xref: /titanic_50/usr/src/uts/i86pc/vm/vm_dep.h (revision e07d9cb85217949d497b02d7211de8a197d2f2eb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * UNIX machine dependent virtual memory support.
28  */
29 
30 #ifndef	_VM_DEP_H
31 #define	_VM_DEP_H
32 
33 #pragma ident	"%Z%%M%	%I%	%E% SMI"
34 
35 #ifdef	__cplusplus
36 extern "C" {
37 #endif
38 
39 #include <sys/clock.h>
40 #include <vm/hat_pte.h>
41 #include <sys/param.h>
42 
43 /*
44  * WARNING: vm_dep.h is included by files in common. As such, macros
45  * dependent upon PTE36 such as LARGEPAGESIZE cannot be used in this file.
46  */
47 
48 #define	GETTICK()	tsc_read()
49 
50 /* memranges in descending order */
51 extern pfn_t		*memranges;
52 
53 #define	MEMRANGEHI(mtype)						\
54 	((mtype > 0) ? memranges[mtype - 1] - 1: physmax)
55 #define	MEMRANGELO(mtype)	(memranges[mtype])
56 
57 #define	MTYPE_FREEMEM(mt)						\
58 	(mnoderanges[mt].mnr_mt_clpgcnt +				\
59 	    mnoderanges[mt].mnr_mt_flpgcnt +				\
60 	    mnoderanges[mt].mnr_mt_lgpgcnt)
61 
62 /*
63  * combined memory ranges from mnode and memranges[] to manage single
64  * mnode/mtype dimension in the page lists.
65  */
66 typedef struct {
67 	pfn_t	mnr_pfnlo;
68 	pfn_t	mnr_pfnhi;
69 	int	mnr_mnode;
70 	int	mnr_memrange;		/* index into memranges[] */
71 	/* maintain page list stats */
72 	pgcnt_t	mnr_mt_pgmax;		/* mnode/mtype max page cnt */
73 	pgcnt_t	mnr_mt_clpgcnt;		/* cache list cnt */
74 	pgcnt_t	mnr_mt_flpgcnt;		/* free list cnt - small pages */
75 	pgcnt_t	mnr_mt_lgpgcnt;		/* free list cnt - large pages */
76 #ifdef DEBUG
77 	struct mnr_mts {		/* mnode/mtype szc stats */
78 		pgcnt_t	mnr_mts_pgcnt;
79 		int	mnr_mts_colors;
80 		pgcnt_t *mnr_mtsc_pgcnt;
81 	} 	*mnr_mts;
82 #endif
83 } mnoderange_t;
84 
85 #ifdef DEBUG
86 #define	PLCNT_SZ(ctrs_sz) {						\
87 	int	szc, colors;						\
88 	ctrs_sz += mnoderangecnt * sizeof (struct mnr_mts) *		\
89 	    mmu_page_sizes;						\
90 	for (szc = 0; szc < mmu_page_sizes; szc++) {			\
91 		colors = page_get_pagecolors(szc);			\
92 		ctrs_sz += mnoderangecnt * sizeof (pgcnt_t) * colors;	\
93 	}								\
94 }
95 
96 #define	PLCNT_INIT(addr) {						\
97 	int	mt, szc, colors;					\
98 	for (mt = 0; mt < mnoderangecnt; mt++) {			\
99 		mnoderanges[mt].mnr_mts = (struct mnr_mts *)addr;	\
100 		addr += (sizeof (struct mnr_mts) * mmu_page_sizes);	\
101 		for (szc = 0; szc < mmu_page_sizes; szc++) {		\
102 			colors = page_get_pagecolors(szc);		\
103 			mnoderanges[mt].mnr_mts[szc].mnr_mts_colors =	\
104 			    colors;					\
105 			mnoderanges[mt].mnr_mts[szc].mnr_mtsc_pgcnt =	\
106 			    (pgcnt_t *)addr;				\
107 			addr += (sizeof (pgcnt_t) * colors);		\
108 		}							\
109 	}								\
110 }
111 #define	PLCNT_DO(pp, mtype, szc, cnt, flags) {				\
112 	int	bin = PP_2_BIN(pp);					\
113 	if (flags & PG_CACHE_LIST)					\
114 		atomic_add_long(&mnoderanges[mtype].			\
115 		    mnr_mt_clpgcnt, cnt);				\
116 	else if (szc)							\
117 		atomic_add_long(&mnoderanges[mtype].			\
118 		    mnr_mt_lgpgcnt, cnt);				\
119 	else								\
120 		atomic_add_long(&mnoderanges[mtype].			\
121 		    mnr_mt_flpgcnt, cnt);				\
122 	atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].		\
123 	    mnr_mts_pgcnt, cnt);					\
124 	atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].		\
125 	    mnr_mtsc_pgcnt[bin], cnt);					\
126 }
127 #else
128 #define	PLCNT_SZ(ctrs_sz)
129 #define	PLCNT_INIT(base)
130 #define	PLCNT_DO(pp, mtype, szc, cnt, flags) {				\
131 	if (flags & PG_CACHE_LIST)					\
132 		atomic_add_long(&mnoderanges[mtype].			\
133 		    mnr_mt_clpgcnt, cnt);				\
134 	else if (szc)							\
135 		atomic_add_long(&mnoderanges[mtype].			\
136 		    mnr_mt_lgpgcnt, cnt);				\
137 	else								\
138 		atomic_add_long(&mnoderanges[mtype].			\
139 		    mnr_mt_flpgcnt, cnt);				\
140 }
141 #endif
142 
143 #define	PLCNT_INCR(pp, mnode, mtype, szc, flags) {			\
144 	long	cnt = (1 << PAGE_BSZS_SHIFT(szc));			\
145 	ASSERT(mtype == PP_2_MTYPE(pp));				\
146 	if (physmax4g && mtype <= mtype4g)				\
147 		atomic_add_long(&freemem4g, cnt);			\
148 	PLCNT_DO(pp, mtype, szc, cnt, flags);				\
149 }
150 
151 #define	PLCNT_DECR(pp, mnode, mtype, szc, flags) {			\
152 	long	cnt = ((-1) << PAGE_BSZS_SHIFT(szc));			\
153 	ASSERT(mtype == PP_2_MTYPE(pp));				\
154 	if (physmax4g && mtype <= mtype4g)				\
155 		atomic_add_long(&freemem4g, cnt);			\
156 	PLCNT_DO(pp, mtype, szc, cnt, flags);				\
157 }
158 
159 /*
160  * macros to update page list max counts.  no-op on x86.
161  */
162 #define	PLCNT_XFER_NORELOC(pp)
163 
164 #define	PLCNT_MODIFY_MAX(pfn, cnt)	mtype_modify_max(pfn, (pgcnt_t)cnt)
165 
166 extern mnoderange_t	*mnoderanges;
167 extern int		mnoderangecnt;
168 extern int		mtype4g;
169 
170 /*
171  * 4g memory management variables for systems with more than 4g of memory:
172  *
173  * physical memory below 4g is required for 32bit dma devices and, currently,
174  * for kmem memory. On systems with more than 4g of memory, the pool of memory
175  * below 4g can be depleted without any paging activity given that there is
176  * likely to be sufficient memory above 4g.
177  *
178  * physmax4g is set true if the largest pfn is over 4g. The rest of the
179  * 4g memory management code is enabled only when physmax4g is true.
180  *
181  * maxmem4g is the count of the maximum number of pages on the page lists
182  * with physical addresses below 4g. It can be a lot less then 4g given that
183  * BIOS may reserve large chunks of space below 4g for hot plug pci devices,
184  * agp aperture etc.
185  *
186  * freemem4g maintains the count of the number of available pages on the
187  * page lists with physical addresses below 4g.
188  *
189  * DESFREE4G specifies the desired amount of below 4g memory. It defaults to
190  * 6% (desfree4gshift = 4) of maxmem4g.
191  *
192  * RESTRICT4G_ALLOC returns true if freemem4g falls below DESFREE4G
193  * and the amount of physical memory above 4g is greater than freemem4g.
194  * In this case, page_get_* routines will restrict below 4g allocations
195  * for requests that don't specifically require it.
196  */
197 
198 extern int		physmax4g;
199 extern pgcnt_t		maxmem4g;
200 extern pgcnt_t		freemem4g;
201 extern int		lotsfree4gshift;
202 extern int		desfree4gshift;
203 #define	LOTSFREE4G	(maxmem4g >> lotsfree4gshift)
204 #define	DESFREE4G	(maxmem4g >> desfree4gshift)
205 
206 #define	RESTRICT4G_ALLOC					\
207 	(physmax4g && (freemem4g < DESFREE4G) && ((freemem4g << 1) < freemem))
208 
209 /*
210  * 16m memory management:
211  *
212  * reserve some amount of physical memory below 16m for legacy devices.
213  *
214  * RESTRICT16M_ALLOC returns true if an there are sufficient free pages above
215  * 16m or if the 16m pool drops below DESFREE16M.
216  *
217  * In this case, general page allocations via page_get_{free,cache}list
218  * routines will be restricted from allocating from the 16m pool. Allocations
219  * that require specific pfn ranges (page_get_anylist) and PG_PANIC allocations
220  * are not restricted.
221  */
222 
223 #define	FREEMEM16M	MTYPE_FREEMEM(0)
224 #define	DESFREE16M	desfree16m
225 #define	RESTRICT16M_ALLOC(freemem, pgcnt, flags)		\
226 	((freemem != 0) && ((flags & PG_PANIC) == 0) &&		\
227 	    ((freemem >= (FREEMEM16M)) ||			\
228 	    (FREEMEM16M  < (DESFREE16M + pgcnt))))
229 extern pgcnt_t		desfree16m;
230 
231 extern int		restricted_kmemalloc;
232 extern int		memrange_num(pfn_t);
233 extern int		pfn_2_mtype(pfn_t);
234 extern int		mtype_func(int, int, uint_t);
235 extern void		mtype_modify_max(pfn_t, long);
236 extern int		mnode_pgcnt(int);
237 extern int		mnode_range_cnt(int);
238 
239 #define	NUM_MEM_RANGES	4		/* memory range types */
240 
241 /*
242  * candidate counters in vm_pagelist.c are indexed by color and range
243  */
244 #define	MAX_MNODE_MRANGES	NUM_MEM_RANGES
245 #define	MNODE_RANGE_CNT(mnode)	mnode_range_cnt(mnode)
246 #define	MNODE_MAX_MRANGE(mnode)	(memrange_num(mem_node_config[mnode].physbase))
247 #define	MTYPE_2_MRANGE(mnode, mtype)	\
248 	(mnode_maxmrange[mnode] - mnoderanges[mtype].mnr_memrange)
249 
250 /*
251  * Per page size free lists. Allocated dynamically.
252  * dimensions [mtype][mmu_page_sizes][colors]
253  *
254  * mtype specifies a physical memory range with a unique mnode.
255  */
256 
257 extern page_t ****page_freelists;
258 
259 #define	PAGE_FREELISTS(mnode, szc, color, mtype)		\
260 	(*(page_freelists[mtype][szc] + (color)))
261 
262 /*
263  * For now there is only a single size cache list. Allocated dynamically.
264  * dimensions [mtype][colors]
265  *
266  * mtype specifies a physical memory range with a unique mnode.
267  */
268 extern page_t ***page_cachelists;
269 
270 #define	PAGE_CACHELISTS(mnode, color, mtype) 		\
271 	(*(page_cachelists[mtype] + (color)))
272 
273 /*
274  * There are mutexes for both the page freelist
275  * and the page cachelist.  We want enough locks to make contention
276  * reasonable, but not too many -- otherwise page_freelist_lock() gets
277  * so expensive that it becomes the bottleneck!
278  */
279 
280 #define	NPC_MUTEX	16
281 
282 extern kmutex_t	*fpc_mutex[NPC_MUTEX];
283 extern kmutex_t	*cpc_mutex[NPC_MUTEX];
284 
285 extern page_t *page_get_mnode_freelist(int, uint_t, int, uchar_t, uint_t);
286 extern page_t *page_get_mnode_cachelist(uint_t, uint_t, int, int);
287 
288 #define	PAGE_GET_COLOR_SHIFT(szc, nszc)                          \
289 	    (hw_page_array[(nszc)].hp_shift - hw_page_array[(szc)].hp_shift)
290 
291 #define	PFN_2_COLOR(pfn, szc)						\
292 	(((pfn) & page_colors_mask) >>			                \
293 	(hw_page_array[szc].hp_shift - hw_page_array[0].hp_shift))
294 
295 #define	PNUM_SIZE(szc)							\
296 	(hw_page_array[(szc)].hp_pgcnt)
297 #define	PNUM_SHIFT(szc)							\
298 	(hw_page_array[(szc)].hp_shift - hw_page_array[0].hp_shift)
299 #define	PAGE_GET_SHIFT(szc)						\
300 	(hw_page_array[(szc)].hp_shift)
301 #define	PAGE_GET_PAGECOLORS(szc)					\
302 	(hw_page_array[(szc)].hp_colors)
303 
304 /*
305  * This macro calculates the next sequential pfn with the specified
306  * color using color equivalency mask
307  */
308 #define	PAGE_NEXT_PFN_FOR_COLOR(pfn, szc, color, ceq_mask, color_mask)        \
309 	ASSERT(((color) & ~(ceq_mask)) == 0);                                 \
310 	{								      \
311 		uint_t	pfn_shift = PAGE_BSZS_SHIFT(szc);                     \
312 		pfn_t	spfn = pfn >> pfn_shift;                              \
313 		pfn_t	stride = (ceq_mask) + 1;                              \
314 		ASSERT((((ceq_mask) + 1) & (ceq_mask)) == 0);                 \
315 		if (((spfn ^ (color)) & (ceq_mask)) == 0) {                   \
316 			pfn += stride << pfn_shift;                           \
317 		} else {                                                      \
318 			pfn = (spfn & ~(pfn_t)(ceq_mask)) | (color);          \
319 			pfn = (pfn > spfn ? pfn : pfn + stride) << pfn_shift; \
320 		}                                                             \
321 	}
322 
323 /* get the color equivalency mask for the next szc */
324 #define	PAGE_GET_NSZ_MASK(szc, mask)                                         \
325 	((mask) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc)))
326 
327 /* get the color of the next szc */
328 #define	PAGE_GET_NSZ_COLOR(szc, color)                                       \
329 	((color) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc)))
330 
331 /* Find the bin for the given page if it was of size szc */
332 #define	PP_2_BIN_SZC(pp, szc)	(PFN_2_COLOR(pp->p_pagenum, szc))
333 
334 #define	PP_2_BIN(pp)		(PP_2_BIN_SZC(pp, pp->p_szc))
335 
336 #define	PP_2_MEM_NODE(pp)	(PFN_2_MEM_NODE(pp->p_pagenum))
337 #define	PP_2_MTYPE(pp)		(pfn_2_mtype(pfn_to_mfn(pp->p_pagenum)))
338 #define	PP_2_SZC(pp)		(pp->p_szc)
339 
340 #define	SZCPAGES(szc)		(1 << PAGE_BSZS_SHIFT(szc))
341 #define	PFN_BASE(pfnum, szc)	(pfnum & ~(SZCPAGES(szc) - 1))
342 
343 /*
344  * this structure is used for walking free page lists
345  * controls when to split large pages into smaller pages,
346  * and when to coalesce smaller pages into larger pages
347  */
348 typedef struct page_list_walker {
349 	uint_t	plw_colors;		/* num of colors for szc */
350 	uint_t  plw_color_mask;		/* colors-1 */
351 	uint_t	plw_bin_step;		/* next bin: 1 or 2 */
352 	uint_t  plw_count;		/* loop count */
353 	uint_t	plw_bin0;		/* starting bin */
354 	uint_t  plw_bin_marker;		/* bin after initial jump */
355 	uint_t  plw_bin_split_prev;	/* last bin we tried to split */
356 	uint_t  plw_do_split;		/* set if OK to split */
357 	uint_t  plw_split_next;		/* next bin to split */
358 	uint_t	plw_ceq_dif;		/* number of different color groups */
359 					/* to check */
360 	uint_t	plw_ceq_mask[MMU_PAGE_SIZES + 1]; /* color equiv mask */
361 	uint_t	plw_bins[MMU_PAGE_SIZES + 1];	/* num of bins */
362 } page_list_walker_t;
363 
364 void	page_list_walk_init(uchar_t szc, uint_t flags, uint_t bin,
365     int can_split, int use_ceq, page_list_walker_t *plw);
366 
367 uint_t	page_list_walk_next_bin(uchar_t szc, uint_t bin,
368     page_list_walker_t *plw);
369 
370 extern struct cpu	cpus[];
371 #define	CPU0		cpus
372 
373 #if defined(__amd64)
374 
375 /*
376  * set the mtype range (called from page_get_{free,cache}list)
377  *   - set range to above 4g if the system has more than 4g of memory and the
378  *   amount of memory below 4g runs low. If not, set range to above 16m if
379  *   16m threshold is reached otherwise set range to all of memory
380  *   starting from the hi pfns.
381  *
382  * page_get_anylist gets its mtype range from the specified ddi_dma_attr_t.
383  */
384 #define	MTYPE_INIT(mtype, vp, vaddr, flags, pgsz) {			\
385 	mtype = mnoderangecnt - 1;					\
386 	if (RESTRICT4G_ALLOC) {						\
387 		VM_STAT_ADD(vmm_vmstats.restrict4gcnt);			\
388 		/* here only for > 4g systems */			\
389 		flags |= PGI_MT_RANGE4G;				\
390 	} else if (RESTRICT16M_ALLOC(freemem, btop(pgsz), flags)) {	\
391 		flags |= PGI_MT_RANGE16M;				\
392 	} else {							\
393 		VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt);		\
394 		VM_STAT_COND_ADD((flags & PG_PANIC),			\
395 		    vmm_vmstats.pgpanicalloc);				\
396 		flags |= PGI_MT_RANGE0;					\
397 	}								\
398 }
399 
400 #elif defined(__i386)
401 
402 /*
403  * set the mtype range
404  *   - kmem requests needs to be below 4g if restricted_kmemalloc is set.
405  *   - for non kmem requests, set range to above 4g if the amount of memory
406  *   below 4g runs low.
407  */
408 
409 #define	MTYPE_INIT(mtype, vp, vaddr, flags, pgsz) {			\
410 	if (restricted_kmemalloc && VN_ISKAS(vp) &&			\
411 	    (caddr_t)(vaddr) >= kernelheap &&				\
412 	    (caddr_t)(vaddr) < ekernelheap) {				\
413 		ASSERT(physmax4g);					\
414 		mtype = mtype4g;					\
415 		if (RESTRICT16M_ALLOC(freemem4g - btop(pgsz),		\
416 		    btop(pgsz), flags)) {				\
417 			flags |= PGI_MT_RANGE16M;			\
418 		} else {						\
419 			VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt);	\
420 			VM_STAT_COND_ADD((flags & PG_PANIC),		\
421 			    vmm_vmstats.pgpanicalloc);			\
422 			flags |= PGI_MT_RANGE0;				\
423 		}							\
424 	} else {							\
425 		mtype = mnoderangecnt - 1;				\
426 		if (RESTRICT4G_ALLOC) {					\
427 			VM_STAT_ADD(vmm_vmstats.restrict4gcnt);		\
428 			/* here only for > 4g systems */		\
429 			flags |= PGI_MT_RANGE4G;			\
430 		} else if (RESTRICT16M_ALLOC(freemem, btop(pgsz),	\
431 		    flags)) {						\
432 			flags |= PGI_MT_RANGE16M;			\
433 		} else {						\
434 			VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt);	\
435 			VM_STAT_COND_ADD((flags & PG_PANIC),		\
436 			    vmm_vmstats.pgpanicalloc);			\
437 			flags |= PGI_MT_RANGE0;				\
438 		}							\
439 	}								\
440 }
441 
442 #endif	/* __i386 */
443 
444 /*
445  * macros to loop through the mtype range (page_get_mnode_{free,cache,any}list,
446  * and page_get_contig_pages)
447  *
448  * MTYPE_START sets the initial mtype. -1 if the mtype range specified does
449  * not contain mnode.
450  *
451  * MTYPE_NEXT sets the next mtype. -1 if there are no more valid
452  * mtype in the range.
453  */
454 
455 #define	MTYPE_START(mnode, mtype, flags)				\
456 	(mtype = mtype_func(mnode, mtype, flags))
457 
458 #define	MTYPE_NEXT(mnode, mtype, flags) {				\
459 	if (flags & PGI_MT_RANGE) {					\
460 		mtype = mtype_func(mnode, mtype, flags | PGI_MT_NEXT);	\
461 	} else {							\
462 		mtype = -1;						\
463 	}								\
464 }
465 
466 /* mtype init for page_get_replacement_page */
467 
468 #define	MTYPE_PGR_INIT(mtype, flags, pp, mnode, pgcnt) {		\
469 	mtype = mnoderangecnt - 1;					\
470 	if (RESTRICT16M_ALLOC(freemem, pgcnt, flags)) {			\
471 		flags |= PGI_MT_RANGE16M;				\
472 	} else {							\
473 		VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt);		\
474 		flags |= PGI_MT_RANGE0;					\
475 	}								\
476 }
477 
478 #define	MNODE_PGCNT(mnode)		mnode_pgcnt(mnode)
479 
480 #define	MNODETYPE_2_PFN(mnode, mtype, pfnlo, pfnhi)			\
481 	ASSERT(mnoderanges[mtype].mnr_mnode == mnode);			\
482 	pfnlo = mnoderanges[mtype].mnr_pfnlo;				\
483 	pfnhi = mnoderanges[mtype].mnr_pfnhi;
484 
485 #define	PC_BIN_MUTEX(mnode, bin, flags) ((flags & PG_FREE_LIST) ?	\
486 	&fpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode] :			\
487 	&cpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode])
488 
489 #define	FPC_MUTEX(mnode, i)	(&fpc_mutex[i][mnode])
490 #define	CPC_MUTEX(mnode, i)	(&cpc_mutex[i][mnode])
491 
492 #ifdef DEBUG
493 #define	CHK_LPG(pp, szc)	chk_lpg(pp, szc)
494 extern void	chk_lpg(page_t *, uchar_t);
495 #else
496 #define	CHK_LPG(pp, szc)
497 #endif
498 
499 #define	FULL_REGION_CNT(rg_szc)	\
500 	(LEVEL_SIZE(rg_szc) >> LEVEL_SHIFT(rg_szc - 1))
501 
502 /* Return the leader for this mapping size */
503 #define	PP_GROUPLEADER(pp, szc) \
504 	(&(pp)[-(int)((pp)->p_pagenum & (SZCPAGES(szc)-1))])
505 
506 /* Return the root page for this page based on p_szc */
507 #define	PP_PAGEROOT(pp) ((pp)->p_szc == 0 ? (pp) : \
508 	PP_GROUPLEADER((pp), (pp)->p_szc))
509 
510 /*
511  * The counter base must be per page_counter element to prevent
512  * races when re-indexing, and the base page size element should
513  * be aligned on a boundary of the given region size.
514  *
515  * We also round up the number of pages spanned by the counters
516  * for a given region to PC_BASE_ALIGN in certain situations to simplify
517  * the coding for some non-performance critical routines.
518  */
519 
520 #define	PC_BASE_ALIGN		((pfn_t)1 << PAGE_BSZS_SHIFT(MMU_PAGE_SIZES-1))
521 #define	PC_BASE_ALIGN_MASK	(PC_BASE_ALIGN - 1)
522 
523 /*
524  * cpu/mmu-dependent vm variables
525  */
526 extern uint_t mmu_page_sizes;
527 extern uint_t mmu_exported_page_sizes;
528 
529 /* For x86, userszc is the same as the kernel's szc */
530 #define	USERSZC_2_SZC(userszc)	(userszc)
531 #define	SZC_2_USERSZC(szc)	(szc)
532 
533 /*
534  * for hw_page_map_t, sized to hold the ratio of large page to base
535  * pagesize (1024 max)
536  */
537 typedef	short	hpmctr_t;
538 
539 /*
540  * get the setsize of the current cpu - assume homogenous for x86
541  */
542 extern int	l2cache_sz, l2cache_linesz, l2cache_assoc;
543 
544 #define	L2CACHE_ALIGN		l2cache_linesz
545 #define	L2CACHE_ALIGN_MAX	64
546 #define	CPUSETSIZE()		\
547 	(l2cache_assoc ? (l2cache_sz / l2cache_assoc) : MMU_PAGESIZE)
548 
549 /*
550  * Return the log2(pagesize(szc) / MMU_PAGESIZE) --- or the shift count
551  * for the number of base pages in this pagesize
552  */
553 #define	PAGE_BSZS_SHIFT(szc) (LEVEL_SHIFT(szc) - MMU_PAGESHIFT)
554 
555 /*
556  * Internal PG_ flags.
557  */
558 #define	PGI_RELOCONLY	0x010000	/* opposite of PG_NORELOC */
559 #define	PGI_NOCAGE	0x020000	/* cage is disabled */
560 #define	PGI_PGCPHIPRI	0x040000	/* page_get_contig_page pri alloc */
561 #define	PGI_PGCPSZC0	0x080000	/* relocate base pagesize page */
562 
563 /*
564  * PGI range flags - should not overlap PGI flags
565  */
566 #define	PGI_MT_RANGE0	0x1000000	/* mtype range to 0 */
567 #define	PGI_MT_RANGE16M	0x2000000	/* mtype range to 16m */
568 #define	PGI_MT_RANGE4G	0x4000000	/* mtype range to 4g */
569 #define	PGI_MT_NEXT	0x8000000	/* get next mtype */
570 #define	PGI_MT_RANGE	(PGI_MT_RANGE0 | PGI_MT_RANGE16M | PGI_MT_RANGE4G)
571 
572 /*
573  * Maximum and default values for user heap, stack, private and shared
574  * anonymous memory, and user text and initialized data.
575  * Used by map_pgsz*() routines.
576  */
577 extern size_t max_uheap_lpsize;
578 extern size_t default_uheap_lpsize;
579 extern size_t max_ustack_lpsize;
580 extern size_t default_ustack_lpsize;
581 extern size_t max_privmap_lpsize;
582 extern size_t max_uidata_lpsize;
583 extern size_t max_utext_lpsize;
584 extern size_t max_shm_lpsize;
585 extern size_t mcntl0_lpsize;
586 
587 /*
588  * Sanity control. Don't use large pages regardless of user
589  * settings if there's less than priv or shm_lpg_min_physmem memory installed.
590  * The units for this variable are 8K pages.
591  */
592 extern pgcnt_t privm_lpg_min_physmem;
593 extern pgcnt_t shm_lpg_min_physmem;
594 
595 /*
596  * hash as and addr to get a bin.
597  */
598 
599 #define	AS_2_BIN(as, seg, vp, addr, bin, szc)				    \
600 	bin = (((((uintptr_t)(addr) >> PAGESHIFT) + ((uintptr_t)(as) >> 4)) \
601 	    & page_colors_mask) >>					    \
602 	    (hw_page_array[szc].hp_shift - hw_page_array[0].hp_shift))
603 
604 /*
605  * cpu private vm data - accessed thru CPU->cpu_vm_data
606  *	vc_pnum_memseg: tracks last memseg visited in page_numtopp_nolock()
607  *	vc_pnext_memseg: tracks last memseg visited in page_nextn()
608  *	vc_kmptr: orignal unaligned kmem pointer for this vm_cpu_data_t
609  *	vc_kmsize: orignal kmem size for this vm_cpu_data_t
610  */
611 
612 typedef struct {
613 	struct memseg	*vc_pnum_memseg;
614 	struct memseg	*vc_pnext_memseg;
615 	void		*vc_kmptr;
616 	size_t		vc_kmsize;
617 } vm_cpu_data_t;
618 
619 /* allocation size to ensure vm_cpu_data_t resides in its own cache line */
620 #define	VM_CPU_DATA_PADSIZE						\
621 	(P2ROUNDUP(sizeof (vm_cpu_data_t), L2CACHE_ALIGN_MAX))
622 
623 /* for boot cpu before kmem is initialized */
624 extern char	vm_cpu_data0[];
625 
626 /*
627  * When a bin is empty, and we can't satisfy a color request correctly,
628  * we scan.  If we assume that the programs have reasonable spatial
629  * behavior, then it will not be a good idea to use the adjacent color.
630  * Using the adjacent color would result in virtually adjacent addresses
631  * mapping into the same spot in the cache.  So, if we stumble across
632  * an empty bin, skip a bunch before looking.  After the first skip,
633  * then just look one bin at a time so we don't miss our cache on
634  * every look. Be sure to check every bin.  Page_create() will panic
635  * if we miss a page.
636  *
637  * This also explains the `<=' in the for loops in both page_get_freelist()
638  * and page_get_cachelist().  Since we checked the target bin, skipped
639  * a bunch, then continued one a time, we wind up checking the target bin
640  * twice to make sure we get all of them bins.
641  */
642 #define	BIN_STEP	19
643 
644 #ifdef VM_STATS
645 struct vmm_vmstats_str {
646 	ulong_t pgf_alloc[MMU_PAGE_SIZES];	/* page_get_freelist */
647 	ulong_t pgf_allocok[MMU_PAGE_SIZES];
648 	ulong_t pgf_allocokrem[MMU_PAGE_SIZES];
649 	ulong_t pgf_allocfailed[MMU_PAGE_SIZES];
650 	ulong_t	pgf_allocdeferred;
651 	ulong_t	pgf_allocretry[MMU_PAGE_SIZES];
652 	ulong_t pgc_alloc;			/* page_get_cachelist */
653 	ulong_t pgc_allocok;
654 	ulong_t pgc_allocokrem;
655 	ulong_t pgc_allocokdeferred;
656 	ulong_t pgc_allocfailed;
657 	ulong_t	pgcp_alloc[MMU_PAGE_SIZES];	/* page_get_contig_pages */
658 	ulong_t	pgcp_allocfailed[MMU_PAGE_SIZES];
659 	ulong_t	pgcp_allocempty[MMU_PAGE_SIZES];
660 	ulong_t	pgcp_allocok[MMU_PAGE_SIZES];
661 	ulong_t	ptcp[MMU_PAGE_SIZES];		/* page_trylock_contig_pages */
662 	ulong_t	ptcpfreethresh[MMU_PAGE_SIZES];
663 	ulong_t	ptcpfailexcl[MMU_PAGE_SIZES];
664 	ulong_t	ptcpfailszc[MMU_PAGE_SIZES];
665 	ulong_t	ptcpfailcage[MMU_PAGE_SIZES];
666 	ulong_t	ptcpok[MMU_PAGE_SIZES];
667 	ulong_t	pgmf_alloc[MMU_PAGE_SIZES];	/* page_get_mnode_freelist */
668 	ulong_t	pgmf_allocfailed[MMU_PAGE_SIZES];
669 	ulong_t	pgmf_allocempty[MMU_PAGE_SIZES];
670 	ulong_t	pgmf_allocok[MMU_PAGE_SIZES];
671 	ulong_t	pgmc_alloc;			/* page_get_mnode_cachelist */
672 	ulong_t	pgmc_allocfailed;
673 	ulong_t	pgmc_allocempty;
674 	ulong_t	pgmc_allocok;
675 	ulong_t	pladd_free[MMU_PAGE_SIZES];	/* page_list_add/sub */
676 	ulong_t	plsub_free[MMU_PAGE_SIZES];
677 	ulong_t	pladd_cache;
678 	ulong_t	plsub_cache;
679 	ulong_t	plsubpages_szcbig;
680 	ulong_t	plsubpages_szc0;
681 	ulong_t	pfs_req[MMU_PAGE_SIZES];	/* page_freelist_split */
682 	ulong_t	pfs_demote[MMU_PAGE_SIZES];
683 	ulong_t	pfc_coalok[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
684 	ulong_t	ppr_reloc[MMU_PAGE_SIZES];	/* page_relocate */
685 	ulong_t ppr_relocnoroot[MMU_PAGE_SIZES];
686 	ulong_t ppr_reloc_replnoroot[MMU_PAGE_SIZES];
687 	ulong_t ppr_relocnolock[MMU_PAGE_SIZES];
688 	ulong_t ppr_relocnomem[MMU_PAGE_SIZES];
689 	ulong_t ppr_relocok[MMU_PAGE_SIZES];
690 	ulong_t ppr_copyfail;
691 	/* page coalesce counter */
692 	ulong_t page_ctrs_coalesce[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
693 	/* candidates useful */
694 	ulong_t page_ctrs_cands_skip[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
695 	/* ctrs changed after locking */
696 	ulong_t page_ctrs_changed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
697 	/* page_freelist_coalesce failed */
698 	ulong_t page_ctrs_failed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
699 	ulong_t page_ctrs_coalesce_all;	/* page coalesce all counter */
700 	ulong_t page_ctrs_cands_skip_all; /* candidates useful for all func */
701 	ulong_t	restrict4gcnt;
702 	ulong_t	unrestrict16mcnt;	/* non-DMA 16m allocs allowed */
703 	ulong_t	pgpanicalloc;		/* PG_PANIC allocation */
704 };
705 extern struct vmm_vmstats_str vmm_vmstats;
706 #endif	/* VM_STATS */
707 
708 extern size_t page_ctrs_sz(void);
709 extern caddr_t page_ctrs_alloc(caddr_t);
710 extern void page_ctr_sub(int, int, page_t *, int);
711 extern page_t *page_freelist_split(uchar_t,
712     uint_t, int, int, pfn_t, page_list_walker_t *);
713 extern page_t *page_freelist_coalesce(int, uchar_t, uint_t, uint_t, int,
714     pfn_t);
715 extern uint_t page_get_pagecolors(uint_t);
716 
717 #ifdef	__cplusplus
718 }
719 #endif
720 
721 #endif	/* _VM_DEP_H */
722