14; 440 grp[REG_R15] = rp->r_r15; 441 grp[REG_FSBASE] = pcb->pcb_fsbase; 442 grp[REG_GSBASE] = pcb->pcb_gsbase; 443 if (thisthread) 444 kpreempt_disable(); 445 if (pcb->pcb_rupdate == 1) { 446 grp[REG_DS] = pcb->pcb_ds; 447 grp[REG_ES] = pcb->pcb_es; 448 grp[REG_FS] = pcb->pcb_fs; 449 grp[REG_GS] = pcb->pcb_gs; 450 } else { 451 grp[REG_DS] = rp->r_ds; 452 grp[REG_ES] = rp->r_es; 453 grp[REG_FS] = rp->r_fs; 454 grp[REG_GS] = rp->r_gs; 455 } 456 if (thisthread) 457 kpreempt_enable(); 458 grp[REG_TRAPNO] = rp->r_trapno; 459 grp[REG_ERR] = rp->r_err; 460 grp[REG_RIP] = rp->r_rip; 461 grp[REG_CS] = rp->r_cs; 462 grp[REG_SS] = rp->r_ss; 463 grp[REG_RFL] = rp->r_rfl; 464 grp[REG_RSP] = rp->r_rsp; 465 #else 466 bcopy(&rp->r_gs, grp, sizeof (gregset_t)); 467 #endif 468 } 469 470 #if defined(_SYSCALL32_IMPL) 471 472 void 473 getgregs32(klwp_t *lwp, gregset32_t grp) 474 { 475 struct regs *rp = lwptoregs(lwp); 476 struct pcb *pcb = &lwp->lwp_pcb; 477 int thisthread = lwptot(lwp) == curthread; 478 479 if (thisthread) 480 kpreempt_disable(); 481 if (pcb->pcb_rupdate == 1) { 482 grp[GS] = (uint16_t)pcb->pcb_gs; 483 grp[FS] = (uint16_t)pcb->pcb_fs; 484 grp[DS] = (uint16_t)pcb->pcb_ds; 485 grp[ES] = (uint16_t)pcb->pcb_es; 486 } else { 487 grp[GS] = (uint16_t)rp->r_gs; 488 grp[FS] = (uint16_t)rp->r_fs; 489 grp[DS] = (uint16_t)rp->r_ds; 490 grp[ES] = (uint16_t)rp->r_es; 491 } 492 if (thisthread) 493 kpreempt_enable(); 494 grp[EDI] = (greg32_t)rp->r_rdi; 495 grp[ESI] = (greg32_t)rp->r_rsi; 496 grp[EBP] = (greg32_t)rp->r_rbp; 497 grp[ESP] = 0; 498 grp[EBX] = (greg32_t)rp->r_rbx; 499 grp[EDX] = (greg32_t)rp->r_rdx; 500 grp[ECX] = (greg32_t)rp->r_rcx; 501 grp[EAX] = (greg32_t)rp->r_rax; 502 grp[TRAPNO] = (greg32_t)rp->r_trapno; 503 grp[ERR] = (greg32_t)rp->r_err; 504 grp[EIP] = (greg32_t)rp->r_rip; 505 grp[CS] = (uint16_t)rp->r_cs; 506 grp[EFL] = (greg32_t)rp->r_rfl; 507 grp[UESP] = (greg32_t)rp->r_rsp; 508 grp[SS] = (uint16_t)rp->r_ss; 509 } 510 511 void 512 ucontext_32ton(const ucontext32_t *src, ucontext_t *dst) 513 { 514 mcontext_t *dmc = &dst->uc_mcontext; 515 const mcontext32_t *smc = &src->uc_mcontext; 516 517 bzero(dst, sizeof (*dst)); 518 dst->uc_flags = src->uc_flags; 519 dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link; 520 521 bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask)); 522 523 dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp; 524 dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size; 525 dst->uc_stack.ss_flags = src->uc_stack.ss_flags; 526 527 dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS]; 528 dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS]; 529 dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES]; 530 dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS]; 531 dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI]; 532 dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI]; 533 dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP]; 534 dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX]; 535 dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX]; 536 dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX]; 537 dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX]; 538 dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO]; 539 dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR]; 540 dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP]; 541 dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS]; 542 dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL]; 543 dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP]; 544 dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS]; 545 546 /* 547 * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set 548 * otherwise there is no guarantee that anything in fpregs is valid. 549 */ 550 if (src->uc_flags & UC_FPU) 551 fpregset_32ton(&src->uc_mcontext.fpregs, 552 &dst->uc_mcontext.fpregs); 553 } 554 555 #endif /* _SYSCALL32_IMPL */ 556 557 /* 558 * Return the user-level PC. 559 * If in a system call, return the address of the syscall trap. 560 */ 561 greg_t 562 getuserpc() 563 { 564 greg_t upc = lwptoregs(ttolwp(curthread))->r_pc; 565 uint32_t insn; 566 567 if (curthread->t_sysnum == 0) 568 return (upc); 569 570 /* 571 * We might've gotten here from sysenter (0xf 0x34), 572 * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0). 573 * 574 * Go peek at the binary to figure it out.. 575 */ 576 if (fuword32((void *)(upc - 2), &insn) != -1 && 577 (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f) 578 return (upc - 2); 579 return (upc - 7); 580 } 581 582 /* 583 * Protect segment registers from non-user privilege levels and GDT selectors 584 * other than USER_CS, USER_DS and lwp FS and GS values. If the segment 585 * selector is non-null and not USER_CS/USER_DS, we make sure that the 586 * TI bit is set to point into the LDT and that the RPL is set to 3. 587 * 588 * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we 589 * also explicitly zero the top 16 bits since they may be coming from the 590 * user's address space via setcontext(2) or /proc. 591 */ 592 593 /*ARGSUSED*/ 594 static greg_t 595 fix_segreg(greg_t sr, model_t datamodel) 596 { 597 kthread_t *t = curthread; 598 599 switch (sr &= 0xffff) { 600 #if defined(__amd64) 601 /* 602 * If lwp attempts to switch data model then force their 603 * code selector to be null selector. 604 */ 605 case U32CS_SEL: 606 if (datamodel == DATAMODEL_NATIVE) 607 return (0); 608 else 609 return (sr); 610 611 case UCS_SEL: 612 if (datamodel == DATAMODEL_ILP32) 613 return (0); 614 #elif defined(__i386) 615 case UCS_SEL: 616 #endif 617 /*FALLTHROUGH*/ 618 case UDS_SEL: 619 case LWPFS_SEL: 620 case LWPGS_SEL: 621 case 0: 622 return (sr); 623 default: 624 break; 625 } 626 627 /* 628 * Allow this process's brand to do any necessary segment register 629 * manipulation. 630 */ 631 if (PROC_IS_BRANDED(t->t_procp) && BRMOP(t->t_procp)->b_fixsegreg) 632 return (BRMOP(t->t_procp)->b_fixsegreg(sr, datamodel)); 633 634 /* 635 * Force it into the LDT in ring 3 for 32-bit processes, which by 636 * default do not have an LDT, so that any attempt to use an invalid 637 * selector will reference the (non-existant) LDT, and cause a #gp fault 638 * for the process. 639 * 640 * 64-bit processes get the null gdt selector since they 641 * are not allowed to have a private LDT. 642 */ 643 #if defined(__amd64) 644 return (datamodel == DATAMODEL_ILP32 ? (sr | SEL_TI_LDT | SEL_UPL) : 0); 645 #elif defined(__i386) 646 return (sr | SEL_TI_LDT | SEL_UPL); 647 #endif 648 } 649 650 /* 651 * Set general registers. 652 */ 653 void 654 setgregs(klwp_t *lwp, gregset_t grp) 655 { 656 struct regs *rp = lwptoregs(lwp); 657 model_t datamodel = lwp_getdatamodel(lwp); 658 659 #if defined(__amd64) 660 struct pcb *pcb = &lwp->lwp_pcb; 661 int thisthread = lwptot(lwp) == curthread; 662 663 if (datamodel == DATAMODEL_NATIVE) { 664 665 if (thisthread) 666 (void) save_syscall_args(); /* copy the args */ 667 668 rp->r_rdi = grp[REG_RDI]; 669 rp->r_rsi = grp[REG_RSI]; 670 rp->r_rdx = grp[REG_RDX]; 671 rp->r_rcx = grp[REG_RCX]; 672 rp->r_r8 = grp[REG_R8]; 673 rp->r_r9 = grp[REG_R9]; 674 rp->r_rax = grp[REG_RAX]; 675 rp->r_rbx = grp[REG_RBX]; 676 rp->r_rbp = grp[REG_RBP]; 677 rp->r_r10 = grp[REG_R10]; 678 rp->r_r11 = grp[REG_R11]; 679 rp->r_r12 = grp[REG_R12]; 680 rp->r_r13 = grp[REG_R13]; 681 rp->r_r14 = grp[REG_R14]; 682 rp->r_r15 = grp[REG_R15]; 683 rp->r_trapno = grp[REG_TRAPNO]; 684 rp->r_err = grp[REG_ERR]; 685 rp->r_rip = grp[REG_RIP]; 686 /* 687 * Setting %cs or %ss to anything else is quietly but 688 * quite definitely forbidden! 689 */ 690 rp->r_cs = UCS_SEL; 691 rp->r_ss = UDS_SEL; 692 rp->r_rsp = grp[REG_RSP]; 693 694 if (thisthread) 695 kpreempt_disable(); 696 697 pcb->pcb_ds = UDS_SEL; 698 pcb->pcb_es = UDS_SEL; 699 700 /* 701 * 64-bit processes -are- allowed to set their fsbase/gsbase 702 * values directly, but only if they're using the segment 703 * selectors that allow that semantic. 704 * 705 * (32-bit processes must use lwp_set_private().) 706 */ 707 pcb->pcb_fsbase = grp[REG_FSBASE]; 708 pcb->pcb_gsbase = grp[REG_GSBASE]; 709 pcb->pcb_fs = fix_segreg(grp[REG_FS], datamodel); 710 pcb->pcb_gs = fix_segreg(grp[REG_GS], datamodel); 711 712 /* 713 * Ensure that we go out via update_sregs 714 */ 715 pcb->pcb_rupdate = 1; 716 lwptot(lwp)->t_post_sys = 1; 717 if (thisthread) 718 kpreempt_enable(); 719 #if defined(_SYSCALL32_IMPL) 720 } else { 721 rp->r_rdi = (uint32_t)grp[REG_RDI]; 722 rp->r_rsi = (uint32_t)grp[REG_RSI]; 723 rp->r_rdx = (uint32_t)grp[REG_RDX]; 724 rp->r_rcx = (uint32_t)grp[REG_RCX]; 725 rp->r_rax = (uint32_t)grp[REG_RAX]; 726 rp->r_rbx = (uint32_t)grp[REG_RBX]; 727 rp->r_rbp = (uint32_t)grp[REG_RBP]; 728 rp->r_trapno = (uint32_t)grp[REG_TRAPNO]; 729 rp->r_err = (uint32_t)grp[REG_ERR]; 730 rp->r_rip = (uint32_t)grp[REG_RIP]; 731 732 /* 733 * The kernel uses %cs to determine if it is dealing with 734 * another part of the kernel or with a userland application. 735 * Specifically, it tests the privilege bits. For this reason, 736 * we must prevent user apps from ending up with a NULL selector 737 * in %cs. Instead, we'll use index 0 into the GDT but with the 738 * privilege bits set to usermode. 739 */ 740 rp->r_cs = fix_segreg(grp[REG_CS], datamodel) | SEL_UPL; 741 rp->r_ss = fix_segreg(grp[REG_DS], datamodel); 742 743 rp->r_rsp = (uint32_t)grp[REG_RSP]; 744 745 if (thisthread) 746 kpreempt_disable(); 747 748 pcb->pcb_ds = fix_segreg(grp[REG_DS], datamodel); 749 pcb->pcb_es = fix_segreg(grp[REG_ES], datamodel); 750 751 /* 752 * (See fsbase/gsbase commentary above) 753 */ 754 pcb->pcb_fs = fix_segreg(grp[REG_FS], datamodel); 755 pcb->pcb_gs = fix_segreg(grp[REG_GS], datamodel); 756 757 /* 758 * Ensure that we go out via update_sregs 759 */ 760 pcb->pcb_rupdate = 1; 761 lwptot(lwp)->t_post_sys = 1; 762 if (thisthread) 763 kpreempt_enable(); 764 #endif 765 } 766 767 /* 768 * Only certain bits of the flags register can be modified. 769 */ 770 rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) | 771 (grp[REG_RFL] & PSL_USERMASK); 772 773 #elif defined(__i386) 774 775 /* 776 * Only certain bits of the flags register can be modified. 777 */ 778 grp[EFL] = (rp->r_efl & ~PSL_USERMASK) | (grp[EFL] & PSL_USERMASK); 779 780 /* 781 * Copy saved registers from user stack. 782 */ 783 bcopy(grp, &rp->r_gs, sizeof (gregset_t)); 784 785 rp->r_cs = fix_segreg(rp->r_cs, datamodel); 786 rp->r_ss = fix_segreg(rp->r_ss, datamodel); 787 rp->r_ds = fix_segreg(rp->r_ds, datamodel); 788 rp->r_es = fix_segreg(rp->r_es, datamodel); 789 rp->r_fs = fix_segreg(rp->r_fs, datamodel); 790 rp->r_gs = fix_segreg(rp->r_gs, datamodel); 791 792 #endif /* __i386 */ 793 } 794 795 /* 796 * Determine whether eip is likely to have an interrupt frame 797 * on the stack. We do this by comparing the address to the 798 * range of addresses spanned by several well-known routines. 799 */ 800 extern void _interrupt(); 801 extern void _allsyscalls(); 802 extern void _cmntrap(); 803 extern void fakesoftint(); 804 805 extern size_t _interrupt_size; 806 extern size_t _allsyscalls_size; 807 extern size_t _cmntrap_size; 808 extern size_t _fakesoftint_size; 809 810 /* 811 * Get a pc-only stacktrace. Used for kmem_alloc() buffer ownership tracking. 812 * Returns MIN(current stack depth, pcstack_limit). 813 */ 814 int 815 getpcstack(pc_t *pcstack, int pcstack_limit) 816 { 817 struct frame *fp = (struct frame *)getfp(); 818 struct frame *nextfp, *minfp, *stacktop; 819 int depth = 0; 820 int on_intr; 821 uintptr_t pc; 822 823 if ((on_intr = CPU_ON_INTR(CPU)) != 0) 824 stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME)); 825 else 826 stacktop = (struct frame *)curthread->t_stk; 827 minfp = fp; 828 829 pc = ((struct regs *)fp)->r_pc; 830 831 while (depth < pcstack_limit) { 832 nextfp = (struct frame *)fp->fr_savfp; 833 pc = fp->fr_savpc; 834 if (nextfp <= minfp || nextfp >= stacktop) { 835 if (on_intr) { 836 /* 837 * Hop from interrupt stack to thread stack. 838 */ 839 stacktop = (struct frame *)curthread->t_stk; 840 minfp = (struct frame *)curthread->t_stkbase; 841 on_intr = 0; 842 continue; 843 } 844 break; 845 } 846 pcstack[depth++] = (pc_t)pc; 847 fp = nextfp; 848 minfp = fp; 849 } 850 return (depth); 851 } 852 853 /* 854 * The following ELF header fields are defined as processor-specific 855 * in the V8 ABI: 856 * 857 * e_ident[EI_DATA] encoding of the processor-specific 858 * data in the object file 859 * e_machine processor identification 860 * e_flags processor-specific flags associated 861 * with the file 862 */ 863 864 /* 865 * The value of at_flags reflects a platform's cpu module support. 866 * at_flags is used to check for allowing a binary to execute and 867 * is passed as the value of the AT_FLAGS auxiliary vector. 868 */ 869 int at_flags = 0; 870 871 /* 872 * Check the processor-specific fields of an ELF header. 873 * 874 * returns 1 if the fields are valid, 0 otherwise 875 */ 876 /*ARGSUSED2*/ 877 int 878 elfheadcheck( 879 unsigned char e_data, 880 Elf32_Half e_machine, 881 Elf32_Word e_flags) 882 { 883 if (e_data != ELFDATA2LSB) 884 return (0); 885 #if defined(__amd64) 886 if (e_machine == EM_AMD64) 887 return (1); 888 #endif 889 return (e_machine == EM_386); 890 } 891 892 uint_t auxv_hwcap_include = 0; /* patch to enable unrecognized features */ 893 uint_t auxv_hwcap_exclude = 0; /* patch for broken cpus, debugging */ 894 #if defined(_SYSCALL32_IMPL) 895 uint_t auxv_hwcap32_include = 0; /* ditto for 32-bit apps */ 896 uint_t auxv_hwcap32_exclude = 0; /* ditto for 32-bit apps */ 897 #endif 898 899 /* 900 * Gather information about the processor and place it into auxv_hwcap 901 * so that it can be exported to the linker via the aux vector. 902 * 903 * We use this seemingly complicated mechanism so that we can ensure 904 * that /etc/system can be used to override what the system can or 905 * cannot discover for itself. 906 */ 907 void 908 bind_hwcap(void) 909 { 910 uint_t cpu_hwcap_flags = cpuid_pass4(NULL); 911 912 auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags) & 913 ~auxv_hwcap_exclude; 914 915 #if defined(__amd64) 916 /* 917 * On AMD processors, sysenter just doesn't work at all 918 * when the kernel is in long mode. On IA-32e processors 919 * it does, but there's no real point in all the alternate 920 * mechanism when syscall works on both. 921 * 922 * Besides, the kernel's sysenter handler is expecting a 923 * 32-bit lwp ... 924 */ 925 auxv_hwcap &= ~AV_386_SEP; 926 #else 927 /* 928 * 32-bit processes can -always- use the lahf/sahf instructions 929 */ 930 auxv_hwcap |= AV_386_AHF; 931 #endif 932 933 if (auxv_hwcap_include || auxv_hwcap_exclude) 934 cmn_err(CE_CONT, "?user ABI extensions: %b\n", 935 auxv_hwcap, FMT_AV_386); 936 937 #if defined(_SYSCALL32_IMPL) 938 auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags) & 939 ~auxv_hwcap32_exclude; 940 941 #if defined(__amd64) 942 /* 943 * If this is an amd64 architecture machine from Intel, then 944 * syscall -doesn't- work in compatibility mode, only sysenter does. 945 * 946 * Sigh. 947 */ 948 if (!cpuid_syscall32_insn(NULL)) 949 auxv_hwcap32 &= ~AV_386_AMD_SYSC; 950 951 /* 952 * 32-bit processes can -always- use the lahf/sahf instructions 953 */ 954 auxv_hwcap32 |= AV_386_AHF; 955 #endif 956 957 if (auxv_hwcap32_include || auxv_hwcap32_exclude) 958 cmn_err(CE_CONT, "?32-bit user ABI extensions: %b\n", 959 auxv_hwcap32, FMT_AV_386); 960 #endif 961 } 962 963 /* 964 * sync_icache() - this is called 965 * in proc/fs/prusrio.c. x86 has an unified cache and therefore 966 * this is a nop. 967 */ 968 /* ARGSUSED */ 969 void 970 sync_icache(caddr_t addr, uint_t len) 971 { 972 /* Do nothing for now */ 973 } 974 975 /*ARGSUSED*/ 976 void 977 sync_data_memory(caddr_t va, size_t len) 978 { 979 /* Not implemented for this platform */ 980 } 981 982 int 983 __ipltospl(int ipl) 984 { 985 return (ipltospl(ipl)); 986 } 987 988 /* 989 * The panic code invokes panic_saveregs() to record the contents of a 990 * regs structure into the specified panic_data structure for debuggers. 991 */ 992 void 993 panic_saveregs(panic_data_t *pdp, struct regs *rp) 994 { 995 panic_nv_t *pnv = PANICNVGET(pdp); 996 997 struct cregs creg; 998 999 getcregs(&creg); 1000 1001 #if defined(__amd64) 1002 PANICNVADD(pnv, "rdi", rp->r_rdi); 1003 PANICNVADD(pnv, "rsi", rp->r_rsi); 1004 PANICNVADD(pnv, "rdx", rp->r_rdx); 1005 PANICNVADD(pnv, "rcx", rp->r_rcx); 1006 PANICNVADD(pnv, "r8", rp->r_r8); 1007 PANICNVADD(pnv, "r9", rp->r_r9); 1008 PANICNVADD(pnv, "rax", rp->r_rax); 1009 PANICNVADD(pnv, "rbx", rp->r_rbx); 1010 PANICNVADD(pnv, "rbp", rp->r_rbp); 1011 PANICNVADD(pnv, "r10", rp->r_r10); 1012 PANICNVADD(pnv, "r10", rp->r_r10); 1013 PANICNVADD(pnv, "r11", rp->r_r11); 1014 PANICNVADD(pnv, "r12", rp->r_r12); 1015 PANICNVADD(pnv, "r13", rp->r_r13); 1016 PANICNVADD(pnv, "r14", rp->r_r14); 1017 PANICNVADD(pnv, "r15", rp->r_r15); 1018 PANICNVADD(pnv, "fsbase", rdmsr(MSR_AMD_FSBASE)); 1019 PANICNVADD(pnv, "gsbase", rdmsr(MSR_AMD_GSBASE)); 1020 PANICNVADD(pnv, "ds", rp->r_ds); 1021 PANICNVADD(pnv, "es", rp->r_es); 1022 PANICNVADD(pnv, "fs", rp->r_fs); 1023 PANICNVADD(pnv, "gs", rp->r_gs); 1024 PANICNVADD(pnv, "trapno", rp->r_trapno); 1025 PANICNVADD(pnv, "err", rp->r_err); 1026 PANICNVADD(pnv, "rip", rp->r_rip); 1027 PANICNVADD(pnv, "cs", rp->r_cs); 1028 PANICNVADD(pnv, "rflags", rp->r_rfl); 1029 PANICNVADD(pnv, "rsp", rp->r_rsp); 1030 PANICNVADD(pnv, "ss", rp->r_ss); 1031 PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3])); 1032 PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0])); 1033 PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3])); 1034 PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0])); 1035 #elif defined(__i386) 1036 PANICNVADD(pnv, "gs", (uint32_t)rp->r_gs); 1037 PANICNVADD(pnv, "fs", (uint32_t)rp->r_fs); 1038 PANICNVADD(pnv, "es", (uint32_t)rp->r_es); 1039 PANICNVADD(pnv, "ds", (uint32_t)rp->r_ds); 1040 PANICNVADD(pnv, "edi", (uint32_t)rp->r_edi); 1041 PANICNVADD(pnv, "esi", (uint32_t)rp->r_esi); 1042 PANICNVADD(pnv, "ebp", (uint32_t)rp->r_ebp); 1043 PANICNVADD(pnv, "esp", (uint32_t)rp->r_esp); 1044 PANICNVADD(pnv, "ebx", (uint32_t)rp->r_ebx); 1045 PANICNVADD(pnv, "edx", (uint32_t)rp->r_edx); 1046 PANICNVADD(pnv, "ecx", (uint32_t)rp->r_ecx); 1047 PANICNVADD(pnv, "eax", (uint32_t)rp->r_eax); 1048 PANICNVADD(pnv, "trapno", (uint32_t)rp->r_trapno); 1049 PANICNVADD(pnv, "err", (uint32_t)rp->r_err); 1050 PANICNVADD(pnv, "eip", (uint32_t)rp->r_eip); 1051 PANICNVADD(pnv, "cs", (uint32_t)rp->r_cs); 1052 PANICNVADD(pnv, "eflags", (uint32_t)rp->r_efl); 1053 PANICNVADD(pnv, "uesp", (uint32_t)rp->r_uesp); 1054 PANICNVADD(pnv, "ss", (uint32_t)rp->r_ss); 1055 PANICNVADD(pnv, "gdt", creg.cr_gdt); 1056 PANICNVADD(pnv, "idt", creg.cr_idt); 1057 #endif /* __i386 */ 1058 1059 PANICNVADD(pnv, "ldt", creg.cr_ldt); 1060 PANICNVADD(pnv, "task", creg.cr_task); 1061 PANICNVADD(pnv, "cr0", creg.cr_cr0); 1062 PANICNVADD(pnv, "cr2", creg.cr_cr2); 1063 PANICNVADD(pnv, "cr3", creg.cr_cr3); 1064 if (creg.cr_cr4) 1065 PANICNVADD(pnv, "cr4", creg.cr_cr4); 1066 1067 PANICNVSET(pdp, pnv); 1068 } 1069 1070 #define TR_ARG_MAX 6 /* Max args to print, same as SPARC */ 1071 1072 #if !defined(__amd64) 1073 1074 /* 1075 * Given a return address (%eip), determine the likely number of arguments 1076 * that were pushed on the stack prior to its execution. We do this by 1077 * expecting that a typical call sequence consists of pushing arguments on 1078 * the stack, executing a call instruction, and then performing an add 1079 * on %esp to restore it to the value prior to pushing the arguments for 1080 * the call. We attempt to detect such an add, and divide the addend 1081 * by the size of a word to determine the number of pushed arguments. 1082 * 1083 * If we do not find such an add, we punt and return TR_ARG_MAX. It is not 1084 * possible to reliably determine if a function took no arguments (i.e. was 1085 * void) because assembler routines do not reliably perform an add on %esp 1086 * immediately upon returning (eg. _sys_call()), so returning TR_ARG_MAX is 1087 * safer than returning 0. 1088 */ 1089 static ulong_t 1090 argcount(uintptr_t eip) 1091 { 1092 const uint8_t *ins = (const uint8_t *)eip; 1093 ulong_t n; 1094 1095 enum { 1096 M_MODRM_ESP = 0xc4, /* Mod/RM byte indicates %esp */ 1097 M_ADD_IMM32 = 0x81, /* ADD imm32 to r/m32 */ 1098 M_ADD_IMM8 = 0x83 /* ADD imm8 to r/m32 */ 1099 }; 1100 1101 if (eip < KERNELBASE || ins[1] != M_MODRM_ESP) 1102 return (TR_ARG_MAX); 1103 1104 switch (ins[0]) { 1105 case M_ADD_IMM32: 1106 n = ins[2] + (ins[3] << 8) + (ins[4] << 16) + (ins[5] << 24); 1107 break; 1108 1109 case M_ADD_IMM8: 1110 n = ins[2]; 1111 break; 1112 1113 default: 1114 return (TR_ARG_MAX); 1115 } 1116 1117 n /= sizeof (long); 1118 return (MIN(n, TR_ARG_MAX)); 1119 } 1120 1121 #endif /* !__amd64 */ 1122 1123 /* 1124 * Print a stack backtrace using the specified frame pointer. We delay two 1125 * seconds before continuing, unless this is the panic traceback. Note 1126 * that the frame for the starting stack pointer value is omitted because 1127 * the corresponding %eip is not known. 1128 */ 1129 #if defined(__amd64) 1130 1131 void 1132 traceback(caddr_t fpreg) 1133 { 1134 struct frame *fp = (struct frame *)fpreg; 1135 struct frame *nextfp; 1136 uintptr_t pc, nextpc; 1137 ulong_t off; 1138 char args[TR_ARG_MAX * 2 + 16], *sym; 1139 1140 if (!panicstr) 1141 printf("traceback: %%fp = %p\n", (void *)fp); 1142 1143 if ((uintptr_t)fp < KERNELBASE) 1144 goto out; 1145 1146 pc = fp->fr_savpc; 1147 fp = (struct frame *)fp->fr_savfp; 1148 1149 while ((uintptr_t)fp >= KERNELBASE) { 1150 /* 1151 * XX64 Until port is complete tolerate 8-byte aligned 1152 * frame pointers but flag with a warning so they can 1153 * be fixed. 1154 */ 1155 if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) { 1156 if (((uintptr_t)fp & (8 - 1)) == 0) { 1157 printf(" >> warning! 8-byte" 1158 " aligned %%fp = %p\n", (void *)fp); 1159 } else { 1160 printf( 1161 " >> mis-aligned %%fp = %p\n", (void *)fp); 1162 break; 1163 } 1164 } 1165 1166 args[0] = '\0'; 1167 nextpc = (uintptr_t)fp->fr_savpc; 1168 nextfp = (struct frame *)fp->fr_savfp; 1169 if ((sym = kobj_getsymname(pc, &off)) != NULL) { 1170 printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp, 1171 mod_containing_pc((caddr_t)pc), sym, off, args); 1172 } else { 1173 printf("%016lx %lx (%s)\n", 1174 (uintptr_t)fp, pc, args); 1175 } 1176 1177 pc = nextpc; 1178 fp = nextfp; 1179 } 1180 out: 1181 if (!panicstr) { 1182 printf("end of traceback\n"); 1183 DELAY(2 * MICROSEC); 1184 } 1185 } 1186 1187 #elif defined(__i386) 1188 1189 void 1190 traceback(caddr_t fpreg) 1191 { 1192 struct frame *fp = (struct frame *)fpreg; 1193 struct frame *nextfp, *minfp, *stacktop; 1194 uintptr_t pc, nextpc; 1195 1196 cpu_t *cpu; 1197 1198 /* 1199 * args[] holds TR_ARG_MAX hex long args, plus ", " or '\0'. 1200 */ 1201 char args[TR_ARG_MAX * 2 + 8], *p; 1202 1203 int on_intr; 1204 ulong_t off; 1205 char *sym; 1206 1207 if (!panicstr) 1208 printf("traceback: %%fp = %p\n", (void *)fp); 1209 1210 /* 1211 * If we are panicking, all high-level interrupt information in 1212 * CPU was overwritten. panic_cpu has the correct values. 1213 */ 1214 kpreempt_disable(); /* prevent migration */ 1215 1216 cpu = (panicstr && CPU->cpu_id == panic_cpu.cpu_id)? &panic_cpu : CPU; 1217 1218 if ((on_intr = CPU_ON_INTR(cpu)) != 0) 1219 stacktop = (struct frame *)(cpu->cpu_intr_stack + SA(MINFRAME)); 1220 else 1221 stacktop = (struct frame *)curthread->t_stk; 1222 1223 kpreempt_enable(); 1224 1225 if ((uintptr_t)fp < KERNELBASE) 1226 goto out; 1227 1228 minfp = fp; /* Baseline minimum frame pointer */ 1229 pc = fp->fr_savpc; 1230 fp = (struct frame *)fp->fr_savfp; 1231 1232 while ((uintptr_t)fp >= KERNELBASE) { 1233 ulong_t argc; 1234 long *argv; 1235 1236 if (fp <= minfp || fp >= stacktop) { 1237 if (on_intr) { 1238 /* 1239 * Hop from interrupt stack to thread stack. 1240 */ 1241 stacktop = (struct frame *)curthread->t_stk; 1242 minfp = (struct frame *)curthread->t_stkbase; 1243 on_intr = 0; 1244 continue; 1245 } 1246 break; /* we're outside of the expected range */ 1247 } 1248 1249 if ((uintptr_t)fp & (STACK_ALIGN - 1)) { 1250 printf(" >> mis-aligned %%fp = %p\n", (void *)fp); 1251 break; 1252 } 1253 1254 nextpc = fp->fr_savpc; 1255 nextfp = (struct frame *)fp->fr_savfp; 1256 argc = argcount(nextpc); 1257 argv = (long *)((char *)fp + sizeof (struct frame)); 1258 1259 args[0] = '\0'; 1260 p = args; 1261 while (argc-- > 0 && argv < (long *)stacktop) { 1262 p += snprintf(p, args + sizeof (args) - p, 1263 "%s%lx", (p == args) ? "" : ", ", *argv++); 1264 } 1265 1266 if ((sym = kobj_getsymname(pc, &off)) != NULL) { 1267 printf("%08lx %s:%s+%lx (%s)\n", (uintptr_t)fp, 1268 mod_containing_pc((caddr_t)pc), sym, off, args); 1269 } else { 1270 printf("%08lx %lx (%s)\n", 1271 (uintptr_t)fp, pc, args); 1272 } 1273 1274 minfp = fp; 1275 pc = nextpc; 1276 fp = nextfp; 1277 } 1278 out: 1279 if (!panicstr) { 1280 printf("end of traceback\n"); 1281 DELAY(2 * MICROSEC); 1282 } 1283 } 1284 1285 #endif /* __i386 */ 1286 1287 /* 1288 * Generate a stack backtrace from a saved register set. 1289 */ 1290 void 1291 traceregs(struct regs *rp) 1292 { 1293 traceback((caddr_t)rp->r_fp); 1294 } 1295 1296 void 1297 exec_set_sp(size_t stksize) 1298 { 1299 klwp_t *lwp = ttolwp(curthread); 1300 1301 lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize; 1302 } 1303 1304 hrtime_t 1305 gethrtime_waitfree(void) 1306 { 1307 return (dtrace_gethrtime()); 1308 } 1309 1310 hrtime_t 1311 gethrtime(void) 1312 { 1313 return (gethrtimef()); 1314 } 1315 1316 hrtime_t 1317 gethrtime_unscaled(void) 1318 { 1319 return (gethrtimeunscaledf()); 1320 } 1321 1322 void 1323 scalehrtime(hrtime_t *hrt) 1324 { 1325 scalehrtimef(hrt); 1326 } 1327 1328 void 1329 gethrestime(timespec_t *tp) 1330 { 1331 gethrestimef(tp); 1332 } 1333 1334 #if defined(__amd64) 1335 /* 1336 * Part of the implementation of hres_tick(); this routine is 1337 * easier in C than assembler .. called with the hres_lock held. 1338 * 1339 * XX64 Many of these timekeeping variables need to be extern'ed in a header 1340 */ 1341 1342 #include <sys/time.h> 1343 #include <sys/machlock.h> 1344 1345 extern int one_sec; 1346 extern int max_hres_adj; 1347 1348 void 1349 __adj_hrestime(void) 1350 { 1351 long long adj; 1352 1353 if (hrestime_adj == 0) 1354 adj = 0; 1355 else if (hrestime_adj > 0) { 1356 if (hrestime_adj < max_hres_adj) 1357 adj = hrestime_adj; 1358 else 1359 adj = max_hres_adj; 1360 } else { 1361 if (hrestime_adj < -max_hres_adj) 1362 adj = -max_hres_adj; 1363 else 1364 adj = hrestime_adj; 1365 } 1366 1367 timedelta -= adj; 1368 hrestime_adj = timedelta; 1369 hrestime.tv_nsec += adj; 1370 1371 while (hrestime.tv_nsec >= NANOSEC) { 1372 one_sec++; 1373 hrestime.tv_sec++; 1374 hrestime.tv_nsec -= NANOSEC; 1375 } 1376 } 1377 #endif 1378 1379 /* 1380 * Wrapper functions to maintain backwards compability 1381 */ 1382 int 1383 xcopyin(const void *uaddr, void *kaddr, size_t count) 1384 { 1385 return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED)); 1386 } 1387 1388 int 1389 xcopyout(const void *kaddr, void *uaddr, size_t count) 1390 { 1391 return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED)); 1392 } 1393