xref: /titanic_50/usr/src/uts/intel/ia32/os/archdep.c (revision 2ad72058bc680e30f084e9f9ba8ceb0f77386821)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
26 /*	  All Rights Reserved  	*/
27 
28 #include <sys/param.h>
29 #include <sys/types.h>
30 #include <sys/vmparam.h>
31 #include <sys/systm.h>
32 #include <sys/signal.h>
33 #include <sys/stack.h>
34 #include <sys/regset.h>
35 #include <sys/privregs.h>
36 #include <sys/frame.h>
37 #include <sys/proc.h>
38 #include <sys/psw.h>
39 #include <sys/siginfo.h>
40 #include <sys/cpuvar.h>
41 #include <sys/asm_linkage.h>
42 #include <sys/kmem.h>
43 #include <sys/errno.h>
44 #include <sys/bootconf.h>
45 #include <sys/archsystm.h>
46 #include <sys/debug.h>
47 #include <sys/elf.h>
48 #include <sys/spl.h>
49 #include <sys/time.h>
50 #include <sys/atomic.h>
51 #include <sys/sysmacros.h>
52 #include <sys/cmn_err.h>
53 #include <sys/modctl.h>
54 #include <sys/kobj.h>
55 #include <sys/panic.h>
56 #include <sys/reboot.h>
57 #include <sys/time.h>
58 #include <sys/fp.h>
59 #include <sys/x86_archext.h>
60 #include <sys/auxv.h>
61 #include <sys/auxv_386.h>
62 #include <sys/dtrace.h>
63 #include <sys/brand.h>
64 #include <sys/machbrand.h>
65 #include <sys/cmn_err.h>
66 
67 extern const struct fnsave_state x87_initial;
68 extern const struct fxsave_state sse_initial;
69 
70 /*
71  * Map an fnsave-formatted save area into an fxsave-formatted save area.
72  *
73  * Most fields are the same width, content and semantics.  However
74  * the tag word is compressed.
75  */
76 static void
77 fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx)
78 {
79 	uint_t i, tagbits;
80 
81 	fx->fx_fcw = fn->f_fcw;
82 	fx->fx_fsw = fn->f_fsw;
83 
84 	/*
85 	 * copy element by element (because of holes)
86 	 */
87 	for (i = 0; i < 8; i++)
88 		bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0],
89 		    sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
90 
91 	/*
92 	 * synthesize compressed tag bits
93 	 */
94 	fx->fx_fctw = 0;
95 	for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2)
96 		if ((tagbits & 3) != 3)
97 			fx->fx_fctw |= (1 << i);
98 
99 	fx->fx_fop = fn->f_fop;
100 
101 #if defined(__amd64)
102 	fx->fx_rip = (uint64_t)fn->f_eip;
103 	fx->fx_rdp = (uint64_t)fn->f_dp;
104 #else
105 	fx->fx_eip = fn->f_eip;
106 	fx->fx_cs = fn->f_cs;
107 	fx->__fx_ign0 = 0;
108 	fx->fx_dp = fn->f_dp;
109 	fx->fx_ds = fn->f_ds;
110 	fx->__fx_ign1 = 0;
111 #endif
112 }
113 
114 /*
115  * Map from an fxsave-format save area to an fnsave-format save area.
116  */
117 static void
118 fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn)
119 {
120 	uint_t i, top, tagbits;
121 
122 	fn->f_fcw = fx->fx_fcw;
123 	fn->__f_ign0 = 0;
124 	fn->f_fsw = fx->fx_fsw;
125 	fn->__f_ign1 = 0;
126 
127 	top = (fx->fx_fsw & FPS_TOP) >> 11;
128 
129 	/*
130 	 * copy element by element (because of holes)
131 	 */
132 	for (i = 0; i < 8; i++)
133 		bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0],
134 		    sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
135 
136 	/*
137 	 * synthesize uncompressed tag bits
138 	 */
139 	fn->f_ftw = 0;
140 	for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) {
141 		uint_t ibit, expo;
142 		const uint16_t *fpp;
143 		static const uint16_t zero[5] = { 0, 0, 0, 0, 0 };
144 
145 		if ((tagbits & 1) == 0) {
146 			fn->f_ftw |= 3 << (i << 1);	/* empty */
147 			continue;
148 		}
149 
150 		/*
151 		 * (tags refer to *physical* registers)
152 		 */
153 		fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0];
154 		ibit = fpp[3] >> 15;
155 		expo = fpp[4] & 0x7fff;
156 
157 		if (ibit && expo != 0 && expo != 0x7fff)
158 			continue;			/* valid fp number */
159 
160 		if (bcmp(fpp, &zero, sizeof (zero)))
161 			fn->f_ftw |= 2 << (i << 1);	/* NaN */
162 		else
163 			fn->f_ftw |= 1 << (i << 1);	/* fp zero */
164 	}
165 
166 	fn->f_fop = fx->fx_fop;
167 
168 	fn->__f_ign2 = 0;
169 #if defined(__amd64)
170 	fn->f_eip = (uint32_t)fx->fx_rip;
171 	fn->f_cs = U32CS_SEL;
172 	fn->f_dp = (uint32_t)fx->fx_rdp;
173 	fn->f_ds = UDS_SEL;
174 #else
175 	fn->f_eip = fx->fx_eip;
176 	fn->f_cs = fx->fx_cs;
177 	fn->f_dp = fx->fx_dp;
178 	fn->f_ds = fx->fx_ds;
179 #endif
180 	fn->__f_ign3 = 0;
181 }
182 
183 /*
184  * Map from an fpregset_t into an fxsave-format save area
185  */
186 static void
187 fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx)
188 {
189 #if defined(__amd64)
190 	bcopy(fp, fx, sizeof (*fx));
191 #else
192 	const struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state;
193 
194 	fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
195 	fx->fx_mxcsr = fc->mxcsr;
196 	bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
197 #endif
198 	/*
199 	 * avoid useless #gp exceptions - mask reserved bits
200 	 */
201 	fx->fx_mxcsr &= sse_mxcsr_mask;
202 }
203 
204 /*
205  * Map from an fxsave-format save area into a fpregset_t
206  */
207 static void
208 fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp)
209 {
210 #if defined(__amd64)
211 	bcopy(fx, fp, sizeof (*fx));
212 #else
213 	struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state;
214 
215 	fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
216 	fc->mxcsr = fx->fx_mxcsr;
217 	bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
218 #endif
219 }
220 
221 #if defined(_SYSCALL32_IMPL)
222 static void
223 fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx)
224 {
225 	const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
226 
227 	fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
228 	/*
229 	 * avoid useless #gp exceptions - mask reserved bits
230 	 */
231 	fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr;
232 	bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
233 }
234 
235 static void
236 fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp)
237 {
238 	struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
239 
240 	fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
241 	fc->mxcsr = fx->fx_mxcsr;
242 	bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
243 }
244 
245 static void
246 fpregset_nto32(const fpregset_t *src, fpregset32_t *dst)
247 {
248 	fxsave_to_fpregset32((struct fxsave_state *)src, dst);
249 	dst->fp_reg_set.fpchip_state.status =
250 	    src->fp_reg_set.fpchip_state.status;
251 	dst->fp_reg_set.fpchip_state.xstatus =
252 	    src->fp_reg_set.fpchip_state.xstatus;
253 }
254 
255 static void
256 fpregset_32ton(const fpregset32_t *src, fpregset_t *dst)
257 {
258 	fpregset32_to_fxsave(src, (struct fxsave_state *)dst);
259 	dst->fp_reg_set.fpchip_state.status =
260 	    src->fp_reg_set.fpchip_state.status;
261 	dst->fp_reg_set.fpchip_state.xstatus =
262 	    src->fp_reg_set.fpchip_state.xstatus;
263 }
264 #endif
265 
266 /*
267  * Set floating-point registers from a native fpregset_t.
268  */
269 void
270 setfpregs(klwp_t *lwp, fpregset_t *fp)
271 {
272 	struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
273 
274 	if (fpu->fpu_flags & FPU_EN) {
275 		if (!(fpu->fpu_flags & FPU_VALID)) {
276 			/*
277 			 * FPU context is still active, release the
278 			 * ownership.
279 			 */
280 			fp_free(fpu, 0);
281 		}
282 	}
283 	/*
284 	 * Else: if we are trying to change the FPU state of a thread which
285 	 * hasn't yet initialized floating point, store the state in
286 	 * the pcb and indicate that the state is valid.  When the
287 	 * thread enables floating point, it will use this state instead
288 	 * of the default state.
289 	 */
290 
291 	switch (fp_save_mech) {
292 #if defined(__i386)
293 	case FP_FNSAVE:
294 		bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn,
295 		    sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
296 		break;
297 #endif
298 	case FP_FXSAVE:
299 		fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx);
300 		fpu->fpu_regs.kfpu_xstatus =
301 		    fp->fp_reg_set.fpchip_state.xstatus;
302 		break;
303 
304 	case FP_XSAVE:
305 		fpregset_to_fxsave(fp,
306 		    &fpu->fpu_regs.kfpu_u.kfpu_xs.xs_fxsave);
307 		fpu->fpu_regs.kfpu_xstatus =
308 		    fp->fp_reg_set.fpchip_state.xstatus;
309 		fpu->fpu_regs.kfpu_u.kfpu_xs.xs_xstate_bv |=
310 		    (XFEATURE_LEGACY_FP | XFEATURE_SSE);
311 		break;
312 	default:
313 		panic("Invalid fp_save_mech");
314 		/*NOTREACHED*/
315 	}
316 
317 	fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status;
318 	fpu->fpu_flags |= FPU_VALID;
319 }
320 
321 /*
322  * Get floating-point registers into a native fpregset_t.
323  */
324 void
325 getfpregs(klwp_t *lwp, fpregset_t *fp)
326 {
327 	struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
328 
329 	kpreempt_disable();
330 	if (fpu->fpu_flags & FPU_EN) {
331 		/*
332 		 * If we have FPU hw and the thread's pcb doesn't have
333 		 * a valid FPU state then get the state from the hw.
334 		 */
335 		if (fpu_exists && ttolwp(curthread) == lwp &&
336 		    !(fpu->fpu_flags & FPU_VALID))
337 			fp_save(fpu); /* get the current FPU state */
338 	}
339 
340 	/*
341 	 * There are 3 possible cases we have to be aware of here:
342 	 *
343 	 * 1. FPU is enabled.  FPU state is stored in the current LWP.
344 	 *
345 	 * 2. FPU is not enabled, and there have been no intervening /proc
346 	 *    modifications.  Return initial FPU state.
347 	 *
348 	 * 3. FPU is not enabled, but a /proc consumer has modified FPU state.
349 	 *    FPU state is stored in the current LWP.
350 	 */
351 	if ((fpu->fpu_flags & FPU_EN) || (fpu->fpu_flags & FPU_VALID)) {
352 		/*
353 		 * Cases 1 and 3.
354 		 */
355 		switch (fp_save_mech) {
356 #if defined(__i386)
357 		case FP_FNSAVE:
358 			bcopy(&fpu->fpu_regs.kfpu_u.kfpu_fn, fp,
359 			    sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
360 			break;
361 #endif
362 		case FP_FXSAVE:
363 			fxsave_to_fpregset(&fpu->fpu_regs.kfpu_u.kfpu_fx, fp);
364 			fp->fp_reg_set.fpchip_state.xstatus =
365 			    fpu->fpu_regs.kfpu_xstatus;
366 			break;
367 		case FP_XSAVE:
368 			fxsave_to_fpregset(
369 			    &fpu->fpu_regs.kfpu_u.kfpu_xs.xs_fxsave, fp);
370 			fp->fp_reg_set.fpchip_state.xstatus =
371 			    fpu->fpu_regs.kfpu_xstatus;
372 			break;
373 		default:
374 			panic("Invalid fp_save_mech");
375 			/*NOTREACHED*/
376 		}
377 		fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
378 	} else {
379 		/*
380 		 * Case 2.
381 		 */
382 		switch (fp_save_mech) {
383 #if defined(__i386)
384 		case FP_FNSAVE:
385 			bcopy(&x87_initial, fp, sizeof (x87_initial));
386 			break;
387 #endif
388 		case FP_FXSAVE:
389 		case FP_XSAVE:
390 			/*
391 			 * For now, we don't have any AVX specific field in ABI.
392 			 * If we add any in the future, we need to initial them
393 			 * as well.
394 			 */
395 			fxsave_to_fpregset(&sse_initial, fp);
396 			fp->fp_reg_set.fpchip_state.xstatus =
397 			    fpu->fpu_regs.kfpu_xstatus;
398 			break;
399 		default:
400 			panic("Invalid fp_save_mech");
401 			/*NOTREACHED*/
402 		}
403 		fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
404 	}
405 	kpreempt_enable();
406 }
407 
408 #if defined(_SYSCALL32_IMPL)
409 
410 /*
411  * Set floating-point registers from an fpregset32_t.
412  */
413 void
414 setfpregs32(klwp_t *lwp, fpregset32_t *fp)
415 {
416 	fpregset_t fpregs;
417 
418 	fpregset_32ton(fp, &fpregs);
419 	setfpregs(lwp, &fpregs);
420 }
421 
422 /*
423  * Get floating-point registers into an fpregset32_t.
424  */
425 void
426 getfpregs32(klwp_t *lwp, fpregset32_t *fp)
427 {
428 	fpregset_t fpregs;
429 
430 	getfpregs(lwp, &fpregs);
431 	fpregset_nto32(&fpregs, fp);
432 }
433 
434 #endif	/* _SYSCALL32_IMPL */
435 
436 /*
437  * Return the general registers
438  */
439 void
440 getgregs(klwp_t *lwp, gregset_t grp)
441 {
442 	struct regs *rp = lwptoregs(lwp);
443 #if defined(__amd64)
444 	struct pcb *pcb = &lwp->lwp_pcb;
445 	int thisthread = lwptot(lwp) == curthread;
446 
447 	grp[REG_RDI] = rp->r_rdi;
448 	grp[REG_RSI] = rp->r_rsi;
449 	grp[REG_RDX] = rp->r_rdx;
450 	grp[REG_RCX] = rp->r_rcx;
451 	grp[REG_R8] = rp->r_r8;
452 	grp[REG_R9] = rp->r_r9;
453 	grp[REG_RAX] = rp->r_rax;
454 	grp[REG_RBX] = rp->r_rbx;
455 	grp[REG_RBP] = rp->r_rbp;
456 	grp[REG_R10] = rp->r_r10;
457 	grp[REG_R11] = rp->r_r11;
458 	grp[REG_R12] = rp->r_r12;
459 	grp[REG_R13] = rp->r_r13;
460 	grp[REG_R14] = rp->r_r14;
461 	grp[REG_R15] = rp->r_r15;
462 	grp[REG_FSBASE] = pcb->pcb_fsbase;
463 	grp[REG_GSBASE] = pcb->pcb_gsbase;
464 	if (thisthread)
465 		kpreempt_disable();
466 	if (pcb->pcb_rupdate == 1) {
467 		grp[REG_DS] = pcb->pcb_ds;
468 		grp[REG_ES] = pcb->pcb_es;
469 		grp[REG_FS] = pcb->pcb_fs;
470 		grp[REG_GS] = pcb->pcb_gs;
471 	} else {
472 		grp[REG_DS] = rp->r_ds;
473 		grp[REG_ES] = rp->r_es;
474 		grp[REG_FS] = rp->r_fs;
475 		grp[REG_GS] = rp->r_gs;
476 	}
477 	if (thisthread)
478 		kpreempt_enable();
479 	grp[REG_TRAPNO] = rp->r_trapno;
480 	grp[REG_ERR] = rp->r_err;
481 	grp[REG_RIP] = rp->r_rip;
482 	grp[REG_CS] = rp->r_cs;
483 	grp[REG_SS] = rp->r_ss;
484 	grp[REG_RFL] = rp->r_rfl;
485 	grp[REG_RSP] = rp->r_rsp;
486 #else
487 	bcopy(&rp->r_gs, grp, sizeof (gregset_t));
488 #endif
489 }
490 
491 #if defined(_SYSCALL32_IMPL)
492 
493 void
494 getgregs32(klwp_t *lwp, gregset32_t grp)
495 {
496 	struct regs *rp = lwptoregs(lwp);
497 	struct pcb *pcb = &lwp->lwp_pcb;
498 	int thisthread = lwptot(lwp) == curthread;
499 
500 	if (thisthread)
501 		kpreempt_disable();
502 	if (pcb->pcb_rupdate == 1) {
503 		grp[GS] = (uint16_t)pcb->pcb_gs;
504 		grp[FS] = (uint16_t)pcb->pcb_fs;
505 		grp[DS] = (uint16_t)pcb->pcb_ds;
506 		grp[ES] = (uint16_t)pcb->pcb_es;
507 	} else {
508 		grp[GS] = (uint16_t)rp->r_gs;
509 		grp[FS] = (uint16_t)rp->r_fs;
510 		grp[DS] = (uint16_t)rp->r_ds;
511 		grp[ES] = (uint16_t)rp->r_es;
512 	}
513 	if (thisthread)
514 		kpreempt_enable();
515 	grp[EDI] = (greg32_t)rp->r_rdi;
516 	grp[ESI] = (greg32_t)rp->r_rsi;
517 	grp[EBP] = (greg32_t)rp->r_rbp;
518 	grp[ESP] = 0;
519 	grp[EBX] = (greg32_t)rp->r_rbx;
520 	grp[EDX] = (greg32_t)rp->r_rdx;
521 	grp[ECX] = (greg32_t)rp->r_rcx;
522 	grp[EAX] = (greg32_t)rp->r_rax;
523 	grp[TRAPNO] = (greg32_t)rp->r_trapno;
524 	grp[ERR] = (greg32_t)rp->r_err;
525 	grp[EIP] = (greg32_t)rp->r_rip;
526 	grp[CS] = (uint16_t)rp->r_cs;
527 	grp[EFL] = (greg32_t)rp->r_rfl;
528 	grp[UESP] = (greg32_t)rp->r_rsp;
529 	grp[SS] = (uint16_t)rp->r_ss;
530 }
531 
532 void
533 ucontext_32ton(const ucontext32_t *src, ucontext_t *dst)
534 {
535 	mcontext_t *dmc = &dst->uc_mcontext;
536 	const mcontext32_t *smc = &src->uc_mcontext;
537 
538 	bzero(dst, sizeof (*dst));
539 	dst->uc_flags = src->uc_flags;
540 	dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link;
541 
542 	bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask));
543 
544 	dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp;
545 	dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size;
546 	dst->uc_stack.ss_flags = src->uc_stack.ss_flags;
547 
548 	dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS];
549 	dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS];
550 	dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES];
551 	dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS];
552 	dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI];
553 	dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI];
554 	dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP];
555 	dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX];
556 	dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX];
557 	dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX];
558 	dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX];
559 	dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO];
560 	dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR];
561 	dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP];
562 	dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS];
563 	dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL];
564 	dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP];
565 	dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS];
566 
567 	/*
568 	 * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set
569 	 * otherwise there is no guarantee that anything in fpregs is valid.
570 	 */
571 	if (src->uc_flags & UC_FPU)
572 		fpregset_32ton(&src->uc_mcontext.fpregs,
573 		    &dst->uc_mcontext.fpregs);
574 }
575 
576 #endif	/* _SYSCALL32_IMPL */
577 
578 /*
579  * Return the user-level PC.
580  * If in a system call, return the address of the syscall trap.
581  */
582 greg_t
583 getuserpc()
584 {
585 	greg_t upc = lwptoregs(ttolwp(curthread))->r_pc;
586 	uint32_t insn;
587 
588 	if (curthread->t_sysnum == 0)
589 		return (upc);
590 
591 	/*
592 	 * We might've gotten here from sysenter (0xf 0x34),
593 	 * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0).
594 	 *
595 	 * Go peek at the binary to figure it out..
596 	 */
597 	if (fuword32((void *)(upc - 2), &insn) != -1 &&
598 	    (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f)
599 		return (upc - 2);
600 	return (upc - 7);
601 }
602 
603 /*
604  * Protect segment registers from non-user privilege levels and GDT selectors
605  * other than USER_CS, USER_DS and lwp FS and GS values.  If the segment
606  * selector is non-null and not USER_CS/USER_DS, we make sure that the
607  * TI bit is set to point into the LDT and that the RPL is set to 3.
608  *
609  * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we
610  * also explicitly zero the top 16 bits since they may be coming from the
611  * user's address space via setcontext(2) or /proc.
612  *
613  * Note about null selector. When running on the hypervisor if we allow a
614  * process to set its %cs to null selector with RPL of 0 the hypervisor will
615  * crash the domain. If running on bare metal we would get a #gp fault and
616  * be able to kill the process and continue on. Therefore we make sure to
617  * force RPL to SEL_UPL even for null selector when setting %cs.
618  */
619 
620 #if defined(IS_CS) || defined(IS_NOT_CS)
621 #error	"IS_CS and IS_NOT_CS already defined"
622 #endif
623 
624 #define	IS_CS		1
625 #define	IS_NOT_CS	0
626 
627 /*ARGSUSED*/
628 static greg_t
629 fix_segreg(greg_t sr, int iscs, model_t datamodel)
630 {
631 	switch (sr &= 0xffff) {
632 
633 	case 0:
634 		if (iscs == IS_CS)
635 			return (0 | SEL_UPL);
636 		else
637 			return (0);
638 
639 #if defined(__amd64)
640 	/*
641 	 * If lwp attempts to switch data model then force their
642 	 * code selector to be null selector.
643 	 */
644 	case U32CS_SEL:
645 		if (datamodel == DATAMODEL_NATIVE)
646 			return (0 | SEL_UPL);
647 		else
648 			return (sr);
649 
650 	case UCS_SEL:
651 		if (datamodel == DATAMODEL_ILP32)
652 			return (0 | SEL_UPL);
653 #elif defined(__i386)
654 	case UCS_SEL:
655 #endif
656 	/*FALLTHROUGH*/
657 	case UDS_SEL:
658 	case LWPFS_SEL:
659 	case LWPGS_SEL:
660 	case SEL_UPL:
661 		return (sr);
662 	default:
663 		break;
664 	}
665 
666 	/*
667 	 * Force it into the LDT in ring 3 for 32-bit processes, which by
668 	 * default do not have an LDT, so that any attempt to use an invalid
669 	 * selector will reference the (non-existant) LDT, and cause a #gp
670 	 * fault for the process.
671 	 *
672 	 * 64-bit processes get the null gdt selector since they
673 	 * are not allowed to have a private LDT.
674 	 */
675 #if defined(__amd64)
676 	if (datamodel == DATAMODEL_ILP32) {
677 		return (sr | SEL_TI_LDT | SEL_UPL);
678 	} else {
679 		if (iscs == IS_CS)
680 			return (0 | SEL_UPL);
681 		else
682 			return (0);
683 	}
684 
685 #elif defined(__i386)
686 	return (sr | SEL_TI_LDT | SEL_UPL);
687 #endif
688 }
689 
690 /*
691  * Set general registers.
692  */
693 void
694 setgregs(klwp_t *lwp, gregset_t grp)
695 {
696 	struct regs *rp = lwptoregs(lwp);
697 	model_t	datamodel = lwp_getdatamodel(lwp);
698 
699 #if defined(__amd64)
700 	struct pcb *pcb = &lwp->lwp_pcb;
701 	int thisthread = lwptot(lwp) == curthread;
702 
703 	if (datamodel == DATAMODEL_NATIVE) {
704 
705 		if (thisthread)
706 			(void) save_syscall_args();	/* copy the args */
707 
708 		rp->r_rdi = grp[REG_RDI];
709 		rp->r_rsi = grp[REG_RSI];
710 		rp->r_rdx = grp[REG_RDX];
711 		rp->r_rcx = grp[REG_RCX];
712 		rp->r_r8 = grp[REG_R8];
713 		rp->r_r9 = grp[REG_R9];
714 		rp->r_rax = grp[REG_RAX];
715 		rp->r_rbx = grp[REG_RBX];
716 		rp->r_rbp = grp[REG_RBP];
717 		rp->r_r10 = grp[REG_R10];
718 		rp->r_r11 = grp[REG_R11];
719 		rp->r_r12 = grp[REG_R12];
720 		rp->r_r13 = grp[REG_R13];
721 		rp->r_r14 = grp[REG_R14];
722 		rp->r_r15 = grp[REG_R15];
723 		rp->r_trapno = grp[REG_TRAPNO];
724 		rp->r_err = grp[REG_ERR];
725 		rp->r_rip = grp[REG_RIP];
726 		/*
727 		 * Setting %cs or %ss to anything else is quietly but
728 		 * quite definitely forbidden!
729 		 */
730 		rp->r_cs = UCS_SEL;
731 		rp->r_ss = UDS_SEL;
732 		rp->r_rsp = grp[REG_RSP];
733 
734 		if (thisthread)
735 			kpreempt_disable();
736 
737 		pcb->pcb_ds = UDS_SEL;
738 		pcb->pcb_es = UDS_SEL;
739 
740 		/*
741 		 * 64-bit processes -are- allowed to set their fsbase/gsbase
742 		 * values directly, but only if they're using the segment
743 		 * selectors that allow that semantic.
744 		 *
745 		 * (32-bit processes must use lwp_set_private().)
746 		 */
747 		pcb->pcb_fsbase = grp[REG_FSBASE];
748 		pcb->pcb_gsbase = grp[REG_GSBASE];
749 		pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
750 		pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
751 
752 		/*
753 		 * Ensure that we go out via update_sregs
754 		 */
755 		pcb->pcb_rupdate = 1;
756 		lwptot(lwp)->t_post_sys = 1;
757 		if (thisthread)
758 			kpreempt_enable();
759 #if defined(_SYSCALL32_IMPL)
760 	} else {
761 		rp->r_rdi = (uint32_t)grp[REG_RDI];
762 		rp->r_rsi = (uint32_t)grp[REG_RSI];
763 		rp->r_rdx = (uint32_t)grp[REG_RDX];
764 		rp->r_rcx = (uint32_t)grp[REG_RCX];
765 		rp->r_rax = (uint32_t)grp[REG_RAX];
766 		rp->r_rbx = (uint32_t)grp[REG_RBX];
767 		rp->r_rbp = (uint32_t)grp[REG_RBP];
768 		rp->r_trapno = (uint32_t)grp[REG_TRAPNO];
769 		rp->r_err = (uint32_t)grp[REG_ERR];
770 		rp->r_rip = (uint32_t)grp[REG_RIP];
771 
772 		rp->r_cs = fix_segreg(grp[REG_CS], IS_CS, datamodel);
773 		rp->r_ss = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
774 
775 		rp->r_rsp = (uint32_t)grp[REG_RSP];
776 
777 		if (thisthread)
778 			kpreempt_disable();
779 
780 		pcb->pcb_ds = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
781 		pcb->pcb_es = fix_segreg(grp[REG_ES], IS_NOT_CS, datamodel);
782 
783 		/*
784 		 * (See fsbase/gsbase commentary above)
785 		 */
786 		pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
787 		pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
788 
789 		/*
790 		 * Ensure that we go out via update_sregs
791 		 */
792 		pcb->pcb_rupdate = 1;
793 		lwptot(lwp)->t_post_sys = 1;
794 		if (thisthread)
795 			kpreempt_enable();
796 #endif
797 	}
798 
799 	/*
800 	 * Only certain bits of the flags register can be modified.
801 	 */
802 	rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) |
803 	    (grp[REG_RFL] & PSL_USERMASK);
804 
805 #elif defined(__i386)
806 
807 	/*
808 	 * Only certain bits of the flags register can be modified.
809 	 */
810 	grp[EFL] = (rp->r_efl & ~PSL_USERMASK) | (grp[EFL] & PSL_USERMASK);
811 
812 	/*
813 	 * Copy saved registers from user stack.
814 	 */
815 	bcopy(grp, &rp->r_gs, sizeof (gregset_t));
816 
817 	rp->r_cs = fix_segreg(rp->r_cs, IS_CS, datamodel);
818 	rp->r_ss = fix_segreg(rp->r_ss, IS_NOT_CS, datamodel);
819 	rp->r_ds = fix_segreg(rp->r_ds, IS_NOT_CS, datamodel);
820 	rp->r_es = fix_segreg(rp->r_es, IS_NOT_CS, datamodel);
821 	rp->r_fs = fix_segreg(rp->r_fs, IS_NOT_CS, datamodel);
822 	rp->r_gs = fix_segreg(rp->r_gs, IS_NOT_CS, datamodel);
823 
824 #endif	/* __i386 */
825 }
826 
827 /*
828  * Determine whether eip is likely to have an interrupt frame
829  * on the stack.  We do this by comparing the address to the
830  * range of addresses spanned by several well-known routines.
831  */
832 extern void _interrupt();
833 extern void _allsyscalls();
834 extern void _cmntrap();
835 extern void fakesoftint();
836 
837 extern size_t _interrupt_size;
838 extern size_t _allsyscalls_size;
839 extern size_t _cmntrap_size;
840 extern size_t _fakesoftint_size;
841 
842 /*
843  * Get a pc-only stacktrace.  Used for kmem_alloc() buffer ownership tracking.
844  * Returns MIN(current stack depth, pcstack_limit).
845  */
846 int
847 getpcstack(pc_t *pcstack, int pcstack_limit)
848 {
849 	struct frame *fp = (struct frame *)getfp();
850 	struct frame *nextfp, *minfp, *stacktop;
851 	int depth = 0;
852 	int on_intr;
853 	uintptr_t pc;
854 
855 	if ((on_intr = CPU_ON_INTR(CPU)) != 0)
856 		stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME));
857 	else
858 		stacktop = (struct frame *)curthread->t_stk;
859 	minfp = fp;
860 
861 	pc = ((struct regs *)fp)->r_pc;
862 
863 	while (depth < pcstack_limit) {
864 		nextfp = (struct frame *)fp->fr_savfp;
865 		pc = fp->fr_savpc;
866 		if (nextfp <= minfp || nextfp >= stacktop) {
867 			if (on_intr) {
868 				/*
869 				 * Hop from interrupt stack to thread stack.
870 				 */
871 				stacktop = (struct frame *)curthread->t_stk;
872 				minfp = (struct frame *)curthread->t_stkbase;
873 				on_intr = 0;
874 				continue;
875 			}
876 			break;
877 		}
878 		pcstack[depth++] = (pc_t)pc;
879 		fp = nextfp;
880 		minfp = fp;
881 	}
882 	return (depth);
883 }
884 
885 /*
886  * The following ELF header fields are defined as processor-specific
887  * in the V8 ABI:
888  *
889  *	e_ident[EI_DATA]	encoding of the processor-specific
890  *				data in the object file
891  *	e_machine		processor identification
892  *	e_flags			processor-specific flags associated
893  *				with the file
894  */
895 
896 /*
897  * The value of at_flags reflects a platform's cpu module support.
898  * at_flags is used to check for allowing a binary to execute and
899  * is passed as the value of the AT_FLAGS auxiliary vector.
900  */
901 int at_flags = 0;
902 
903 /*
904  * Check the processor-specific fields of an ELF header.
905  *
906  * returns 1 if the fields are valid, 0 otherwise
907  */
908 /*ARGSUSED2*/
909 int
910 elfheadcheck(
911 	unsigned char e_data,
912 	Elf32_Half e_machine,
913 	Elf32_Word e_flags)
914 {
915 	if (e_data != ELFDATA2LSB)
916 		return (0);
917 #if defined(__amd64)
918 	if (e_machine == EM_AMD64)
919 		return (1);
920 #endif
921 	return (e_machine == EM_386);
922 }
923 
924 uint_t auxv_hwcap_include = 0;	/* patch to enable unrecognized features */
925 uint_t auxv_hwcap_exclude = 0;	/* patch for broken cpus, debugging */
926 #if defined(_SYSCALL32_IMPL)
927 uint_t auxv_hwcap32_include = 0;	/* ditto for 32-bit apps */
928 uint_t auxv_hwcap32_exclude = 0;	/* ditto for 32-bit apps */
929 #endif
930 
931 /*
932  * Gather information about the processor and place it into auxv_hwcap
933  * so that it can be exported to the linker via the aux vector.
934  *
935  * We use this seemingly complicated mechanism so that we can ensure
936  * that /etc/system can be used to override what the system can or
937  * cannot discover for itself.
938  */
939 void
940 bind_hwcap(void)
941 {
942 	uint_t cpu_hwcap_flags = cpuid_pass4(NULL);
943 
944 	auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags) &
945 	    ~auxv_hwcap_exclude;
946 
947 #if defined(__amd64)
948 	/*
949 	 * On AMD processors, sysenter just doesn't work at all
950 	 * when the kernel is in long mode.  On IA-32e processors
951 	 * it does, but there's no real point in all the alternate
952 	 * mechanism when syscall works on both.
953 	 *
954 	 * Besides, the kernel's sysenter handler is expecting a
955 	 * 32-bit lwp ...
956 	 */
957 	auxv_hwcap &= ~AV_386_SEP;
958 #else
959 	/*
960 	 * 32-bit processes can -always- use the lahf/sahf instructions
961 	 */
962 	auxv_hwcap |= AV_386_AHF;
963 #endif
964 
965 	if (auxv_hwcap_include || auxv_hwcap_exclude)
966 		cmn_err(CE_CONT, "?user ABI extensions: %b\n",
967 		    auxv_hwcap, FMT_AV_386);
968 
969 #if defined(_SYSCALL32_IMPL)
970 	auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags) &
971 	    ~auxv_hwcap32_exclude;
972 
973 #if defined(__amd64)
974 	/*
975 	 * If this is an amd64 architecture machine from Intel, then
976 	 * syscall -doesn't- work in compatibility mode, only sysenter does.
977 	 *
978 	 * Sigh.
979 	 */
980 	if (!cpuid_syscall32_insn(NULL))
981 		auxv_hwcap32 &= ~AV_386_AMD_SYSC;
982 
983 	/*
984 	 * 32-bit processes can -always- use the lahf/sahf instructions
985 	 */
986 	auxv_hwcap32 |= AV_386_AHF;
987 #endif
988 
989 	if (auxv_hwcap32_include || auxv_hwcap32_exclude)
990 		cmn_err(CE_CONT, "?32-bit user ABI extensions: %b\n",
991 		    auxv_hwcap32, FMT_AV_386);
992 #endif
993 }
994 
995 /*
996  *	sync_icache() - this is called
997  *	in proc/fs/prusrio.c. x86 has an unified cache and therefore
998  *	this is a nop.
999  */
1000 /* ARGSUSED */
1001 void
1002 sync_icache(caddr_t addr, uint_t len)
1003 {
1004 	/* Do nothing for now */
1005 }
1006 
1007 /*ARGSUSED*/
1008 void
1009 sync_data_memory(caddr_t va, size_t len)
1010 {
1011 	/* Not implemented for this platform */
1012 }
1013 
1014 int
1015 __ipltospl(int ipl)
1016 {
1017 	return (ipltospl(ipl));
1018 }
1019 
1020 /*
1021  * The panic code invokes panic_saveregs() to record the contents of a
1022  * regs structure into the specified panic_data structure for debuggers.
1023  */
1024 void
1025 panic_saveregs(panic_data_t *pdp, struct regs *rp)
1026 {
1027 	panic_nv_t *pnv = PANICNVGET(pdp);
1028 
1029 	struct cregs	creg;
1030 
1031 	getcregs(&creg);
1032 
1033 #if defined(__amd64)
1034 	PANICNVADD(pnv, "rdi", rp->r_rdi);
1035 	PANICNVADD(pnv, "rsi", rp->r_rsi);
1036 	PANICNVADD(pnv, "rdx", rp->r_rdx);
1037 	PANICNVADD(pnv, "rcx", rp->r_rcx);
1038 	PANICNVADD(pnv, "r8", rp->r_r8);
1039 	PANICNVADD(pnv, "r9", rp->r_r9);
1040 	PANICNVADD(pnv, "rax", rp->r_rax);
1041 	PANICNVADD(pnv, "rbx", rp->r_rbx);
1042 	PANICNVADD(pnv, "rbp", rp->r_rbp);
1043 	PANICNVADD(pnv, "r10", rp->r_r10);
1044 	PANICNVADD(pnv, "r10", rp->r_r10);
1045 	PANICNVADD(pnv, "r11", rp->r_r11);
1046 	PANICNVADD(pnv, "r12", rp->r_r12);
1047 	PANICNVADD(pnv, "r13", rp->r_r13);
1048 	PANICNVADD(pnv, "r14", rp->r_r14);
1049 	PANICNVADD(pnv, "r15", rp->r_r15);
1050 	PANICNVADD(pnv, "fsbase", rdmsr(MSR_AMD_FSBASE));
1051 	PANICNVADD(pnv, "gsbase", rdmsr(MSR_AMD_GSBASE));
1052 	PANICNVADD(pnv, "ds", rp->r_ds);
1053 	PANICNVADD(pnv, "es", rp->r_es);
1054 	PANICNVADD(pnv, "fs", rp->r_fs);
1055 	PANICNVADD(pnv, "gs", rp->r_gs);
1056 	PANICNVADD(pnv, "trapno", rp->r_trapno);
1057 	PANICNVADD(pnv, "err", rp->r_err);
1058 	PANICNVADD(pnv, "rip", rp->r_rip);
1059 	PANICNVADD(pnv, "cs", rp->r_cs);
1060 	PANICNVADD(pnv, "rflags", rp->r_rfl);
1061 	PANICNVADD(pnv, "rsp", rp->r_rsp);
1062 	PANICNVADD(pnv, "ss", rp->r_ss);
1063 	PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3]));
1064 	PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0]));
1065 	PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3]));
1066 	PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0]));
1067 #elif defined(__i386)
1068 	PANICNVADD(pnv, "gs", (uint32_t)rp->r_gs);
1069 	PANICNVADD(pnv, "fs", (uint32_t)rp->r_fs);
1070 	PANICNVADD(pnv, "es", (uint32_t)rp->r_es);
1071 	PANICNVADD(pnv, "ds", (uint32_t)rp->r_ds);
1072 	PANICNVADD(pnv, "edi", (uint32_t)rp->r_edi);
1073 	PANICNVADD(pnv, "esi", (uint32_t)rp->r_esi);
1074 	PANICNVADD(pnv, "ebp", (uint32_t)rp->r_ebp);
1075 	PANICNVADD(pnv, "esp", (uint32_t)rp->r_esp);
1076 	PANICNVADD(pnv, "ebx", (uint32_t)rp->r_ebx);
1077 	PANICNVADD(pnv, "edx", (uint32_t)rp->r_edx);
1078 	PANICNVADD(pnv, "ecx", (uint32_t)rp->r_ecx);
1079 	PANICNVADD(pnv, "eax", (uint32_t)rp->r_eax);
1080 	PANICNVADD(pnv, "trapno", (uint32_t)rp->r_trapno);
1081 	PANICNVADD(pnv, "err", (uint32_t)rp->r_err);
1082 	PANICNVADD(pnv, "eip", (uint32_t)rp->r_eip);
1083 	PANICNVADD(pnv, "cs", (uint32_t)rp->r_cs);
1084 	PANICNVADD(pnv, "eflags", (uint32_t)rp->r_efl);
1085 	PANICNVADD(pnv, "uesp", (uint32_t)rp->r_uesp);
1086 	PANICNVADD(pnv, "ss", (uint32_t)rp->r_ss);
1087 	PANICNVADD(pnv, "gdt", creg.cr_gdt);
1088 	PANICNVADD(pnv, "idt", creg.cr_idt);
1089 #endif	/* __i386 */
1090 
1091 	PANICNVADD(pnv, "ldt", creg.cr_ldt);
1092 	PANICNVADD(pnv, "task", creg.cr_task);
1093 	PANICNVADD(pnv, "cr0", creg.cr_cr0);
1094 	PANICNVADD(pnv, "cr2", creg.cr_cr2);
1095 	PANICNVADD(pnv, "cr3", creg.cr_cr3);
1096 	if (creg.cr_cr4)
1097 		PANICNVADD(pnv, "cr4", creg.cr_cr4);
1098 
1099 	PANICNVSET(pdp, pnv);
1100 }
1101 
1102 #define	TR_ARG_MAX 6	/* Max args to print, same as SPARC */
1103 
1104 #if !defined(__amd64)
1105 
1106 /*
1107  * Given a return address (%eip), determine the likely number of arguments
1108  * that were pushed on the stack prior to its execution.  We do this by
1109  * expecting that a typical call sequence consists of pushing arguments on
1110  * the stack, executing a call instruction, and then performing an add
1111  * on %esp to restore it to the value prior to pushing the arguments for
1112  * the call.  We attempt to detect such an add, and divide the addend
1113  * by the size of a word to determine the number of pushed arguments.
1114  *
1115  * If we do not find such an add, we punt and return TR_ARG_MAX. It is not
1116  * possible to reliably determine if a function took no arguments (i.e. was
1117  * void) because assembler routines do not reliably perform an add on %esp
1118  * immediately upon returning (eg. _sys_call()), so returning TR_ARG_MAX is
1119  * safer than returning 0.
1120  */
1121 static ulong_t
1122 argcount(uintptr_t eip)
1123 {
1124 	const uint8_t *ins = (const uint8_t *)eip;
1125 	ulong_t n;
1126 
1127 	enum {
1128 		M_MODRM_ESP = 0xc4,	/* Mod/RM byte indicates %esp */
1129 		M_ADD_IMM32 = 0x81,	/* ADD imm32 to r/m32 */
1130 		M_ADD_IMM8  = 0x83	/* ADD imm8 to r/m32 */
1131 	};
1132 
1133 	if (eip < KERNELBASE || ins[1] != M_MODRM_ESP)
1134 		return (TR_ARG_MAX);
1135 
1136 	switch (ins[0]) {
1137 	case M_ADD_IMM32:
1138 		n = ins[2] + (ins[3] << 8) + (ins[4] << 16) + (ins[5] << 24);
1139 		break;
1140 
1141 	case M_ADD_IMM8:
1142 		n = ins[2];
1143 		break;
1144 
1145 	default:
1146 		return (TR_ARG_MAX);
1147 	}
1148 
1149 	n /= sizeof (long);
1150 	return (MIN(n, TR_ARG_MAX));
1151 }
1152 
1153 #endif	/* !__amd64 */
1154 
1155 /*
1156  * Print a stack backtrace using the specified frame pointer.  We delay two
1157  * seconds before continuing, unless this is the panic traceback.
1158  * If we are in the process of panicking, we also attempt to write the
1159  * stack backtrace to a staticly assigned buffer, to allow the panic
1160  * code to find it and write it in to uncompressed pages within the
1161  * system crash dump.
1162  * Note that the frame for the starting stack pointer value is omitted because
1163  * the corresponding %eip is not known.
1164  */
1165 
1166 extern char *dump_stack_scratch;
1167 
1168 #if defined(__amd64)
1169 
1170 void
1171 traceback(caddr_t fpreg)
1172 {
1173 	struct frame	*fp = (struct frame *)fpreg;
1174 	struct frame	*nextfp;
1175 	uintptr_t	pc, nextpc;
1176 	ulong_t		off;
1177 	char		args[TR_ARG_MAX * 2 + 16], *sym;
1178 	uint_t	  offset = 0;
1179 	uint_t	  next_offset = 0;
1180 	char	    stack_buffer[1024];
1181 
1182 	if (!panicstr)
1183 		printf("traceback: %%fp = %p\n", (void *)fp);
1184 
1185 	if (panicstr && !dump_stack_scratch) {
1186 		printf("Warning - stack not written to the dump buffer\n");
1187 	}
1188 
1189 	fp = (struct frame *)plat_traceback(fpreg);
1190 	if ((uintptr_t)fp < KERNELBASE)
1191 		goto out;
1192 
1193 	pc = fp->fr_savpc;
1194 	fp = (struct frame *)fp->fr_savfp;
1195 
1196 	while ((uintptr_t)fp >= KERNELBASE) {
1197 		/*
1198 		 * XX64 Until port is complete tolerate 8-byte aligned
1199 		 * frame pointers but flag with a warning so they can
1200 		 * be fixed.
1201 		 */
1202 		if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) {
1203 			if (((uintptr_t)fp & (8 - 1)) == 0) {
1204 				printf("  >> warning! 8-byte"
1205 				    " aligned %%fp = %p\n", (void *)fp);
1206 			} else {
1207 				printf(
1208 				    "  >> mis-aligned %%fp = %p\n", (void *)fp);
1209 				break;
1210 			}
1211 		}
1212 
1213 		args[0] = '\0';
1214 		nextpc = (uintptr_t)fp->fr_savpc;
1215 		nextfp = (struct frame *)fp->fr_savfp;
1216 		if ((sym = kobj_getsymname(pc, &off)) != NULL) {
1217 			printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
1218 			    mod_containing_pc((caddr_t)pc), sym, off, args);
1219 			(void) snprintf(stack_buffer, sizeof (stack_buffer),
1220 			    "%s:%s+%lx (%s) | ",
1221 			    mod_containing_pc((caddr_t)pc), sym, off, args);
1222 		} else {
1223 			printf("%016lx %lx (%s)\n",
1224 			    (uintptr_t)fp, pc, args);
1225 			(void) snprintf(stack_buffer, sizeof (stack_buffer),
1226 			    "%lx (%s) | ", pc, args);
1227 		}
1228 
1229 		if (panicstr && dump_stack_scratch) {
1230 			next_offset = offset + strlen(stack_buffer);
1231 			if (next_offset < STACK_BUF_SIZE) {
1232 				bcopy(stack_buffer, dump_stack_scratch + offset,
1233 				    strlen(stack_buffer));
1234 				offset = next_offset;
1235 			} else {
1236 				/*
1237 				 * In attempting to save the panic stack
1238 				 * to the dumpbuf we have overflowed that area.
1239 				 * Print a warning and continue to printf the
1240 				 * stack to the msgbuf
1241 				 */
1242 				printf("Warning: stack in the dump buffer"
1243 				    " may be incomplete\n");
1244 				offset = next_offset;
1245 			}
1246 		}
1247 
1248 		pc = nextpc;
1249 		fp = nextfp;
1250 	}
1251 out:
1252 	if (!panicstr) {
1253 		printf("end of traceback\n");
1254 		DELAY(2 * MICROSEC);
1255 	} else if (dump_stack_scratch) {
1256 		dump_stack_scratch[offset] = '\0';
1257 	}
1258 }
1259 
1260 #elif defined(__i386)
1261 
1262 void
1263 traceback(caddr_t fpreg)
1264 {
1265 	struct frame *fp = (struct frame *)fpreg;
1266 	struct frame *nextfp, *minfp, *stacktop;
1267 	uintptr_t pc, nextpc;
1268 	uint_t	  offset = 0;
1269 	uint_t	  next_offset = 0;
1270 	char	    stack_buffer[1024];
1271 
1272 	cpu_t *cpu;
1273 
1274 	/*
1275 	 * args[] holds TR_ARG_MAX hex long args, plus ", " or '\0'.
1276 	 */
1277 	char args[TR_ARG_MAX * 2 + 8], *p;
1278 
1279 	int on_intr;
1280 	ulong_t off;
1281 	char *sym;
1282 
1283 	if (!panicstr)
1284 		printf("traceback: %%fp = %p\n", (void *)fp);
1285 
1286 	if (panicstr && !dump_stack_scratch) {
1287 		printf("Warning - stack not written to the dumpbuf\n");
1288 	}
1289 
1290 	/*
1291 	 * If we are panicking, all high-level interrupt information in
1292 	 * CPU was overwritten.  panic_cpu has the correct values.
1293 	 */
1294 	kpreempt_disable();			/* prevent migration */
1295 
1296 	cpu = (panicstr && CPU->cpu_id == panic_cpu.cpu_id)? &panic_cpu : CPU;
1297 
1298 	if ((on_intr = CPU_ON_INTR(cpu)) != 0)
1299 		stacktop = (struct frame *)(cpu->cpu_intr_stack + SA(MINFRAME));
1300 	else
1301 		stacktop = (struct frame *)curthread->t_stk;
1302 
1303 	kpreempt_enable();
1304 
1305 	fp = (struct frame *)plat_traceback(fpreg);
1306 	if ((uintptr_t)fp < KERNELBASE)
1307 		goto out;
1308 
1309 	minfp = fp;	/* Baseline minimum frame pointer */
1310 	pc = fp->fr_savpc;
1311 	fp = (struct frame *)fp->fr_savfp;
1312 
1313 	while ((uintptr_t)fp >= KERNELBASE) {
1314 		ulong_t argc;
1315 		long *argv;
1316 
1317 		if (fp <= minfp || fp >= stacktop) {
1318 			if (on_intr) {
1319 				/*
1320 				 * Hop from interrupt stack to thread stack.
1321 				 */
1322 				stacktop = (struct frame *)curthread->t_stk;
1323 				minfp = (struct frame *)curthread->t_stkbase;
1324 				on_intr = 0;
1325 				continue;
1326 			}
1327 			break; /* we're outside of the expected range */
1328 		}
1329 
1330 		if ((uintptr_t)fp & (STACK_ALIGN - 1)) {
1331 			printf("  >> mis-aligned %%fp = %p\n", (void *)fp);
1332 			break;
1333 		}
1334 
1335 		nextpc = fp->fr_savpc;
1336 		nextfp = (struct frame *)fp->fr_savfp;
1337 		argc = argcount(nextpc);
1338 		argv = (long *)((char *)fp + sizeof (struct frame));
1339 
1340 		args[0] = '\0';
1341 		p = args;
1342 		while (argc-- > 0 && argv < (long *)stacktop) {
1343 			p += snprintf(p, args + sizeof (args) - p,
1344 			    "%s%lx", (p == args) ? "" : ", ", *argv++);
1345 		}
1346 
1347 		if ((sym = kobj_getsymname(pc, &off)) != NULL) {
1348 			printf("%08lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
1349 			    mod_containing_pc((caddr_t)pc), sym, off, args);
1350 			(void) snprintf(stack_buffer, sizeof (stack_buffer),
1351 			    "%s:%s+%lx (%s) | ",
1352 			    mod_containing_pc((caddr_t)pc), sym, off, args);
1353 
1354 		} else {
1355 			printf("%08lx %lx (%s)\n",
1356 			    (uintptr_t)fp, pc, args);
1357 			(void) snprintf(stack_buffer, sizeof (stack_buffer),
1358 			    "%lx (%s) | ", pc, args);
1359 
1360 		}
1361 
1362 		if (panicstr && dump_stack_scratch) {
1363 			next_offset = offset + strlen(stack_buffer);
1364 			if (next_offset < STACK_BUF_SIZE) {
1365 				bcopy(stack_buffer, dump_stack_scratch + offset,
1366 				    strlen(stack_buffer));
1367 				offset = next_offset;
1368 			} else {
1369 				/*
1370 				 * In attempting to save the panic stack
1371 				 * to the dumpbuf we have overflowed that area.
1372 				 * Print a warning and continue to printf the
1373 				 * stack to the msgbuf
1374 				 */
1375 				printf("Warning: stack in the dumpbuf"
1376 				    " may be incomplete\n");
1377 				offset = next_offset;
1378 			}
1379 		}
1380 
1381 		minfp = fp;
1382 		pc = nextpc;
1383 		fp = nextfp;
1384 	}
1385 out:
1386 	if (!panicstr) {
1387 		printf("end of traceback\n");
1388 		DELAY(2 * MICROSEC);
1389 	} else if (dump_stack_scratch) {
1390 		dump_stack_scratch[offset] = '\0';
1391 	}
1392 
1393 }
1394 
1395 #endif	/* __i386 */
1396 
1397 /*
1398  * Generate a stack backtrace from a saved register set.
1399  */
1400 void
1401 traceregs(struct regs *rp)
1402 {
1403 	traceback((caddr_t)rp->r_fp);
1404 }
1405 
1406 void
1407 exec_set_sp(size_t stksize)
1408 {
1409 	klwp_t *lwp = ttolwp(curthread);
1410 
1411 	lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize;
1412 }
1413 
1414 hrtime_t
1415 gethrtime_waitfree(void)
1416 {
1417 	return (dtrace_gethrtime());
1418 }
1419 
1420 hrtime_t
1421 gethrtime(void)
1422 {
1423 	return (gethrtimef());
1424 }
1425 
1426 hrtime_t
1427 gethrtime_unscaled(void)
1428 {
1429 	return (gethrtimeunscaledf());
1430 }
1431 
1432 void
1433 scalehrtime(hrtime_t *hrt)
1434 {
1435 	scalehrtimef(hrt);
1436 }
1437 
1438 uint64_t
1439 unscalehrtime(hrtime_t nsecs)
1440 {
1441 	return (unscalehrtimef(nsecs));
1442 }
1443 
1444 void
1445 gethrestime(timespec_t *tp)
1446 {
1447 	gethrestimef(tp);
1448 }
1449 
1450 #if defined(__amd64)
1451 /*
1452  * Part of the implementation of hres_tick(); this routine is
1453  * easier in C than assembler .. called with the hres_lock held.
1454  *
1455  * XX64	Many of these timekeeping variables need to be extern'ed in a header
1456  */
1457 
1458 #include <sys/time.h>
1459 #include <sys/machlock.h>
1460 
1461 extern int one_sec;
1462 extern int max_hres_adj;
1463 
1464 void
1465 __adj_hrestime(void)
1466 {
1467 	long long adj;
1468 
1469 	if (hrestime_adj == 0)
1470 		adj = 0;
1471 	else if (hrestime_adj > 0) {
1472 		if (hrestime_adj < max_hres_adj)
1473 			adj = hrestime_adj;
1474 		else
1475 			adj = max_hres_adj;
1476 	} else {
1477 		if (hrestime_adj < -max_hres_adj)
1478 			adj = -max_hres_adj;
1479 		else
1480 			adj = hrestime_adj;
1481 	}
1482 
1483 	timedelta -= adj;
1484 	hrestime_adj = timedelta;
1485 	hrestime.tv_nsec += adj;
1486 
1487 	while (hrestime.tv_nsec >= NANOSEC) {
1488 		one_sec++;
1489 		hrestime.tv_sec++;
1490 		hrestime.tv_nsec -= NANOSEC;
1491 	}
1492 }
1493 #endif
1494 
1495 /*
1496  * Wrapper functions to maintain backwards compability
1497  */
1498 int
1499 xcopyin(const void *uaddr, void *kaddr, size_t count)
1500 {
1501 	return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED));
1502 }
1503 
1504 int
1505 xcopyout(const void *kaddr, void *uaddr, size_t count)
1506 {
1507 	return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED));
1508 }
1509