xref: /titanic_50/usr/src/uts/i86pc/vm/htable.c (revision 0c59ba075fc10821b752d32ee83a714261bca290)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/sysmacros.h>
29 #include <sys/kmem.h>
30 #include <sys/atomic.h>
31 #include <sys/bitmap.h>
32 #include <sys/machparam.h>
33 #include <sys/machsystm.h>
34 #include <sys/mman.h>
35 #include <sys/systm.h>
36 #include <sys/cpuvar.h>
37 #include <sys/thread.h>
38 #include <sys/proc.h>
39 #include <sys/cpu.h>
40 #include <sys/kmem.h>
41 #include <sys/disp.h>
42 #include <sys/vmem.h>
43 #include <sys/vmsystm.h>
44 #include <sys/promif.h>
45 #include <sys/var.h>
46 #include <sys/x86_archext.h>
47 #include <sys/archsystm.h>
48 #include <sys/bootconf.h>
49 #include <sys/dumphdr.h>
50 #include <vm/seg_kmem.h>
51 #include <vm/seg_kpm.h>
52 #include <vm/hat.h>
53 #include <vm/hat_i86.h>
54 #include <sys/cmn_err.h>
55 #include <sys/panic.h>
56 
57 #ifdef __xpv
58 #include <sys/hypervisor.h>
59 #include <sys/xpv_panic.h>
60 #endif
61 
62 #include <sys/bootinfo.h>
63 #include <vm/kboot_mmu.h>
64 
65 static void x86pte_zero(htable_t *dest, uint_t entry, uint_t count);
66 
67 kmem_cache_t *htable_cache;
68 
69 /*
70  * The variable htable_reserve_amount, rather than HTABLE_RESERVE_AMOUNT,
71  * is used in order to facilitate testing of the htable_steal() code.
72  * By resetting htable_reserve_amount to a lower value, we can force
73  * stealing to occur.  The reserve amount is a guess to get us through boot.
74  */
75 #define	HTABLE_RESERVE_AMOUNT	(200)
76 uint_t htable_reserve_amount = HTABLE_RESERVE_AMOUNT;
77 kmutex_t htable_reserve_mutex;
78 uint_t htable_reserve_cnt;
79 htable_t *htable_reserve_pool;
80 
81 /*
82  * Used to hand test htable_steal().
83  */
84 #ifdef DEBUG
85 ulong_t force_steal = 0;
86 ulong_t ptable_cnt = 0;
87 #endif
88 
89 /*
90  * This variable is so that we can tune this via /etc/system
91  * Any value works, but a power of two <= mmu.ptes_per_table is best.
92  */
93 uint_t htable_steal_passes = 8;
94 
95 /*
96  * mutex stuff for access to htable hash
97  */
98 #define	NUM_HTABLE_MUTEX 128
99 kmutex_t htable_mutex[NUM_HTABLE_MUTEX];
100 #define	HTABLE_MUTEX_HASH(h) ((h) & (NUM_HTABLE_MUTEX - 1))
101 
102 #define	HTABLE_ENTER(h)	mutex_enter(&htable_mutex[HTABLE_MUTEX_HASH(h)]);
103 #define	HTABLE_EXIT(h)	mutex_exit(&htable_mutex[HTABLE_MUTEX_HASH(h)]);
104 
105 /*
106  * forward declarations
107  */
108 static void link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr);
109 static void unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr);
110 static void htable_free(htable_t *ht);
111 static x86pte_t *x86pte_access_pagetable(htable_t *ht, uint_t index);
112 static void x86pte_release_pagetable(htable_t *ht);
113 static x86pte_t x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old,
114 	x86pte_t new);
115 
116 /*
117  * A counter to track if we are stealing or reaping htables. When non-zero
118  * htable_free() will directly free htables (either to the reserve or kmem)
119  * instead of putting them in a hat's htable cache.
120  */
121 uint32_t htable_dont_cache = 0;
122 
123 /*
124  * Track the number of active pagetables, so we can know how many to reap
125  */
126 static uint32_t active_ptables = 0;
127 
128 #ifdef __xpv
129 /*
130  * Deal with hypervisor complications.
131  */
132 void
133 xen_flush_va(caddr_t va)
134 {
135 	struct mmuext_op t;
136 	uint_t count;
137 
138 	if (IN_XPV_PANIC()) {
139 		mmu_tlbflush_entry((caddr_t)va);
140 	} else {
141 		t.cmd = MMUEXT_INVLPG_LOCAL;
142 		t.arg1.linear_addr = (uintptr_t)va;
143 		if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
144 			panic("HYPERVISOR_mmuext_op() failed");
145 		ASSERT(count == 1);
146 	}
147 }
148 
149 void
150 xen_gflush_va(caddr_t va, cpuset_t cpus)
151 {
152 	struct mmuext_op t;
153 	uint_t count;
154 
155 	if (IN_XPV_PANIC()) {
156 		mmu_tlbflush_entry((caddr_t)va);
157 		return;
158 	}
159 
160 	t.cmd = MMUEXT_INVLPG_MULTI;
161 	t.arg1.linear_addr = (uintptr_t)va;
162 	/*LINTED: constant in conditional context*/
163 	set_xen_guest_handle(t.arg2.vcpumask, &cpus);
164 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
165 		panic("HYPERVISOR_mmuext_op() failed");
166 	ASSERT(count == 1);
167 }
168 
169 void
170 xen_flush_tlb()
171 {
172 	struct mmuext_op t;
173 	uint_t count;
174 
175 	if (IN_XPV_PANIC()) {
176 		xpv_panic_reload_cr3();
177 	} else {
178 		t.cmd = MMUEXT_TLB_FLUSH_LOCAL;
179 		if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
180 			panic("HYPERVISOR_mmuext_op() failed");
181 		ASSERT(count == 1);
182 	}
183 }
184 
185 void
186 xen_gflush_tlb(cpuset_t cpus)
187 {
188 	struct mmuext_op t;
189 	uint_t count;
190 
191 	ASSERT(!IN_XPV_PANIC());
192 	t.cmd = MMUEXT_TLB_FLUSH_MULTI;
193 	/*LINTED: constant in conditional context*/
194 	set_xen_guest_handle(t.arg2.vcpumask, &cpus);
195 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
196 		panic("HYPERVISOR_mmuext_op() failed");
197 	ASSERT(count == 1);
198 }
199 
200 /*
201  * Install/Adjust a kpm mapping under the hypervisor.
202  * Value of "how" should be:
203  *	PT_WRITABLE | PT_VALID - regular kpm mapping
204  *	PT_VALID - make mapping read-only
205  *	0	- remove mapping
206  *
207  * returns 0 on success. non-zero for failure.
208  */
209 int
210 xen_kpm_page(pfn_t pfn, uint_t how)
211 {
212 	paddr_t pa = mmu_ptob((paddr_t)pfn);
213 	x86pte_t pte = PT_NOCONSIST | PT_REF | PT_MOD;
214 
215 	if (kpm_vbase == NULL)
216 		return (0);
217 
218 	if (how)
219 		pte |= pa_to_ma(pa) | how;
220 	else
221 		pte = 0;
222 	return (HYPERVISOR_update_va_mapping((uintptr_t)kpm_vbase + pa,
223 	    pte, UVMF_INVLPG | UVMF_ALL));
224 }
225 
226 void
227 xen_pin(pfn_t pfn, level_t lvl)
228 {
229 	struct mmuext_op t;
230 	uint_t count;
231 
232 	t.cmd = MMUEXT_PIN_L1_TABLE + lvl;
233 	t.arg1.mfn = pfn_to_mfn(pfn);
234 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
235 		panic("HYPERVISOR_mmuext_op() failed");
236 	ASSERT(count == 1);
237 }
238 
239 void
240 xen_unpin(pfn_t pfn)
241 {
242 	struct mmuext_op t;
243 	uint_t count;
244 
245 	t.cmd = MMUEXT_UNPIN_TABLE;
246 	t.arg1.mfn = pfn_to_mfn(pfn);
247 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
248 		panic("HYPERVISOR_mmuext_op() failed");
249 	ASSERT(count == 1);
250 }
251 
252 static void
253 xen_map(uint64_t pte, caddr_t va)
254 {
255 	if (HYPERVISOR_update_va_mapping((uintptr_t)va, pte,
256 	    UVMF_INVLPG | UVMF_LOCAL))
257 		panic("HYPERVISOR_update_va_mapping() failed");
258 }
259 #endif /* __xpv */
260 
261 /*
262  * Allocate a memory page for a hardware page table.
263  *
264  * A wrapper around page_get_physical(), with some extra checks.
265  */
266 static pfn_t
267 ptable_alloc(uintptr_t seed)
268 {
269 	pfn_t pfn;
270 	page_t *pp;
271 
272 	pfn = PFN_INVALID;
273 	atomic_add_32(&active_ptables, 1);
274 
275 	/*
276 	 * The first check is to see if there is memory in the system. If we
277 	 * drop to throttlefree, then fail the ptable_alloc() and let the
278 	 * stealing code kick in. Note that we have to do this test here,
279 	 * since the test in page_create_throttle() would let the NOSLEEP
280 	 * allocation go through and deplete the page reserves.
281 	 *
282 	 * The !NOMEMWAIT() lets pageout, fsflush, etc. skip this check.
283 	 */
284 	if (!NOMEMWAIT() && freemem <= throttlefree + 1)
285 		return (PFN_INVALID);
286 
287 #ifdef DEBUG
288 	/*
289 	 * This code makes htable_steal() easier to test. By setting
290 	 * force_steal we force pagetable allocations to fall
291 	 * into the stealing code. Roughly 1 in ever "force_steal"
292 	 * page table allocations will fail.
293 	 */
294 	if (proc_pageout != NULL && force_steal > 1 &&
295 	    ++ptable_cnt > force_steal) {
296 		ptable_cnt = 0;
297 		return (PFN_INVALID);
298 	}
299 #endif /* DEBUG */
300 
301 	pp = page_get_physical(seed);
302 	if (pp == NULL)
303 		return (PFN_INVALID);
304 	ASSERT(PAGE_SHARED(pp));
305 	pfn = pp->p_pagenum;
306 	if (pfn == PFN_INVALID)
307 		panic("ptable_alloc(): Invalid PFN!!");
308 	HATSTAT_INC(hs_ptable_allocs);
309 	return (pfn);
310 }
311 
312 /*
313  * Free an htable's associated page table page.  See the comments
314  * for ptable_alloc().
315  */
316 static void
317 ptable_free(pfn_t pfn)
318 {
319 	page_t *pp = page_numtopp_nolock(pfn);
320 
321 	/*
322 	 * need to destroy the page used for the pagetable
323 	 */
324 	ASSERT(pfn != PFN_INVALID);
325 	HATSTAT_INC(hs_ptable_frees);
326 	atomic_add_32(&active_ptables, -1);
327 	if (pp == NULL)
328 		panic("ptable_free(): no page for pfn!");
329 	ASSERT(PAGE_SHARED(pp));
330 	ASSERT(pfn == pp->p_pagenum);
331 	ASSERT(!IN_XPV_PANIC());
332 
333 	/*
334 	 * Get an exclusive lock, might have to wait for a kmem reader.
335 	 */
336 	if (!page_tryupgrade(pp)) {
337 		page_unlock(pp);
338 		/*
339 		 * RFE: we could change this to not loop forever
340 		 * For now looping works - it's just like sfmmu.
341 		 */
342 		while (!page_lock(pp, SE_EXCL, (kmutex_t *)NULL, P_RECLAIM))
343 			continue;
344 	}
345 #ifdef __xpv
346 	if (kpm_vbase && xen_kpm_page(pfn, PT_VALID | PT_WRITABLE) < 0)
347 		panic("failure making kpm r/w pfn=0x%lx", pfn);
348 #endif
349 	page_free(pp, 1);
350 	page_unresv(1);
351 }
352 
353 /*
354  * Put one htable on the reserve list.
355  */
356 static void
357 htable_put_reserve(htable_t *ht)
358 {
359 	ht->ht_hat = NULL;		/* no longer tied to a hat */
360 	ASSERT(ht->ht_pfn == PFN_INVALID);
361 	HATSTAT_INC(hs_htable_rputs);
362 	mutex_enter(&htable_reserve_mutex);
363 	ht->ht_next = htable_reserve_pool;
364 	htable_reserve_pool = ht;
365 	++htable_reserve_cnt;
366 	mutex_exit(&htable_reserve_mutex);
367 }
368 
369 /*
370  * Take one htable from the reserve.
371  */
372 static htable_t *
373 htable_get_reserve(void)
374 {
375 	htable_t *ht = NULL;
376 
377 	mutex_enter(&htable_reserve_mutex);
378 	if (htable_reserve_cnt != 0) {
379 		ht = htable_reserve_pool;
380 		ASSERT(ht != NULL);
381 		ASSERT(ht->ht_pfn == PFN_INVALID);
382 		htable_reserve_pool = ht->ht_next;
383 		--htable_reserve_cnt;
384 		HATSTAT_INC(hs_htable_rgets);
385 	}
386 	mutex_exit(&htable_reserve_mutex);
387 	return (ht);
388 }
389 
390 /*
391  * Allocate initial htables and put them on the reserve list
392  */
393 void
394 htable_initial_reserve(uint_t count)
395 {
396 	htable_t *ht;
397 
398 	count += HTABLE_RESERVE_AMOUNT;
399 	while (count > 0) {
400 		ht = kmem_cache_alloc(htable_cache, KM_NOSLEEP);
401 		ASSERT(ht != NULL);
402 
403 		ASSERT(use_boot_reserve);
404 		ht->ht_pfn = PFN_INVALID;
405 		htable_put_reserve(ht);
406 		--count;
407 	}
408 }
409 
410 /*
411  * Readjust the reserves after a thread finishes using them.
412  */
413 void
414 htable_adjust_reserve()
415 {
416 	htable_t *ht;
417 
418 	/*
419 	 * Free any excess htables in the reserve list
420 	 */
421 	while (htable_reserve_cnt > htable_reserve_amount &&
422 	    !USE_HAT_RESERVES()) {
423 		ht = htable_get_reserve();
424 		if (ht == NULL)
425 			return;
426 		ASSERT(ht->ht_pfn == PFN_INVALID);
427 		kmem_cache_free(htable_cache, ht);
428 	}
429 }
430 
431 
432 /*
433  * This routine steals htables from user processes for htable_alloc() or
434  * for htable_reap().
435  */
436 static htable_t *
437 htable_steal(uint_t cnt)
438 {
439 	hat_t		*hat = kas.a_hat;	/* list starts with khat */
440 	htable_t	*list = NULL;
441 	htable_t	*ht;
442 	htable_t	*higher;
443 	uint_t		h;
444 	uint_t		h_start;
445 	static uint_t	h_seed = 0;
446 	uint_t		e;
447 	uintptr_t	va;
448 	x86pte_t	pte;
449 	uint_t		stolen = 0;
450 	uint_t		pass;
451 	uint_t		threshold;
452 
453 	/*
454 	 * Limit htable_steal_passes to something reasonable
455 	 */
456 	if (htable_steal_passes == 0)
457 		htable_steal_passes = 1;
458 	if (htable_steal_passes > mmu.ptes_per_table)
459 		htable_steal_passes = mmu.ptes_per_table;
460 
461 	/*
462 	 * Loop through all user hats. The 1st pass takes cached htables that
463 	 * aren't in use. The later passes steal by removing mappings, too.
464 	 */
465 	atomic_add_32(&htable_dont_cache, 1);
466 	for (pass = 0; pass <= htable_steal_passes && stolen < cnt; ++pass) {
467 		threshold = pass * mmu.ptes_per_table / htable_steal_passes;
468 		hat = kas.a_hat;
469 		for (;;) {
470 
471 			/*
472 			 * Clear the victim flag and move to next hat
473 			 */
474 			mutex_enter(&hat_list_lock);
475 			if (hat != kas.a_hat) {
476 				hat->hat_flags &= ~HAT_VICTIM;
477 				cv_broadcast(&hat_list_cv);
478 			}
479 			hat = hat->hat_next;
480 
481 			/*
482 			 * Skip any hat that is already being stolen from.
483 			 *
484 			 * We skip SHARED hats, as these are dummy
485 			 * hats that host ISM shared page tables.
486 			 *
487 			 * We also skip if HAT_FREEING because hat_pte_unmap()
488 			 * won't zero out the PTE's. That would lead to hitting
489 			 * stale PTEs either here or under hat_unload() when we
490 			 * steal and unload the same page table in competing
491 			 * threads.
492 			 */
493 			while (hat != NULL &&
494 			    (hat->hat_flags &
495 			    (HAT_VICTIM | HAT_SHARED | HAT_FREEING)) != 0)
496 				hat = hat->hat_next;
497 
498 			if (hat == NULL) {
499 				mutex_exit(&hat_list_lock);
500 				break;
501 			}
502 
503 			/*
504 			 * Are we finished?
505 			 */
506 			if (stolen == cnt) {
507 				/*
508 				 * Try to spread the pain of stealing,
509 				 * move victim HAT to the end of the HAT list.
510 				 */
511 				if (pass >= 1 && cnt == 1 &&
512 				    kas.a_hat->hat_prev != hat) {
513 
514 					/* unlink victim hat */
515 					if (hat->hat_prev)
516 						hat->hat_prev->hat_next =
517 						    hat->hat_next;
518 					else
519 						kas.a_hat->hat_next =
520 						    hat->hat_next;
521 					if (hat->hat_next)
522 						hat->hat_next->hat_prev =
523 						    hat->hat_prev;
524 					else
525 						kas.a_hat->hat_prev =
526 						    hat->hat_prev;
527 
528 
529 					/* relink at end of hat list */
530 					hat->hat_next = NULL;
531 					hat->hat_prev = kas.a_hat->hat_prev;
532 					if (hat->hat_prev)
533 						hat->hat_prev->hat_next = hat;
534 					else
535 						kas.a_hat->hat_next = hat;
536 					kas.a_hat->hat_prev = hat;
537 
538 				}
539 
540 				mutex_exit(&hat_list_lock);
541 				break;
542 			}
543 
544 			/*
545 			 * Mark the HAT as a stealing victim.
546 			 */
547 			hat->hat_flags |= HAT_VICTIM;
548 			mutex_exit(&hat_list_lock);
549 
550 			/*
551 			 * Take any htables from the hat's cached "free" list.
552 			 */
553 			hat_enter(hat);
554 			while ((ht = hat->hat_ht_cached) != NULL &&
555 			    stolen < cnt) {
556 				hat->hat_ht_cached = ht->ht_next;
557 				ht->ht_next = list;
558 				list = ht;
559 				++stolen;
560 			}
561 			hat_exit(hat);
562 
563 			/*
564 			 * Don't steal on first pass.
565 			 */
566 			if (pass == 0 || stolen == cnt)
567 				continue;
568 
569 			/*
570 			 * Search the active htables for one to steal.
571 			 * Start at a different hash bucket every time to
572 			 * help spread the pain of stealing.
573 			 */
574 			h = h_start = h_seed++ % hat->hat_num_hash;
575 			do {
576 				higher = NULL;
577 				HTABLE_ENTER(h);
578 				for (ht = hat->hat_ht_hash[h]; ht;
579 				    ht = ht->ht_next) {
580 
581 					/*
582 					 * Can we rule out reaping?
583 					 */
584 					if (ht->ht_busy != 0 ||
585 					    (ht->ht_flags & HTABLE_SHARED_PFN)||
586 					    ht->ht_level > 0 ||
587 					    ht->ht_valid_cnt > threshold ||
588 					    ht->ht_lock_cnt != 0)
589 						continue;
590 
591 					/*
592 					 * Increment busy so the htable can't
593 					 * disappear. We drop the htable mutex
594 					 * to avoid deadlocks with
595 					 * hat_pageunload() and the hment mutex
596 					 * while we call hat_pte_unmap()
597 					 */
598 					++ht->ht_busy;
599 					HTABLE_EXIT(h);
600 
601 					/*
602 					 * Try stealing.
603 					 * - unload and invalidate all PTEs
604 					 */
605 					for (e = 0, va = ht->ht_vaddr;
606 					    e < HTABLE_NUM_PTES(ht) &&
607 					    ht->ht_valid_cnt > 0 &&
608 					    ht->ht_busy == 1 &&
609 					    ht->ht_lock_cnt == 0;
610 					    ++e, va += MMU_PAGESIZE) {
611 						pte = x86pte_get(ht, e);
612 						if (!PTE_ISVALID(pte))
613 							continue;
614 						hat_pte_unmap(ht, e,
615 						    HAT_UNLOAD, pte, NULL);
616 					}
617 
618 					/*
619 					 * Reacquire htable lock. If we didn't
620 					 * remove all mappings in the table,
621 					 * or another thread added a new mapping
622 					 * behind us, give up on this table.
623 					 */
624 					HTABLE_ENTER(h);
625 					if (ht->ht_busy != 1 ||
626 					    ht->ht_valid_cnt != 0 ||
627 					    ht->ht_lock_cnt != 0) {
628 						--ht->ht_busy;
629 						continue;
630 					}
631 
632 					/*
633 					 * Steal it and unlink the page table.
634 					 */
635 					higher = ht->ht_parent;
636 					unlink_ptp(higher, ht, ht->ht_vaddr);
637 
638 					/*
639 					 * remove from the hash list
640 					 */
641 					if (ht->ht_next)
642 						ht->ht_next->ht_prev =
643 						    ht->ht_prev;
644 
645 					if (ht->ht_prev) {
646 						ht->ht_prev->ht_next =
647 						    ht->ht_next;
648 					} else {
649 						ASSERT(hat->hat_ht_hash[h] ==
650 						    ht);
651 						hat->hat_ht_hash[h] =
652 						    ht->ht_next;
653 					}
654 
655 					/*
656 					 * Break to outer loop to release the
657 					 * higher (ht_parent) pagetable. This
658 					 * spreads out the pain caused by
659 					 * pagefaults.
660 					 */
661 					ht->ht_next = list;
662 					list = ht;
663 					++stolen;
664 					break;
665 				}
666 				HTABLE_EXIT(h);
667 				if (higher != NULL)
668 					htable_release(higher);
669 				if (++h == hat->hat_num_hash)
670 					h = 0;
671 			} while (stolen < cnt && h != h_start);
672 		}
673 	}
674 	atomic_add_32(&htable_dont_cache, -1);
675 	return (list);
676 }
677 
678 /*
679  * This is invoked from kmem when the system is low on memory.  We try
680  * to free hments, htables, and ptables to improve the memory situation.
681  */
682 /*ARGSUSED*/
683 static void
684 htable_reap(void *handle)
685 {
686 	uint_t		reap_cnt;
687 	htable_t	*list;
688 	htable_t	*ht;
689 
690 	HATSTAT_INC(hs_reap_attempts);
691 	if (!can_steal_post_boot)
692 		return;
693 
694 	/*
695 	 * Try to reap 5% of the page tables bounded by a maximum of
696 	 * 5% of physmem and a minimum of 10.
697 	 */
698 	reap_cnt = MIN(MAX(physmem / 20, active_ptables / 20), 10);
699 
700 	/*
701 	 * Let htable_steal() do the work, we just call htable_free()
702 	 */
703 	XPV_DISALLOW_MIGRATE();
704 	list = htable_steal(reap_cnt);
705 	XPV_ALLOW_MIGRATE();
706 	while ((ht = list) != NULL) {
707 		list = ht->ht_next;
708 		HATSTAT_INC(hs_reaped);
709 		htable_free(ht);
710 	}
711 
712 	/*
713 	 * Free up excess reserves
714 	 */
715 	htable_adjust_reserve();
716 	hment_adjust_reserve();
717 }
718 
719 /*
720  * Allocate an htable, stealing one or using the reserve if necessary
721  */
722 static htable_t *
723 htable_alloc(
724 	hat_t		*hat,
725 	uintptr_t	vaddr,
726 	level_t		level,
727 	htable_t	*shared)
728 {
729 	htable_t	*ht = NULL;
730 	uint_t		is_vlp;
731 	uint_t		is_bare = 0;
732 	uint_t		need_to_zero = 1;
733 	int		kmflags = (can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP);
734 
735 	if (level < 0 || level > TOP_LEVEL(hat))
736 		panic("htable_alloc(): level %d out of range\n", level);
737 
738 	is_vlp = (hat->hat_flags & HAT_VLP) && level == VLP_LEVEL;
739 	if (is_vlp || shared != NULL)
740 		is_bare = 1;
741 
742 	/*
743 	 * First reuse a cached htable from the hat_ht_cached field, this
744 	 * avoids unnecessary trips through kmem/page allocators.
745 	 */
746 	if (hat->hat_ht_cached != NULL && !is_bare) {
747 		hat_enter(hat);
748 		ht = hat->hat_ht_cached;
749 		if (ht != NULL) {
750 			hat->hat_ht_cached = ht->ht_next;
751 			need_to_zero = 0;
752 			/* XX64 ASSERT() they're all zero somehow */
753 			ASSERT(ht->ht_pfn != PFN_INVALID);
754 		}
755 		hat_exit(hat);
756 	}
757 
758 	if (ht == NULL) {
759 		/*
760 		 * Allocate an htable, possibly refilling the reserves.
761 		 */
762 		if (USE_HAT_RESERVES()) {
763 			ht = htable_get_reserve();
764 		} else {
765 			/*
766 			 * Donate successful htable allocations to the reserve.
767 			 */
768 			for (;;) {
769 				ht = kmem_cache_alloc(htable_cache, kmflags);
770 				if (ht == NULL)
771 					break;
772 				ht->ht_pfn = PFN_INVALID;
773 				if (USE_HAT_RESERVES() ||
774 				    htable_reserve_cnt >= htable_reserve_amount)
775 					break;
776 				htable_put_reserve(ht);
777 			}
778 		}
779 
780 		/*
781 		 * allocate a page for the hardware page table if needed
782 		 */
783 		if (ht != NULL && !is_bare) {
784 			ht->ht_hat = hat;
785 			ht->ht_pfn = ptable_alloc((uintptr_t)ht);
786 			if (ht->ht_pfn == PFN_INVALID) {
787 				if (USE_HAT_RESERVES())
788 					htable_put_reserve(ht);
789 				else
790 					kmem_cache_free(htable_cache, ht);
791 				ht = NULL;
792 			}
793 		}
794 	}
795 
796 	/*
797 	 * If allocations failed, kick off a kmem_reap() and resort to
798 	 * htable steal(). We may spin here if the system is very low on
799 	 * memory. If the kernel itself has consumed all memory and kmem_reap()
800 	 * can't free up anything, then we'll really get stuck here.
801 	 * That should only happen in a system where the administrator has
802 	 * misconfigured VM parameters via /etc/system.
803 	 */
804 	while (ht == NULL && can_steal_post_boot) {
805 		kmem_reap();
806 		ht = htable_steal(1);
807 		HATSTAT_INC(hs_steals);
808 
809 		/*
810 		 * If we stole for a bare htable, release the pagetable page.
811 		 */
812 		if (ht != NULL) {
813 			if (is_bare) {
814 				ptable_free(ht->ht_pfn);
815 				ht->ht_pfn = PFN_INVALID;
816 #if defined(__xpv) && defined(__amd64)
817 			/*
818 			 * make stolen page table writable again in kpm
819 			 */
820 			} else if (kpm_vbase && xen_kpm_page(ht->ht_pfn,
821 			    PT_VALID | PT_WRITABLE) < 0) {
822 				panic("failure making kpm r/w pfn=0x%lx",
823 				    ht->ht_pfn);
824 #endif
825 			}
826 		}
827 	}
828 
829 	/*
830 	 * All attempts to allocate or steal failed. This should only happen
831 	 * if we run out of memory during boot, due perhaps to a huge
832 	 * boot_archive. At this point there's no way to continue.
833 	 */
834 	if (ht == NULL)
835 		panic("htable_alloc(): couldn't steal\n");
836 
837 #if defined(__amd64) && defined(__xpv)
838 	/*
839 	 * Under the 64-bit hypervisor, we have 2 top level page tables.
840 	 * If this allocation fails, we'll resort to stealing.
841 	 * We use the stolen page indirectly, by freeing the
842 	 * stolen htable first.
843 	 */
844 	if (level == mmu.max_level) {
845 		for (;;) {
846 			htable_t *stolen;
847 
848 			hat->hat_user_ptable = ptable_alloc((uintptr_t)ht + 1);
849 			if (hat->hat_user_ptable != PFN_INVALID)
850 				break;
851 			stolen = htable_steal(1);
852 			if (stolen == NULL)
853 				panic("2nd steal ptable failed\n");
854 			htable_free(stolen);
855 		}
856 		block_zero_no_xmm(kpm_vbase + pfn_to_pa(hat->hat_user_ptable),
857 		    MMU_PAGESIZE);
858 	}
859 #endif
860 
861 	/*
862 	 * Shared page tables have all entries locked and entries may not
863 	 * be added or deleted.
864 	 */
865 	ht->ht_flags = 0;
866 	if (shared != NULL) {
867 		ASSERT(shared->ht_valid_cnt > 0);
868 		ht->ht_flags |= HTABLE_SHARED_PFN;
869 		ht->ht_pfn = shared->ht_pfn;
870 		ht->ht_lock_cnt = 0;
871 		ht->ht_valid_cnt = 0;		/* updated in hat_share() */
872 		ht->ht_shares = shared;
873 		need_to_zero = 0;
874 	} else {
875 		ht->ht_shares = NULL;
876 		ht->ht_lock_cnt = 0;
877 		ht->ht_valid_cnt = 0;
878 	}
879 
880 	/*
881 	 * setup flags, etc. for VLP htables
882 	 */
883 	if (is_vlp) {
884 		ht->ht_flags |= HTABLE_VLP;
885 		ASSERT(ht->ht_pfn == PFN_INVALID);
886 		need_to_zero = 0;
887 	}
888 
889 	/*
890 	 * fill in the htable
891 	 */
892 	ht->ht_hat = hat;
893 	ht->ht_parent = NULL;
894 	ht->ht_vaddr = vaddr;
895 	ht->ht_level = level;
896 	ht->ht_busy = 1;
897 	ht->ht_next = NULL;
898 	ht->ht_prev = NULL;
899 
900 	/*
901 	 * Zero out any freshly allocated page table
902 	 */
903 	if (need_to_zero)
904 		x86pte_zero(ht, 0, mmu.ptes_per_table);
905 
906 #if defined(__amd64) && defined(__xpv)
907 	if (!is_bare && kpm_vbase) {
908 		(void) xen_kpm_page(ht->ht_pfn, PT_VALID);
909 		if (level == mmu.max_level)
910 			(void) xen_kpm_page(hat->hat_user_ptable, PT_VALID);
911 	}
912 #endif
913 
914 	return (ht);
915 }
916 
917 /*
918  * Free up an htable, either to a hat's cached list, the reserves or
919  * back to kmem.
920  */
921 static void
922 htable_free(htable_t *ht)
923 {
924 	hat_t *hat = ht->ht_hat;
925 
926 	/*
927 	 * If the process isn't exiting, cache the free htable in the hat
928 	 * structure. We always do this for the boot time reserve. We don't
929 	 * do this if the hat is exiting or we are stealing/reaping htables.
930 	 */
931 	if (hat != NULL &&
932 	    !(ht->ht_flags & HTABLE_SHARED_PFN) &&
933 	    (use_boot_reserve ||
934 	    (!(hat->hat_flags & HAT_FREEING) && !htable_dont_cache))) {
935 		ASSERT((ht->ht_flags & HTABLE_VLP) == 0);
936 		ASSERT(ht->ht_pfn != PFN_INVALID);
937 		hat_enter(hat);
938 		ht->ht_next = hat->hat_ht_cached;
939 		hat->hat_ht_cached = ht;
940 		hat_exit(hat);
941 		return;
942 	}
943 
944 	/*
945 	 * If we have a hardware page table, free it.
946 	 * We don't free page tables that are accessed by sharing.
947 	 */
948 	if (ht->ht_flags & HTABLE_SHARED_PFN) {
949 		ASSERT(ht->ht_pfn != PFN_INVALID);
950 	} else if (!(ht->ht_flags & HTABLE_VLP)) {
951 		ptable_free(ht->ht_pfn);
952 #if defined(__amd64) && defined(__xpv)
953 		if (ht->ht_level == mmu.max_level) {
954 			ptable_free(hat->hat_user_ptable);
955 			hat->hat_user_ptable = PFN_INVALID;
956 		}
957 #endif
958 	}
959 	ht->ht_pfn = PFN_INVALID;
960 
961 	/*
962 	 * Free it or put into reserves.
963 	 */
964 	if (USE_HAT_RESERVES() || htable_reserve_cnt < htable_reserve_amount) {
965 		htable_put_reserve(ht);
966 	} else {
967 		kmem_cache_free(htable_cache, ht);
968 		htable_adjust_reserve();
969 	}
970 }
971 
972 
973 /*
974  * This is called when a hat is being destroyed or swapped out. We reap all
975  * the remaining htables in the hat cache. If destroying all left over
976  * htables are also destroyed.
977  *
978  * We also don't need to invalidate any of the PTPs nor do any demapping.
979  */
980 void
981 htable_purge_hat(hat_t *hat)
982 {
983 	htable_t *ht;
984 	int h;
985 
986 	/*
987 	 * Purge the htable cache if just reaping.
988 	 */
989 	if (!(hat->hat_flags & HAT_FREEING)) {
990 		atomic_add_32(&htable_dont_cache, 1);
991 		for (;;) {
992 			hat_enter(hat);
993 			ht = hat->hat_ht_cached;
994 			if (ht == NULL) {
995 				hat_exit(hat);
996 				break;
997 			}
998 			hat->hat_ht_cached = ht->ht_next;
999 			hat_exit(hat);
1000 			htable_free(ht);
1001 		}
1002 		atomic_add_32(&htable_dont_cache, -1);
1003 		return;
1004 	}
1005 
1006 	/*
1007 	 * if freeing, no locking is needed
1008 	 */
1009 	while ((ht = hat->hat_ht_cached) != NULL) {
1010 		hat->hat_ht_cached = ht->ht_next;
1011 		htable_free(ht);
1012 	}
1013 
1014 	/*
1015 	 * walk thru the htable hash table and free all the htables in it.
1016 	 */
1017 	for (h = 0; h < hat->hat_num_hash; ++h) {
1018 		while ((ht = hat->hat_ht_hash[h]) != NULL) {
1019 			if (ht->ht_next)
1020 				ht->ht_next->ht_prev = ht->ht_prev;
1021 
1022 			if (ht->ht_prev) {
1023 				ht->ht_prev->ht_next = ht->ht_next;
1024 			} else {
1025 				ASSERT(hat->hat_ht_hash[h] == ht);
1026 				hat->hat_ht_hash[h] = ht->ht_next;
1027 			}
1028 			htable_free(ht);
1029 		}
1030 	}
1031 }
1032 
1033 /*
1034  * Unlink an entry for a table at vaddr and level out of the existing table
1035  * one level higher. We are always holding the HASH_ENTER() when doing this.
1036  */
1037 static void
1038 unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr)
1039 {
1040 	uint_t		entry = htable_va2entry(vaddr, higher);
1041 	x86pte_t	expect = MAKEPTP(old->ht_pfn, old->ht_level);
1042 	x86pte_t	found;
1043 	hat_t		*hat = old->ht_hat;
1044 
1045 	ASSERT(higher->ht_busy > 0);
1046 	ASSERT(higher->ht_valid_cnt > 0);
1047 	ASSERT(old->ht_valid_cnt == 0);
1048 	found = x86pte_cas(higher, entry, expect, 0);
1049 #ifdef __xpv
1050 	/*
1051 	 * This is weird, but Xen apparently automatically unlinks empty
1052 	 * pagetables from the upper page table. So allow PTP to be 0 already.
1053 	 */
1054 	if (found != expect && found != 0)
1055 #else
1056 	if (found != expect)
1057 #endif
1058 		panic("Bad PTP found=" FMT_PTE ", expected=" FMT_PTE,
1059 		    found, expect);
1060 
1061 	/*
1062 	 * When a top level VLP page table entry changes, we must issue
1063 	 * a reload of cr3 on all processors.
1064 	 *
1065 	 * If we don't need do do that, then we still have to INVLPG against
1066 	 * an address covered by the inner page table, as the latest processors
1067 	 * have TLB-like caches for non-leaf page table entries.
1068 	 */
1069 	if (!(hat->hat_flags & HAT_FREEING)) {
1070 		hat_tlb_inval(hat, (higher->ht_flags & HTABLE_VLP) ?
1071 		    DEMAP_ALL_ADDR : old->ht_vaddr);
1072 	}
1073 
1074 	HTABLE_DEC(higher->ht_valid_cnt);
1075 }
1076 
1077 /*
1078  * Link an entry for a new table at vaddr and level into the existing table
1079  * one level higher. We are always holding the HASH_ENTER() when doing this.
1080  */
1081 static void
1082 link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr)
1083 {
1084 	uint_t		entry = htable_va2entry(vaddr, higher);
1085 	x86pte_t	newptp = MAKEPTP(new->ht_pfn, new->ht_level);
1086 	x86pte_t	found;
1087 
1088 	ASSERT(higher->ht_busy > 0);
1089 
1090 	ASSERT(new->ht_level != mmu.max_level);
1091 
1092 	HTABLE_INC(higher->ht_valid_cnt);
1093 
1094 	found = x86pte_cas(higher, entry, 0, newptp);
1095 	if ((found & ~PT_REF) != 0)
1096 		panic("HAT: ptp not 0, found=" FMT_PTE, found);
1097 
1098 	/*
1099 	 * When any top level VLP page table entry changes, we must issue
1100 	 * a reload of cr3 on all processors using it.
1101 	 * We also need to do this for the kernel hat on PAE 32 bit kernel.
1102 	 */
1103 	if (
1104 #ifdef __i386
1105 	    (higher->ht_hat == kas.a_hat && higher->ht_level == VLP_LEVEL) ||
1106 #endif
1107 	    (higher->ht_flags & HTABLE_VLP))
1108 		hat_tlb_inval(higher->ht_hat, DEMAP_ALL_ADDR);
1109 }
1110 
1111 /*
1112  * Release of hold on an htable. If this is the last use and the pagetable
1113  * is empty we may want to free it, then recursively look at the pagetable
1114  * above it. The recursion is handled by the outer while() loop.
1115  *
1116  * On the metal, during process exit, we don't bother unlinking the tables from
1117  * upper level pagetables. They are instead handled in bulk by hat_free_end().
1118  * We can't do this on the hypervisor as we need the page table to be
1119  * implicitly unpinnned before it goes to the free page lists. This can't
1120  * happen unless we fully unlink it from the page table hierarchy.
1121  */
1122 void
1123 htable_release(htable_t *ht)
1124 {
1125 	uint_t		hashval;
1126 	htable_t	*shared;
1127 	htable_t	*higher;
1128 	hat_t		*hat;
1129 	uintptr_t	va;
1130 	level_t		level;
1131 
1132 	while (ht != NULL) {
1133 		shared = NULL;
1134 		for (;;) {
1135 			hat = ht->ht_hat;
1136 			va = ht->ht_vaddr;
1137 			level = ht->ht_level;
1138 			hashval = HTABLE_HASH(hat, va, level);
1139 
1140 			/*
1141 			 * The common case is that this isn't the last use of
1142 			 * an htable so we don't want to free the htable.
1143 			 */
1144 			HTABLE_ENTER(hashval);
1145 			ASSERT(ht->ht_valid_cnt >= 0);
1146 			ASSERT(ht->ht_busy > 0);
1147 			if (ht->ht_valid_cnt > 0)
1148 				break;
1149 			if (ht->ht_busy > 1)
1150 				break;
1151 			ASSERT(ht->ht_lock_cnt == 0);
1152 
1153 #if !defined(__xpv)
1154 			/*
1155 			 * we always release empty shared htables
1156 			 */
1157 			if (!(ht->ht_flags & HTABLE_SHARED_PFN)) {
1158 
1159 				/*
1160 				 * don't release if in address space tear down
1161 				 */
1162 				if (hat->hat_flags & HAT_FREEING)
1163 					break;
1164 
1165 				/*
1166 				 * At and above max_page_level, free if it's for
1167 				 * a boot-time kernel mapping below kernelbase.
1168 				 */
1169 				if (level >= mmu.max_page_level &&
1170 				    (hat != kas.a_hat || va >= kernelbase))
1171 					break;
1172 			}
1173 #endif /* __xpv */
1174 
1175 			/*
1176 			 * Remember if we destroy an htable that shares its PFN
1177 			 * from elsewhere.
1178 			 */
1179 			if (ht->ht_flags & HTABLE_SHARED_PFN) {
1180 				ASSERT(shared == NULL);
1181 				shared = ht->ht_shares;
1182 				HATSTAT_INC(hs_htable_unshared);
1183 			}
1184 
1185 			/*
1186 			 * Handle release of a table and freeing the htable_t.
1187 			 * Unlink it from the table higher (ie. ht_parent).
1188 			 */
1189 			ASSERT(ht->ht_lock_cnt == 0);
1190 			higher = ht->ht_parent;
1191 			ASSERT(higher != NULL);
1192 
1193 			/*
1194 			 * Unlink the pagetable.
1195 			 */
1196 			unlink_ptp(higher, ht, va);
1197 
1198 			/*
1199 			 * remove this htable from its hash list
1200 			 */
1201 			if (ht->ht_next)
1202 				ht->ht_next->ht_prev = ht->ht_prev;
1203 
1204 			if (ht->ht_prev) {
1205 				ht->ht_prev->ht_next = ht->ht_next;
1206 			} else {
1207 				ASSERT(hat->hat_ht_hash[hashval] == ht);
1208 				hat->hat_ht_hash[hashval] = ht->ht_next;
1209 			}
1210 			HTABLE_EXIT(hashval);
1211 			htable_free(ht);
1212 			ht = higher;
1213 		}
1214 
1215 		ASSERT(ht->ht_busy >= 1);
1216 		--ht->ht_busy;
1217 		HTABLE_EXIT(hashval);
1218 
1219 		/*
1220 		 * If we released a shared htable, do a release on the htable
1221 		 * from which it shared
1222 		 */
1223 		ht = shared;
1224 	}
1225 }
1226 
1227 /*
1228  * Find the htable for the pagetable at the given level for the given address.
1229  * If found acquires a hold that eventually needs to be htable_release()d
1230  */
1231 htable_t *
1232 htable_lookup(hat_t *hat, uintptr_t vaddr, level_t level)
1233 {
1234 	uintptr_t	base;
1235 	uint_t		hashval;
1236 	htable_t	*ht = NULL;
1237 
1238 	ASSERT(level >= 0);
1239 	ASSERT(level <= TOP_LEVEL(hat));
1240 
1241 	if (level == TOP_LEVEL(hat)) {
1242 #if defined(__amd64)
1243 		/*
1244 		 * 32 bit address spaces on 64 bit kernels need to check
1245 		 * for overflow of the 32 bit address space
1246 		 */
1247 		if ((hat->hat_flags & HAT_VLP) && vaddr >= ((uint64_t)1 << 32))
1248 			return (NULL);
1249 #endif
1250 		base = 0;
1251 	} else {
1252 		base = vaddr & LEVEL_MASK(level + 1);
1253 	}
1254 
1255 	hashval = HTABLE_HASH(hat, base, level);
1256 	HTABLE_ENTER(hashval);
1257 	for (ht = hat->hat_ht_hash[hashval]; ht; ht = ht->ht_next) {
1258 		if (ht->ht_hat == hat &&
1259 		    ht->ht_vaddr == base &&
1260 		    ht->ht_level == level)
1261 			break;
1262 	}
1263 	if (ht)
1264 		++ht->ht_busy;
1265 
1266 	HTABLE_EXIT(hashval);
1267 	return (ht);
1268 }
1269 
1270 /*
1271  * Acquires a hold on a known htable (from a locked hment entry).
1272  */
1273 void
1274 htable_acquire(htable_t *ht)
1275 {
1276 	hat_t		*hat = ht->ht_hat;
1277 	level_t		level = ht->ht_level;
1278 	uintptr_t	base = ht->ht_vaddr;
1279 	uint_t		hashval = HTABLE_HASH(hat, base, level);
1280 
1281 	HTABLE_ENTER(hashval);
1282 #ifdef DEBUG
1283 	/*
1284 	 * make sure the htable is there
1285 	 */
1286 	{
1287 		htable_t	*h;
1288 
1289 		for (h = hat->hat_ht_hash[hashval];
1290 		    h && h != ht;
1291 		    h = h->ht_next)
1292 			;
1293 		ASSERT(h == ht);
1294 	}
1295 #endif /* DEBUG */
1296 	++ht->ht_busy;
1297 	HTABLE_EXIT(hashval);
1298 }
1299 
1300 /*
1301  * Find the htable for the pagetable at the given level for the given address.
1302  * If found acquires a hold that eventually needs to be htable_release()d
1303  * If not found the table is created.
1304  *
1305  * Since we can't hold a hash table mutex during allocation, we have to
1306  * drop it and redo the search on a create. Then we may have to free the newly
1307  * allocated htable if another thread raced in and created it ahead of us.
1308  */
1309 htable_t *
1310 htable_create(
1311 	hat_t		*hat,
1312 	uintptr_t	vaddr,
1313 	level_t		level,
1314 	htable_t	*shared)
1315 {
1316 	uint_t		h;
1317 	level_t		l;
1318 	uintptr_t	base;
1319 	htable_t	*ht;
1320 	htable_t	*higher = NULL;
1321 	htable_t	*new = NULL;
1322 
1323 	if (level < 0 || level > TOP_LEVEL(hat))
1324 		panic("htable_create(): level %d out of range\n", level);
1325 
1326 	/*
1327 	 * Create the page tables in top down order.
1328 	 */
1329 	for (l = TOP_LEVEL(hat); l >= level; --l) {
1330 		new = NULL;
1331 		if (l == TOP_LEVEL(hat))
1332 			base = 0;
1333 		else
1334 			base = vaddr & LEVEL_MASK(l + 1);
1335 
1336 		h = HTABLE_HASH(hat, base, l);
1337 try_again:
1338 		/*
1339 		 * look up the htable at this level
1340 		 */
1341 		HTABLE_ENTER(h);
1342 		if (l == TOP_LEVEL(hat)) {
1343 			ht = hat->hat_htable;
1344 		} else {
1345 			for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
1346 				ASSERT(ht->ht_hat == hat);
1347 				if (ht->ht_vaddr == base &&
1348 				    ht->ht_level == l)
1349 					break;
1350 			}
1351 		}
1352 
1353 		/*
1354 		 * if we found the htable, increment its busy cnt
1355 		 * and if we had allocated a new htable, free it.
1356 		 */
1357 		if (ht != NULL) {
1358 			/*
1359 			 * If we find a pre-existing shared table, it must
1360 			 * share from the same place.
1361 			 */
1362 			if (l == level && shared && ht->ht_shares &&
1363 			    ht->ht_shares != shared) {
1364 				panic("htable shared from wrong place "
1365 				    "found htable=%p shared=%p",
1366 				    (void *)ht, (void *)shared);
1367 			}
1368 			++ht->ht_busy;
1369 			HTABLE_EXIT(h);
1370 			if (new)
1371 				htable_free(new);
1372 			if (higher != NULL)
1373 				htable_release(higher);
1374 			higher = ht;
1375 
1376 		/*
1377 		 * if we didn't find it on the first search
1378 		 * allocate a new one and search again
1379 		 */
1380 		} else if (new == NULL) {
1381 			HTABLE_EXIT(h);
1382 			new = htable_alloc(hat, base, l,
1383 			    l == level ? shared : NULL);
1384 			goto try_again;
1385 
1386 		/*
1387 		 * 2nd search and still not there, use "new" table
1388 		 * Link new table into higher, when not at top level.
1389 		 */
1390 		} else {
1391 			ht = new;
1392 			if (higher != NULL) {
1393 				link_ptp(higher, ht, base);
1394 				ht->ht_parent = higher;
1395 			}
1396 			ht->ht_next = hat->hat_ht_hash[h];
1397 			ASSERT(ht->ht_prev == NULL);
1398 			if (hat->hat_ht_hash[h])
1399 				hat->hat_ht_hash[h]->ht_prev = ht;
1400 			hat->hat_ht_hash[h] = ht;
1401 			HTABLE_EXIT(h);
1402 
1403 			/*
1404 			 * Note we don't do htable_release(higher).
1405 			 * That happens recursively when "new" is removed by
1406 			 * htable_release() or htable_steal().
1407 			 */
1408 			higher = ht;
1409 
1410 			/*
1411 			 * If we just created a new shared page table we
1412 			 * increment the shared htable's busy count, so that
1413 			 * it can't be the victim of a steal even if it's empty.
1414 			 */
1415 			if (l == level && shared) {
1416 				(void) htable_lookup(shared->ht_hat,
1417 				    shared->ht_vaddr, shared->ht_level);
1418 				HATSTAT_INC(hs_htable_shared);
1419 			}
1420 		}
1421 	}
1422 
1423 	return (ht);
1424 }
1425 
1426 /*
1427  * Inherit initial pagetables from the boot program. On the 64-bit
1428  * hypervisor we also temporarily mark the p_index field of page table
1429  * pages, so we know not to try making them writable in seg_kpm.
1430  */
1431 void
1432 htable_attach(
1433 	hat_t *hat,
1434 	uintptr_t base,
1435 	level_t level,
1436 	htable_t *parent,
1437 	pfn_t pfn)
1438 {
1439 	htable_t	*ht;
1440 	uint_t		h;
1441 	uint_t		i;
1442 	x86pte_t	pte;
1443 	x86pte_t	*ptep;
1444 	page_t		*pp;
1445 	extern page_t	*boot_claim_page(pfn_t);
1446 
1447 	ht = htable_get_reserve();
1448 	if (level == mmu.max_level)
1449 		kas.a_hat->hat_htable = ht;
1450 	ht->ht_hat = hat;
1451 	ht->ht_parent = parent;
1452 	ht->ht_vaddr = base;
1453 	ht->ht_level = level;
1454 	ht->ht_busy = 1;
1455 	ht->ht_next = NULL;
1456 	ht->ht_prev = NULL;
1457 	ht->ht_flags = 0;
1458 	ht->ht_pfn = pfn;
1459 	ht->ht_lock_cnt = 0;
1460 	ht->ht_valid_cnt = 0;
1461 	if (parent != NULL)
1462 		++parent->ht_busy;
1463 
1464 	h = HTABLE_HASH(hat, base, level);
1465 	HTABLE_ENTER(h);
1466 	ht->ht_next = hat->hat_ht_hash[h];
1467 	ASSERT(ht->ht_prev == NULL);
1468 	if (hat->hat_ht_hash[h])
1469 		hat->hat_ht_hash[h]->ht_prev = ht;
1470 	hat->hat_ht_hash[h] = ht;
1471 	HTABLE_EXIT(h);
1472 
1473 	/*
1474 	 * make sure the page table physical page is not FREE
1475 	 */
1476 	if (page_resv(1, KM_NOSLEEP) == 0)
1477 		panic("page_resv() failed in ptable alloc");
1478 
1479 	pp = boot_claim_page(pfn);
1480 	ASSERT(pp != NULL);
1481 	page_downgrade(pp);
1482 #if defined(__xpv) && defined(__amd64)
1483 	/*
1484 	 * Record in the page_t that is a pagetable for segkpm setup.
1485 	 */
1486 	if (kpm_vbase)
1487 		pp->p_index = 1;
1488 #endif
1489 
1490 	/*
1491 	 * Count valid mappings and recursively attach lower level pagetables.
1492 	 */
1493 	ptep = kbm_remap_window(pfn_to_pa(pfn), 0);
1494 	for (i = 0; i < HTABLE_NUM_PTES(ht); ++i) {
1495 		if (mmu.pae_hat)
1496 			pte = ptep[i];
1497 		else
1498 			pte = ((x86pte32_t *)ptep)[i];
1499 		if (!IN_HYPERVISOR_VA(base) && PTE_ISVALID(pte)) {
1500 			++ht->ht_valid_cnt;
1501 			if (!PTE_ISPAGE(pte, level)) {
1502 				htable_attach(hat, base, level - 1,
1503 				    ht, PTE2PFN(pte, level));
1504 				ptep = kbm_remap_window(pfn_to_pa(pfn), 0);
1505 			}
1506 		}
1507 		base += LEVEL_SIZE(level);
1508 		if (base == mmu.hole_start)
1509 			base = (mmu.hole_end + MMU_PAGEOFFSET) & MMU_PAGEMASK;
1510 	}
1511 
1512 	/*
1513 	 * As long as all the mappings we had were below kernel base
1514 	 * we can release the htable.
1515 	 */
1516 	if (base < kernelbase)
1517 		htable_release(ht);
1518 }
1519 
1520 /*
1521  * Walk through a given htable looking for the first valid entry.  This
1522  * routine takes both a starting and ending address.  The starting address
1523  * is required to be within the htable provided by the caller, but there is
1524  * no such restriction on the ending address.
1525  *
1526  * If the routine finds a valid entry in the htable (at or beyond the
1527  * starting address), the PTE (and its address) will be returned.
1528  * This PTE may correspond to either a page or a pagetable - it is the
1529  * caller's responsibility to determine which.  If no valid entry is
1530  * found, 0 (and invalid PTE) and the next unexamined address will be
1531  * returned.
1532  *
1533  * The loop has been carefully coded for optimization.
1534  */
1535 static x86pte_t
1536 htable_scan(htable_t *ht, uintptr_t *vap, uintptr_t eaddr)
1537 {
1538 	uint_t e;
1539 	x86pte_t found_pte = (x86pte_t)0;
1540 	caddr_t pte_ptr;
1541 	caddr_t end_pte_ptr;
1542 	int l = ht->ht_level;
1543 	uintptr_t va = *vap & LEVEL_MASK(l);
1544 	size_t pgsize = LEVEL_SIZE(l);
1545 
1546 	ASSERT(va >= ht->ht_vaddr);
1547 	ASSERT(va <= HTABLE_LAST_PAGE(ht));
1548 
1549 	/*
1550 	 * Compute the starting index and ending virtual address
1551 	 */
1552 	e = htable_va2entry(va, ht);
1553 
1554 	/*
1555 	 * The following page table scan code knows that the valid
1556 	 * bit of a PTE is in the lowest byte AND that x86 is little endian!!
1557 	 */
1558 	pte_ptr = (caddr_t)x86pte_access_pagetable(ht, 0);
1559 	end_pte_ptr = (caddr_t)PT_INDEX_PTR(pte_ptr, HTABLE_NUM_PTES(ht));
1560 	pte_ptr = (caddr_t)PT_INDEX_PTR((x86pte_t *)pte_ptr, e);
1561 	while (!PTE_ISVALID(*pte_ptr)) {
1562 		va += pgsize;
1563 		if (va >= eaddr)
1564 			break;
1565 		pte_ptr += mmu.pte_size;
1566 		ASSERT(pte_ptr <= end_pte_ptr);
1567 		if (pte_ptr == end_pte_ptr)
1568 			break;
1569 	}
1570 
1571 	/*
1572 	 * if we found a valid PTE, load the entire PTE
1573 	 */
1574 	if (va < eaddr && pte_ptr != end_pte_ptr)
1575 		found_pte = GET_PTE((x86pte_t *)pte_ptr);
1576 	x86pte_release_pagetable(ht);
1577 
1578 #if defined(__amd64)
1579 	/*
1580 	 * deal with VA hole on amd64
1581 	 */
1582 	if (l == mmu.max_level && va >= mmu.hole_start && va <= mmu.hole_end)
1583 		va = mmu.hole_end + va - mmu.hole_start;
1584 #endif /* __amd64 */
1585 
1586 	*vap = va;
1587 	return (found_pte);
1588 }
1589 
1590 /*
1591  * Find the address and htable for the first populated translation at or
1592  * above the given virtual address.  The caller may also specify an upper
1593  * limit to the address range to search.  Uses level information to quickly
1594  * skip unpopulated sections of virtual address spaces.
1595  *
1596  * If not found returns NULL. When found, returns the htable and virt addr
1597  * and has a hold on the htable.
1598  */
1599 x86pte_t
1600 htable_walk(
1601 	struct hat *hat,
1602 	htable_t **htp,
1603 	uintptr_t *vaddr,
1604 	uintptr_t eaddr)
1605 {
1606 	uintptr_t va = *vaddr;
1607 	htable_t *ht;
1608 	htable_t *prev = *htp;
1609 	level_t l;
1610 	level_t max_mapped_level;
1611 	x86pte_t pte;
1612 
1613 	ASSERT(eaddr > va);
1614 
1615 	/*
1616 	 * If this is a user address, then we know we need not look beyond
1617 	 * kernelbase.
1618 	 */
1619 	ASSERT(hat == kas.a_hat || eaddr <= kernelbase ||
1620 	    eaddr == HTABLE_WALK_TO_END);
1621 	if (hat != kas.a_hat && eaddr == HTABLE_WALK_TO_END)
1622 		eaddr = kernelbase;
1623 
1624 	/*
1625 	 * If we're coming in with a previous page table, search it first
1626 	 * without doing an htable_lookup(), this should be frequent.
1627 	 */
1628 	if (prev) {
1629 		ASSERT(prev->ht_busy > 0);
1630 		ASSERT(prev->ht_vaddr <= va);
1631 		l = prev->ht_level;
1632 		if (va <= HTABLE_LAST_PAGE(prev)) {
1633 			pte = htable_scan(prev, &va, eaddr);
1634 
1635 			if (PTE_ISPAGE(pte, l)) {
1636 				*vaddr = va;
1637 				*htp = prev;
1638 				return (pte);
1639 			}
1640 		}
1641 
1642 		/*
1643 		 * We found nothing in the htable provided by the caller,
1644 		 * so fall through and do the full search
1645 		 */
1646 		htable_release(prev);
1647 	}
1648 
1649 	/*
1650 	 * Find the level of the largest pagesize used by this HAT.
1651 	 */
1652 	if (hat->hat_ism_pgcnt > 0) {
1653 		max_mapped_level = mmu.umax_page_level;
1654 	} else {
1655 		max_mapped_level = 0;
1656 		for (l = 1; l <= mmu.max_page_level; ++l)
1657 			if (hat->hat_pages_mapped[l] != 0)
1658 				max_mapped_level = l;
1659 	}
1660 
1661 	while (va < eaddr && va >= *vaddr) {
1662 		ASSERT(!IN_VA_HOLE(va));
1663 
1664 		/*
1665 		 *  Find lowest table with any entry for given address.
1666 		 */
1667 		for (l = 0; l <= TOP_LEVEL(hat); ++l) {
1668 			ht = htable_lookup(hat, va, l);
1669 			if (ht != NULL) {
1670 				pte = htable_scan(ht, &va, eaddr);
1671 				if (PTE_ISPAGE(pte, l)) {
1672 					*vaddr = va;
1673 					*htp = ht;
1674 					return (pte);
1675 				}
1676 				htable_release(ht);
1677 				break;
1678 			}
1679 
1680 			/*
1681 			 * No htable at this level for the address. If there
1682 			 * is no larger page size that could cover it, we can
1683 			 * skip right to the start of the next page table.
1684 			 */
1685 			ASSERT(l < TOP_LEVEL(hat));
1686 			if (l >= max_mapped_level) {
1687 				va = NEXT_ENTRY_VA(va, l + 1);
1688 				if (va >= eaddr)
1689 					break;
1690 			}
1691 		}
1692 	}
1693 
1694 	*vaddr = 0;
1695 	*htp = NULL;
1696 	return (0);
1697 }
1698 
1699 /*
1700  * Find the htable and page table entry index of the given virtual address
1701  * with pagesize at or below given level.
1702  * If not found returns NULL. When found, returns the htable, sets
1703  * entry, and has a hold on the htable.
1704  */
1705 htable_t *
1706 htable_getpte(
1707 	struct hat *hat,
1708 	uintptr_t vaddr,
1709 	uint_t *entry,
1710 	x86pte_t *pte,
1711 	level_t level)
1712 {
1713 	htable_t	*ht;
1714 	level_t		l;
1715 	uint_t		e;
1716 
1717 	ASSERT(level <= mmu.max_page_level);
1718 
1719 	for (l = 0; l <= level; ++l) {
1720 		ht = htable_lookup(hat, vaddr, l);
1721 		if (ht == NULL)
1722 			continue;
1723 		e = htable_va2entry(vaddr, ht);
1724 		if (entry != NULL)
1725 			*entry = e;
1726 		if (pte != NULL)
1727 			*pte = x86pte_get(ht, e);
1728 		return (ht);
1729 	}
1730 	return (NULL);
1731 }
1732 
1733 /*
1734  * Find the htable and page table entry index of the given virtual address.
1735  * There must be a valid page mapped at the given address.
1736  * If not found returns NULL. When found, returns the htable, sets
1737  * entry, and has a hold on the htable.
1738  */
1739 htable_t *
1740 htable_getpage(struct hat *hat, uintptr_t vaddr, uint_t *entry)
1741 {
1742 	htable_t	*ht;
1743 	uint_t		e;
1744 	x86pte_t	pte;
1745 
1746 	ht = htable_getpte(hat, vaddr, &e, &pte, mmu.max_page_level);
1747 	if (ht == NULL)
1748 		return (NULL);
1749 
1750 	if (entry)
1751 		*entry = e;
1752 
1753 	if (PTE_ISPAGE(pte, ht->ht_level))
1754 		return (ht);
1755 	htable_release(ht);
1756 	return (NULL);
1757 }
1758 
1759 
1760 void
1761 htable_init()
1762 {
1763 	/*
1764 	 * To save on kernel VA usage, we avoid debug information in 32 bit
1765 	 * kernels.
1766 	 */
1767 #if defined(__amd64)
1768 	int	kmem_flags = KMC_NOHASH;
1769 #elif defined(__i386)
1770 	int	kmem_flags = KMC_NOHASH | KMC_NODEBUG;
1771 #endif
1772 
1773 	/*
1774 	 * initialize kmem caches
1775 	 */
1776 	htable_cache = kmem_cache_create("htable_t",
1777 	    sizeof (htable_t), 0, NULL, NULL,
1778 	    htable_reap, NULL, hat_memload_arena, kmem_flags);
1779 }
1780 
1781 /*
1782  * get the pte index for the virtual address in the given htable's pagetable
1783  */
1784 uint_t
1785 htable_va2entry(uintptr_t va, htable_t *ht)
1786 {
1787 	level_t	l = ht->ht_level;
1788 
1789 	ASSERT(va >= ht->ht_vaddr);
1790 	ASSERT(va <= HTABLE_LAST_PAGE(ht));
1791 	return ((va >> LEVEL_SHIFT(l)) & (HTABLE_NUM_PTES(ht) - 1));
1792 }
1793 
1794 /*
1795  * Given an htable and the index of a pte in it, return the virtual address
1796  * of the page.
1797  */
1798 uintptr_t
1799 htable_e2va(htable_t *ht, uint_t entry)
1800 {
1801 	level_t	l = ht->ht_level;
1802 	uintptr_t va;
1803 
1804 	ASSERT(entry < HTABLE_NUM_PTES(ht));
1805 	va = ht->ht_vaddr + ((uintptr_t)entry << LEVEL_SHIFT(l));
1806 
1807 	/*
1808 	 * Need to skip over any VA hole in top level table
1809 	 */
1810 #if defined(__amd64)
1811 	if (ht->ht_level == mmu.max_level && va >= mmu.hole_start)
1812 		va += ((mmu.hole_end - mmu.hole_start) + 1);
1813 #endif
1814 
1815 	return (va);
1816 }
1817 
1818 /*
1819  * The code uses compare and swap instructions to read/write PTE's to
1820  * avoid atomicity problems, since PTEs can be 8 bytes on 32 bit systems.
1821  * will naturally be atomic.
1822  *
1823  * The combination of using kpreempt_disable()/_enable() and the hci_mutex
1824  * are used to ensure that an interrupt won't overwrite a temporary mapping
1825  * while it's in use. If an interrupt thread tries to access a PTE, it will
1826  * yield briefly back to the pinned thread which holds the cpu's hci_mutex.
1827  */
1828 void
1829 x86pte_cpu_init(cpu_t *cpu)
1830 {
1831 	struct hat_cpu_info *hci;
1832 
1833 	hci = kmem_zalloc(sizeof (*hci), KM_SLEEP);
1834 	mutex_init(&hci->hci_mutex, NULL, MUTEX_DEFAULT, NULL);
1835 	cpu->cpu_hat_info = hci;
1836 }
1837 
1838 void
1839 x86pte_cpu_fini(cpu_t *cpu)
1840 {
1841 	struct hat_cpu_info *hci = cpu->cpu_hat_info;
1842 
1843 	kmem_free(hci, sizeof (*hci));
1844 	cpu->cpu_hat_info = NULL;
1845 }
1846 
1847 #ifdef __i386
1848 /*
1849  * On 32 bit kernels, loading a 64 bit PTE is a little tricky
1850  */
1851 x86pte_t
1852 get_pte64(x86pte_t *ptr)
1853 {
1854 	volatile uint32_t *p = (uint32_t *)ptr;
1855 	x86pte_t t;
1856 
1857 	ASSERT(mmu.pae_hat != 0);
1858 	for (;;) {
1859 		t = p[0];
1860 		t |= (uint64_t)p[1] << 32;
1861 		if ((t & 0xffffffff) == p[0])
1862 			return (t);
1863 	}
1864 }
1865 #endif /* __i386 */
1866 
1867 /*
1868  * Disable preemption and establish a mapping to the pagetable with the
1869  * given pfn. This is optimized for there case where it's the same
1870  * pfn as we last used referenced from this CPU.
1871  */
1872 static x86pte_t *
1873 x86pte_access_pagetable(htable_t *ht, uint_t index)
1874 {
1875 	/*
1876 	 * VLP pagetables are contained in the hat_t
1877 	 */
1878 	if (ht->ht_flags & HTABLE_VLP)
1879 		return (PT_INDEX_PTR(ht->ht_hat->hat_vlp_ptes, index));
1880 	return (x86pte_mapin(ht->ht_pfn, index, ht));
1881 }
1882 
1883 /*
1884  * map the given pfn into the page table window.
1885  */
1886 /*ARGSUSED*/
1887 x86pte_t *
1888 x86pte_mapin(pfn_t pfn, uint_t index, htable_t *ht)
1889 {
1890 	x86pte_t *pteptr;
1891 	x86pte_t pte = 0;
1892 	x86pte_t newpte;
1893 	int x;
1894 
1895 	ASSERT(pfn != PFN_INVALID);
1896 
1897 	if (!khat_running) {
1898 		caddr_t va = kbm_remap_window(pfn_to_pa(pfn), 1);
1899 		return (PT_INDEX_PTR(va, index));
1900 	}
1901 
1902 	/*
1903 	 * If kpm is available, use it.
1904 	 */
1905 	if (kpm_vbase)
1906 		return (PT_INDEX_PTR(hat_kpm_pfn2va(pfn), index));
1907 
1908 	/*
1909 	 * Disable preemption and grab the CPU's hci_mutex
1910 	 */
1911 	kpreempt_disable();
1912 	ASSERT(CPU->cpu_hat_info != NULL);
1913 	mutex_enter(&CPU->cpu_hat_info->hci_mutex);
1914 	x = PWIN_TABLE(CPU->cpu_id);
1915 	pteptr = (x86pte_t *)PWIN_PTE_VA(x);
1916 #ifndef __xpv
1917 	if (mmu.pae_hat)
1918 		pte = *pteptr;
1919 	else
1920 		pte = *(x86pte32_t *)pteptr;
1921 #endif
1922 
1923 	newpte = MAKEPTE(pfn, 0) | mmu.pt_global | mmu.pt_nx;
1924 
1925 	/*
1926 	 * For hardware we can use a writable mapping.
1927 	 */
1928 #ifdef __xpv
1929 	if (IN_XPV_PANIC())
1930 #endif
1931 		newpte |= PT_WRITABLE;
1932 
1933 	if (!PTE_EQUIV(newpte, pte)) {
1934 
1935 #ifdef __xpv
1936 		if (!IN_XPV_PANIC()) {
1937 			xen_map(newpte, PWIN_VA(x));
1938 		} else
1939 #endif
1940 		{
1941 			XPV_ALLOW_PAGETABLE_UPDATES();
1942 			if (mmu.pae_hat)
1943 				*pteptr = newpte;
1944 			else
1945 				*(x86pte32_t *)pteptr = newpte;
1946 			XPV_DISALLOW_PAGETABLE_UPDATES();
1947 			mmu_tlbflush_entry((caddr_t)(PWIN_VA(x)));
1948 		}
1949 	}
1950 	return (PT_INDEX_PTR(PWIN_VA(x), index));
1951 }
1952 
1953 /*
1954  * Release access to a page table.
1955  */
1956 static void
1957 x86pte_release_pagetable(htable_t *ht)
1958 {
1959 	/*
1960 	 * nothing to do for VLP htables
1961 	 */
1962 	if (ht->ht_flags & HTABLE_VLP)
1963 		return;
1964 
1965 	x86pte_mapout();
1966 }
1967 
1968 void
1969 x86pte_mapout(void)
1970 {
1971 	if (kpm_vbase != NULL || !khat_running)
1972 		return;
1973 
1974 	/*
1975 	 * Drop the CPU's hci_mutex and restore preemption.
1976 	 */
1977 #ifdef __xpv
1978 	if (!IN_XPV_PANIC()) {
1979 		uintptr_t va;
1980 
1981 		/*
1982 		 * We need to always clear the mapping in case a page
1983 		 * that was once a page table page is ballooned out.
1984 		 */
1985 		va = (uintptr_t)PWIN_VA(PWIN_TABLE(CPU->cpu_id));
1986 		(void) HYPERVISOR_update_va_mapping(va, 0,
1987 		    UVMF_INVLPG | UVMF_LOCAL);
1988 	}
1989 #endif
1990 	mutex_exit(&CPU->cpu_hat_info->hci_mutex);
1991 	kpreempt_enable();
1992 }
1993 
1994 /*
1995  * Atomic retrieval of a pagetable entry
1996  */
1997 x86pte_t
1998 x86pte_get(htable_t *ht, uint_t entry)
1999 {
2000 	x86pte_t	pte;
2001 	x86pte_t	*ptep;
2002 
2003 	/*
2004 	 * Be careful that loading PAE entries in 32 bit kernel is atomic.
2005 	 */
2006 	ASSERT(entry < mmu.ptes_per_table);
2007 	ptep = x86pte_access_pagetable(ht, entry);
2008 	pte = GET_PTE(ptep);
2009 	x86pte_release_pagetable(ht);
2010 	return (pte);
2011 }
2012 
2013 /*
2014  * Atomic unconditional set of a page table entry, it returns the previous
2015  * value. For pre-existing mappings if the PFN changes, then we don't care
2016  * about the old pte's REF / MOD bits. If the PFN remains the same, we leave
2017  * the MOD/REF bits unchanged.
2018  *
2019  * If asked to overwrite a link to a lower page table with a large page
2020  * mapping, this routine returns the special value of LPAGE_ERROR. This
2021  * allows the upper HAT layers to retry with a smaller mapping size.
2022  */
2023 x86pte_t
2024 x86pte_set(htable_t *ht, uint_t entry, x86pte_t new, void *ptr)
2025 {
2026 	x86pte_t	old;
2027 	x86pte_t	prev;
2028 	x86pte_t	*ptep;
2029 	level_t		l = ht->ht_level;
2030 	x86pte_t	pfn_mask = (l != 0) ? PT_PADDR_LGPG : PT_PADDR;
2031 	x86pte_t	n;
2032 	uintptr_t	addr = htable_e2va(ht, entry);
2033 	hat_t		*hat = ht->ht_hat;
2034 
2035 	ASSERT(new != 0); /* don't use to invalidate a PTE, see x86pte_update */
2036 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2037 	if (ptr == NULL)
2038 		ptep = x86pte_access_pagetable(ht, entry);
2039 	else
2040 		ptep = ptr;
2041 
2042 	/*
2043 	 * Install the new PTE. If remapping the same PFN, then
2044 	 * copy existing REF/MOD bits to new mapping.
2045 	 */
2046 	do {
2047 		prev = GET_PTE(ptep);
2048 		n = new;
2049 		if (PTE_ISVALID(n) && (prev & pfn_mask) == (new & pfn_mask))
2050 			n |= prev & (PT_REF | PT_MOD);
2051 
2052 		/*
2053 		 * Another thread may have installed this mapping already,
2054 		 * flush the local TLB and be done.
2055 		 */
2056 		if (prev == n) {
2057 			old = new;
2058 #ifdef __xpv
2059 			if (!IN_XPV_PANIC())
2060 				xen_flush_va((caddr_t)addr);
2061 			else
2062 #endif
2063 				mmu_tlbflush_entry((caddr_t)addr);
2064 			goto done;
2065 		}
2066 
2067 		/*
2068 		 * Detect if we have a collision of installing a large
2069 		 * page mapping where there already is a lower page table.
2070 		 */
2071 		if (l > 0 && (prev & PT_VALID) && !(prev & PT_PAGESIZE)) {
2072 			old = LPAGE_ERROR;
2073 			goto done;
2074 		}
2075 
2076 		XPV_ALLOW_PAGETABLE_UPDATES();
2077 		old = CAS_PTE(ptep, prev, n);
2078 		XPV_DISALLOW_PAGETABLE_UPDATES();
2079 	} while (old != prev);
2080 
2081 	/*
2082 	 * Do a TLB demap if needed, ie. the old pte was valid.
2083 	 *
2084 	 * Note that a stale TLB writeback to the PTE here either can't happen
2085 	 * or doesn't matter. The PFN can only change for NOSYNC|NOCONSIST
2086 	 * mappings, but they were created with REF and MOD already set, so
2087 	 * no stale writeback will happen.
2088 	 *
2089 	 * Segmap is the only place where remaps happen on the same pfn and for
2090 	 * that we want to preserve the stale REF/MOD bits.
2091 	 */
2092 	if (old & PT_REF)
2093 		hat_tlb_inval(hat, addr);
2094 
2095 done:
2096 	if (ptr == NULL)
2097 		x86pte_release_pagetable(ht);
2098 	return (old);
2099 }
2100 
2101 /*
2102  * Atomic compare and swap of a page table entry. No TLB invalidates are done.
2103  * This is used for links between pagetables of different levels.
2104  * Note we always create these links with dirty/access set, so they should
2105  * never change.
2106  */
2107 x86pte_t
2108 x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, x86pte_t new)
2109 {
2110 	x86pte_t	pte;
2111 	x86pte_t	*ptep;
2112 #ifdef __xpv
2113 	/*
2114 	 * We can't use writable pagetables for upper level tables, so fake it.
2115 	 */
2116 	mmu_update_t t[2];
2117 	int cnt = 1;
2118 	int count;
2119 	maddr_t ma;
2120 
2121 	if (!IN_XPV_PANIC()) {
2122 		ASSERT(!(ht->ht_flags & HTABLE_VLP));	/* no VLP yet */
2123 		ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry));
2124 		t[0].ptr = ma | MMU_NORMAL_PT_UPDATE;
2125 		t[0].val = new;
2126 
2127 #if defined(__amd64)
2128 		/*
2129 		 * On the 64-bit hypervisor we need to maintain the user mode
2130 		 * top page table too.
2131 		 */
2132 		if (ht->ht_level == mmu.max_level && ht->ht_hat != kas.a_hat) {
2133 			ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(
2134 			    ht->ht_hat->hat_user_ptable), entry));
2135 			t[1].ptr = ma | MMU_NORMAL_PT_UPDATE;
2136 			t[1].val = new;
2137 			++cnt;
2138 		}
2139 #endif	/* __amd64 */
2140 
2141 		if (HYPERVISOR_mmu_update(t, cnt, &count, DOMID_SELF))
2142 			panic("HYPERVISOR_mmu_update() failed");
2143 		ASSERT(count == cnt);
2144 		return (old);
2145 	}
2146 #endif
2147 	ptep = x86pte_access_pagetable(ht, entry);
2148 	XPV_ALLOW_PAGETABLE_UPDATES();
2149 	pte = CAS_PTE(ptep, old, new);
2150 	XPV_DISALLOW_PAGETABLE_UPDATES();
2151 	x86pte_release_pagetable(ht);
2152 	return (pte);
2153 }
2154 
2155 /*
2156  * Invalidate a page table entry as long as it currently maps something that
2157  * matches the value determined by expect.
2158  *
2159  * Also invalidates any TLB entries and returns the previous value of the PTE.
2160  */
2161 x86pte_t
2162 x86pte_inval(
2163 	htable_t *ht,
2164 	uint_t entry,
2165 	x86pte_t expect,
2166 	x86pte_t *pte_ptr)
2167 {
2168 	x86pte_t	*ptep;
2169 	x86pte_t	oldpte;
2170 	x86pte_t	found;
2171 
2172 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2173 	ASSERT(ht->ht_level <= mmu.max_page_level);
2174 
2175 	if (pte_ptr != NULL)
2176 		ptep = pte_ptr;
2177 	else
2178 		ptep = x86pte_access_pagetable(ht, entry);
2179 
2180 #if defined(__xpv)
2181 	/*
2182 	 * If exit()ing just use HYPERVISOR_mmu_update(), as we can't be racing
2183 	 * with anything else.
2184 	 */
2185 	if ((ht->ht_hat->hat_flags & HAT_FREEING) && !IN_XPV_PANIC()) {
2186 		int count;
2187 		mmu_update_t t[1];
2188 		maddr_t ma;
2189 
2190 		oldpte = GET_PTE(ptep);
2191 		if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR))
2192 			goto done;
2193 		ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry));
2194 		t[0].ptr = ma | MMU_NORMAL_PT_UPDATE;
2195 		t[0].val = 0;
2196 		if (HYPERVISOR_mmu_update(t, 1, &count, DOMID_SELF))
2197 			panic("HYPERVISOR_mmu_update() failed");
2198 		ASSERT(count == 1);
2199 		goto done;
2200 	}
2201 #endif /* __xpv */
2202 
2203 	/*
2204 	 * Note that the loop is needed to handle changes due to h/w updating
2205 	 * of PT_MOD/PT_REF.
2206 	 */
2207 	do {
2208 		oldpte = GET_PTE(ptep);
2209 		if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR))
2210 			goto done;
2211 		XPV_ALLOW_PAGETABLE_UPDATES();
2212 		found = CAS_PTE(ptep, oldpte, 0);
2213 		XPV_DISALLOW_PAGETABLE_UPDATES();
2214 	} while (found != oldpte);
2215 	if (oldpte & (PT_REF | PT_MOD))
2216 		hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry));
2217 
2218 done:
2219 	if (pte_ptr == NULL)
2220 		x86pte_release_pagetable(ht);
2221 	return (oldpte);
2222 }
2223 
2224 /*
2225  * Change a page table entry af it currently matches the value in expect.
2226  */
2227 x86pte_t
2228 x86pte_update(
2229 	htable_t *ht,
2230 	uint_t entry,
2231 	x86pte_t expect,
2232 	x86pte_t new)
2233 {
2234 	x86pte_t	*ptep;
2235 	x86pte_t	found;
2236 
2237 	ASSERT(new != 0);
2238 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2239 	ASSERT(ht->ht_level <= mmu.max_page_level);
2240 
2241 	ptep = x86pte_access_pagetable(ht, entry);
2242 	XPV_ALLOW_PAGETABLE_UPDATES();
2243 	found = CAS_PTE(ptep, expect, new);
2244 	XPV_DISALLOW_PAGETABLE_UPDATES();
2245 	if (found == expect) {
2246 		hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry));
2247 
2248 		/*
2249 		 * When removing write permission *and* clearing the
2250 		 * MOD bit, check if a write happened via a stale
2251 		 * TLB entry before the TLB shootdown finished.
2252 		 *
2253 		 * If it did happen, simply re-enable write permission and
2254 		 * act like the original CAS failed.
2255 		 */
2256 		if ((expect & (PT_WRITABLE | PT_MOD)) == PT_WRITABLE &&
2257 		    (new & (PT_WRITABLE | PT_MOD)) == 0 &&
2258 		    (GET_PTE(ptep) & PT_MOD) != 0) {
2259 			do {
2260 				found = GET_PTE(ptep);
2261 				XPV_ALLOW_PAGETABLE_UPDATES();
2262 				found =
2263 				    CAS_PTE(ptep, found, found | PT_WRITABLE);
2264 				XPV_DISALLOW_PAGETABLE_UPDATES();
2265 			} while ((found & PT_WRITABLE) == 0);
2266 		}
2267 	}
2268 	x86pte_release_pagetable(ht);
2269 	return (found);
2270 }
2271 
2272 #ifndef __xpv
2273 /*
2274  * Copy page tables - this is just a little more complicated than the
2275  * previous routines. Note that it's also not atomic! It also is never
2276  * used for VLP pagetables.
2277  */
2278 void
2279 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count)
2280 {
2281 	caddr_t	src_va;
2282 	caddr_t dst_va;
2283 	size_t size;
2284 	x86pte_t *pteptr;
2285 	x86pte_t pte;
2286 
2287 	ASSERT(khat_running);
2288 	ASSERT(!(dest->ht_flags & HTABLE_VLP));
2289 	ASSERT(!(src->ht_flags & HTABLE_VLP));
2290 	ASSERT(!(src->ht_flags & HTABLE_SHARED_PFN));
2291 	ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN));
2292 
2293 	/*
2294 	 * Acquire access to the CPU pagetable windows for the dest and source.
2295 	 */
2296 	dst_va = (caddr_t)x86pte_access_pagetable(dest, entry);
2297 	if (kpm_vbase) {
2298 		src_va = (caddr_t)
2299 		    PT_INDEX_PTR(hat_kpm_pfn2va(src->ht_pfn), entry);
2300 	} else {
2301 		uint_t x = PWIN_SRC(CPU->cpu_id);
2302 
2303 		/*
2304 		 * Finish defining the src pagetable mapping
2305 		 */
2306 		src_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry);
2307 		pte = MAKEPTE(src->ht_pfn, 0) | mmu.pt_global | mmu.pt_nx;
2308 		pteptr = (x86pte_t *)PWIN_PTE_VA(x);
2309 		if (mmu.pae_hat)
2310 			*pteptr = pte;
2311 		else
2312 			*(x86pte32_t *)pteptr = pte;
2313 		mmu_tlbflush_entry((caddr_t)(PWIN_VA(x)));
2314 	}
2315 
2316 	/*
2317 	 * now do the copy
2318 	 */
2319 	size = count << mmu.pte_size_shift;
2320 	bcopy(src_va, dst_va, size);
2321 
2322 	x86pte_release_pagetable(dest);
2323 }
2324 
2325 #else /* __xpv */
2326 
2327 /*
2328  * The hypervisor only supports writable pagetables at level 0, so we have
2329  * to install these 1 by 1 the slow way.
2330  */
2331 void
2332 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count)
2333 {
2334 	caddr_t	src_va;
2335 	x86pte_t pte;
2336 
2337 	ASSERT(!IN_XPV_PANIC());
2338 	src_va = (caddr_t)x86pte_access_pagetable(src, entry);
2339 	while (count) {
2340 		if (mmu.pae_hat)
2341 			pte = *(x86pte_t *)src_va;
2342 		else
2343 			pte = *(x86pte32_t *)src_va;
2344 		if (pte != 0) {
2345 			set_pteval(pfn_to_pa(dest->ht_pfn), entry,
2346 			    dest->ht_level, pte);
2347 #ifdef __amd64
2348 			if (dest->ht_level == mmu.max_level &&
2349 			    htable_e2va(dest, entry) < HYPERVISOR_VIRT_END)
2350 				set_pteval(
2351 				    pfn_to_pa(dest->ht_hat->hat_user_ptable),
2352 				    entry, dest->ht_level, pte);
2353 #endif
2354 		}
2355 		--count;
2356 		++entry;
2357 		src_va += mmu.pte_size;
2358 	}
2359 	x86pte_release_pagetable(src);
2360 }
2361 #endif /* __xpv */
2362 
2363 /*
2364  * Zero page table entries - Note this doesn't use atomic stores!
2365  */
2366 static void
2367 x86pte_zero(htable_t *dest, uint_t entry, uint_t count)
2368 {
2369 	caddr_t dst_va;
2370 	size_t size;
2371 #ifdef __xpv
2372 	int x;
2373 	x86pte_t newpte;
2374 #endif
2375 
2376 	/*
2377 	 * Map in the page table to be zeroed.
2378 	 */
2379 	ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN));
2380 	ASSERT(!(dest->ht_flags & HTABLE_VLP));
2381 
2382 	/*
2383 	 * On the hypervisor we don't use x86pte_access_pagetable() since
2384 	 * in this case the page is not pinned yet.
2385 	 */
2386 #ifdef __xpv
2387 	if (kpm_vbase == NULL) {
2388 		kpreempt_disable();
2389 		ASSERT(CPU->cpu_hat_info != NULL);
2390 		mutex_enter(&CPU->cpu_hat_info->hci_mutex);
2391 		x = PWIN_TABLE(CPU->cpu_id);
2392 		newpte = MAKEPTE(dest->ht_pfn, 0) | PT_WRITABLE;
2393 		xen_map(newpte, PWIN_VA(x));
2394 		dst_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry);
2395 	} else
2396 #endif
2397 		dst_va = (caddr_t)x86pte_access_pagetable(dest, entry);
2398 
2399 	size = count << mmu.pte_size_shift;
2400 	ASSERT(size > BLOCKZEROALIGN);
2401 #ifdef __i386
2402 	if ((x86_feature & X86_SSE2) == 0)
2403 		bzero(dst_va, size);
2404 	else
2405 #endif
2406 		block_zero_no_xmm(dst_va, size);
2407 
2408 #ifdef __xpv
2409 	if (kpm_vbase == NULL) {
2410 		xen_map(0, PWIN_VA(x));
2411 		mutex_exit(&CPU->cpu_hat_info->hci_mutex);
2412 		kpreempt_enable();
2413 	} else
2414 #endif
2415 		x86pte_release_pagetable(dest);
2416 }
2417 
2418 /*
2419  * Called to ensure that all pagetables are in the system dump
2420  */
2421 void
2422 hat_dump(void)
2423 {
2424 	hat_t *hat;
2425 	uint_t h;
2426 	htable_t *ht;
2427 
2428 	/*
2429 	 * Dump all page tables
2430 	 */
2431 	for (hat = kas.a_hat; hat != NULL; hat = hat->hat_next) {
2432 		for (h = 0; h < hat->hat_num_hash; ++h) {
2433 			for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
2434 				if ((ht->ht_flags & HTABLE_VLP) == 0)
2435 					dump_page(ht->ht_pfn);
2436 			}
2437 		}
2438 	}
2439 }
2440