xref: /titanic_50/usr/src/uts/i86pc/vm/htable.c (revision b607c8a3bdb27d4fde6e3fc4bb6617a1d91bdca7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/sysmacros.h>
28 #include <sys/kmem.h>
29 #include <sys/atomic.h>
30 #include <sys/bitmap.h>
31 #include <sys/machparam.h>
32 #include <sys/machsystm.h>
33 #include <sys/mman.h>
34 #include <sys/systm.h>
35 #include <sys/cpuvar.h>
36 #include <sys/thread.h>
37 #include <sys/proc.h>
38 #include <sys/cpu.h>
39 #include <sys/kmem.h>
40 #include <sys/disp.h>
41 #include <sys/vmem.h>
42 #include <sys/vmsystm.h>
43 #include <sys/promif.h>
44 #include <sys/var.h>
45 #include <sys/x86_archext.h>
46 #include <sys/archsystm.h>
47 #include <sys/bootconf.h>
48 #include <sys/dumphdr.h>
49 #include <vm/seg_kmem.h>
50 #include <vm/seg_kpm.h>
51 #include <vm/hat.h>
52 #include <vm/hat_i86.h>
53 #include <sys/cmn_err.h>
54 #include <sys/panic.h>
55 
56 #ifdef __xpv
57 #include <sys/hypervisor.h>
58 #include <sys/xpv_panic.h>
59 #endif
60 
61 #include <sys/bootinfo.h>
62 #include <vm/kboot_mmu.h>
63 
64 static void x86pte_zero(htable_t *dest, uint_t entry, uint_t count);
65 
66 kmem_cache_t *htable_cache;
67 
68 /*
69  * The variable htable_reserve_amount, rather than HTABLE_RESERVE_AMOUNT,
70  * is used in order to facilitate testing of the htable_steal() code.
71  * By resetting htable_reserve_amount to a lower value, we can force
72  * stealing to occur.  The reserve amount is a guess to get us through boot.
73  */
74 #define	HTABLE_RESERVE_AMOUNT	(200)
75 uint_t htable_reserve_amount = HTABLE_RESERVE_AMOUNT;
76 kmutex_t htable_reserve_mutex;
77 uint_t htable_reserve_cnt;
78 htable_t *htable_reserve_pool;
79 
80 /*
81  * Used to hand test htable_steal().
82  */
83 #ifdef DEBUG
84 ulong_t force_steal = 0;
85 ulong_t ptable_cnt = 0;
86 #endif
87 
88 /*
89  * This variable is so that we can tune this via /etc/system
90  * Any value works, but a power of two <= mmu.ptes_per_table is best.
91  */
92 uint_t htable_steal_passes = 8;
93 
94 /*
95  * mutex stuff for access to htable hash
96  */
97 #define	NUM_HTABLE_MUTEX 128
98 kmutex_t htable_mutex[NUM_HTABLE_MUTEX];
99 #define	HTABLE_MUTEX_HASH(h) ((h) & (NUM_HTABLE_MUTEX - 1))
100 
101 #define	HTABLE_ENTER(h)	mutex_enter(&htable_mutex[HTABLE_MUTEX_HASH(h)]);
102 #define	HTABLE_EXIT(h)	mutex_exit(&htable_mutex[HTABLE_MUTEX_HASH(h)]);
103 
104 /*
105  * forward declarations
106  */
107 static void link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr);
108 static void unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr);
109 static void htable_free(htable_t *ht);
110 static x86pte_t *x86pte_access_pagetable(htable_t *ht, uint_t index);
111 static void x86pte_release_pagetable(htable_t *ht);
112 static x86pte_t x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old,
113 	x86pte_t new);
114 
115 /*
116  * A counter to track if we are stealing or reaping htables. When non-zero
117  * htable_free() will directly free htables (either to the reserve or kmem)
118  * instead of putting them in a hat's htable cache.
119  */
120 uint32_t htable_dont_cache = 0;
121 
122 /*
123  * Track the number of active pagetables, so we can know how many to reap
124  */
125 static uint32_t active_ptables = 0;
126 
127 #ifdef __xpv
128 /*
129  * Deal with hypervisor complications.
130  */
131 void
132 xen_flush_va(caddr_t va)
133 {
134 	struct mmuext_op t;
135 	uint_t count;
136 
137 	if (IN_XPV_PANIC()) {
138 		mmu_tlbflush_entry((caddr_t)va);
139 	} else {
140 		t.cmd = MMUEXT_INVLPG_LOCAL;
141 		t.arg1.linear_addr = (uintptr_t)va;
142 		if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
143 			panic("HYPERVISOR_mmuext_op() failed");
144 		ASSERT(count == 1);
145 	}
146 }
147 
148 void
149 xen_gflush_va(caddr_t va, cpuset_t cpus)
150 {
151 	struct mmuext_op t;
152 	uint_t count;
153 
154 	if (IN_XPV_PANIC()) {
155 		mmu_tlbflush_entry((caddr_t)va);
156 		return;
157 	}
158 
159 	t.cmd = MMUEXT_INVLPG_MULTI;
160 	t.arg1.linear_addr = (uintptr_t)va;
161 	/*LINTED: constant in conditional context*/
162 	set_xen_guest_handle(t.arg2.vcpumask, &cpus);
163 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
164 		panic("HYPERVISOR_mmuext_op() failed");
165 	ASSERT(count == 1);
166 }
167 
168 void
169 xen_flush_tlb()
170 {
171 	struct mmuext_op t;
172 	uint_t count;
173 
174 	if (IN_XPV_PANIC()) {
175 		xpv_panic_reload_cr3();
176 	} else {
177 		t.cmd = MMUEXT_TLB_FLUSH_LOCAL;
178 		if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
179 			panic("HYPERVISOR_mmuext_op() failed");
180 		ASSERT(count == 1);
181 	}
182 }
183 
184 void
185 xen_gflush_tlb(cpuset_t cpus)
186 {
187 	struct mmuext_op t;
188 	uint_t count;
189 
190 	ASSERT(!IN_XPV_PANIC());
191 	t.cmd = MMUEXT_TLB_FLUSH_MULTI;
192 	/*LINTED: constant in conditional context*/
193 	set_xen_guest_handle(t.arg2.vcpumask, &cpus);
194 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
195 		panic("HYPERVISOR_mmuext_op() failed");
196 	ASSERT(count == 1);
197 }
198 
199 /*
200  * Install/Adjust a kpm mapping under the hypervisor.
201  * Value of "how" should be:
202  *	PT_WRITABLE | PT_VALID - regular kpm mapping
203  *	PT_VALID - make mapping read-only
204  *	0	- remove mapping
205  *
206  * returns 0 on success. non-zero for failure.
207  */
208 int
209 xen_kpm_page(pfn_t pfn, uint_t how)
210 {
211 	paddr_t pa = mmu_ptob((paddr_t)pfn);
212 	x86pte_t pte = PT_NOCONSIST | PT_REF | PT_MOD;
213 
214 	if (kpm_vbase == NULL)
215 		return (0);
216 
217 	if (how)
218 		pte |= pa_to_ma(pa) | how;
219 	else
220 		pte = 0;
221 	return (HYPERVISOR_update_va_mapping((uintptr_t)kpm_vbase + pa,
222 	    pte, UVMF_INVLPG | UVMF_ALL));
223 }
224 
225 void
226 xen_pin(pfn_t pfn, level_t lvl)
227 {
228 	struct mmuext_op t;
229 	uint_t count;
230 
231 	t.cmd = MMUEXT_PIN_L1_TABLE + lvl;
232 	t.arg1.mfn = pfn_to_mfn(pfn);
233 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
234 		panic("HYPERVISOR_mmuext_op() failed");
235 	ASSERT(count == 1);
236 }
237 
238 void
239 xen_unpin(pfn_t pfn)
240 {
241 	struct mmuext_op t;
242 	uint_t count;
243 
244 	t.cmd = MMUEXT_UNPIN_TABLE;
245 	t.arg1.mfn = pfn_to_mfn(pfn);
246 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
247 		panic("HYPERVISOR_mmuext_op() failed");
248 	ASSERT(count == 1);
249 }
250 
251 static void
252 xen_map(uint64_t pte, caddr_t va)
253 {
254 	if (HYPERVISOR_update_va_mapping((uintptr_t)va, pte,
255 	    UVMF_INVLPG | UVMF_LOCAL))
256 		panic("HYPERVISOR_update_va_mapping() failed");
257 }
258 #endif /* __xpv */
259 
260 /*
261  * Allocate a memory page for a hardware page table.
262  *
263  * A wrapper around page_get_physical(), with some extra checks.
264  */
265 static pfn_t
266 ptable_alloc(uintptr_t seed)
267 {
268 	pfn_t pfn;
269 	page_t *pp;
270 
271 	pfn = PFN_INVALID;
272 
273 	/*
274 	 * The first check is to see if there is memory in the system. If we
275 	 * drop to throttlefree, then fail the ptable_alloc() and let the
276 	 * stealing code kick in. Note that we have to do this test here,
277 	 * since the test in page_create_throttle() would let the NOSLEEP
278 	 * allocation go through and deplete the page reserves.
279 	 *
280 	 * The !NOMEMWAIT() lets pageout, fsflush, etc. skip this check.
281 	 */
282 	if (!NOMEMWAIT() && freemem <= throttlefree + 1)
283 		return (PFN_INVALID);
284 
285 #ifdef DEBUG
286 	/*
287 	 * This code makes htable_steal() easier to test. By setting
288 	 * force_steal we force pagetable allocations to fall
289 	 * into the stealing code. Roughly 1 in ever "force_steal"
290 	 * page table allocations will fail.
291 	 */
292 	if (proc_pageout != NULL && force_steal > 1 &&
293 	    ++ptable_cnt > force_steal) {
294 		ptable_cnt = 0;
295 		return (PFN_INVALID);
296 	}
297 #endif /* DEBUG */
298 
299 	pp = page_get_physical(seed);
300 	if (pp == NULL)
301 		return (PFN_INVALID);
302 	ASSERT(PAGE_SHARED(pp));
303 	pfn = pp->p_pagenum;
304 	if (pfn == PFN_INVALID)
305 		panic("ptable_alloc(): Invalid PFN!!");
306 	atomic_inc_32(&active_ptables);
307 	HATSTAT_INC(hs_ptable_allocs);
308 	return (pfn);
309 }
310 
311 /*
312  * Free an htable's associated page table page.  See the comments
313  * for ptable_alloc().
314  */
315 static void
316 ptable_free(pfn_t pfn)
317 {
318 	page_t *pp = page_numtopp_nolock(pfn);
319 
320 	/*
321 	 * need to destroy the page used for the pagetable
322 	 */
323 	ASSERT(pfn != PFN_INVALID);
324 	HATSTAT_INC(hs_ptable_frees);
325 	atomic_dec_32(&active_ptables);
326 	if (pp == NULL)
327 		panic("ptable_free(): no page for pfn!");
328 	ASSERT(PAGE_SHARED(pp));
329 	ASSERT(pfn == pp->p_pagenum);
330 	ASSERT(!IN_XPV_PANIC());
331 
332 	/*
333 	 * Get an exclusive lock, might have to wait for a kmem reader.
334 	 */
335 	if (!page_tryupgrade(pp)) {
336 		u_offset_t off = pp->p_offset;
337 		page_unlock(pp);
338 		pp = page_lookup(&kvp, off, SE_EXCL);
339 		if (pp == NULL)
340 			panic("page not found");
341 	}
342 #ifdef __xpv
343 	if (kpm_vbase && xen_kpm_page(pfn, PT_VALID | PT_WRITABLE) < 0)
344 		panic("failure making kpm r/w pfn=0x%lx", pfn);
345 #endif
346 	page_hashout(pp, NULL);
347 	page_free(pp, 1);
348 	page_unresv(1);
349 }
350 
351 /*
352  * Put one htable on the reserve list.
353  */
354 static void
355 htable_put_reserve(htable_t *ht)
356 {
357 	ht->ht_hat = NULL;		/* no longer tied to a hat */
358 	ASSERT(ht->ht_pfn == PFN_INVALID);
359 	HATSTAT_INC(hs_htable_rputs);
360 	mutex_enter(&htable_reserve_mutex);
361 	ht->ht_next = htable_reserve_pool;
362 	htable_reserve_pool = ht;
363 	++htable_reserve_cnt;
364 	mutex_exit(&htable_reserve_mutex);
365 }
366 
367 /*
368  * Take one htable from the reserve.
369  */
370 static htable_t *
371 htable_get_reserve(void)
372 {
373 	htable_t *ht = NULL;
374 
375 	mutex_enter(&htable_reserve_mutex);
376 	if (htable_reserve_cnt != 0) {
377 		ht = htable_reserve_pool;
378 		ASSERT(ht != NULL);
379 		ASSERT(ht->ht_pfn == PFN_INVALID);
380 		htable_reserve_pool = ht->ht_next;
381 		--htable_reserve_cnt;
382 		HATSTAT_INC(hs_htable_rgets);
383 	}
384 	mutex_exit(&htable_reserve_mutex);
385 	return (ht);
386 }
387 
388 /*
389  * Allocate initial htables and put them on the reserve list
390  */
391 void
392 htable_initial_reserve(uint_t count)
393 {
394 	htable_t *ht;
395 
396 	count += HTABLE_RESERVE_AMOUNT;
397 	while (count > 0) {
398 		ht = kmem_cache_alloc(htable_cache, KM_NOSLEEP);
399 		ASSERT(ht != NULL);
400 
401 		ASSERT(use_boot_reserve);
402 		ht->ht_pfn = PFN_INVALID;
403 		htable_put_reserve(ht);
404 		--count;
405 	}
406 }
407 
408 /*
409  * Readjust the reserves after a thread finishes using them.
410  */
411 void
412 htable_adjust_reserve()
413 {
414 	htable_t *ht;
415 
416 	/*
417 	 * Free any excess htables in the reserve list
418 	 */
419 	while (htable_reserve_cnt > htable_reserve_amount &&
420 	    !USE_HAT_RESERVES()) {
421 		ht = htable_get_reserve();
422 		if (ht == NULL)
423 			return;
424 		ASSERT(ht->ht_pfn == PFN_INVALID);
425 		kmem_cache_free(htable_cache, ht);
426 	}
427 }
428 
429 /*
430  * Search the active htables for one to steal. Start at a different hash
431  * bucket every time to help spread the pain of stealing
432  */
433 static void
434 htable_steal_active(hat_t *hat, uint_t cnt, uint_t threshold,
435     uint_t *stolen, htable_t **list)
436 {
437 	static uint_t	h_seed = 0;
438 	htable_t	*higher, *ht;
439 	uint_t		h, e, h_start;
440 	uintptr_t	va;
441 	x86pte_t	pte;
442 
443 	h = h_start = h_seed++ % hat->hat_num_hash;
444 	do {
445 		higher = NULL;
446 		HTABLE_ENTER(h);
447 		for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
448 
449 			/*
450 			 * Can we rule out reaping?
451 			 */
452 			if (ht->ht_busy != 0 ||
453 			    (ht->ht_flags & HTABLE_SHARED_PFN) ||
454 			    ht->ht_level > 0 || ht->ht_valid_cnt > threshold ||
455 			    ht->ht_lock_cnt != 0)
456 				continue;
457 
458 			/*
459 			 * Increment busy so the htable can't disappear. We
460 			 * drop the htable mutex to avoid deadlocks with
461 			 * hat_pageunload() and the hment mutex while we
462 			 * call hat_pte_unmap()
463 			 */
464 			++ht->ht_busy;
465 			HTABLE_EXIT(h);
466 
467 			/*
468 			 * Try stealing.
469 			 * - unload and invalidate all PTEs
470 			 */
471 			for (e = 0, va = ht->ht_vaddr;
472 			    e < HTABLE_NUM_PTES(ht) && ht->ht_valid_cnt > 0 &&
473 			    ht->ht_busy == 1 && ht->ht_lock_cnt == 0;
474 			    ++e, va += MMU_PAGESIZE) {
475 				pte = x86pte_get(ht, e);
476 				if (!PTE_ISVALID(pte))
477 					continue;
478 				hat_pte_unmap(ht, e, HAT_UNLOAD, pte, NULL);
479 			}
480 
481 			/*
482 			 * Reacquire htable lock. If we didn't remove all
483 			 * mappings in the table, or another thread added a new
484 			 * mapping behind us, give up on this table.
485 			 */
486 			HTABLE_ENTER(h);
487 			if (ht->ht_busy != 1 || ht->ht_valid_cnt != 0 ||
488 			    ht->ht_lock_cnt != 0) {
489 				--ht->ht_busy;
490 				continue;
491 			}
492 
493 			/*
494 			 * Steal it and unlink the page table.
495 			 */
496 			higher = ht->ht_parent;
497 			unlink_ptp(higher, ht, ht->ht_vaddr);
498 
499 			/*
500 			 * remove from the hash list
501 			 */
502 			if (ht->ht_next)
503 				ht->ht_next->ht_prev = ht->ht_prev;
504 
505 			if (ht->ht_prev) {
506 				ht->ht_prev->ht_next = ht->ht_next;
507 			} else {
508 				ASSERT(hat->hat_ht_hash[h] == ht);
509 				hat->hat_ht_hash[h] = ht->ht_next;
510 			}
511 
512 			/*
513 			 * Break to outer loop to release the
514 			 * higher (ht_parent) pagetable. This
515 			 * spreads out the pain caused by
516 			 * pagefaults.
517 			 */
518 			ht->ht_next = *list;
519 			*list = ht;
520 			++*stolen;
521 			break;
522 		}
523 		HTABLE_EXIT(h);
524 		if (higher != NULL)
525 			htable_release(higher);
526 		if (++h == hat->hat_num_hash)
527 			h = 0;
528 	} while (*stolen < cnt && h != h_start);
529 }
530 
531 /*
532  * Move hat to the end of the kas list
533  */
534 static void
535 move_victim(hat_t *hat)
536 {
537 	ASSERT(MUTEX_HELD(&hat_list_lock));
538 
539 	/* unlink victim hat */
540 	if (hat->hat_prev)
541 		hat->hat_prev->hat_next = hat->hat_next;
542 	else
543 		kas.a_hat->hat_next = hat->hat_next;
544 
545 	if (hat->hat_next)
546 		hat->hat_next->hat_prev = hat->hat_prev;
547 	else
548 		kas.a_hat->hat_prev = hat->hat_prev;
549 	/* relink at end of hat list */
550 	hat->hat_next = NULL;
551 	hat->hat_prev = kas.a_hat->hat_prev;
552 	if (hat->hat_prev)
553 		hat->hat_prev->hat_next = hat;
554 	else
555 		kas.a_hat->hat_next = hat;
556 
557 	kas.a_hat->hat_prev = hat;
558 }
559 
560 /*
561  * This routine steals htables from user processes.  Called by htable_reap
562  * (reap=TRUE) or htable_alloc (reap=FALSE).
563  */
564 static htable_t *
565 htable_steal(uint_t cnt, boolean_t reap)
566 {
567 	hat_t		*hat = kas.a_hat;	/* list starts with khat */
568 	htable_t	*list = NULL;
569 	htable_t	*ht;
570 	uint_t		stolen = 0;
571 	uint_t		pass;
572 	uint_t		threshold;
573 
574 	/*
575 	 * Limit htable_steal_passes to something reasonable
576 	 */
577 	if (htable_steal_passes == 0)
578 		htable_steal_passes = 1;
579 	if (htable_steal_passes > mmu.ptes_per_table)
580 		htable_steal_passes = mmu.ptes_per_table;
581 
582 	/*
583 	 * Loop through all user hats. The 1st pass takes cached htables that
584 	 * aren't in use. The later passes steal by removing mappings, too.
585 	 */
586 	atomic_inc_32(&htable_dont_cache);
587 	for (pass = 0; pass <= htable_steal_passes && stolen < cnt; ++pass) {
588 		threshold = pass * mmu.ptes_per_table / htable_steal_passes;
589 
590 		mutex_enter(&hat_list_lock);
591 
592 		/* skip the first hat (kernel) */
593 		hat = kas.a_hat->hat_next;
594 		for (;;) {
595 			/*
596 			 * Skip any hat that is already being stolen from.
597 			 *
598 			 * We skip SHARED hats, as these are dummy
599 			 * hats that host ISM shared page tables.
600 			 *
601 			 * We also skip if HAT_FREEING because hat_pte_unmap()
602 			 * won't zero out the PTE's. That would lead to hitting
603 			 * stale PTEs either here or under hat_unload() when we
604 			 * steal and unload the same page table in competing
605 			 * threads.
606 			 */
607 			while (hat != NULL &&
608 			    (hat->hat_flags &
609 			    (HAT_VICTIM | HAT_SHARED | HAT_FREEING)) != 0)
610 				hat = hat->hat_next;
611 
612 			if (hat == NULL)
613 				break;
614 
615 			/*
616 			 * Mark the HAT as a stealing victim so that it is
617 			 * not freed from under us, e.g. in as_free()
618 			 */
619 			hat->hat_flags |= HAT_VICTIM;
620 			mutex_exit(&hat_list_lock);
621 
622 			/*
623 			 * Take any htables from the hat's cached "free" list.
624 			 */
625 			hat_enter(hat);
626 			while ((ht = hat->hat_ht_cached) != NULL &&
627 			    stolen < cnt) {
628 				hat->hat_ht_cached = ht->ht_next;
629 				ht->ht_next = list;
630 				list = ht;
631 				++stolen;
632 			}
633 			hat_exit(hat);
634 
635 			/*
636 			 * Don't steal active htables on first pass.
637 			 */
638 			if (pass != 0 && (stolen < cnt))
639 				htable_steal_active(hat, cnt, threshold,
640 				    &stolen, &list);
641 
642 			/*
643 			 * do synchronous teardown for the reap case so that
644 			 * we can forget hat; at this time, hat is
645 			 * guaranteed to be around because HAT_VICTIM is set
646 			 * (see htable_free() for similar code)
647 			 */
648 			for (ht = list; (ht) && (reap); ht = ht->ht_next) {
649 				if (ht->ht_hat == NULL)
650 					continue;
651 				ASSERT(ht->ht_hat == hat);
652 #if defined(__xpv) && defined(__amd64)
653 				if (!(ht->ht_flags & HTABLE_VLP) &&
654 				    ht->ht_level == mmu.max_level) {
655 					ptable_free(hat->hat_user_ptable);
656 					hat->hat_user_ptable = PFN_INVALID;
657 				}
658 #endif
659 				/*
660 				 * forget the hat
661 				 */
662 				ht->ht_hat = NULL;
663 			}
664 
665 			mutex_enter(&hat_list_lock);
666 
667 			/*
668 			 * Are we finished?
669 			 */
670 			if (stolen == cnt) {
671 				/*
672 				 * Try to spread the pain of stealing,
673 				 * move victim HAT to the end of the HAT list.
674 				 */
675 				if (pass >= 1 && cnt == 1 &&
676 				    kas.a_hat->hat_prev != hat)
677 					move_victim(hat);
678 				/*
679 				 * We are finished
680 				 */
681 			}
682 
683 			/*
684 			 * Clear the victim flag, hat can go away now (once
685 			 * the lock is dropped)
686 			 */
687 			if (hat->hat_flags & HAT_VICTIM) {
688 				ASSERT(hat != kas.a_hat);
689 				hat->hat_flags &= ~HAT_VICTIM;
690 				cv_broadcast(&hat_list_cv);
691 			}
692 
693 			/* move on to the next hat */
694 			hat = hat->hat_next;
695 		}
696 
697 		mutex_exit(&hat_list_lock);
698 
699 	}
700 	ASSERT(!MUTEX_HELD(&hat_list_lock));
701 
702 	atomic_dec_32(&htable_dont_cache);
703 	return (list);
704 }
705 
706 /*
707  * This is invoked from kmem when the system is low on memory.  We try
708  * to free hments, htables, and ptables to improve the memory situation.
709  */
710 /*ARGSUSED*/
711 static void
712 htable_reap(void *handle)
713 {
714 	uint_t		reap_cnt;
715 	htable_t	*list;
716 	htable_t	*ht;
717 
718 	HATSTAT_INC(hs_reap_attempts);
719 	if (!can_steal_post_boot)
720 		return;
721 
722 	/*
723 	 * Try to reap 5% of the page tables bounded by a maximum of
724 	 * 5% of physmem and a minimum of 10.
725 	 */
726 	reap_cnt = MAX(MIN(physmem / 20, active_ptables / 20), 10);
727 
728 	/*
729 	 * Note: htable_dont_cache should be set at the time of
730 	 * invoking htable_free()
731 	 */
732 	atomic_inc_32(&htable_dont_cache);
733 	/*
734 	 * Let htable_steal() do the work, we just call htable_free()
735 	 */
736 	XPV_DISALLOW_MIGRATE();
737 	list = htable_steal(reap_cnt, B_TRUE);
738 	XPV_ALLOW_MIGRATE();
739 	while ((ht = list) != NULL) {
740 		list = ht->ht_next;
741 		HATSTAT_INC(hs_reaped);
742 		htable_free(ht);
743 	}
744 	atomic_dec_32(&htable_dont_cache);
745 
746 	/*
747 	 * Free up excess reserves
748 	 */
749 	htable_adjust_reserve();
750 	hment_adjust_reserve();
751 }
752 
753 /*
754  * Allocate an htable, stealing one or using the reserve if necessary
755  */
756 static htable_t *
757 htable_alloc(
758 	hat_t		*hat,
759 	uintptr_t	vaddr,
760 	level_t		level,
761 	htable_t	*shared)
762 {
763 	htable_t	*ht = NULL;
764 	uint_t		is_vlp;
765 	uint_t		is_bare = 0;
766 	uint_t		need_to_zero = 1;
767 	int		kmflags = (can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP);
768 
769 	if (level < 0 || level > TOP_LEVEL(hat))
770 		panic("htable_alloc(): level %d out of range\n", level);
771 
772 	is_vlp = (hat->hat_flags & HAT_VLP) && level == VLP_LEVEL;
773 	if (is_vlp || shared != NULL)
774 		is_bare = 1;
775 
776 	/*
777 	 * First reuse a cached htable from the hat_ht_cached field, this
778 	 * avoids unnecessary trips through kmem/page allocators.
779 	 */
780 	if (hat->hat_ht_cached != NULL && !is_bare) {
781 		hat_enter(hat);
782 		ht = hat->hat_ht_cached;
783 		if (ht != NULL) {
784 			hat->hat_ht_cached = ht->ht_next;
785 			need_to_zero = 0;
786 			/* XX64 ASSERT() they're all zero somehow */
787 			ASSERT(ht->ht_pfn != PFN_INVALID);
788 		}
789 		hat_exit(hat);
790 	}
791 
792 	if (ht == NULL) {
793 		/*
794 		 * Allocate an htable, possibly refilling the reserves.
795 		 */
796 		if (USE_HAT_RESERVES()) {
797 			ht = htable_get_reserve();
798 		} else {
799 			/*
800 			 * Donate successful htable allocations to the reserve.
801 			 */
802 			for (;;) {
803 				ht = kmem_cache_alloc(htable_cache, kmflags);
804 				if (ht == NULL)
805 					break;
806 				ht->ht_pfn = PFN_INVALID;
807 				if (USE_HAT_RESERVES() ||
808 				    htable_reserve_cnt >= htable_reserve_amount)
809 					break;
810 				htable_put_reserve(ht);
811 			}
812 		}
813 
814 		/*
815 		 * allocate a page for the hardware page table if needed
816 		 */
817 		if (ht != NULL && !is_bare) {
818 			ht->ht_hat = hat;
819 			ht->ht_pfn = ptable_alloc((uintptr_t)ht);
820 			if (ht->ht_pfn == PFN_INVALID) {
821 				if (USE_HAT_RESERVES())
822 					htable_put_reserve(ht);
823 				else
824 					kmem_cache_free(htable_cache, ht);
825 				ht = NULL;
826 			}
827 		}
828 	}
829 
830 	/*
831 	 * If allocations failed, kick off a kmem_reap() and resort to
832 	 * htable steal(). We may spin here if the system is very low on
833 	 * memory. If the kernel itself has consumed all memory and kmem_reap()
834 	 * can't free up anything, then we'll really get stuck here.
835 	 * That should only happen in a system where the administrator has
836 	 * misconfigured VM parameters via /etc/system.
837 	 */
838 	while (ht == NULL && can_steal_post_boot) {
839 		kmem_reap();
840 		ht = htable_steal(1, B_FALSE);
841 		HATSTAT_INC(hs_steals);
842 
843 		/*
844 		 * If we stole for a bare htable, release the pagetable page.
845 		 */
846 		if (ht != NULL) {
847 			if (is_bare) {
848 				ptable_free(ht->ht_pfn);
849 				ht->ht_pfn = PFN_INVALID;
850 #if defined(__xpv) && defined(__amd64)
851 			/*
852 			 * make stolen page table writable again in kpm
853 			 */
854 			} else if (kpm_vbase && xen_kpm_page(ht->ht_pfn,
855 			    PT_VALID | PT_WRITABLE) < 0) {
856 				panic("failure making kpm r/w pfn=0x%lx",
857 				    ht->ht_pfn);
858 #endif
859 			}
860 		}
861 	}
862 
863 	/*
864 	 * All attempts to allocate or steal failed. This should only happen
865 	 * if we run out of memory during boot, due perhaps to a huge
866 	 * boot_archive. At this point there's no way to continue.
867 	 */
868 	if (ht == NULL)
869 		panic("htable_alloc(): couldn't steal\n");
870 
871 #if defined(__amd64) && defined(__xpv)
872 	/*
873 	 * Under the 64-bit hypervisor, we have 2 top level page tables.
874 	 * If this allocation fails, we'll resort to stealing.
875 	 * We use the stolen page indirectly, by freeing the
876 	 * stolen htable first.
877 	 */
878 	if (level == mmu.max_level) {
879 		for (;;) {
880 			htable_t *stolen;
881 
882 			hat->hat_user_ptable = ptable_alloc((uintptr_t)ht + 1);
883 			if (hat->hat_user_ptable != PFN_INVALID)
884 				break;
885 			stolen = htable_steal(1, B_FALSE);
886 			if (stolen == NULL)
887 				panic("2nd steal ptable failed\n");
888 			htable_free(stolen);
889 		}
890 		block_zero_no_xmm(kpm_vbase + pfn_to_pa(hat->hat_user_ptable),
891 		    MMU_PAGESIZE);
892 	}
893 #endif
894 
895 	/*
896 	 * Shared page tables have all entries locked and entries may not
897 	 * be added or deleted.
898 	 */
899 	ht->ht_flags = 0;
900 	if (shared != NULL) {
901 		ASSERT(shared->ht_valid_cnt > 0);
902 		ht->ht_flags |= HTABLE_SHARED_PFN;
903 		ht->ht_pfn = shared->ht_pfn;
904 		ht->ht_lock_cnt = 0;
905 		ht->ht_valid_cnt = 0;		/* updated in hat_share() */
906 		ht->ht_shares = shared;
907 		need_to_zero = 0;
908 	} else {
909 		ht->ht_shares = NULL;
910 		ht->ht_lock_cnt = 0;
911 		ht->ht_valid_cnt = 0;
912 	}
913 
914 	/*
915 	 * setup flags, etc. for VLP htables
916 	 */
917 	if (is_vlp) {
918 		ht->ht_flags |= HTABLE_VLP;
919 		ASSERT(ht->ht_pfn == PFN_INVALID);
920 		need_to_zero = 0;
921 	}
922 
923 	/*
924 	 * fill in the htable
925 	 */
926 	ht->ht_hat = hat;
927 	ht->ht_parent = NULL;
928 	ht->ht_vaddr = vaddr;
929 	ht->ht_level = level;
930 	ht->ht_busy = 1;
931 	ht->ht_next = NULL;
932 	ht->ht_prev = NULL;
933 
934 	/*
935 	 * Zero out any freshly allocated page table
936 	 */
937 	if (need_to_zero)
938 		x86pte_zero(ht, 0, mmu.ptes_per_table);
939 
940 #if defined(__amd64) && defined(__xpv)
941 	if (!is_bare && kpm_vbase) {
942 		(void) xen_kpm_page(ht->ht_pfn, PT_VALID);
943 		if (level == mmu.max_level)
944 			(void) xen_kpm_page(hat->hat_user_ptable, PT_VALID);
945 	}
946 #endif
947 
948 	return (ht);
949 }
950 
951 /*
952  * Free up an htable, either to a hat's cached list, the reserves or
953  * back to kmem.
954  */
955 static void
956 htable_free(htable_t *ht)
957 {
958 	hat_t *hat = ht->ht_hat;
959 
960 	/*
961 	 * If the process isn't exiting, cache the free htable in the hat
962 	 * structure. We always do this for the boot time reserve. We don't
963 	 * do this if the hat is exiting or we are stealing/reaping htables.
964 	 */
965 	if (hat != NULL &&
966 	    !(ht->ht_flags & HTABLE_SHARED_PFN) &&
967 	    (use_boot_reserve ||
968 	    (!(hat->hat_flags & HAT_FREEING) && !htable_dont_cache))) {
969 		ASSERT((ht->ht_flags & HTABLE_VLP) == 0);
970 		ASSERT(ht->ht_pfn != PFN_INVALID);
971 		hat_enter(hat);
972 		ht->ht_next = hat->hat_ht_cached;
973 		hat->hat_ht_cached = ht;
974 		hat_exit(hat);
975 		return;
976 	}
977 
978 	/*
979 	 * If we have a hardware page table, free it.
980 	 * We don't free page tables that are accessed by sharing.
981 	 */
982 	if (ht->ht_flags & HTABLE_SHARED_PFN) {
983 		ASSERT(ht->ht_pfn != PFN_INVALID);
984 	} else if (!(ht->ht_flags & HTABLE_VLP)) {
985 		ptable_free(ht->ht_pfn);
986 #if defined(__amd64) && defined(__xpv)
987 		if (ht->ht_level == mmu.max_level && hat != NULL) {
988 			ptable_free(hat->hat_user_ptable);
989 			hat->hat_user_ptable = PFN_INVALID;
990 		}
991 #endif
992 	}
993 	ht->ht_pfn = PFN_INVALID;
994 
995 	/*
996 	 * Free it or put into reserves.
997 	 */
998 	if (USE_HAT_RESERVES() || htable_reserve_cnt < htable_reserve_amount) {
999 		htable_put_reserve(ht);
1000 	} else {
1001 		kmem_cache_free(htable_cache, ht);
1002 		htable_adjust_reserve();
1003 	}
1004 }
1005 
1006 
1007 /*
1008  * This is called when a hat is being destroyed or swapped out. We reap all
1009  * the remaining htables in the hat cache. If destroying all left over
1010  * htables are also destroyed.
1011  *
1012  * We also don't need to invalidate any of the PTPs nor do any demapping.
1013  */
1014 void
1015 htable_purge_hat(hat_t *hat)
1016 {
1017 	htable_t *ht;
1018 	int h;
1019 
1020 	/*
1021 	 * Purge the htable cache if just reaping.
1022 	 */
1023 	if (!(hat->hat_flags & HAT_FREEING)) {
1024 		atomic_inc_32(&htable_dont_cache);
1025 		for (;;) {
1026 			hat_enter(hat);
1027 			ht = hat->hat_ht_cached;
1028 			if (ht == NULL) {
1029 				hat_exit(hat);
1030 				break;
1031 			}
1032 			hat->hat_ht_cached = ht->ht_next;
1033 			hat_exit(hat);
1034 			htable_free(ht);
1035 		}
1036 		atomic_dec_32(&htable_dont_cache);
1037 		return;
1038 	}
1039 
1040 	/*
1041 	 * if freeing, no locking is needed
1042 	 */
1043 	while ((ht = hat->hat_ht_cached) != NULL) {
1044 		hat->hat_ht_cached = ht->ht_next;
1045 		htable_free(ht);
1046 	}
1047 
1048 	/*
1049 	 * walk thru the htable hash table and free all the htables in it.
1050 	 */
1051 	for (h = 0; h < hat->hat_num_hash; ++h) {
1052 		while ((ht = hat->hat_ht_hash[h]) != NULL) {
1053 			if (ht->ht_next)
1054 				ht->ht_next->ht_prev = ht->ht_prev;
1055 
1056 			if (ht->ht_prev) {
1057 				ht->ht_prev->ht_next = ht->ht_next;
1058 			} else {
1059 				ASSERT(hat->hat_ht_hash[h] == ht);
1060 				hat->hat_ht_hash[h] = ht->ht_next;
1061 			}
1062 			htable_free(ht);
1063 		}
1064 	}
1065 }
1066 
1067 /*
1068  * Unlink an entry for a table at vaddr and level out of the existing table
1069  * one level higher. We are always holding the HASH_ENTER() when doing this.
1070  */
1071 static void
1072 unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr)
1073 {
1074 	uint_t		entry = htable_va2entry(vaddr, higher);
1075 	x86pte_t	expect = MAKEPTP(old->ht_pfn, old->ht_level);
1076 	x86pte_t	found;
1077 	hat_t		*hat = old->ht_hat;
1078 
1079 	ASSERT(higher->ht_busy > 0);
1080 	ASSERT(higher->ht_valid_cnt > 0);
1081 	ASSERT(old->ht_valid_cnt == 0);
1082 	found = x86pte_cas(higher, entry, expect, 0);
1083 #ifdef __xpv
1084 	/*
1085 	 * This is weird, but Xen apparently automatically unlinks empty
1086 	 * pagetables from the upper page table. So allow PTP to be 0 already.
1087 	 */
1088 	if (found != expect && found != 0)
1089 #else
1090 	if (found != expect)
1091 #endif
1092 		panic("Bad PTP found=" FMT_PTE ", expected=" FMT_PTE,
1093 		    found, expect);
1094 
1095 	/*
1096 	 * When a top level VLP page table entry changes, we must issue
1097 	 * a reload of cr3 on all processors.
1098 	 *
1099 	 * If we don't need do do that, then we still have to INVLPG against
1100 	 * an address covered by the inner page table, as the latest processors
1101 	 * have TLB-like caches for non-leaf page table entries.
1102 	 */
1103 	if (!(hat->hat_flags & HAT_FREEING)) {
1104 		hat_tlb_inval(hat, (higher->ht_flags & HTABLE_VLP) ?
1105 		    DEMAP_ALL_ADDR : old->ht_vaddr);
1106 	}
1107 
1108 	HTABLE_DEC(higher->ht_valid_cnt);
1109 }
1110 
1111 /*
1112  * Link an entry for a new table at vaddr and level into the existing table
1113  * one level higher. We are always holding the HASH_ENTER() when doing this.
1114  */
1115 static void
1116 link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr)
1117 {
1118 	uint_t		entry = htable_va2entry(vaddr, higher);
1119 	x86pte_t	newptp = MAKEPTP(new->ht_pfn, new->ht_level);
1120 	x86pte_t	found;
1121 
1122 	ASSERT(higher->ht_busy > 0);
1123 
1124 	ASSERT(new->ht_level != mmu.max_level);
1125 
1126 	HTABLE_INC(higher->ht_valid_cnt);
1127 
1128 	found = x86pte_cas(higher, entry, 0, newptp);
1129 	if ((found & ~PT_REF) != 0)
1130 		panic("HAT: ptp not 0, found=" FMT_PTE, found);
1131 
1132 	/*
1133 	 * When any top level VLP page table entry changes, we must issue
1134 	 * a reload of cr3 on all processors using it.
1135 	 * We also need to do this for the kernel hat on PAE 32 bit kernel.
1136 	 */
1137 	if (
1138 #ifdef __i386
1139 	    (higher->ht_hat == kas.a_hat && higher->ht_level == VLP_LEVEL) ||
1140 #endif
1141 	    (higher->ht_flags & HTABLE_VLP))
1142 		hat_tlb_inval(higher->ht_hat, DEMAP_ALL_ADDR);
1143 }
1144 
1145 /*
1146  * Release of hold on an htable. If this is the last use and the pagetable
1147  * is empty we may want to free it, then recursively look at the pagetable
1148  * above it. The recursion is handled by the outer while() loop.
1149  *
1150  * On the metal, during process exit, we don't bother unlinking the tables from
1151  * upper level pagetables. They are instead handled in bulk by hat_free_end().
1152  * We can't do this on the hypervisor as we need the page table to be
1153  * implicitly unpinnned before it goes to the free page lists. This can't
1154  * happen unless we fully unlink it from the page table hierarchy.
1155  */
1156 void
1157 htable_release(htable_t *ht)
1158 {
1159 	uint_t		hashval;
1160 	htable_t	*shared;
1161 	htable_t	*higher;
1162 	hat_t		*hat;
1163 	uintptr_t	va;
1164 	level_t		level;
1165 
1166 	while (ht != NULL) {
1167 		shared = NULL;
1168 		for (;;) {
1169 			hat = ht->ht_hat;
1170 			va = ht->ht_vaddr;
1171 			level = ht->ht_level;
1172 			hashval = HTABLE_HASH(hat, va, level);
1173 
1174 			/*
1175 			 * The common case is that this isn't the last use of
1176 			 * an htable so we don't want to free the htable.
1177 			 */
1178 			HTABLE_ENTER(hashval);
1179 			ASSERT(ht->ht_valid_cnt >= 0);
1180 			ASSERT(ht->ht_busy > 0);
1181 			if (ht->ht_valid_cnt > 0)
1182 				break;
1183 			if (ht->ht_busy > 1)
1184 				break;
1185 			ASSERT(ht->ht_lock_cnt == 0);
1186 
1187 #if !defined(__xpv)
1188 			/*
1189 			 * we always release empty shared htables
1190 			 */
1191 			if (!(ht->ht_flags & HTABLE_SHARED_PFN)) {
1192 
1193 				/*
1194 				 * don't release if in address space tear down
1195 				 */
1196 				if (hat->hat_flags & HAT_FREEING)
1197 					break;
1198 
1199 				/*
1200 				 * At and above max_page_level, free if it's for
1201 				 * a boot-time kernel mapping below kernelbase.
1202 				 */
1203 				if (level >= mmu.max_page_level &&
1204 				    (hat != kas.a_hat || va >= kernelbase))
1205 					break;
1206 			}
1207 #endif /* __xpv */
1208 
1209 			/*
1210 			 * Remember if we destroy an htable that shares its PFN
1211 			 * from elsewhere.
1212 			 */
1213 			if (ht->ht_flags & HTABLE_SHARED_PFN) {
1214 				ASSERT(shared == NULL);
1215 				shared = ht->ht_shares;
1216 				HATSTAT_INC(hs_htable_unshared);
1217 			}
1218 
1219 			/*
1220 			 * Handle release of a table and freeing the htable_t.
1221 			 * Unlink it from the table higher (ie. ht_parent).
1222 			 */
1223 			higher = ht->ht_parent;
1224 			ASSERT(higher != NULL);
1225 
1226 			/*
1227 			 * Unlink the pagetable.
1228 			 */
1229 			unlink_ptp(higher, ht, va);
1230 
1231 			/*
1232 			 * remove this htable from its hash list
1233 			 */
1234 			if (ht->ht_next)
1235 				ht->ht_next->ht_prev = ht->ht_prev;
1236 
1237 			if (ht->ht_prev) {
1238 				ht->ht_prev->ht_next = ht->ht_next;
1239 			} else {
1240 				ASSERT(hat->hat_ht_hash[hashval] == ht);
1241 				hat->hat_ht_hash[hashval] = ht->ht_next;
1242 			}
1243 			HTABLE_EXIT(hashval);
1244 			htable_free(ht);
1245 			ht = higher;
1246 		}
1247 
1248 		ASSERT(ht->ht_busy >= 1);
1249 		--ht->ht_busy;
1250 		HTABLE_EXIT(hashval);
1251 
1252 		/*
1253 		 * If we released a shared htable, do a release on the htable
1254 		 * from which it shared
1255 		 */
1256 		ht = shared;
1257 	}
1258 }
1259 
1260 /*
1261  * Find the htable for the pagetable at the given level for the given address.
1262  * If found acquires a hold that eventually needs to be htable_release()d
1263  */
1264 htable_t *
1265 htable_lookup(hat_t *hat, uintptr_t vaddr, level_t level)
1266 {
1267 	uintptr_t	base;
1268 	uint_t		hashval;
1269 	htable_t	*ht = NULL;
1270 
1271 	ASSERT(level >= 0);
1272 	ASSERT(level <= TOP_LEVEL(hat));
1273 
1274 	if (level == TOP_LEVEL(hat)) {
1275 #if defined(__amd64)
1276 		/*
1277 		 * 32 bit address spaces on 64 bit kernels need to check
1278 		 * for overflow of the 32 bit address space
1279 		 */
1280 		if ((hat->hat_flags & HAT_VLP) && vaddr >= ((uint64_t)1 << 32))
1281 			return (NULL);
1282 #endif
1283 		base = 0;
1284 	} else {
1285 		base = vaddr & LEVEL_MASK(level + 1);
1286 	}
1287 
1288 	hashval = HTABLE_HASH(hat, base, level);
1289 	HTABLE_ENTER(hashval);
1290 	for (ht = hat->hat_ht_hash[hashval]; ht; ht = ht->ht_next) {
1291 		if (ht->ht_hat == hat &&
1292 		    ht->ht_vaddr == base &&
1293 		    ht->ht_level == level)
1294 			break;
1295 	}
1296 	if (ht)
1297 		++ht->ht_busy;
1298 
1299 	HTABLE_EXIT(hashval);
1300 	return (ht);
1301 }
1302 
1303 /*
1304  * Acquires a hold on a known htable (from a locked hment entry).
1305  */
1306 void
1307 htable_acquire(htable_t *ht)
1308 {
1309 	hat_t		*hat = ht->ht_hat;
1310 	level_t		level = ht->ht_level;
1311 	uintptr_t	base = ht->ht_vaddr;
1312 	uint_t		hashval = HTABLE_HASH(hat, base, level);
1313 
1314 	HTABLE_ENTER(hashval);
1315 #ifdef DEBUG
1316 	/*
1317 	 * make sure the htable is there
1318 	 */
1319 	{
1320 		htable_t	*h;
1321 
1322 		for (h = hat->hat_ht_hash[hashval];
1323 		    h && h != ht;
1324 		    h = h->ht_next)
1325 			;
1326 		ASSERT(h == ht);
1327 	}
1328 #endif /* DEBUG */
1329 	++ht->ht_busy;
1330 	HTABLE_EXIT(hashval);
1331 }
1332 
1333 /*
1334  * Find the htable for the pagetable at the given level for the given address.
1335  * If found acquires a hold that eventually needs to be htable_release()d
1336  * If not found the table is created.
1337  *
1338  * Since we can't hold a hash table mutex during allocation, we have to
1339  * drop it and redo the search on a create. Then we may have to free the newly
1340  * allocated htable if another thread raced in and created it ahead of us.
1341  */
1342 htable_t *
1343 htable_create(
1344 	hat_t		*hat,
1345 	uintptr_t	vaddr,
1346 	level_t		level,
1347 	htable_t	*shared)
1348 {
1349 	uint_t		h;
1350 	level_t		l;
1351 	uintptr_t	base;
1352 	htable_t	*ht;
1353 	htable_t	*higher = NULL;
1354 	htable_t	*new = NULL;
1355 
1356 	if (level < 0 || level > TOP_LEVEL(hat))
1357 		panic("htable_create(): level %d out of range\n", level);
1358 
1359 	/*
1360 	 * Create the page tables in top down order.
1361 	 */
1362 	for (l = TOP_LEVEL(hat); l >= level; --l) {
1363 		new = NULL;
1364 		if (l == TOP_LEVEL(hat))
1365 			base = 0;
1366 		else
1367 			base = vaddr & LEVEL_MASK(l + 1);
1368 
1369 		h = HTABLE_HASH(hat, base, l);
1370 try_again:
1371 		/*
1372 		 * look up the htable at this level
1373 		 */
1374 		HTABLE_ENTER(h);
1375 		if (l == TOP_LEVEL(hat)) {
1376 			ht = hat->hat_htable;
1377 		} else {
1378 			for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
1379 				ASSERT(ht->ht_hat == hat);
1380 				if (ht->ht_vaddr == base &&
1381 				    ht->ht_level == l)
1382 					break;
1383 			}
1384 		}
1385 
1386 		/*
1387 		 * if we found the htable, increment its busy cnt
1388 		 * and if we had allocated a new htable, free it.
1389 		 */
1390 		if (ht != NULL) {
1391 			/*
1392 			 * If we find a pre-existing shared table, it must
1393 			 * share from the same place.
1394 			 */
1395 			if (l == level && shared && ht->ht_shares &&
1396 			    ht->ht_shares != shared) {
1397 				panic("htable shared from wrong place "
1398 				    "found htable=%p shared=%p",
1399 				    (void *)ht, (void *)shared);
1400 			}
1401 			++ht->ht_busy;
1402 			HTABLE_EXIT(h);
1403 			if (new)
1404 				htable_free(new);
1405 			if (higher != NULL)
1406 				htable_release(higher);
1407 			higher = ht;
1408 
1409 		/*
1410 		 * if we didn't find it on the first search
1411 		 * allocate a new one and search again
1412 		 */
1413 		} else if (new == NULL) {
1414 			HTABLE_EXIT(h);
1415 			new = htable_alloc(hat, base, l,
1416 			    l == level ? shared : NULL);
1417 			goto try_again;
1418 
1419 		/*
1420 		 * 2nd search and still not there, use "new" table
1421 		 * Link new table into higher, when not at top level.
1422 		 */
1423 		} else {
1424 			ht = new;
1425 			if (higher != NULL) {
1426 				link_ptp(higher, ht, base);
1427 				ht->ht_parent = higher;
1428 			}
1429 			ht->ht_next = hat->hat_ht_hash[h];
1430 			ASSERT(ht->ht_prev == NULL);
1431 			if (hat->hat_ht_hash[h])
1432 				hat->hat_ht_hash[h]->ht_prev = ht;
1433 			hat->hat_ht_hash[h] = ht;
1434 			HTABLE_EXIT(h);
1435 
1436 			/*
1437 			 * Note we don't do htable_release(higher).
1438 			 * That happens recursively when "new" is removed by
1439 			 * htable_release() or htable_steal().
1440 			 */
1441 			higher = ht;
1442 
1443 			/*
1444 			 * If we just created a new shared page table we
1445 			 * increment the shared htable's busy count, so that
1446 			 * it can't be the victim of a steal even if it's empty.
1447 			 */
1448 			if (l == level && shared) {
1449 				(void) htable_lookup(shared->ht_hat,
1450 				    shared->ht_vaddr, shared->ht_level);
1451 				HATSTAT_INC(hs_htable_shared);
1452 			}
1453 		}
1454 	}
1455 
1456 	return (ht);
1457 }
1458 
1459 /*
1460  * Inherit initial pagetables from the boot program. On the 64-bit
1461  * hypervisor we also temporarily mark the p_index field of page table
1462  * pages, so we know not to try making them writable in seg_kpm.
1463  */
1464 void
1465 htable_attach(
1466 	hat_t *hat,
1467 	uintptr_t base,
1468 	level_t level,
1469 	htable_t *parent,
1470 	pfn_t pfn)
1471 {
1472 	htable_t	*ht;
1473 	uint_t		h;
1474 	uint_t		i;
1475 	x86pte_t	pte;
1476 	x86pte_t	*ptep;
1477 	page_t		*pp;
1478 	extern page_t	*boot_claim_page(pfn_t);
1479 
1480 	ht = htable_get_reserve();
1481 	if (level == mmu.max_level)
1482 		kas.a_hat->hat_htable = ht;
1483 	ht->ht_hat = hat;
1484 	ht->ht_parent = parent;
1485 	ht->ht_vaddr = base;
1486 	ht->ht_level = level;
1487 	ht->ht_busy = 1;
1488 	ht->ht_next = NULL;
1489 	ht->ht_prev = NULL;
1490 	ht->ht_flags = 0;
1491 	ht->ht_pfn = pfn;
1492 	ht->ht_lock_cnt = 0;
1493 	ht->ht_valid_cnt = 0;
1494 	if (parent != NULL)
1495 		++parent->ht_busy;
1496 
1497 	h = HTABLE_HASH(hat, base, level);
1498 	HTABLE_ENTER(h);
1499 	ht->ht_next = hat->hat_ht_hash[h];
1500 	ASSERT(ht->ht_prev == NULL);
1501 	if (hat->hat_ht_hash[h])
1502 		hat->hat_ht_hash[h]->ht_prev = ht;
1503 	hat->hat_ht_hash[h] = ht;
1504 	HTABLE_EXIT(h);
1505 
1506 	/*
1507 	 * make sure the page table physical page is not FREE
1508 	 */
1509 	if (page_resv(1, KM_NOSLEEP) == 0)
1510 		panic("page_resv() failed in ptable alloc");
1511 
1512 	pp = boot_claim_page(pfn);
1513 	ASSERT(pp != NULL);
1514 
1515 	/*
1516 	 * Page table pages that were allocated by dboot or
1517 	 * in very early startup didn't go through boot_mapin()
1518 	 * and so won't have vnode/offsets. Fix that here.
1519 	 */
1520 	if (pp->p_vnode == NULL) {
1521 		/* match offset calculation in page_get_physical() */
1522 		u_offset_t offset = (uintptr_t)ht;
1523 		if (offset > kernelbase)
1524 			offset -= kernelbase;
1525 		offset <<= MMU_PAGESHIFT;
1526 #if defined(__amd64)
1527 		offset += mmu.hole_start;	/* something in VA hole */
1528 #else
1529 		offset += 1ULL << 40;		/* something > 4 Gig */
1530 #endif
1531 		ASSERT(page_exists(&kvp, offset) == NULL);
1532 		(void) page_hashin(pp, &kvp, offset, NULL);
1533 	}
1534 	page_downgrade(pp);
1535 #if defined(__xpv) && defined(__amd64)
1536 	/*
1537 	 * Record in the page_t that is a pagetable for segkpm setup.
1538 	 */
1539 	if (kpm_vbase)
1540 		pp->p_index = 1;
1541 #endif
1542 
1543 	/*
1544 	 * Count valid mappings and recursively attach lower level pagetables.
1545 	 */
1546 	ptep = kbm_remap_window(pfn_to_pa(pfn), 0);
1547 	for (i = 0; i < HTABLE_NUM_PTES(ht); ++i) {
1548 		if (mmu.pae_hat)
1549 			pte = ptep[i];
1550 		else
1551 			pte = ((x86pte32_t *)ptep)[i];
1552 		if (!IN_HYPERVISOR_VA(base) && PTE_ISVALID(pte)) {
1553 			++ht->ht_valid_cnt;
1554 			if (!PTE_ISPAGE(pte, level)) {
1555 				htable_attach(hat, base, level - 1,
1556 				    ht, PTE2PFN(pte, level));
1557 				ptep = kbm_remap_window(pfn_to_pa(pfn), 0);
1558 			}
1559 		}
1560 		base += LEVEL_SIZE(level);
1561 		if (base == mmu.hole_start)
1562 			base = (mmu.hole_end + MMU_PAGEOFFSET) & MMU_PAGEMASK;
1563 	}
1564 
1565 	/*
1566 	 * As long as all the mappings we had were below kernel base
1567 	 * we can release the htable.
1568 	 */
1569 	if (base < kernelbase)
1570 		htable_release(ht);
1571 }
1572 
1573 /*
1574  * Walk through a given htable looking for the first valid entry.  This
1575  * routine takes both a starting and ending address.  The starting address
1576  * is required to be within the htable provided by the caller, but there is
1577  * no such restriction on the ending address.
1578  *
1579  * If the routine finds a valid entry in the htable (at or beyond the
1580  * starting address), the PTE (and its address) will be returned.
1581  * This PTE may correspond to either a page or a pagetable - it is the
1582  * caller's responsibility to determine which.  If no valid entry is
1583  * found, 0 (and invalid PTE) and the next unexamined address will be
1584  * returned.
1585  *
1586  * The loop has been carefully coded for optimization.
1587  */
1588 static x86pte_t
1589 htable_scan(htable_t *ht, uintptr_t *vap, uintptr_t eaddr)
1590 {
1591 	uint_t e;
1592 	x86pte_t found_pte = (x86pte_t)0;
1593 	caddr_t pte_ptr;
1594 	caddr_t end_pte_ptr;
1595 	int l = ht->ht_level;
1596 	uintptr_t va = *vap & LEVEL_MASK(l);
1597 	size_t pgsize = LEVEL_SIZE(l);
1598 
1599 	ASSERT(va >= ht->ht_vaddr);
1600 	ASSERT(va <= HTABLE_LAST_PAGE(ht));
1601 
1602 	/*
1603 	 * Compute the starting index and ending virtual address
1604 	 */
1605 	e = htable_va2entry(va, ht);
1606 
1607 	/*
1608 	 * The following page table scan code knows that the valid
1609 	 * bit of a PTE is in the lowest byte AND that x86 is little endian!!
1610 	 */
1611 	pte_ptr = (caddr_t)x86pte_access_pagetable(ht, 0);
1612 	end_pte_ptr = (caddr_t)PT_INDEX_PTR(pte_ptr, HTABLE_NUM_PTES(ht));
1613 	pte_ptr = (caddr_t)PT_INDEX_PTR((x86pte_t *)pte_ptr, e);
1614 	while (!PTE_ISVALID(*pte_ptr)) {
1615 		va += pgsize;
1616 		if (va >= eaddr)
1617 			break;
1618 		pte_ptr += mmu.pte_size;
1619 		ASSERT(pte_ptr <= end_pte_ptr);
1620 		if (pte_ptr == end_pte_ptr)
1621 			break;
1622 	}
1623 
1624 	/*
1625 	 * if we found a valid PTE, load the entire PTE
1626 	 */
1627 	if (va < eaddr && pte_ptr != end_pte_ptr)
1628 		found_pte = GET_PTE((x86pte_t *)pte_ptr);
1629 	x86pte_release_pagetable(ht);
1630 
1631 #if defined(__amd64)
1632 	/*
1633 	 * deal with VA hole on amd64
1634 	 */
1635 	if (l == mmu.max_level && va >= mmu.hole_start && va <= mmu.hole_end)
1636 		va = mmu.hole_end + va - mmu.hole_start;
1637 #endif /* __amd64 */
1638 
1639 	*vap = va;
1640 	return (found_pte);
1641 }
1642 
1643 /*
1644  * Find the address and htable for the first populated translation at or
1645  * above the given virtual address.  The caller may also specify an upper
1646  * limit to the address range to search.  Uses level information to quickly
1647  * skip unpopulated sections of virtual address spaces.
1648  *
1649  * If not found returns NULL. When found, returns the htable and virt addr
1650  * and has a hold on the htable.
1651  */
1652 x86pte_t
1653 htable_walk(
1654 	struct hat *hat,
1655 	htable_t **htp,
1656 	uintptr_t *vaddr,
1657 	uintptr_t eaddr)
1658 {
1659 	uintptr_t va = *vaddr;
1660 	htable_t *ht;
1661 	htable_t *prev = *htp;
1662 	level_t l;
1663 	level_t max_mapped_level;
1664 	x86pte_t pte;
1665 
1666 	ASSERT(eaddr > va);
1667 
1668 	/*
1669 	 * If this is a user address, then we know we need not look beyond
1670 	 * kernelbase.
1671 	 */
1672 	ASSERT(hat == kas.a_hat || eaddr <= kernelbase ||
1673 	    eaddr == HTABLE_WALK_TO_END);
1674 	if (hat != kas.a_hat && eaddr == HTABLE_WALK_TO_END)
1675 		eaddr = kernelbase;
1676 
1677 	/*
1678 	 * If we're coming in with a previous page table, search it first
1679 	 * without doing an htable_lookup(), this should be frequent.
1680 	 */
1681 	if (prev) {
1682 		ASSERT(prev->ht_busy > 0);
1683 		ASSERT(prev->ht_vaddr <= va);
1684 		l = prev->ht_level;
1685 		if (va <= HTABLE_LAST_PAGE(prev)) {
1686 			pte = htable_scan(prev, &va, eaddr);
1687 
1688 			if (PTE_ISPAGE(pte, l)) {
1689 				*vaddr = va;
1690 				*htp = prev;
1691 				return (pte);
1692 			}
1693 		}
1694 
1695 		/*
1696 		 * We found nothing in the htable provided by the caller,
1697 		 * so fall through and do the full search
1698 		 */
1699 		htable_release(prev);
1700 	}
1701 
1702 	/*
1703 	 * Find the level of the largest pagesize used by this HAT.
1704 	 */
1705 	if (hat->hat_ism_pgcnt > 0) {
1706 		max_mapped_level = mmu.umax_page_level;
1707 	} else {
1708 		max_mapped_level = 0;
1709 		for (l = 1; l <= mmu.max_page_level; ++l)
1710 			if (hat->hat_pages_mapped[l] != 0)
1711 				max_mapped_level = l;
1712 	}
1713 
1714 	while (va < eaddr && va >= *vaddr) {
1715 		ASSERT(!IN_VA_HOLE(va));
1716 
1717 		/*
1718 		 *  Find lowest table with any entry for given address.
1719 		 */
1720 		for (l = 0; l <= TOP_LEVEL(hat); ++l) {
1721 			ht = htable_lookup(hat, va, l);
1722 			if (ht != NULL) {
1723 				pte = htable_scan(ht, &va, eaddr);
1724 				if (PTE_ISPAGE(pte, l)) {
1725 					*vaddr = va;
1726 					*htp = ht;
1727 					return (pte);
1728 				}
1729 				htable_release(ht);
1730 				break;
1731 			}
1732 
1733 			/*
1734 			 * No htable at this level for the address. If there
1735 			 * is no larger page size that could cover it, we can
1736 			 * skip right to the start of the next page table.
1737 			 */
1738 			ASSERT(l < TOP_LEVEL(hat));
1739 			if (l >= max_mapped_level) {
1740 				va = NEXT_ENTRY_VA(va, l + 1);
1741 				if (va >= eaddr)
1742 					break;
1743 			}
1744 		}
1745 	}
1746 
1747 	*vaddr = 0;
1748 	*htp = NULL;
1749 	return (0);
1750 }
1751 
1752 /*
1753  * Find the htable and page table entry index of the given virtual address
1754  * with pagesize at or below given level.
1755  * If not found returns NULL. When found, returns the htable, sets
1756  * entry, and has a hold on the htable.
1757  */
1758 htable_t *
1759 htable_getpte(
1760 	struct hat *hat,
1761 	uintptr_t vaddr,
1762 	uint_t *entry,
1763 	x86pte_t *pte,
1764 	level_t level)
1765 {
1766 	htable_t	*ht;
1767 	level_t		l;
1768 	uint_t		e;
1769 
1770 	ASSERT(level <= mmu.max_page_level);
1771 
1772 	for (l = 0; l <= level; ++l) {
1773 		ht = htable_lookup(hat, vaddr, l);
1774 		if (ht == NULL)
1775 			continue;
1776 		e = htable_va2entry(vaddr, ht);
1777 		if (entry != NULL)
1778 			*entry = e;
1779 		if (pte != NULL)
1780 			*pte = x86pte_get(ht, e);
1781 		return (ht);
1782 	}
1783 	return (NULL);
1784 }
1785 
1786 /*
1787  * Find the htable and page table entry index of the given virtual address.
1788  * There must be a valid page mapped at the given address.
1789  * If not found returns NULL. When found, returns the htable, sets
1790  * entry, and has a hold on the htable.
1791  */
1792 htable_t *
1793 htable_getpage(struct hat *hat, uintptr_t vaddr, uint_t *entry)
1794 {
1795 	htable_t	*ht;
1796 	uint_t		e;
1797 	x86pte_t	pte;
1798 
1799 	ht = htable_getpte(hat, vaddr, &e, &pte, mmu.max_page_level);
1800 	if (ht == NULL)
1801 		return (NULL);
1802 
1803 	if (entry)
1804 		*entry = e;
1805 
1806 	if (PTE_ISPAGE(pte, ht->ht_level))
1807 		return (ht);
1808 	htable_release(ht);
1809 	return (NULL);
1810 }
1811 
1812 
1813 void
1814 htable_init()
1815 {
1816 	/*
1817 	 * To save on kernel VA usage, we avoid debug information in 32 bit
1818 	 * kernels.
1819 	 */
1820 #if defined(__amd64)
1821 	int	kmem_flags = KMC_NOHASH;
1822 #elif defined(__i386)
1823 	int	kmem_flags = KMC_NOHASH | KMC_NODEBUG;
1824 #endif
1825 
1826 	/*
1827 	 * initialize kmem caches
1828 	 */
1829 	htable_cache = kmem_cache_create("htable_t",
1830 	    sizeof (htable_t), 0, NULL, NULL,
1831 	    htable_reap, NULL, hat_memload_arena, kmem_flags);
1832 }
1833 
1834 /*
1835  * get the pte index for the virtual address in the given htable's pagetable
1836  */
1837 uint_t
1838 htable_va2entry(uintptr_t va, htable_t *ht)
1839 {
1840 	level_t	l = ht->ht_level;
1841 
1842 	ASSERT(va >= ht->ht_vaddr);
1843 	ASSERT(va <= HTABLE_LAST_PAGE(ht));
1844 	return ((va >> LEVEL_SHIFT(l)) & (HTABLE_NUM_PTES(ht) - 1));
1845 }
1846 
1847 /*
1848  * Given an htable and the index of a pte in it, return the virtual address
1849  * of the page.
1850  */
1851 uintptr_t
1852 htable_e2va(htable_t *ht, uint_t entry)
1853 {
1854 	level_t	l = ht->ht_level;
1855 	uintptr_t va;
1856 
1857 	ASSERT(entry < HTABLE_NUM_PTES(ht));
1858 	va = ht->ht_vaddr + ((uintptr_t)entry << LEVEL_SHIFT(l));
1859 
1860 	/*
1861 	 * Need to skip over any VA hole in top level table
1862 	 */
1863 #if defined(__amd64)
1864 	if (ht->ht_level == mmu.max_level && va >= mmu.hole_start)
1865 		va += ((mmu.hole_end - mmu.hole_start) + 1);
1866 #endif
1867 
1868 	return (va);
1869 }
1870 
1871 /*
1872  * The code uses compare and swap instructions to read/write PTE's to
1873  * avoid atomicity problems, since PTEs can be 8 bytes on 32 bit systems.
1874  * will naturally be atomic.
1875  *
1876  * The combination of using kpreempt_disable()/_enable() and the hci_mutex
1877  * are used to ensure that an interrupt won't overwrite a temporary mapping
1878  * while it's in use. If an interrupt thread tries to access a PTE, it will
1879  * yield briefly back to the pinned thread which holds the cpu's hci_mutex.
1880  */
1881 void
1882 x86pte_cpu_init(cpu_t *cpu)
1883 {
1884 	struct hat_cpu_info *hci;
1885 
1886 	hci = kmem_zalloc(sizeof (*hci), KM_SLEEP);
1887 	mutex_init(&hci->hci_mutex, NULL, MUTEX_DEFAULT, NULL);
1888 	cpu->cpu_hat_info = hci;
1889 }
1890 
1891 void
1892 x86pte_cpu_fini(cpu_t *cpu)
1893 {
1894 	struct hat_cpu_info *hci = cpu->cpu_hat_info;
1895 
1896 	kmem_free(hci, sizeof (*hci));
1897 	cpu->cpu_hat_info = NULL;
1898 }
1899 
1900 #ifdef __i386
1901 /*
1902  * On 32 bit kernels, loading a 64 bit PTE is a little tricky
1903  */
1904 x86pte_t
1905 get_pte64(x86pte_t *ptr)
1906 {
1907 	volatile uint32_t *p = (uint32_t *)ptr;
1908 	x86pte_t t;
1909 
1910 	ASSERT(mmu.pae_hat != 0);
1911 	for (;;) {
1912 		t = p[0];
1913 		t |= (uint64_t)p[1] << 32;
1914 		if ((t & 0xffffffff) == p[0])
1915 			return (t);
1916 	}
1917 }
1918 #endif /* __i386 */
1919 
1920 /*
1921  * Disable preemption and establish a mapping to the pagetable with the
1922  * given pfn. This is optimized for there case where it's the same
1923  * pfn as we last used referenced from this CPU.
1924  */
1925 static x86pte_t *
1926 x86pte_access_pagetable(htable_t *ht, uint_t index)
1927 {
1928 	/*
1929 	 * VLP pagetables are contained in the hat_t
1930 	 */
1931 	if (ht->ht_flags & HTABLE_VLP)
1932 		return (PT_INDEX_PTR(ht->ht_hat->hat_vlp_ptes, index));
1933 	return (x86pte_mapin(ht->ht_pfn, index, ht));
1934 }
1935 
1936 /*
1937  * map the given pfn into the page table window.
1938  */
1939 /*ARGSUSED*/
1940 x86pte_t *
1941 x86pte_mapin(pfn_t pfn, uint_t index, htable_t *ht)
1942 {
1943 	x86pte_t *pteptr;
1944 	x86pte_t pte = 0;
1945 	x86pte_t newpte;
1946 	int x;
1947 
1948 	ASSERT(pfn != PFN_INVALID);
1949 
1950 	if (!khat_running) {
1951 		caddr_t va = kbm_remap_window(pfn_to_pa(pfn), 1);
1952 		return (PT_INDEX_PTR(va, index));
1953 	}
1954 
1955 	/*
1956 	 * If kpm is available, use it.
1957 	 */
1958 	if (kpm_vbase)
1959 		return (PT_INDEX_PTR(hat_kpm_pfn2va(pfn), index));
1960 
1961 	/*
1962 	 * Disable preemption and grab the CPU's hci_mutex
1963 	 */
1964 	kpreempt_disable();
1965 	ASSERT(CPU->cpu_hat_info != NULL);
1966 	mutex_enter(&CPU->cpu_hat_info->hci_mutex);
1967 	x = PWIN_TABLE(CPU->cpu_id);
1968 	pteptr = (x86pte_t *)PWIN_PTE_VA(x);
1969 #ifndef __xpv
1970 	if (mmu.pae_hat)
1971 		pte = *pteptr;
1972 	else
1973 		pte = *(x86pte32_t *)pteptr;
1974 #endif
1975 
1976 	newpte = MAKEPTE(pfn, 0) | mmu.pt_global | mmu.pt_nx;
1977 
1978 	/*
1979 	 * For hardware we can use a writable mapping.
1980 	 */
1981 #ifdef __xpv
1982 	if (IN_XPV_PANIC())
1983 #endif
1984 		newpte |= PT_WRITABLE;
1985 
1986 	if (!PTE_EQUIV(newpte, pte)) {
1987 
1988 #ifdef __xpv
1989 		if (!IN_XPV_PANIC()) {
1990 			xen_map(newpte, PWIN_VA(x));
1991 		} else
1992 #endif
1993 		{
1994 			XPV_ALLOW_PAGETABLE_UPDATES();
1995 			if (mmu.pae_hat)
1996 				*pteptr = newpte;
1997 			else
1998 				*(x86pte32_t *)pteptr = newpte;
1999 			XPV_DISALLOW_PAGETABLE_UPDATES();
2000 			mmu_tlbflush_entry((caddr_t)(PWIN_VA(x)));
2001 		}
2002 	}
2003 	return (PT_INDEX_PTR(PWIN_VA(x), index));
2004 }
2005 
2006 /*
2007  * Release access to a page table.
2008  */
2009 static void
2010 x86pte_release_pagetable(htable_t *ht)
2011 {
2012 	/*
2013 	 * nothing to do for VLP htables
2014 	 */
2015 	if (ht->ht_flags & HTABLE_VLP)
2016 		return;
2017 
2018 	x86pte_mapout();
2019 }
2020 
2021 void
2022 x86pte_mapout(void)
2023 {
2024 	if (kpm_vbase != NULL || !khat_running)
2025 		return;
2026 
2027 	/*
2028 	 * Drop the CPU's hci_mutex and restore preemption.
2029 	 */
2030 #ifdef __xpv
2031 	if (!IN_XPV_PANIC()) {
2032 		uintptr_t va;
2033 
2034 		/*
2035 		 * We need to always clear the mapping in case a page
2036 		 * that was once a page table page is ballooned out.
2037 		 */
2038 		va = (uintptr_t)PWIN_VA(PWIN_TABLE(CPU->cpu_id));
2039 		(void) HYPERVISOR_update_va_mapping(va, 0,
2040 		    UVMF_INVLPG | UVMF_LOCAL);
2041 	}
2042 #endif
2043 	mutex_exit(&CPU->cpu_hat_info->hci_mutex);
2044 	kpreempt_enable();
2045 }
2046 
2047 /*
2048  * Atomic retrieval of a pagetable entry
2049  */
2050 x86pte_t
2051 x86pte_get(htable_t *ht, uint_t entry)
2052 {
2053 	x86pte_t	pte;
2054 	x86pte_t	*ptep;
2055 
2056 	/*
2057 	 * Be careful that loading PAE entries in 32 bit kernel is atomic.
2058 	 */
2059 	ASSERT(entry < mmu.ptes_per_table);
2060 	ptep = x86pte_access_pagetable(ht, entry);
2061 	pte = GET_PTE(ptep);
2062 	x86pte_release_pagetable(ht);
2063 	return (pte);
2064 }
2065 
2066 /*
2067  * Atomic unconditional set of a page table entry, it returns the previous
2068  * value. For pre-existing mappings if the PFN changes, then we don't care
2069  * about the old pte's REF / MOD bits. If the PFN remains the same, we leave
2070  * the MOD/REF bits unchanged.
2071  *
2072  * If asked to overwrite a link to a lower page table with a large page
2073  * mapping, this routine returns the special value of LPAGE_ERROR. This
2074  * allows the upper HAT layers to retry with a smaller mapping size.
2075  */
2076 x86pte_t
2077 x86pte_set(htable_t *ht, uint_t entry, x86pte_t new, void *ptr)
2078 {
2079 	x86pte_t	old;
2080 	x86pte_t	prev;
2081 	x86pte_t	*ptep;
2082 	level_t		l = ht->ht_level;
2083 	x86pte_t	pfn_mask = (l != 0) ? PT_PADDR_LGPG : PT_PADDR;
2084 	x86pte_t	n;
2085 	uintptr_t	addr = htable_e2va(ht, entry);
2086 	hat_t		*hat = ht->ht_hat;
2087 
2088 	ASSERT(new != 0); /* don't use to invalidate a PTE, see x86pte_update */
2089 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2090 	if (ptr == NULL)
2091 		ptep = x86pte_access_pagetable(ht, entry);
2092 	else
2093 		ptep = ptr;
2094 
2095 	/*
2096 	 * Install the new PTE. If remapping the same PFN, then
2097 	 * copy existing REF/MOD bits to new mapping.
2098 	 */
2099 	do {
2100 		prev = GET_PTE(ptep);
2101 		n = new;
2102 		if (PTE_ISVALID(n) && (prev & pfn_mask) == (new & pfn_mask))
2103 			n |= prev & (PT_REF | PT_MOD);
2104 
2105 		/*
2106 		 * Another thread may have installed this mapping already,
2107 		 * flush the local TLB and be done.
2108 		 */
2109 		if (prev == n) {
2110 			old = new;
2111 #ifdef __xpv
2112 			if (!IN_XPV_PANIC())
2113 				xen_flush_va((caddr_t)addr);
2114 			else
2115 #endif
2116 				mmu_tlbflush_entry((caddr_t)addr);
2117 			goto done;
2118 		}
2119 
2120 		/*
2121 		 * Detect if we have a collision of installing a large
2122 		 * page mapping where there already is a lower page table.
2123 		 */
2124 		if (l > 0 && (prev & PT_VALID) && !(prev & PT_PAGESIZE)) {
2125 			old = LPAGE_ERROR;
2126 			goto done;
2127 		}
2128 
2129 		XPV_ALLOW_PAGETABLE_UPDATES();
2130 		old = CAS_PTE(ptep, prev, n);
2131 		XPV_DISALLOW_PAGETABLE_UPDATES();
2132 	} while (old != prev);
2133 
2134 	/*
2135 	 * Do a TLB demap if needed, ie. the old pte was valid.
2136 	 *
2137 	 * Note that a stale TLB writeback to the PTE here either can't happen
2138 	 * or doesn't matter. The PFN can only change for NOSYNC|NOCONSIST
2139 	 * mappings, but they were created with REF and MOD already set, so
2140 	 * no stale writeback will happen.
2141 	 *
2142 	 * Segmap is the only place where remaps happen on the same pfn and for
2143 	 * that we want to preserve the stale REF/MOD bits.
2144 	 */
2145 	if (old & PT_REF)
2146 		hat_tlb_inval(hat, addr);
2147 
2148 done:
2149 	if (ptr == NULL)
2150 		x86pte_release_pagetable(ht);
2151 	return (old);
2152 }
2153 
2154 /*
2155  * Atomic compare and swap of a page table entry. No TLB invalidates are done.
2156  * This is used for links between pagetables of different levels.
2157  * Note we always create these links with dirty/access set, so they should
2158  * never change.
2159  */
2160 x86pte_t
2161 x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, x86pte_t new)
2162 {
2163 	x86pte_t	pte;
2164 	x86pte_t	*ptep;
2165 #ifdef __xpv
2166 	/*
2167 	 * We can't use writable pagetables for upper level tables, so fake it.
2168 	 */
2169 	mmu_update_t t[2];
2170 	int cnt = 1;
2171 	int count;
2172 	maddr_t ma;
2173 
2174 	if (!IN_XPV_PANIC()) {
2175 		ASSERT(!(ht->ht_flags & HTABLE_VLP));	/* no VLP yet */
2176 		ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry));
2177 		t[0].ptr = ma | MMU_NORMAL_PT_UPDATE;
2178 		t[0].val = new;
2179 
2180 #if defined(__amd64)
2181 		/*
2182 		 * On the 64-bit hypervisor we need to maintain the user mode
2183 		 * top page table too.
2184 		 */
2185 		if (ht->ht_level == mmu.max_level && ht->ht_hat != kas.a_hat) {
2186 			ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(
2187 			    ht->ht_hat->hat_user_ptable), entry));
2188 			t[1].ptr = ma | MMU_NORMAL_PT_UPDATE;
2189 			t[1].val = new;
2190 			++cnt;
2191 		}
2192 #endif	/* __amd64 */
2193 
2194 		if (HYPERVISOR_mmu_update(t, cnt, &count, DOMID_SELF))
2195 			panic("HYPERVISOR_mmu_update() failed");
2196 		ASSERT(count == cnt);
2197 		return (old);
2198 	}
2199 #endif
2200 	ptep = x86pte_access_pagetable(ht, entry);
2201 	XPV_ALLOW_PAGETABLE_UPDATES();
2202 	pte = CAS_PTE(ptep, old, new);
2203 	XPV_DISALLOW_PAGETABLE_UPDATES();
2204 	x86pte_release_pagetable(ht);
2205 	return (pte);
2206 }
2207 
2208 /*
2209  * Invalidate a page table entry as long as it currently maps something that
2210  * matches the value determined by expect.
2211  *
2212  * Also invalidates any TLB entries and returns the previous value of the PTE.
2213  */
2214 x86pte_t
2215 x86pte_inval(
2216 	htable_t *ht,
2217 	uint_t entry,
2218 	x86pte_t expect,
2219 	x86pte_t *pte_ptr)
2220 {
2221 	x86pte_t	*ptep;
2222 	x86pte_t	oldpte;
2223 	x86pte_t	found;
2224 
2225 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2226 	ASSERT(ht->ht_level <= mmu.max_page_level);
2227 
2228 	if (pte_ptr != NULL)
2229 		ptep = pte_ptr;
2230 	else
2231 		ptep = x86pte_access_pagetable(ht, entry);
2232 
2233 #if defined(__xpv)
2234 	/*
2235 	 * If exit()ing just use HYPERVISOR_mmu_update(), as we can't be racing
2236 	 * with anything else.
2237 	 */
2238 	if ((ht->ht_hat->hat_flags & HAT_FREEING) && !IN_XPV_PANIC()) {
2239 		int count;
2240 		mmu_update_t t[1];
2241 		maddr_t ma;
2242 
2243 		oldpte = GET_PTE(ptep);
2244 		if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR))
2245 			goto done;
2246 		ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry));
2247 		t[0].ptr = ma | MMU_NORMAL_PT_UPDATE;
2248 		t[0].val = 0;
2249 		if (HYPERVISOR_mmu_update(t, 1, &count, DOMID_SELF))
2250 			panic("HYPERVISOR_mmu_update() failed");
2251 		ASSERT(count == 1);
2252 		goto done;
2253 	}
2254 #endif /* __xpv */
2255 
2256 	/*
2257 	 * Note that the loop is needed to handle changes due to h/w updating
2258 	 * of PT_MOD/PT_REF.
2259 	 */
2260 	do {
2261 		oldpte = GET_PTE(ptep);
2262 		if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR))
2263 			goto done;
2264 		XPV_ALLOW_PAGETABLE_UPDATES();
2265 		found = CAS_PTE(ptep, oldpte, 0);
2266 		XPV_DISALLOW_PAGETABLE_UPDATES();
2267 	} while (found != oldpte);
2268 	if (oldpte & (PT_REF | PT_MOD))
2269 		hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry));
2270 
2271 done:
2272 	if (pte_ptr == NULL)
2273 		x86pte_release_pagetable(ht);
2274 	return (oldpte);
2275 }
2276 
2277 /*
2278  * Change a page table entry af it currently matches the value in expect.
2279  */
2280 x86pte_t
2281 x86pte_update(
2282 	htable_t *ht,
2283 	uint_t entry,
2284 	x86pte_t expect,
2285 	x86pte_t new)
2286 {
2287 	x86pte_t	*ptep;
2288 	x86pte_t	found;
2289 
2290 	ASSERT(new != 0);
2291 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2292 	ASSERT(ht->ht_level <= mmu.max_page_level);
2293 
2294 	ptep = x86pte_access_pagetable(ht, entry);
2295 	XPV_ALLOW_PAGETABLE_UPDATES();
2296 	found = CAS_PTE(ptep, expect, new);
2297 	XPV_DISALLOW_PAGETABLE_UPDATES();
2298 	if (found == expect) {
2299 		hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry));
2300 
2301 		/*
2302 		 * When removing write permission *and* clearing the
2303 		 * MOD bit, check if a write happened via a stale
2304 		 * TLB entry before the TLB shootdown finished.
2305 		 *
2306 		 * If it did happen, simply re-enable write permission and
2307 		 * act like the original CAS failed.
2308 		 */
2309 		if ((expect & (PT_WRITABLE | PT_MOD)) == PT_WRITABLE &&
2310 		    (new & (PT_WRITABLE | PT_MOD)) == 0 &&
2311 		    (GET_PTE(ptep) & PT_MOD) != 0) {
2312 			do {
2313 				found = GET_PTE(ptep);
2314 				XPV_ALLOW_PAGETABLE_UPDATES();
2315 				found =
2316 				    CAS_PTE(ptep, found, found | PT_WRITABLE);
2317 				XPV_DISALLOW_PAGETABLE_UPDATES();
2318 			} while ((found & PT_WRITABLE) == 0);
2319 		}
2320 	}
2321 	x86pte_release_pagetable(ht);
2322 	return (found);
2323 }
2324 
2325 #ifndef __xpv
2326 /*
2327  * Copy page tables - this is just a little more complicated than the
2328  * previous routines. Note that it's also not atomic! It also is never
2329  * used for VLP pagetables.
2330  */
2331 void
2332 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count)
2333 {
2334 	caddr_t	src_va;
2335 	caddr_t dst_va;
2336 	size_t size;
2337 	x86pte_t *pteptr;
2338 	x86pte_t pte;
2339 
2340 	ASSERT(khat_running);
2341 	ASSERT(!(dest->ht_flags & HTABLE_VLP));
2342 	ASSERT(!(src->ht_flags & HTABLE_VLP));
2343 	ASSERT(!(src->ht_flags & HTABLE_SHARED_PFN));
2344 	ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN));
2345 
2346 	/*
2347 	 * Acquire access to the CPU pagetable windows for the dest and source.
2348 	 */
2349 	dst_va = (caddr_t)x86pte_access_pagetable(dest, entry);
2350 	if (kpm_vbase) {
2351 		src_va = (caddr_t)
2352 		    PT_INDEX_PTR(hat_kpm_pfn2va(src->ht_pfn), entry);
2353 	} else {
2354 		uint_t x = PWIN_SRC(CPU->cpu_id);
2355 
2356 		/*
2357 		 * Finish defining the src pagetable mapping
2358 		 */
2359 		src_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry);
2360 		pte = MAKEPTE(src->ht_pfn, 0) | mmu.pt_global | mmu.pt_nx;
2361 		pteptr = (x86pte_t *)PWIN_PTE_VA(x);
2362 		if (mmu.pae_hat)
2363 			*pteptr = pte;
2364 		else
2365 			*(x86pte32_t *)pteptr = pte;
2366 		mmu_tlbflush_entry((caddr_t)(PWIN_VA(x)));
2367 	}
2368 
2369 	/*
2370 	 * now do the copy
2371 	 */
2372 	size = count << mmu.pte_size_shift;
2373 	bcopy(src_va, dst_va, size);
2374 
2375 	x86pte_release_pagetable(dest);
2376 }
2377 
2378 #else /* __xpv */
2379 
2380 /*
2381  * The hypervisor only supports writable pagetables at level 0, so we have
2382  * to install these 1 by 1 the slow way.
2383  */
2384 void
2385 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count)
2386 {
2387 	caddr_t	src_va;
2388 	x86pte_t pte;
2389 
2390 	ASSERT(!IN_XPV_PANIC());
2391 	src_va = (caddr_t)x86pte_access_pagetable(src, entry);
2392 	while (count) {
2393 		if (mmu.pae_hat)
2394 			pte = *(x86pte_t *)src_va;
2395 		else
2396 			pte = *(x86pte32_t *)src_va;
2397 		if (pte != 0) {
2398 			set_pteval(pfn_to_pa(dest->ht_pfn), entry,
2399 			    dest->ht_level, pte);
2400 #ifdef __amd64
2401 			if (dest->ht_level == mmu.max_level &&
2402 			    htable_e2va(dest, entry) < HYPERVISOR_VIRT_END)
2403 				set_pteval(
2404 				    pfn_to_pa(dest->ht_hat->hat_user_ptable),
2405 				    entry, dest->ht_level, pte);
2406 #endif
2407 		}
2408 		--count;
2409 		++entry;
2410 		src_va += mmu.pte_size;
2411 	}
2412 	x86pte_release_pagetable(src);
2413 }
2414 #endif /* __xpv */
2415 
2416 /*
2417  * Zero page table entries - Note this doesn't use atomic stores!
2418  */
2419 static void
2420 x86pte_zero(htable_t *dest, uint_t entry, uint_t count)
2421 {
2422 	caddr_t dst_va;
2423 	size_t size;
2424 #ifdef __xpv
2425 	int x;
2426 	x86pte_t newpte;
2427 #endif
2428 
2429 	/*
2430 	 * Map in the page table to be zeroed.
2431 	 */
2432 	ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN));
2433 	ASSERT(!(dest->ht_flags & HTABLE_VLP));
2434 
2435 	/*
2436 	 * On the hypervisor we don't use x86pte_access_pagetable() since
2437 	 * in this case the page is not pinned yet.
2438 	 */
2439 #ifdef __xpv
2440 	if (kpm_vbase == NULL) {
2441 		kpreempt_disable();
2442 		ASSERT(CPU->cpu_hat_info != NULL);
2443 		mutex_enter(&CPU->cpu_hat_info->hci_mutex);
2444 		x = PWIN_TABLE(CPU->cpu_id);
2445 		newpte = MAKEPTE(dest->ht_pfn, 0) | PT_WRITABLE;
2446 		xen_map(newpte, PWIN_VA(x));
2447 		dst_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry);
2448 	} else
2449 #endif
2450 		dst_va = (caddr_t)x86pte_access_pagetable(dest, entry);
2451 
2452 	size = count << mmu.pte_size_shift;
2453 	ASSERT(size > BLOCKZEROALIGN);
2454 #ifdef __i386
2455 	if (!is_x86_feature(x86_featureset, X86FSET_SSE2))
2456 		bzero(dst_va, size);
2457 	else
2458 #endif
2459 		block_zero_no_xmm(dst_va, size);
2460 
2461 #ifdef __xpv
2462 	if (kpm_vbase == NULL) {
2463 		xen_map(0, PWIN_VA(x));
2464 		mutex_exit(&CPU->cpu_hat_info->hci_mutex);
2465 		kpreempt_enable();
2466 	} else
2467 #endif
2468 		x86pte_release_pagetable(dest);
2469 }
2470 
2471 /*
2472  * Called to ensure that all pagetables are in the system dump
2473  */
2474 void
2475 hat_dump(void)
2476 {
2477 	hat_t *hat;
2478 	uint_t h;
2479 	htable_t *ht;
2480 
2481 	/*
2482 	 * Dump all page tables
2483 	 */
2484 	for (hat = kas.a_hat; hat != NULL; hat = hat->hat_next) {
2485 		for (h = 0; h < hat->hat_num_hash; ++h) {
2486 			for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
2487 				if ((ht->ht_flags & HTABLE_VLP) == 0)
2488 					dump_page(ht->ht_pfn);
2489 			}
2490 		}
2491 	}
2492 }
2493