xref: /titanic_50/usr/src/uts/intel/ia32/ml/i86_subr.s (revision 6dfee4834394825da35b977ca71cdc965bc7b6a4)
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License").  You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22/*
23 * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*
28 *  Copyright (c) 1990, 1991 UNIX System Laboratories, Inc.
29 *  Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T
30 *    All Rights Reserved
31 */
32
33#pragma ident	"%Z%%M%	%I%	%E% SMI"
34
35/*
36 * General assembly language routines.
37 * It is the intent of this file to contain routines that are
38 * independent of the specific kernel architecture, and those that are
39 * common across kernel architectures.
40 * As architectures diverge, and implementations of specific
41 * architecture-dependent routines change, the routines should be moved
42 * from this file into the respective ../`arch -k`/subr.s file.
43 */
44
45#include <sys/asm_linkage.h>
46#include <sys/asm_misc.h>
47#include <sys/panic.h>
48#include <sys/ontrap.h>
49#include <sys/regset.h>
50#include <sys/privregs.h>
51#include <sys/reboot.h>
52#include <sys/psw.h>
53#include <sys/x86_archext.h>
54
55#if defined(__lint)
56#include <sys/types.h>
57#include <sys/systm.h>
58#include <sys/thread.h>
59#include <sys/archsystm.h>
60#include <sys/byteorder.h>
61#include <sys/dtrace.h>
62#else	/* __lint */
63#include "assym.h"
64#endif	/* __lint */
65#include <sys/dditypes.h>
66
67/*
68 * on_fault()
69 * Catch lofault faults. Like setjmp except it returns one
70 * if code following causes uncorrectable fault. Turned off
71 * by calling no_fault().
72 */
73
74#if defined(__lint)
75
76/* ARGSUSED */
77int
78on_fault(label_t *ljb)
79{ return (0); }
80
81void
82no_fault(void)
83{}
84
85#else	/* __lint */
86
87#if defined(__amd64)
88
89	ENTRY(on_fault)
90	movq	%gs:CPU_THREAD, %rsi
91	leaq	catch_fault(%rip), %rdx
92	movq	%rdi, T_ONFAULT(%rsi)		/* jumpbuf in t_onfault */
93	movq	%rdx, T_LOFAULT(%rsi)		/* catch_fault in t_lofault */
94	jmp	setjmp				/* let setjmp do the rest */
95
96catch_fault:
97	movq	%gs:CPU_THREAD, %rsi
98	movq	T_ONFAULT(%rsi), %rdi		/* address of save area */
99	xorl	%eax, %eax
100	movq	%rax, T_ONFAULT(%rsi)		/* turn off onfault */
101	movq	%rax, T_LOFAULT(%rsi)		/* turn off lofault */
102	jmp	longjmp				/* let longjmp do the rest */
103	SET_SIZE(on_fault)
104
105	ENTRY(no_fault)
106	movq	%gs:CPU_THREAD, %rsi
107	xorl	%eax, %eax
108	movq	%rax, T_ONFAULT(%rsi)		/* turn off onfault */
109	movq	%rax, T_LOFAULT(%rsi)		/* turn off lofault */
110	ret
111	SET_SIZE(no_fault)
112
113#elif defined(__i386)
114
115	ENTRY(on_fault)
116	movl	%gs:CPU_THREAD, %edx
117	movl	4(%esp), %eax			/* jumpbuf address */
118	leal	catch_fault, %ecx
119	movl	%eax, T_ONFAULT(%edx)		/* jumpbuf in t_onfault */
120	movl	%ecx, T_LOFAULT(%edx)		/* catch_fault in t_lofault */
121	jmp	setjmp				/* let setjmp do the rest */
122
123catch_fault:
124	movl	%gs:CPU_THREAD, %edx
125	xorl	%eax, %eax
126	movl	T_ONFAULT(%edx), %ecx		/* address of save area */
127	movl	%eax, T_ONFAULT(%edx)		/* turn off onfault */
128	movl	%eax, T_LOFAULT(%edx)		/* turn off lofault */
129	pushl	%ecx
130	call	longjmp				/* let longjmp do the rest */
131	SET_SIZE(on_fault)
132
133	ENTRY(no_fault)
134	movl	%gs:CPU_THREAD, %edx
135	xorl	%eax, %eax
136	movl	%eax, T_ONFAULT(%edx)		/* turn off onfault */
137	movl	%eax, T_LOFAULT(%edx)		/* turn off lofault */
138	ret
139	SET_SIZE(no_fault)
140
141#endif	/* __i386 */
142#endif	/* __lint */
143
144/*
145 * Default trampoline code for on_trap() (see <sys/ontrap.h>).  We just
146 * do a longjmp(&curthread->t_ontrap->ot_jmpbuf) if this is ever called.
147 */
148
149#if defined(lint)
150
151void
152on_trap_trampoline(void)
153{}
154
155#else	/* __lint */
156
157#if defined(__amd64)
158
159	ENTRY(on_trap_trampoline)
160	movq	%gs:CPU_THREAD, %rsi
161	movq	T_ONTRAP(%rsi), %rdi
162	addq	$OT_JMPBUF, %rdi
163	jmp	longjmp
164	SET_SIZE(on_trap_trampoline)
165
166#elif defined(__i386)
167
168	ENTRY(on_trap_trampoline)
169	movl	%gs:CPU_THREAD, %eax
170	movl	T_ONTRAP(%eax), %eax
171	addl	$OT_JMPBUF, %eax
172	pushl	%eax
173	call	longjmp
174	SET_SIZE(on_trap_trampoline)
175
176#endif	/* __i386 */
177#endif	/* __lint */
178
179/*
180 * Push a new element on to the t_ontrap stack.  Refer to <sys/ontrap.h> for
181 * more information about the on_trap() mechanism.  If the on_trap_data is the
182 * same as the topmost stack element, we just modify that element.
183 */
184#if defined(lint)
185
186/*ARGSUSED*/
187int
188on_trap(on_trap_data_t *otp, uint_t prot)
189{ return (0); }
190
191#else	/* __lint */
192
193#if defined(__amd64)
194
195	ENTRY(on_trap)
196	movw	%si, OT_PROT(%rdi)		/* ot_prot = prot */
197	movw	$0, OT_TRAP(%rdi)		/* ot_trap = 0 */
198	leaq	on_trap_trampoline(%rip), %rdx	/* rdx = &on_trap_trampoline */
199	movq	%rdx, OT_TRAMPOLINE(%rdi)	/* ot_trampoline = rdx */
200	xorl	%ecx, %ecx
201	movq	%rcx, OT_HANDLE(%rdi)		/* ot_handle = NULL */
202	movq	%rcx, OT_PAD1(%rdi)		/* ot_pad1 = NULL */
203	movq	%gs:CPU_THREAD, %rdx		/* rdx = curthread */
204	movq	T_ONTRAP(%rdx), %rcx		/* rcx = curthread->t_ontrap */
205	cmpq	%rdi, %rcx			/* if (otp == %rcx)	*/
206	je	0f				/*	don't modify t_ontrap */
207
208	movq	%rcx, OT_PREV(%rdi)		/* ot_prev = t_ontrap */
209	movq	%rdi, T_ONTRAP(%rdx)		/* curthread->t_ontrap = otp */
210
2110:	addq	$OT_JMPBUF, %rdi		/* &ot_jmpbuf */
212	jmp	setjmp
213	SET_SIZE(on_trap)
214
215#elif defined(__i386)
216
217	ENTRY(on_trap)
218	movl	4(%esp), %eax			/* %eax = otp */
219	movl	8(%esp), %edx			/* %edx = prot */
220
221	movw	%dx, OT_PROT(%eax)		/* ot_prot = prot */
222	movw	$0, OT_TRAP(%eax)		/* ot_trap = 0 */
223	leal	on_trap_trampoline, %edx	/* %edx = &on_trap_trampoline */
224	movl	%edx, OT_TRAMPOLINE(%eax)	/* ot_trampoline = %edx */
225	movl	$0, OT_HANDLE(%eax)		/* ot_handle = NULL */
226	movl	$0, OT_PAD1(%eax)		/* ot_pad1 = NULL */
227	movl	%gs:CPU_THREAD, %edx		/* %edx = curthread */
228	movl	T_ONTRAP(%edx), %ecx		/* %ecx = curthread->t_ontrap */
229	cmpl	%eax, %ecx			/* if (otp == %ecx) */
230	je	0f				/*    don't modify t_ontrap */
231
232	movl	%ecx, OT_PREV(%eax)		/* ot_prev = t_ontrap */
233	movl	%eax, T_ONTRAP(%edx)		/* curthread->t_ontrap = otp */
234
2350:	addl	$OT_JMPBUF, %eax		/* %eax = &ot_jmpbuf */
236	movl	%eax, 4(%esp)			/* put %eax back on the stack */
237	jmp	setjmp				/* let setjmp do the rest */
238	SET_SIZE(on_trap)
239
240#endif	/* __i386 */
241#endif	/* __lint */
242
243/*
244 * Setjmp and longjmp implement non-local gotos using state vectors
245 * type label_t.
246 */
247
248#if defined(__lint)
249
250/* ARGSUSED */
251int
252setjmp(label_t *lp)
253{ return (0); }
254
255/* ARGSUSED */
256void
257longjmp(label_t *lp)
258{}
259
260#else	/* __lint */
261
262#if LABEL_PC != 0
263#error LABEL_PC MUST be defined as 0 for setjmp/longjmp to work as coded
264#endif	/* LABEL_PC != 0 */
265
266#if defined(__amd64)
267
268	ENTRY(setjmp)
269	movq	%rsp, LABEL_SP(%rdi)
270	movq	%rbp, LABEL_RBP(%rdi)
271	movq	%rbx, LABEL_RBX(%rdi)
272	movq	%r12, LABEL_R12(%rdi)
273	movq	%r13, LABEL_R13(%rdi)
274	movq	%r14, LABEL_R14(%rdi)
275	movq	%r15, LABEL_R15(%rdi)
276	movq	(%rsp), %rdx		/* return address */
277	movq	%rdx, (%rdi)		/* LABEL_PC is 0 */
278	xorl	%eax, %eax		/* return 0 */
279	ret
280	SET_SIZE(setjmp)
281
282	ENTRY(longjmp)
283	movq	LABEL_SP(%rdi), %rsp
284	movq	LABEL_RBP(%rdi), %rbp
285	movq	LABEL_RBX(%rdi), %rbx
286	movq	LABEL_R12(%rdi), %r12
287	movq	LABEL_R13(%rdi), %r13
288	movq	LABEL_R14(%rdi), %r14
289	movq	LABEL_R15(%rdi), %r15
290	movq	(%rdi), %rdx		/* return address; LABEL_PC is 0 */
291	movq	%rdx, (%rsp)
292	xorl	%eax, %eax
293	incl	%eax			/* return 1 */
294	ret
295	SET_SIZE(longjmp)
296
297#elif defined(__i386)
298
299	ENTRY(setjmp)
300	movl	4(%esp), %edx		/* address of save area */
301	movl	%ebp, LABEL_EBP(%edx)
302	movl	%ebx, LABEL_EBX(%edx)
303	movl	%esi, LABEL_ESI(%edx)
304	movl	%edi, LABEL_EDI(%edx)
305	movl	%esp, 4(%edx)
306	movl	(%esp), %ecx		/* %eip (return address) */
307	movl	%ecx, (%edx)		/* LABEL_PC is 0 */
308	subl	%eax, %eax		/* return 0 */
309	ret
310	SET_SIZE(setjmp)
311
312	ENTRY(longjmp)
313	movl	4(%esp), %edx		/* address of save area */
314	movl	LABEL_EBP(%edx), %ebp
315	movl	LABEL_EBX(%edx), %ebx
316	movl	LABEL_ESI(%edx), %esi
317	movl	LABEL_EDI(%edx), %edi
318	movl	4(%edx), %esp
319	movl	(%edx), %ecx		/* %eip (return addr); LABEL_PC is 0 */
320	movl	$1, %eax
321	addl	$4, %esp		/* pop ret adr */
322	jmp	*%ecx			/* indirect */
323	SET_SIZE(longjmp)
324
325#endif	/* __i386 */
326#endif	/* __lint */
327
328/*
329 * if a() calls b() calls caller(),
330 * caller() returns return address in a().
331 * (Note: We assume a() and b() are C routines which do the normal entry/exit
332 *  sequence.)
333 */
334
335#if defined(__lint)
336
337caddr_t
338caller(void)
339{ return (0); }
340
341#else	/* __lint */
342
343#if defined(__amd64)
344
345	ENTRY(caller)
346	movq	8(%rbp), %rax		/* b()'s return pc, in a() */
347	ret
348	SET_SIZE(caller)
349
350#elif defined(__i386)
351
352	ENTRY(caller)
353	movl	4(%ebp), %eax		/* b()'s return pc, in a() */
354	ret
355	SET_SIZE(caller)
356
357#endif	/* __i386 */
358#endif	/* __lint */
359
360/*
361 * if a() calls callee(), callee() returns the
362 * return address in a();
363 */
364
365#if defined(__lint)
366
367caddr_t
368callee(void)
369{ return (0); }
370
371#else	/* __lint */
372
373#if defined(__amd64)
374
375	ENTRY(callee)
376	movq	(%rsp), %rax		/* callee()'s return pc, in a() */
377	ret
378	SET_SIZE(callee)
379
380#elif defined(__i386)
381
382	ENTRY(callee)
383	movl	(%esp), %eax		/* callee()'s return pc, in a() */
384	ret
385	SET_SIZE(callee)
386
387#endif	/* __i386 */
388#endif	/* __lint */
389
390/*
391 * return the current frame pointer
392 */
393
394#if defined(__lint)
395
396greg_t
397getfp(void)
398{ return (0); }
399
400#else	/* __lint */
401
402#if defined(__amd64)
403
404	ENTRY(getfp)
405	movq	%rbp, %rax
406	ret
407	SET_SIZE(getfp)
408
409#elif defined(__i386)
410
411	ENTRY(getfp)
412	movl	%ebp, %eax
413	ret
414	SET_SIZE(getfp)
415
416#endif	/* __i386 */
417#endif	/* __lint */
418
419/*
420 * Invalidate a single page table entry in the TLB
421 */
422
423#if defined(__lint)
424
425/* ARGSUSED */
426void
427mmu_tlbflush_entry(caddr_t m)
428{}
429
430#else	/* __lint */
431
432#if defined(__amd64)
433
434	ENTRY(mmu_tlbflush_entry)
435	invlpg	(%rdi)
436	ret
437	SET_SIZE(mmu_tlbflush_entry)
438
439#elif defined(__i386)
440
441	ENTRY(mmu_tlbflush_entry)
442	movl	4(%esp), %eax
443	invlpg	(%eax)
444	ret
445	SET_SIZE(mmu_tlbflush_entry)
446
447#endif	/* __i386 */
448#endif	/* __lint */
449
450
451/*
452 * Get/Set the value of various control registers
453 */
454
455#if defined(__lint)
456
457ulong_t
458getcr0(void)
459{ return (0); }
460
461/* ARGSUSED */
462void
463setcr0(ulong_t value)
464{}
465
466ulong_t
467getcr2(void)
468{ return (0); }
469
470ulong_t
471getcr3(void)
472{ return (0); }
473
474/* ARGSUSED */
475void
476setcr3(ulong_t val)
477{}
478
479void
480reload_cr3(void)
481{}
482
483ulong_t
484getcr4(void)
485{ return (0); }
486
487/* ARGSUSED */
488void
489setcr4(ulong_t val)
490{}
491
492#if defined(__amd64)
493
494ulong_t
495getcr8(void)
496{ return (0); }
497
498/* ARGSUSED */
499void
500setcr8(ulong_t val)
501{}
502
503#endif	/* __amd64 */
504
505#else	/* __lint */
506
507#if defined(__amd64)
508
509	ENTRY(getcr0)
510	movq	%cr0, %rax
511	ret
512	SET_SIZE(getcr0)
513
514	ENTRY(setcr0)
515	movq	%rdi, %cr0
516	ret
517	SET_SIZE(setcr0)
518
519	ENTRY(getcr2)
520	movq	%cr2, %rax
521	ret
522	SET_SIZE(getcr2)
523
524	ENTRY(getcr3)
525	movq	%cr3, %rax
526	ret
527	SET_SIZE(getcr3)
528
529	ENTRY(setcr3)
530	movq	%rdi, %cr3
531	ret
532	SET_SIZE(setcr3)
533
534	ENTRY(reload_cr3)
535	movq	%cr3, %rdi
536	movq	%rdi, %cr3
537	ret
538	SET_SIZE(reload_cr3)
539
540	ENTRY(getcr4)
541	movq	%cr4, %rax
542	ret
543	SET_SIZE(getcr4)
544
545	ENTRY(setcr4)
546	movq	%rdi, %cr4
547	ret
548	SET_SIZE(setcr4)
549
550	ENTRY(getcr8)
551	movq	%cr8, %rax
552	ret
553	SET_SIZE(getcr8)
554
555	ENTRY(setcr8)
556	movq	%rdi, %cr8
557	ret
558	SET_SIZE(setcr8)
559
560#elif defined(__i386)
561
562        ENTRY(getcr0)
563        movl    %cr0, %eax
564        ret
565	SET_SIZE(getcr0)
566
567        ENTRY(setcr0)
568        movl    4(%esp), %eax
569        movl    %eax, %cr0
570        ret
571	SET_SIZE(setcr0)
572
573        ENTRY(getcr2)
574        movl    %cr2, %eax
575        ret
576	SET_SIZE(getcr2)
577
578	ENTRY(getcr3)
579	movl    %cr3, %eax
580	ret
581	SET_SIZE(getcr3)
582
583        ENTRY(setcr3)
584        movl    4(%esp), %eax
585        movl    %eax, %cr3
586        ret
587	SET_SIZE(setcr3)
588
589	ENTRY(reload_cr3)
590	movl    %cr3, %eax
591	movl    %eax, %cr3
592	ret
593	SET_SIZE(reload_cr3)
594
595	ENTRY(getcr4)
596	movl    %cr4, %eax
597	ret
598	SET_SIZE(getcr4)
599
600        ENTRY(setcr4)
601        movl    4(%esp), %eax
602        movl    %eax, %cr4
603        ret
604	SET_SIZE(setcr4)
605
606#endif	/* __i386 */
607#endif	/* __lint */
608
609#if defined(__lint)
610
611/*ARGSUSED*/
612uint32_t
613__cpuid_insn(uint32_t eax, uint32_t *ebxp, uint32_t *ecxp, uint32_t *edxp)
614{ return (0); }
615
616#else	/* __lint */
617
618#if defined(__amd64)
619
620	ENTRY(__cpuid_insn)
621	movq	%rbx, %r11
622	movq	%rdx, %r8	/* r8 = ecxp */
623	movq	%rcx, %r9	/* r9 = edxp */
624	movl	%edi, %eax
625	cpuid
626	movl	%ebx, (%rsi)
627	movl	%ecx, (%r8)
628	movl	%edx, (%r9)
629	movq	%r11, %rbx
630	ret
631	SET_SIZE(__cpuid_insn)
632
633#elif defined(__i386)
634
635        ENTRY(__cpuid_insn)
636	pushl	%ebp
637	movl	%esp, %ebp
638	pushl	%ebx
639	movl	8(%ebp), %eax
640	cpuid
641	pushl	%eax
642	movl	0x0c(%ebp), %eax
643	movl	%ebx, (%eax)
644	movl	0x10(%ebp), %eax
645	movl	%ecx, (%eax)
646	movl	0x14(%ebp), %eax
647	movl	%edx, (%eax)
648	popl	%eax
649	popl	%ebx
650	popl	%ebp
651	ret
652	SET_SIZE(__cpuid_insn)
653
654#endif	/* __i386 */
655#endif	/* __lint */
656
657/*
658 * Insert entryp after predp in a doubly linked list.
659 */
660
661#if defined(__lint)
662
663/*ARGSUSED*/
664void
665_insque(caddr_t entryp, caddr_t predp)
666{}
667
668#else	/* __lint */
669
670#if defined(__amd64)
671
672	ENTRY(_insque)
673	movq	(%rsi), %rax		/* predp->forw 			*/
674	movq	%rsi, CPTRSIZE(%rdi)	/* entryp->back = predp		*/
675	movq	%rax, (%rdi)		/* entryp->forw = predp->forw	*/
676	movq	%rdi, (%rsi)		/* predp->forw = entryp		*/
677	movq	%rdi, CPTRSIZE(%rax)	/* predp->forw->back = entryp	*/
678	ret
679	SET_SIZE(_insque)
680
681#elif defined(__i386)
682
683	ENTRY(_insque)
684	movl	8(%esp), %edx
685	movl	4(%esp), %ecx
686	movl	(%edx), %eax		/* predp->forw			*/
687	movl	%edx, CPTRSIZE(%ecx)	/* entryp->back = predp		*/
688	movl	%eax, (%ecx)		/* entryp->forw = predp->forw	*/
689	movl	%ecx, (%edx)		/* predp->forw = entryp		*/
690	movl	%ecx, CPTRSIZE(%eax)	/* predp->forw->back = entryp	*/
691	ret
692	SET_SIZE(_insque)
693
694#endif	/* __i386 */
695#endif	/* __lint */
696
697/*
698 * Remove entryp from a doubly linked list
699 */
700
701#if defined(__lint)
702
703/*ARGSUSED*/
704void
705_remque(caddr_t entryp)
706{}
707
708#else	/* __lint */
709
710#if defined(__amd64)
711
712	ENTRY(_remque)
713	movq	(%rdi), %rax		/* entry->forw */
714	movq	CPTRSIZE(%rdi), %rdx	/* entry->back */
715	movq	%rax, (%rdx)		/* entry->back->forw = entry->forw */
716	movq	%rdx, CPTRSIZE(%rax)	/* entry->forw->back = entry->back */
717	ret
718	SET_SIZE(_remque)
719
720#elif defined(__i386)
721
722	ENTRY(_remque)
723	movl	4(%esp), %ecx
724	movl	(%ecx), %eax		/* entry->forw */
725	movl	CPTRSIZE(%ecx), %edx	/* entry->back */
726	movl	%eax, (%edx)		/* entry->back->forw = entry->forw */
727	movl	%edx, CPTRSIZE(%eax)	/* entry->forw->back = entry->back */
728	ret
729	SET_SIZE(_remque)
730
731#endif	/* __i386 */
732#endif	/* __lint */
733
734/*
735 * Returns the number of
736 * non-NULL bytes in string argument.
737 */
738
739#if defined(__lint)
740
741/* ARGSUSED */
742size_t
743strlen(const char *str)
744{ return (0); }
745
746#else	/* __lint */
747
748#if defined(__amd64)
749
750/*
751 * This is close to a simple transliteration of a C version of this
752 * routine.  We should either just -make- this be a C version, or
753 * justify having it in assembler by making it significantly faster.
754 *
755 * size_t
756 * strlen(const char *s)
757 * {
758 *	const char *s0;
759 * #if defined(DEBUG)
760 *	if ((uintptr_t)s < KERNELBASE)
761 *		panic(.str_panic_msg);
762 * #endif
763 *	for (s0 = s; *s; s++)
764 *		;
765 *	return (s - s0);
766 * }
767 */
768
769	ENTRY(strlen)
770#ifdef DEBUG
771	movq	kernelbase(%rip), %rax
772	cmpq	%rax, %rdi
773	jae	str_valid
774	pushq	%rbp
775	movq	%rsp, %rbp
776	leaq	.str_panic_msg(%rip), %rdi
777	xorl	%eax, %eax
778	call	panic
779#endif	/* DEBUG */
780str_valid:
781	cmpb	$0, (%rdi)
782	movq	%rdi, %rax
783	je	.null_found
784	.align	4
785.strlen_loop:
786	incq	%rdi
787	cmpb	$0, (%rdi)
788	jne	.strlen_loop
789.null_found:
790	subq	%rax, %rdi
791	movq	%rdi, %rax
792	ret
793	SET_SIZE(strlen)
794
795#elif defined(__i386)
796
797	ENTRY(strlen)
798#ifdef DEBUG
799	movl	kernelbase, %eax
800	cmpl	%eax, 4(%esp)
801	jae	str_valid
802	pushl	%ebp
803	movl	%esp, %ebp
804	pushl	$.str_panic_msg
805	call	panic
806#endif /* DEBUG */
807
808str_valid:
809	movl	4(%esp), %eax		/* %eax = string address */
810	testl	$3, %eax		/* if %eax not word aligned */
811	jnz	.not_word_aligned	/* goto .not_word_aligned */
812	.align	4
813.word_aligned:
814	movl	(%eax), %edx		/* move 1 word from (%eax) to %edx */
815	movl	$0x7f7f7f7f, %ecx
816	andl	%edx, %ecx		/* %ecx = %edx & 0x7f7f7f7f */
817	addl	$4, %eax		/* next word */
818	addl	$0x7f7f7f7f, %ecx	/* %ecx += 0x7f7f7f7f */
819	orl	%edx, %ecx		/* %ecx |= %edx */
820	andl	$0x80808080, %ecx	/* %ecx &= 0x80808080 */
821	cmpl	$0x80808080, %ecx	/* if no null byte in this word */
822	je	.word_aligned		/* goto .word_aligned */
823	subl	$4, %eax		/* post-incremented */
824.not_word_aligned:
825	cmpb	$0, (%eax)		/* if a byte in (%eax) is null */
826	je	.null_found		/* goto .null_found */
827	incl	%eax			/* next byte */
828	testl	$3, %eax		/* if %eax not word aligned */
829	jnz	.not_word_aligned	/* goto .not_word_aligned */
830	jmp	.word_aligned		/* goto .word_aligned */
831	.align	4
832.null_found:
833	subl	4(%esp), %eax		/* %eax -= string address */
834	ret
835	SET_SIZE(strlen)
836
837#endif	/* __i386 */
838
839#ifdef DEBUG
840	.text
841.str_panic_msg:
842	.string "strlen: argument below kernelbase"
843#endif /* DEBUG */
844
845#endif	/* __lint */
846
847	/*
848	 * Berkley 4.3 introduced symbolically named interrupt levels
849	 * as a way deal with priority in a machine independent fashion.
850	 * Numbered priorities are machine specific, and should be
851	 * discouraged where possible.
852	 *
853	 * Note, for the machine specific priorities there are
854	 * examples listed for devices that use a particular priority.
855	 * It should not be construed that all devices of that
856	 * type should be at that priority.  It is currently were
857	 * the current devices fit into the priority scheme based
858	 * upon time criticalness.
859	 *
860	 * The underlying assumption of these assignments is that
861	 * IPL 10 is the highest level from which a device
862	 * routine can call wakeup.  Devices that interrupt from higher
863	 * levels are restricted in what they can do.  If they need
864	 * kernels services they should schedule a routine at a lower
865	 * level (via software interrupt) to do the required
866	 * processing.
867	 *
868	 * Examples of this higher usage:
869	 *	Level	Usage
870	 *	14	Profiling clock (and PROM uart polling clock)
871	 *	12	Serial ports
872	 *
873	 * The serial ports request lower level processing on level 6.
874	 *
875	 * Also, almost all splN routines (where N is a number or a
876	 * mnemonic) will do a RAISE(), on the assumption that they are
877	 * never used to lower our priority.
878	 * The exceptions are:
879	 *	spl8()		Because you can't be above 15 to begin with!
880	 *	splzs()		Because this is used at boot time to lower our
881	 *			priority, to allow the PROM to poll the uart.
882	 *	spl0()		Used to lower priority to 0.
883	 */
884
885#if defined(__lint)
886
887int spl0(void)		{ return (0); }
888int spl6(void)		{ return (0); }
889int spl7(void)		{ return (0); }
890int spl8(void)		{ return (0); }
891int splhigh(void)	{ return (0); }
892int splhi(void)		{ return (0); }
893int splzs(void)		{ return (0); }
894
895#else	/* __lint */
896
897/* reg = cpu->cpu_m.cpu_pri; */
898#define	GETIPL_NOGS(reg, cpup)	\
899	movl	CPU_PRI(cpup), reg;
900
901/* cpu->cpu_m.cpu_pri; */
902#define	SETIPL_NOGS(val, cpup)	\
903	movl	val, CPU_PRI(cpup);
904
905/* reg = cpu->cpu_m.cpu_pri; */
906#define	GETIPL(reg)	\
907	movl	%gs:CPU_PRI, reg;
908
909/* cpu->cpu_m.cpu_pri; */
910#define	SETIPL(val)	\
911	movl	val, %gs:CPU_PRI;
912
913/*
914 * Macro to raise processor priority level.
915 * Avoid dropping processor priority if already at high level.
916 * Also avoid going below CPU->cpu_base_spl, which could've just been set by
917 * a higher-level interrupt thread that just blocked.
918 */
919#if defined(__amd64)
920
921#define	RAISE(level) \
922	cli;			\
923	LOADCPU(%rcx);		\
924	movl	$/**/level, %edi;\
925	GETIPL_NOGS(%eax, %rcx);\
926	cmpl 	%eax, %edi;	\
927	jg	spl;		\
928	jmp	setsplhisti
929
930#elif defined(__i386)
931
932#define	RAISE(level) \
933	cli;			\
934	LOADCPU(%ecx);		\
935	movl	$/**/level, %edx;\
936	GETIPL_NOGS(%eax, %ecx);\
937	cmpl 	%eax, %edx;	\
938	jg	spl;		\
939	jmp	setsplhisti
940
941#endif	/* __i386 */
942
943/*
944 * Macro to set the priority to a specified level.
945 * Avoid dropping the priority below CPU->cpu_base_spl.
946 */
947#if defined(__amd64)
948
949#define	SETPRI(level) \
950	cli;				\
951	LOADCPU(%rcx);			\
952	movl	$/**/level, %edi;	\
953	jmp	spl
954
955#elif defined(__i386)
956
957#define SETPRI(level) \
958	cli;				\
959	LOADCPU(%ecx);			\
960	movl	$/**/level, %edx;	\
961	jmp	spl
962
963#endif	/* __i386 */
964
965	/* locks out all interrupts, including memory errors */
966	ENTRY(spl8)
967	SETPRI(15)
968	SET_SIZE(spl8)
969
970	/* just below the level that profiling runs */
971	ENTRY(spl7)
972	RAISE(13)
973	SET_SIZE(spl7)
974
975	/* sun specific - highest priority onboard serial i/o asy ports */
976	ENTRY(splzs)
977	SETPRI(12)	/* Can't be a RAISE, as it's used to lower us */
978	SET_SIZE(splzs)
979
980	/*
981	 * should lock out clocks and all interrupts,
982	 * as you can see, there are exceptions
983	 */
984
985#if defined(__amd64)
986
987	.align	16
988	ENTRY(splhi)
989	ALTENTRY(splhigh)
990	ALTENTRY(spl6)
991	ALTENTRY(i_ddi_splhigh)
992	cli
993	LOADCPU(%rcx)
994	movl	$DISP_LEVEL, %edi
995	movl	CPU_PRI(%rcx), %eax
996	cmpl	%eax, %edi
997	jle	setsplhisti
998	SETIPL_NOGS(%edi, %rcx)
999	/*
1000	 * If we aren't using cr8 to control ipl then we patch this
1001	 * with a jump to slow_setsplhi
1002	 */
1003	ALTENTRY(setsplhi_patch)
1004	movq	CPU_PRI_DATA(%rcx), %r11 /* get pri data ptr */
1005	movzb	(%r11, %rdi, 1), %rdx	/* get apic mask for this ipl */
1006	movq	%rdx, %cr8		/* set new apic priority */
1007	/*
1008	 * enable interrupts
1009	 */
1010setsplhisti:
1011	nop	/* patch this to a sti when a proper setspl routine appears */
1012	ret
1013
1014	ALTENTRY(slow_setsplhi)
1015	pushq	%rbp
1016	movq	%rsp, %rbp
1017	subq	$16, %rsp
1018	movl	%eax, -4(%rbp)		/* save old ipl */
1019	call	*setspl(%rip)
1020	movl	-4(%rbp), %eax		/* return old ipl */
1021	leave
1022	jmp	setsplhisti
1023
1024	SET_SIZE(i_ddi_splhigh)
1025	SET_SIZE(spl6)
1026	SET_SIZE(splhigh)
1027	SET_SIZE(splhi)
1028
1029#elif defined(__i386)
1030
1031	.align	16
1032	ENTRY(splhi)
1033	ALTENTRY(splhigh)
1034	ALTENTRY(spl6)
1035	ALTENTRY(i_ddi_splhigh)
1036	cli
1037	LOADCPU(%ecx)
1038	movl	$DISP_LEVEL, %edx
1039	movl	CPU_PRI(%ecx), %eax
1040	cmpl	%eax, %edx
1041	jle	setsplhisti
1042	SETIPL_NOGS(%edx, %ecx)		/* set new ipl */
1043
1044	pushl   %eax                    /* save old ipl */
1045	pushl	%edx			/* pass new ipl */
1046	call	*setspl
1047	popl	%ecx			/* dummy pop */
1048	popl    %eax                    /* return old ipl */
1049	/*
1050	 * enable interrupts
1051	 *
1052	 * (we patch this to an sti once a proper setspl routine
1053	 * is installed)
1054	 */
1055setsplhisti:
1056	nop	/* patch this to a sti when a proper setspl routine appears */
1057	ret
1058	SET_SIZE(i_ddi_splhigh)
1059	SET_SIZE(spl6)
1060	SET_SIZE(splhigh)
1061	SET_SIZE(splhi)
1062
1063#endif	/* __i386 */
1064
1065	/* allow all interrupts */
1066	ENTRY(spl0)
1067	SETPRI(0)
1068	SET_SIZE(spl0)
1069
1070#endif	/* __lint */
1071
1072/*
1073 * splr is like splx but will only raise the priority and never drop it
1074 */
1075#if defined(__lint)
1076
1077/* ARGSUSED */
1078int
1079splr(int level)
1080{ return (0); }
1081
1082#else	/* __lint */
1083
1084#if defined(__amd64)
1085
1086	ENTRY(splr)
1087	cli
1088	LOADCPU(%rcx)
1089	GETIPL_NOGS(%eax, %rcx)
1090	cmpl	%eax, %edi		/* if new level > current level */
1091	jg	spl			/* then set ipl to new level */
1092splr_setsti:
1093	nop	/* patch this to a sti when a proper setspl routine appears */
1094	ret				/* else return the current level */
1095	SET_SIZE(splr)
1096
1097#elif defined(__i386)
1098
1099	ENTRY(splr)
1100	cli
1101	LOADCPU(%ecx)
1102	movl	4(%esp), %edx		/* get new spl level */
1103	GETIPL_NOGS(%eax, %ecx)
1104	cmpl 	%eax, %edx		/* if new level > current level */
1105	jg	spl			/* then set ipl to new level */
1106splr_setsti:
1107	nop	/* patch this to a sti when a proper setspl routine appears */
1108	ret				/* else return the current level */
1109	SET_SIZE(splr)
1110
1111#endif	/* __i386 */
1112#endif	/* __lint */
1113
1114
1115
1116/*
1117 * splx - set PIL back to that indicated by the level passed as an argument,
1118 * or to the CPU's base priority, whichever is higher.
1119 * Needs to be fall through to spl to save cycles.
1120 * Algorithm for spl:
1121 *
1122 *      turn off interrupts
1123 *
1124 *	if (CPU->cpu_base_spl > newipl)
1125 *		newipl = CPU->cpu_base_spl;
1126 *      oldipl = CPU->cpu_pridata->c_ipl;
1127 *      CPU->cpu_pridata->c_ipl = newipl;
1128 *
1129 *	/indirectly call function to set spl values (usually setpicmasks)
1130 *      setspl();  // load new masks into pics
1131 *
1132 * Be careful not to set priority lower than CPU->cpu_base_pri,
1133 * even though it seems we're raising the priority, it could be set
1134 * higher at any time by an interrupt routine, so we must block interrupts
1135 * and look at CPU->cpu_base_pri
1136 */
1137#if defined(__lint)
1138
1139/* ARGSUSED */
1140void
1141splx(int level)
1142{}
1143
1144#else	/* __lint */
1145
1146#if defined(__amd64)
1147
1148	ENTRY(splx)
1149	ALTENTRY(i_ddi_splx)
1150	cli				/* disable interrupts */
1151	LOADCPU(%rcx)
1152	/*FALLTHRU*/
1153	.align	4
1154spl:
1155	/*
1156	 * New priority level is in %edi, cpu struct pointer is in %rcx
1157	 */
1158	GETIPL_NOGS(%eax, %rcx)		/* get current ipl */
1159	cmpl   %edi, CPU_BASE_SPL(%rcx) /* if (base spl > new ipl) */
1160	ja     set_to_base_spl		/* then use base_spl */
1161
1162setprilev:
1163	SETIPL_NOGS(%edi, %rcx)		/* set new ipl */
1164	/*
1165	 * If we aren't using cr8 to control ipl then we patch this
1166	 * with a jump to slow_spl
1167	 */
1168	ALTENTRY(spl_patch)
1169	movq	CPU_PRI_DATA(%rcx), %r11 /* get pri data ptr */
1170	movzb	(%r11, %rdi, 1), %rdx	/* get apic mask for this ipl */
1171	movq	%rdx, %cr8		/* set new apic priority */
1172	xorl	%edx, %edx
1173	bsrl	CPU_SOFTINFO(%rcx), %edx /* fls(cpu->cpu_softinfo.st_pending) */
1174	cmpl	%edi, %edx		/* new ipl vs. st_pending */
1175	jle	setsplsti
1176
1177	pushq	%rbp
1178	movq	%rsp, %rbp
1179	/* stack now 16-byte aligned */
1180	pushq	%rax			/* save old spl */
1181	pushq	%rdi			/* save new ipl too */
1182	jmp	fakesoftint
1183
1184setsplsti:
1185	nop	/* patch this to a sti when a proper setspl routine appears */
1186	ret
1187
1188	ALTENTRY(slow_spl)
1189	pushq	%rbp
1190	movq	%rsp, %rbp
1191	/* stack now 16-byte aligned */
1192
1193	pushq	%rax			/* save old spl */
1194	pushq	%rdi			/* save new ipl too */
1195
1196	call	*setspl(%rip)
1197
1198	LOADCPU(%rcx)
1199	movl	CPU_SOFTINFO(%rcx), %eax
1200	orl	%eax, %eax
1201	jz	slow_setsplsti
1202
1203	bsrl	%eax, %edx		/* fls(cpu->cpu_softinfo.st_pending) */
1204	cmpl	0(%rsp), %edx		/* new ipl vs. st_pending */
1205	jg	fakesoftint
1206
1207	ALTENTRY(fakesoftint_return)
1208	/*
1209	 * enable interrupts
1210	 */
1211slow_setsplsti:
1212	nop	/* patch this to a sti when a proper setspl routine appears */
1213	popq	%rdi
1214	popq	%rax			/* return old ipl */
1215	leave
1216	ret
1217	SET_SIZE(fakesoftint_return)
1218
1219set_to_base_spl:
1220	movl	CPU_BASE_SPL(%rcx), %edi
1221	jmp	setprilev
1222	SET_SIZE(spl)
1223	SET_SIZE(i_ddi_splx)
1224	SET_SIZE(splx)
1225
1226#elif defined(__i386)
1227
1228	ENTRY(splx)
1229	ALTENTRY(i_ddi_splx)
1230	cli                             /* disable interrupts */
1231	LOADCPU(%ecx)
1232	movl	4(%esp), %edx		/* get new spl level */
1233	/*FALLTHRU*/
1234
1235	.align	4
1236	ALTENTRY(spl)
1237	/*
1238	 * New priority level is in %edx
1239	 * (doing this early to avoid an AGI in the next instruction)
1240	 */
1241	GETIPL_NOGS(%eax, %ecx)		/* get current ipl */
1242	cmpl	%edx, CPU_BASE_SPL(%ecx) /* if ( base spl > new ipl) */
1243	ja	set_to_base_spl		/* then use base_spl */
1244
1245setprilev:
1246	SETIPL_NOGS(%edx, %ecx)		/* set new ipl */
1247
1248	pushl   %eax                    /* save old ipl */
1249	pushl	%edx			/* pass new ipl */
1250	call	*setspl
1251
1252	LOADCPU(%ecx)
1253	movl	CPU_SOFTINFO(%ecx), %eax
1254	orl	%eax, %eax
1255	jz	setsplsti
1256
1257	/*
1258	 * Before dashing off, check that setsplsti has been patched.
1259	 */
1260	cmpl	$NOP_INSTR, setsplsti
1261	je	setsplsti
1262
1263	bsrl	%eax, %edx
1264	cmpl	0(%esp), %edx
1265	jg	fakesoftint
1266
1267	ALTENTRY(fakesoftint_return)
1268	/*
1269	 * enable interrupts
1270	 */
1271setsplsti:
1272	nop	/* patch this to a sti when a proper setspl routine appears */
1273	popl	%eax
1274	popl    %eax			/ return old ipl
1275	ret
1276	SET_SIZE(fakesoftint_return)
1277
1278set_to_base_spl:
1279	movl	CPU_BASE_SPL(%ecx), %edx
1280	jmp	setprilev
1281	SET_SIZE(spl)
1282	SET_SIZE(i_ddi_splx)
1283	SET_SIZE(splx)
1284
1285#endif	/* __i386 */
1286#endif	/* __lint */
1287
1288#if defined(__lint)
1289
1290void
1291install_spl(void)
1292{}
1293
1294#else	/* __lint */
1295
1296#if defined(__amd64)
1297
1298	ENTRY_NP(install_spl)
1299	movq	%cr0, %rax
1300	movq	%rax, %rdx
1301	movl	$_BITNOT(CR0_WP), %ecx
1302	movslq	%ecx, %rcx
1303	andq	%rcx, %rax		/* we don't want to take a fault */
1304	movq	%rax, %cr0
1305	jmp	1f
13061:	movb	$STI_INSTR, setsplsti(%rip)
1307	movb	$STI_INSTR, slow_setsplsti(%rip)
1308	movb	$STI_INSTR, setsplhisti(%rip)
1309	movb	$STI_INSTR, splr_setsti(%rip)
1310	testl	$1, intpri_use_cr8(%rip)	/* are using %cr8 ? */
1311	jz	2f				/* no, go patch more */
1312	movq	%rdx, %cr0
1313	ret
13142:
1315	/*
1316	 * Patch spl functions to use slow spl method
1317	 */
1318	leaq	setsplhi_patch(%rip), %rdi	/* get patch point addr */
1319	leaq	slow_setsplhi(%rip), %rax	/* jmp target */
1320	subq	%rdi, %rax			/* calculate jmp distance */
1321	subq	$2, %rax			/* minus size of jmp instr */
1322	shlq	$8, %rax			/* construct jmp instr */
1323	addq	$JMP_INSTR, %rax
1324	movw	%ax, setsplhi_patch(%rip)	/* patch in the jmp */
1325	leaq	spl_patch(%rip), %rdi		/* get patch point addr */
1326	leaq	slow_spl(%rip), %rax		/* jmp target */
1327	subq	%rdi, %rax			/* calculate jmp distance */
1328	subq	$2, %rax			/* minus size of jmp instr */
1329	shlq	$8, %rax			/* construct jmp instr */
1330	addq	$JMP_INSTR, %rax
1331	movw	%ax, spl_patch(%rip)		/* patch in the jmp */
1332	/*
1333	 * Ensure %cr8 is zero since we aren't using it
1334	 */
1335	xorl	%eax, %eax
1336	movq	%rax, %cr8
1337	movq	%rdx, %cr0
1338	ret
1339	SET_SIZE(install_spl)
1340
1341#elif defined(__i386)
1342
1343	ENTRY_NP(install_spl)
1344	movl	%cr0, %eax
1345	movl	%eax, %edx
1346	andl	$_BITNOT(CR0_WP), %eax	/* we don't want to take a fault */
1347	movl	%eax, %cr0
1348	jmp	1f
13491:	movb	$STI_INSTR, setsplsti
1350	movb	$STI_INSTR, setsplhisti
1351	movb	$STI_INSTR, splr_setsti
1352	movl	%edx, %cr0
1353	ret
1354	SET_SIZE(install_spl)
1355
1356#endif	/* __i386 */
1357#endif	/* __lint */
1358
1359
1360/*
1361 * Get current processor interrupt level
1362 */
1363
1364#if defined(__lint)
1365
1366int
1367getpil(void)
1368{ return (0); }
1369
1370#else	/* __lint */
1371
1372#if defined(__amd64)
1373
1374	ENTRY(getpil)
1375	GETIPL(%eax)			/* priority level into %eax */
1376	ret
1377	SET_SIZE(getpil)
1378
1379#elif defined(__i386)
1380
1381	ENTRY(getpil)
1382	GETIPL(%eax)			/* priority level into %eax */
1383	ret
1384	SET_SIZE(getpil)
1385
1386#endif	/* __i386 */
1387#endif	/* __lint */
1388
1389#if defined(__i386)
1390
1391/*
1392 * Read and write the %gs register
1393 */
1394
1395#if defined(__lint)
1396
1397/*ARGSUSED*/
1398uint16_t
1399getgs(void)
1400{ return (0); }
1401
1402/*ARGSUSED*/
1403void
1404setgs(uint16_t sel)
1405{}
1406
1407#else	/* __lint */
1408
1409	ENTRY(getgs)
1410	clr	%eax
1411	movw	%gs, %ax
1412	ret
1413	SET_SIZE(getgs)
1414
1415	ENTRY(setgs)
1416	movw	4(%esp), %gs
1417	ret
1418	SET_SIZE(setgs)
1419
1420#endif	/* __lint */
1421#endif	/* __i386 */
1422
1423#if defined(__lint)
1424
1425void
1426pc_reset(void)
1427{}
1428
1429#else	/* __lint */
1430
1431	ENTRY(pc_reset)
1432	/ Try the PCI (soft) reset vector (should work on all modern systems)
1433	/ When resetting via this method, 2 writes are required.  The first
1434	/ targets bit 1 (0=hard reset without power cycle, 1=hard reset with power
1435	/ cycle).
1436	/ The reset occurs on the second write, during bit 2's transition from 0->1.
1437	movw	$0xcf9, %dx
1438	movb	$0x2, %al	/ Reset mode = hard, no power cycle
1439	outb	(%dx)
1440	movb	$0x6, %al
1441	outb	(%dx)
1442
1443	/
1444	/ Try the classic keyboard controller-triggered reset.
1445	/
1446	movw	$0x64, %dx
1447	movb	$0xfe, %al
1448	outb	(%dx)
1449
1450	/
1451	/ Try port 0x92 fast reset
1452	/
1453	movw	$0x92, %dx
1454	inb	(%dx)
1455	cmpb	$0xff, %al	/ If port's not there, we should get back 0xFF
1456	je	1f
1457	testb	$1, %al		/ If bit 0
1458	jz	2f		/ is clear, jump to perform the reset
1459	andb	$0xfe, %al	/ otherwise,
1460	outb	(%dx)		/ clear bit 0 first, then
14612:
1462	orb	$1, %al		/ Set bit 0
1463	outb	(%dx)		/ and reset the system
14641:
1465	/
1466	/ port 0x92 failed also.  Last-ditch effort is to
1467	/ triple-fault the CPU.
1468	/
1469#if defined(__amd64)
1470	pushq	$0x0
1471	pushq	$0x0		/ IDT base of 0, limit of 0 + 2 unused bytes
1472	lidt	(%rsp)
1473#elif defined(__i386)
1474	pushl	$0x0
1475	pushl	$0x0		/ IDT base of 0, limit of 0 + 2 unused bytes
1476	lidt	(%esp)
1477#endif
1478	int	$0x0		/ Trigger interrupt, generate triple-fault
1479	hlt
1480	/*NOTREACHED*/
1481	SET_SIZE(pc_reset)
1482
1483#endif	/* __lint */
1484
1485/*
1486 * C callable in and out routines
1487 */
1488
1489#if defined(__lint)
1490
1491/* ARGSUSED */
1492void
1493outl(int port_address, uint32_t val)
1494{}
1495
1496#else	/* __lint */
1497
1498#if defined(__amd64)
1499
1500	ENTRY(outl)
1501	movw	%di, %dx
1502	movl	%esi, %eax
1503	outl	(%dx)
1504	ret
1505	SET_SIZE(outl)
1506
1507#elif defined(__i386)
1508
1509	.set	PORT, 4
1510	.set	VAL, 8
1511
1512	ENTRY(outl)
1513	movw	PORT(%esp), %dx
1514	movl	VAL(%esp), %eax
1515	outl	(%dx)
1516	ret
1517	SET_SIZE(outl)
1518
1519#endif	/* __i386 */
1520#endif	/* __lint */
1521
1522#if defined(__lint)
1523
1524/* ARGSUSED */
1525void
1526outw(int port_address, uint16_t val)
1527{}
1528
1529#else	/* __lint */
1530
1531#if defined(__amd64)
1532
1533	ENTRY(outw)
1534	movw	%di, %dx
1535	movw	%si, %ax
1536	D16 outl (%dx)		/* XX64 why not outw? */
1537	ret
1538	SET_SIZE(outw)
1539
1540#elif defined(__i386)
1541
1542	ENTRY(outw)
1543	movw	PORT(%esp), %dx
1544	movw	VAL(%esp), %ax
1545	D16 outl (%dx)
1546	ret
1547	SET_SIZE(outw)
1548
1549#endif	/* __i386 */
1550#endif	/* __lint */
1551
1552#if defined(__lint)
1553
1554/* ARGSUSED */
1555void
1556outb(int port_address, uint8_t val)
1557{}
1558
1559#else	/* __lint */
1560
1561#if defined(__amd64)
1562
1563	ENTRY(outb)
1564	movw	%di, %dx
1565	movb	%sil, %al
1566	outb	(%dx)
1567	ret
1568	SET_SIZE(outb)
1569
1570#elif defined(__i386)
1571
1572	ENTRY(outb)
1573	movw	PORT(%esp), %dx
1574	movb	VAL(%esp), %al
1575	outb	(%dx)
1576	ret
1577	SET_SIZE(outb)
1578
1579#endif	/* __i386 */
1580#endif	/* __lint */
1581
1582#if defined(__lint)
1583
1584/* ARGSUSED */
1585uint32_t
1586inl(int port_address)
1587{ return (0); }
1588
1589#else	/* __lint */
1590
1591#if defined(__amd64)
1592
1593	ENTRY(inl)
1594	xorl	%eax, %eax
1595	movw	%di, %dx
1596	inl	(%dx)
1597	ret
1598	SET_SIZE(inl)
1599
1600#elif defined(__i386)
1601
1602	ENTRY(inl)
1603	movw	PORT(%esp), %dx
1604	inl	(%dx)
1605	ret
1606	SET_SIZE(inl)
1607
1608#endif	/* __i386 */
1609#endif	/* __lint */
1610
1611#if defined(__lint)
1612
1613/* ARGSUSED */
1614uint16_t
1615inw(int port_address)
1616{ return (0); }
1617
1618#else	/* __lint */
1619
1620#if defined(__amd64)
1621
1622	ENTRY(inw)
1623	xorl	%eax, %eax
1624	movw	%di, %dx
1625	D16 inl	(%dx)
1626	ret
1627	SET_SIZE(inw)
1628
1629#elif defined(__i386)
1630
1631	ENTRY(inw)
1632	subl	%eax, %eax
1633	movw	PORT(%esp), %dx
1634	D16 inl	(%dx)
1635	ret
1636	SET_SIZE(inw)
1637
1638#endif	/* __i386 */
1639#endif	/* __lint */
1640
1641
1642#if defined(__lint)
1643
1644/* ARGSUSED */
1645uint8_t
1646inb(int port_address)
1647{ return (0); }
1648
1649#else	/* __lint */
1650
1651#if defined(__amd64)
1652
1653	ENTRY(inb)
1654	xorl	%eax, %eax
1655	movw	%di, %dx
1656	inb	(%dx)
1657	ret
1658	SET_SIZE(inb)
1659
1660#elif defined(__i386)
1661
1662	ENTRY(inb)
1663	subl    %eax, %eax
1664	movw	PORT(%esp), %dx
1665	inb	(%dx)
1666	ret
1667	SET_SIZE(inb)
1668
1669#endif	/* __i386 */
1670#endif	/* __lint */
1671
1672
1673#if defined(__lint)
1674
1675/* ARGSUSED */
1676void
1677repoutsw(int port, uint16_t *addr, int cnt)
1678{}
1679
1680#else	/* __lint */
1681
1682#if defined(__amd64)
1683
1684	ENTRY(repoutsw)
1685	movl	%edx, %ecx
1686	movw	%di, %dx
1687	rep
1688	  D16 outsl
1689	ret
1690	SET_SIZE(repoutsw)
1691
1692#elif defined(__i386)
1693
1694	/*
1695	 * The arguments and saved registers are on the stack in the
1696	 *  following order:
1697	 *      |  cnt  |  +16
1698	 *      | *addr |  +12
1699	 *      | port  |  +8
1700	 *      |  eip  |  +4
1701	 *      |  esi  |  <-- %esp
1702	 * If additional values are pushed onto the stack, make sure
1703	 * to adjust the following constants accordingly.
1704	 */
1705	.set	PORT, 8
1706	.set	ADDR, 12
1707	.set	COUNT, 16
1708
1709	ENTRY(repoutsw)
1710	pushl	%esi
1711	movl	PORT(%esp), %edx
1712	movl	ADDR(%esp), %esi
1713	movl	COUNT(%esp), %ecx
1714	rep
1715	  D16 outsl
1716	popl	%esi
1717	ret
1718	SET_SIZE(repoutsw)
1719
1720#endif	/* __i386 */
1721#endif	/* __lint */
1722
1723
1724#if defined(__lint)
1725
1726/* ARGSUSED */
1727void
1728repinsw(int port_addr, uint16_t *addr, int cnt)
1729{}
1730
1731#else	/* __lint */
1732
1733#if defined(__amd64)
1734
1735	ENTRY(repinsw)
1736	movl	%edx, %ecx
1737	movw	%di, %dx
1738	rep
1739	  D16 insl
1740	ret
1741	SET_SIZE(repinsw)
1742
1743#elif defined(__i386)
1744
1745	ENTRY(repinsw)
1746	pushl	%edi
1747	movl	PORT(%esp), %edx
1748	movl	ADDR(%esp), %edi
1749	movl	COUNT(%esp), %ecx
1750	rep
1751	  D16 insl
1752	popl	%edi
1753	ret
1754	SET_SIZE(repinsw)
1755
1756#endif	/* __i386 */
1757#endif	/* __lint */
1758
1759
1760#if defined(__lint)
1761
1762/* ARGSUSED */
1763void
1764repinsb(int port, uint8_t *addr, int count)
1765{}
1766
1767#else	/* __lint */
1768
1769#if defined(__amd64)
1770
1771	ENTRY(repinsb)
1772	movl	%edx, %ecx
1773	movw	%di, %dx
1774	movq	%rsi, %rdi
1775	rep
1776	  insb
1777	ret
1778	SET_SIZE(repinsb)
1779
1780#elif defined(__i386)
1781
1782	/*
1783	 * The arguments and saved registers are on the stack in the
1784	 *  following order:
1785	 *      |  cnt  |  +16
1786	 *      | *addr |  +12
1787	 *      | port  |  +8
1788	 *      |  eip  |  +4
1789	 *      |  esi  |  <-- %esp
1790	 * If additional values are pushed onto the stack, make sure
1791	 * to adjust the following constants accordingly.
1792	 */
1793	.set	IO_PORT, 8
1794	.set	IO_ADDR, 12
1795	.set	IO_COUNT, 16
1796
1797	ENTRY(repinsb)
1798	pushl	%edi
1799	movl	IO_ADDR(%esp), %edi
1800	movl	IO_COUNT(%esp), %ecx
1801	movl	IO_PORT(%esp), %edx
1802	rep
1803	  insb
1804	popl	%edi
1805	ret
1806	SET_SIZE(repinsb)
1807
1808#endif	/* __i386 */
1809#endif	/* __lint */
1810
1811
1812/*
1813 * Input a stream of 32-bit words.
1814 * NOTE: count is a DWORD count.
1815 */
1816#if defined(__lint)
1817
1818/* ARGSUSED */
1819void
1820repinsd(int port, uint32_t *addr, int count)
1821{}
1822
1823#else	/* __lint */
1824
1825#if defined(__amd64)
1826
1827	ENTRY(repinsd)
1828	movl	%edx, %ecx
1829	movw	%di, %dx
1830	movq	%rsi, %rdi
1831	rep
1832	  insl
1833	ret
1834	SET_SIZE(repinsd)
1835
1836#elif defined(__i386)
1837
1838	ENTRY(repinsd)
1839	pushl	%edi
1840	movl	IO_ADDR(%esp), %edi
1841	movl	IO_COUNT(%esp), %ecx
1842	movl	IO_PORT(%esp), %edx
1843	rep
1844	  insl
1845	popl	%edi
1846	ret
1847	SET_SIZE(repinsd)
1848
1849#endif	/* __i386 */
1850#endif	/* __lint */
1851
1852/*
1853 * Output a stream of bytes
1854 * NOTE: count is a byte count
1855 */
1856#if defined(__lint)
1857
1858/* ARGSUSED */
1859void
1860repoutsb(int port, uint8_t *addr, int count)
1861{}
1862
1863#else	/* __lint */
1864
1865#if defined(__amd64)
1866
1867	ENTRY(repoutsb)
1868	movl	%edx, %ecx
1869	movw	%di, %dx
1870	rep
1871	  outsb
1872	ret
1873	SET_SIZE(repoutsb)
1874
1875#elif defined(__i386)
1876
1877	ENTRY(repoutsb)
1878	pushl	%esi
1879	movl	IO_ADDR(%esp), %esi
1880	movl	IO_COUNT(%esp), %ecx
1881	movl	IO_PORT(%esp), %edx
1882	rep
1883	  outsb
1884	popl	%esi
1885	ret
1886	SET_SIZE(repoutsb)
1887
1888#endif	/* __i386 */
1889#endif	/* __lint */
1890
1891/*
1892 * Output a stream of 32-bit words
1893 * NOTE: count is a DWORD count
1894 */
1895#if defined(__lint)
1896
1897/* ARGSUSED */
1898void
1899repoutsd(int port, uint32_t *addr, int count)
1900{}
1901
1902#else	/* __lint */
1903
1904#if defined(__amd64)
1905
1906	ENTRY(repoutsd)
1907	movl	%edx, %ecx
1908	movw	%di, %dx
1909	rep
1910	  outsl
1911	ret
1912	SET_SIZE(repoutsd)
1913
1914#elif defined(__i386)
1915
1916	ENTRY(repoutsd)
1917	pushl	%esi
1918	movl	IO_ADDR(%esp), %esi
1919	movl	IO_COUNT(%esp), %ecx
1920	movl	IO_PORT(%esp), %edx
1921	rep
1922	  outsl
1923	popl	%esi
1924	ret
1925	SET_SIZE(repoutsd)
1926
1927#endif	/* __i386 */
1928#endif	/* __lint */
1929
1930/*
1931 * void int20(void)
1932 */
1933
1934#if defined(__lint)
1935
1936void
1937int20(void)
1938{}
1939
1940#else	/* __lint */
1941
1942	ENTRY(int20)
1943	movl	boothowto, %eax
1944	andl	$RB_DEBUG, %eax
1945	jz	1f
1946
1947	int	$20
19481:
1949	rep;	ret	/* use 2 byte return instruction when branch target */
1950			/* AMD Software Optimization Guide - Section 6.2 */
1951	SET_SIZE(int20)
1952
1953#endif	/* __lint */
1954
1955#if defined(__lint)
1956
1957/* ARGSUSED */
1958int
1959scanc(size_t size, uchar_t *cp, uchar_t *table, uchar_t mask)
1960{ return (0); }
1961
1962#else	/* __lint */
1963
1964#if defined(__amd64)
1965
1966	ENTRY(scanc)
1967					/* rdi == size */
1968					/* rsi == cp */
1969					/* rdx == table */
1970					/* rcx == mask */
1971	addq	%rsi, %rdi		/* end = &cp[size] */
1972.scanloop:
1973	cmpq	%rdi, %rsi		/* while (cp < end */
1974	jnb	.scandone
1975	movzbq	(%rsi), %r8		/* %r8 = *cp */
1976	incq	%rsi			/* cp++ */
1977	testb	%cl, (%r8, %rdx)
1978	jz	.scanloop		/*  && (table[*cp] & mask) == 0) */
1979	decq	%rsi			/* (fix post-increment) */
1980.scandone:
1981	movl	%edi, %eax
1982	subl	%esi, %eax		/* return (end - cp) */
1983	ret
1984	SET_SIZE(scanc)
1985
1986#elif defined(__i386)
1987
1988	ENTRY(scanc)
1989	pushl	%edi
1990	pushl	%esi
1991	movb	24(%esp), %cl		/* mask = %cl */
1992	movl	16(%esp), %esi		/* cp = %esi */
1993	movl	20(%esp), %edx		/* table = %edx */
1994	movl	%esi, %edi
1995	addl	12(%esp), %edi		/* end = &cp[size]; */
1996.scanloop:
1997	cmpl	%edi, %esi		/* while (cp < end */
1998	jnb	.scandone
1999	movzbl	(%esi),  %eax		/* %al = *cp */
2000	incl	%esi			/* cp++ */
2001	movb	(%edx,  %eax), %al	/* %al = table[*cp] */
2002	testb	%al, %cl
2003	jz	.scanloop		/*   && (table[*cp] & mask) == 0) */
2004	dec	%esi			/* post-incremented */
2005.scandone:
2006	movl	%edi, %eax
2007	subl	%esi, %eax		/* return (end - cp) */
2008	popl	%esi
2009	popl	%edi
2010	ret
2011	SET_SIZE(scanc)
2012
2013#endif	/* __i386 */
2014#endif	/* __lint */
2015
2016/*
2017 * Replacement functions for ones that are normally inlined.
2018 * In addition to the copy in i86.il, they are defined here just in case.
2019 */
2020
2021#if defined(__lint)
2022
2023int
2024intr_clear(void)
2025{ return 0; }
2026
2027int
2028clear_int_flag(void)
2029{ return 0; }
2030
2031#else	/* __lint */
2032
2033#if defined(__amd64)
2034
2035	ENTRY(intr_clear)
2036	ENTRY(clear_int_flag)
2037	pushfq
2038	cli
2039	popq	%rax
2040	ret
2041	SET_SIZE(clear_int_flag)
2042	SET_SIZE(intr_clear)
2043
2044#elif defined(__i386)
2045
2046	ENTRY(intr_clear)
2047	ENTRY(clear_int_flag)
2048	pushfl
2049	cli
2050	popl	%eax
2051	ret
2052	SET_SIZE(clear_int_flag)
2053	SET_SIZE(intr_clear)
2054
2055#endif	/* __i386 */
2056#endif	/* __lint */
2057
2058#if defined(__lint)
2059
2060struct cpu *
2061curcpup(void)
2062{ return 0; }
2063
2064#else	/* __lint */
2065
2066#if defined(__amd64)
2067
2068	ENTRY(curcpup)
2069	movq	%gs:CPU_SELF, %rax
2070	ret
2071	SET_SIZE(curcpup)
2072
2073#elif defined(__i386)
2074
2075	ENTRY(curcpup)
2076	movl	%gs:CPU_SELF, %eax
2077	ret
2078	SET_SIZE(curcpup)
2079
2080#endif	/* __i386 */
2081#endif	/* __lint */
2082
2083#if defined(__lint)
2084
2085/* ARGSUSED */
2086uint32_t
2087htonl(uint32_t i)
2088{ return (0); }
2089
2090/* ARGSUSED */
2091uint32_t
2092ntohl(uint32_t i)
2093{ return (0); }
2094
2095#else	/* __lint */
2096
2097#if defined(__amd64)
2098
2099	/* XX64 there must be shorter sequences for this */
2100	ENTRY(htonl)
2101	ALTENTRY(ntohl)
2102	movl	%edi, %eax
2103	bswap	%eax
2104	ret
2105	SET_SIZE(ntohl)
2106	SET_SIZE(htonl)
2107
2108#elif defined(__i386)
2109
2110	ENTRY(htonl)
2111	ALTENTRY(ntohl)
2112	movl	4(%esp), %eax
2113	bswap	%eax
2114	ret
2115	SET_SIZE(ntohl)
2116	SET_SIZE(htonl)
2117
2118#endif	/* __i386 */
2119#endif	/* __lint */
2120
2121#if defined(__lint)
2122
2123/* ARGSUSED */
2124uint16_t
2125htons(uint16_t i)
2126{ return (0); }
2127
2128/* ARGSUSED */
2129uint16_t
2130ntohs(uint16_t i)
2131{ return (0); }
2132
2133
2134#else	/* __lint */
2135
2136#if defined(__amd64)
2137
2138	/* XX64 there must be better sequences for this */
2139	ENTRY(htons)
2140	ALTENTRY(ntohs)
2141	movl	%edi, %eax
2142	bswap	%eax
2143	shrl	$16, %eax
2144	ret
2145	SET_SIZE(ntohs)
2146	SET_SIZE(htons)
2147
2148#elif defined(__i386)
2149
2150	ENTRY(htons)
2151	ALTENTRY(ntohs)
2152	movl	4(%esp), %eax
2153	bswap	%eax
2154	shrl	$16, %eax
2155	ret
2156	SET_SIZE(ntohs)
2157	SET_SIZE(htons)
2158
2159#endif	/* __i386 */
2160#endif	/* __lint */
2161
2162
2163#if defined(__lint)
2164
2165/* ARGSUSED */
2166void
2167intr_restore(uint_t i)
2168{ return; }
2169
2170/* ARGSUSED */
2171void
2172restore_int_flag(int i)
2173{ return; }
2174
2175#else	/* __lint */
2176
2177#if defined(__amd64)
2178
2179	ENTRY(intr_restore)
2180	ENTRY(restore_int_flag)
2181	pushq	%rdi
2182	popfq
2183	ret
2184	SET_SIZE(restore_int_flag)
2185	SET_SIZE(intr_restore)
2186
2187#elif defined(__i386)
2188
2189	ENTRY(intr_restore)
2190	ENTRY(restore_int_flag)
2191	pushl	4(%esp)
2192	popfl
2193	ret
2194	SET_SIZE(restore_int_flag)
2195	SET_SIZE(intr_restore)
2196
2197#endif	/* __i386 */
2198#endif	/* __lint */
2199
2200#if defined(__lint)
2201
2202void
2203sti(void)
2204{}
2205
2206#else	/* __lint */
2207
2208	ENTRY(sti)
2209	sti
2210	ret
2211	SET_SIZE(sti)
2212
2213#endif	/* __lint */
2214
2215#if defined(__lint)
2216
2217dtrace_icookie_t
2218dtrace_interrupt_disable(void)
2219{ return (0); }
2220
2221#else   /* __lint */
2222
2223#if defined(__amd64)
2224
2225	ENTRY(dtrace_interrupt_disable)
2226	pushfq
2227	popq	%rax
2228	cli
2229	ret
2230	SET_SIZE(dtrace_interrupt_disable)
2231
2232#elif defined(__i386)
2233
2234	ENTRY(dtrace_interrupt_disable)
2235	pushfl
2236	popl	%eax
2237	cli
2238	ret
2239	SET_SIZE(dtrace_interrupt_disable)
2240
2241#endif	/* __i386 */
2242#endif	/* __lint */
2243
2244#if defined(__lint)
2245
2246/*ARGSUSED*/
2247void
2248dtrace_interrupt_enable(dtrace_icookie_t cookie)
2249{}
2250
2251#else	/* __lint */
2252
2253#if defined(__amd64)
2254
2255	ENTRY(dtrace_interrupt_enable)
2256	pushq	%rdi
2257	popfq
2258	ret
2259	SET_SIZE(dtrace_interrupt_enable)
2260
2261#elif defined(__i386)
2262
2263	ENTRY(dtrace_interrupt_enable)
2264	movl	4(%esp), %eax
2265	pushl	%eax
2266	popfl
2267	ret
2268	SET_SIZE(dtrace_interrupt_enable)
2269
2270#endif	/* __i386 */
2271#endif	/* __lint */
2272
2273
2274#if defined(lint)
2275
2276void
2277dtrace_membar_producer(void)
2278{}
2279
2280void
2281dtrace_membar_consumer(void)
2282{}
2283
2284#else	/* __lint */
2285
2286	ENTRY(dtrace_membar_producer)
2287	rep;	ret	/* use 2 byte return instruction when branch target */
2288			/* AMD Software Optimization Guide - Section 6.2 */
2289	SET_SIZE(dtrace_membar_producer)
2290
2291	ENTRY(dtrace_membar_consumer)
2292	rep;	ret	/* use 2 byte return instruction when branch target */
2293			/* AMD Software Optimization Guide - Section 6.2 */
2294	SET_SIZE(dtrace_membar_consumer)
2295
2296#endif	/* __lint */
2297
2298#if defined(__lint)
2299
2300kthread_id_t
2301threadp(void)
2302{ return ((kthread_id_t)0); }
2303
2304#else	/* __lint */
2305
2306#if defined(__amd64)
2307
2308	ENTRY(threadp)
2309	movq	%gs:CPU_THREAD, %rax
2310	ret
2311	SET_SIZE(threadp)
2312
2313#elif defined(__i386)
2314
2315	ENTRY(threadp)
2316	movl	%gs:CPU_THREAD, %eax
2317	ret
2318	SET_SIZE(threadp)
2319
2320#endif	/* __i386 */
2321#endif	/* __lint */
2322
2323/*
2324 *   Checksum routine for Internet Protocol Headers
2325 */
2326
2327#if defined(__lint)
2328
2329/* ARGSUSED */
2330unsigned int
2331ip_ocsum(
2332	ushort_t *address,	/* ptr to 1st message buffer */
2333	int halfword_count,	/* length of data */
2334	unsigned int sum)	/* partial checksum */
2335{
2336	int		i;
2337	unsigned int	psum = 0;	/* partial sum */
2338
2339	for (i = 0; i < halfword_count; i++, address++) {
2340		psum += *address;
2341	}
2342
2343	while ((psum >> 16) != 0) {
2344		psum = (psum & 0xffff) + (psum >> 16);
2345	}
2346
2347	psum += sum;
2348
2349	while ((psum >> 16) != 0) {
2350		psum = (psum & 0xffff) + (psum >> 16);
2351	}
2352
2353	return (psum);
2354}
2355
2356#else	/* __lint */
2357
2358#if defined(__amd64)
2359
2360	ENTRY(ip_ocsum)
2361	pushq	%rbp
2362	movq	%rsp, %rbp
2363#ifdef DEBUG
2364	movq	kernelbase(%rip), %rax
2365	cmpq	%rax, %rdi
2366	jnb	1f
2367	xorl	%eax, %eax
2368	movq	%rdi, %rsi
2369	leaq	.ip_ocsum_panic_msg(%rip), %rdi
2370	call	panic
2371	/*NOTREACHED*/
2372.ip_ocsum_panic_msg:
2373	.string	"ip_ocsum: address 0x%p below kernelbase\n"
23741:
2375#endif
2376	movl	%esi, %ecx	/* halfword_count */
2377	movq	%rdi, %rsi	/* address */
2378				/* partial sum in %edx */
2379	xorl	%eax, %eax
2380	testl	%ecx, %ecx
2381	jz	.ip_ocsum_done
2382	testq	$3, %rsi
2383	jnz	.ip_csum_notaligned
2384.ip_csum_aligned:	/* XX64 opportunities for 8-byte operations? */
2385.next_iter:
2386	/* XX64 opportunities for prefetch? */
2387	/* XX64 compute csum with 64 bit quantities? */
2388	subl	$32, %ecx
2389	jl	.less_than_32
2390
2391	addl	0(%rsi), %edx
2392.only60:
2393	adcl	4(%rsi), %eax
2394.only56:
2395	adcl	8(%rsi), %edx
2396.only52:
2397	adcl	12(%rsi), %eax
2398.only48:
2399	adcl	16(%rsi), %edx
2400.only44:
2401	adcl	20(%rsi), %eax
2402.only40:
2403	adcl	24(%rsi), %edx
2404.only36:
2405	adcl	28(%rsi), %eax
2406.only32:
2407	adcl	32(%rsi), %edx
2408.only28:
2409	adcl	36(%rsi), %eax
2410.only24:
2411	adcl	40(%rsi), %edx
2412.only20:
2413	adcl	44(%rsi), %eax
2414.only16:
2415	adcl	48(%rsi), %edx
2416.only12:
2417	adcl	52(%rsi), %eax
2418.only8:
2419	adcl	56(%rsi), %edx
2420.only4:
2421	adcl	60(%rsi), %eax	/* could be adding -1 and -1 with a carry */
2422.only0:
2423	adcl	$0, %eax	/* could be adding -1 in eax with a carry */
2424	adcl	$0, %eax
2425
2426	addq	$64, %rsi
2427	testl	%ecx, %ecx
2428	jnz	.next_iter
2429
2430.ip_ocsum_done:
2431	addl	%eax, %edx
2432	adcl	$0, %edx
2433	movl	%edx, %eax	/* form a 16 bit checksum by */
2434	shrl	$16, %eax	/* adding two halves of 32 bit checksum */
2435	addw	%dx, %ax
2436	adcw	$0, %ax
2437	andl	$0xffff, %eax
2438	leave
2439	ret
2440
2441.ip_csum_notaligned:
2442	xorl	%edi, %edi
2443	movw	(%rsi), %di
2444	addl	%edi, %edx
2445	adcl	$0, %edx
2446	addq	$2, %rsi
2447	decl	%ecx
2448	jmp	.ip_csum_aligned
2449
2450.less_than_32:
2451	addl	$32, %ecx
2452	testl	$1, %ecx
2453	jz	.size_aligned
2454	andl	$0xfe, %ecx
2455	movzwl	(%rsi, %rcx, 2), %edi
2456	addl	%edi, %edx
2457	adcl	$0, %edx
2458.size_aligned:
2459	movl	%ecx, %edi
2460	shrl	$1, %ecx
2461	shl	$1, %edi
2462	subq	$64, %rdi
2463	addq	%rdi, %rsi
2464	leaq    .ip_ocsum_jmptbl(%rip), %rdi
2465	leaq	(%rdi, %rcx, 8), %rdi
2466	xorl	%ecx, %ecx
2467	clc
2468	jmp 	*(%rdi)
2469
2470	.align	8
2471.ip_ocsum_jmptbl:
2472	.quad	.only0, .only4, .only8, .only12, .only16, .only20
2473	.quad	.only24, .only28, .only32, .only36, .only40, .only44
2474	.quad	.only48, .only52, .only56, .only60
2475	SET_SIZE(ip_ocsum)
2476
2477#elif defined(__i386)
2478
2479	ENTRY(ip_ocsum)
2480	pushl	%ebp
2481	movl	%esp, %ebp
2482	pushl	%ebx
2483	pushl	%esi
2484	pushl	%edi
2485	movl	12(%ebp), %ecx	/* count of half words */
2486	movl	16(%ebp), %edx	/* partial checksum */
2487	movl	8(%ebp), %esi
2488	xorl	%eax, %eax
2489	testl	%ecx, %ecx
2490	jz	.ip_ocsum_done
2491
2492	testl	$3, %esi
2493	jnz	.ip_csum_notaligned
2494.ip_csum_aligned:
2495.next_iter:
2496	subl	$32, %ecx
2497	jl	.less_than_32
2498
2499	addl	0(%esi), %edx
2500.only60:
2501	adcl	4(%esi), %eax
2502.only56:
2503	adcl	8(%esi), %edx
2504.only52:
2505	adcl	12(%esi), %eax
2506.only48:
2507	adcl	16(%esi), %edx
2508.only44:
2509	adcl	20(%esi), %eax
2510.only40:
2511	adcl	24(%esi), %edx
2512.only36:
2513	adcl	28(%esi), %eax
2514.only32:
2515	adcl	32(%esi), %edx
2516.only28:
2517	adcl	36(%esi), %eax
2518.only24:
2519	adcl	40(%esi), %edx
2520.only20:
2521	adcl	44(%esi), %eax
2522.only16:
2523	adcl	48(%esi), %edx
2524.only12:
2525	adcl	52(%esi), %eax
2526.only8:
2527	adcl	56(%esi), %edx
2528.only4:
2529	adcl	60(%esi), %eax	/* We could be adding -1 and -1 with a carry */
2530.only0:
2531	adcl	$0, %eax	/* we could be adding -1 in eax with a carry */
2532	adcl	$0, %eax
2533
2534	addl	$64, %esi
2535	andl	%ecx, %ecx
2536	jnz	.next_iter
2537
2538.ip_ocsum_done:
2539	addl	%eax, %edx
2540	adcl	$0, %edx
2541	movl	%edx, %eax	/* form a 16 bit checksum by */
2542	shrl	$16, %eax	/* adding two halves of 32 bit checksum */
2543	addw	%dx, %ax
2544	adcw	$0, %ax
2545	andl	$0xffff, %eax
2546	popl	%edi		/* restore registers */
2547	popl	%esi
2548	popl	%ebx
2549	leave
2550	ret
2551
2552.ip_csum_notaligned:
2553	xorl	%edi, %edi
2554	movw	(%esi), %di
2555	addl	%edi, %edx
2556	adcl	$0, %edx
2557	addl	$2, %esi
2558	decl	%ecx
2559	jmp	.ip_csum_aligned
2560
2561.less_than_32:
2562	addl	$32, %ecx
2563	testl	$1, %ecx
2564	jz	.size_aligned
2565	andl	$0xfe, %ecx
2566	movzwl	(%esi, %ecx, 2), %edi
2567	addl	%edi, %edx
2568	adcl	$0, %edx
2569.size_aligned:
2570	movl	%ecx, %edi
2571	shrl	$1, %ecx
2572	shl	$1, %edi
2573	subl	$64, %edi
2574	addl	%edi, %esi
2575	movl	$.ip_ocsum_jmptbl, %edi
2576	lea	(%edi, %ecx, 4), %edi
2577	xorl	%ecx, %ecx
2578	clc
2579	jmp 	*(%edi)
2580	SET_SIZE(ip_ocsum)
2581
2582	.data
2583	.align	4
2584
2585.ip_ocsum_jmptbl:
2586	.long	.only0, .only4, .only8, .only12, .only16, .only20
2587	.long	.only24, .only28, .only32, .only36, .only40, .only44
2588	.long	.only48, .only52, .only56, .only60
2589
2590
2591#endif	/* __i386 */
2592#endif	/* __lint */
2593
2594/*
2595 * multiply two long numbers and yield a u_longlong_t result, callable from C.
2596 * Provided to manipulate hrtime_t values.
2597 */
2598#if defined(__lint)
2599
2600/* result = a * b; */
2601
2602/* ARGSUSED */
2603unsigned long long
2604mul32(uint_t a, uint_t b)
2605{ return (0); }
2606
2607#else	/* __lint */
2608
2609#if defined(__amd64)
2610
2611	ENTRY(mul32)
2612	xorl	%edx, %edx	/* XX64 joe, paranoia? */
2613	movl	%edi, %eax
2614	mull	%esi
2615	shlq	$32, %rdx
2616	orq	%rdx, %rax
2617	ret
2618	SET_SIZE(mul32)
2619
2620#elif defined(__i386)
2621
2622	ENTRY(mul32)
2623	movl	8(%esp), %eax
2624	movl	4(%esp), %ecx
2625	mull	%ecx
2626	ret
2627	SET_SIZE(mul32)
2628
2629#endif	/* __i386 */
2630#endif	/* __lint */
2631
2632#if defined(notused)
2633#if defined(__lint)
2634/* ARGSUSED */
2635void
2636load_pte64(uint64_t *pte, uint64_t pte_value)
2637{}
2638#else	/* __lint */
2639	.globl load_pte64
2640load_pte64:
2641	movl	4(%esp), %eax
2642	movl	8(%esp), %ecx
2643	movl	12(%esp), %edx
2644	movl	%edx, 4(%eax)
2645	movl	%ecx, (%eax)
2646	ret
2647#endif	/* __lint */
2648#endif	/* notused */
2649
2650#if defined(__lint)
2651
2652/*ARGSUSED*/
2653void
2654scan_memory(caddr_t addr, size_t size)
2655{}
2656
2657#else	/* __lint */
2658
2659#if defined(__amd64)
2660
2661	ENTRY(scan_memory)
2662	shrq	$3, %rsi	/* convert %rsi from byte to quadword count */
2663	jz	.scanm_done
2664	movq	%rsi, %rcx	/* move count into rep control register */
2665	movq	%rdi, %rsi	/* move addr into lodsq control reg. */
2666	rep lodsq		/* scan the memory range */
2667.scanm_done:
2668	rep;	ret	/* use 2 byte return instruction when branch target */
2669			/* AMD Software Optimization Guide - Section 6.2 */
2670	SET_SIZE(scan_memory)
2671
2672#elif defined(__i386)
2673
2674	ENTRY(scan_memory)
2675	pushl	%ecx
2676	pushl	%esi
2677	movl	16(%esp), %ecx	/* move 2nd arg into rep control register */
2678	shrl	$2, %ecx	/* convert from byte count to word count */
2679	jz	.scanm_done
2680	movl	12(%esp), %esi	/* move 1st arg into lodsw control register */
2681	.byte	0xf3		/* rep prefix.  lame assembler.  sigh. */
2682	lodsl
2683.scanm_done:
2684	popl	%esi
2685	popl	%ecx
2686	ret
2687	SET_SIZE(scan_memory)
2688
2689#endif	/* __i386 */
2690#endif	/* __lint */
2691
2692
2693#if defined(__lint)
2694
2695/*ARGSUSED */
2696int
2697lowbit(ulong_t i)
2698{ return (0); }
2699
2700#else	/* __lint */
2701
2702#if defined(__amd64)
2703
2704	ENTRY(lowbit)
2705	movl	$-1, %eax
2706	bsfq	%rdi, %rax
2707	incl	%eax
2708	ret
2709	SET_SIZE(lowbit)
2710
2711#elif defined(__i386)
2712
2713	ENTRY(lowbit)
2714	movl	$-1, %eax
2715	bsfl	4(%esp), %eax
2716	incl	%eax
2717	ret
2718	SET_SIZE(lowbit)
2719
2720#endif	/* __i386 */
2721#endif	/* __lint */
2722
2723#if defined(__lint)
2724
2725/*ARGSUSED*/
2726int
2727highbit(ulong_t i)
2728{ return (0); }
2729
2730#else	/* __lint */
2731
2732#if defined(__amd64)
2733
2734	ENTRY(highbit)
2735	movl	$-1, %eax
2736	bsrq	%rdi, %rax
2737	incl	%eax
2738	ret
2739	SET_SIZE(highbit)
2740
2741#elif defined(__i386)
2742
2743	ENTRY(highbit)
2744	movl	$-1, %eax
2745	bsrl	4(%esp), %eax
2746	incl	%eax
2747	ret
2748	SET_SIZE(highbit)
2749
2750#endif	/* __i386 */
2751#endif	/* __lint */
2752
2753#if defined(__lint)
2754
2755/*ARGSUSED*/
2756uint64_t
2757rdmsr(uint_t r)
2758{ return (0); }
2759
2760/*ARGSUSED*/
2761void
2762wrmsr(uint_t r, const uint64_t val)
2763{}
2764
2765void
2766invalidate_cache(void)
2767{}
2768
2769#else  /* __lint */
2770
2771#if defined(__amd64)
2772
2773	ENTRY(rdmsr)
2774	movl	%edi, %ecx
2775	rdmsr
2776	shlq	$32, %rdx
2777	orq	%rdx, %rax
2778	ret
2779	SET_SIZE(rdmsr)
2780
2781	ENTRY(wrmsr)
2782	movq	%rsi, %rdx
2783	shrq	$32, %rdx
2784	movl	%esi, %eax
2785	movl	%edi, %ecx
2786	wrmsr
2787	ret
2788	SET_SIZE(wrmsr)
2789
2790#elif defined(__i386)
2791
2792	ENTRY(rdmsr)
2793	movl	4(%esp), %ecx
2794	rdmsr
2795	ret
2796	SET_SIZE(rdmsr)
2797
2798	ENTRY(wrmsr)
2799	movl	4(%esp), %ecx
2800	movl	8(%esp), %eax
2801	movl	12(%esp), %edx
2802	wrmsr
2803	ret
2804	SET_SIZE(wrmsr)
2805
2806#endif	/* __i386 */
2807
2808	ENTRY(invalidate_cache)
2809	wbinvd
2810	ret
2811	SET_SIZE(invalidate_cache)
2812
2813#endif	/* __lint */
2814
2815#if defined(__lint)
2816
2817/*ARGSUSED*/
2818void getcregs(struct cregs *crp)
2819{}
2820
2821#else	/* __lint */
2822
2823#if defined(__amd64)
2824
2825#define	GETMSR(r, off, d)	\
2826	movl	$r, %ecx;	\
2827	rdmsr;			\
2828	movl	%eax, off(d);	\
2829	movl	%edx, off+4(d)
2830
2831	ENTRY_NP(getcregs)
2832	xorl	%eax, %eax
2833	movq	%rax, CREG_GDT+8(%rdi)
2834	sgdt	CREG_GDT(%rdi)		/* 10 bytes */
2835	movq	%rax, CREG_IDT+8(%rdi)
2836	sidt	CREG_IDT(%rdi)		/* 10 bytes */
2837	movq	%rax, CREG_LDT(%rdi)
2838	sldt	CREG_LDT(%rdi)		/* 2 bytes */
2839	movq	%rax, CREG_TASKR(%rdi)
2840	str	CREG_TASKR(%rdi)	/* 2 bytes */
2841	movq	%cr0, %rax
2842	movq	%rax, CREG_CR0(%rdi)	/* cr0 */
2843	movq	%cr2, %rax
2844	movq	%rax, CREG_CR2(%rdi)	/* cr2 */
2845	movq	%cr3, %rax
2846	movq	%rax, CREG_CR3(%rdi)	/* cr3 */
2847	movq	%cr4, %rax
2848	movq	%rax, CREG_CR8(%rdi)	/* cr4 */
2849	movq	%cr8, %rax
2850	movq	%rax, CREG_CR8(%rdi)	/* cr8 */
2851	GETMSR(MSR_AMD_KGSBASE, CREG_KGSBASE, %rdi)
2852	GETMSR(MSR_AMD_EFER, CREG_EFER, %rdi)
2853	SET_SIZE(getcregs)
2854
2855#undef GETMSR
2856
2857#elif defined(__i386)
2858
2859	ENTRY_NP(getcregs)
2860	movl	4(%esp), %edx
2861	movw	$0, CREG_GDT+6(%edx)
2862	movw	$0, CREG_IDT+6(%edx)
2863	sgdt	CREG_GDT(%edx)		/* gdt */
2864	sidt	CREG_IDT(%edx)		/* idt */
2865	sldt	CREG_LDT(%edx)		/* ldt */
2866	str	CREG_TASKR(%edx)	/* task */
2867	movl	%cr0, %eax
2868	movl	%eax, CREG_CR0(%edx)	/* cr0 */
2869	movl	%cr2, %eax
2870	movl	%eax, CREG_CR2(%edx)	/* cr2 */
2871	movl	%cr3, %eax
2872	movl	%eax, CREG_CR3(%edx)	/* cr3 */
2873	testl	$X86_LARGEPAGE, x86_feature
2874	jz	.nocr4
2875	movl	%cr4, %eax
2876	movl	%eax, CREG_CR4(%edx)	/* cr4 */
2877	jmp	.skip
2878.nocr4:
2879	movl	$0, CREG_CR4(%edx)
2880.skip:
2881	rep;	ret	/* use 2 byte return instruction when branch target */
2882			/* AMD Software Optimization Guide - Section 6.2 */
2883	SET_SIZE(getcregs)
2884
2885#endif	/* __i386 */
2886#endif	/* __lint */
2887
2888
2889/*
2890 * A panic trigger is a word which is updated atomically and can only be set
2891 * once.  We atomically store 0xDEFACEDD and load the old value.  If the
2892 * previous value was 0, we succeed and return 1; otherwise return 0.
2893 * This allows a partially corrupt trigger to still trigger correctly.  DTrace
2894 * has its own version of this function to allow it to panic correctly from
2895 * probe context.
2896 */
2897#if defined(__lint)
2898
2899/*ARGSUSED*/
2900int
2901panic_trigger(int *tp)
2902{ return (0); }
2903
2904/*ARGSUSED*/
2905int
2906dtrace_panic_trigger(int *tp)
2907{ return (0); }
2908
2909#else	/* __lint */
2910
2911#if defined(__amd64)
2912
2913	ENTRY_NP(panic_trigger)
2914	xorl	%eax, %eax
2915	movl	$0xdefacedd, %edx
2916	lock
2917	  xchgl	%edx, (%rdi)
2918	cmpl	$0, %edx
2919	je	0f
2920	movl	$0, %eax
2921	ret
29220:	movl	$1, %eax
2923	ret
2924	SET_SIZE(panic_trigger)
2925
2926	ENTRY_NP(dtrace_panic_trigger)
2927	xorl	%eax, %eax
2928	movl	$0xdefacedd, %edx
2929	lock
2930	  xchgl	%edx, (%rdi)
2931	cmpl	$0, %edx
2932	je	0f
2933	movl	$0, %eax
2934	ret
29350:	movl	$1, %eax
2936	ret
2937	SET_SIZE(dtrace_panic_trigger)
2938
2939#elif defined(__i386)
2940
2941	ENTRY_NP(panic_trigger)
2942	movl	4(%esp), %edx		/ %edx = address of trigger
2943	movl	$0xdefacedd, %eax	/ %eax = 0xdefacedd
2944	lock				/ assert lock
2945	xchgl %eax, (%edx)		/ exchange %eax and the trigger
2946	cmpl	$0, %eax		/ if (%eax == 0x0)
2947	je	0f			/   return (1);
2948	movl	$0, %eax		/ else
2949	ret				/   return (0);
29500:	movl	$1, %eax
2951	ret
2952	SET_SIZE(panic_trigger)
2953
2954	ENTRY_NP(dtrace_panic_trigger)
2955	movl	4(%esp), %edx		/ %edx = address of trigger
2956	movl	$0xdefacedd, %eax	/ %eax = 0xdefacedd
2957	lock				/ assert lock
2958	xchgl %eax, (%edx)		/ exchange %eax and the trigger
2959	cmpl	$0, %eax		/ if (%eax == 0x0)
2960	je	0f			/   return (1);
2961	movl	$0, %eax		/ else
2962	ret				/   return (0);
29630:	movl	$1, %eax
2964	ret
2965	SET_SIZE(dtrace_panic_trigger)
2966
2967#endif	/* __i386 */
2968#endif	/* __lint */
2969
2970/*
2971 * The panic() and cmn_err() functions invoke vpanic() as a common entry point
2972 * into the panic code implemented in panicsys().  vpanic() is responsible
2973 * for passing through the format string and arguments, and constructing a
2974 * regs structure on the stack into which it saves the current register
2975 * values.  If we are not dying due to a fatal trap, these registers will
2976 * then be preserved in panicbuf as the current processor state.  Before
2977 * invoking panicsys(), vpanic() activates the first panic trigger (see
2978 * common/os/panic.c) and switches to the panic_stack if successful.  Note that
2979 * DTrace takes a slightly different panic path if it must panic from probe
2980 * context.  Instead of calling panic, it calls into dtrace_vpanic(), which
2981 * sets up the initial stack as vpanic does, calls dtrace_panic_trigger(), and
2982 * branches back into vpanic().
2983 */
2984#if defined(__lint)
2985
2986/*ARGSUSED*/
2987void
2988vpanic(const char *format, va_list alist)
2989{}
2990
2991/*ARGSUSED*/
2992void
2993dtrace_vpanic(const char *format, va_list alist)
2994{}
2995
2996#else	/* __lint */
2997
2998#if defined(__amd64)
2999
3000	ENTRY_NP(vpanic)			/* Initial stack layout: */
3001
3002	pushq	%rbp				/* | %rip | 	0x60	*/
3003	movq	%rsp, %rbp			/* | %rbp |	0x58	*/
3004	pushfq					/* | rfl  |	0x50	*/
3005	pushq	%r11				/* | %r11 |	0x48	*/
3006	pushq	%r10				/* | %r10 |	0x40	*/
3007	pushq	%rbx				/* | %rbx |	0x38	*/
3008	pushq	%rax				/* | %rax |	0x30	*/
3009	pushq	%r9				/* | %r9  |	0x28	*/
3010	pushq	%r8				/* | %r8  |	0x20	*/
3011	pushq	%rcx				/* | %rcx |	0x18	*/
3012	pushq	%rdx				/* | %rdx |	0x10	*/
3013	pushq	%rsi				/* | %rsi |	0x8 alist */
3014	pushq	%rdi				/* | %rdi |	0x0 format */
3015
3016	movq	%rsp, %rbx			/* %rbx = current %rsp */
3017
3018	leaq	panic_quiesce(%rip), %rdi	/* %rdi = &panic_quiesce */
3019	call	panic_trigger			/* %eax = panic_trigger() */
3020
3021vpanic_common:
3022	cmpl	$0, %eax
3023	je	0f
3024
3025	/*
3026	 * If panic_trigger() was successful, we are the first to initiate a
3027	 * panic: we now switch to the reserved panic_stack before continuing.
3028	 */
3029	leaq	panic_stack(%rip), %rsp
3030	addq	$PANICSTKSIZE, %rsp
30310:	subq	$REGSIZE, %rsp
3032	/*
3033	 * Now that we've got everything set up, store the register values as
3034	 * they were when we entered vpanic() to the designated location in
3035	 * the regs structure we allocated on the stack.
3036	 */
3037	movq	0x0(%rbx), %rcx
3038	movq	%rcx, REGOFF_RDI(%rsp)
3039	movq	0x8(%rbx), %rcx
3040	movq	%rcx, REGOFF_RSI(%rsp)
3041	movq	0x10(%rbx), %rcx
3042	movq	%rcx, REGOFF_RDX(%rsp)
3043	movq	0x18(%rbx), %rcx
3044	movq	%rcx, REGOFF_RCX(%rsp)
3045	movq	0x20(%rbx), %rcx
3046
3047	movq	%rcx, REGOFF_R8(%rsp)
3048	movq	0x28(%rbx), %rcx
3049	movq	%rcx, REGOFF_R9(%rsp)
3050	movq	0x30(%rbx), %rcx
3051	movq	%rcx, REGOFF_RAX(%rsp)
3052	movq	0x38(%rbx), %rcx
3053	movq	%rbx, REGOFF_RBX(%rsp)
3054	movq	0x58(%rbx), %rcx
3055
3056	movq	%rcx, REGOFF_RBP(%rsp)
3057	movq	0x40(%rbx), %rcx
3058	movq	%rcx, REGOFF_R10(%rsp)
3059	movq	0x48(%rbx), %rcx
3060	movq	%rcx, REGOFF_R11(%rsp)
3061	movq	%r12, REGOFF_R12(%rsp)
3062
3063	movq	%r13, REGOFF_R13(%rsp)
3064	movq	%r14, REGOFF_R14(%rsp)
3065	movq	%r15, REGOFF_R15(%rsp)
3066
3067	movl	$MSR_AMD_FSBASE, %ecx
3068	rdmsr
3069	movl	%eax, REGOFF_FSBASE(%rsp)
3070	movl	%edx, REGOFF_FSBASE+4(%rsp)
3071
3072	movl	$MSR_AMD_GSBASE, %ecx
3073	rdmsr
3074	movl	%eax, REGOFF_GSBASE(%rsp)
3075	movl	%edx, REGOFF_GSBASE+4(%rsp)
3076
3077	xorl	%ecx, %ecx
3078	movw	%ds, %cx
3079	movq	%rcx, REGOFF_DS(%rsp)
3080	movw	%es, %cx
3081	movq	%rcx, REGOFF_ES(%rsp)
3082	movw	%fs, %cx
3083	movq	%rcx, REGOFF_FS(%rsp)
3084	movw	%gs, %cx
3085	movq	%rcx, REGOFF_GS(%rsp)
3086
3087	movq	$0, REGOFF_TRAPNO(%rsp)
3088
3089	movq	$0, REGOFF_ERR(%rsp)
3090	leaq	vpanic(%rip), %rcx
3091	movq	%rcx, REGOFF_RIP(%rsp)
3092	movw	%cs, %cx
3093	movzwq	%cx, %rcx
3094	movq	%rcx, REGOFF_CS(%rsp)
3095	movq	0x50(%rbx), %rcx
3096	movq	%rcx, REGOFF_RFL(%rsp)
3097	movq	%rbx, %rcx
3098	addq	$0x60, %rcx
3099	movq	%rcx, REGOFF_RSP(%rsp)
3100	movw	%ss, %cx
3101	movzwq	%cx, %rcx
3102	movq	%rcx, REGOFF_SS(%rsp)
3103
3104	/*
3105	 * panicsys(format, alist, rp, on_panic_stack)
3106	 */
3107	movq	REGOFF_RDI(%rsp), %rdi		/* format */
3108	movq	REGOFF_RSI(%rsp), %rsi		/* alist */
3109	movq	%rsp, %rdx			/* struct regs */
3110	movl	%eax, %ecx			/* on_panic_stack */
3111	call	panicsys
3112	addq	$REGSIZE, %rsp
3113	popq	%rdi
3114	popq	%rsi
3115	popq	%rdx
3116	popq	%rcx
3117	popq	%r8
3118	popq	%r9
3119	popq	%rax
3120	popq	%rbx
3121	popq	%r10
3122	popq	%r11
3123	popfq
3124	leave
3125	ret
3126	SET_SIZE(vpanic)
3127
3128	ENTRY_NP(dtrace_vpanic)			/* Initial stack layout: */
3129
3130	pushq	%rbp				/* | %rip | 	0x60	*/
3131	movq	%rsp, %rbp			/* | %rbp |	0x58	*/
3132	pushfq					/* | rfl  |	0x50	*/
3133	pushq	%r11				/* | %r11 |	0x48	*/
3134	pushq	%r10				/* | %r10 |	0x40	*/
3135	pushq	%rbx				/* | %rbx |	0x38	*/
3136	pushq	%rax				/* | %rax |	0x30	*/
3137	pushq	%r9				/* | %r9  |	0x28	*/
3138	pushq	%r8				/* | %r8  |	0x20	*/
3139	pushq	%rcx				/* | %rcx |	0x18	*/
3140	pushq	%rdx				/* | %rdx |	0x10	*/
3141	pushq	%rsi				/* | %rsi |	0x8 alist */
3142	pushq	%rdi				/* | %rdi |	0x0 format */
3143
3144	movq	%rsp, %rbx			/* %rbx = current %rsp */
3145
3146	leaq	panic_quiesce(%rip), %rdi	/* %rdi = &panic_quiesce */
3147	call	dtrace_panic_trigger	/* %eax = dtrace_panic_trigger() */
3148	jmp	vpanic_common
3149
3150	SET_SIZE(dtrace_vpanic)
3151
3152#elif defined(__i386)
3153
3154	ENTRY_NP(vpanic)			/ Initial stack layout:
3155
3156	pushl	%ebp				/ | %eip | 20
3157	movl	%esp, %ebp			/ | %ebp | 16
3158	pushl	%eax				/ | %eax | 12
3159	pushl	%ebx				/ | %ebx |  8
3160	pushl	%ecx				/ | %ecx |  4
3161	pushl	%edx				/ | %edx |  0
3162
3163	movl	%esp, %ebx			/ %ebx = current stack pointer
3164
3165	lea	panic_quiesce, %eax		/ %eax = &panic_quiesce
3166	pushl	%eax				/ push &panic_quiesce
3167	call	panic_trigger			/ %eax = panic_trigger()
3168	addl	$4, %esp			/ reset stack pointer
3169
3170vpanic_common:
3171	cmpl	$0, %eax			/ if (%eax == 0)
3172	je	0f				/   goto 0f;
3173
3174	/*
3175	 * If panic_trigger() was successful, we are the first to initiate a
3176	 * panic: we now switch to the reserved panic_stack before continuing.
3177	 */
3178	lea	panic_stack, %esp		/ %esp  = panic_stack
3179	addl	$PANICSTKSIZE, %esp		/ %esp += PANICSTKSIZE
3180
31810:	subl	$REGSIZE, %esp			/ allocate struct regs
3182
3183	/*
3184	 * Now that we've got everything set up, store the register values as
3185	 * they were when we entered vpanic() to the designated location in
3186	 * the regs structure we allocated on the stack.
3187	 */
3188#if !defined(__GNUC_AS__)
3189	movw	%gs, %edx
3190	movl	%edx, REGOFF_GS(%esp)
3191	movw	%fs, %edx
3192	movl	%edx, REGOFF_FS(%esp)
3193	movw	%es, %edx
3194	movl	%edx, REGOFF_ES(%esp)
3195	movw	%ds, %edx
3196	movl	%edx, REGOFF_DS(%esp)
3197#else	/* __GNUC_AS__ */
3198	mov	%gs, %edx
3199	mov	%edx, REGOFF_GS(%esp)
3200	mov	%fs, %edx
3201	mov	%edx, REGOFF_FS(%esp)
3202	mov	%es, %edx
3203	mov	%edx, REGOFF_ES(%esp)
3204	mov	%ds, %edx
3205	mov	%edx, REGOFF_DS(%esp)
3206#endif	/* __GNUC_AS__ */
3207	movl	%edi, REGOFF_EDI(%esp)
3208	movl	%esi, REGOFF_ESI(%esp)
3209	movl	16(%ebx), %ecx
3210	movl	%ecx, REGOFF_EBP(%esp)
3211	movl	%ebx, %ecx
3212	addl	$20, %ecx
3213	movl	%ecx, REGOFF_ESP(%esp)
3214	movl	8(%ebx), %ecx
3215	movl	%ecx, REGOFF_EBX(%esp)
3216	movl	0(%ebx), %ecx
3217	movl	%ecx, REGOFF_EDX(%esp)
3218	movl	4(%ebx), %ecx
3219	movl	%ecx, REGOFF_ECX(%esp)
3220	movl	12(%ebx), %ecx
3221	movl	%ecx, REGOFF_EAX(%esp)
3222	movl	$0, REGOFF_TRAPNO(%esp)
3223	movl	$0, REGOFF_ERR(%esp)
3224	lea	vpanic, %ecx
3225	movl	%ecx, REGOFF_EIP(%esp)
3226#if !defined(__GNUC_AS__)
3227	movw	%cs, %edx
3228#else	/* __GNUC_AS__ */
3229	mov	%cs, %edx
3230#endif	/* __GNUC_AS__ */
3231	movl	%edx, REGOFF_CS(%esp)
3232	pushfl
3233	popl	%ecx
3234	movl	%ecx, REGOFF_EFL(%esp)
3235	movl	$0, REGOFF_UESP(%esp)
3236#if !defined(__GNUC_AS__)
3237	movw	%ss, %edx
3238#else	/* __GNUC_AS__ */
3239	mov	%ss, %edx
3240#endif	/* __GNUC_AS__ */
3241	movl	%edx, REGOFF_SS(%esp)
3242
3243	movl	%esp, %ecx			/ %ecx = &regs
3244	pushl	%eax				/ push on_panic_stack
3245	pushl	%ecx				/ push &regs
3246	movl	12(%ebp), %ecx			/ %ecx = alist
3247	pushl	%ecx				/ push alist
3248	movl	8(%ebp), %ecx			/ %ecx = format
3249	pushl	%ecx				/ push format
3250	call	panicsys			/ panicsys();
3251	addl	$16, %esp			/ pop arguments
3252
3253	addl	$REGSIZE, %esp
3254	popl	%edx
3255	popl	%ecx
3256	popl	%ebx
3257	popl	%eax
3258	leave
3259	ret
3260	SET_SIZE(vpanic)
3261
3262	ENTRY_NP(dtrace_vpanic)			/ Initial stack layout:
3263
3264	pushl	%ebp				/ | %eip | 20
3265	movl	%esp, %ebp			/ | %ebp | 16
3266	pushl	%eax				/ | %eax | 12
3267	pushl	%ebx				/ | %ebx |  8
3268	pushl	%ecx				/ | %ecx |  4
3269	pushl	%edx				/ | %edx |  0
3270
3271	movl	%esp, %ebx			/ %ebx = current stack pointer
3272
3273	lea	panic_quiesce, %eax		/ %eax = &panic_quiesce
3274	pushl	%eax				/ push &panic_quiesce
3275	call	dtrace_panic_trigger		/ %eax = dtrace_panic_trigger()
3276	addl	$4, %esp			/ reset stack pointer
3277	jmp	vpanic_common			/ jump back to common code
3278
3279	SET_SIZE(dtrace_vpanic)
3280
3281#endif	/* __i386 */
3282#endif	/* __lint */
3283
3284#if defined(__lint)
3285
3286void
3287hres_tick(void)
3288{}
3289
3290int64_t timedelta;
3291hrtime_t hres_last_tick;
3292timestruc_t hrestime;
3293int64_t hrestime_adj;
3294volatile int hres_lock;
3295uint_t nsec_scale;
3296hrtime_t hrtime_base;
3297
3298#else	/* __lint */
3299
3300	DGDEF3(hrestime, _MUL(2, CLONGSIZE), 8)
3301	.NWORD	0, 0
3302
3303	DGDEF3(hrestime_adj, 8, 8)
3304	.long	0, 0
3305
3306	DGDEF3(hres_last_tick, 8, 8)
3307	.long	0, 0
3308
3309	DGDEF3(timedelta, 8, 8)
3310	.long	0, 0
3311
3312	DGDEF3(hres_lock, 4, 8)
3313	.long	0
3314
3315	/*
3316	 * initialized to a non zero value to make pc_gethrtime()
3317	 * work correctly even before clock is initialized
3318	 */
3319	DGDEF3(hrtime_base, 8, 8)
3320	.long	_MUL(NSEC_PER_CLOCK_TICK, 6), 0
3321
3322	DGDEF3(adj_shift, 4, 4)
3323	.long	ADJ_SHIFT
3324
3325#if defined(__amd64)
3326
3327	ENTRY_NP(hres_tick)
3328	pushq	%rbp
3329	movq	%rsp, %rbp
3330
3331	/*
3332	 * We need to call *gethrtimef before picking up CLOCK_LOCK (obviously,
3333	 * hres_last_tick can only be modified while holding CLOCK_LOCK).
3334	 * At worst, performing this now instead of under CLOCK_LOCK may
3335	 * introduce some jitter in pc_gethrestime().
3336	 */
3337	call	*gethrtimef(%rip)
3338	movq	%rax, %r8
3339
3340	leaq	hres_lock(%rip), %rax
3341	movb	$-1, %dl
3342.CL1:
3343	xchgb	%dl, (%rax)
3344	testb	%dl, %dl
3345	jz	.CL3			/* got it */
3346.CL2:
3347	cmpb	$0, (%rax)		/* possible to get lock? */
3348	pause
3349	jne	.CL2
3350	jmp	.CL1			/* yes, try again */
3351.CL3:
3352	/*
3353	 * compute the interval since last time hres_tick was called
3354	 * and adjust hrtime_base and hrestime accordingly
3355	 * hrtime_base is an 8 byte value (in nsec), hrestime is
3356	 * a timestruc_t (sec, nsec)
3357	 */
3358	leaq	hres_last_tick(%rip), %rax
3359	movq	%r8, %r11
3360	subq	(%rax), %r8
3361	addq	%r8, hrtime_base(%rip)	/* add interval to hrtime_base */
3362	addq	%r8, hrestime+8(%rip)	/* add interval to hrestime.tv_nsec */
3363	/*
3364	 * Now that we have CLOCK_LOCK, we can update hres_last_tick
3365	 */
3366	movq	%r11, (%rax)
3367
3368	call	__adj_hrestime
3369
3370	/*
3371	 * release the hres_lock
3372	 */
3373	incl	hres_lock(%rip)
3374	leave
3375	ret
3376	SET_SIZE(hres_tick)
3377
3378#elif defined(__i386)
3379
3380	ENTRY_NP(hres_tick)
3381	pushl	%ebp
3382	movl	%esp, %ebp
3383	pushl	%esi
3384	pushl	%ebx
3385
3386	/*
3387	 * We need to call *gethrtimef before picking up CLOCK_LOCK (obviously,
3388	 * hres_last_tick can only be modified while holding CLOCK_LOCK).
3389	 * At worst, performing this now instead of under CLOCK_LOCK may
3390	 * introduce some jitter in pc_gethrestime().
3391	 */
3392	call	*gethrtimef
3393	movl	%eax, %ebx
3394	movl	%edx, %esi
3395
3396	movl	$hres_lock, %eax
3397	movl	$-1, %edx
3398.CL1:
3399	xchgb	%dl, (%eax)
3400	testb	%dl, %dl
3401	jz	.CL3			/ got it
3402.CL2:
3403	cmpb	$0, (%eax)		/ possible to get lock?
3404	pause
3405	jne	.CL2
3406	jmp	.CL1			/ yes, try again
3407.CL3:
3408	/*
3409	 * compute the interval since last time hres_tick was called
3410	 * and adjust hrtime_base and hrestime accordingly
3411	 * hrtime_base is an 8 byte value (in nsec), hrestime is
3412	 * timestruc_t (sec, nsec)
3413	 */
3414
3415	lea	hres_last_tick, %eax
3416
3417	movl	%ebx, %edx
3418	movl	%esi, %ecx
3419
3420	subl 	(%eax), %edx
3421	sbbl 	4(%eax), %ecx
3422
3423	addl	%edx, hrtime_base	/ add interval to hrtime_base
3424	adcl	%ecx, hrtime_base+4
3425
3426	addl 	%edx, hrestime+4	/ add interval to hrestime.tv_nsec
3427
3428	/
3429	/ Now that we have CLOCK_LOCK, we can update hres_last_tick.
3430	/
3431	movl	%ebx, (%eax)
3432	movl	%esi,  4(%eax)
3433
3434	/ get hrestime at this moment. used as base for pc_gethrestime
3435	/
3436	/ Apply adjustment, if any
3437	/
3438	/ #define HRES_ADJ	(NSEC_PER_CLOCK_TICK >> ADJ_SHIFT)
3439	/ (max_hres_adj)
3440	/
3441	/ void
3442	/ adj_hrestime()
3443	/ {
3444	/	long long adj;
3445	/
3446	/	if (hrestime_adj == 0)
3447	/		adj = 0;
3448	/	else if (hrestime_adj > 0) {
3449	/		if (hrestime_adj < HRES_ADJ)
3450	/			adj = hrestime_adj;
3451	/		else
3452	/			adj = HRES_ADJ;
3453	/	}
3454	/	else {
3455	/		if (hrestime_adj < -(HRES_ADJ))
3456	/			adj = -(HRES_ADJ);
3457	/		else
3458	/			adj = hrestime_adj;
3459	/	}
3460	/
3461	/	timedelta -= adj;
3462	/	hrestime_adj = timedelta;
3463	/	hrestime.tv_nsec += adj;
3464	/
3465	/	while (hrestime.tv_nsec >= NANOSEC) {
3466	/		one_sec++;
3467	/		hrestime.tv_sec++;
3468	/		hrestime.tv_nsec -= NANOSEC;
3469	/	}
3470	/ }
3471__adj_hrestime:
3472	movl	hrestime_adj, %esi	/ if (hrestime_adj == 0)
3473	movl	hrestime_adj+4, %edx
3474	andl	%esi, %esi
3475	jne	.CL4			/ no
3476	andl	%edx, %edx
3477	jne	.CL4			/ no
3478	subl	%ecx, %ecx		/ yes, adj = 0;
3479	subl	%edx, %edx
3480	jmp	.CL5
3481.CL4:
3482	subl	%ecx, %ecx
3483	subl	%eax, %eax
3484	subl	%esi, %ecx
3485	sbbl	%edx, %eax
3486	andl	%eax, %eax		/ if (hrestime_adj > 0)
3487	jge	.CL6
3488
3489	/ In the following comments, HRES_ADJ is used, while in the code
3490	/ max_hres_adj is used.
3491	/
3492	/ The test for "hrestime_adj < HRES_ADJ" is complicated because
3493	/ hrestime_adj is 64-bits, while HRES_ADJ is 32-bits.  We rely
3494	/ on the logical equivalence of:
3495	/
3496	/	!(hrestime_adj < HRES_ADJ)
3497	/
3498	/ and the two step sequence:
3499	/
3500	/	(HRES_ADJ - lsw(hrestime_adj)) generates a Borrow/Carry
3501	/
3502	/ which computes whether or not the least significant 32-bits
3503	/ of hrestime_adj is greater than HRES_ADJ, followed by:
3504	/
3505	/	Previous Borrow/Carry + -1 + msw(hrestime_adj) generates a Carry
3506	/
3507	/ which generates a carry whenever step 1 is true or the most
3508	/ significant long of the longlong hrestime_adj is non-zero.
3509
3510	movl	max_hres_adj, %ecx	/ hrestime_adj is positive
3511	subl	%esi, %ecx
3512	movl	%edx, %eax
3513	adcl	$-1, %eax
3514	jnc	.CL7
3515	movl	max_hres_adj, %ecx	/ adj = HRES_ADJ;
3516	subl	%edx, %edx
3517	jmp	.CL5
3518
3519	/ The following computation is similar to the one above.
3520	/
3521	/ The test for "hrestime_adj < -(HRES_ADJ)" is complicated because
3522	/ hrestime_adj is 64-bits, while HRES_ADJ is 32-bits.  We rely
3523	/ on the logical equivalence of:
3524	/
3525	/	(hrestime_adj > -HRES_ADJ)
3526	/
3527	/ and the two step sequence:
3528	/
3529	/	(HRES_ADJ + lsw(hrestime_adj)) generates a Carry
3530	/
3531	/ which means the least significant 32-bits of hrestime_adj is
3532	/ greater than -HRES_ADJ, followed by:
3533	/
3534	/	Previous Carry + 0 + msw(hrestime_adj) generates a Carry
3535	/
3536	/ which generates a carry only when step 1 is true and the most
3537	/ significant long of the longlong hrestime_adj is -1.
3538
3539.CL6:					/ hrestime_adj is negative
3540	movl	%esi, %ecx
3541	addl	max_hres_adj, %ecx
3542	movl	%edx, %eax
3543	adcl	$0, %eax
3544	jc	.CL7
3545	xor	%ecx, %ecx
3546	subl	max_hres_adj, %ecx	/ adj = -(HRES_ADJ);
3547	movl	$-1, %edx
3548	jmp	.CL5
3549.CL7:
3550	movl	%esi, %ecx		/ adj = hrestime_adj;
3551.CL5:
3552	movl	timedelta, %esi
3553	subl	%ecx, %esi
3554	movl	timedelta+4, %eax
3555	sbbl	%edx, %eax
3556	movl	%esi, timedelta
3557	movl	%eax, timedelta+4	/ timedelta -= adj;
3558	movl	%esi, hrestime_adj
3559	movl	%eax, hrestime_adj+4	/ hrestime_adj = timedelta;
3560	addl	hrestime+4, %ecx
3561
3562	movl	%ecx, %eax		/ eax = tv_nsec
35631:
3564	cmpl	$NANOSEC, %eax		/ if ((unsigned long)tv_nsec >= NANOSEC)
3565	jb	.CL8			/ no
3566	incl	one_sec			/ yes,  one_sec++;
3567	incl	hrestime		/ hrestime.tv_sec++;
3568	addl	$-NANOSEC, %eax		/ tv_nsec -= NANOSEC
3569	jmp	1b			/ check for more seconds
3570
3571.CL8:
3572	movl	%eax, hrestime+4	/ store final into hrestime.tv_nsec
3573	incl	hres_lock		/ release the hres_lock
3574
3575	popl	%ebx
3576	popl	%esi
3577	leave
3578	ret
3579	SET_SIZE(hres_tick)
3580
3581#endif	/* __i386 */
3582#endif	/* __lint */
3583
3584/*
3585 * void prefetch_smap_w(void *)
3586 *
3587 * Prefetch ahead within a linear list of smap structures.
3588 * Not implemented for ia32.  Stub for compatibility.
3589 */
3590
3591#if defined(__lint)
3592
3593/*ARGSUSED*/
3594void prefetch_smap_w(void *smp)
3595{}
3596
3597#else	/* __lint */
3598
3599	ENTRY(prefetch_smap_w)
3600	rep;	ret	/* use 2 byte return instruction when branch target */
3601			/* AMD Software Optimization Guide - Section 6.2 */
3602	SET_SIZE(prefetch_smap_w)
3603
3604#endif	/* __lint */
3605
3606/*
3607 * prefetch_page_r(page_t *)
3608 * issue prefetch instructions for a page_t
3609 */
3610#if defined(__lint)
3611
3612/*ARGSUSED*/
3613void
3614prefetch_page_r(void *pp)
3615{}
3616
3617#else	/* __lint */
3618
3619	ENTRY(prefetch_page_r)
3620	rep;	ret	/* use 2 byte return instruction when branch target */
3621			/* AMD Software Optimization Guide - Section 6.2 */
3622	SET_SIZE(prefetch_page_r)
3623
3624#endif	/* __lint */
3625
3626#if defined(__lint)
3627
3628/*ARGSUSED*/
3629int
3630bcmp(const void *s1, const void *s2, size_t count)
3631{ return (0); }
3632
3633#else   /* __lint */
3634
3635#if defined(__amd64)
3636
3637	ENTRY(bcmp)
3638	pushq	%rbp
3639	movq	%rsp, %rbp
3640#ifdef DEBUG
3641	movq	kernelbase(%rip), %r11
3642	cmpq	%r11, %rdi
3643	jb	0f
3644	cmpq	%r11, %rsi
3645	jnb	1f
36460:	leaq	.bcmp_panic_msg(%rip), %rdi
3647	xorl	%eax, %eax
3648	call	panic
36491:
3650#endif	/* DEBUG */
3651	call	memcmp
3652	testl	%eax, %eax
3653	setne	%dl
3654	leave
3655	movzbl	%dl, %eax
3656	ret
3657	SET_SIZE(bcmp)
3658
3659#elif defined(__i386)
3660
3661#define	ARG_S1		8
3662#define	ARG_S2		12
3663#define	ARG_LENGTH	16
3664
3665	ENTRY(bcmp)
3666#ifdef DEBUG
3667	pushl   %ebp
3668	movl    %esp, %ebp
3669	movl    kernelbase, %eax
3670	cmpl    %eax, ARG_S1(%ebp)
3671	jb	0f
3672	cmpl    %eax, ARG_S2(%ebp)
3673	jnb	1f
36740:	pushl   $.bcmp_panic_msg
3675	call    panic
36761:	popl    %ebp
3677#endif	/* DEBUG */
3678
3679	pushl	%edi		/ save register variable
3680	movl	ARG_S1(%esp), %eax	/ %eax = address of string 1
3681	movl	ARG_S2(%esp), %ecx	/ %ecx = address of string 2
3682	cmpl	%eax, %ecx	/ if the same string
3683	je	.equal		/ goto .equal
3684	movl	ARG_LENGTH(%esp), %edi	/ %edi = length in bytes
3685	cmpl	$4, %edi	/ if %edi < 4
3686	jb	.byte_check	/ goto .byte_check
3687	.align	4
3688.word_loop:
3689	movl	(%ecx), %edx	/ move 1 word from (%ecx) to %edx
3690	leal	-4(%edi), %edi	/ %edi -= 4
3691	cmpl	(%eax), %edx	/ compare 1 word from (%eax) with %edx
3692	jne	.word_not_equal	/ if not equal, goto .word_not_equal
3693	leal	4(%ecx), %ecx	/ %ecx += 4 (next word)
3694	leal	4(%eax), %eax	/ %eax += 4 (next word)
3695	cmpl	$4, %edi	/ if %edi >= 4
3696	jae	.word_loop	/ goto .word_loop
3697.byte_check:
3698	cmpl	$0, %edi	/ if %edi == 0
3699	je	.equal		/ goto .equal
3700	jmp	.byte_loop	/ goto .byte_loop (checks in bytes)
3701.word_not_equal:
3702	leal	4(%edi), %edi	/ %edi += 4 (post-decremented)
3703	.align	4
3704.byte_loop:
3705	movb	(%ecx),	%dl	/ move 1 byte from (%ecx) to %dl
3706	cmpb	%dl, (%eax)	/ compare %dl with 1 byte from (%eax)
3707	jne	.not_equal	/ if not equal, goto .not_equal
3708	incl	%ecx		/ %ecx++ (next byte)
3709	incl	%eax		/ %eax++ (next byte)
3710	decl	%edi		/ %edi--
3711	jnz	.byte_loop	/ if not zero, goto .byte_loop
3712.equal:
3713	xorl	%eax, %eax	/ %eax = 0
3714	popl	%edi		/ restore register variable
3715	ret			/ return (NULL)
3716	.align	4
3717.not_equal:
3718	movl	$1, %eax	/ return 1
3719	popl	%edi		/ restore register variable
3720	ret			/ return (NULL)
3721	SET_SIZE(bcmp)
3722
3723#endif	/* __i386 */
3724
3725#ifdef DEBUG
3726	.text
3727.bcmp_panic_msg:
3728	.string "bcmp: arguments below kernelbase"
3729#endif	/* DEBUG */
3730
3731#endif	/* __lint */
3732