xref: /titanic_50/usr/src/uts/intel/dtrace/fasttrap_isa.c (revision 8d4e547db823a866b8f73efc0acdc423e2963caf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/fasttrap_isa.h>
30 #include <sys/fasttrap_impl.h>
31 #include <sys/dtrace.h>
32 #include <sys/dtrace_impl.h>
33 #include <sys/cmn_err.h>
34 #include <sys/regset.h>
35 #include <sys/privregs.h>
36 #include <sys/segments.h>
37 #include <sys/x86_archext.h>
38 #include <sys/sysmacros.h>
39 #include <sys/trap.h>
40 #include <sys/archsystm.h>
41 
42 /*
43  * Lossless User-Land Tracing on x86
44  * ---------------------------------
45  *
46  * The execution of most instructions is not dependent on the address; for
47  * these instructions it is sufficient to copy them into the user process's
48  * address space and execute them. To effectively single-step an instruction
49  * in user-land, we copy out the following sequence of instructions to scratch
50  * space in the user thread's ulwp_t structure.
51  *
52  * We then set the program counter (%eip or %rip) to point to this scratch
53  * space. Once execution resumes, the original instruction is executed and
54  * then control flow is redirected to what was originally the subsequent
55  * instruction. If the kernel attemps to deliver a signal while single-
56  * stepping, the signal is deferred and the program counter is moved into the
57  * second sequence of instructions. The second sequence ends in a trap into
58  * the kernel where the deferred signal is then properly handled and delivered.
59  *
60  * For instructions whose execute is position dependent, we perform simple
61  * emulation. These instructions are limited to control transfer
62  * instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle
63  * of %rip-relative addressing that means that almost any instruction can be
64  * position dependent. For all the details on how we emulate generic
65  * instructions included %rip-relative instructions, see the code in
66  * fasttrap_pid_probe() below where we handle instructions of type
67  * FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing).
68  */
69 
70 #define	FASTTRAP_MODRM_MOD(modrm)	(((modrm) >> 6) & 0x3)
71 #define	FASTTRAP_MODRM_REG(modrm)	(((modrm) >> 3) & 0x7)
72 #define	FASTTRAP_MODRM_RM(modrm)	((modrm) & 0x7)
73 #define	FASTTRAP_MODRM(mod, reg, rm)	(((mod) << 6) | ((reg) << 3) | (rm))
74 
75 #define	FASTTRAP_SIB_SCALE(sib)		(((sib) >> 6) & 0x3)
76 #define	FASTTRAP_SIB_INDEX(sib)		(((sib) >> 3) & 0x7)
77 #define	FASTTRAP_SIB_BASE(sib)		((sib) & 0x7)
78 
79 #define	FASTTRAP_REX_W(rex)		(((rex) >> 3) & 1)
80 #define	FASTTRAP_REX_R(rex)		(((rex) >> 2) & 1)
81 #define	FASTTRAP_REX_X(rex)		(((rex) >> 1) & 1)
82 #define	FASTTRAP_REX_B(rex)		((rex) & 1)
83 #define	FASTTRAP_REX(w, r, x, b)	\
84 	(0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b))
85 
86 /*
87  * Single-byte op-codes.
88  */
89 #define	FASTTRAP_PUSHL_EBP	0x55
90 
91 #define	FASTTRAP_JO		0x70
92 #define	FASTTRAP_JNO		0x71
93 #define	FASTTRAP_JB		0x72
94 #define	FASTTRAP_JAE		0x73
95 #define	FASTTRAP_JE		0x74
96 #define	FASTTRAP_JNE		0x75
97 #define	FASTTRAP_JBE		0x76
98 #define	FASTTRAP_JA		0x77
99 #define	FASTTRAP_JS		0x78
100 #define	FASTTRAP_JNS		0x79
101 #define	FASTTRAP_JP		0x7a
102 #define	FASTTRAP_JNP		0x7b
103 #define	FASTTRAP_JL		0x7c
104 #define	FASTTRAP_JGE		0x7d
105 #define	FASTTRAP_JLE		0x7e
106 #define	FASTTRAP_JG		0x7f
107 
108 #define	FASTTRAP_NOP		0x90
109 
110 #define	FASTTRAP_MOV_EAX	0xb8
111 #define	FASTTRAP_MOV_ECX	0xb9
112 
113 #define	FASTTRAP_RET16		0xc2
114 #define	FASTTRAP_RET		0xc3
115 
116 #define	FASTTRAP_LOOPNZ		0xe0
117 #define	FASTTRAP_LOOPZ		0xe1
118 #define	FASTTRAP_LOOP		0xe2
119 #define	FASTTRAP_JCXZ		0xe3
120 
121 #define	FASTTRAP_CALL		0xe8
122 #define	FASTTRAP_JMP32		0xe9
123 #define	FASTTRAP_JMP8		0xeb
124 
125 #define	FASTTRAP_INT3		0xcc
126 #define	FASTTRAP_INT		0xcd
127 
128 #define	FASTTRAP_2_BYTE_OP	0x0f
129 #define	FASTTRAP_GROUP5_OP	0xff
130 
131 /*
132  * Two-byte op-codes (second byte only).
133  */
134 #define	FASTTRAP_0F_JO		0x80
135 #define	FASTTRAP_0F_JNO		0x81
136 #define	FASTTRAP_0F_JB		0x82
137 #define	FASTTRAP_0F_JAE		0x83
138 #define	FASTTRAP_0F_JE		0x84
139 #define	FASTTRAP_0F_JNE		0x85
140 #define	FASTTRAP_0F_JBE		0x86
141 #define	FASTTRAP_0F_JA		0x87
142 #define	FASTTRAP_0F_JS		0x88
143 #define	FASTTRAP_0F_JNS		0x89
144 #define	FASTTRAP_0F_JP		0x8a
145 #define	FASTTRAP_0F_JNP		0x8b
146 #define	FASTTRAP_0F_JL		0x8c
147 #define	FASTTRAP_0F_JGE		0x8d
148 #define	FASTTRAP_0F_JLE		0x8e
149 #define	FASTTRAP_0F_JG		0x8f
150 
151 #define	FASTTRAP_EFLAGS_OF	0x800
152 #define	FASTTRAP_EFLAGS_DF	0x400
153 #define	FASTTRAP_EFLAGS_SF	0x080
154 #define	FASTTRAP_EFLAGS_ZF	0x040
155 #define	FASTTRAP_EFLAGS_AF	0x010
156 #define	FASTTRAP_EFLAGS_PF	0x004
157 #define	FASTTRAP_EFLAGS_CF	0x001
158 
159 /*
160  * Instruction prefixes.
161  */
162 #define	FASTTRAP_PREFIX_OPERAND	0x66
163 #define	FASTTRAP_PREFIX_ADDRESS	0x67
164 #define	FASTTRAP_PREFIX_CS	0x2E
165 #define	FASTTRAP_PREFIX_DS	0x3E
166 #define	FASTTRAP_PREFIX_ES	0x26
167 #define	FASTTRAP_PREFIX_FS	0x64
168 #define	FASTTRAP_PREFIX_GS	0x65
169 #define	FASTTRAP_PREFIX_SS	0x36
170 #define	FASTTRAP_PREFIX_LOCK	0xF0
171 #define	FASTTRAP_PREFIX_REP	0xF3
172 #define	FASTTRAP_PREFIX_REPNE	0xF2
173 
174 #define	FASTTRAP_NOREG	0xff
175 
176 /*
177  * Map between instruction register encodings and the kernel constants which
178  * correspond to indicies into struct regs.
179  */
180 #ifdef __amd64
181 static const uint8_t regmap[16] = {
182 	REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
183 	REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15,
184 };
185 #else
186 static const uint8_t regmap[8] = {
187 	EAX, ECX, EDX, EBX, UESP, EBP, ESI, EDI
188 };
189 #endif
190 
191 static ulong_t fasttrap_getreg(struct regs *, uint_t);
192 
193 static uint64_t
194 fasttrap_anarg(struct regs *rp, int function_entry, int argno)
195 {
196 	uint64_t value;
197 	int shift = function_entry ? 1 : 0;
198 
199 #ifdef __amd64
200 	if (curproc->p_model == DATAMODEL_LP64) {
201 		uintptr_t *stack;
202 
203 		/*
204 		 * In 64-bit mode, the first six arguments are stored in
205 		 * registers.
206 		 */
207 		if (argno < 6)
208 			return ((&rp->r_rdi)[argno]);
209 
210 		stack = (uintptr_t *)rp->r_sp;
211 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
212 		value = dtrace_fulword(&stack[argno - 6 + shift]);
213 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
214 	} else {
215 #endif
216 		uint32_t *stack = (uint32_t *)rp->r_sp;
217 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
218 		value = dtrace_fuword32(&stack[argno + shift]);
219 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
220 #ifdef __amd64
221 	}
222 #endif
223 
224 	return (value);
225 }
226 
227 /*ARGSUSED*/
228 int
229 fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, uintptr_t pc,
230     fasttrap_probe_type_t type)
231 {
232 	uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10];
233 	size_t len = FASTTRAP_MAX_INSTR_SIZE;
234 	size_t first = MIN(len, PAGESIZE - (pc & PAGEOFFSET));
235 	uint_t start = 0;
236 	int rmindex, size;
237 	uint8_t seg, rex = 0;
238 
239 	/*
240 	 * Read the instruction at the given address out of the process's
241 	 * address space. We don't have to worry about a debugger
242 	 * changing this instruction before we overwrite it with our trap
243 	 * instruction since P_PR_LOCK is set. Since instructions can span
244 	 * pages, we potentially read the instruction in two parts. If the
245 	 * second part fails, we just zero out that part of the instruction.
246 	 */
247 	if (uread(p, &instr[0], first, pc) != 0)
248 		return (-1);
249 	if (len > first &&
250 	    uread(p, &instr[first], len - first, pc + first) != 0) {
251 		bzero(&instr[first], len - first);
252 		len = first;
253 	}
254 
255 	/*
256 	 * If the disassembly fails, then we have a malformed instruction.
257 	 */
258 	if ((size = dtrace_instr_size_isa(instr, p->p_model, &rmindex)) <= 0)
259 		return (-1);
260 
261 	/*
262 	 * Make sure the disassembler isn't completely broken.
263 	 */
264 	ASSERT(-1 <= rmindex && rmindex < size);
265 
266 	/*
267 	 * If the computed size is greater than the number of bytes read,
268 	 * then it was a malformed instruction possibly because it fell on a
269 	 * page boundary and the subsequent page was missing or because of
270 	 * some malicious user.
271 	 */
272 	if (size > len)
273 		return (-1);
274 
275 	tp->ftt_size = (uint8_t)size;
276 	tp->ftt_segment = FASTTRAP_SEG_NONE;
277 
278 	/*
279 	 * Find the start of the instruction's opcode by processing any
280 	 * legacy prefixes.
281 	 */
282 	for (;;) {
283 		seg = 0;
284 		switch (instr[start]) {
285 		case FASTTRAP_PREFIX_SS:
286 			seg++;
287 			/*FALLTHRU*/
288 		case FASTTRAP_PREFIX_GS:
289 			seg++;
290 			/*FALLTHRU*/
291 		case FASTTRAP_PREFIX_FS:
292 			seg++;
293 			/*FALLTHRU*/
294 		case FASTTRAP_PREFIX_ES:
295 			seg++;
296 			/*FALLTHRU*/
297 		case FASTTRAP_PREFIX_DS:
298 			seg++;
299 			/*FALLTHRU*/
300 		case FASTTRAP_PREFIX_CS:
301 			seg++;
302 			/*FALLTHRU*/
303 		case FASTTRAP_PREFIX_OPERAND:
304 		case FASTTRAP_PREFIX_ADDRESS:
305 		case FASTTRAP_PREFIX_LOCK:
306 		case FASTTRAP_PREFIX_REP:
307 		case FASTTRAP_PREFIX_REPNE:
308 			if (seg != 0) {
309 				/*
310 				 * It's illegal for an instruction to specify
311 				 * two segment prefixes -- give up on this
312 				 * illegal instruction.
313 				 */
314 				if (tp->ftt_segment != FASTTRAP_SEG_NONE)
315 					return (-1);
316 
317 				tp->ftt_segment = seg;
318 			}
319 			start++;
320 			continue;
321 		}
322 		break;
323 	}
324 
325 #ifdef __amd64
326 	/*
327 	 * Identify the REX prefix on 64-bit processes.
328 	 */
329 	if (p->p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40)
330 		rex = instr[start++];
331 #endif
332 
333 	/*
334 	 * Now that we're pretty sure that the instruction is okay, copy the
335 	 * valid part to the tracepoint.
336 	 */
337 	bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE);
338 
339 	tp->ftt_type = FASTTRAP_T_COMMON;
340 	if (instr[start] == FASTTRAP_2_BYTE_OP) {
341 		switch (instr[start + 1]) {
342 		case FASTTRAP_0F_JO:
343 		case FASTTRAP_0F_JNO:
344 		case FASTTRAP_0F_JB:
345 		case FASTTRAP_0F_JAE:
346 		case FASTTRAP_0F_JE:
347 		case FASTTRAP_0F_JNE:
348 		case FASTTRAP_0F_JBE:
349 		case FASTTRAP_0F_JA:
350 		case FASTTRAP_0F_JS:
351 		case FASTTRAP_0F_JNS:
352 		case FASTTRAP_0F_JP:
353 		case FASTTRAP_0F_JNP:
354 		case FASTTRAP_0F_JL:
355 		case FASTTRAP_0F_JGE:
356 		case FASTTRAP_0F_JLE:
357 		case FASTTRAP_0F_JG:
358 			tp->ftt_type = FASTTRAP_T_JCC;
359 			tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO;
360 			tp->ftt_dest = pc + tp->ftt_size +
361 			    *(int32_t *)&instr[start + 2];
362 			break;
363 		}
364 	} else if (instr[start] == FASTTRAP_GROUP5_OP) {
365 		uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]);
366 		uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]);
367 		uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]);
368 
369 		if (reg == 2 || reg == 4) {
370 			uint_t i, sz;
371 
372 			if (reg == 2)
373 				tp->ftt_type = FASTTRAP_T_CALL;
374 			else
375 				tp->ftt_type = FASTTRAP_T_JMP;
376 
377 			if (mod == 3)
378 				tp->ftt_code = 2;
379 			else
380 				tp->ftt_code = 1;
381 
382 			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
383 
384 			/*
385 			 * See AMD x86-64 Architecture Programmer's Manual
386 			 * Volume 3, Section 1.2.7, Table 1-12, and
387 			 * Appendix A.3.1, Table A-15.
388 			 */
389 			if (mod != 3 && rm == 4) {
390 				uint8_t sib = instr[start + 2];
391 				uint_t index = FASTTRAP_SIB_INDEX(sib);
392 				uint_t base = FASTTRAP_SIB_BASE(sib);
393 
394 				tp->ftt_scale = FASTTRAP_SIB_SCALE(sib);
395 
396 				tp->ftt_index = (index == 4) ?
397 				    FASTTRAP_NOREG :
398 				    regmap[index | (FASTTRAP_REX_X(rex) << 3)];
399 				tp->ftt_base = (mod == 0 && base == 5) ?
400 				    FASTTRAP_NOREG :
401 				    regmap[base | (FASTTRAP_REX_B(rex) << 3)];
402 
403 				i = 3;
404 				sz = mod == 1 ? 1 : 4;
405 			} else {
406 				/*
407 				 * In 64-bit mode, mod == 0 and r/m == 5
408 				 * denotes %rip-relative addressing; in 32-bit
409 				 * mode, the base register isn't used. In both
410 				 * modes, there is a 32-bit operand.
411 				 */
412 				if (mod == 0 && rm == 5) {
413 #ifdef __amd64
414 					if (p->p_model == DATAMODEL_LP64)
415 						tp->ftt_base = REG_RIP;
416 					else
417 #endif
418 						tp->ftt_base = FASTTRAP_NOREG;
419 					sz = 4;
420 				} else  {
421 					uint8_t base = rm |
422 					    (FASTTRAP_REX_B(rex) << 3);
423 
424 					tp->ftt_base = regmap[base];
425 					sz = mod == 1 ? 1 : mod == 2 ? 4 : 0;
426 				}
427 				tp->ftt_index = FASTTRAP_NOREG;
428 				i = 2;
429 			}
430 
431 			if (sz == 1)
432 				tp->ftt_dest = *(int8_t *)&instr[start + i];
433 			else if (sz == 4)
434 				tp->ftt_dest = *(int32_t *)&instr[start + i];
435 			else
436 				tp->ftt_dest = 0;
437 		}
438 	} else {
439 		switch (instr[start]) {
440 		case FASTTRAP_RET:
441 			tp->ftt_type = FASTTRAP_T_RET;
442 			break;
443 
444 		case FASTTRAP_RET16:
445 			tp->ftt_type = FASTTRAP_T_RET16;
446 			tp->ftt_dest = *(uint16_t *)&instr[start + 1];
447 			break;
448 
449 		case FASTTRAP_JO:
450 		case FASTTRAP_JNO:
451 		case FASTTRAP_JB:
452 		case FASTTRAP_JAE:
453 		case FASTTRAP_JE:
454 		case FASTTRAP_JNE:
455 		case FASTTRAP_JBE:
456 		case FASTTRAP_JA:
457 		case FASTTRAP_JS:
458 		case FASTTRAP_JNS:
459 		case FASTTRAP_JP:
460 		case FASTTRAP_JNP:
461 		case FASTTRAP_JL:
462 		case FASTTRAP_JGE:
463 		case FASTTRAP_JLE:
464 		case FASTTRAP_JG:
465 			tp->ftt_type = FASTTRAP_T_JCC;
466 			tp->ftt_code = instr[start];
467 			tp->ftt_dest = pc + tp->ftt_size +
468 			    (int8_t)instr[start + 1];
469 			break;
470 
471 		case FASTTRAP_LOOPNZ:
472 		case FASTTRAP_LOOPZ:
473 		case FASTTRAP_LOOP:
474 			tp->ftt_type = FASTTRAP_T_LOOP;
475 			tp->ftt_code = instr[start];
476 			tp->ftt_dest = pc + tp->ftt_size +
477 			    (int8_t)instr[start + 1];
478 			break;
479 
480 		case FASTTRAP_JCXZ:
481 			tp->ftt_type = FASTTRAP_T_JCXZ;
482 			tp->ftt_dest = pc + tp->ftt_size +
483 			    (int8_t)instr[start + 1];
484 			break;
485 
486 		case FASTTRAP_CALL:
487 			tp->ftt_type = FASTTRAP_T_CALL;
488 			tp->ftt_dest = pc + tp->ftt_size +
489 			    *(int32_t *)&instr[start + 1];
490 			tp->ftt_code = 0;
491 			break;
492 
493 		case FASTTRAP_JMP32:
494 			tp->ftt_type = FASTTRAP_T_JMP;
495 			tp->ftt_dest = pc + tp->ftt_size +
496 			    *(int32_t *)&instr[start + 1];
497 			break;
498 		case FASTTRAP_JMP8:
499 			tp->ftt_type = FASTTRAP_T_JMP;
500 			tp->ftt_dest = pc + tp->ftt_size +
501 			    (int8_t)instr[start + 1];
502 			break;
503 
504 		case FASTTRAP_PUSHL_EBP:
505 			if (start == 0)
506 				tp->ftt_type = FASTTRAP_T_PUSHL_EBP;
507 			break;
508 
509 		case FASTTRAP_NOP:
510 #ifdef __amd64
511 			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
512 
513 			/*
514 			 * On amd64 we have to be careful not to confuse a nop
515 			 * (actually xchgl %eax, %eax) with an instruction using
516 			 * the same opcode, but that does something different
517 			 * (e.g. xchgl %r8d, %eax or xcghq %r8, %rax).
518 			 */
519 			if (FASTTRAP_REX_B(rex) == 0)
520 #endif
521 				tp->ftt_type = FASTTRAP_T_NOP;
522 			break;
523 
524 		case FASTTRAP_INT3:
525 			/*
526 			 * The pid provider shares the int3 trap with debugger
527 			 * breakpoints so we can't instrument them.
528 			 */
529 			ASSERT(instr[start] == FASTTRAP_INSTR);
530 			return (-1);
531 
532 		case FASTTRAP_INT:
533 			/*
534 			 * Interrupts seem like they could be traced with
535 			 * no negative implications, but it's possible that
536 			 * a thread could be redirected by the trap handling
537 			 * code which would eventually return to the
538 			 * instruction after the interrupt. If the interrupt
539 			 * were in our scratch space, the subsequent
540 			 * instruction might be overwritten before we return.
541 			 * Accordingly we refuse to instrument any interrupt.
542 			 */
543 			return (-1);
544 		}
545 	}
546 
547 #ifdef __amd64
548 	if (p->p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) {
549 		/*
550 		 * If the process is 64-bit and the instruction type is still
551 		 * FASTTRAP_T_COMMON -- meaning we're going to copy it out an
552 		 * execute it -- we need to watch for %rip-relative
553 		 * addressing mode. See the portion of fasttrap_pid_probe()
554 		 * below where we handle tracepoints with type
555 		 * FASTTRAP_T_COMMON for how we emulate instructions that
556 		 * employ %rip-relative addressing.
557 		 */
558 		if (rmindex != -1) {
559 			uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]);
560 			uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]);
561 			uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]);
562 
563 			ASSERT(rmindex > start);
564 
565 			if (mod == 0 && rm == 5) {
566 				/*
567 				 * We need to be sure to avoid other
568 				 * registers used by this instruction. While
569 				 * the reg field may determine the op code
570 				 * rather than denoting a register, assuming
571 				 * that it denotes a register is always safe.
572 				 * We leave the REX field intact and use
573 				 * whatever value's there for simplicity.
574 				 */
575 				if (reg != 0) {
576 					tp->ftt_ripmode = FASTTRAP_RIP_1 |
577 					    (FASTTRAP_RIP_X *
578 					    FASTTRAP_REX_B(rex));
579 					rm = 0;
580 				} else {
581 					tp->ftt_ripmode = FASTTRAP_RIP_2 |
582 					    (FASTTRAP_RIP_X *
583 					    FASTTRAP_REX_B(rex));
584 					rm = 1;
585 				}
586 
587 				tp->ftt_modrm = tp->ftt_instr[rmindex];
588 				tp->ftt_instr[rmindex] =
589 				    FASTTRAP_MODRM(2, reg, rm);
590 			}
591 		}
592 	}
593 #endif
594 
595 	return (0);
596 }
597 
598 int
599 fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp)
600 {
601 	fasttrap_instr_t instr = FASTTRAP_INSTR;
602 
603 	if (uwrite(p, &instr, 1, tp->ftt_pc) != 0)
604 		return (-1);
605 
606 	return (0);
607 }
608 
609 int
610 fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp)
611 {
612 	uint8_t instr;
613 
614 	/*
615 	 * Distinguish between read or write failures and a changed
616 	 * instruction.
617 	 */
618 	if (uread(p, &instr, 1, tp->ftt_pc) != 0)
619 		return (0);
620 	if (instr != FASTTRAP_INSTR)
621 		return (0);
622 	if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0)
623 		return (-1);
624 
625 	return (0);
626 }
627 
628 static uintptr_t
629 fasttrap_fulword_noerr(const void *uaddr)
630 {
631 	uintptr_t ret;
632 
633 	if (fasttrap_fulword(uaddr, &ret) == 0)
634 		return (ret);
635 
636 	return (0);
637 }
638 
639 static uint32_t
640 fasttrap_fuword32_noerr(const void *uaddr)
641 {
642 	uint32_t ret;
643 
644 	if (fasttrap_fuword32(uaddr, &ret) == 0)
645 		return (ret);
646 
647 	return (0);
648 }
649 
650 static void
651 fasttrap_return_common(struct regs *rp, uintptr_t pc, pid_t pid,
652     uintptr_t new_pc)
653 {
654 	fasttrap_tracepoint_t *tp;
655 	fasttrap_bucket_t *bucket;
656 	fasttrap_id_t *id;
657 	kmutex_t *pid_mtx;
658 
659 	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
660 	mutex_enter(pid_mtx);
661 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
662 
663 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
664 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
665 		    !tp->ftt_proc->ftpc_defunct)
666 			break;
667 	}
668 
669 	/*
670 	 * Don't sweat it if we can't find the tracepoint again; unlike
671 	 * when we're in fasttrap_pid_probe(), finding the tracepoint here
672 	 * is not essential to the correct execution of the process.
673 	 */
674 	if (tp == NULL) {
675 		mutex_exit(pid_mtx);
676 		return;
677 	}
678 
679 	for (id = tp->ftt_retids; id != NULL; id = id->fti_next) {
680 		/*
681 		 * If there's a branch that could act as a return site, we
682 		 * need to trace it, and check here if the program counter is
683 		 * external to the function.
684 		 */
685 		if (tp->ftt_type != FASTTRAP_T_RET &&
686 		    tp->ftt_type != FASTTRAP_T_RET16 &&
687 		    new_pc - id->fti_probe->ftp_faddr <
688 		    id->fti_probe->ftp_fsize)
689 			continue;
690 
691 		dtrace_probe(id->fti_probe->ftp_id,
692 		    pc - id->fti_probe->ftp_faddr,
693 		    rp->r_r0, rp->r_r1, 0, 0);
694 	}
695 
696 	mutex_exit(pid_mtx);
697 }
698 
699 static void
700 fasttrap_sigsegv(proc_t *p, kthread_t *t, uintptr_t addr)
701 {
702 	sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
703 
704 	sqp->sq_info.si_signo = SIGSEGV;
705 	sqp->sq_info.si_code = SEGV_MAPERR;
706 	sqp->sq_info.si_addr = (caddr_t)addr;
707 
708 	mutex_enter(&p->p_lock);
709 	sigaddqa(p, t, sqp);
710 	mutex_exit(&p->p_lock);
711 
712 	if (t != NULL)
713 		aston(t);
714 }
715 
716 #ifdef __amd64
717 static void
718 fasttrap_usdt_args64(fasttrap_probe_t *probe, struct regs *rp, int argc,
719     uintptr_t *argv)
720 {
721 	int i, x, cap = MIN(argc, probe->ftp_nargs);
722 	uintptr_t *stack = (uintptr_t *)rp->r_sp;
723 
724 	for (i = 0; i < cap; i++) {
725 		x = probe->ftp_argmap[i];
726 
727 		if (x < 6)
728 			argv[i] = (&rp->r_rdi)[x];
729 		else
730 			argv[i] = fasttrap_fulword_noerr(&stack[x]);
731 	}
732 
733 	for (; i < argc; i++) {
734 		argv[i] = 0;
735 	}
736 }
737 #endif
738 
739 static void
740 fasttrap_usdt_args32(fasttrap_probe_t *probe, struct regs *rp, int argc,
741     uint32_t *argv)
742 {
743 	int i, x, cap = MIN(argc, probe->ftp_nargs);
744 	uint32_t *stack = (uint32_t *)rp->r_sp;
745 
746 	for (i = 0; i < cap; i++) {
747 		x = probe->ftp_argmap[i];
748 
749 		argv[i] = fasttrap_fuword32_noerr(&stack[x]);
750 	}
751 
752 	for (; i < argc; i++) {
753 		argv[i] = 0;
754 	}
755 }
756 
757 static int
758 fasttrap_do_seg(fasttrap_tracepoint_t *tp, struct regs *rp, uintptr_t *addr)
759 {
760 	proc_t *p = curproc;
761 	user_desc_t *desc;
762 	uint16_t sel, ndx, type;
763 	uintptr_t limit;
764 
765 	switch (tp->ftt_segment) {
766 	case FASTTRAP_SEG_CS:
767 		sel = rp->r_cs;
768 		break;
769 	case FASTTRAP_SEG_DS:
770 		sel = rp->r_ds;
771 		break;
772 	case FASTTRAP_SEG_ES:
773 		sel = rp->r_es;
774 		break;
775 	case FASTTRAP_SEG_FS:
776 		sel = rp->r_fs;
777 		break;
778 	case FASTTRAP_SEG_GS:
779 		sel = rp->r_gs;
780 		break;
781 	case FASTTRAP_SEG_SS:
782 		sel = rp->r_ss;
783 		break;
784 	}
785 
786 	/*
787 	 * Make sure the given segment register specifies a user priority
788 	 * selector rather than a kernel selector.
789 	 */
790 	if (!SELISUPL(sel))
791 		return (-1);
792 
793 	ndx = SELTOIDX(sel);
794 
795 	/*
796 	 * Check the bounds and grab the descriptor out of the specified
797 	 * descriptor table.
798 	 */
799 	if (SELISLDT(sel)) {
800 		if (ndx > p->p_ldtlimit)
801 			return (-1);
802 
803 		desc = p->p_ldt + ndx;
804 
805 	} else {
806 		if (ndx >= NGDT)
807 			return (-1);
808 
809 		desc = cpu_get_gdt() + ndx;
810 	}
811 
812 	/*
813 	 * The descriptor must have user privilege level and it must be
814 	 * present in memory.
815 	 */
816 	if (desc->usd_dpl != SEL_UPL || desc->usd_p != 1)
817 		return (-1);
818 
819 	type = desc->usd_type;
820 
821 	/*
822 	 * If the S bit in the type field is not set, this descriptor can
823 	 * only be used in system context.
824 	 */
825 	if ((type & 0x10) != 0x10)
826 		return (-1);
827 
828 	limit = USEGD_GETLIMIT(desc) * (desc->usd_gran ? PAGESIZE : 1);
829 
830 	if (tp->ftt_segment == FASTTRAP_SEG_CS) {
831 		/*
832 		 * The code/data bit and readable bit must both be set.
833 		 */
834 		if ((type & 0xa) != 0xa)
835 			return (-1);
836 
837 		if (*addr > limit)
838 			return (-1);
839 	} else {
840 		/*
841 		 * The code/data bit must be clear.
842 		 */
843 		if ((type & 0x8) != 0)
844 			return (-1);
845 
846 		/*
847 		 * If the expand-down bit is clear, we just check the limit as
848 		 * it would naturally be applied. Otherwise, we need to check
849 		 * that the address is the range [limit + 1 .. 0xffff] or
850 		 * [limit + 1 ... 0xffffffff] depending on if the default
851 		 * operand size bit is set.
852 		 */
853 		if ((type & 0x4) == 0) {
854 			if (*addr > limit)
855 				return (-1);
856 		} else if (desc->usd_def32) {
857 			if (*addr < limit + 1 || 0xffff < *addr)
858 				return (-1);
859 		} else {
860 			if (*addr < limit + 1 || 0xffffffff < *addr)
861 				return (-1);
862 		}
863 	}
864 
865 	*addr += USEGD_GETBASE(desc);
866 
867 	return (0);
868 }
869 
870 int
871 fasttrap_pid_probe(struct regs *rp)
872 {
873 	proc_t *p = curproc;
874 	uintptr_t pc = rp->r_pc - 1, new_pc = 0;
875 	fasttrap_bucket_t *bucket;
876 	kmutex_t *pid_mtx;
877 	fasttrap_tracepoint_t *tp, tp_local;
878 	pid_t pid;
879 	dtrace_icookie_t cookie;
880 	uint_t is_enabled = 0;
881 
882 	/*
883 	 * It's possible that a user (in a veritable orgy of bad planning)
884 	 * could redirect this thread's flow of control before it reached the
885 	 * return probe fasttrap. In this case we need to kill the process
886 	 * since it's in a unrecoverable state.
887 	 */
888 	if (curthread->t_dtrace_step) {
889 		ASSERT(curthread->t_dtrace_on);
890 		fasttrap_sigtrap(p, curthread, pc);
891 		return (0);
892 	}
893 
894 	/*
895 	 * Clear all user tracing flags.
896 	 */
897 	curthread->t_dtrace_ft = 0;
898 	curthread->t_dtrace_pc = 0;
899 	curthread->t_dtrace_npc = 0;
900 	curthread->t_dtrace_scrpc = 0;
901 	curthread->t_dtrace_astpc = 0;
902 #ifdef __amd64
903 	curthread->t_dtrace_regv = 0;
904 #endif
905 
906 	/*
907 	 * Treat a child created by a call to vfork(2) as if it were its
908 	 * parent. We know that there's only one thread of control in such a
909 	 * process: this one.
910 	 */
911 	while (p->p_flag & SVFORK) {
912 		p = p->p_parent;
913 	}
914 
915 	pid = p->p_pid;
916 	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
917 	mutex_enter(pid_mtx);
918 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
919 
920 	/*
921 	 * Lookup the tracepoint that the process just hit.
922 	 */
923 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
924 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
925 		    !tp->ftt_proc->ftpc_defunct)
926 			break;
927 	}
928 
929 	/*
930 	 * If we couldn't find a matching tracepoint, either a tracepoint has
931 	 * been inserted without using the pid<pid> ioctl interface (see
932 	 * fasttrap_ioctl), or somehow we have mislaid this tracepoint.
933 	 */
934 	if (tp == NULL) {
935 		mutex_exit(pid_mtx);
936 		return (-1);
937 	}
938 
939 	/*
940 	 * Set the program counter to the address of the traced instruction
941 	 * so that it looks right in ustack() output.
942 	 */
943 	rp->r_pc = pc;
944 
945 	if (tp->ftt_ids != NULL) {
946 		fasttrap_id_t *id;
947 
948 #ifdef __amd64
949 		if (p->p_model == DATAMODEL_LP64) {
950 			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
951 				fasttrap_probe_t *probe = id->fti_probe;
952 
953 				if (id->fti_ptype == DTFTP_ENTRY) {
954 					/*
955 					 * We note that this was an entry
956 					 * probe to help ustack() find the
957 					 * first caller.
958 					 */
959 					cookie = dtrace_interrupt_disable();
960 					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
961 					dtrace_probe(probe->ftp_id, rp->r_rdi,
962 					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
963 					    rp->r_r8);
964 					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
965 					dtrace_interrupt_enable(cookie);
966 				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
967 					/*
968 					 * Note that in this case, we don't
969 					 * call dtrace_probe() since it's only
970 					 * an artificial probe meant to change
971 					 * the flow of control so that it
972 					 * encounters the true probe.
973 					 */
974 					is_enabled = 1;
975 				} else if (probe->ftp_argmap == NULL) {
976 					dtrace_probe(probe->ftp_id, rp->r_rdi,
977 					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
978 					    rp->r_r8);
979 				} else {
980 					uintptr_t t[5];
981 
982 					fasttrap_usdt_args64(probe, rp,
983 					    sizeof (t) / sizeof (t[0]), t);
984 
985 					dtrace_probe(probe->ftp_id, t[0], t[1],
986 					    t[2], t[3], t[4]);
987 				}
988 			}
989 		} else {
990 #endif
991 			uintptr_t s0, s1, s2, s3, s4, s5;
992 			uint32_t *stack = (uint32_t *)rp->r_sp;
993 
994 			/*
995 			 * In 32-bit mode, all arguments are passed on the
996 			 * stack. If this is a function entry probe, we need
997 			 * to skip the first entry on the stack as it
998 			 * represents the return address rather than a
999 			 * parameter to the function.
1000 			 */
1001 			s0 = fasttrap_fuword32_noerr(&stack[0]);
1002 			s1 = fasttrap_fuword32_noerr(&stack[1]);
1003 			s2 = fasttrap_fuword32_noerr(&stack[2]);
1004 			s3 = fasttrap_fuword32_noerr(&stack[3]);
1005 			s4 = fasttrap_fuword32_noerr(&stack[4]);
1006 			s5 = fasttrap_fuword32_noerr(&stack[5]);
1007 
1008 			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1009 				fasttrap_probe_t *probe = id->fti_probe;
1010 
1011 				if (id->fti_ptype == DTFTP_ENTRY) {
1012 					/*
1013 					 * We note that this was an entry
1014 					 * probe to help ustack() find the
1015 					 * first caller.
1016 					 */
1017 					cookie = dtrace_interrupt_disable();
1018 					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1019 					dtrace_probe(probe->ftp_id, s1, s2,
1020 					    s3, s4, s5);
1021 					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1022 					dtrace_interrupt_enable(cookie);
1023 				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1024 					/*
1025 					 * Note that in this case, we don't
1026 					 * call dtrace_probe() since it's only
1027 					 * an artificial probe meant to change
1028 					 * the flow of control so that it
1029 					 * encounters the true probe.
1030 					 */
1031 					is_enabled = 1;
1032 				} else if (probe->ftp_argmap == NULL) {
1033 					dtrace_probe(probe->ftp_id, s0, s1,
1034 					    s2, s3, s4);
1035 				} else {
1036 					uint32_t t[5];
1037 
1038 					fasttrap_usdt_args32(probe, rp,
1039 					    sizeof (t) / sizeof (t[0]), t);
1040 
1041 					dtrace_probe(probe->ftp_id, t[0], t[1],
1042 					    t[2], t[3], t[4]);
1043 				}
1044 			}
1045 #ifdef __amd64
1046 		}
1047 #endif
1048 	}
1049 
1050 	/*
1051 	 * We're about to do a bunch of work so we cache a local copy of
1052 	 * the tracepoint to emulate the instruction, and then find the
1053 	 * tracepoint again later if we need to light up any return probes.
1054 	 */
1055 	tp_local = *tp;
1056 	mutex_exit(pid_mtx);
1057 	tp = &tp_local;
1058 
1059 	/*
1060 	 * Set the program counter to appear as though the traced instruction
1061 	 * had completely executed. This ensures that fasttrap_getreg() will
1062 	 * report the expected value for REG_RIP.
1063 	 */
1064 	rp->r_pc = pc + tp->ftt_size;
1065 
1066 	/*
1067 	 * If there's an is-enabled probe connected to this tracepoint it
1068 	 * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax'
1069 	 * instruction that was placed there by DTrace when the binary was
1070 	 * linked. As this probe is, in fact, enabled, we need to stuff 1
1071 	 * into %eax or %rax. Accordingly, we can bypass all the instruction
1072 	 * emulation logic since we know the inevitable result. It's possible
1073 	 * that a user could construct a scenario where the 'is-enabled'
1074 	 * probe was on some other instruction, but that would be a rather
1075 	 * exotic way to shoot oneself in the foot.
1076 	 */
1077 	if (is_enabled) {
1078 		rp->r_r0 = 1;
1079 		new_pc = rp->r_pc;
1080 		goto done;
1081 	}
1082 
1083 	/*
1084 	 * We emulate certain types of instructions to ensure correctness
1085 	 * (in the case of position dependent instructions) or optimize
1086 	 * common cases. The rest we have the thread execute back in user-
1087 	 * land.
1088 	 */
1089 	switch (tp->ftt_type) {
1090 	case FASTTRAP_T_RET:
1091 	case FASTTRAP_T_RET16:
1092 	{
1093 		uintptr_t dst;
1094 		uintptr_t addr;
1095 		int ret;
1096 
1097 		/*
1098 		 * We have to emulate _every_ facet of the behavior of a ret
1099 		 * instruction including what happens if the load from %esp
1100 		 * fails; in that case, we send a SIGSEGV.
1101 		 */
1102 #ifdef __amd64
1103 		if (p->p_model == DATAMODEL_NATIVE) {
1104 #endif
1105 			ret = fasttrap_fulword((void *)rp->r_sp, &dst);
1106 			addr = rp->r_sp + sizeof (uintptr_t);
1107 #ifdef __amd64
1108 		} else {
1109 			uint32_t dst32;
1110 			ret = fasttrap_fuword32((void *)rp->r_sp, &dst32);
1111 			dst = dst32;
1112 			addr = rp->r_sp + sizeof (uint32_t);
1113 		}
1114 #endif
1115 
1116 		if (ret == -1) {
1117 			fasttrap_sigsegv(p, curthread, rp->r_sp);
1118 			new_pc = pc;
1119 			break;
1120 		}
1121 
1122 		if (tp->ftt_type == FASTTRAP_T_RET16)
1123 			addr += tp->ftt_dest;
1124 
1125 		rp->r_sp = addr;
1126 		new_pc = dst;
1127 		break;
1128 	}
1129 
1130 	case FASTTRAP_T_JCC:
1131 	{
1132 		uint_t taken;
1133 
1134 		switch (tp->ftt_code) {
1135 		case FASTTRAP_JO:
1136 			taken = (rp->r_ps & FASTTRAP_EFLAGS_OF) != 0;
1137 			break;
1138 		case FASTTRAP_JNO:
1139 			taken = (rp->r_ps & FASTTRAP_EFLAGS_OF) == 0;
1140 			break;
1141 		case FASTTRAP_JB:
1142 			taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) != 0;
1143 			break;
1144 		case FASTTRAP_JAE:
1145 			taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) == 0;
1146 			break;
1147 		case FASTTRAP_JE:
1148 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0;
1149 			break;
1150 		case FASTTRAP_JNE:
1151 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0;
1152 			break;
1153 		case FASTTRAP_JBE:
1154 			taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) != 0 ||
1155 			    (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0;
1156 			break;
1157 		case FASTTRAP_JA:
1158 			taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) == 0 &&
1159 			    (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0;
1160 			break;
1161 		case FASTTRAP_JS:
1162 			taken = (rp->r_ps & FASTTRAP_EFLAGS_SF) != 0;
1163 			break;
1164 		case FASTTRAP_JNS:
1165 			taken = (rp->r_ps & FASTTRAP_EFLAGS_SF) == 0;
1166 			break;
1167 		case FASTTRAP_JP:
1168 			taken = (rp->r_ps & FASTTRAP_EFLAGS_PF) != 0;
1169 			break;
1170 		case FASTTRAP_JNP:
1171 			taken = (rp->r_ps & FASTTRAP_EFLAGS_PF) == 0;
1172 			break;
1173 		case FASTTRAP_JL:
1174 			taken = ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) !=
1175 			    ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
1176 			break;
1177 		case FASTTRAP_JGE:
1178 			taken = ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) ==
1179 			    ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
1180 			break;
1181 		case FASTTRAP_JLE:
1182 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0 ||
1183 			    ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) !=
1184 			    ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
1185 			break;
1186 		case FASTTRAP_JG:
1187 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0 &&
1188 			    ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) ==
1189 			    ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
1190 			break;
1191 
1192 		}
1193 
1194 		if (taken)
1195 			new_pc = tp->ftt_dest;
1196 		else
1197 			new_pc = pc + tp->ftt_size;
1198 		break;
1199 	}
1200 
1201 	case FASTTRAP_T_LOOP:
1202 	{
1203 		uint_t taken;
1204 #ifdef __amd64
1205 		greg_t cx = rp->r_rcx--;
1206 #else
1207 		greg_t cx = rp->r_ecx--;
1208 #endif
1209 
1210 		switch (tp->ftt_code) {
1211 		case FASTTRAP_LOOPNZ:
1212 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0 &&
1213 			    cx != 0;
1214 			break;
1215 		case FASTTRAP_LOOPZ:
1216 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0 &&
1217 			    cx != 0;
1218 			break;
1219 		case FASTTRAP_LOOP:
1220 			taken = (cx != 0);
1221 			break;
1222 		}
1223 
1224 		if (taken)
1225 			new_pc = tp->ftt_dest;
1226 		else
1227 			new_pc = pc + tp->ftt_size;
1228 		break;
1229 	}
1230 
1231 	case FASTTRAP_T_JCXZ:
1232 	{
1233 #ifdef __amd64
1234 		greg_t cx = rp->r_rcx;
1235 #else
1236 		greg_t cx = rp->r_ecx;
1237 #endif
1238 
1239 		if (cx == 0)
1240 			new_pc = tp->ftt_dest;
1241 		else
1242 			new_pc = pc + tp->ftt_size;
1243 		break;
1244 	}
1245 
1246 	case FASTTRAP_T_PUSHL_EBP:
1247 	{
1248 		int ret;
1249 		uintptr_t addr;
1250 #ifdef __amd64
1251 		if (p->p_model == DATAMODEL_NATIVE) {
1252 #endif
1253 			addr = rp->r_sp - sizeof (uintptr_t);
1254 			ret = fasttrap_sulword((void *)addr, rp->r_fp);
1255 #ifdef __amd64
1256 		} else {
1257 			addr = rp->r_sp - sizeof (uint32_t);
1258 			ret = fasttrap_suword32((void *)addr,
1259 			    (uint32_t)rp->r_fp);
1260 		}
1261 #endif
1262 
1263 		if (ret == -1) {
1264 			fasttrap_sigsegv(p, curthread, addr);
1265 			new_pc = pc;
1266 			break;
1267 		}
1268 
1269 		rp->r_sp = addr;
1270 		new_pc = pc + tp->ftt_size;
1271 		break;
1272 	}
1273 
1274 	case FASTTRAP_T_NOP:
1275 		new_pc = pc + tp->ftt_size;
1276 		break;
1277 
1278 	case FASTTRAP_T_JMP:
1279 	case FASTTRAP_T_CALL:
1280 		if (tp->ftt_code == 0) {
1281 			new_pc = tp->ftt_dest;
1282 		} else {
1283 			uintptr_t value, addr = tp->ftt_dest;
1284 
1285 			if (tp->ftt_base != FASTTRAP_NOREG)
1286 				addr += fasttrap_getreg(rp, tp->ftt_base);
1287 			if (tp->ftt_index != FASTTRAP_NOREG)
1288 				addr += fasttrap_getreg(rp, tp->ftt_index) <<
1289 				    tp->ftt_scale;
1290 
1291 			if (tp->ftt_code == 1) {
1292 				/*
1293 				 * If there's a segment prefix for this
1294 				 * instruction, we'll need to check permissions
1295 				 * and bounds on the given selector, and adjust
1296 				 * the address accordingly.
1297 				 */
1298 				if (tp->ftt_segment != FASTTRAP_SEG_NONE &&
1299 				    fasttrap_do_seg(tp, rp, &addr) != 0) {
1300 					fasttrap_sigsegv(p, curthread, addr);
1301 					new_pc = pc;
1302 					break;
1303 				}
1304 
1305 #ifdef __amd64
1306 				if (p->p_model == DATAMODEL_NATIVE) {
1307 #endif
1308 					if (fasttrap_fulword((void *)addr,
1309 					    &value) == -1) {
1310 						fasttrap_sigsegv(p, curthread,
1311 						    addr);
1312 						new_pc = pc;
1313 						break;
1314 					}
1315 					new_pc = value;
1316 #ifdef __amd64
1317 				} else {
1318 					uint32_t value32;
1319 					addr = (uintptr_t)(uint32_t)addr;
1320 					if (fasttrap_fuword32((void *)addr,
1321 					    &value32) == -1) {
1322 						fasttrap_sigsegv(p, curthread,
1323 						    addr);
1324 						new_pc = pc;
1325 						break;
1326 					}
1327 					new_pc = value32;
1328 				}
1329 #endif
1330 			} else {
1331 				new_pc = addr;
1332 			}
1333 		}
1334 
1335 		/*
1336 		 * If this is a call instruction, we need to push the return
1337 		 * address onto the stack. If this fails, we send the process
1338 		 * a SIGSEGV and reset the pc to emulate what would happen if
1339 		 * this instruction weren't traced.
1340 		 */
1341 		if (tp->ftt_type == FASTTRAP_T_CALL) {
1342 			int ret;
1343 			uintptr_t addr;
1344 #ifdef __amd64
1345 			if (p->p_model == DATAMODEL_NATIVE) {
1346 				addr = rp->r_sp - sizeof (uintptr_t);
1347 				ret = fasttrap_sulword((void *)addr,
1348 				    pc + tp->ftt_size);
1349 			} else {
1350 #endif
1351 				addr = rp->r_sp - sizeof (uint32_t);
1352 				ret = fasttrap_suword32((void *)addr,
1353 				    (uint32_t)(pc + tp->ftt_size));
1354 #ifdef __amd64
1355 			}
1356 #endif
1357 
1358 			if (ret == -1) {
1359 				fasttrap_sigsegv(p, curthread, addr);
1360 				new_pc = pc;
1361 				break;
1362 			}
1363 
1364 			rp->r_sp = addr;
1365 		}
1366 
1367 		break;
1368 
1369 	case FASTTRAP_T_COMMON:
1370 	{
1371 		uintptr_t addr;
1372 		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 5 + 2];
1373 		uint_t i = 0;
1374 		klwp_t *lwp = ttolwp(curthread);
1375 
1376 		/*
1377 		 * Compute the address of the ulwp_t and step over the
1378 		 * ul_self pointer. The method used to store the user-land
1379 		 * thread pointer is very different on 32- and 64-bit
1380 		 * kernels.
1381 		 */
1382 #if defined(__amd64)
1383 		if (p->p_model == DATAMODEL_LP64) {
1384 			addr = lwp->lwp_pcb.pcb_fsbase;
1385 			addr += sizeof (void *);
1386 		} else {
1387 			addr = lwp->lwp_pcb.pcb_gsbase;
1388 			addr += sizeof (caddr32_t);
1389 		}
1390 #elif defined(__i386)
1391 		addr = USEGD_GETBASE(&lwp->lwp_pcb.pcb_gsdesc);
1392 		addr += sizeof (void *);
1393 #endif
1394 
1395 		/*
1396 		 * Generic Instruction Tracing
1397 		 * ---------------------------
1398 		 *
1399 		 * This is the layout of the scratch space in the user-land
1400 		 * thread structure for our generated instructions.
1401 		 *
1402 		 *	32-bit mode			bytes
1403 		 *	------------------------	-----
1404 		 * a:	<original instruction>		<= 15
1405 		 *	jmp	<pc + tp->ftt_size>	    5
1406 		 * b:	<original instrction>		<= 15
1407 		 *	int	T_DTRACE_RET		    2
1408 		 *					-----
1409 		 *					<= 37
1410 		 *
1411 		 *	64-bit mode			bytes
1412 		 *	------------------------	-----
1413 		 * a:	<original instruction>		<= 15
1414 		 *	jmp	0(%rip)			    6
1415 		 *	<pc + tp->ftt_size>		    8
1416 		 * b:	<original instruction>		<= 15
1417 		 * 	int	T_DTRACE_RET		    2
1418 		 * 					-----
1419 		 * 					<= 46
1420 		 *
1421 		 * The %pc is set to a, and curthread->t_dtrace_astpc is set
1422 		 * to b. If we encounter a signal on the way out of the
1423 		 * kernel, trap() will set %pc to curthread->t_dtrace_astpc
1424 		 * so that we execute the original instruction and re-enter
1425 		 * the kernel rather than redirecting to the next instruction.
1426 		 *
1427 		 * If there are return probes (so we know that we're going to
1428 		 * need to reenter the kernel after executing the original
1429 		 * instruction), the scratch space will just contain the
1430 		 * original instruction followed by an interrupt -- the same
1431 		 * data as at b.
1432 		 *
1433 		 * %rip-relative Addressing
1434 		 * ------------------------
1435 		 *
1436 		 * There's a further complication in 64-bit mode due to %rip-
1437 		 * relative addressing. While this is clearly a beneficial
1438 		 * architectural decision for position independent code, it's
1439 		 * hard not to see it as a personal attack against the pid
1440 		 * provider since before there was a relatively small set of
1441 		 * instructions to emulate; with %rip-relative addressing,
1442 		 * almost every instruction can potentially depend on the
1443 		 * address at which it's executed. Rather than emulating
1444 		 * the broad spectrum of instructions that can now be
1445 		 * position dependent, we emulate jumps and others as in
1446 		 * 32-bit mode, and take a different tack for instructions
1447 		 * using %rip-relative addressing.
1448 		 *
1449 		 * For every instruction that uses the ModRM byte, the
1450 		 * in-kernel disassembler reports its location. We use the
1451 		 * ModRM byte to identify that an instruction uses
1452 		 * %rip-relative addressing and to see what other registers
1453 		 * the instruction uses. To emulate those instructions,
1454 		 * we modify the instruction to be %rax-relative rather than
1455 		 * %rip-relative (or %rcx-relative if the instruction uses
1456 		 * %rax; or %r8- or %r9-relative if the REX.B is present so
1457 		 * we don't have to rewrite the REX prefix). We then load
1458 		 * the value that %rip would have been into the scratch
1459 		 * register and generate an instruction to reset the scratch
1460 		 * register back to its original value. The instruction
1461 		 * sequence looks like this:
1462 		 *
1463 		 *	64-mode %rip-relative		bytes
1464 		 *	------------------------	-----
1465 		 * a:	<modified instruction>		<= 15
1466 		 *	movq	$<value>, %<scratch>	    6
1467 		 *	jmp	0(%rip)			    6
1468 		 *	<pc + tp->ftt_size>		    8
1469 		 * b:	<modified instruction>  	<= 15
1470 		 * 	int	T_DTRACE_RET		    2
1471 		 * 					-----
1472 		 *					   52
1473 		 *
1474 		 * We set curthread->t_dtrace_regv so that upon receiving
1475 		 * a signal we can reset the value of the scratch register.
1476 		 */
1477 
1478 		ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE);
1479 
1480 		curthread->t_dtrace_scrpc = addr;
1481 		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1482 		i += tp->ftt_size;
1483 
1484 #ifdef __amd64
1485 		if (tp->ftt_ripmode != 0) {
1486 			greg_t *reg;
1487 
1488 			ASSERT(p->p_model == DATAMODEL_LP64);
1489 			ASSERT(tp->ftt_ripmode &
1490 			    (FASTTRAP_RIP_1 | FASTTRAP_RIP_2));
1491 
1492 			/*
1493 			 * If this was a %rip-relative instruction, we change
1494 			 * it to be either a %rax- or %rcx-relative
1495 			 * instruction (depending on whether those registers
1496 			 * are used as another operand; or %r8- or %r9-
1497 			 * relative depending on the value of REX.B). We then
1498 			 * set that register and generate a movq instruction
1499 			 * to reset the value.
1500 			 */
1501 			if (tp->ftt_ripmode & FASTTRAP_RIP_X)
1502 				scratch[i++] = FASTTRAP_REX(1, 0, 0, 1);
1503 			else
1504 				scratch[i++] = FASTTRAP_REX(1, 0, 0, 0);
1505 
1506 			if (tp->ftt_ripmode & FASTTRAP_RIP_1)
1507 				scratch[i++] = FASTTRAP_MOV_EAX;
1508 			else
1509 				scratch[i++] = FASTTRAP_MOV_ECX;
1510 
1511 			switch (tp->ftt_ripmode) {
1512 			case FASTTRAP_RIP_1:
1513 				reg = &rp->r_rax;
1514 				curthread->t_dtrace_reg = REG_RAX;
1515 				break;
1516 			case FASTTRAP_RIP_2:
1517 				reg = &rp->r_rcx;
1518 				curthread->t_dtrace_reg = REG_RCX;
1519 				break;
1520 			case FASTTRAP_RIP_1 | FASTTRAP_RIP_X:
1521 				reg = &rp->r_r8;
1522 				curthread->t_dtrace_reg = REG_R8;
1523 				break;
1524 			case FASTTRAP_RIP_2 | FASTTRAP_RIP_X:
1525 				reg = &rp->r_r9;
1526 				curthread->t_dtrace_reg = REG_R9;
1527 				break;
1528 			}
1529 
1530 			*(uint64_t *)&scratch[i] = *reg;
1531 			curthread->t_dtrace_regv = *reg;
1532 			*reg = pc + tp->ftt_size;
1533 			i += sizeof (uint64_t);
1534 		}
1535 #endif
1536 
1537 		/*
1538 		 * Generate the branch instruction to what would have
1539 		 * normally been the subsequent instruction. In 32-bit mode,
1540 		 * this is just a relative branch; in 64-bit mode this is a
1541 		 * %rip-relative branch that loads the 64-bit pc value
1542 		 * immediately after the jmp instruction.
1543 		 */
1544 #ifdef __amd64
1545 		if (p->p_model == DATAMODEL_LP64) {
1546 			scratch[i++] = FASTTRAP_GROUP5_OP;
1547 			scratch[i++] = FASTTRAP_MODRM(0, 4, 5);
1548 			*(uint32_t *)&scratch[i] = 0;
1549 			i += sizeof (uint32_t);
1550 			*(uint64_t *)&scratch[i] = pc + tp->ftt_size;
1551 			i += sizeof (uint64_t);
1552 		} else {
1553 #endif
1554 			/*
1555 			 * Set up the jmp to the next instruction; note that
1556 			 * the size of the traced instruction cancels out.
1557 			 */
1558 			scratch[i++] = FASTTRAP_JMP32;
1559 			*(uint32_t *)&scratch[i] = pc - addr - 5;
1560 			i += sizeof (uint32_t);
1561 #ifdef __amd64
1562 		}
1563 #endif
1564 
1565 		curthread->t_dtrace_astpc = addr + i;
1566 		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1567 		i += tp->ftt_size;
1568 		scratch[i++] = FASTTRAP_INT;
1569 		scratch[i++] = T_DTRACE_RET;
1570 
1571 		if (fasttrap_copyout(scratch, (char *)addr, i)) {
1572 			fasttrap_sigtrap(p, curthread, pc);
1573 			new_pc = pc;
1574 			break;
1575 		}
1576 
1577 		if (tp->ftt_retids != NULL) {
1578 			curthread->t_dtrace_step = 1;
1579 			curthread->t_dtrace_ret = 1;
1580 			new_pc = curthread->t_dtrace_astpc;
1581 		} else {
1582 			new_pc = curthread->t_dtrace_scrpc;
1583 		}
1584 
1585 		curthread->t_dtrace_pc = pc;
1586 		curthread->t_dtrace_npc = pc + tp->ftt_size;
1587 		curthread->t_dtrace_on = 1;
1588 		break;
1589 	}
1590 
1591 	default:
1592 		panic("fasttrap: mishandled an instruction");
1593 	}
1594 
1595 done:
1596 	/*
1597 	 * If there were no return probes when we first found the tracepoint,
1598 	 * we should feel no obligation to honor any return probes that were
1599 	 * subsequently enabled -- they'll just have to wait until the next
1600 	 * time around.
1601 	 */
1602 	if (tp->ftt_retids != NULL) {
1603 		/*
1604 		 * We need to wait until the results of the instruction are
1605 		 * apparent before invoking any return probes. If this
1606 		 * instruction was emulated we can just call
1607 		 * fasttrap_return_common(); if it needs to be executed, we
1608 		 * need to wait until the user thread returns to the kernel.
1609 		 */
1610 		if (tp->ftt_type != FASTTRAP_T_COMMON) {
1611 			/*
1612 			 * Set the program counter to the address of the traced
1613 			 * instruction so that it looks right in ustack()
1614 			 * output. We had previously set it to the end of the
1615 			 * instruction to simplify %rip-relative addressing.
1616 			 */
1617 			rp->r_pc = pc;
1618 
1619 			fasttrap_return_common(rp, pc, pid, new_pc);
1620 		} else {
1621 			ASSERT(curthread->t_dtrace_ret != 0);
1622 			ASSERT(curthread->t_dtrace_pc == pc);
1623 			ASSERT(curthread->t_dtrace_scrpc != 0);
1624 			ASSERT(new_pc == curthread->t_dtrace_astpc);
1625 		}
1626 	}
1627 
1628 	rp->r_pc = new_pc;
1629 
1630 	return (0);
1631 }
1632 
1633 int
1634 fasttrap_return_probe(struct regs *rp)
1635 {
1636 	proc_t *p = curproc;
1637 	uintptr_t pc = curthread->t_dtrace_pc;
1638 	uintptr_t npc = curthread->t_dtrace_npc;
1639 
1640 	curthread->t_dtrace_pc = 0;
1641 	curthread->t_dtrace_npc = 0;
1642 	curthread->t_dtrace_scrpc = 0;
1643 	curthread->t_dtrace_astpc = 0;
1644 
1645 	/*
1646 	 * Treat a child created by a call to vfork(2) as if it were its
1647 	 * parent. We know that there's only one thread of control in such a
1648 	 * process: this one.
1649 	 */
1650 	while (p->p_flag & SVFORK) {
1651 		p = p->p_parent;
1652 	}
1653 
1654 	/*
1655 	 * We set rp->r_pc to the address of the traced instruction so
1656 	 * that it appears to dtrace_probe() that we're on the original
1657 	 * instruction, and so that the user can't easily detect our
1658 	 * complex web of lies. dtrace_return_probe() (our caller)
1659 	 * will correctly set %pc after we return.
1660 	 */
1661 	rp->r_pc = pc;
1662 
1663 	fasttrap_return_common(rp, pc, p->p_pid, npc);
1664 
1665 	return (0);
1666 }
1667 
1668 /*ARGSUSED*/
1669 uint64_t
1670 fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1671     int aframes)
1672 {
1673 	return (fasttrap_anarg(ttolwp(curthread)->lwp_regs, 1, argno));
1674 }
1675 
1676 /*ARGSUSED*/
1677 uint64_t
1678 fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1679     int aframes)
1680 {
1681 	return (fasttrap_anarg(ttolwp(curthread)->lwp_regs, 0, argno));
1682 }
1683 
1684 static ulong_t
1685 fasttrap_getreg(struct regs *rp, uint_t reg)
1686 {
1687 #ifdef __amd64
1688 	switch (reg) {
1689 	case REG_R15:		return (rp->r_r15);
1690 	case REG_R14:		return (rp->r_r14);
1691 	case REG_R13:		return (rp->r_r13);
1692 	case REG_R12:		return (rp->r_r12);
1693 	case REG_R11:		return (rp->r_r11);
1694 	case REG_R10:		return (rp->r_r10);
1695 	case REG_R9:		return (rp->r_r9);
1696 	case REG_R8:		return (rp->r_r8);
1697 	case REG_RDI:		return (rp->r_rdi);
1698 	case REG_RSI:		return (rp->r_rsi);
1699 	case REG_RBP:		return (rp->r_rbp);
1700 	case REG_RBX:		return (rp->r_rbx);
1701 	case REG_RDX:		return (rp->r_rdx);
1702 	case REG_RCX:		return (rp->r_rcx);
1703 	case REG_RAX:		return (rp->r_rax);
1704 	case REG_TRAPNO:	return (rp->r_trapno);
1705 	case REG_ERR:		return (rp->r_err);
1706 	case REG_RIP:		return (rp->r_rip);
1707 	case REG_CS:		return (rp->r_cs);
1708 	case REG_RFL:		return (rp->r_rfl);
1709 	case REG_RSP:		return (rp->r_rsp);
1710 	case REG_SS:		return (rp->r_ss);
1711 	case REG_FS:		return (rp->r_fs);
1712 	case REG_GS:		return (rp->r_gs);
1713 	case REG_DS:		return (rp->r_ds);
1714 	case REG_ES:		return (rp->r_es);
1715 	case REG_FSBASE:	return (rdmsr(MSR_AMD_FSBASE));
1716 	case REG_GSBASE:	return (rdmsr(MSR_AMD_GSBASE));
1717 	}
1718 
1719 	panic("dtrace: illegal register constant");
1720 	/*NOTREACHED*/
1721 #else
1722 	if (reg >= _NGREG)
1723 		panic("dtrace: illegal register constant");
1724 
1725 	return (((greg_t *)&rp->r_gs)[reg]);
1726 #endif
1727 }
1728