xref: /titanic_50/usr/src/uts/i86pc/vm/htable.c (revision 8ffc942d5d69695c8690274a7a3649bf0a80d3fb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/sysmacros.h>
31 #include <sys/kmem.h>
32 #include <sys/atomic.h>
33 #include <sys/bitmap.h>
34 #include <sys/machparam.h>
35 #include <sys/machsystm.h>
36 #include <sys/mman.h>
37 #include <sys/systm.h>
38 #include <sys/cpuvar.h>
39 #include <sys/thread.h>
40 #include <sys/proc.h>
41 #include <sys/cpu.h>
42 #include <sys/kmem.h>
43 #include <sys/disp.h>
44 #include <sys/vmem.h>
45 #include <sys/vmsystm.h>
46 #include <sys/promif.h>
47 #include <sys/var.h>
48 #include <sys/x86_archext.h>
49 #include <sys/archsystm.h>
50 #include <sys/bootconf.h>
51 #include <sys/dumphdr.h>
52 #include <vm/seg_kmem.h>
53 #include <vm/seg_kpm.h>
54 #include <vm/hat.h>
55 #include <vm/hat_i86.h>
56 #include <sys/cmn_err.h>
57 
58 #include <sys/bootinfo.h>
59 #include <vm/kboot_mmu.h>
60 
61 static void x86pte_zero(htable_t *dest, uint_t entry, uint_t count);
62 
63 kmem_cache_t *htable_cache;
64 
65 /*
66  * The variable htable_reserve_amount, rather than HTABLE_RESERVE_AMOUNT,
67  * is used in order to facilitate testing of the htable_steal() code.
68  * By resetting htable_reserve_amount to a lower value, we can force
69  * stealing to occur.  The reserve amount is a guess to get us through boot.
70  */
71 #define	HTABLE_RESERVE_AMOUNT	(200)
72 uint_t htable_reserve_amount = HTABLE_RESERVE_AMOUNT;
73 kmutex_t htable_reserve_mutex;
74 uint_t htable_reserve_cnt;
75 htable_t *htable_reserve_pool;
76 
77 /*
78  * Used to hand test htable_steal().
79  */
80 #ifdef DEBUG
81 ulong_t force_steal = 0;
82 ulong_t ptable_cnt = 0;
83 #endif
84 
85 /*
86  * This variable is so that we can tune this via /etc/system
87  * Any value works, but a power of two <= mmu.ptes_per_table is best.
88  */
89 uint_t htable_steal_passes = 8;
90 
91 /*
92  * mutex stuff for access to htable hash
93  */
94 #define	NUM_HTABLE_MUTEX 128
95 kmutex_t htable_mutex[NUM_HTABLE_MUTEX];
96 #define	HTABLE_MUTEX_HASH(h) ((h) & (NUM_HTABLE_MUTEX - 1))
97 
98 #define	HTABLE_ENTER(h)	mutex_enter(&htable_mutex[HTABLE_MUTEX_HASH(h)]);
99 #define	HTABLE_EXIT(h)	mutex_exit(&htable_mutex[HTABLE_MUTEX_HASH(h)]);
100 
101 /*
102  * forward declarations
103  */
104 static void link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr);
105 static void unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr);
106 static void htable_free(htable_t *ht);
107 static x86pte_t *x86pte_access_pagetable(htable_t *ht, uint_t index);
108 static void x86pte_release_pagetable(htable_t *ht);
109 static x86pte_t x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old,
110 	x86pte_t new);
111 
112 /*
113  * A counter to track if we are stealing or reaping htables. When non-zero
114  * htable_free() will directly free htables (either to the reserve or kmem)
115  * instead of putting them in a hat's htable cache.
116  */
117 uint32_t htable_dont_cache = 0;
118 
119 /*
120  * Track the number of active pagetables, so we can know how many to reap
121  */
122 static uint32_t active_ptables = 0;
123 
124 /*
125  * Allocate a memory page for a hardware page table.
126  *
127  * A wrapper around page_get_physical(), with some extra checks.
128  */
129 static pfn_t
130 ptable_alloc(uintptr_t seed)
131 {
132 	pfn_t pfn;
133 	page_t *pp;
134 
135 	pfn = PFN_INVALID;
136 	atomic_add_32(&active_ptables, 1);
137 
138 	/*
139 	 * The first check is to see if there is memory in the system. If we
140 	 * drop to throttlefree, then fail the ptable_alloc() and let the
141 	 * stealing code kick in. Note that we have to do this test here,
142 	 * since the test in page_create_throttle() would let the NOSLEEP
143 	 * allocation go through and deplete the page reserves.
144 	 *
145 	 * The !NOMEMWAIT() lets pageout, fsflush, etc. skip this check.
146 	 */
147 	if (!NOMEMWAIT() && freemem <= throttlefree + 1)
148 		return (PFN_INVALID);
149 
150 #ifdef DEBUG
151 	/*
152 	 * This code makes htable_steal() easier to test. By setting
153 	 * force_steal we force pagetable allocations to fall
154 	 * into the stealing code. Roughly 1 in ever "force_steal"
155 	 * page table allocations will fail.
156 	 */
157 	if (proc_pageout != NULL && force_steal > 1 &&
158 	    ++ptable_cnt > force_steal) {
159 		ptable_cnt = 0;
160 		return (PFN_INVALID);
161 	}
162 #endif /* DEBUG */
163 
164 	pp = page_get_physical(seed);
165 	if (pp == NULL)
166 		return (PFN_INVALID);
167 	pfn = pp->p_pagenum;
168 	page_downgrade(pp);
169 	ASSERT(PAGE_SHARED(pp));
170 
171 	if (pfn == PFN_INVALID)
172 		panic("ptable_alloc(): Invalid PFN!!");
173 	HATSTAT_INC(hs_ptable_allocs);
174 	return (pfn);
175 }
176 
177 /*
178  * Free an htable's associated page table page.  See the comments
179  * for ptable_alloc().
180  */
181 static void
182 ptable_free(pfn_t pfn)
183 {
184 	page_t *pp = page_numtopp_nolock(pfn);
185 
186 	/*
187 	 * need to destroy the page used for the pagetable
188 	 */
189 	ASSERT(pfn != PFN_INVALID);
190 	HATSTAT_INC(hs_ptable_frees);
191 	atomic_add_32(&active_ptables, -1);
192 	if (pp == NULL)
193 		panic("ptable_free(): no page for pfn!");
194 	ASSERT(PAGE_SHARED(pp));
195 	ASSERT(pfn == pp->p_pagenum);
196 
197 	/*
198 	 * Get an exclusive lock, might have to wait for a kmem reader.
199 	 */
200 	if (!page_tryupgrade(pp)) {
201 		page_unlock(pp);
202 		/*
203 		 * RFE: we could change this to not loop forever
204 		 * George Cameron had some idea on how to do that.
205 		 * For now looping works - it's just like sfmmu.
206 		 */
207 		while (!page_lock(pp, SE_EXCL, (kmutex_t *)NULL, P_RECLAIM))
208 			continue;
209 	}
210 	page_free(pp, 1);
211 	page_unresv(1);
212 }
213 
214 /*
215  * Put one htable on the reserve list.
216  */
217 static void
218 htable_put_reserve(htable_t *ht)
219 {
220 	ht->ht_hat = NULL;		/* no longer tied to a hat */
221 	ASSERT(ht->ht_pfn == PFN_INVALID);
222 	HATSTAT_INC(hs_htable_rputs);
223 	mutex_enter(&htable_reserve_mutex);
224 	ht->ht_next = htable_reserve_pool;
225 	htable_reserve_pool = ht;
226 	++htable_reserve_cnt;
227 	mutex_exit(&htable_reserve_mutex);
228 }
229 
230 /*
231  * Take one htable from the reserve.
232  */
233 static htable_t *
234 htable_get_reserve(void)
235 {
236 	htable_t *ht = NULL;
237 
238 	mutex_enter(&htable_reserve_mutex);
239 	if (htable_reserve_cnt != 0) {
240 		ht = htable_reserve_pool;
241 		ASSERT(ht != NULL);
242 		ASSERT(ht->ht_pfn == PFN_INVALID);
243 		htable_reserve_pool = ht->ht_next;
244 		--htable_reserve_cnt;
245 		HATSTAT_INC(hs_htable_rgets);
246 	}
247 	mutex_exit(&htable_reserve_mutex);
248 	return (ht);
249 }
250 
251 /*
252  * Allocate initial htables and put them on the reserve list
253  */
254 void
255 htable_initial_reserve(uint_t count)
256 {
257 	htable_t *ht;
258 
259 	count += HTABLE_RESERVE_AMOUNT;
260 	while (count > 0) {
261 		ht = kmem_cache_alloc(htable_cache, KM_NOSLEEP);
262 		ASSERT(ht != NULL);
263 
264 		ASSERT(use_boot_reserve);
265 		ht->ht_pfn = PFN_INVALID;
266 		htable_put_reserve(ht);
267 		--count;
268 	}
269 }
270 
271 /*
272  * Readjust the reserves after a thread finishes using them.
273  */
274 void
275 htable_adjust_reserve()
276 {
277 	htable_t *ht;
278 
279 	ASSERT(curthread != hat_reserves_thread);
280 
281 	/*
282 	 * Free any excess htables in the reserve list
283 	 */
284 	while (htable_reserve_cnt > htable_reserve_amount) {
285 		ht = htable_get_reserve();
286 		if (ht == NULL)
287 			return;
288 		ASSERT(ht->ht_pfn == PFN_INVALID);
289 		kmem_cache_free(htable_cache, ht);
290 	}
291 }
292 
293 
294 /*
295  * This routine steals htables from user processes for htable_alloc() or
296  * for htable_reap().
297  */
298 static htable_t *
299 htable_steal(uint_t cnt)
300 {
301 	hat_t		*hat = kas.a_hat;	/* list starts with khat */
302 	htable_t	*list = NULL;
303 	htable_t	*ht;
304 	htable_t	*higher;
305 	uint_t		h;
306 	uint_t		h_start;
307 	static uint_t	h_seed = 0;
308 	uint_t		e;
309 	uintptr_t	va;
310 	x86pte_t	pte;
311 	uint_t		stolen = 0;
312 	uint_t		pass;
313 	uint_t		threshold;
314 
315 	/*
316 	 * Limit htable_steal_passes to something reasonable
317 	 */
318 	if (htable_steal_passes == 0)
319 		htable_steal_passes = 1;
320 	if (htable_steal_passes > mmu.ptes_per_table)
321 		htable_steal_passes = mmu.ptes_per_table;
322 
323 	/*
324 	 * Loop through all user hats. The 1st pass takes cached htables that
325 	 * aren't in use. The later passes steal by removing mappings, too.
326 	 */
327 	atomic_add_32(&htable_dont_cache, 1);
328 	for (pass = 0; pass <= htable_steal_passes && stolen < cnt; ++pass) {
329 		threshold = pass * mmu.ptes_per_table / htable_steal_passes;
330 		hat = kas.a_hat;
331 		for (;;) {
332 
333 			/*
334 			 * Clear the victim flag and move to next hat
335 			 */
336 			mutex_enter(&hat_list_lock);
337 			if (hat != kas.a_hat) {
338 				hat->hat_flags &= ~HAT_VICTIM;
339 				cv_broadcast(&hat_list_cv);
340 			}
341 			hat = hat->hat_next;
342 
343 			/*
344 			 * Skip any hat that is already being stolen from.
345 			 *
346 			 * We skip SHARED hats, as these are dummy
347 			 * hats that host ISM shared page tables.
348 			 *
349 			 * We also skip if HAT_FREEING because hat_pte_unmap()
350 			 * won't zero out the PTE's. That would lead to hitting
351 			 * stale PTEs either here or under hat_unload() when we
352 			 * steal and unload the same page table in competing
353 			 * threads.
354 			 */
355 			while (hat != NULL &&
356 			    (hat->hat_flags &
357 			    (HAT_VICTIM | HAT_SHARED | HAT_FREEING)) != 0)
358 				hat = hat->hat_next;
359 
360 			if (hat == NULL) {
361 				mutex_exit(&hat_list_lock);
362 				break;
363 			}
364 
365 			/*
366 			 * Are we finished?
367 			 */
368 			if (stolen == cnt) {
369 				/*
370 				 * Try to spread the pain of stealing,
371 				 * move victim HAT to the end of the HAT list.
372 				 */
373 				if (pass >= 1 && cnt == 1 &&
374 				    kas.a_hat->hat_prev != hat) {
375 
376 					/* unlink victim hat */
377 					if (hat->hat_prev)
378 						hat->hat_prev->hat_next =
379 						    hat->hat_next;
380 					else
381 						kas.a_hat->hat_next =
382 						    hat->hat_next;
383 					if (hat->hat_next)
384 						hat->hat_next->hat_prev =
385 						    hat->hat_prev;
386 					else
387 						kas.a_hat->hat_prev =
388 						    hat->hat_prev;
389 
390 
391 					/* relink at end of hat list */
392 					hat->hat_next = NULL;
393 					hat->hat_prev = kas.a_hat->hat_prev;
394 					if (hat->hat_prev)
395 						hat->hat_prev->hat_next = hat;
396 					else
397 						kas.a_hat->hat_next = hat;
398 					kas.a_hat->hat_prev = hat;
399 
400 				}
401 
402 				mutex_exit(&hat_list_lock);
403 				break;
404 			}
405 
406 			/*
407 			 * Mark the HAT as a stealing victim.
408 			 */
409 			hat->hat_flags |= HAT_VICTIM;
410 			mutex_exit(&hat_list_lock);
411 
412 			/*
413 			 * Take any htables from the hat's cached "free" list.
414 			 */
415 			hat_enter(hat);
416 			while ((ht = hat->hat_ht_cached) != NULL &&
417 			    stolen < cnt) {
418 				hat->hat_ht_cached = ht->ht_next;
419 				ht->ht_next = list;
420 				list = ht;
421 				++stolen;
422 			}
423 			hat_exit(hat);
424 
425 			/*
426 			 * Don't steal on first pass.
427 			 */
428 			if (pass == 0 || stolen == cnt)
429 				continue;
430 
431 			/*
432 			 * Search the active htables for one to steal.
433 			 * Start at a different hash bucket every time to
434 			 * help spread the pain of stealing.
435 			 */
436 			h = h_start = h_seed++ % hat->hat_num_hash;
437 			do {
438 				higher = NULL;
439 				HTABLE_ENTER(h);
440 				for (ht = hat->hat_ht_hash[h]; ht;
441 				    ht = ht->ht_next) {
442 
443 					/*
444 					 * Can we rule out reaping?
445 					 */
446 					if (ht->ht_busy != 0 ||
447 					    (ht->ht_flags & HTABLE_SHARED_PFN)||
448 					    ht->ht_level > 0 ||
449 					    ht->ht_valid_cnt > threshold ||
450 					    ht->ht_lock_cnt != 0)
451 						continue;
452 
453 					/*
454 					 * Increment busy so the htable can't
455 					 * disappear. We drop the htable mutex
456 					 * to avoid deadlocks with
457 					 * hat_pageunload() and the hment mutex
458 					 * while we call hat_pte_unmap()
459 					 */
460 					++ht->ht_busy;
461 					HTABLE_EXIT(h);
462 
463 					/*
464 					 * Try stealing.
465 					 * - unload and invalidate all PTEs
466 					 */
467 					for (e = 0, va = ht->ht_vaddr;
468 					    e < HTABLE_NUM_PTES(ht) &&
469 					    ht->ht_valid_cnt > 0 &&
470 					    ht->ht_busy == 1 &&
471 					    ht->ht_lock_cnt == 0;
472 					    ++e, va += MMU_PAGESIZE) {
473 						pte = x86pte_get(ht, e);
474 						if (!PTE_ISVALID(pte))
475 							continue;
476 						hat_pte_unmap(ht, e,
477 						    HAT_UNLOAD, pte, NULL);
478 					}
479 
480 					/*
481 					 * Reacquire htable lock. If we didn't
482 					 * remove all mappings in the table,
483 					 * or another thread added a new mapping
484 					 * behind us, give up on this table.
485 					 */
486 					HTABLE_ENTER(h);
487 					if (ht->ht_busy != 1 ||
488 					    ht->ht_valid_cnt != 0 ||
489 					    ht->ht_lock_cnt != 0) {
490 						--ht->ht_busy;
491 						continue;
492 					}
493 
494 					/*
495 					 * Steal it and unlink the page table.
496 					 */
497 					higher = ht->ht_parent;
498 					unlink_ptp(higher, ht, ht->ht_vaddr);
499 
500 					/*
501 					 * remove from the hash list
502 					 */
503 					if (ht->ht_next)
504 						ht->ht_next->ht_prev =
505 						    ht->ht_prev;
506 
507 					if (ht->ht_prev) {
508 						ht->ht_prev->ht_next =
509 						    ht->ht_next;
510 					} else {
511 						ASSERT(hat->hat_ht_hash[h] ==
512 						    ht);
513 						hat->hat_ht_hash[h] =
514 						    ht->ht_next;
515 					}
516 
517 					/*
518 					 * Break to outer loop to release the
519 					 * higher (ht_parent) pagetable. This
520 					 * spreads out the pain caused by
521 					 * pagefaults.
522 					 */
523 					ht->ht_next = list;
524 					list = ht;
525 					++stolen;
526 					break;
527 				}
528 				HTABLE_EXIT(h);
529 				if (higher != NULL)
530 					htable_release(higher);
531 				if (++h == hat->hat_num_hash)
532 					h = 0;
533 			} while (stolen < cnt && h != h_start);
534 		}
535 	}
536 	atomic_add_32(&htable_dont_cache, -1);
537 	return (list);
538 }
539 
540 
541 /*
542  * This is invoked from kmem when the system is low on memory.  We try
543  * to free hments, htables, and ptables to improve the memory situation.
544  */
545 /*ARGSUSED*/
546 static void
547 htable_reap(void *handle)
548 {
549 	uint_t		reap_cnt;
550 	htable_t	*list;
551 	htable_t	*ht;
552 
553 	HATSTAT_INC(hs_reap_attempts);
554 	if (!can_steal_post_boot)
555 		return;
556 
557 	/*
558 	 * Try to reap 5% of the page tables bounded by a maximum of
559 	 * 5% of physmem and a minimum of 10.
560 	 */
561 	reap_cnt = MIN(MAX(physmem / 20, active_ptables / 20), 10);
562 
563 	/*
564 	 * Let htable_steal() do the work, we just call htable_free()
565 	 */
566 	list = htable_steal(reap_cnt);
567 	while ((ht = list) != NULL) {
568 		list = ht->ht_next;
569 		HATSTAT_INC(hs_reaped);
570 		htable_free(ht);
571 	}
572 
573 	/*
574 	 * Free up excess reserves
575 	 */
576 	htable_adjust_reserve();
577 	hment_adjust_reserve();
578 }
579 
580 /*
581  * Allocate an htable, stealing one or using the reserve if necessary
582  */
583 static htable_t *
584 htable_alloc(
585 	hat_t		*hat,
586 	uintptr_t	vaddr,
587 	level_t		level,
588 	htable_t	*shared)
589 {
590 	htable_t	*ht = NULL;
591 	uint_t		is_vlp;
592 	uint_t		is_bare = 0;
593 	uint_t		need_to_zero = 1;
594 	int		kmflags = (can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP);
595 
596 	if (level < 0 || level > TOP_LEVEL(hat))
597 		panic("htable_alloc(): level %d out of range\n", level);
598 
599 	is_vlp = (hat->hat_flags & HAT_VLP) && level == VLP_LEVEL;
600 	if (is_vlp || shared != NULL)
601 		is_bare = 1;
602 
603 	/*
604 	 * First reuse a cached htable from the hat_ht_cached field, this
605 	 * avoids unnecessary trips through kmem/page allocators.
606 	 */
607 	if (hat->hat_ht_cached != NULL && !is_bare) {
608 		hat_enter(hat);
609 		ht = hat->hat_ht_cached;
610 		if (ht != NULL) {
611 			hat->hat_ht_cached = ht->ht_next;
612 			need_to_zero = 0;
613 			/* XX64 ASSERT() they're all zero somehow */
614 			ASSERT(ht->ht_pfn != PFN_INVALID);
615 		}
616 		hat_exit(hat);
617 	}
618 
619 	if (ht == NULL) {
620 		/*
621 		 * When allocating for hat_memload_arena, we use the reserve.
622 		 * Also use reserves if we are in a panic().
623 		 */
624 		if (use_boot_reserve || curthread == hat_reserves_thread ||
625 		    panicstr != NULL) {
626 			ht = htable_get_reserve();
627 		} else {
628 			/*
629 			 * Donate successful htable allocations to the reserve.
630 			 */
631 			for (;;) {
632 				ASSERT(curthread != hat_reserves_thread);
633 				ht = kmem_cache_alloc(htable_cache, kmflags);
634 				if (ht == NULL)
635 					break;
636 				ht->ht_pfn = PFN_INVALID;
637 				if (curthread == hat_reserves_thread ||
638 				    panicstr != NULL ||
639 				    htable_reserve_cnt >= htable_reserve_amount)
640 					break;
641 				htable_put_reserve(ht);
642 			}
643 		}
644 
645 		/*
646 		 * allocate a page for the hardware page table if needed
647 		 */
648 		if (ht != NULL && !is_bare) {
649 			ht->ht_hat = hat;
650 			ht->ht_pfn = ptable_alloc((uintptr_t)ht);
651 			if (ht->ht_pfn == PFN_INVALID) {
652 				kmem_cache_free(htable_cache, ht);
653 				ht = NULL;
654 			}
655 		}
656 	}
657 
658 	/*
659 	 * If allocations failed, kick off a kmem_reap() and resort to
660 	 * htable steal(). We may spin here if the system is very low on
661 	 * memory. If the kernel itself has consumed all memory and kmem_reap()
662 	 * can't free up anything, then we'll really get stuck here.
663 	 * That should only happen in a system where the administrator has
664 	 * misconfigured VM parameters via /etc/system.
665 	 */
666 	while (ht == NULL && can_steal_post_boot) {
667 		kmem_reap();
668 		ht = htable_steal(1);
669 		HATSTAT_INC(hs_steals);
670 
671 		/*
672 		 * If we stole for a bare htable, release the pagetable page.
673 		 */
674 		if (ht != NULL) {
675 			if (is_bare) {
676 				ptable_free(ht->ht_pfn);
677 				ht->ht_pfn = PFN_INVALID;
678 			}
679 		}
680 	}
681 
682 	/*
683 	 * All attempts to allocate or steal failed. This should only happen
684 	 * if we run out of memory during boot, due perhaps to a huge
685 	 * boot_archive. At this point there's no way to continue.
686 	 */
687 	if (ht == NULL)
688 		panic("htable_alloc(): couldn't steal\n");
689 
690 	/*
691 	 * Shared page tables have all entries locked and entries may not
692 	 * be added or deleted.
693 	 */
694 	ht->ht_flags = 0;
695 	if (shared != NULL) {
696 		ASSERT(level == 0);
697 		ASSERT(shared->ht_valid_cnt > 0);
698 		ht->ht_flags |= HTABLE_SHARED_PFN;
699 		ht->ht_pfn = shared->ht_pfn;
700 		ht->ht_lock_cnt = 0;
701 		ht->ht_valid_cnt = 0;		/* updated in hat_share() */
702 		ht->ht_shares = shared;
703 		need_to_zero = 0;
704 	} else {
705 		ht->ht_shares = NULL;
706 		ht->ht_lock_cnt = 0;
707 		ht->ht_valid_cnt = 0;
708 	}
709 
710 	/*
711 	 * setup flags, etc. for VLP htables
712 	 */
713 	if (is_vlp) {
714 		ht->ht_flags |= HTABLE_VLP;
715 		ASSERT(ht->ht_pfn == PFN_INVALID);
716 		need_to_zero = 0;
717 	}
718 
719 	/*
720 	 * fill in the htable
721 	 */
722 	ht->ht_hat = hat;
723 	ht->ht_parent = NULL;
724 	ht->ht_vaddr = vaddr;
725 	ht->ht_level = level;
726 	ht->ht_busy = 1;
727 	ht->ht_next = NULL;
728 	ht->ht_prev = NULL;
729 
730 	/*
731 	 * Zero out any freshly allocated page table
732 	 */
733 	if (need_to_zero)
734 		x86pte_zero(ht, 0, mmu.ptes_per_table);
735 
736 	return (ht);
737 }
738 
739 /*
740  * Free up an htable, either to a hat's cached list, the reserves or
741  * back to kmem.
742  */
743 static void
744 htable_free(htable_t *ht)
745 {
746 	hat_t *hat = ht->ht_hat;
747 
748 	/*
749 	 * If the process isn't exiting, cache the free htable in the hat
750 	 * structure. We always do this for the boot reserve. We don't
751 	 * do this if the hat is exiting or we are stealing/reaping htables.
752 	 */
753 	if (hat != NULL &&
754 	    !(ht->ht_flags & HTABLE_SHARED_PFN) &&
755 	    (use_boot_reserve ||
756 	    (!(hat->hat_flags & HAT_FREEING) && !htable_dont_cache))) {
757 		ASSERT((ht->ht_flags & HTABLE_VLP) == 0);
758 		ASSERT(ht->ht_pfn != PFN_INVALID);
759 		hat_enter(hat);
760 		ht->ht_next = hat->hat_ht_cached;
761 		hat->hat_ht_cached = ht;
762 		hat_exit(hat);
763 		return;
764 	}
765 
766 	/*
767 	 * If we have a hardware page table, free it.
768 	 * We don't free page tables that are accessed by sharing.
769 	 */
770 	if (ht->ht_flags & HTABLE_SHARED_PFN) {
771 		ASSERT(ht->ht_pfn != PFN_INVALID);
772 	} else if (!(ht->ht_flags & HTABLE_VLP)) {
773 		ptable_free(ht->ht_pfn);
774 	}
775 	ht->ht_pfn = PFN_INVALID;
776 
777 	/*
778 	 * If we are the thread using the reserves, put free htables
779 	 * into reserves.
780 	 */
781 	if (curthread == hat_reserves_thread ||
782 	    htable_reserve_cnt < htable_reserve_amount)
783 		htable_put_reserve(ht);
784 	else
785 		kmem_cache_free(htable_cache, ht);
786 }
787 
788 
789 /*
790  * This is called when a hat is being destroyed or swapped out. We reap all
791  * the remaining htables in the hat cache. If destroying all left over
792  * htables are also destroyed.
793  *
794  * We also don't need to invalidate any of the PTPs nor do any demapping.
795  */
796 void
797 htable_purge_hat(hat_t *hat)
798 {
799 	htable_t *ht;
800 	int h;
801 
802 	/*
803 	 * Purge the htable cache if just reaping.
804 	 */
805 	if (!(hat->hat_flags & HAT_FREEING)) {
806 		atomic_add_32(&htable_dont_cache, 1);
807 		for (;;) {
808 			hat_enter(hat);
809 			ht = hat->hat_ht_cached;
810 			if (ht == NULL) {
811 				hat_exit(hat);
812 				break;
813 			}
814 			hat->hat_ht_cached = ht->ht_next;
815 			hat_exit(hat);
816 			htable_free(ht);
817 		}
818 		atomic_add_32(&htable_dont_cache, -1);
819 		return;
820 	}
821 
822 	/*
823 	 * if freeing, no locking is needed
824 	 */
825 	while ((ht = hat->hat_ht_cached) != NULL) {
826 		hat->hat_ht_cached = ht->ht_next;
827 		htable_free(ht);
828 	}
829 
830 	/*
831 	 * walk thru the htable hash table and free all the htables in it.
832 	 */
833 	for (h = 0; h < hat->hat_num_hash; ++h) {
834 		while ((ht = hat->hat_ht_hash[h]) != NULL) {
835 			if (ht->ht_next)
836 				ht->ht_next->ht_prev = ht->ht_prev;
837 
838 			if (ht->ht_prev) {
839 				ht->ht_prev->ht_next = ht->ht_next;
840 			} else {
841 				ASSERT(hat->hat_ht_hash[h] == ht);
842 				hat->hat_ht_hash[h] = ht->ht_next;
843 			}
844 			htable_free(ht);
845 		}
846 	}
847 }
848 
849 /*
850  * Unlink an entry for a table at vaddr and level out of the existing table
851  * one level higher. We are always holding the HASH_ENTER() when doing this.
852  */
853 static void
854 unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr)
855 {
856 	uint_t		entry = htable_va2entry(vaddr, higher);
857 	x86pte_t	expect = MAKEPTP(old->ht_pfn, old->ht_level);
858 	x86pte_t	found;
859 
860 	ASSERT(higher->ht_busy > 0);
861 	ASSERT(higher->ht_valid_cnt > 0);
862 	ASSERT(old->ht_valid_cnt == 0);
863 	found = x86pte_cas(higher, entry, expect, 0);
864 	if (found != expect)
865 		panic("Bad PTP found=" FMT_PTE ", expected=" FMT_PTE,
866 		    found, expect);
867 	HTABLE_DEC(higher->ht_valid_cnt);
868 }
869 
870 /*
871  * Link an entry for a new table at vaddr and level into the existing table
872  * one level higher. We are always holding the HASH_ENTER() when doing this.
873  */
874 static void
875 link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr)
876 {
877 	uint_t		entry = htable_va2entry(vaddr, higher);
878 	x86pte_t	newptp = MAKEPTP(new->ht_pfn, new->ht_level);
879 	x86pte_t	found;
880 
881 	ASSERT(higher->ht_busy > 0);
882 
883 	ASSERT(new->ht_level != mmu.max_level);
884 
885 	HTABLE_INC(higher->ht_valid_cnt);
886 
887 	found = x86pte_cas(higher, entry, 0, newptp);
888 	if ((found & ~PT_REF) != 0)
889 		panic("HAT: ptp not 0, found=" FMT_PTE, found);
890 }
891 
892 /*
893  * Release of hold on an htable. If this is the last use and the pagetable
894  * is empty we may want to free it, then recursively look at the pagetable
895  * above it. The recursion is handled by the outer while() loop.
896  */
897 void
898 htable_release(htable_t *ht)
899 {
900 	uint_t		hashval;
901 	htable_t	*shared;
902 	htable_t	*higher;
903 	hat_t		*hat;
904 	uintptr_t	va;
905 	level_t		level;
906 
907 	while (ht != NULL) {
908 		shared = NULL;
909 		for (;;) {
910 			hat = ht->ht_hat;
911 			va = ht->ht_vaddr;
912 			level = ht->ht_level;
913 			hashval = HTABLE_HASH(hat, va, level);
914 
915 			/*
916 			 * The common case is that this isn't the last use of
917 			 * an htable so we don't want to free the htable.
918 			 */
919 			HTABLE_ENTER(hashval);
920 			ASSERT(ht->ht_lock_cnt == 0 || ht->ht_valid_cnt > 0);
921 			ASSERT(ht->ht_valid_cnt >= 0);
922 			ASSERT(ht->ht_busy > 0);
923 			if (ht->ht_valid_cnt > 0)
924 				break;
925 			if (ht->ht_busy > 1)
926 				break;
927 
928 			/*
929 			 * we always release empty shared htables
930 			 */
931 			if (!(ht->ht_flags & HTABLE_SHARED_PFN)) {
932 
933 				/*
934 				 * don't release if in address space tear down
935 				 */
936 				if (hat->hat_flags & HAT_FREEING)
937 					break;
938 
939 				/*
940 				 * At and above max_page_level, free if it's for
941 				 * a boot-time kernel mapping below kernelbase.
942 				 */
943 				if (level >= mmu.max_page_level &&
944 				    (hat != kas.a_hat || va >= kernelbase))
945 					break;
946 			}
947 
948 			/*
949 			 * Remember if we destroy an htable that shares its PFN
950 			 * from elsewhere.
951 			 */
952 			if (ht->ht_flags & HTABLE_SHARED_PFN) {
953 				ASSERT(ht->ht_level == 0);
954 				ASSERT(shared == NULL);
955 				shared = ht->ht_shares;
956 				HATSTAT_INC(hs_htable_unshared);
957 			}
958 
959 			/*
960 			 * Handle release of a table and freeing the htable_t.
961 			 * Unlink it from the table higher (ie. ht_parent).
962 			 */
963 			ASSERT(ht->ht_lock_cnt == 0);
964 			higher = ht->ht_parent;
965 			ASSERT(higher != NULL);
966 
967 			/*
968 			 * Unlink the pagetable.
969 			 */
970 			unlink_ptp(higher, ht, va);
971 
972 			/*
973 			 * When any top level VLP page table entry changes, we
974 			 * must issue a reload of cr3 on all processors.
975 			 */
976 			if ((hat->hat_flags & HAT_VLP) &&
977 			    level == VLP_LEVEL - 1)
978 				hat_tlb_inval(hat, DEMAP_ALL_ADDR);
979 
980 			/*
981 			 * remove this htable from its hash list
982 			 */
983 			if (ht->ht_next)
984 				ht->ht_next->ht_prev = ht->ht_prev;
985 
986 			if (ht->ht_prev) {
987 				ht->ht_prev->ht_next = ht->ht_next;
988 			} else {
989 				ASSERT(hat->hat_ht_hash[hashval] == ht);
990 				hat->hat_ht_hash[hashval] = ht->ht_next;
991 			}
992 			HTABLE_EXIT(hashval);
993 			htable_free(ht);
994 			ht = higher;
995 		}
996 
997 		ASSERT(ht->ht_busy >= 1);
998 		--ht->ht_busy;
999 		HTABLE_EXIT(hashval);
1000 
1001 		/*
1002 		 * If we released a shared htable, do a release on the htable
1003 		 * from which it shared
1004 		 */
1005 		ht = shared;
1006 	}
1007 }
1008 
1009 /*
1010  * Find the htable for the pagetable at the given level for the given address.
1011  * If found acquires a hold that eventually needs to be htable_release()d
1012  */
1013 htable_t *
1014 htable_lookup(hat_t *hat, uintptr_t vaddr, level_t level)
1015 {
1016 	uintptr_t	base;
1017 	uint_t		hashval;
1018 	htable_t	*ht = NULL;
1019 
1020 	ASSERT(level >= 0);
1021 	ASSERT(level <= TOP_LEVEL(hat));
1022 
1023 	if (level == TOP_LEVEL(hat))
1024 		base = 0;
1025 	else
1026 		base = vaddr & LEVEL_MASK(level + 1);
1027 
1028 	hashval = HTABLE_HASH(hat, base, level);
1029 	HTABLE_ENTER(hashval);
1030 	for (ht = hat->hat_ht_hash[hashval]; ht; ht = ht->ht_next) {
1031 		if (ht->ht_hat == hat &&
1032 		    ht->ht_vaddr == base &&
1033 		    ht->ht_level == level)
1034 			break;
1035 	}
1036 	if (ht)
1037 		++ht->ht_busy;
1038 
1039 	HTABLE_EXIT(hashval);
1040 	return (ht);
1041 }
1042 
1043 /*
1044  * Acquires a hold on a known htable (from a locked hment entry).
1045  */
1046 void
1047 htable_acquire(htable_t *ht)
1048 {
1049 	hat_t		*hat = ht->ht_hat;
1050 	level_t		level = ht->ht_level;
1051 	uintptr_t	base = ht->ht_vaddr;
1052 	uint_t		hashval = HTABLE_HASH(hat, base, level);
1053 
1054 	HTABLE_ENTER(hashval);
1055 #ifdef DEBUG
1056 	/*
1057 	 * make sure the htable is there
1058 	 */
1059 	{
1060 		htable_t	*h;
1061 
1062 		for (h = hat->hat_ht_hash[hashval];
1063 		    h && h != ht;
1064 		    h = h->ht_next)
1065 			;
1066 		ASSERT(h == ht);
1067 	}
1068 #endif /* DEBUG */
1069 	++ht->ht_busy;
1070 	HTABLE_EXIT(hashval);
1071 }
1072 
1073 /*
1074  * Find the htable for the pagetable at the given level for the given address.
1075  * If found acquires a hold that eventually needs to be htable_release()d
1076  * If not found the table is created.
1077  *
1078  * Since we can't hold a hash table mutex during allocation, we have to
1079  * drop it and redo the search on a create. Then we may have to free the newly
1080  * allocated htable if another thread raced in and created it ahead of us.
1081  */
1082 htable_t *
1083 htable_create(
1084 	hat_t		*hat,
1085 	uintptr_t	vaddr,
1086 	level_t		level,
1087 	htable_t	*shared)
1088 {
1089 	uint_t		h;
1090 	level_t		l;
1091 	uintptr_t	base;
1092 	htable_t	*ht;
1093 	htable_t	*higher = NULL;
1094 	htable_t	*new = NULL;
1095 
1096 	if (level < 0 || level > TOP_LEVEL(hat))
1097 		panic("htable_create(): level %d out of range\n", level);
1098 
1099 	/*
1100 	 * Create the page tables in top down order.
1101 	 */
1102 	for (l = TOP_LEVEL(hat); l >= level; --l) {
1103 		new = NULL;
1104 		if (l == TOP_LEVEL(hat))
1105 			base = 0;
1106 		else
1107 			base = vaddr & LEVEL_MASK(l + 1);
1108 
1109 		h = HTABLE_HASH(hat, base, l);
1110 try_again:
1111 		/*
1112 		 * look up the htable at this level
1113 		 */
1114 		HTABLE_ENTER(h);
1115 		if (l == TOP_LEVEL(hat)) {
1116 			ht = hat->hat_htable;
1117 		} else {
1118 			for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
1119 				ASSERT(ht->ht_hat == hat);
1120 				if (ht->ht_vaddr == base &&
1121 				    ht->ht_level == l)
1122 					break;
1123 			}
1124 		}
1125 
1126 		/*
1127 		 * if we found the htable, increment its busy cnt
1128 		 * and if we had allocated a new htable, free it.
1129 		 */
1130 		if (ht != NULL) {
1131 			/*
1132 			 * If we find a pre-existing shared table, it must
1133 			 * share from the same place.
1134 			 */
1135 			if (l == level && shared && ht->ht_shares &&
1136 			    ht->ht_shares != shared) {
1137 				panic("htable shared from wrong place "
1138 				    "found htable=%p shared=%p", ht, shared);
1139 			}
1140 			++ht->ht_busy;
1141 			HTABLE_EXIT(h);
1142 			if (new)
1143 				htable_free(new);
1144 			if (higher != NULL)
1145 				htable_release(higher);
1146 			higher = ht;
1147 
1148 		/*
1149 		 * if we didn't find it on the first search
1150 		 * allocate a new one and search again
1151 		 */
1152 		} else if (new == NULL) {
1153 			HTABLE_EXIT(h);
1154 			new = htable_alloc(hat, base, l,
1155 			    l == level ? shared : NULL);
1156 			goto try_again;
1157 
1158 		/*
1159 		 * 2nd search and still not there, use "new" table
1160 		 * Link new table into higher, when not at top level.
1161 		 */
1162 		} else {
1163 			ht = new;
1164 			if (higher != NULL) {
1165 				link_ptp(higher, ht, base);
1166 				ht->ht_parent = higher;
1167 
1168 				/*
1169 				 * When any top level VLP page table changes,
1170 				 * we must reload cr3 on all processors.
1171 				 */
1172 #ifdef __i386
1173 				if (mmu.pae_hat &&
1174 #else /* !__i386 */
1175 				if ((hat->hat_flags & HAT_VLP) &&
1176 #endif /* __i386 */
1177 				    l == VLP_LEVEL - 1)
1178 					hat_tlb_inval(hat, DEMAP_ALL_ADDR);
1179 			}
1180 			ht->ht_next = hat->hat_ht_hash[h];
1181 			ASSERT(ht->ht_prev == NULL);
1182 			if (hat->hat_ht_hash[h])
1183 				hat->hat_ht_hash[h]->ht_prev = ht;
1184 			hat->hat_ht_hash[h] = ht;
1185 			HTABLE_EXIT(h);
1186 
1187 			/*
1188 			 * Note we don't do htable_release(higher).
1189 			 * That happens recursively when "new" is removed by
1190 			 * htable_release() or htable_steal().
1191 			 */
1192 			higher = ht;
1193 
1194 			/*
1195 			 * If we just created a new shared page table we
1196 			 * increment the shared htable's busy count, so that
1197 			 * it can't be the victim of a steal even if it's empty.
1198 			 */
1199 			if (l == level && shared) {
1200 				(void) htable_lookup(shared->ht_hat,
1201 				    shared->ht_vaddr, shared->ht_level);
1202 				HATSTAT_INC(hs_htable_shared);
1203 			}
1204 		}
1205 	}
1206 
1207 	return (ht);
1208 }
1209 
1210 /*
1211  * Inherit initial pagetables from the boot program.
1212  */
1213 void
1214 htable_attach(
1215 	hat_t *hat,
1216 	uintptr_t base,
1217 	level_t level,
1218 	htable_t *parent,
1219 	pfn_t pfn)
1220 {
1221 	htable_t	*ht;
1222 	uint_t		h;
1223 	uint_t		i;
1224 	x86pte_t	pte;
1225 	x86pte_t	*ptep;
1226 	page_t		*pp;
1227 	extern page_t	*boot_claim_page(pfn_t);
1228 
1229 	ht = htable_get_reserve();
1230 	if (level == mmu.max_level)
1231 		kas.a_hat->hat_htable = ht;
1232 	ht->ht_hat = hat;
1233 	ht->ht_parent = parent;
1234 	ht->ht_vaddr = base;
1235 	ht->ht_level = level;
1236 	ht->ht_busy = 1;
1237 	ht->ht_next = NULL;
1238 	ht->ht_prev = NULL;
1239 	ht->ht_flags = 0;
1240 	ht->ht_pfn = pfn;
1241 	ht->ht_lock_cnt = 0;
1242 	ht->ht_valid_cnt = 0;
1243 	if (parent != NULL)
1244 		++parent->ht_busy;
1245 
1246 	h = HTABLE_HASH(hat, base, level);
1247 	HTABLE_ENTER(h);
1248 	ht->ht_next = hat->hat_ht_hash[h];
1249 	ASSERT(ht->ht_prev == NULL);
1250 	if (hat->hat_ht_hash[h])
1251 		hat->hat_ht_hash[h]->ht_prev = ht;
1252 	hat->hat_ht_hash[h] = ht;
1253 	HTABLE_EXIT(h);
1254 
1255 	/*
1256 	 * make sure the page table physical page is not FREE
1257 	 */
1258 	if (page_resv(1, KM_NOSLEEP) == 0)
1259 		panic("page_resv() failed in ptable alloc");
1260 
1261 	pp = boot_claim_page(pfn);
1262 	ASSERT(pp != NULL);
1263 	page_downgrade(pp);
1264 	/*
1265 	 * Record in the page_t that is a pagetable for segkpm setup.
1266 	 */
1267 	if (kpm_vbase)
1268 		pp->p_index = 1;
1269 
1270 	/*
1271 	 * Count valid mappings and recursively attach lower level pagetables.
1272 	 */
1273 	ptep = kbm_remap_window(pfn_to_pa(pfn), 0);
1274 	for (i = 0; i < HTABLE_NUM_PTES(ht); ++i) {
1275 		if (mmu.pae_hat)
1276 			pte = ptep[i];
1277 		else
1278 			pte = ((x86pte32_t *)ptep)[i];
1279 		if (!IN_HYPERVISOR_VA(base) && PTE_ISVALID(pte)) {
1280 			++ht->ht_valid_cnt;
1281 			if (!PTE_ISPAGE(pte, level)) {
1282 				htable_attach(hat, base, level - 1,
1283 				    ht, PTE2PFN(pte, level));
1284 				ptep = kbm_remap_window(pfn_to_pa(pfn), 0);
1285 			}
1286 		}
1287 		base += LEVEL_SIZE(level);
1288 		if (base == mmu.hole_start)
1289 			base = (mmu.hole_end + MMU_PAGEOFFSET) & MMU_PAGEMASK;
1290 	}
1291 
1292 	/*
1293 	 * As long as all the mappings we had were below kernel base
1294 	 * we can release the htable.
1295 	 */
1296 	if (base < kernelbase)
1297 		htable_release(ht);
1298 }
1299 
1300 /*
1301  * Walk through a given htable looking for the first valid entry.  This
1302  * routine takes both a starting and ending address.  The starting address
1303  * is required to be within the htable provided by the caller, but there is
1304  * no such restriction on the ending address.
1305  *
1306  * If the routine finds a valid entry in the htable (at or beyond the
1307  * starting address), the PTE (and its address) will be returned.
1308  * This PTE may correspond to either a page or a pagetable - it is the
1309  * caller's responsibility to determine which.  If no valid entry is
1310  * found, 0 (and invalid PTE) and the next unexamined address will be
1311  * returned.
1312  *
1313  * The loop has been carefully coded for optimization.
1314  */
1315 static x86pte_t
1316 htable_scan(htable_t *ht, uintptr_t *vap, uintptr_t eaddr)
1317 {
1318 	uint_t e;
1319 	x86pte_t found_pte = (x86pte_t)0;
1320 	caddr_t pte_ptr;
1321 	caddr_t end_pte_ptr;
1322 	int l = ht->ht_level;
1323 	uintptr_t va = *vap & LEVEL_MASK(l);
1324 	size_t pgsize = LEVEL_SIZE(l);
1325 
1326 	ASSERT(va >= ht->ht_vaddr);
1327 	ASSERT(va <= HTABLE_LAST_PAGE(ht));
1328 
1329 	/*
1330 	 * Compute the starting index and ending virtual address
1331 	 */
1332 	e = htable_va2entry(va, ht);
1333 
1334 	/*
1335 	 * The following page table scan code knows that the valid
1336 	 * bit of a PTE is in the lowest byte AND that x86 is little endian!!
1337 	 */
1338 	pte_ptr = (caddr_t)x86pte_access_pagetable(ht, 0);
1339 	end_pte_ptr = (caddr_t)PT_INDEX_PTR(pte_ptr, HTABLE_NUM_PTES(ht));
1340 	pte_ptr = (caddr_t)PT_INDEX_PTR((x86pte_t *)pte_ptr, e);
1341 	while (!PTE_ISVALID(*pte_ptr)) {
1342 		va += pgsize;
1343 		if (va >= eaddr)
1344 			break;
1345 		pte_ptr += mmu.pte_size;
1346 		ASSERT(pte_ptr <= end_pte_ptr);
1347 		if (pte_ptr == end_pte_ptr)
1348 			break;
1349 	}
1350 
1351 	/*
1352 	 * if we found a valid PTE, load the entire PTE
1353 	 */
1354 	if (va < eaddr && pte_ptr != end_pte_ptr)
1355 		found_pte = GET_PTE((x86pte_t *)pte_ptr);
1356 	x86pte_release_pagetable(ht);
1357 
1358 #if defined(__amd64)
1359 	/*
1360 	 * deal with VA hole on amd64
1361 	 */
1362 	if (l == mmu.max_level && va >= mmu.hole_start && va <= mmu.hole_end)
1363 		va = mmu.hole_end + va - mmu.hole_start;
1364 #endif /* __amd64 */
1365 
1366 	*vap = va;
1367 	return (found_pte);
1368 }
1369 
1370 /*
1371  * Find the address and htable for the first populated translation at or
1372  * above the given virtual address.  The caller may also specify an upper
1373  * limit to the address range to search.  Uses level information to quickly
1374  * skip unpopulated sections of virtual address spaces.
1375  *
1376  * If not found returns NULL. When found, returns the htable and virt addr
1377  * and has a hold on the htable.
1378  */
1379 x86pte_t
1380 htable_walk(
1381 	struct hat *hat,
1382 	htable_t **htp,
1383 	uintptr_t *vaddr,
1384 	uintptr_t eaddr)
1385 {
1386 	uintptr_t va = *vaddr;
1387 	htable_t *ht;
1388 	htable_t *prev = *htp;
1389 	level_t l;
1390 	level_t max_mapped_level;
1391 	x86pte_t pte;
1392 
1393 	ASSERT(eaddr > va);
1394 
1395 	/*
1396 	 * If this is a user address, then we know we need not look beyond
1397 	 * kernelbase.
1398 	 */
1399 	ASSERT(hat == kas.a_hat || eaddr <= kernelbase ||
1400 	    eaddr == HTABLE_WALK_TO_END);
1401 	if (hat != kas.a_hat && eaddr == HTABLE_WALK_TO_END)
1402 		eaddr = kernelbase;
1403 
1404 	/*
1405 	 * If we're coming in with a previous page table, search it first
1406 	 * without doing an htable_lookup(), this should be frequent.
1407 	 */
1408 	if (prev) {
1409 		ASSERT(prev->ht_busy > 0);
1410 		ASSERT(prev->ht_vaddr <= va);
1411 		l = prev->ht_level;
1412 		if (va <= HTABLE_LAST_PAGE(prev)) {
1413 			pte = htable_scan(prev, &va, eaddr);
1414 
1415 			if (PTE_ISPAGE(pte, l)) {
1416 				*vaddr = va;
1417 				*htp = prev;
1418 				return (pte);
1419 			}
1420 		}
1421 
1422 		/*
1423 		 * We found nothing in the htable provided by the caller,
1424 		 * so fall through and do the full search
1425 		 */
1426 		htable_release(prev);
1427 	}
1428 
1429 	/*
1430 	 * Find the level of the largest pagesize used by this HAT.
1431 	 */
1432 	max_mapped_level = 0;
1433 	for (l = 1; l <= mmu.max_page_level; ++l)
1434 		if (hat->hat_pages_mapped[l] != 0)
1435 			max_mapped_level = l;
1436 
1437 	while (va < eaddr && va >= *vaddr) {
1438 		ASSERT(!IN_VA_HOLE(va));
1439 
1440 		/*
1441 		 *  Find lowest table with any entry for given address.
1442 		 */
1443 		for (l = 0; l <= TOP_LEVEL(hat); ++l) {
1444 			ht = htable_lookup(hat, va, l);
1445 			if (ht != NULL) {
1446 				pte = htable_scan(ht, &va, eaddr);
1447 				if (PTE_ISPAGE(pte, l)) {
1448 					*vaddr = va;
1449 					*htp = ht;
1450 					return (pte);
1451 				}
1452 				htable_release(ht);
1453 				break;
1454 			}
1455 
1456 			/*
1457 			 * The ht is never NULL at the top level since
1458 			 * the top level htable is created in hat_alloc().
1459 			 */
1460 			ASSERT(l < TOP_LEVEL(hat));
1461 
1462 			/*
1463 			 * No htable covers the address. If there is no
1464 			 * larger page size that could cover it, we
1465 			 * skip to the start of the next page table.
1466 			 */
1467 			if (l >= max_mapped_level) {
1468 				va = NEXT_ENTRY_VA(va, l + 1);
1469 				break;
1470 			}
1471 		}
1472 	}
1473 
1474 	*vaddr = 0;
1475 	*htp = NULL;
1476 	return (0);
1477 }
1478 
1479 /*
1480  * Find the htable and page table entry index of the given virtual address
1481  * with pagesize at or below given level.
1482  * If not found returns NULL. When found, returns the htable, sets
1483  * entry, and has a hold on the htable.
1484  */
1485 htable_t *
1486 htable_getpte(
1487 	struct hat *hat,
1488 	uintptr_t vaddr,
1489 	uint_t *entry,
1490 	x86pte_t *pte,
1491 	level_t level)
1492 {
1493 	htable_t	*ht;
1494 	level_t		l;
1495 	uint_t		e;
1496 
1497 	ASSERT(level <= mmu.max_page_level);
1498 
1499 	for (l = 0; l <= level; ++l) {
1500 		ht = htable_lookup(hat, vaddr, l);
1501 		if (ht == NULL)
1502 			continue;
1503 		e = htable_va2entry(vaddr, ht);
1504 		if (entry != NULL)
1505 			*entry = e;
1506 		if (pte != NULL)
1507 			*pte = x86pte_get(ht, e);
1508 		return (ht);
1509 	}
1510 	return (NULL);
1511 }
1512 
1513 /*
1514  * Find the htable and page table entry index of the given virtual address.
1515  * There must be a valid page mapped at the given address.
1516  * If not found returns NULL. When found, returns the htable, sets
1517  * entry, and has a hold on the htable.
1518  */
1519 htable_t *
1520 htable_getpage(struct hat *hat, uintptr_t vaddr, uint_t *entry)
1521 {
1522 	htable_t	*ht;
1523 	uint_t		e;
1524 	x86pte_t	pte;
1525 
1526 	ht = htable_getpte(hat, vaddr, &e, &pte, mmu.max_page_level);
1527 	if (ht == NULL)
1528 		return (NULL);
1529 
1530 	if (entry)
1531 		*entry = e;
1532 
1533 	if (PTE_ISPAGE(pte, ht->ht_level))
1534 		return (ht);
1535 	htable_release(ht);
1536 	return (NULL);
1537 }
1538 
1539 
1540 void
1541 htable_init()
1542 {
1543 	/*
1544 	 * To save on kernel VA usage, we avoid debug information in 32 bit
1545 	 * kernels.
1546 	 */
1547 #if defined(__amd64)
1548 	int	kmem_flags = KMC_NOHASH;
1549 #elif defined(__i386)
1550 	int	kmem_flags = KMC_NOHASH | KMC_NODEBUG;
1551 #endif
1552 
1553 	/*
1554 	 * initialize kmem caches
1555 	 */
1556 	htable_cache = kmem_cache_create("htable_t",
1557 	    sizeof (htable_t), 0, NULL, NULL,
1558 	    htable_reap, NULL, hat_memload_arena, kmem_flags);
1559 }
1560 
1561 /*
1562  * get the pte index for the virtual address in the given htable's pagetable
1563  */
1564 uint_t
1565 htable_va2entry(uintptr_t va, htable_t *ht)
1566 {
1567 	level_t	l = ht->ht_level;
1568 
1569 	ASSERT(va >= ht->ht_vaddr);
1570 	ASSERT(va <= HTABLE_LAST_PAGE(ht));
1571 	return ((va >> LEVEL_SHIFT(l)) & (HTABLE_NUM_PTES(ht) - 1));
1572 }
1573 
1574 /*
1575  * Given an htable and the index of a pte in it, return the virtual address
1576  * of the page.
1577  */
1578 uintptr_t
1579 htable_e2va(htable_t *ht, uint_t entry)
1580 {
1581 	level_t	l = ht->ht_level;
1582 	uintptr_t va;
1583 
1584 	ASSERT(entry < HTABLE_NUM_PTES(ht));
1585 	va = ht->ht_vaddr + ((uintptr_t)entry << LEVEL_SHIFT(l));
1586 
1587 	/*
1588 	 * Need to skip over any VA hole in top level table
1589 	 */
1590 #if defined(__amd64)
1591 	if (ht->ht_level == mmu.max_level && va >= mmu.hole_start)
1592 		va += ((mmu.hole_end - mmu.hole_start) + 1);
1593 #endif
1594 
1595 	return (va);
1596 }
1597 
1598 /*
1599  * The code uses compare and swap instructions to read/write PTE's to
1600  * avoid atomicity problems, since PTEs can be 8 bytes on 32 bit systems.
1601  * will naturally be atomic.
1602  *
1603  * The combination of using kpreempt_disable()/_enable() and the hci_mutex
1604  * are used to ensure that an interrupt won't overwrite a temporary mapping
1605  * while it's in use. If an interrupt thread tries to access a PTE, it will
1606  * yield briefly back to the pinned thread which holds the cpu's hci_mutex.
1607  */
1608 void
1609 x86pte_cpu_init(cpu_t *cpu)
1610 {
1611 	struct hat_cpu_info *hci;
1612 
1613 	hci = kmem_zalloc(sizeof (*hci), KM_SLEEP);
1614 	mutex_init(&hci->hci_mutex, NULL, MUTEX_DEFAULT, NULL);
1615 	cpu->cpu_hat_info = hci;
1616 }
1617 
1618 void
1619 x86pte_cpu_fini(cpu_t *cpu)
1620 {
1621 	struct hat_cpu_info *hci = cpu->cpu_hat_info;
1622 
1623 	kmem_free(hci, sizeof (*hci));
1624 	cpu->cpu_hat_info = NULL;
1625 }
1626 
1627 #ifdef __i386
1628 /*
1629  * On 32 bit kernels, loading a 64 bit PTE is a little tricky
1630  */
1631 x86pte_t
1632 get_pte64(x86pte_t *ptr)
1633 {
1634 	volatile uint32_t *p = (uint32_t *)ptr;
1635 	x86pte_t t;
1636 
1637 	ASSERT(mmu.pae_hat != 0);
1638 	for (;;) {
1639 		t = p[0];
1640 		t |= (uint64_t)p[1] << 32;
1641 		if ((t & 0xffffffff) == p[0])
1642 			return (t);
1643 	}
1644 }
1645 #endif /* __i386 */
1646 
1647 /*
1648  * Disable preemption and establish a mapping to the pagetable with the
1649  * given pfn. This is optimized for there case where it's the same
1650  * pfn as we last used referenced from this CPU.
1651  */
1652 static x86pte_t *
1653 x86pte_access_pagetable(htable_t *ht, uint_t index)
1654 {
1655 	/*
1656 	 * VLP pagetables are contained in the hat_t
1657 	 */
1658 	if (ht->ht_flags & HTABLE_VLP)
1659 		return (PT_INDEX_PTR(ht->ht_hat->hat_vlp_ptes, index));
1660 	return (x86pte_mapin(ht->ht_pfn, index, ht));
1661 }
1662 
1663 /*
1664  * map the given pfn into the page table window.
1665  */
1666 /*ARGSUSED*/
1667 x86pte_t *
1668 x86pte_mapin(pfn_t pfn, uint_t index, htable_t *ht)
1669 {
1670 	x86pte_t *pteptr;
1671 	x86pte_t pte;
1672 	x86pte_t newpte;
1673 	int x;
1674 
1675 	ASSERT(pfn != PFN_INVALID);
1676 
1677 	if (!khat_running) {
1678 		caddr_t va = kbm_remap_window(pfn_to_pa(pfn), 1);
1679 		return (PT_INDEX_PTR(va, index));
1680 	}
1681 
1682 	/*
1683 	 * If kpm is available, use it.
1684 	 */
1685 	if (kpm_vbase)
1686 		return (PT_INDEX_PTR(hat_kpm_pfn2va(pfn), index));
1687 
1688 	/*
1689 	 * Disable preemption and grab the CPU's hci_mutex
1690 	 */
1691 	kpreempt_disable();
1692 	ASSERT(CPU->cpu_hat_info != NULL);
1693 	mutex_enter(&CPU->cpu_hat_info->hci_mutex);
1694 	x = PWIN_TABLE(CPU->cpu_id);
1695 	pteptr = (x86pte_t *)PWIN_PTE_VA(x);
1696 	if (mmu.pae_hat)
1697 		pte = *pteptr;
1698 	else
1699 		pte = *(x86pte32_t *)pteptr;
1700 
1701 	newpte = MAKEPTE(pfn, 0) | mmu.pt_global | mmu.pt_nx;
1702 	newpte |= PT_WRITABLE;
1703 
1704 	if (!PTE_EQUIV(newpte, pte)) {
1705 		if (mmu.pae_hat)
1706 			*pteptr = newpte;
1707 		else
1708 			*(x86pte32_t *)pteptr = newpte;
1709 		mmu_tlbflush_entry((caddr_t)(PWIN_VA(x)));
1710 	}
1711 	return (PT_INDEX_PTR(PWIN_VA(x), index));
1712 }
1713 
1714 /*
1715  * Release access to a page table.
1716  */
1717 static void
1718 x86pte_release_pagetable(htable_t *ht)
1719 {
1720 	/*
1721 	 * nothing to do for VLP htables
1722 	 */
1723 	if (ht->ht_flags & HTABLE_VLP)
1724 		return;
1725 
1726 	x86pte_mapout();
1727 }
1728 
1729 void
1730 x86pte_mapout(void)
1731 {
1732 	if (mmu.pwin_base == NULL || !khat_running)
1733 		return;
1734 
1735 	/*
1736 	 * Drop the CPU's hci_mutex and restore preemption.
1737 	 */
1738 	mutex_exit(&CPU->cpu_hat_info->hci_mutex);
1739 	kpreempt_enable();
1740 }
1741 
1742 /*
1743  * Atomic retrieval of a pagetable entry
1744  */
1745 x86pte_t
1746 x86pte_get(htable_t *ht, uint_t entry)
1747 {
1748 	x86pte_t	pte;
1749 	x86pte_t	*ptep;
1750 
1751 	/*
1752 	 * Be careful that loading PAE entries in 32 bit kernel is atomic.
1753 	 */
1754 	ASSERT(entry < mmu.ptes_per_table);
1755 	ptep = x86pte_access_pagetable(ht, entry);
1756 	pte = GET_PTE(ptep);
1757 	x86pte_release_pagetable(ht);
1758 	return (pte);
1759 }
1760 
1761 /*
1762  * Atomic unconditional set of a page table entry, it returns the previous
1763  * value. For pre-existing mappings if the PFN changes, then we don't care
1764  * about the old pte's REF / MOD bits. If the PFN remains the same, we leave
1765  * the MOD/REF bits unchanged.
1766  *
1767  * If asked to overwrite a link to a lower page table with a large page
1768  * mapping, this routine returns the special value of LPAGE_ERROR. This
1769  * allows the upper HAT layers to retry with a smaller mapping size.
1770  */
1771 x86pte_t
1772 x86pte_set(htable_t *ht, uint_t entry, x86pte_t new, void *ptr)
1773 {
1774 	x86pte_t	old;
1775 	x86pte_t	prev;
1776 	x86pte_t	*ptep;
1777 	level_t		l = ht->ht_level;
1778 	x86pte_t	pfn_mask = (l != 0) ? PT_PADDR_LGPG : PT_PADDR;
1779 	x86pte_t	n;
1780 	uintptr_t	addr = htable_e2va(ht, entry);
1781 	hat_t		*hat = ht->ht_hat;
1782 
1783 	ASSERT(new != 0); /* don't use to invalidate a PTE, see x86pte_update */
1784 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
1785 	if (ptr == NULL)
1786 		ptep = x86pte_access_pagetable(ht, entry);
1787 	else
1788 		ptep = ptr;
1789 
1790 	/*
1791 	 * Install the new PTE. If remapping the same PFN, then
1792 	 * copy existing REF/MOD bits to new mapping.
1793 	 */
1794 	do {
1795 		prev = GET_PTE(ptep);
1796 		n = new;
1797 		if (PTE_ISVALID(n) && (prev & pfn_mask) == (new & pfn_mask))
1798 			n |= prev & (PT_REF | PT_MOD);
1799 
1800 		/*
1801 		 * Another thread may have installed this mapping already,
1802 		 * flush the local TLB and be done.
1803 		 */
1804 		if (prev == n) {
1805 			old = new;
1806 			mmu_tlbflush_entry((caddr_t)addr);
1807 			goto done;
1808 		}
1809 
1810 		/*
1811 		 * Detect if we have a collision of installing a large
1812 		 * page mapping where there already is a lower page table.
1813 		 */
1814 		if (l > 0 && (prev & PT_VALID) && !(prev & PT_PAGESIZE))
1815 			return (LPAGE_ERROR);
1816 
1817 		old = CAS_PTE(ptep, prev, n);
1818 	} while (old != prev);
1819 
1820 	/*
1821 	 * Do a TLB demap if needed, ie. the old pte was valid.
1822 	 *
1823 	 * Note that a stale TLB writeback to the PTE here either can't happen
1824 	 * or doesn't matter. The PFN can only change for NOSYNC|NOCONSIST
1825 	 * mappings, but they were created with REF and MOD already set, so
1826 	 * no stale writeback will happen.
1827 	 *
1828 	 * Segmap is the only place where remaps happen on the same pfn and for
1829 	 * that we want to preserve the stale REF/MOD bits.
1830 	 */
1831 	if (old & PT_REF)
1832 		hat_tlb_inval(hat, addr);
1833 
1834 done:
1835 	if (ptr == NULL)
1836 		x86pte_release_pagetable(ht);
1837 	return (old);
1838 }
1839 
1840 /*
1841  * Atomic compare and swap of a page table entry. No TLB invalidates are done.
1842  * This is used for links between pagetables of different levels.
1843  * Note we always create these links with dirty/access set, so they should
1844  * never change.
1845  */
1846 x86pte_t
1847 x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, x86pte_t new)
1848 {
1849 	x86pte_t	pte;
1850 	x86pte_t	*ptep;
1851 
1852 	ptep = x86pte_access_pagetable(ht, entry);
1853 	pte = CAS_PTE(ptep, old, new);
1854 	x86pte_release_pagetable(ht);
1855 	return (pte);
1856 }
1857 
1858 /*
1859  * Make sure the zero we wrote to a page table entry sticks in memory
1860  * after invalidating all TLB entries on all CPUs.
1861  */
1862 static x86pte_t
1863 handle_tlbs(x86pte_t oldpte, x86pte_t *ptep, htable_t *ht, uint_t entry)
1864 {
1865 	hat_t		*hat = ht->ht_hat;
1866 	uintptr_t	addr = htable_e2va(ht, entry);
1867 	x86pte_t	found;
1868 
1869 	/*
1870 	 * Was the PTE ever used? If not there can't be any TLB entries.
1871 	 */
1872 	if ((oldpte & PT_REF) == 0)
1873 		return (oldpte);
1874 
1875 	/*
1876 	 * Do a full global TLB invalidation.
1877 	 * We may have to loop until the new PTE in memory stays zero.
1878 	 * Why? Because Intel/AMD don't document how the REF/MOD bits are
1879 	 * copied back from the TLB to the PTE, sigh. We're protecting
1880 	 * here against a blind write back of the MOD (and other) bits.
1881 	 */
1882 	for (;;) {
1883 		hat_tlb_inval(hat, addr);
1884 
1885 		/*
1886 		 * Check for a stale writeback of a oldpte TLB entry.
1887 		 * Done when the PTE stays zero.
1888 		 */
1889 		found = GET_PTE(ptep);
1890 		if (found == 0)
1891 			return (oldpte);
1892 
1893 		/*
1894 		 * The only acceptable PTE change must be from a TLB
1895 		 * flush setting the MOD bit in, hence oldpte must
1896 		 * have been writable.
1897 		 */
1898 		if (!(oldpte & PT_WRITABLE) || !(found & PT_MOD))
1899 			break;
1900 
1901 		/*
1902 		 * Did we see a complete writeback of oldpte?
1903 		 * or
1904 		 * Did we see the MOD bit set (plus possibly other
1905 		 * bits rewritten) in a still invalid mapping?
1906 		 */
1907 		if (found == (oldpte | PT_MOD) ||
1908 		    (!(found & PT_VALID) &&
1909 		    (oldpte | found) == (oldpte | PT_MOD)))
1910 			oldpte |= PT_MOD;
1911 		else
1912 			break;
1913 
1914 		(void) CAS_PTE(ptep, found, 0);
1915 	}
1916 
1917 	/*
1918 	 * If we hit this, a processor attempted to set the DIRTY bit
1919 	 * of a page table entry happened in a way we didn't anticipate
1920 	 */
1921 	panic("handle_tlbs(): unanticipated TLB shootdown scenario"
1922 	    " oldpte=" FMT_PTE " found=" FMT_PTE, oldpte, found);
1923 	/*LINTED*/
1924 }
1925 
1926 /*
1927  * Invalidate a page table entry as long as it currently maps something that
1928  * matches the value determined by expect.
1929  *
1930  * Also invalidates any TLB entries and returns the previous value of the PTE.
1931  */
1932 x86pte_t
1933 x86pte_inval(
1934 	htable_t *ht,
1935 	uint_t entry,
1936 	x86pte_t expect,
1937 	x86pte_t *pte_ptr)
1938 {
1939 	x86pte_t	*ptep;
1940 	x86pte_t	oldpte;
1941 	x86pte_t	found;
1942 
1943 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
1944 	ASSERT(ht->ht_level != VLP_LEVEL);
1945 	if (pte_ptr != NULL)
1946 		ptep = pte_ptr;
1947 	else
1948 		ptep = x86pte_access_pagetable(ht, entry);
1949 
1950 	/*
1951 	 * This loop deals with REF/MOD bits changing between the
1952 	 * GET_PTE() and the CAS_PTE().
1953 	 */
1954 	do {
1955 		oldpte = GET_PTE(ptep);
1956 		if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR))
1957 			goto give_up;
1958 		found = CAS_PTE(ptep, oldpte, 0);
1959 	} while (found != oldpte);
1960 	oldpte = handle_tlbs(oldpte, ptep, ht, entry);
1961 
1962 give_up:
1963 	if (pte_ptr == NULL)
1964 		x86pte_release_pagetable(ht);
1965 	return (oldpte);
1966 }
1967 
1968 /*
1969  * Change a page table entry af it currently matches the value in expect.
1970  */
1971 x86pte_t
1972 x86pte_update(
1973 	htable_t *ht,
1974 	uint_t entry,
1975 	x86pte_t expect,
1976 	x86pte_t new)
1977 {
1978 	x86pte_t	*ptep;
1979 	x86pte_t	found;
1980 
1981 	ASSERT(new != 0);
1982 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
1983 	ASSERT(ht->ht_level != VLP_LEVEL);
1984 
1985 	ptep = x86pte_access_pagetable(ht, entry);
1986 	found = CAS_PTE(ptep, expect, new);
1987 	if (found == expect) {
1988 		hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry));
1989 
1990 		/*
1991 		 * When removing write permission *and* clearing the
1992 		 * MOD bit, check if a write happened via a stale
1993 		 * TLB entry before the TLB shootdown finished.
1994 		 *
1995 		 * If it did happen, simply re-enable write permission and
1996 		 * act like the original CAS failed.
1997 		 */
1998 		if ((expect & (PT_WRITABLE | PT_MOD)) == PT_WRITABLE &&
1999 		    (new & (PT_WRITABLE | PT_MOD)) == 0 &&
2000 		    (GET_PTE(ptep) & PT_MOD) != 0) {
2001 			do {
2002 				found = GET_PTE(ptep);
2003 				found =
2004 				    CAS_PTE(ptep, found, found | PT_WRITABLE);
2005 			} while ((found & PT_WRITABLE) == 0);
2006 		}
2007 	}
2008 	x86pte_release_pagetable(ht);
2009 	return (found);
2010 }
2011 
2012 /*
2013  * Copy page tables - this is just a little more complicated than the
2014  * previous routines. Note that it's also not atomic! It also is never
2015  * used for VLP pagetables.
2016  */
2017 void
2018 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count)
2019 {
2020 	caddr_t	src_va;
2021 	caddr_t dst_va;
2022 	size_t size;
2023 	x86pte_t *pteptr;
2024 	x86pte_t pte;
2025 
2026 	ASSERT(khat_running);
2027 	ASSERT(!(dest->ht_flags & HTABLE_VLP));
2028 	ASSERT(!(src->ht_flags & HTABLE_VLP));
2029 	ASSERT(!(src->ht_flags & HTABLE_SHARED_PFN));
2030 	ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN));
2031 
2032 	/*
2033 	 * Acquire access to the CPU pagetable windows for the dest and source.
2034 	 */
2035 	dst_va = (caddr_t)x86pte_access_pagetable(dest, entry);
2036 	if (kpm_vbase) {
2037 		src_va = (caddr_t)
2038 		    PT_INDEX_PTR(hat_kpm_pfn2va(src->ht_pfn), entry);
2039 	} else {
2040 		uint_t x = PWIN_SRC(CPU->cpu_id);
2041 
2042 		/*
2043 		 * Finish defining the src pagetable mapping
2044 		 */
2045 		src_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry);
2046 		pte = MAKEPTE(src->ht_pfn, 0) | mmu.pt_global | mmu.pt_nx;
2047 		pteptr = (x86pte_t *)PWIN_PTE_VA(x);
2048 		if (mmu.pae_hat)
2049 			*pteptr = pte;
2050 		else
2051 			*(x86pte32_t *)pteptr = pte;
2052 		mmu_tlbflush_entry((caddr_t)(PWIN_VA(x)));
2053 	}
2054 
2055 	/*
2056 	 * now do the copy
2057 	 */
2058 	size = count << mmu.pte_size_shift;
2059 	bcopy(src_va, dst_va, size);
2060 
2061 	x86pte_release_pagetable(dest);
2062 }
2063 
2064 /*
2065  * Zero page table entries - Note this doesn't use atomic stores!
2066  */
2067 static void
2068 x86pte_zero(htable_t *dest, uint_t entry, uint_t count)
2069 {
2070 	caddr_t dst_va;
2071 	size_t size;
2072 
2073 	/*
2074 	 * Map in the page table to be zeroed.
2075 	 */
2076 	ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN));
2077 	ASSERT(!(dest->ht_flags & HTABLE_VLP));
2078 
2079 	dst_va = (caddr_t)x86pte_access_pagetable(dest, entry);
2080 
2081 	size = count << mmu.pte_size_shift;
2082 	ASSERT(size > BLOCKZEROALIGN);
2083 #ifdef __i386
2084 	if ((x86_feature & X86_SSE2) == 0)
2085 		bzero(dst_va, size);
2086 	else
2087 #endif
2088 		block_zero_no_xmm(dst_va, size);
2089 
2090 	x86pte_release_pagetable(dest);
2091 }
2092 
2093 /*
2094  * Called to ensure that all pagetables are in the system dump
2095  */
2096 void
2097 hat_dump(void)
2098 {
2099 	hat_t *hat;
2100 	uint_t h;
2101 	htable_t *ht;
2102 
2103 	/*
2104 	 * Dump all page tables
2105 	 */
2106 	for (hat = kas.a_hat; hat != NULL; hat = hat->hat_next) {
2107 		for (h = 0; h < hat->hat_num_hash; ++h) {
2108 			for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
2109 				if ((ht->ht_flags & HTABLE_VLP) == 0)
2110 					dump_page(ht->ht_pfn);
2111 			}
2112 		}
2113 	}
2114 }
2115