xref: /titanic_50/usr/src/uts/intel/ia32/ml/i86_subr.s (revision afefbcddfd8caf5f3b2da510d9439471ab225040)
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License").  You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22/*
23 * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*
28 *  Copyright (c) 1990, 1991 UNIX System Laboratories, Inc.
29 *  Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T
30 *    All Rights Reserved
31 */
32
33#pragma ident	"%Z%%M%	%I%	%E% SMI"
34
35/*
36 * General assembly language routines.
37 * It is the intent of this file to contain routines that are
38 * independent of the specific kernel architecture, and those that are
39 * common across kernel architectures.
40 * As architectures diverge, and implementations of specific
41 * architecture-dependent routines change, the routines should be moved
42 * from this file into the respective ../`arch -k`/subr.s file.
43 */
44
45#include <sys/asm_linkage.h>
46#include <sys/asm_misc.h>
47#include <sys/panic.h>
48#include <sys/ontrap.h>
49#include <sys/regset.h>
50#include <sys/privregs.h>
51#include <sys/reboot.h>
52#include <sys/psw.h>
53#include <sys/x86_archext.h>
54
55#if defined(__lint)
56#include <sys/types.h>
57#include <sys/systm.h>
58#include <sys/thread.h>
59#include <sys/archsystm.h>
60#include <sys/byteorder.h>
61#include <sys/dtrace.h>
62#else	/* __lint */
63#include "assym.h"
64#endif	/* __lint */
65#include <sys/dditypes.h>
66
67/*
68 * on_fault()
69 * Catch lofault faults. Like setjmp except it returns one
70 * if code following causes uncorrectable fault. Turned off
71 * by calling no_fault().
72 */
73
74#if defined(__lint)
75
76/* ARGSUSED */
77int
78on_fault(label_t *ljb)
79{ return (0); }
80
81void
82no_fault(void)
83{}
84
85#else	/* __lint */
86
87#if defined(__amd64)
88
89	ENTRY(on_fault)
90	movq	%gs:CPU_THREAD, %rsi
91	leaq	catch_fault(%rip), %rdx
92	movq	%rdi, T_ONFAULT(%rsi)		/* jumpbuf in t_onfault */
93	movq	%rdx, T_LOFAULT(%rsi)		/* catch_fault in t_lofault */
94	jmp	setjmp				/* let setjmp do the rest */
95
96catch_fault:
97	movq	%gs:CPU_THREAD, %rsi
98	movq	T_ONFAULT(%rsi), %rdi		/* address of save area */
99	xorl	%eax, %eax
100	movq	%rax, T_ONFAULT(%rsi)		/* turn off onfault */
101	movq	%rax, T_LOFAULT(%rsi)		/* turn off lofault */
102	jmp	longjmp				/* let longjmp do the rest */
103	SET_SIZE(on_fault)
104
105	ENTRY(no_fault)
106	movq	%gs:CPU_THREAD, %rsi
107	xorl	%eax, %eax
108	movq	%rax, T_ONFAULT(%rsi)		/* turn off onfault */
109	movq	%rax, T_LOFAULT(%rsi)		/* turn off lofault */
110	ret
111	SET_SIZE(no_fault)
112
113#elif defined(__i386)
114
115	ENTRY(on_fault)
116	movl	%gs:CPU_THREAD, %edx
117	movl	4(%esp), %eax			/* jumpbuf address */
118	leal	catch_fault, %ecx
119	movl	%eax, T_ONFAULT(%edx)		/* jumpbuf in t_onfault */
120	movl	%ecx, T_LOFAULT(%edx)		/* catch_fault in t_lofault */
121	jmp	setjmp				/* let setjmp do the rest */
122
123catch_fault:
124	movl	%gs:CPU_THREAD, %edx
125	xorl	%eax, %eax
126	movl	T_ONFAULT(%edx), %ecx		/* address of save area */
127	movl	%eax, T_ONFAULT(%edx)		/* turn off onfault */
128	movl	%eax, T_LOFAULT(%edx)		/* turn off lofault */
129	pushl	%ecx
130	call	longjmp				/* let longjmp do the rest */
131	SET_SIZE(on_fault)
132
133	ENTRY(no_fault)
134	movl	%gs:CPU_THREAD, %edx
135	xorl	%eax, %eax
136	movl	%eax, T_ONFAULT(%edx)		/* turn off onfault */
137	movl	%eax, T_LOFAULT(%edx)		/* turn off lofault */
138	ret
139	SET_SIZE(no_fault)
140
141#endif	/* __i386 */
142#endif	/* __lint */
143
144/*
145 * Default trampoline code for on_trap() (see <sys/ontrap.h>).  We just
146 * do a longjmp(&curthread->t_ontrap->ot_jmpbuf) if this is ever called.
147 */
148
149#if defined(lint)
150
151void
152on_trap_trampoline(void)
153{}
154
155#else	/* __lint */
156
157#if defined(__amd64)
158
159	ENTRY(on_trap_trampoline)
160	movq	%gs:CPU_THREAD, %rsi
161	movq	T_ONTRAP(%rsi), %rdi
162	addq	$OT_JMPBUF, %rdi
163	jmp	longjmp
164	SET_SIZE(on_trap_trampoline)
165
166#elif defined(__i386)
167
168	ENTRY(on_trap_trampoline)
169	movl	%gs:CPU_THREAD, %eax
170	movl	T_ONTRAP(%eax), %eax
171	addl	$OT_JMPBUF, %eax
172	pushl	%eax
173	call	longjmp
174	SET_SIZE(on_trap_trampoline)
175
176#endif	/* __i386 */
177#endif	/* __lint */
178
179/*
180 * Push a new element on to the t_ontrap stack.  Refer to <sys/ontrap.h> for
181 * more information about the on_trap() mechanism.  If the on_trap_data is the
182 * same as the topmost stack element, we just modify that element.
183 */
184#if defined(lint)
185
186/*ARGSUSED*/
187int
188on_trap(on_trap_data_t *otp, uint_t prot)
189{ return (0); }
190
191#else	/* __lint */
192
193#if defined(__amd64)
194
195	ENTRY(on_trap)
196	movw	%si, OT_PROT(%rdi)		/* ot_prot = prot */
197	movw	$0, OT_TRAP(%rdi)		/* ot_trap = 0 */
198	leaq	on_trap_trampoline(%rip), %rdx	/* rdx = &on_trap_trampoline */
199	movq	%rdx, OT_TRAMPOLINE(%rdi)	/* ot_trampoline = rdx */
200	xorl	%ecx, %ecx
201	movq	%rcx, OT_HANDLE(%rdi)		/* ot_handle = NULL */
202	movq	%rcx, OT_PAD1(%rdi)		/* ot_pad1 = NULL */
203	movq	%gs:CPU_THREAD, %rdx		/* rdx = curthread */
204	movq	T_ONTRAP(%rdx), %rcx		/* rcx = curthread->t_ontrap */
205	cmpq	%rdi, %rcx			/* if (otp == %rcx)	*/
206	je	0f				/*	don't modify t_ontrap */
207
208	movq	%rcx, OT_PREV(%rdi)		/* ot_prev = t_ontrap */
209	movq	%rdi, T_ONTRAP(%rdx)		/* curthread->t_ontrap = otp */
210
2110:	addq	$OT_JMPBUF, %rdi		/* &ot_jmpbuf */
212	jmp	setjmp
213	SET_SIZE(on_trap)
214
215#elif defined(__i386)
216
217	ENTRY(on_trap)
218	movl	4(%esp), %eax			/* %eax = otp */
219	movl	8(%esp), %edx			/* %edx = prot */
220
221	movw	%dx, OT_PROT(%eax)		/* ot_prot = prot */
222	movw	$0, OT_TRAP(%eax)		/* ot_trap = 0 */
223	leal	on_trap_trampoline, %edx	/* %edx = &on_trap_trampoline */
224	movl	%edx, OT_TRAMPOLINE(%eax)	/* ot_trampoline = %edx */
225	movl	$0, OT_HANDLE(%eax)		/* ot_handle = NULL */
226	movl	$0, OT_PAD1(%eax)		/* ot_pad1 = NULL */
227	movl	%gs:CPU_THREAD, %edx		/* %edx = curthread */
228	movl	T_ONTRAP(%edx), %ecx		/* %ecx = curthread->t_ontrap */
229	cmpl	%eax, %ecx			/* if (otp == %ecx) */
230	je	0f				/*    don't modify t_ontrap */
231
232	movl	%ecx, OT_PREV(%eax)		/* ot_prev = t_ontrap */
233	movl	%eax, T_ONTRAP(%edx)		/* curthread->t_ontrap = otp */
234
2350:	addl	$OT_JMPBUF, %eax		/* %eax = &ot_jmpbuf */
236	movl	%eax, 4(%esp)			/* put %eax back on the stack */
237	jmp	setjmp				/* let setjmp do the rest */
238	SET_SIZE(on_trap)
239
240#endif	/* __i386 */
241#endif	/* __lint */
242
243/*
244 * Setjmp and longjmp implement non-local gotos using state vectors
245 * type label_t.
246 */
247
248#if defined(__lint)
249
250/* ARGSUSED */
251int
252setjmp(label_t *lp)
253{ return (0); }
254
255/* ARGSUSED */
256void
257longjmp(label_t *lp)
258{}
259
260#else	/* __lint */
261
262#if LABEL_PC != 0
263#error LABEL_PC MUST be defined as 0 for setjmp/longjmp to work as coded
264#endif	/* LABEL_PC != 0 */
265
266#if defined(__amd64)
267
268	ENTRY(setjmp)
269	movq	%rsp, LABEL_SP(%rdi)
270	movq	%rbp, LABEL_RBP(%rdi)
271	movq	%rbx, LABEL_RBX(%rdi)
272	movq	%r12, LABEL_R12(%rdi)
273	movq	%r13, LABEL_R13(%rdi)
274	movq	%r14, LABEL_R14(%rdi)
275	movq	%r15, LABEL_R15(%rdi)
276	movq	(%rsp), %rdx		/* return address */
277	movq	%rdx, (%rdi)		/* LABEL_PC is 0 */
278	xorl	%eax, %eax		/* return 0 */
279	ret
280	SET_SIZE(setjmp)
281
282	ENTRY(longjmp)
283	movq	LABEL_SP(%rdi), %rsp
284	movq	LABEL_RBP(%rdi), %rbp
285	movq	LABEL_RBX(%rdi), %rbx
286	movq	LABEL_R12(%rdi), %r12
287	movq	LABEL_R13(%rdi), %r13
288	movq	LABEL_R14(%rdi), %r14
289	movq	LABEL_R15(%rdi), %r15
290	movq	(%rdi), %rdx		/* return address; LABEL_PC is 0 */
291	movq	%rdx, (%rsp)
292	xorl	%eax, %eax
293	incl	%eax			/* return 1 */
294	ret
295	SET_SIZE(longjmp)
296
297#elif defined(__i386)
298
299	ENTRY(setjmp)
300	movl	4(%esp), %edx		/* address of save area */
301	movl	%ebp, LABEL_EBP(%edx)
302	movl	%ebx, LABEL_EBX(%edx)
303	movl	%esi, LABEL_ESI(%edx)
304	movl	%edi, LABEL_EDI(%edx)
305	movl	%esp, 4(%edx)
306	movl	(%esp), %ecx		/* %eip (return address) */
307	movl	%ecx, (%edx)		/* LABEL_PC is 0 */
308	subl	%eax, %eax		/* return 0 */
309	ret
310	SET_SIZE(setjmp)
311
312	ENTRY(longjmp)
313	movl	4(%esp), %edx		/* address of save area */
314	movl	LABEL_EBP(%edx), %ebp
315	movl	LABEL_EBX(%edx), %ebx
316	movl	LABEL_ESI(%edx), %esi
317	movl	LABEL_EDI(%edx), %edi
318	movl	4(%edx), %esp
319	movl	(%edx), %ecx		/* %eip (return addr); LABEL_PC is 0 */
320	movl	$1, %eax
321	addl	$4, %esp		/* pop ret adr */
322	jmp	*%ecx			/* indirect */
323	SET_SIZE(longjmp)
324
325#endif	/* __i386 */
326#endif	/* __lint */
327
328/*
329 * if a() calls b() calls caller(),
330 * caller() returns return address in a().
331 * (Note: We assume a() and b() are C routines which do the normal entry/exit
332 *  sequence.)
333 */
334
335#if defined(__lint)
336
337caddr_t
338caller(void)
339{ return (0); }
340
341#else	/* __lint */
342
343#if defined(__amd64)
344
345	ENTRY(caller)
346	movq	8(%rbp), %rax		/* b()'s return pc, in a() */
347	ret
348	SET_SIZE(caller)
349
350#elif defined(__i386)
351
352	ENTRY(caller)
353	movl	4(%ebp), %eax		/* b()'s return pc, in a() */
354	ret
355	SET_SIZE(caller)
356
357#endif	/* __i386 */
358#endif	/* __lint */
359
360/*
361 * if a() calls callee(), callee() returns the
362 * return address in a();
363 */
364
365#if defined(__lint)
366
367caddr_t
368callee(void)
369{ return (0); }
370
371#else	/* __lint */
372
373#if defined(__amd64)
374
375	ENTRY(callee)
376	movq	(%rsp), %rax		/* callee()'s return pc, in a() */
377	ret
378	SET_SIZE(callee)
379
380#elif defined(__i386)
381
382	ENTRY(callee)
383	movl	(%esp), %eax		/* callee()'s return pc, in a() */
384	ret
385	SET_SIZE(callee)
386
387#endif	/* __i386 */
388#endif	/* __lint */
389
390/*
391 * return the current frame pointer
392 */
393
394#if defined(__lint)
395
396greg_t
397getfp(void)
398{ return (0); }
399
400#else	/* __lint */
401
402#if defined(__amd64)
403
404	ENTRY(getfp)
405	movq	%rbp, %rax
406	ret
407	SET_SIZE(getfp)
408
409#elif defined(__i386)
410
411	ENTRY(getfp)
412	movl	%ebp, %eax
413	ret
414	SET_SIZE(getfp)
415
416#endif	/* __i386 */
417#endif	/* __lint */
418
419/*
420 * Invalidate a single page table entry in the TLB
421 */
422
423#if defined(__lint)
424
425/* ARGSUSED */
426void
427mmu_tlbflush_entry(caddr_t m)
428{}
429
430#else	/* __lint */
431
432#if defined(__amd64)
433
434	ENTRY(mmu_tlbflush_entry)
435	invlpg	(%rdi)
436	ret
437	SET_SIZE(mmu_tlbflush_entry)
438
439#elif defined(__i386)
440
441	ENTRY(mmu_tlbflush_entry)
442	movl	4(%esp), %eax
443	invlpg	(%eax)
444	ret
445	SET_SIZE(mmu_tlbflush_entry)
446
447#endif	/* __i386 */
448#endif	/* __lint */
449
450
451/*
452 * Get/Set the value of various control registers
453 */
454
455#if defined(__lint)
456
457ulong_t
458getcr0(void)
459{ return (0); }
460
461/* ARGSUSED */
462void
463setcr0(ulong_t value)
464{}
465
466ulong_t
467getcr2(void)
468{ return (0); }
469
470ulong_t
471getcr3(void)
472{ return (0); }
473
474/* ARGSUSED */
475void
476setcr3(ulong_t val)
477{}
478
479void
480reload_cr3(void)
481{}
482
483ulong_t
484getcr4(void)
485{ return (0); }
486
487/* ARGSUSED */
488void
489setcr4(ulong_t val)
490{}
491
492#if defined(__amd64)
493
494ulong_t
495getcr8(void)
496{ return (0); }
497
498/* ARGSUSED */
499void
500setcr8(ulong_t val)
501{}
502
503#endif	/* __amd64 */
504
505#else	/* __lint */
506
507#if defined(__amd64)
508
509	ENTRY(getcr0)
510	movq	%cr0, %rax
511	ret
512	SET_SIZE(getcr0)
513
514	ENTRY(setcr0)
515	movq	%rdi, %cr0
516	ret
517	SET_SIZE(setcr0)
518
519	ENTRY(getcr2)
520	movq	%cr2, %rax
521	ret
522	SET_SIZE(getcr2)
523
524	ENTRY(getcr3)
525	movq	%cr3, %rax
526	ret
527	SET_SIZE(getcr3)
528
529	ENTRY(setcr3)
530	movq	%rdi, %cr3
531	ret
532	SET_SIZE(setcr3)
533
534	ENTRY(reload_cr3)
535	movq	%cr3, %rdi
536	movq	%rdi, %cr3
537	ret
538	SET_SIZE(reload_cr3)
539
540	ENTRY(getcr4)
541	movq	%cr4, %rax
542	ret
543	SET_SIZE(getcr4)
544
545	ENTRY(setcr4)
546	movq	%rdi, %cr4
547	ret
548	SET_SIZE(setcr4)
549
550	ENTRY(getcr8)
551	movq	%cr8, %rax
552	ret
553	SET_SIZE(getcr8)
554
555	ENTRY(setcr8)
556	movq	%rdi, %cr8
557	ret
558	SET_SIZE(setcr8)
559
560#elif defined(__i386)
561
562        ENTRY(getcr0)
563        movl    %cr0, %eax
564        ret
565	SET_SIZE(getcr0)
566
567        ENTRY(setcr0)
568        movl    4(%esp), %eax
569        movl    %eax, %cr0
570        ret
571	SET_SIZE(setcr0)
572
573        ENTRY(getcr2)
574        movl    %cr2, %eax
575        ret
576	SET_SIZE(getcr2)
577
578	ENTRY(getcr3)
579	movl    %cr3, %eax
580	ret
581	SET_SIZE(getcr3)
582
583        ENTRY(setcr3)
584        movl    4(%esp), %eax
585        movl    %eax, %cr3
586        ret
587	SET_SIZE(setcr3)
588
589	ENTRY(reload_cr3)
590	movl    %cr3, %eax
591	movl    %eax, %cr3
592	ret
593	SET_SIZE(reload_cr3)
594
595	ENTRY(getcr4)
596	movl    %cr4, %eax
597	ret
598	SET_SIZE(getcr4)
599
600        ENTRY(setcr4)
601        movl    4(%esp), %eax
602        movl    %eax, %cr4
603        ret
604	SET_SIZE(setcr4)
605
606#endif	/* __i386 */
607#endif	/* __lint */
608
609#if defined(__lint)
610
611/*ARGSUSED*/
612uint32_t
613__cpuid_insn(uint32_t eax, uint32_t *ebxp, uint32_t *ecxp, uint32_t *edxp)
614{ return (0); }
615
616#else	/* __lint */
617
618#if defined(__amd64)
619
620	ENTRY(__cpuid_insn)
621	movq	%rbx, %r11
622	movq	%rdx, %r8	/* r8 = ecxp */
623	movq	%rcx, %r9	/* r9 = edxp */
624	movl	%edi, %eax
625	cpuid
626	movl	%ebx, (%rsi)
627	movl	%ecx, (%r8)
628	movl	%edx, (%r9)
629	movq	%r11, %rbx
630	ret
631	SET_SIZE(__cpuid_insn)
632
633#elif defined(__i386)
634
635        ENTRY(__cpuid_insn)
636	pushl	%ebp
637	movl	%esp, %ebp
638	pushl	%ebx
639	movl	8(%ebp), %eax
640	cpuid
641	pushl	%eax
642	movl	0x0c(%ebp), %eax
643	movl	%ebx, (%eax)
644	movl	0x10(%ebp), %eax
645	movl	%ecx, (%eax)
646	movl	0x14(%ebp), %eax
647	movl	%edx, (%eax)
648	popl	%eax
649	popl	%ebx
650	popl	%ebp
651	ret
652	SET_SIZE(__cpuid_insn)
653
654#endif	/* __i386 */
655#endif	/* __lint */
656
657/*
658 * Insert entryp after predp in a doubly linked list.
659 */
660
661#if defined(__lint)
662
663/*ARGSUSED*/
664void
665_insque(caddr_t entryp, caddr_t predp)
666{}
667
668#else	/* __lint */
669
670#if defined(__amd64)
671
672	ENTRY(_insque)
673	movq	(%rsi), %rax		/* predp->forw 			*/
674	movq	%rsi, CPTRSIZE(%rdi)	/* entryp->back = predp		*/
675	movq	%rax, (%rdi)		/* entryp->forw = predp->forw	*/
676	movq	%rdi, (%rsi)		/* predp->forw = entryp		*/
677	movq	%rdi, CPTRSIZE(%rax)	/* predp->forw->back = entryp	*/
678	ret
679	SET_SIZE(_insque)
680
681#elif defined(__i386)
682
683	ENTRY(_insque)
684	movl	8(%esp), %edx
685	movl	4(%esp), %ecx
686	movl	(%edx), %eax		/* predp->forw			*/
687	movl	%edx, CPTRSIZE(%ecx)	/* entryp->back = predp		*/
688	movl	%eax, (%ecx)		/* entryp->forw = predp->forw	*/
689	movl	%ecx, (%edx)		/* predp->forw = entryp		*/
690	movl	%ecx, CPTRSIZE(%eax)	/* predp->forw->back = entryp	*/
691	ret
692	SET_SIZE(_insque)
693
694#endif	/* __i386 */
695#endif	/* __lint */
696
697/*
698 * Remove entryp from a doubly linked list
699 */
700
701#if defined(__lint)
702
703/*ARGSUSED*/
704void
705_remque(caddr_t entryp)
706{}
707
708#else	/* __lint */
709
710#if defined(__amd64)
711
712	ENTRY(_remque)
713	movq	(%rdi), %rax		/* entry->forw */
714	movq	CPTRSIZE(%rdi), %rdx	/* entry->back */
715	movq	%rax, (%rdx)		/* entry->back->forw = entry->forw */
716	movq	%rdx, CPTRSIZE(%rax)	/* entry->forw->back = entry->back */
717	ret
718	SET_SIZE(_remque)
719
720#elif defined(__i386)
721
722	ENTRY(_remque)
723	movl	4(%esp), %ecx
724	movl	(%ecx), %eax		/* entry->forw */
725	movl	CPTRSIZE(%ecx), %edx	/* entry->back */
726	movl	%eax, (%edx)		/* entry->back->forw = entry->forw */
727	movl	%edx, CPTRSIZE(%eax)	/* entry->forw->back = entry->back */
728	ret
729	SET_SIZE(_remque)
730
731#endif	/* __i386 */
732#endif	/* __lint */
733
734/*
735 * Returns the number of
736 * non-NULL bytes in string argument.
737 */
738
739#if defined(__lint)
740
741/* ARGSUSED */
742size_t
743strlen(const char *str)
744{ return (0); }
745
746#else	/* __lint */
747
748#if defined(__amd64)
749
750/*
751 * This is close to a simple transliteration of a C version of this
752 * routine.  We should either just -make- this be a C version, or
753 * justify having it in assembler by making it significantly faster.
754 *
755 * size_t
756 * strlen(const char *s)
757 * {
758 *	const char *s0;
759 * #if defined(DEBUG)
760 *	if ((uintptr_t)s < KERNELBASE)
761 *		panic(.str_panic_msg);
762 * #endif
763 *	for (s0 = s; *s; s++)
764 *		;
765 *	return (s - s0);
766 * }
767 */
768
769	ENTRY(strlen)
770#ifdef DEBUG
771	movq	kernelbase(%rip), %rax
772	cmpq	%rax, %rdi
773	jae	str_valid
774	pushq	%rbp
775	movq	%rsp, %rbp
776	leaq	.str_panic_msg(%rip), %rdi
777	xorl	%eax, %eax
778	call	panic
779#endif	/* DEBUG */
780str_valid:
781	cmpb	$0, (%rdi)
782	movq	%rdi, %rax
783	je	.null_found
784	.align	4
785.strlen_loop:
786	incq	%rdi
787	cmpb	$0, (%rdi)
788	jne	.strlen_loop
789.null_found:
790	subq	%rax, %rdi
791	movq	%rdi, %rax
792	ret
793	SET_SIZE(strlen)
794
795#elif defined(__i386)
796
797	ENTRY(strlen)
798#ifdef DEBUG
799	movl	kernelbase, %eax
800	cmpl	%eax, 4(%esp)
801	jae	str_valid
802	pushl	%ebp
803	movl	%esp, %ebp
804	pushl	$.str_panic_msg
805	call	panic
806#endif /* DEBUG */
807
808str_valid:
809	movl	4(%esp), %eax		/* %eax = string address */
810	testl	$3, %eax		/* if %eax not word aligned */
811	jnz	.not_word_aligned	/* goto .not_word_aligned */
812	.align	4
813.word_aligned:
814	movl	(%eax), %edx		/* move 1 word from (%eax) to %edx */
815	movl	$0x7f7f7f7f, %ecx
816	andl	%edx, %ecx		/* %ecx = %edx & 0x7f7f7f7f */
817	addl	$4, %eax		/* next word */
818	addl	$0x7f7f7f7f, %ecx	/* %ecx += 0x7f7f7f7f */
819	orl	%edx, %ecx		/* %ecx |= %edx */
820	andl	$0x80808080, %ecx	/* %ecx &= 0x80808080 */
821	cmpl	$0x80808080, %ecx	/* if no null byte in this word */
822	je	.word_aligned		/* goto .word_aligned */
823	subl	$4, %eax		/* post-incremented */
824.not_word_aligned:
825	cmpb	$0, (%eax)		/* if a byte in (%eax) is null */
826	je	.null_found		/* goto .null_found */
827	incl	%eax			/* next byte */
828	testl	$3, %eax		/* if %eax not word aligned */
829	jnz	.not_word_aligned	/* goto .not_word_aligned */
830	jmp	.word_aligned		/* goto .word_aligned */
831	.align	4
832.null_found:
833	subl	4(%esp), %eax		/* %eax -= string address */
834	ret
835	SET_SIZE(strlen)
836
837#endif	/* __i386 */
838
839#ifdef DEBUG
840	.text
841.str_panic_msg:
842	.string "strlen: argument below kernelbase"
843#endif /* DEBUG */
844
845#endif	/* __lint */
846
847	/*
848	 * Berkley 4.3 introduced symbolically named interrupt levels
849	 * as a way deal with priority in a machine independent fashion.
850	 * Numbered priorities are machine specific, and should be
851	 * discouraged where possible.
852	 *
853	 * Note, for the machine specific priorities there are
854	 * examples listed for devices that use a particular priority.
855	 * It should not be construed that all devices of that
856	 * type should be at that priority.  It is currently were
857	 * the current devices fit into the priority scheme based
858	 * upon time criticalness.
859	 *
860	 * The underlying assumption of these assignments is that
861	 * IPL 10 is the highest level from which a device
862	 * routine can call wakeup.  Devices that interrupt from higher
863	 * levels are restricted in what they can do.  If they need
864	 * kernels services they should schedule a routine at a lower
865	 * level (via software interrupt) to do the required
866	 * processing.
867	 *
868	 * Examples of this higher usage:
869	 *	Level	Usage
870	 *	14	Profiling clock (and PROM uart polling clock)
871	 *	12	Serial ports
872	 *
873	 * The serial ports request lower level processing on level 6.
874	 *
875	 * Also, almost all splN routines (where N is a number or a
876	 * mnemonic) will do a RAISE(), on the assumption that they are
877	 * never used to lower our priority.
878	 * The exceptions are:
879	 *	spl8()		Because you can't be above 15 to begin with!
880	 *	splzs()		Because this is used at boot time to lower our
881	 *			priority, to allow the PROM to poll the uart.
882	 *	spl0()		Used to lower priority to 0.
883	 */
884
885#if defined(__lint)
886
887int spl0(void)		{ return (0); }
888int spl6(void)		{ return (0); }
889int spl7(void)		{ return (0); }
890int spl8(void)		{ return (0); }
891int splhigh(void)	{ return (0); }
892int splhi(void)		{ return (0); }
893int splzs(void)		{ return (0); }
894
895#else	/* __lint */
896
897/* reg = cpu->cpu_m.cpu_pri; */
898#define	GETIPL_NOGS(reg, cpup)	\
899	movl	CPU_PRI(cpup), reg;
900
901/* cpu->cpu_m.cpu_pri; */
902#define	SETIPL_NOGS(val, cpup)	\
903	movl	val, CPU_PRI(cpup);
904
905/* reg = cpu->cpu_m.cpu_pri; */
906#define	GETIPL(reg)	\
907	movl	%gs:CPU_PRI, reg;
908
909/* cpu->cpu_m.cpu_pri; */
910#define	SETIPL(val)	\
911	movl	val, %gs:CPU_PRI;
912
913/*
914 * Macro to raise processor priority level.
915 * Avoid dropping processor priority if already at high level.
916 * Also avoid going below CPU->cpu_base_spl, which could've just been set by
917 * a higher-level interrupt thread that just blocked.
918 */
919#if defined(__amd64)
920
921#define	RAISE(level) \
922	cli;			\
923	LOADCPU(%rcx);		\
924	movl	$/**/level, %edi;\
925	GETIPL_NOGS(%eax, %rcx);\
926	cmpl 	%eax, %edi;	\
927	jg	spl;		\
928	jmp	setsplhisti
929
930#elif defined(__i386)
931
932#define	RAISE(level) \
933	cli;			\
934	LOADCPU(%ecx);		\
935	movl	$/**/level, %edx;\
936	GETIPL_NOGS(%eax, %ecx);\
937	cmpl 	%eax, %edx;	\
938	jg	spl;		\
939	jmp	setsplhisti
940
941#endif	/* __i386 */
942
943/*
944 * Macro to set the priority to a specified level.
945 * Avoid dropping the priority below CPU->cpu_base_spl.
946 */
947#if defined(__amd64)
948
949#define	SETPRI(level) \
950	cli;				\
951	LOADCPU(%rcx);			\
952	movl	$/**/level, %edi;	\
953	jmp	spl
954
955#elif defined(__i386)
956
957#define SETPRI(level) \
958	cli;				\
959	LOADCPU(%ecx);			\
960	movl	$/**/level, %edx;	\
961	jmp	spl
962
963#endif	/* __i386 */
964
965	/* locks out all interrupts, including memory errors */
966	ENTRY(spl8)
967	SETPRI(15)
968	SET_SIZE(spl8)
969
970	/* just below the level that profiling runs */
971	ENTRY(spl7)
972	RAISE(13)
973	SET_SIZE(spl7)
974
975	/* sun specific - highest priority onboard serial i/o asy ports */
976	ENTRY(splzs)
977	SETPRI(12)	/* Can't be a RAISE, as it's used to lower us */
978	SET_SIZE(splzs)
979
980	/*
981	 * should lock out clocks and all interrupts,
982	 * as you can see, there are exceptions
983	 */
984
985#if defined(__amd64)
986
987	.align	16
988	ENTRY(splhi)
989	ALTENTRY(splhigh)
990	ALTENTRY(spl6)
991	ALTENTRY(i_ddi_splhigh)
992	cli
993	LOADCPU(%rcx)
994	movl	$DISP_LEVEL, %edi
995	movl	CPU_PRI(%rcx), %eax
996	cmpl	%eax, %edi
997	jle	setsplhisti
998	SETIPL_NOGS(%edi, %rcx)
999	/*
1000	 * If we aren't using cr8 to control ipl then we patch this
1001	 * with a jump to slow_setsplhi
1002	 */
1003	ALTENTRY(setsplhi_patch)
1004	movq	CPU_PRI_DATA(%rcx), %r11 /* get pri data ptr */
1005	movzb	(%r11, %rdi, 1), %rdx	/* get apic mask for this ipl */
1006	movq	%rdx, %cr8		/* set new apic priority */
1007	/*
1008	 * enable interrupts
1009	 */
1010setsplhisti:
1011	nop	/* patch this to a sti when a proper setspl routine appears */
1012	ret
1013
1014	ALTENTRY(slow_setsplhi)
1015	pushq	%rbp
1016	movq	%rsp, %rbp
1017	subq	$16, %rsp
1018	movl	%eax, -4(%rbp)		/* save old ipl */
1019	call	*setspl(%rip)
1020	movl	-4(%rbp), %eax		/* return old ipl */
1021	leave
1022	jmp	setsplhisti
1023
1024	SET_SIZE(i_ddi_splhigh)
1025	SET_SIZE(spl6)
1026	SET_SIZE(splhigh)
1027	SET_SIZE(splhi)
1028
1029#elif defined(__i386)
1030
1031	.align	16
1032	ENTRY(splhi)
1033	ALTENTRY(splhigh)
1034	ALTENTRY(spl6)
1035	ALTENTRY(i_ddi_splhigh)
1036	cli
1037	LOADCPU(%ecx)
1038	movl	$DISP_LEVEL, %edx
1039	movl	CPU_PRI(%ecx), %eax
1040	cmpl	%eax, %edx
1041	jle	setsplhisti
1042	SETIPL_NOGS(%edx, %ecx)		/* set new ipl */
1043
1044	pushl   %eax                    /* save old ipl */
1045	pushl	%edx			/* pass new ipl */
1046	call	*setspl
1047	popl	%ecx			/* dummy pop */
1048	popl    %eax                    /* return old ipl */
1049	/*
1050	 * enable interrupts
1051	 *
1052	 * (we patch this to an sti once a proper setspl routine
1053	 * is installed)
1054	 */
1055setsplhisti:
1056	nop	/* patch this to a sti when a proper setspl routine appears */
1057	ret
1058	SET_SIZE(i_ddi_splhigh)
1059	SET_SIZE(spl6)
1060	SET_SIZE(splhigh)
1061	SET_SIZE(splhi)
1062
1063#endif	/* __i386 */
1064
1065	/* allow all interrupts */
1066	ENTRY(spl0)
1067	SETPRI(0)
1068	SET_SIZE(spl0)
1069
1070#endif	/* __lint */
1071
1072/*
1073 * splr is like splx but will only raise the priority and never drop it
1074 */
1075#if defined(__lint)
1076
1077/* ARGSUSED */
1078int
1079splr(int level)
1080{ return (0); }
1081
1082#else	/* __lint */
1083
1084#if defined(__amd64)
1085
1086	ENTRY(splr)
1087	cli
1088	LOADCPU(%rcx)
1089	GETIPL_NOGS(%eax, %rcx)
1090	cmpl	%eax, %edi		/* if new level > current level */
1091	jg	spl			/* then set ipl to new level */
1092splr_setsti:
1093	nop	/* patch this to a sti when a proper setspl routine appears */
1094	ret				/* else return the current level */
1095	SET_SIZE(splr)
1096
1097#elif defined(__i386)
1098
1099	ENTRY(splr)
1100	cli
1101	LOADCPU(%ecx)
1102	movl	4(%esp), %edx		/* get new spl level */
1103	GETIPL_NOGS(%eax, %ecx)
1104	cmpl 	%eax, %edx		/* if new level > current level */
1105	jg	spl			/* then set ipl to new level */
1106splr_setsti:
1107	nop	/* patch this to a sti when a proper setspl routine appears */
1108	ret				/* else return the current level */
1109	SET_SIZE(splr)
1110
1111#endif	/* __i386 */
1112#endif	/* __lint */
1113
1114
1115
1116/*
1117 * splx - set PIL back to that indicated by the level passed as an argument,
1118 * or to the CPU's base priority, whichever is higher.
1119 * Needs to be fall through to spl to save cycles.
1120 * Algorithm for spl:
1121 *
1122 *      turn off interrupts
1123 *
1124 *	if (CPU->cpu_base_spl > newipl)
1125 *		newipl = CPU->cpu_base_spl;
1126 *      oldipl = CPU->cpu_pridata->c_ipl;
1127 *      CPU->cpu_pridata->c_ipl = newipl;
1128 *
1129 *	/indirectly call function to set spl values (usually setpicmasks)
1130 *      setspl();  // load new masks into pics
1131 *
1132 * Be careful not to set priority lower than CPU->cpu_base_pri,
1133 * even though it seems we're raising the priority, it could be set
1134 * higher at any time by an interrupt routine, so we must block interrupts
1135 * and look at CPU->cpu_base_pri
1136 */
1137#if defined(__lint)
1138
1139/* ARGSUSED */
1140void
1141splx(int level)
1142{}
1143
1144#else	/* __lint */
1145
1146#if defined(__amd64)
1147
1148	ENTRY(splx)
1149	ALTENTRY(i_ddi_splx)
1150	cli				/* disable interrupts */
1151	LOADCPU(%rcx)
1152	/*FALLTHRU*/
1153	.align	4
1154spl:
1155	/*
1156	 * New priority level is in %edi, cpu struct pointer is in %rcx
1157	 */
1158	GETIPL_NOGS(%eax, %rcx)		/* get current ipl */
1159	cmpl   %edi, CPU_BASE_SPL(%rcx) /* if (base spl > new ipl) */
1160	ja     set_to_base_spl		/* then use base_spl */
1161
1162setprilev:
1163	SETIPL_NOGS(%edi, %rcx)		/* set new ipl */
1164	/*
1165	 * If we aren't using cr8 to control ipl then we patch this
1166	 * with a jump to slow_spl
1167	 */
1168	ALTENTRY(spl_patch)
1169	movq	CPU_PRI_DATA(%rcx), %r11 /* get pri data ptr */
1170	movzb	(%r11, %rdi, 1), %rdx	/* get apic mask for this ipl */
1171	movq	%rdx, %cr8		/* set new apic priority */
1172	xorl	%edx, %edx
1173	bsrl	CPU_SOFTINFO(%rcx), %edx /* fls(cpu->cpu_softinfo.st_pending) */
1174	cmpl	%edi, %edx		/* new ipl vs. st_pending */
1175	jle	setsplsti
1176
1177	pushq	%rbp
1178	movq	%rsp, %rbp
1179	/* stack now 16-byte aligned */
1180	pushq	%rax			/* save old spl */
1181	pushq	%rdi			/* save new ipl too */
1182	jmp	fakesoftint
1183
1184setsplsti:
1185	nop	/* patch this to a sti when a proper setspl routine appears */
1186	ret
1187
1188	ALTENTRY(slow_spl)
1189	pushq	%rbp
1190	movq	%rsp, %rbp
1191	/* stack now 16-byte aligned */
1192
1193	pushq	%rax			/* save old spl */
1194	pushq	%rdi			/* save new ipl too */
1195
1196	call	*setspl(%rip)
1197
1198	LOADCPU(%rcx)
1199	movl	CPU_SOFTINFO(%rcx), %eax
1200	orl	%eax, %eax
1201	jz	slow_setsplsti
1202
1203	bsrl	%eax, %edx		/* fls(cpu->cpu_softinfo.st_pending) */
1204	cmpl	0(%rsp), %edx		/* new ipl vs. st_pending */
1205	jg	fakesoftint
1206
1207	ALTENTRY(fakesoftint_return)
1208	/*
1209	 * enable interrupts
1210	 */
1211slow_setsplsti:
1212	nop	/* patch this to a sti when a proper setspl routine appears */
1213	popq	%rdi
1214	popq	%rax			/* return old ipl */
1215	leave
1216	ret
1217	SET_SIZE(fakesoftint_return)
1218
1219set_to_base_spl:
1220	movl	CPU_BASE_SPL(%rcx), %edi
1221	jmp	setprilev
1222	SET_SIZE(spl)
1223	SET_SIZE(i_ddi_splx)
1224	SET_SIZE(splx)
1225
1226#elif defined(__i386)
1227
1228	ENTRY(splx)
1229	ALTENTRY(i_ddi_splx)
1230	cli                             /* disable interrupts */
1231	LOADCPU(%ecx)
1232	movl	4(%esp), %edx		/* get new spl level */
1233	/*FALLTHRU*/
1234
1235	.align	4
1236	ALTENTRY(spl)
1237	/*
1238	 * New priority level is in %edx
1239	 * (doing this early to avoid an AGI in the next instruction)
1240	 */
1241	GETIPL_NOGS(%eax, %ecx)		/* get current ipl */
1242	cmpl	%edx, CPU_BASE_SPL(%ecx) /* if ( base spl > new ipl) */
1243	ja	set_to_base_spl		/* then use base_spl */
1244
1245setprilev:
1246	SETIPL_NOGS(%edx, %ecx)		/* set new ipl */
1247
1248	pushl   %eax                    /* save old ipl */
1249	pushl	%edx			/* pass new ipl */
1250	call	*setspl
1251
1252	LOADCPU(%ecx)
1253	movl	CPU_SOFTINFO(%ecx), %eax
1254	orl	%eax, %eax
1255	jz	setsplsti
1256
1257	/*
1258	 * Before dashing off, check that setsplsti has been patched.
1259	 */
1260	cmpl	$NOP_INSTR, setsplsti
1261	je	setsplsti
1262
1263	bsrl	%eax, %edx
1264	cmpl	0(%esp), %edx
1265	jg	fakesoftint
1266
1267	ALTENTRY(fakesoftint_return)
1268	/*
1269	 * enable interrupts
1270	 */
1271setsplsti:
1272	nop	/* patch this to a sti when a proper setspl routine appears */
1273	popl	%eax
1274	popl    %eax			/ return old ipl
1275	ret
1276	SET_SIZE(fakesoftint_return)
1277
1278set_to_base_spl:
1279	movl	CPU_BASE_SPL(%ecx), %edx
1280	jmp	setprilev
1281	SET_SIZE(spl)
1282	SET_SIZE(i_ddi_splx)
1283	SET_SIZE(splx)
1284
1285#endif	/* __i386 */
1286#endif	/* __lint */
1287
1288#if defined(__lint)
1289
1290void
1291install_spl(void)
1292{}
1293
1294#else	/* __lint */
1295
1296#if defined(__amd64)
1297
1298	ENTRY_NP(install_spl)
1299	movq	%cr0, %rax
1300	movq	%rax, %rdx
1301	movl	$_BITNOT(CR0_WP), %ecx
1302	movslq	%ecx, %rcx
1303	andq	%rcx, %rax		/* we don't want to take a fault */
1304	movq	%rax, %cr0
1305	jmp	1f
13061:	movb	$STI_INSTR, setsplsti(%rip)
1307	movb	$STI_INSTR, slow_setsplsti(%rip)
1308	movb	$STI_INSTR, setsplhisti(%rip)
1309	movb	$STI_INSTR, splr_setsti(%rip)
1310	testl	$1, intpri_use_cr8(%rip)	/* are using %cr8 ? */
1311	jz	2f				/* no, go patch more */
1312	movq	%rdx, %cr0
1313	ret
13142:
1315	/*
1316	 * Patch spl functions to use slow spl method
1317	 */
1318	leaq	setsplhi_patch(%rip), %rdi	/* get patch point addr */
1319	leaq	slow_setsplhi(%rip), %rax	/* jmp target */
1320	subq	%rdi, %rax			/* calculate jmp distance */
1321	subq	$2, %rax			/* minus size of jmp instr */
1322	shlq	$8, %rax			/* construct jmp instr */
1323	addq	$JMP_INSTR, %rax
1324	movw	%ax, setsplhi_patch(%rip)	/* patch in the jmp */
1325	leaq	spl_patch(%rip), %rdi		/* get patch point addr */
1326	leaq	slow_spl(%rip), %rax		/* jmp target */
1327	subq	%rdi, %rax			/* calculate jmp distance */
1328	subq	$2, %rax			/* minus size of jmp instr */
1329	shlq	$8, %rax			/* construct jmp instr */
1330	addq	$JMP_INSTR, %rax
1331	movw	%ax, spl_patch(%rip)		/* patch in the jmp */
1332	/*
1333	 * Ensure %cr8 is zero since we aren't using it
1334	 */
1335	xorl	%eax, %eax
1336	movq	%rax, %cr8
1337	movq	%rdx, %cr0
1338	ret
1339	SET_SIZE(install_spl)
1340
1341#elif defined(__i386)
1342
1343	ENTRY_NP(install_spl)
1344	movl	%cr0, %eax
1345	movl	%eax, %edx
1346	andl	$_BITNOT(CR0_WP), %eax	/* we don't want to take a fault */
1347	movl	%eax, %cr0
1348	jmp	1f
13491:	movb	$STI_INSTR, setsplsti
1350	movb	$STI_INSTR, setsplhisti
1351	movb	$STI_INSTR, splr_setsti
1352	movl	%edx, %cr0
1353	ret
1354	SET_SIZE(install_spl)
1355
1356#endif	/* __i386 */
1357#endif	/* __lint */
1358
1359
1360/*
1361 * Get current processor interrupt level
1362 */
1363
1364#if defined(__lint)
1365
1366int
1367getpil(void)
1368{ return (0); }
1369
1370#else	/* __lint */
1371
1372#if defined(__amd64)
1373
1374	ENTRY(getpil)
1375	GETIPL(%eax)			/* priority level into %eax */
1376	ret
1377	SET_SIZE(getpil)
1378
1379#elif defined(__i386)
1380
1381	ENTRY(getpil)
1382	GETIPL(%eax)			/* priority level into %eax */
1383	ret
1384	SET_SIZE(getpil)
1385
1386#endif	/* __i386 */
1387#endif	/* __lint */
1388
1389#if defined(__i386)
1390
1391/*
1392 * Read and write the %gs register
1393 */
1394
1395#if defined(__lint)
1396
1397/*ARGSUSED*/
1398uint16_t
1399getgs(void)
1400{ return (0); }
1401
1402/*ARGSUSED*/
1403void
1404setgs(uint16_t sel)
1405{}
1406
1407#else	/* __lint */
1408
1409	ENTRY(getgs)
1410	clr	%eax
1411	movw	%gs, %ax
1412	ret
1413	SET_SIZE(getgs)
1414
1415	ENTRY(setgs)
1416	movw	4(%esp), %gs
1417	ret
1418	SET_SIZE(setgs)
1419
1420#endif	/* __lint */
1421#endif	/* __i386 */
1422
1423#if defined(__lint)
1424
1425void
1426pc_reset(void)
1427{}
1428
1429#else	/* __lint */
1430
1431	ENTRY(wait_500ms)
1432	movl	$50000, %ecx
14331:
1434	call	tenmicrosec
1435	loop	1b
1436	ret
1437	SET_SIZE(wait_500ms)
1438
1439#define	RESET_METHOD_KBC	1
1440#define	RESET_METHOD_PORT92	2
1441#define RESET_METHOD_PCI	4
1442
1443	DGDEF3(pc_reset_methods, 4, 8)
1444	.long RESET_METHOD_KBC|RESET_METHOD_PORT92|RESET_METHOD_PCI;
1445
1446	ENTRY(pc_reset)
1447
1448	testl	$RESET_METHOD_KBC, pc_reset_methods
1449	jz	1f
1450
1451	/
1452	/ Try the classic keyboard controller-triggered reset.
1453	/
1454	movw	$0x64, %dx
1455	movb	$0xfe, %al
1456	outb	(%dx)
1457
1458	/ Wait up to 500 milliseconds here for the keyboard controller
1459	/ to pull the reset line.  On some systems where the keyboard
1460	/ controller is slow to pull the reset line, the next reset method
1461	/ may be executed (which may be bad if those systems hang when the
1462	/ next reset method is used, e.g. Ferrari 3400 (doesn't like port 92),
1463	/ and Ferrari 4000 (doesn't like the cf9 reset method))
1464
1465	call	wait_500ms
1466
14671:
1468	testl	$RESET_METHOD_PORT92, pc_reset_methods
1469	jz	3f
1470
1471	/
1472	/ Try port 0x92 fast reset
1473	/
1474	movw	$0x92, %dx
1475	inb	(%dx)
1476	cmpb	$0xff, %al	/ If port's not there, we should get back 0xFF
1477	je	1f
1478	testb	$1, %al		/ If bit 0
1479	jz	2f		/ is clear, jump to perform the reset
1480	andb	$0xfe, %al	/ otherwise,
1481	outb	(%dx)		/ clear bit 0 first, then
14822:
1483	orb	$1, %al		/ Set bit 0
1484	outb	(%dx)		/ and reset the system
14851:
1486
1487	call	wait_500ms
1488
14893:
1490	testl	$RESET_METHOD_PCI, pc_reset_methods
1491	jz	4f
1492
1493	/ Try the PCI (soft) reset vector (should work on all modern systems,
1494	/ but has been shown to cause problems on 450NX systems, and some newer
1495	/ systems (e.g. ATI IXP400-equipped systems))
1496	/ When resetting via this method, 2 writes are required.  The first
1497	/ targets bit 1 (0=hard reset without power cycle, 1=hard reset with
1498	/ power cycle).
1499	/ The reset occurs on the second write, during bit 2's transition from
1500	/ 0->1.
1501	movw	$0xcf9, %dx
1502	movb	$0x2, %al	/ Reset mode = hard, no power cycle
1503	outb	(%dx)
1504	movb	$0x6, %al
1505	outb	(%dx)
1506
1507	call	wait_500ms
1508
15094:
1510	/
1511	/ port 0xcf9 failed also.  Last-ditch effort is to
1512	/ triple-fault the CPU.
1513	/
1514#if defined(__amd64)
1515	pushq	$0x0
1516	pushq	$0x0		/ IDT base of 0, limit of 0 + 2 unused bytes
1517	lidt	(%rsp)
1518#elif defined(__i386)
1519	pushl	$0x0
1520	pushl	$0x0		/ IDT base of 0, limit of 0 + 2 unused bytes
1521	lidt	(%esp)
1522#endif
1523	int	$0x0		/ Trigger interrupt, generate triple-fault
1524
1525	cli
1526	hlt			/ Wait forever
1527	/*NOTREACHED*/
1528	SET_SIZE(pc_reset)
1529
1530#endif	/* __lint */
1531
1532/*
1533 * C callable in and out routines
1534 */
1535
1536#if defined(__lint)
1537
1538/* ARGSUSED */
1539void
1540outl(int port_address, uint32_t val)
1541{}
1542
1543#else	/* __lint */
1544
1545#if defined(__amd64)
1546
1547	ENTRY(outl)
1548	movw	%di, %dx
1549	movl	%esi, %eax
1550	outl	(%dx)
1551	ret
1552	SET_SIZE(outl)
1553
1554#elif defined(__i386)
1555
1556	.set	PORT, 4
1557	.set	VAL, 8
1558
1559	ENTRY(outl)
1560	movw	PORT(%esp), %dx
1561	movl	VAL(%esp), %eax
1562	outl	(%dx)
1563	ret
1564	SET_SIZE(outl)
1565
1566#endif	/* __i386 */
1567#endif	/* __lint */
1568
1569#if defined(__lint)
1570
1571/* ARGSUSED */
1572void
1573outw(int port_address, uint16_t val)
1574{}
1575
1576#else	/* __lint */
1577
1578#if defined(__amd64)
1579
1580	ENTRY(outw)
1581	movw	%di, %dx
1582	movw	%si, %ax
1583	D16 outl (%dx)		/* XX64 why not outw? */
1584	ret
1585	SET_SIZE(outw)
1586
1587#elif defined(__i386)
1588
1589	ENTRY(outw)
1590	movw	PORT(%esp), %dx
1591	movw	VAL(%esp), %ax
1592	D16 outl (%dx)
1593	ret
1594	SET_SIZE(outw)
1595
1596#endif	/* __i386 */
1597#endif	/* __lint */
1598
1599#if defined(__lint)
1600
1601/* ARGSUSED */
1602void
1603outb(int port_address, uint8_t val)
1604{}
1605
1606#else	/* __lint */
1607
1608#if defined(__amd64)
1609
1610	ENTRY(outb)
1611	movw	%di, %dx
1612	movb	%sil, %al
1613	outb	(%dx)
1614	ret
1615	SET_SIZE(outb)
1616
1617#elif defined(__i386)
1618
1619	ENTRY(outb)
1620	movw	PORT(%esp), %dx
1621	movb	VAL(%esp), %al
1622	outb	(%dx)
1623	ret
1624	SET_SIZE(outb)
1625
1626#endif	/* __i386 */
1627#endif	/* __lint */
1628
1629#if defined(__lint)
1630
1631/* ARGSUSED */
1632uint32_t
1633inl(int port_address)
1634{ return (0); }
1635
1636#else	/* __lint */
1637
1638#if defined(__amd64)
1639
1640	ENTRY(inl)
1641	xorl	%eax, %eax
1642	movw	%di, %dx
1643	inl	(%dx)
1644	ret
1645	SET_SIZE(inl)
1646
1647#elif defined(__i386)
1648
1649	ENTRY(inl)
1650	movw	PORT(%esp), %dx
1651	inl	(%dx)
1652	ret
1653	SET_SIZE(inl)
1654
1655#endif	/* __i386 */
1656#endif	/* __lint */
1657
1658#if defined(__lint)
1659
1660/* ARGSUSED */
1661uint16_t
1662inw(int port_address)
1663{ return (0); }
1664
1665#else	/* __lint */
1666
1667#if defined(__amd64)
1668
1669	ENTRY(inw)
1670	xorl	%eax, %eax
1671	movw	%di, %dx
1672	D16 inl	(%dx)
1673	ret
1674	SET_SIZE(inw)
1675
1676#elif defined(__i386)
1677
1678	ENTRY(inw)
1679	subl	%eax, %eax
1680	movw	PORT(%esp), %dx
1681	D16 inl	(%dx)
1682	ret
1683	SET_SIZE(inw)
1684
1685#endif	/* __i386 */
1686#endif	/* __lint */
1687
1688
1689#if defined(__lint)
1690
1691/* ARGSUSED */
1692uint8_t
1693inb(int port_address)
1694{ return (0); }
1695
1696#else	/* __lint */
1697
1698#if defined(__amd64)
1699
1700	ENTRY(inb)
1701	xorl	%eax, %eax
1702	movw	%di, %dx
1703	inb	(%dx)
1704	ret
1705	SET_SIZE(inb)
1706
1707#elif defined(__i386)
1708
1709	ENTRY(inb)
1710	subl    %eax, %eax
1711	movw	PORT(%esp), %dx
1712	inb	(%dx)
1713	ret
1714	SET_SIZE(inb)
1715
1716#endif	/* __i386 */
1717#endif	/* __lint */
1718
1719
1720#if defined(__lint)
1721
1722/* ARGSUSED */
1723void
1724repoutsw(int port, uint16_t *addr, int cnt)
1725{}
1726
1727#else	/* __lint */
1728
1729#if defined(__amd64)
1730
1731	ENTRY(repoutsw)
1732	movl	%edx, %ecx
1733	movw	%di, %dx
1734	rep
1735	  D16 outsl
1736	ret
1737	SET_SIZE(repoutsw)
1738
1739#elif defined(__i386)
1740
1741	/*
1742	 * The arguments and saved registers are on the stack in the
1743	 *  following order:
1744	 *      |  cnt  |  +16
1745	 *      | *addr |  +12
1746	 *      | port  |  +8
1747	 *      |  eip  |  +4
1748	 *      |  esi  |  <-- %esp
1749	 * If additional values are pushed onto the stack, make sure
1750	 * to adjust the following constants accordingly.
1751	 */
1752	.set	PORT, 8
1753	.set	ADDR, 12
1754	.set	COUNT, 16
1755
1756	ENTRY(repoutsw)
1757	pushl	%esi
1758	movl	PORT(%esp), %edx
1759	movl	ADDR(%esp), %esi
1760	movl	COUNT(%esp), %ecx
1761	rep
1762	  D16 outsl
1763	popl	%esi
1764	ret
1765	SET_SIZE(repoutsw)
1766
1767#endif	/* __i386 */
1768#endif	/* __lint */
1769
1770
1771#if defined(__lint)
1772
1773/* ARGSUSED */
1774void
1775repinsw(int port_addr, uint16_t *addr, int cnt)
1776{}
1777
1778#else	/* __lint */
1779
1780#if defined(__amd64)
1781
1782	ENTRY(repinsw)
1783	movl	%edx, %ecx
1784	movw	%di, %dx
1785	rep
1786	  D16 insl
1787	ret
1788	SET_SIZE(repinsw)
1789
1790#elif defined(__i386)
1791
1792	ENTRY(repinsw)
1793	pushl	%edi
1794	movl	PORT(%esp), %edx
1795	movl	ADDR(%esp), %edi
1796	movl	COUNT(%esp), %ecx
1797	rep
1798	  D16 insl
1799	popl	%edi
1800	ret
1801	SET_SIZE(repinsw)
1802
1803#endif	/* __i386 */
1804#endif	/* __lint */
1805
1806
1807#if defined(__lint)
1808
1809/* ARGSUSED */
1810void
1811repinsb(int port, uint8_t *addr, int count)
1812{}
1813
1814#else	/* __lint */
1815
1816#if defined(__amd64)
1817
1818	ENTRY(repinsb)
1819	movl	%edx, %ecx
1820	movw	%di, %dx
1821	movq	%rsi, %rdi
1822	rep
1823	  insb
1824	ret
1825	SET_SIZE(repinsb)
1826
1827#elif defined(__i386)
1828
1829	/*
1830	 * The arguments and saved registers are on the stack in the
1831	 *  following order:
1832	 *      |  cnt  |  +16
1833	 *      | *addr |  +12
1834	 *      | port  |  +8
1835	 *      |  eip  |  +4
1836	 *      |  esi  |  <-- %esp
1837	 * If additional values are pushed onto the stack, make sure
1838	 * to adjust the following constants accordingly.
1839	 */
1840	.set	IO_PORT, 8
1841	.set	IO_ADDR, 12
1842	.set	IO_COUNT, 16
1843
1844	ENTRY(repinsb)
1845	pushl	%edi
1846	movl	IO_ADDR(%esp), %edi
1847	movl	IO_COUNT(%esp), %ecx
1848	movl	IO_PORT(%esp), %edx
1849	rep
1850	  insb
1851	popl	%edi
1852	ret
1853	SET_SIZE(repinsb)
1854
1855#endif	/* __i386 */
1856#endif	/* __lint */
1857
1858
1859/*
1860 * Input a stream of 32-bit words.
1861 * NOTE: count is a DWORD count.
1862 */
1863#if defined(__lint)
1864
1865/* ARGSUSED */
1866void
1867repinsd(int port, uint32_t *addr, int count)
1868{}
1869
1870#else	/* __lint */
1871
1872#if defined(__amd64)
1873
1874	ENTRY(repinsd)
1875	movl	%edx, %ecx
1876	movw	%di, %dx
1877	movq	%rsi, %rdi
1878	rep
1879	  insl
1880	ret
1881	SET_SIZE(repinsd)
1882
1883#elif defined(__i386)
1884
1885	ENTRY(repinsd)
1886	pushl	%edi
1887	movl	IO_ADDR(%esp), %edi
1888	movl	IO_COUNT(%esp), %ecx
1889	movl	IO_PORT(%esp), %edx
1890	rep
1891	  insl
1892	popl	%edi
1893	ret
1894	SET_SIZE(repinsd)
1895
1896#endif	/* __i386 */
1897#endif	/* __lint */
1898
1899/*
1900 * Output a stream of bytes
1901 * NOTE: count is a byte count
1902 */
1903#if defined(__lint)
1904
1905/* ARGSUSED */
1906void
1907repoutsb(int port, uint8_t *addr, int count)
1908{}
1909
1910#else	/* __lint */
1911
1912#if defined(__amd64)
1913
1914	ENTRY(repoutsb)
1915	movl	%edx, %ecx
1916	movw	%di, %dx
1917	rep
1918	  outsb
1919	ret
1920	SET_SIZE(repoutsb)
1921
1922#elif defined(__i386)
1923
1924	ENTRY(repoutsb)
1925	pushl	%esi
1926	movl	IO_ADDR(%esp), %esi
1927	movl	IO_COUNT(%esp), %ecx
1928	movl	IO_PORT(%esp), %edx
1929	rep
1930	  outsb
1931	popl	%esi
1932	ret
1933	SET_SIZE(repoutsb)
1934
1935#endif	/* __i386 */
1936#endif	/* __lint */
1937
1938/*
1939 * Output a stream of 32-bit words
1940 * NOTE: count is a DWORD count
1941 */
1942#if defined(__lint)
1943
1944/* ARGSUSED */
1945void
1946repoutsd(int port, uint32_t *addr, int count)
1947{}
1948
1949#else	/* __lint */
1950
1951#if defined(__amd64)
1952
1953	ENTRY(repoutsd)
1954	movl	%edx, %ecx
1955	movw	%di, %dx
1956	rep
1957	  outsl
1958	ret
1959	SET_SIZE(repoutsd)
1960
1961#elif defined(__i386)
1962
1963	ENTRY(repoutsd)
1964	pushl	%esi
1965	movl	IO_ADDR(%esp), %esi
1966	movl	IO_COUNT(%esp), %ecx
1967	movl	IO_PORT(%esp), %edx
1968	rep
1969	  outsl
1970	popl	%esi
1971	ret
1972	SET_SIZE(repoutsd)
1973
1974#endif	/* __i386 */
1975#endif	/* __lint */
1976
1977/*
1978 * void int20(void)
1979 */
1980
1981#if defined(__lint)
1982
1983void
1984int20(void)
1985{}
1986
1987#else	/* __lint */
1988
1989	ENTRY(int20)
1990	movl	boothowto, %eax
1991	andl	$RB_DEBUG, %eax
1992	jz	1f
1993
1994	int	$20
19951:
1996	rep;	ret	/* use 2 byte return instruction when branch target */
1997			/* AMD Software Optimization Guide - Section 6.2 */
1998	SET_SIZE(int20)
1999
2000#endif	/* __lint */
2001
2002#if defined(__lint)
2003
2004/* ARGSUSED */
2005int
2006scanc(size_t size, uchar_t *cp, uchar_t *table, uchar_t mask)
2007{ return (0); }
2008
2009#else	/* __lint */
2010
2011#if defined(__amd64)
2012
2013	ENTRY(scanc)
2014					/* rdi == size */
2015					/* rsi == cp */
2016					/* rdx == table */
2017					/* rcx == mask */
2018	addq	%rsi, %rdi		/* end = &cp[size] */
2019.scanloop:
2020	cmpq	%rdi, %rsi		/* while (cp < end */
2021	jnb	.scandone
2022	movzbq	(%rsi), %r8		/* %r8 = *cp */
2023	incq	%rsi			/* cp++ */
2024	testb	%cl, (%r8, %rdx)
2025	jz	.scanloop		/*  && (table[*cp] & mask) == 0) */
2026	decq	%rsi			/* (fix post-increment) */
2027.scandone:
2028	movl	%edi, %eax
2029	subl	%esi, %eax		/* return (end - cp) */
2030	ret
2031	SET_SIZE(scanc)
2032
2033#elif defined(__i386)
2034
2035	ENTRY(scanc)
2036	pushl	%edi
2037	pushl	%esi
2038	movb	24(%esp), %cl		/* mask = %cl */
2039	movl	16(%esp), %esi		/* cp = %esi */
2040	movl	20(%esp), %edx		/* table = %edx */
2041	movl	%esi, %edi
2042	addl	12(%esp), %edi		/* end = &cp[size]; */
2043.scanloop:
2044	cmpl	%edi, %esi		/* while (cp < end */
2045	jnb	.scandone
2046	movzbl	(%esi),  %eax		/* %al = *cp */
2047	incl	%esi			/* cp++ */
2048	movb	(%edx,  %eax), %al	/* %al = table[*cp] */
2049	testb	%al, %cl
2050	jz	.scanloop		/*   && (table[*cp] & mask) == 0) */
2051	dec	%esi			/* post-incremented */
2052.scandone:
2053	movl	%edi, %eax
2054	subl	%esi, %eax		/* return (end - cp) */
2055	popl	%esi
2056	popl	%edi
2057	ret
2058	SET_SIZE(scanc)
2059
2060#endif	/* __i386 */
2061#endif	/* __lint */
2062
2063/*
2064 * Replacement functions for ones that are normally inlined.
2065 * In addition to the copy in i86.il, they are defined here just in case.
2066 */
2067
2068#if defined(__lint)
2069
2070int
2071intr_clear(void)
2072{ return 0; }
2073
2074int
2075clear_int_flag(void)
2076{ return 0; }
2077
2078#else	/* __lint */
2079
2080#if defined(__amd64)
2081
2082	ENTRY(intr_clear)
2083	ENTRY(clear_int_flag)
2084	pushfq
2085	cli
2086	popq	%rax
2087	ret
2088	SET_SIZE(clear_int_flag)
2089	SET_SIZE(intr_clear)
2090
2091#elif defined(__i386)
2092
2093	ENTRY(intr_clear)
2094	ENTRY(clear_int_flag)
2095	pushfl
2096	cli
2097	popl	%eax
2098	ret
2099	SET_SIZE(clear_int_flag)
2100	SET_SIZE(intr_clear)
2101
2102#endif	/* __i386 */
2103#endif	/* __lint */
2104
2105#if defined(__lint)
2106
2107struct cpu *
2108curcpup(void)
2109{ return 0; }
2110
2111#else	/* __lint */
2112
2113#if defined(__amd64)
2114
2115	ENTRY(curcpup)
2116	movq	%gs:CPU_SELF, %rax
2117	ret
2118	SET_SIZE(curcpup)
2119
2120#elif defined(__i386)
2121
2122	ENTRY(curcpup)
2123	movl	%gs:CPU_SELF, %eax
2124	ret
2125	SET_SIZE(curcpup)
2126
2127#endif	/* __i386 */
2128#endif	/* __lint */
2129
2130#if defined(__lint)
2131
2132/* ARGSUSED */
2133uint32_t
2134htonl(uint32_t i)
2135{ return (0); }
2136
2137/* ARGSUSED */
2138uint32_t
2139ntohl(uint32_t i)
2140{ return (0); }
2141
2142#else	/* __lint */
2143
2144#if defined(__amd64)
2145
2146	/* XX64 there must be shorter sequences for this */
2147	ENTRY(htonl)
2148	ALTENTRY(ntohl)
2149	movl	%edi, %eax
2150	bswap	%eax
2151	ret
2152	SET_SIZE(ntohl)
2153	SET_SIZE(htonl)
2154
2155#elif defined(__i386)
2156
2157	ENTRY(htonl)
2158	ALTENTRY(ntohl)
2159	movl	4(%esp), %eax
2160	bswap	%eax
2161	ret
2162	SET_SIZE(ntohl)
2163	SET_SIZE(htonl)
2164
2165#endif	/* __i386 */
2166#endif	/* __lint */
2167
2168#if defined(__lint)
2169
2170/* ARGSUSED */
2171uint16_t
2172htons(uint16_t i)
2173{ return (0); }
2174
2175/* ARGSUSED */
2176uint16_t
2177ntohs(uint16_t i)
2178{ return (0); }
2179
2180
2181#else	/* __lint */
2182
2183#if defined(__amd64)
2184
2185	/* XX64 there must be better sequences for this */
2186	ENTRY(htons)
2187	ALTENTRY(ntohs)
2188	movl	%edi, %eax
2189	bswap	%eax
2190	shrl	$16, %eax
2191	ret
2192	SET_SIZE(ntohs)
2193	SET_SIZE(htons)
2194
2195#elif defined(__i386)
2196
2197	ENTRY(htons)
2198	ALTENTRY(ntohs)
2199	movl	4(%esp), %eax
2200	bswap	%eax
2201	shrl	$16, %eax
2202	ret
2203	SET_SIZE(ntohs)
2204	SET_SIZE(htons)
2205
2206#endif	/* __i386 */
2207#endif	/* __lint */
2208
2209
2210#if defined(__lint)
2211
2212/* ARGSUSED */
2213void
2214intr_restore(uint_t i)
2215{ return; }
2216
2217/* ARGSUSED */
2218void
2219restore_int_flag(int i)
2220{ return; }
2221
2222#else	/* __lint */
2223
2224#if defined(__amd64)
2225
2226	ENTRY(intr_restore)
2227	ENTRY(restore_int_flag)
2228	pushq	%rdi
2229	popfq
2230	ret
2231	SET_SIZE(restore_int_flag)
2232	SET_SIZE(intr_restore)
2233
2234#elif defined(__i386)
2235
2236	ENTRY(intr_restore)
2237	ENTRY(restore_int_flag)
2238	pushl	4(%esp)
2239	popfl
2240	ret
2241	SET_SIZE(restore_int_flag)
2242	SET_SIZE(intr_restore)
2243
2244#endif	/* __i386 */
2245#endif	/* __lint */
2246
2247#if defined(__lint)
2248
2249void
2250sti(void)
2251{}
2252
2253#else	/* __lint */
2254
2255	ENTRY(sti)
2256	sti
2257	ret
2258	SET_SIZE(sti)
2259
2260#endif	/* __lint */
2261
2262#if defined(__lint)
2263
2264dtrace_icookie_t
2265dtrace_interrupt_disable(void)
2266{ return (0); }
2267
2268#else   /* __lint */
2269
2270#if defined(__amd64)
2271
2272	ENTRY(dtrace_interrupt_disable)
2273	pushfq
2274	popq	%rax
2275	cli
2276	ret
2277	SET_SIZE(dtrace_interrupt_disable)
2278
2279#elif defined(__i386)
2280
2281	ENTRY(dtrace_interrupt_disable)
2282	pushfl
2283	popl	%eax
2284	cli
2285	ret
2286	SET_SIZE(dtrace_interrupt_disable)
2287
2288#endif	/* __i386 */
2289#endif	/* __lint */
2290
2291#if defined(__lint)
2292
2293/*ARGSUSED*/
2294void
2295dtrace_interrupt_enable(dtrace_icookie_t cookie)
2296{}
2297
2298#else	/* __lint */
2299
2300#if defined(__amd64)
2301
2302	ENTRY(dtrace_interrupt_enable)
2303	pushq	%rdi
2304	popfq
2305	ret
2306	SET_SIZE(dtrace_interrupt_enable)
2307
2308#elif defined(__i386)
2309
2310	ENTRY(dtrace_interrupt_enable)
2311	movl	4(%esp), %eax
2312	pushl	%eax
2313	popfl
2314	ret
2315	SET_SIZE(dtrace_interrupt_enable)
2316
2317#endif	/* __i386 */
2318#endif	/* __lint */
2319
2320
2321#if defined(lint)
2322
2323void
2324dtrace_membar_producer(void)
2325{}
2326
2327void
2328dtrace_membar_consumer(void)
2329{}
2330
2331#else	/* __lint */
2332
2333	ENTRY(dtrace_membar_producer)
2334	rep;	ret	/* use 2 byte return instruction when branch target */
2335			/* AMD Software Optimization Guide - Section 6.2 */
2336	SET_SIZE(dtrace_membar_producer)
2337
2338	ENTRY(dtrace_membar_consumer)
2339	rep;	ret	/* use 2 byte return instruction when branch target */
2340			/* AMD Software Optimization Guide - Section 6.2 */
2341	SET_SIZE(dtrace_membar_consumer)
2342
2343#endif	/* __lint */
2344
2345#if defined(__lint)
2346
2347kthread_id_t
2348threadp(void)
2349{ return ((kthread_id_t)0); }
2350
2351#else	/* __lint */
2352
2353#if defined(__amd64)
2354
2355	ENTRY(threadp)
2356	movq	%gs:CPU_THREAD, %rax
2357	ret
2358	SET_SIZE(threadp)
2359
2360#elif defined(__i386)
2361
2362	ENTRY(threadp)
2363	movl	%gs:CPU_THREAD, %eax
2364	ret
2365	SET_SIZE(threadp)
2366
2367#endif	/* __i386 */
2368#endif	/* __lint */
2369
2370/*
2371 *   Checksum routine for Internet Protocol Headers
2372 */
2373
2374#if defined(__lint)
2375
2376/* ARGSUSED */
2377unsigned int
2378ip_ocsum(
2379	ushort_t *address,	/* ptr to 1st message buffer */
2380	int halfword_count,	/* length of data */
2381	unsigned int sum)	/* partial checksum */
2382{
2383	int		i;
2384	unsigned int	psum = 0;	/* partial sum */
2385
2386	for (i = 0; i < halfword_count; i++, address++) {
2387		psum += *address;
2388	}
2389
2390	while ((psum >> 16) != 0) {
2391		psum = (psum & 0xffff) + (psum >> 16);
2392	}
2393
2394	psum += sum;
2395
2396	while ((psum >> 16) != 0) {
2397		psum = (psum & 0xffff) + (psum >> 16);
2398	}
2399
2400	return (psum);
2401}
2402
2403#else	/* __lint */
2404
2405#if defined(__amd64)
2406
2407	ENTRY(ip_ocsum)
2408	pushq	%rbp
2409	movq	%rsp, %rbp
2410#ifdef DEBUG
2411	movq	kernelbase(%rip), %rax
2412	cmpq	%rax, %rdi
2413	jnb	1f
2414	xorl	%eax, %eax
2415	movq	%rdi, %rsi
2416	leaq	.ip_ocsum_panic_msg(%rip), %rdi
2417	call	panic
2418	/*NOTREACHED*/
2419.ip_ocsum_panic_msg:
2420	.string	"ip_ocsum: address 0x%p below kernelbase\n"
24211:
2422#endif
2423	movl	%esi, %ecx	/* halfword_count */
2424	movq	%rdi, %rsi	/* address */
2425				/* partial sum in %edx */
2426	xorl	%eax, %eax
2427	testl	%ecx, %ecx
2428	jz	.ip_ocsum_done
2429	testq	$3, %rsi
2430	jnz	.ip_csum_notaligned
2431.ip_csum_aligned:	/* XX64 opportunities for 8-byte operations? */
2432.next_iter:
2433	/* XX64 opportunities for prefetch? */
2434	/* XX64 compute csum with 64 bit quantities? */
2435	subl	$32, %ecx
2436	jl	.less_than_32
2437
2438	addl	0(%rsi), %edx
2439.only60:
2440	adcl	4(%rsi), %eax
2441.only56:
2442	adcl	8(%rsi), %edx
2443.only52:
2444	adcl	12(%rsi), %eax
2445.only48:
2446	adcl	16(%rsi), %edx
2447.only44:
2448	adcl	20(%rsi), %eax
2449.only40:
2450	adcl	24(%rsi), %edx
2451.only36:
2452	adcl	28(%rsi), %eax
2453.only32:
2454	adcl	32(%rsi), %edx
2455.only28:
2456	adcl	36(%rsi), %eax
2457.only24:
2458	adcl	40(%rsi), %edx
2459.only20:
2460	adcl	44(%rsi), %eax
2461.only16:
2462	adcl	48(%rsi), %edx
2463.only12:
2464	adcl	52(%rsi), %eax
2465.only8:
2466	adcl	56(%rsi), %edx
2467.only4:
2468	adcl	60(%rsi), %eax	/* could be adding -1 and -1 with a carry */
2469.only0:
2470	adcl	$0, %eax	/* could be adding -1 in eax with a carry */
2471	adcl	$0, %eax
2472
2473	addq	$64, %rsi
2474	testl	%ecx, %ecx
2475	jnz	.next_iter
2476
2477.ip_ocsum_done:
2478	addl	%eax, %edx
2479	adcl	$0, %edx
2480	movl	%edx, %eax	/* form a 16 bit checksum by */
2481	shrl	$16, %eax	/* adding two halves of 32 bit checksum */
2482	addw	%dx, %ax
2483	adcw	$0, %ax
2484	andl	$0xffff, %eax
2485	leave
2486	ret
2487
2488.ip_csum_notaligned:
2489	xorl	%edi, %edi
2490	movw	(%rsi), %di
2491	addl	%edi, %edx
2492	adcl	$0, %edx
2493	addq	$2, %rsi
2494	decl	%ecx
2495	jmp	.ip_csum_aligned
2496
2497.less_than_32:
2498	addl	$32, %ecx
2499	testl	$1, %ecx
2500	jz	.size_aligned
2501	andl	$0xfe, %ecx
2502	movzwl	(%rsi, %rcx, 2), %edi
2503	addl	%edi, %edx
2504	adcl	$0, %edx
2505.size_aligned:
2506	movl	%ecx, %edi
2507	shrl	$1, %ecx
2508	shl	$1, %edi
2509	subq	$64, %rdi
2510	addq	%rdi, %rsi
2511	leaq    .ip_ocsum_jmptbl(%rip), %rdi
2512	leaq	(%rdi, %rcx, 8), %rdi
2513	xorl	%ecx, %ecx
2514	clc
2515	jmp 	*(%rdi)
2516
2517	.align	8
2518.ip_ocsum_jmptbl:
2519	.quad	.only0, .only4, .only8, .only12, .only16, .only20
2520	.quad	.only24, .only28, .only32, .only36, .only40, .only44
2521	.quad	.only48, .only52, .only56, .only60
2522	SET_SIZE(ip_ocsum)
2523
2524#elif defined(__i386)
2525
2526	ENTRY(ip_ocsum)
2527	pushl	%ebp
2528	movl	%esp, %ebp
2529	pushl	%ebx
2530	pushl	%esi
2531	pushl	%edi
2532	movl	12(%ebp), %ecx	/* count of half words */
2533	movl	16(%ebp), %edx	/* partial checksum */
2534	movl	8(%ebp), %esi
2535	xorl	%eax, %eax
2536	testl	%ecx, %ecx
2537	jz	.ip_ocsum_done
2538
2539	testl	$3, %esi
2540	jnz	.ip_csum_notaligned
2541.ip_csum_aligned:
2542.next_iter:
2543	subl	$32, %ecx
2544	jl	.less_than_32
2545
2546	addl	0(%esi), %edx
2547.only60:
2548	adcl	4(%esi), %eax
2549.only56:
2550	adcl	8(%esi), %edx
2551.only52:
2552	adcl	12(%esi), %eax
2553.only48:
2554	adcl	16(%esi), %edx
2555.only44:
2556	adcl	20(%esi), %eax
2557.only40:
2558	adcl	24(%esi), %edx
2559.only36:
2560	adcl	28(%esi), %eax
2561.only32:
2562	adcl	32(%esi), %edx
2563.only28:
2564	adcl	36(%esi), %eax
2565.only24:
2566	adcl	40(%esi), %edx
2567.only20:
2568	adcl	44(%esi), %eax
2569.only16:
2570	adcl	48(%esi), %edx
2571.only12:
2572	adcl	52(%esi), %eax
2573.only8:
2574	adcl	56(%esi), %edx
2575.only4:
2576	adcl	60(%esi), %eax	/* We could be adding -1 and -1 with a carry */
2577.only0:
2578	adcl	$0, %eax	/* we could be adding -1 in eax with a carry */
2579	adcl	$0, %eax
2580
2581	addl	$64, %esi
2582	andl	%ecx, %ecx
2583	jnz	.next_iter
2584
2585.ip_ocsum_done:
2586	addl	%eax, %edx
2587	adcl	$0, %edx
2588	movl	%edx, %eax	/* form a 16 bit checksum by */
2589	shrl	$16, %eax	/* adding two halves of 32 bit checksum */
2590	addw	%dx, %ax
2591	adcw	$0, %ax
2592	andl	$0xffff, %eax
2593	popl	%edi		/* restore registers */
2594	popl	%esi
2595	popl	%ebx
2596	leave
2597	ret
2598
2599.ip_csum_notaligned:
2600	xorl	%edi, %edi
2601	movw	(%esi), %di
2602	addl	%edi, %edx
2603	adcl	$0, %edx
2604	addl	$2, %esi
2605	decl	%ecx
2606	jmp	.ip_csum_aligned
2607
2608.less_than_32:
2609	addl	$32, %ecx
2610	testl	$1, %ecx
2611	jz	.size_aligned
2612	andl	$0xfe, %ecx
2613	movzwl	(%esi, %ecx, 2), %edi
2614	addl	%edi, %edx
2615	adcl	$0, %edx
2616.size_aligned:
2617	movl	%ecx, %edi
2618	shrl	$1, %ecx
2619	shl	$1, %edi
2620	subl	$64, %edi
2621	addl	%edi, %esi
2622	movl	$.ip_ocsum_jmptbl, %edi
2623	lea	(%edi, %ecx, 4), %edi
2624	xorl	%ecx, %ecx
2625	clc
2626	jmp 	*(%edi)
2627	SET_SIZE(ip_ocsum)
2628
2629	.data
2630	.align	4
2631
2632.ip_ocsum_jmptbl:
2633	.long	.only0, .only4, .only8, .only12, .only16, .only20
2634	.long	.only24, .only28, .only32, .only36, .only40, .only44
2635	.long	.only48, .only52, .only56, .only60
2636
2637
2638#endif	/* __i386 */
2639#endif	/* __lint */
2640
2641/*
2642 * multiply two long numbers and yield a u_longlong_t result, callable from C.
2643 * Provided to manipulate hrtime_t values.
2644 */
2645#if defined(__lint)
2646
2647/* result = a * b; */
2648
2649/* ARGSUSED */
2650unsigned long long
2651mul32(uint_t a, uint_t b)
2652{ return (0); }
2653
2654#else	/* __lint */
2655
2656#if defined(__amd64)
2657
2658	ENTRY(mul32)
2659	xorl	%edx, %edx	/* XX64 joe, paranoia? */
2660	movl	%edi, %eax
2661	mull	%esi
2662	shlq	$32, %rdx
2663	orq	%rdx, %rax
2664	ret
2665	SET_SIZE(mul32)
2666
2667#elif defined(__i386)
2668
2669	ENTRY(mul32)
2670	movl	8(%esp), %eax
2671	movl	4(%esp), %ecx
2672	mull	%ecx
2673	ret
2674	SET_SIZE(mul32)
2675
2676#endif	/* __i386 */
2677#endif	/* __lint */
2678
2679#if defined(notused)
2680#if defined(__lint)
2681/* ARGSUSED */
2682void
2683load_pte64(uint64_t *pte, uint64_t pte_value)
2684{}
2685#else	/* __lint */
2686	.globl load_pte64
2687load_pte64:
2688	movl	4(%esp), %eax
2689	movl	8(%esp), %ecx
2690	movl	12(%esp), %edx
2691	movl	%edx, 4(%eax)
2692	movl	%ecx, (%eax)
2693	ret
2694#endif	/* __lint */
2695#endif	/* notused */
2696
2697#if defined(__lint)
2698
2699/*ARGSUSED*/
2700void
2701scan_memory(caddr_t addr, size_t size)
2702{}
2703
2704#else	/* __lint */
2705
2706#if defined(__amd64)
2707
2708	ENTRY(scan_memory)
2709	shrq	$3, %rsi	/* convert %rsi from byte to quadword count */
2710	jz	.scanm_done
2711	movq	%rsi, %rcx	/* move count into rep control register */
2712	movq	%rdi, %rsi	/* move addr into lodsq control reg. */
2713	rep lodsq		/* scan the memory range */
2714.scanm_done:
2715	rep;	ret	/* use 2 byte return instruction when branch target */
2716			/* AMD Software Optimization Guide - Section 6.2 */
2717	SET_SIZE(scan_memory)
2718
2719#elif defined(__i386)
2720
2721	ENTRY(scan_memory)
2722	pushl	%ecx
2723	pushl	%esi
2724	movl	16(%esp), %ecx	/* move 2nd arg into rep control register */
2725	shrl	$2, %ecx	/* convert from byte count to word count */
2726	jz	.scanm_done
2727	movl	12(%esp), %esi	/* move 1st arg into lodsw control register */
2728	.byte	0xf3		/* rep prefix.  lame assembler.  sigh. */
2729	lodsl
2730.scanm_done:
2731	popl	%esi
2732	popl	%ecx
2733	ret
2734	SET_SIZE(scan_memory)
2735
2736#endif	/* __i386 */
2737#endif	/* __lint */
2738
2739
2740#if defined(__lint)
2741
2742/*ARGSUSED */
2743int
2744lowbit(ulong_t i)
2745{ return (0); }
2746
2747#else	/* __lint */
2748
2749#if defined(__amd64)
2750
2751	ENTRY(lowbit)
2752	movl	$-1, %eax
2753	bsfq	%rdi, %rax
2754	incl	%eax
2755	ret
2756	SET_SIZE(lowbit)
2757
2758#elif defined(__i386)
2759
2760	ENTRY(lowbit)
2761	movl	$-1, %eax
2762	bsfl	4(%esp), %eax
2763	incl	%eax
2764	ret
2765	SET_SIZE(lowbit)
2766
2767#endif	/* __i386 */
2768#endif	/* __lint */
2769
2770#if defined(__lint)
2771
2772/*ARGSUSED*/
2773int
2774highbit(ulong_t i)
2775{ return (0); }
2776
2777#else	/* __lint */
2778
2779#if defined(__amd64)
2780
2781	ENTRY(highbit)
2782	movl	$-1, %eax
2783	bsrq	%rdi, %rax
2784	incl	%eax
2785	ret
2786	SET_SIZE(highbit)
2787
2788#elif defined(__i386)
2789
2790	ENTRY(highbit)
2791	movl	$-1, %eax
2792	bsrl	4(%esp), %eax
2793	incl	%eax
2794	ret
2795	SET_SIZE(highbit)
2796
2797#endif	/* __i386 */
2798#endif	/* __lint */
2799
2800#if defined(__lint)
2801
2802/*ARGSUSED*/
2803uint64_t
2804rdmsr(uint_t r)
2805{ return (0); }
2806
2807/*ARGSUSED*/
2808void
2809wrmsr(uint_t r, const uint64_t val)
2810{}
2811
2812void
2813invalidate_cache(void)
2814{}
2815
2816#else  /* __lint */
2817
2818#if defined(__amd64)
2819
2820	ENTRY(rdmsr)
2821	movl	%edi, %ecx
2822	rdmsr
2823	shlq	$32, %rdx
2824	orq	%rdx, %rax
2825	ret
2826	SET_SIZE(rdmsr)
2827
2828	ENTRY(wrmsr)
2829	movq	%rsi, %rdx
2830	shrq	$32, %rdx
2831	movl	%esi, %eax
2832	movl	%edi, %ecx
2833	wrmsr
2834	ret
2835	SET_SIZE(wrmsr)
2836
2837#elif defined(__i386)
2838
2839	ENTRY(rdmsr)
2840	movl	4(%esp), %ecx
2841	rdmsr
2842	ret
2843	SET_SIZE(rdmsr)
2844
2845	ENTRY(wrmsr)
2846	movl	4(%esp), %ecx
2847	movl	8(%esp), %eax
2848	movl	12(%esp), %edx
2849	wrmsr
2850	ret
2851	SET_SIZE(wrmsr)
2852
2853#endif	/* __i386 */
2854
2855	ENTRY(invalidate_cache)
2856	wbinvd
2857	ret
2858	SET_SIZE(invalidate_cache)
2859
2860#endif	/* __lint */
2861
2862#if defined(__lint)
2863
2864/*ARGSUSED*/
2865void getcregs(struct cregs *crp)
2866{}
2867
2868#else	/* __lint */
2869
2870#if defined(__amd64)
2871
2872#define	GETMSR(r, off, d)	\
2873	movl	$r, %ecx;	\
2874	rdmsr;			\
2875	movl	%eax, off(d);	\
2876	movl	%edx, off+4(d)
2877
2878	ENTRY_NP(getcregs)
2879	xorl	%eax, %eax
2880	movq	%rax, CREG_GDT+8(%rdi)
2881	sgdt	CREG_GDT(%rdi)		/* 10 bytes */
2882	movq	%rax, CREG_IDT+8(%rdi)
2883	sidt	CREG_IDT(%rdi)		/* 10 bytes */
2884	movq	%rax, CREG_LDT(%rdi)
2885	sldt	CREG_LDT(%rdi)		/* 2 bytes */
2886	movq	%rax, CREG_TASKR(%rdi)
2887	str	CREG_TASKR(%rdi)	/* 2 bytes */
2888	movq	%cr0, %rax
2889	movq	%rax, CREG_CR0(%rdi)	/* cr0 */
2890	movq	%cr2, %rax
2891	movq	%rax, CREG_CR2(%rdi)	/* cr2 */
2892	movq	%cr3, %rax
2893	movq	%rax, CREG_CR3(%rdi)	/* cr3 */
2894	movq	%cr4, %rax
2895	movq	%rax, CREG_CR8(%rdi)	/* cr4 */
2896	movq	%cr8, %rax
2897	movq	%rax, CREG_CR8(%rdi)	/* cr8 */
2898	GETMSR(MSR_AMD_KGSBASE, CREG_KGSBASE, %rdi)
2899	GETMSR(MSR_AMD_EFER, CREG_EFER, %rdi)
2900	SET_SIZE(getcregs)
2901
2902#undef GETMSR
2903
2904#elif defined(__i386)
2905
2906	ENTRY_NP(getcregs)
2907	movl	4(%esp), %edx
2908	movw	$0, CREG_GDT+6(%edx)
2909	movw	$0, CREG_IDT+6(%edx)
2910	sgdt	CREG_GDT(%edx)		/* gdt */
2911	sidt	CREG_IDT(%edx)		/* idt */
2912	sldt	CREG_LDT(%edx)		/* ldt */
2913	str	CREG_TASKR(%edx)	/* task */
2914	movl	%cr0, %eax
2915	movl	%eax, CREG_CR0(%edx)	/* cr0 */
2916	movl	%cr2, %eax
2917	movl	%eax, CREG_CR2(%edx)	/* cr2 */
2918	movl	%cr3, %eax
2919	movl	%eax, CREG_CR3(%edx)	/* cr3 */
2920	testl	$X86_LARGEPAGE, x86_feature
2921	jz	.nocr4
2922	movl	%cr4, %eax
2923	movl	%eax, CREG_CR4(%edx)	/* cr4 */
2924	jmp	.skip
2925.nocr4:
2926	movl	$0, CREG_CR4(%edx)
2927.skip:
2928	rep;	ret	/* use 2 byte return instruction when branch target */
2929			/* AMD Software Optimization Guide - Section 6.2 */
2930	SET_SIZE(getcregs)
2931
2932#endif	/* __i386 */
2933#endif	/* __lint */
2934
2935
2936/*
2937 * A panic trigger is a word which is updated atomically and can only be set
2938 * once.  We atomically store 0xDEFACEDD and load the old value.  If the
2939 * previous value was 0, we succeed and return 1; otherwise return 0.
2940 * This allows a partially corrupt trigger to still trigger correctly.  DTrace
2941 * has its own version of this function to allow it to panic correctly from
2942 * probe context.
2943 */
2944#if defined(__lint)
2945
2946/*ARGSUSED*/
2947int
2948panic_trigger(int *tp)
2949{ return (0); }
2950
2951/*ARGSUSED*/
2952int
2953dtrace_panic_trigger(int *tp)
2954{ return (0); }
2955
2956#else	/* __lint */
2957
2958#if defined(__amd64)
2959
2960	ENTRY_NP(panic_trigger)
2961	xorl	%eax, %eax
2962	movl	$0xdefacedd, %edx
2963	lock
2964	  xchgl	%edx, (%rdi)
2965	cmpl	$0, %edx
2966	je	0f
2967	movl	$0, %eax
2968	ret
29690:	movl	$1, %eax
2970	ret
2971	SET_SIZE(panic_trigger)
2972
2973	ENTRY_NP(dtrace_panic_trigger)
2974	xorl	%eax, %eax
2975	movl	$0xdefacedd, %edx
2976	lock
2977	  xchgl	%edx, (%rdi)
2978	cmpl	$0, %edx
2979	je	0f
2980	movl	$0, %eax
2981	ret
29820:	movl	$1, %eax
2983	ret
2984	SET_SIZE(dtrace_panic_trigger)
2985
2986#elif defined(__i386)
2987
2988	ENTRY_NP(panic_trigger)
2989	movl	4(%esp), %edx		/ %edx = address of trigger
2990	movl	$0xdefacedd, %eax	/ %eax = 0xdefacedd
2991	lock				/ assert lock
2992	xchgl %eax, (%edx)		/ exchange %eax and the trigger
2993	cmpl	$0, %eax		/ if (%eax == 0x0)
2994	je	0f			/   return (1);
2995	movl	$0, %eax		/ else
2996	ret				/   return (0);
29970:	movl	$1, %eax
2998	ret
2999	SET_SIZE(panic_trigger)
3000
3001	ENTRY_NP(dtrace_panic_trigger)
3002	movl	4(%esp), %edx		/ %edx = address of trigger
3003	movl	$0xdefacedd, %eax	/ %eax = 0xdefacedd
3004	lock				/ assert lock
3005	xchgl %eax, (%edx)		/ exchange %eax and the trigger
3006	cmpl	$0, %eax		/ if (%eax == 0x0)
3007	je	0f			/   return (1);
3008	movl	$0, %eax		/ else
3009	ret				/   return (0);
30100:	movl	$1, %eax
3011	ret
3012	SET_SIZE(dtrace_panic_trigger)
3013
3014#endif	/* __i386 */
3015#endif	/* __lint */
3016
3017/*
3018 * The panic() and cmn_err() functions invoke vpanic() as a common entry point
3019 * into the panic code implemented in panicsys().  vpanic() is responsible
3020 * for passing through the format string and arguments, and constructing a
3021 * regs structure on the stack into which it saves the current register
3022 * values.  If we are not dying due to a fatal trap, these registers will
3023 * then be preserved in panicbuf as the current processor state.  Before
3024 * invoking panicsys(), vpanic() activates the first panic trigger (see
3025 * common/os/panic.c) and switches to the panic_stack if successful.  Note that
3026 * DTrace takes a slightly different panic path if it must panic from probe
3027 * context.  Instead of calling panic, it calls into dtrace_vpanic(), which
3028 * sets up the initial stack as vpanic does, calls dtrace_panic_trigger(), and
3029 * branches back into vpanic().
3030 */
3031#if defined(__lint)
3032
3033/*ARGSUSED*/
3034void
3035vpanic(const char *format, va_list alist)
3036{}
3037
3038/*ARGSUSED*/
3039void
3040dtrace_vpanic(const char *format, va_list alist)
3041{}
3042
3043#else	/* __lint */
3044
3045#if defined(__amd64)
3046
3047	ENTRY_NP(vpanic)			/* Initial stack layout: */
3048
3049	pushq	%rbp				/* | %rip | 	0x60	*/
3050	movq	%rsp, %rbp			/* | %rbp |	0x58	*/
3051	pushfq					/* | rfl  |	0x50	*/
3052	pushq	%r11				/* | %r11 |	0x48	*/
3053	pushq	%r10				/* | %r10 |	0x40	*/
3054	pushq	%rbx				/* | %rbx |	0x38	*/
3055	pushq	%rax				/* | %rax |	0x30	*/
3056	pushq	%r9				/* | %r9  |	0x28	*/
3057	pushq	%r8				/* | %r8  |	0x20	*/
3058	pushq	%rcx				/* | %rcx |	0x18	*/
3059	pushq	%rdx				/* | %rdx |	0x10	*/
3060	pushq	%rsi				/* | %rsi |	0x8 alist */
3061	pushq	%rdi				/* | %rdi |	0x0 format */
3062
3063	movq	%rsp, %rbx			/* %rbx = current %rsp */
3064
3065	leaq	panic_quiesce(%rip), %rdi	/* %rdi = &panic_quiesce */
3066	call	panic_trigger			/* %eax = panic_trigger() */
3067
3068vpanic_common:
3069	cmpl	$0, %eax
3070	je	0f
3071
3072	/*
3073	 * If panic_trigger() was successful, we are the first to initiate a
3074	 * panic: we now switch to the reserved panic_stack before continuing.
3075	 */
3076	leaq	panic_stack(%rip), %rsp
3077	addq	$PANICSTKSIZE, %rsp
30780:	subq	$REGSIZE, %rsp
3079	/*
3080	 * Now that we've got everything set up, store the register values as
3081	 * they were when we entered vpanic() to the designated location in
3082	 * the regs structure we allocated on the stack.
3083	 */
3084	movq	0x0(%rbx), %rcx
3085	movq	%rcx, REGOFF_RDI(%rsp)
3086	movq	0x8(%rbx), %rcx
3087	movq	%rcx, REGOFF_RSI(%rsp)
3088	movq	0x10(%rbx), %rcx
3089	movq	%rcx, REGOFF_RDX(%rsp)
3090	movq	0x18(%rbx), %rcx
3091	movq	%rcx, REGOFF_RCX(%rsp)
3092	movq	0x20(%rbx), %rcx
3093
3094	movq	%rcx, REGOFF_R8(%rsp)
3095	movq	0x28(%rbx), %rcx
3096	movq	%rcx, REGOFF_R9(%rsp)
3097	movq	0x30(%rbx), %rcx
3098	movq	%rcx, REGOFF_RAX(%rsp)
3099	movq	0x38(%rbx), %rcx
3100	movq	%rbx, REGOFF_RBX(%rsp)
3101	movq	0x58(%rbx), %rcx
3102
3103	movq	%rcx, REGOFF_RBP(%rsp)
3104	movq	0x40(%rbx), %rcx
3105	movq	%rcx, REGOFF_R10(%rsp)
3106	movq	0x48(%rbx), %rcx
3107	movq	%rcx, REGOFF_R11(%rsp)
3108	movq	%r12, REGOFF_R12(%rsp)
3109
3110	movq	%r13, REGOFF_R13(%rsp)
3111	movq	%r14, REGOFF_R14(%rsp)
3112	movq	%r15, REGOFF_R15(%rsp)
3113
3114	movl	$MSR_AMD_FSBASE, %ecx
3115	rdmsr
3116	movl	%eax, REGOFF_FSBASE(%rsp)
3117	movl	%edx, REGOFF_FSBASE+4(%rsp)
3118
3119	movl	$MSR_AMD_GSBASE, %ecx
3120	rdmsr
3121	movl	%eax, REGOFF_GSBASE(%rsp)
3122	movl	%edx, REGOFF_GSBASE+4(%rsp)
3123
3124	xorl	%ecx, %ecx
3125	movw	%ds, %cx
3126	movq	%rcx, REGOFF_DS(%rsp)
3127	movw	%es, %cx
3128	movq	%rcx, REGOFF_ES(%rsp)
3129	movw	%fs, %cx
3130	movq	%rcx, REGOFF_FS(%rsp)
3131	movw	%gs, %cx
3132	movq	%rcx, REGOFF_GS(%rsp)
3133
3134	movq	$0, REGOFF_TRAPNO(%rsp)
3135
3136	movq	$0, REGOFF_ERR(%rsp)
3137	leaq	vpanic(%rip), %rcx
3138	movq	%rcx, REGOFF_RIP(%rsp)
3139	movw	%cs, %cx
3140	movzwq	%cx, %rcx
3141	movq	%rcx, REGOFF_CS(%rsp)
3142	movq	0x50(%rbx), %rcx
3143	movq	%rcx, REGOFF_RFL(%rsp)
3144	movq	%rbx, %rcx
3145	addq	$0x60, %rcx
3146	movq	%rcx, REGOFF_RSP(%rsp)
3147	movw	%ss, %cx
3148	movzwq	%cx, %rcx
3149	movq	%rcx, REGOFF_SS(%rsp)
3150
3151	/*
3152	 * panicsys(format, alist, rp, on_panic_stack)
3153	 */
3154	movq	REGOFF_RDI(%rsp), %rdi		/* format */
3155	movq	REGOFF_RSI(%rsp), %rsi		/* alist */
3156	movq	%rsp, %rdx			/* struct regs */
3157	movl	%eax, %ecx			/* on_panic_stack */
3158	call	panicsys
3159	addq	$REGSIZE, %rsp
3160	popq	%rdi
3161	popq	%rsi
3162	popq	%rdx
3163	popq	%rcx
3164	popq	%r8
3165	popq	%r9
3166	popq	%rax
3167	popq	%rbx
3168	popq	%r10
3169	popq	%r11
3170	popfq
3171	leave
3172	ret
3173	SET_SIZE(vpanic)
3174
3175	ENTRY_NP(dtrace_vpanic)			/* Initial stack layout: */
3176
3177	pushq	%rbp				/* | %rip | 	0x60	*/
3178	movq	%rsp, %rbp			/* | %rbp |	0x58	*/
3179	pushfq					/* | rfl  |	0x50	*/
3180	pushq	%r11				/* | %r11 |	0x48	*/
3181	pushq	%r10				/* | %r10 |	0x40	*/
3182	pushq	%rbx				/* | %rbx |	0x38	*/
3183	pushq	%rax				/* | %rax |	0x30	*/
3184	pushq	%r9				/* | %r9  |	0x28	*/
3185	pushq	%r8				/* | %r8  |	0x20	*/
3186	pushq	%rcx				/* | %rcx |	0x18	*/
3187	pushq	%rdx				/* | %rdx |	0x10	*/
3188	pushq	%rsi				/* | %rsi |	0x8 alist */
3189	pushq	%rdi				/* | %rdi |	0x0 format */
3190
3191	movq	%rsp, %rbx			/* %rbx = current %rsp */
3192
3193	leaq	panic_quiesce(%rip), %rdi	/* %rdi = &panic_quiesce */
3194	call	dtrace_panic_trigger	/* %eax = dtrace_panic_trigger() */
3195	jmp	vpanic_common
3196
3197	SET_SIZE(dtrace_vpanic)
3198
3199#elif defined(__i386)
3200
3201	ENTRY_NP(vpanic)			/ Initial stack layout:
3202
3203	pushl	%ebp				/ | %eip | 20
3204	movl	%esp, %ebp			/ | %ebp | 16
3205	pushl	%eax				/ | %eax | 12
3206	pushl	%ebx				/ | %ebx |  8
3207	pushl	%ecx				/ | %ecx |  4
3208	pushl	%edx				/ | %edx |  0
3209
3210	movl	%esp, %ebx			/ %ebx = current stack pointer
3211
3212	lea	panic_quiesce, %eax		/ %eax = &panic_quiesce
3213	pushl	%eax				/ push &panic_quiesce
3214	call	panic_trigger			/ %eax = panic_trigger()
3215	addl	$4, %esp			/ reset stack pointer
3216
3217vpanic_common:
3218	cmpl	$0, %eax			/ if (%eax == 0)
3219	je	0f				/   goto 0f;
3220
3221	/*
3222	 * If panic_trigger() was successful, we are the first to initiate a
3223	 * panic: we now switch to the reserved panic_stack before continuing.
3224	 */
3225	lea	panic_stack, %esp		/ %esp  = panic_stack
3226	addl	$PANICSTKSIZE, %esp		/ %esp += PANICSTKSIZE
3227
32280:	subl	$REGSIZE, %esp			/ allocate struct regs
3229
3230	/*
3231	 * Now that we've got everything set up, store the register values as
3232	 * they were when we entered vpanic() to the designated location in
3233	 * the regs structure we allocated on the stack.
3234	 */
3235#if !defined(__GNUC_AS__)
3236	movw	%gs, %edx
3237	movl	%edx, REGOFF_GS(%esp)
3238	movw	%fs, %edx
3239	movl	%edx, REGOFF_FS(%esp)
3240	movw	%es, %edx
3241	movl	%edx, REGOFF_ES(%esp)
3242	movw	%ds, %edx
3243	movl	%edx, REGOFF_DS(%esp)
3244#else	/* __GNUC_AS__ */
3245	mov	%gs, %edx
3246	mov	%edx, REGOFF_GS(%esp)
3247	mov	%fs, %edx
3248	mov	%edx, REGOFF_FS(%esp)
3249	mov	%es, %edx
3250	mov	%edx, REGOFF_ES(%esp)
3251	mov	%ds, %edx
3252	mov	%edx, REGOFF_DS(%esp)
3253#endif	/* __GNUC_AS__ */
3254	movl	%edi, REGOFF_EDI(%esp)
3255	movl	%esi, REGOFF_ESI(%esp)
3256	movl	16(%ebx), %ecx
3257	movl	%ecx, REGOFF_EBP(%esp)
3258	movl	%ebx, %ecx
3259	addl	$20, %ecx
3260	movl	%ecx, REGOFF_ESP(%esp)
3261	movl	8(%ebx), %ecx
3262	movl	%ecx, REGOFF_EBX(%esp)
3263	movl	0(%ebx), %ecx
3264	movl	%ecx, REGOFF_EDX(%esp)
3265	movl	4(%ebx), %ecx
3266	movl	%ecx, REGOFF_ECX(%esp)
3267	movl	12(%ebx), %ecx
3268	movl	%ecx, REGOFF_EAX(%esp)
3269	movl	$0, REGOFF_TRAPNO(%esp)
3270	movl	$0, REGOFF_ERR(%esp)
3271	lea	vpanic, %ecx
3272	movl	%ecx, REGOFF_EIP(%esp)
3273#if !defined(__GNUC_AS__)
3274	movw	%cs, %edx
3275#else	/* __GNUC_AS__ */
3276	mov	%cs, %edx
3277#endif	/* __GNUC_AS__ */
3278	movl	%edx, REGOFF_CS(%esp)
3279	pushfl
3280	popl	%ecx
3281	movl	%ecx, REGOFF_EFL(%esp)
3282	movl	$0, REGOFF_UESP(%esp)
3283#if !defined(__GNUC_AS__)
3284	movw	%ss, %edx
3285#else	/* __GNUC_AS__ */
3286	mov	%ss, %edx
3287#endif	/* __GNUC_AS__ */
3288	movl	%edx, REGOFF_SS(%esp)
3289
3290	movl	%esp, %ecx			/ %ecx = &regs
3291	pushl	%eax				/ push on_panic_stack
3292	pushl	%ecx				/ push &regs
3293	movl	12(%ebp), %ecx			/ %ecx = alist
3294	pushl	%ecx				/ push alist
3295	movl	8(%ebp), %ecx			/ %ecx = format
3296	pushl	%ecx				/ push format
3297	call	panicsys			/ panicsys();
3298	addl	$16, %esp			/ pop arguments
3299
3300	addl	$REGSIZE, %esp
3301	popl	%edx
3302	popl	%ecx
3303	popl	%ebx
3304	popl	%eax
3305	leave
3306	ret
3307	SET_SIZE(vpanic)
3308
3309	ENTRY_NP(dtrace_vpanic)			/ Initial stack layout:
3310
3311	pushl	%ebp				/ | %eip | 20
3312	movl	%esp, %ebp			/ | %ebp | 16
3313	pushl	%eax				/ | %eax | 12
3314	pushl	%ebx				/ | %ebx |  8
3315	pushl	%ecx				/ | %ecx |  4
3316	pushl	%edx				/ | %edx |  0
3317
3318	movl	%esp, %ebx			/ %ebx = current stack pointer
3319
3320	lea	panic_quiesce, %eax		/ %eax = &panic_quiesce
3321	pushl	%eax				/ push &panic_quiesce
3322	call	dtrace_panic_trigger		/ %eax = dtrace_panic_trigger()
3323	addl	$4, %esp			/ reset stack pointer
3324	jmp	vpanic_common			/ jump back to common code
3325
3326	SET_SIZE(dtrace_vpanic)
3327
3328#endif	/* __i386 */
3329#endif	/* __lint */
3330
3331#if defined(__lint)
3332
3333void
3334hres_tick(void)
3335{}
3336
3337int64_t timedelta;
3338hrtime_t hres_last_tick;
3339timestruc_t hrestime;
3340int64_t hrestime_adj;
3341volatile int hres_lock;
3342uint_t nsec_scale;
3343hrtime_t hrtime_base;
3344
3345#else	/* __lint */
3346
3347	DGDEF3(hrestime, _MUL(2, CLONGSIZE), 8)
3348	.NWORD	0, 0
3349
3350	DGDEF3(hrestime_adj, 8, 8)
3351	.long	0, 0
3352
3353	DGDEF3(hres_last_tick, 8, 8)
3354	.long	0, 0
3355
3356	DGDEF3(timedelta, 8, 8)
3357	.long	0, 0
3358
3359	DGDEF3(hres_lock, 4, 8)
3360	.long	0
3361
3362	/*
3363	 * initialized to a non zero value to make pc_gethrtime()
3364	 * work correctly even before clock is initialized
3365	 */
3366	DGDEF3(hrtime_base, 8, 8)
3367	.long	_MUL(NSEC_PER_CLOCK_TICK, 6), 0
3368
3369	DGDEF3(adj_shift, 4, 4)
3370	.long	ADJ_SHIFT
3371
3372#if defined(__amd64)
3373
3374	ENTRY_NP(hres_tick)
3375	pushq	%rbp
3376	movq	%rsp, %rbp
3377
3378	/*
3379	 * We need to call *gethrtimef before picking up CLOCK_LOCK (obviously,
3380	 * hres_last_tick can only be modified while holding CLOCK_LOCK).
3381	 * At worst, performing this now instead of under CLOCK_LOCK may
3382	 * introduce some jitter in pc_gethrestime().
3383	 */
3384	call	*gethrtimef(%rip)
3385	movq	%rax, %r8
3386
3387	leaq	hres_lock(%rip), %rax
3388	movb	$-1, %dl
3389.CL1:
3390	xchgb	%dl, (%rax)
3391	testb	%dl, %dl
3392	jz	.CL3			/* got it */
3393.CL2:
3394	cmpb	$0, (%rax)		/* possible to get lock? */
3395	pause
3396	jne	.CL2
3397	jmp	.CL1			/* yes, try again */
3398.CL3:
3399	/*
3400	 * compute the interval since last time hres_tick was called
3401	 * and adjust hrtime_base and hrestime accordingly
3402	 * hrtime_base is an 8 byte value (in nsec), hrestime is
3403	 * a timestruc_t (sec, nsec)
3404	 */
3405	leaq	hres_last_tick(%rip), %rax
3406	movq	%r8, %r11
3407	subq	(%rax), %r8
3408	addq	%r8, hrtime_base(%rip)	/* add interval to hrtime_base */
3409	addq	%r8, hrestime+8(%rip)	/* add interval to hrestime.tv_nsec */
3410	/*
3411	 * Now that we have CLOCK_LOCK, we can update hres_last_tick
3412	 */
3413	movq	%r11, (%rax)
3414
3415	call	__adj_hrestime
3416
3417	/*
3418	 * release the hres_lock
3419	 */
3420	incl	hres_lock(%rip)
3421	leave
3422	ret
3423	SET_SIZE(hres_tick)
3424
3425#elif defined(__i386)
3426
3427	ENTRY_NP(hres_tick)
3428	pushl	%ebp
3429	movl	%esp, %ebp
3430	pushl	%esi
3431	pushl	%ebx
3432
3433	/*
3434	 * We need to call *gethrtimef before picking up CLOCK_LOCK (obviously,
3435	 * hres_last_tick can only be modified while holding CLOCK_LOCK).
3436	 * At worst, performing this now instead of under CLOCK_LOCK may
3437	 * introduce some jitter in pc_gethrestime().
3438	 */
3439	call	*gethrtimef
3440	movl	%eax, %ebx
3441	movl	%edx, %esi
3442
3443	movl	$hres_lock, %eax
3444	movl	$-1, %edx
3445.CL1:
3446	xchgb	%dl, (%eax)
3447	testb	%dl, %dl
3448	jz	.CL3			/ got it
3449.CL2:
3450	cmpb	$0, (%eax)		/ possible to get lock?
3451	pause
3452	jne	.CL2
3453	jmp	.CL1			/ yes, try again
3454.CL3:
3455	/*
3456	 * compute the interval since last time hres_tick was called
3457	 * and adjust hrtime_base and hrestime accordingly
3458	 * hrtime_base is an 8 byte value (in nsec), hrestime is
3459	 * timestruc_t (sec, nsec)
3460	 */
3461
3462	lea	hres_last_tick, %eax
3463
3464	movl	%ebx, %edx
3465	movl	%esi, %ecx
3466
3467	subl 	(%eax), %edx
3468	sbbl 	4(%eax), %ecx
3469
3470	addl	%edx, hrtime_base	/ add interval to hrtime_base
3471	adcl	%ecx, hrtime_base+4
3472
3473	addl 	%edx, hrestime+4	/ add interval to hrestime.tv_nsec
3474
3475	/
3476	/ Now that we have CLOCK_LOCK, we can update hres_last_tick.
3477	/
3478	movl	%ebx, (%eax)
3479	movl	%esi,  4(%eax)
3480
3481	/ get hrestime at this moment. used as base for pc_gethrestime
3482	/
3483	/ Apply adjustment, if any
3484	/
3485	/ #define HRES_ADJ	(NSEC_PER_CLOCK_TICK >> ADJ_SHIFT)
3486	/ (max_hres_adj)
3487	/
3488	/ void
3489	/ adj_hrestime()
3490	/ {
3491	/	long long adj;
3492	/
3493	/	if (hrestime_adj == 0)
3494	/		adj = 0;
3495	/	else if (hrestime_adj > 0) {
3496	/		if (hrestime_adj < HRES_ADJ)
3497	/			adj = hrestime_adj;
3498	/		else
3499	/			adj = HRES_ADJ;
3500	/	}
3501	/	else {
3502	/		if (hrestime_adj < -(HRES_ADJ))
3503	/			adj = -(HRES_ADJ);
3504	/		else
3505	/			adj = hrestime_adj;
3506	/	}
3507	/
3508	/	timedelta -= adj;
3509	/	hrestime_adj = timedelta;
3510	/	hrestime.tv_nsec += adj;
3511	/
3512	/	while (hrestime.tv_nsec >= NANOSEC) {
3513	/		one_sec++;
3514	/		hrestime.tv_sec++;
3515	/		hrestime.tv_nsec -= NANOSEC;
3516	/	}
3517	/ }
3518__adj_hrestime:
3519	movl	hrestime_adj, %esi	/ if (hrestime_adj == 0)
3520	movl	hrestime_adj+4, %edx
3521	andl	%esi, %esi
3522	jne	.CL4			/ no
3523	andl	%edx, %edx
3524	jne	.CL4			/ no
3525	subl	%ecx, %ecx		/ yes, adj = 0;
3526	subl	%edx, %edx
3527	jmp	.CL5
3528.CL4:
3529	subl	%ecx, %ecx
3530	subl	%eax, %eax
3531	subl	%esi, %ecx
3532	sbbl	%edx, %eax
3533	andl	%eax, %eax		/ if (hrestime_adj > 0)
3534	jge	.CL6
3535
3536	/ In the following comments, HRES_ADJ is used, while in the code
3537	/ max_hres_adj is used.
3538	/
3539	/ The test for "hrestime_adj < HRES_ADJ" is complicated because
3540	/ hrestime_adj is 64-bits, while HRES_ADJ is 32-bits.  We rely
3541	/ on the logical equivalence of:
3542	/
3543	/	!(hrestime_adj < HRES_ADJ)
3544	/
3545	/ and the two step sequence:
3546	/
3547	/	(HRES_ADJ - lsw(hrestime_adj)) generates a Borrow/Carry
3548	/
3549	/ which computes whether or not the least significant 32-bits
3550	/ of hrestime_adj is greater than HRES_ADJ, followed by:
3551	/
3552	/	Previous Borrow/Carry + -1 + msw(hrestime_adj) generates a Carry
3553	/
3554	/ which generates a carry whenever step 1 is true or the most
3555	/ significant long of the longlong hrestime_adj is non-zero.
3556
3557	movl	max_hres_adj, %ecx	/ hrestime_adj is positive
3558	subl	%esi, %ecx
3559	movl	%edx, %eax
3560	adcl	$-1, %eax
3561	jnc	.CL7
3562	movl	max_hres_adj, %ecx	/ adj = HRES_ADJ;
3563	subl	%edx, %edx
3564	jmp	.CL5
3565
3566	/ The following computation is similar to the one above.
3567	/
3568	/ The test for "hrestime_adj < -(HRES_ADJ)" is complicated because
3569	/ hrestime_adj is 64-bits, while HRES_ADJ is 32-bits.  We rely
3570	/ on the logical equivalence of:
3571	/
3572	/	(hrestime_adj > -HRES_ADJ)
3573	/
3574	/ and the two step sequence:
3575	/
3576	/	(HRES_ADJ + lsw(hrestime_adj)) generates a Carry
3577	/
3578	/ which means the least significant 32-bits of hrestime_adj is
3579	/ greater than -HRES_ADJ, followed by:
3580	/
3581	/	Previous Carry + 0 + msw(hrestime_adj) generates a Carry
3582	/
3583	/ which generates a carry only when step 1 is true and the most
3584	/ significant long of the longlong hrestime_adj is -1.
3585
3586.CL6:					/ hrestime_adj is negative
3587	movl	%esi, %ecx
3588	addl	max_hres_adj, %ecx
3589	movl	%edx, %eax
3590	adcl	$0, %eax
3591	jc	.CL7
3592	xor	%ecx, %ecx
3593	subl	max_hres_adj, %ecx	/ adj = -(HRES_ADJ);
3594	movl	$-1, %edx
3595	jmp	.CL5
3596.CL7:
3597	movl	%esi, %ecx		/ adj = hrestime_adj;
3598.CL5:
3599	movl	timedelta, %esi
3600	subl	%ecx, %esi
3601	movl	timedelta+4, %eax
3602	sbbl	%edx, %eax
3603	movl	%esi, timedelta
3604	movl	%eax, timedelta+4	/ timedelta -= adj;
3605	movl	%esi, hrestime_adj
3606	movl	%eax, hrestime_adj+4	/ hrestime_adj = timedelta;
3607	addl	hrestime+4, %ecx
3608
3609	movl	%ecx, %eax		/ eax = tv_nsec
36101:
3611	cmpl	$NANOSEC, %eax		/ if ((unsigned long)tv_nsec >= NANOSEC)
3612	jb	.CL8			/ no
3613	incl	one_sec			/ yes,  one_sec++;
3614	incl	hrestime		/ hrestime.tv_sec++;
3615	addl	$-NANOSEC, %eax		/ tv_nsec -= NANOSEC
3616	jmp	1b			/ check for more seconds
3617
3618.CL8:
3619	movl	%eax, hrestime+4	/ store final into hrestime.tv_nsec
3620	incl	hres_lock		/ release the hres_lock
3621
3622	popl	%ebx
3623	popl	%esi
3624	leave
3625	ret
3626	SET_SIZE(hres_tick)
3627
3628#endif	/* __i386 */
3629#endif	/* __lint */
3630
3631/*
3632 * void prefetch_smap_w(void *)
3633 *
3634 * Prefetch ahead within a linear list of smap structures.
3635 * Not implemented for ia32.  Stub for compatibility.
3636 */
3637
3638#if defined(__lint)
3639
3640/*ARGSUSED*/
3641void prefetch_smap_w(void *smp)
3642{}
3643
3644#else	/* __lint */
3645
3646	ENTRY(prefetch_smap_w)
3647	rep;	ret	/* use 2 byte return instruction when branch target */
3648			/* AMD Software Optimization Guide - Section 6.2 */
3649	SET_SIZE(prefetch_smap_w)
3650
3651#endif	/* __lint */
3652
3653/*
3654 * prefetch_page_r(page_t *)
3655 * issue prefetch instructions for a page_t
3656 */
3657#if defined(__lint)
3658
3659/*ARGSUSED*/
3660void
3661prefetch_page_r(void *pp)
3662{}
3663
3664#else	/* __lint */
3665
3666	ENTRY(prefetch_page_r)
3667	rep;	ret	/* use 2 byte return instruction when branch target */
3668			/* AMD Software Optimization Guide - Section 6.2 */
3669	SET_SIZE(prefetch_page_r)
3670
3671#endif	/* __lint */
3672
3673#if defined(__lint)
3674
3675/*ARGSUSED*/
3676int
3677bcmp(const void *s1, const void *s2, size_t count)
3678{ return (0); }
3679
3680#else   /* __lint */
3681
3682#if defined(__amd64)
3683
3684	ENTRY(bcmp)
3685	pushq	%rbp
3686	movq	%rsp, %rbp
3687#ifdef DEBUG
3688	movq	kernelbase(%rip), %r11
3689	cmpq	%r11, %rdi
3690	jb	0f
3691	cmpq	%r11, %rsi
3692	jnb	1f
36930:	leaq	.bcmp_panic_msg(%rip), %rdi
3694	xorl	%eax, %eax
3695	call	panic
36961:
3697#endif	/* DEBUG */
3698	call	memcmp
3699	testl	%eax, %eax
3700	setne	%dl
3701	leave
3702	movzbl	%dl, %eax
3703	ret
3704	SET_SIZE(bcmp)
3705
3706#elif defined(__i386)
3707
3708#define	ARG_S1		8
3709#define	ARG_S2		12
3710#define	ARG_LENGTH	16
3711
3712	ENTRY(bcmp)
3713#ifdef DEBUG
3714	pushl   %ebp
3715	movl    %esp, %ebp
3716	movl    kernelbase, %eax
3717	cmpl    %eax, ARG_S1(%ebp)
3718	jb	0f
3719	cmpl    %eax, ARG_S2(%ebp)
3720	jnb	1f
37210:	pushl   $.bcmp_panic_msg
3722	call    panic
37231:	popl    %ebp
3724#endif	/* DEBUG */
3725
3726	pushl	%edi		/ save register variable
3727	movl	ARG_S1(%esp), %eax	/ %eax = address of string 1
3728	movl	ARG_S2(%esp), %ecx	/ %ecx = address of string 2
3729	cmpl	%eax, %ecx	/ if the same string
3730	je	.equal		/ goto .equal
3731	movl	ARG_LENGTH(%esp), %edi	/ %edi = length in bytes
3732	cmpl	$4, %edi	/ if %edi < 4
3733	jb	.byte_check	/ goto .byte_check
3734	.align	4
3735.word_loop:
3736	movl	(%ecx), %edx	/ move 1 word from (%ecx) to %edx
3737	leal	-4(%edi), %edi	/ %edi -= 4
3738	cmpl	(%eax), %edx	/ compare 1 word from (%eax) with %edx
3739	jne	.word_not_equal	/ if not equal, goto .word_not_equal
3740	leal	4(%ecx), %ecx	/ %ecx += 4 (next word)
3741	leal	4(%eax), %eax	/ %eax += 4 (next word)
3742	cmpl	$4, %edi	/ if %edi >= 4
3743	jae	.word_loop	/ goto .word_loop
3744.byte_check:
3745	cmpl	$0, %edi	/ if %edi == 0
3746	je	.equal		/ goto .equal
3747	jmp	.byte_loop	/ goto .byte_loop (checks in bytes)
3748.word_not_equal:
3749	leal	4(%edi), %edi	/ %edi += 4 (post-decremented)
3750	.align	4
3751.byte_loop:
3752	movb	(%ecx),	%dl	/ move 1 byte from (%ecx) to %dl
3753	cmpb	%dl, (%eax)	/ compare %dl with 1 byte from (%eax)
3754	jne	.not_equal	/ if not equal, goto .not_equal
3755	incl	%ecx		/ %ecx++ (next byte)
3756	incl	%eax		/ %eax++ (next byte)
3757	decl	%edi		/ %edi--
3758	jnz	.byte_loop	/ if not zero, goto .byte_loop
3759.equal:
3760	xorl	%eax, %eax	/ %eax = 0
3761	popl	%edi		/ restore register variable
3762	ret			/ return (NULL)
3763	.align	4
3764.not_equal:
3765	movl	$1, %eax	/ return 1
3766	popl	%edi		/ restore register variable
3767	ret			/ return (NULL)
3768	SET_SIZE(bcmp)
3769
3770#endif	/* __i386 */
3771
3772#ifdef DEBUG
3773	.text
3774.bcmp_panic_msg:
3775	.string "bcmp: arguments below kernelbase"
3776#endif	/* DEBUG */
3777
3778#endif	/* __lint */
3779