xref: /titanic_50/usr/src/uts/i86pc/vm/hment.c (revision 7071be58192c322eb4875bbbd962005086bbafe2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/sysmacros.h>
30 #include <sys/kmem.h>
31 #include <sys/atomic.h>
32 #include <sys/bitmap.h>
33 #include <sys/systm.h>
34 #include <vm/seg_kmem.h>
35 #include <vm/hat.h>
36 #include <vm/vm_dep.h>
37 #include <vm/hat_i86.h>
38 #include <sys/cmn_err.h>
39 
40 
41 /*
42  * When pages are shared by more than one mapping, a list of these
43  * structs hangs off of the page_t connected by the hm_next and hm_prev
44  * fields.  Every hment is also indexed by a system-wide hash table, using
45  * hm_hashnext to connect it to the chain of hments in a single hash
46  * bucket.
47  */
48 struct hment {
49 	struct hment	*hm_hashnext;	/* next mapping on hash chain */
50 	struct hment	*hm_next;	/* next mapping of same page */
51 	struct hment	*hm_prev;	/* previous mapping of same page */
52 	htable_t	*hm_htable;	/* corresponding htable_t */
53 	pfn_t		hm_pfn;		/* mapping page frame number */
54 	uint16_t	hm_entry;	/* index of pte in htable */
55 	uint16_t	hm_pad;		/* explicitly expose compiler padding */
56 #ifdef __amd64
57 	uint32_t	hm_pad2;	/* explicitly expose compiler padding */
58 #endif
59 };
60 
61 /*
62  * Value returned by hment_walk() when dealing with a single mapping
63  * embedded in the page_t.
64  */
65 #define	HMENT_EMBEDDED ((hment_t *)(uintptr_t)1)
66 
67 kmem_cache_t *hment_cache;
68 
69 /*
70  * The hment reserve is similar to the htable reserve, with the following
71  * exception. Hment's are never needed for HAT kmem allocs.
72  *
73  * The hment_reserve_amount variable is used, so that you can change it's
74  * value to zero via a kernel debugger to force stealing to get tested.
75  */
76 #define	HMENT_RESERVE_AMOUNT	(200)	/* currently a guess at right value. */
77 uint_t hment_reserve_amount = HMENT_RESERVE_AMOUNT;
78 kmutex_t hment_reserve_mutex;
79 uint_t	hment_reserve_count;
80 hment_t	*hment_reserve_pool;
81 extern  kthread_t *hat_reserves_thread;
82 
83 /*
84  * Possible performance RFE: we might need to make this dynamic, perhaps
85  * based on the number of pages in the system.
86  */
87 #define	HMENT_HASH_SIZE (64 * 1024)
88 static uint_t hment_hash_entries = HMENT_HASH_SIZE;
89 static hment_t **hment_hash;
90 
91 /*
92  * Lots of highly shared pages will have the same value for "entry" (consider
93  * the starting address of "xterm" or "sh"). So we'll distinguish them by
94  * adding the pfn of the page table into both the high bits.
95  * The shift by 9 corresponds to the range of values for entry (0..511).
96  */
97 #define	HMENT_HASH(pfn, entry) (uint32_t) 	\
98 	((((pfn) << 9) + entry + pfn) & (hment_hash_entries - 1))
99 
100 /*
101  * "mlist_lock" is a hashed mutex lock for protecting per-page mapping
102  * lists and "hash_lock" is a similar lock protecting the hment hash
103  * table.  The hashed approach is taken to avoid the spatial overhead of
104  * maintaining a separate lock for each page, while still achieving better
105  * scalability than a single lock would allow.
106  */
107 #define	MLIST_NUM_LOCK	256		/* must be power of two */
108 static kmutex_t mlist_lock[MLIST_NUM_LOCK];
109 
110 /*
111  * the shift by 9 is so that all large pages don't use the same hash bucket
112  */
113 #define	MLIST_MUTEX(pp) \
114 	&mlist_lock[((pp)->p_pagenum + ((pp)->p_pagenum >> 9)) & \
115 	(MLIST_NUM_LOCK - 1)]
116 
117 #define	HASH_NUM_LOCK	256		/* must be power of two */
118 static kmutex_t hash_lock[HASH_NUM_LOCK];
119 
120 #define	HASH_MUTEX(idx) &hash_lock[(idx) & (HASH_NUM_LOCK-1)]
121 
122 static hment_t *hment_steal(void);
123 
124 /*
125  * put one hment onto the reserves list
126  */
127 static void
128 hment_put_reserve(hment_t *hm)
129 {
130 	HATSTAT_INC(hs_hm_put_reserve);
131 	mutex_enter(&hment_reserve_mutex);
132 	hm->hm_next = hment_reserve_pool;
133 	hment_reserve_pool = hm;
134 	++hment_reserve_count;
135 	mutex_exit(&hment_reserve_mutex);
136 }
137 
138 /*
139  * Take one hment from the reserve.
140  */
141 static hment_t *
142 hment_get_reserve(void)
143 {
144 	hment_t *hm = NULL;
145 
146 	/*
147 	 * We rely on a "donation system" to refill the hment reserve
148 	 * list, which only takes place when we are allocating hments for
149 	 * user mappings.  It is theoretically possible that an incredibly
150 	 * long string of kernel hment_alloc()s with no intervening user
151 	 * hment_alloc()s could exhaust that pool.
152 	 */
153 	HATSTAT_INC(hs_hm_get_reserve);
154 	mutex_enter(&hment_reserve_mutex);
155 	if (hment_reserve_count != 0) {
156 		hm = hment_reserve_pool;
157 		hment_reserve_pool = hm->hm_next;
158 		--hment_reserve_count;
159 	}
160 	mutex_exit(&hment_reserve_mutex);
161 	return (hm);
162 }
163 
164 /*
165  * Allocate an hment
166  */
167 static hment_t *
168 hment_alloc()
169 {
170 	int km_flag = can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP;
171 	hment_t	*hm = NULL;
172 	int use_reserves = (use_boot_reserve ||
173 	    curthread == hat_reserves_thread || panicstr != NULL);
174 
175 	/*
176 	 * If we aren't using the reserves, try using kmem to get an hment.
177 	 * Donate any successful allocations to reserves if low.
178 	 *
179 	 * If we're in panic, resort to using the reserves.
180 	 */
181 	HATSTAT_INC(hs_hm_alloc);
182 	if (!use_reserves) {
183 		for (;;) {
184 			hm = kmem_cache_alloc(hment_cache, km_flag);
185 			if (hment_reserve_count >= hment_reserve_amount ||
186 			    hm == NULL || panicstr != NULL ||
187 			    curthread == hat_reserves_thread)
188 				break;
189 			hment_put_reserve(hm);
190 		}
191 	}
192 
193 	/*
194 	 * If allocation failed, we need to tap the reserves or steal
195 	 */
196 	if (hm == NULL) {
197 		if (use_reserves)
198 			hm = hment_get_reserve();
199 
200 		/*
201 		 * If we still haven't gotten an hment, attempt to steal one by
202 		 * victimizing a mapping in a user htable.
203 		 */
204 		if (hm == NULL && can_steal_post_boot)
205 			hm = hment_steal();
206 
207 		/*
208 		 * we're in dire straights, try the reserve
209 		 */
210 		if (hm == NULL)
211 			hm = hment_get_reserve();
212 
213 		/*
214 		 * still no hment is a serious problem.
215 		 */
216 		if (hm == NULL)
217 			panic("hment_alloc(): no reserve, couldn't steal");
218 	}
219 
220 
221 	hm->hm_entry = 0;
222 	hm->hm_htable = NULL;
223 	hm->hm_hashnext = NULL;
224 	hm->hm_next = NULL;
225 	hm->hm_prev = NULL;
226 	hm->hm_pfn = PFN_INVALID;
227 	return (hm);
228 }
229 
230 /*
231  * Free an hment, possibly to the reserves list when called from the
232  * thread using the reserves. For example, when freeing an hment during an
233  * htable_steal(), we can't recurse into the kmem allocator, so we just
234  * push the hment onto the reserve list.
235  */
236 void
237 hment_free(hment_t *hm)
238 {
239 #ifdef DEBUG
240 	/*
241 	 * zero out all fields to try and force any race conditions to segfault
242 	 */
243 	bzero(hm, sizeof (*hm));
244 #endif
245 	HATSTAT_INC(hs_hm_free);
246 	if (curthread == hat_reserves_thread ||
247 	    hment_reserve_count < hment_reserve_amount)
248 		hment_put_reserve(hm);
249 	else
250 		kmem_cache_free(hment_cache, hm);
251 }
252 
253 int
254 x86_hm_held(page_t *pp)
255 {
256 	ASSERT(pp != NULL);
257 	return (MUTEX_HELD(MLIST_MUTEX(pp)));
258 }
259 
260 void
261 x86_hm_enter(page_t *pp)
262 {
263 	ASSERT(pp != NULL);
264 	mutex_enter(MLIST_MUTEX(pp));
265 }
266 
267 void
268 x86_hm_exit(page_t *pp)
269 {
270 	ASSERT(pp != NULL);
271 	mutex_exit(MLIST_MUTEX(pp));
272 }
273 
274 /*
275  * Internal routine to add a full hment to a page_t mapping list
276  */
277 static void
278 hment_insert(hment_t *hm, page_t *pp)
279 {
280 	uint_t		idx;
281 
282 	ASSERT(x86_hm_held(pp));
283 	ASSERT(!pp->p_embed);
284 
285 	/*
286 	 * Add the hment to the page's mapping list.
287 	 */
288 	++pp->p_share;
289 	hm->hm_next = pp->p_mapping;
290 	if (pp->p_mapping != NULL)
291 		((hment_t *)pp->p_mapping)->hm_prev = hm;
292 	pp->p_mapping = hm;
293 
294 	/*
295 	 * Add the hment to the system-wide hash table.
296 	 */
297 	idx = HMENT_HASH(hm->hm_htable->ht_pfn, hm->hm_entry);
298 
299 	mutex_enter(HASH_MUTEX(idx));
300 	hm->hm_hashnext = hment_hash[idx];
301 	hment_hash[idx] = hm;
302 	mutex_exit(HASH_MUTEX(idx));
303 }
304 
305 /*
306  * Prepare a mapping list entry to the given page.
307  *
308  * There are 4 different situations to deal with:
309  *
310  * - Adding the first mapping to a page_t as an embedded hment
311  * - Refaulting on an existing embedded mapping
312  * - Upgrading an embedded mapping when adding a 2nd mapping
313  * - Adding another mapping to a page_t that already has multiple mappings
314  *	 note we don't optimized for the refaulting case here.
315  *
316  * Due to competition with other threads that may be mapping/unmapping the
317  * same page and the need to drop all locks while allocating hments, any or
318  * all of the 3 situations can occur (and in almost any order) in any given
319  * call. Isn't this fun!
320  */
321 hment_t *
322 hment_prepare(htable_t *htable, uint_t entry, page_t *pp)
323 {
324 	hment_t		*hm = NULL;
325 
326 	ASSERT(x86_hm_held(pp));
327 
328 	for (;;) {
329 
330 		/*
331 		 * The most common case is establishing the first mapping to a
332 		 * page, so check that first. This doesn't need any allocated
333 		 * hment.
334 		 */
335 		if (pp->p_mapping == NULL) {
336 			ASSERT(!pp->p_embed);
337 			ASSERT(pp->p_share == 0);
338 			if (hm == NULL)
339 				break;
340 
341 			/*
342 			 * we had an hment already, so free it and retry
343 			 */
344 			goto free_and_continue;
345 		}
346 
347 		/*
348 		 * If there is an embedded mapping, we may need to
349 		 * convert it to an hment.
350 		 */
351 		if (pp->p_embed) {
352 
353 			/* should point to htable */
354 			ASSERT(pp->p_mapping != NULL);
355 
356 			/*
357 			 * If we are faulting on a pre-existing mapping
358 			 * there is no need to promote/allocate a new hment.
359 			 * This happens a lot due to segmap.
360 			 */
361 			if (pp->p_mapping == htable && pp->p_mlentry == entry) {
362 				if (hm == NULL)
363 					break;
364 				goto free_and_continue;
365 			}
366 
367 			/*
368 			 * If we have an hment allocated, use it to promote the
369 			 * existing embedded mapping.
370 			 */
371 			if (hm != NULL) {
372 				hm->hm_htable = pp->p_mapping;
373 				hm->hm_entry = pp->p_mlentry;
374 				hm->hm_pfn = pp->p_pagenum;
375 				pp->p_mapping = NULL;
376 				pp->p_share = 0;
377 				pp->p_embed = 0;
378 				hment_insert(hm, pp);
379 			}
380 
381 			/*
382 			 * We either didn't have an hment allocated or we just
383 			 * used it for the embedded mapping. In either case,
384 			 * allocate another hment and restart.
385 			 */
386 			goto allocate_and_continue;
387 		}
388 
389 		/*
390 		 * Last possibility is that we're adding an hment to a list
391 		 * of hments.
392 		 */
393 		if (hm != NULL)
394 			break;
395 allocate_and_continue:
396 		x86_hm_exit(pp);
397 		hm = hment_alloc();
398 		x86_hm_enter(pp);
399 		continue;
400 
401 free_and_continue:
402 		/*
403 		 * we allocated an hment already, free it and retry
404 		 */
405 		x86_hm_exit(pp);
406 		hment_free(hm);
407 		hm = NULL;
408 		x86_hm_enter(pp);
409 	}
410 	ASSERT(x86_hm_held(pp));
411 	return (hm);
412 }
413 
414 /*
415  * Record a mapping list entry for the htable/entry to the given page.
416  *
417  * hment_prepare() should have properly set up the situation.
418  */
419 void
420 hment_assign(htable_t *htable, uint_t entry, page_t *pp, hment_t *hm)
421 {
422 	ASSERT(x86_hm_held(pp));
423 
424 	/*
425 	 * The most common case is establishing the first mapping to a
426 	 * page, so check that first. This doesn't need any allocated
427 	 * hment.
428 	 */
429 	if (pp->p_mapping == NULL) {
430 		ASSERT(hm == NULL);
431 		ASSERT(!pp->p_embed);
432 		ASSERT(pp->p_share == 0);
433 		pp->p_embed = 1;
434 		pp->p_mapping = htable;
435 		pp->p_mlentry = entry;
436 		return;
437 	}
438 
439 	/*
440 	 * We should never get here with a pre-existing embedded maping
441 	 */
442 	ASSERT(!pp->p_embed);
443 
444 	/*
445 	 * add the new hment to the mapping list
446 	 */
447 	ASSERT(hm != NULL);
448 	hm->hm_htable = htable;
449 	hm->hm_entry = entry;
450 	hm->hm_pfn = pp->p_pagenum;
451 	hment_insert(hm, pp);
452 }
453 
454 /*
455  * Walk through the mappings for a page.
456  *
457  * must already have done an x86_hm_enter()
458  */
459 hment_t *
460 hment_walk(page_t *pp, htable_t **ht, uint_t *entry, hment_t *prev)
461 {
462 	hment_t		*hm;
463 
464 	ASSERT(x86_hm_held(pp));
465 
466 	if (pp->p_embed) {
467 		if (prev == NULL) {
468 			*ht = (htable_t *)pp->p_mapping;
469 			*entry = pp->p_mlentry;
470 			hm = HMENT_EMBEDDED;
471 		} else {
472 			ASSERT(prev == HMENT_EMBEDDED);
473 			hm = NULL;
474 		}
475 	} else {
476 		if (prev == NULL) {
477 			ASSERT(prev != HMENT_EMBEDDED);
478 			hm = (hment_t *)pp->p_mapping;
479 		} else {
480 			hm = prev->hm_next;
481 		}
482 
483 		if (hm != NULL) {
484 			*ht = hm->hm_htable;
485 			*entry = hm->hm_entry;
486 		}
487 	}
488 	return (hm);
489 }
490 
491 /*
492  * Remove a mapping to a page from its mapping list. Must have
493  * the corresponding mapping list locked.
494  * Finds the mapping list entry with the given pte_t and
495  * unlinks it from the mapping list.
496  */
497 hment_t *
498 hment_remove(page_t *pp, htable_t *ht, uint_t entry)
499 {
500 	hment_t		*prev = NULL;
501 	hment_t		*hm;
502 	uint_t		idx;
503 	pfn_t		pfn;
504 
505 	ASSERT(x86_hm_held(pp));
506 
507 	/*
508 	 * Check if we have only one mapping embedded in the page_t.
509 	 */
510 	if (pp->p_embed) {
511 		ASSERT(ht == (htable_t *)pp->p_mapping);
512 		ASSERT(entry == pp->p_mlentry);
513 		ASSERT(pp->p_share == 0);
514 		pp->p_mapping = NULL;
515 		pp->p_mlentry = 0;
516 		pp->p_embed = 0;
517 		return (NULL);
518 	}
519 
520 	/*
521 	 * Otherwise it must be in the list of hments.
522 	 * Find the hment in the system-wide hash table and remove it.
523 	 */
524 	ASSERT(pp->p_share != 0);
525 	pfn = pp->p_pagenum;
526 	idx = HMENT_HASH(ht->ht_pfn, entry);
527 	mutex_enter(HASH_MUTEX(idx));
528 	hm = hment_hash[idx];
529 	while (hm && (hm->hm_htable != ht || hm->hm_entry != entry ||
530 	    hm->hm_pfn != pfn)) {
531 		prev = hm;
532 		hm = hm->hm_hashnext;
533 	}
534 	if (hm == NULL) {
535 		panic("hment_remove() missing in hash table pp=%lx, ht=%lx,"
536 		    "entry=0x%x hash index=0x%x", (uintptr_t)pp, (uintptr_t)ht,
537 		    entry, idx);
538 	}
539 
540 	if (prev)
541 		prev->hm_hashnext = hm->hm_hashnext;
542 	else
543 		hment_hash[idx] = hm->hm_hashnext;
544 	mutex_exit(HASH_MUTEX(idx));
545 
546 	/*
547 	 * Remove the hment from the page's mapping list
548 	 */
549 	if (hm->hm_next)
550 		hm->hm_next->hm_prev = hm->hm_prev;
551 	if (hm->hm_prev)
552 		hm->hm_prev->hm_next = hm->hm_next;
553 	else
554 		pp->p_mapping = hm->hm_next;
555 
556 	--pp->p_share;
557 	hm->hm_hashnext = NULL;
558 	hm->hm_next = NULL;
559 	hm->hm_prev = NULL;
560 
561 	return (hm);
562 }
563 
564 /*
565  * Put initial hment's in the reserve pool.
566  */
567 void
568 hment_reserve(uint_t count)
569 {
570 	hment_t	*hm;
571 
572 	count += hment_reserve_amount;
573 
574 	while (hment_reserve_count < count) {
575 		hm = kmem_cache_alloc(hment_cache, KM_NOSLEEP);
576 		if (hm == NULL)
577 			return;
578 		hment_put_reserve(hm);
579 	}
580 }
581 
582 /*
583  * Readjust the hment reserves after they may have been used.
584  */
585 void
586 hment_adjust_reserve()
587 {
588 	hment_t	*hm;
589 
590 	/*
591 	 * Free up any excess reserves
592 	 */
593 	while (hment_reserve_count > hment_reserve_amount) {
594 		ASSERT(curthread != hat_reserves_thread);
595 		hm = hment_get_reserve();
596 		if (hm == NULL)
597 			return;
598 		hment_free(hm);
599 	}
600 }
601 
602 /*
603  * initialize hment data structures
604  */
605 void
606 hment_init(void)
607 {
608 	int i;
609 	int flags = KMC_NOHASH | KMC_NODEBUG;
610 
611 	/*
612 	 * Initialize kmem caches. On 32 bit kernel's we shut off
613 	 * debug information to save on precious kernel VA usage.
614 	 */
615 	hment_cache = kmem_cache_create("hment_t",
616 	    sizeof (hment_t), 0, NULL, NULL, NULL,
617 	    NULL, hat_memload_arena, flags);
618 
619 	hment_hash = kmem_zalloc(hment_hash_entries * sizeof (hment_t *),
620 	    KM_SLEEP);
621 
622 	for (i = 0; i < MLIST_NUM_LOCK; i++)
623 		mutex_init(&mlist_lock[i], NULL, MUTEX_DEFAULT, NULL);
624 
625 	for (i = 0; i < HASH_NUM_LOCK; i++)
626 		mutex_init(&hash_lock[i], NULL, MUTEX_DEFAULT, NULL);
627 
628 
629 }
630 
631 /*
632  * return the number of mappings to a page
633  *
634  * Note there is no ASSERT() that the MUTEX is held for this.
635  * Hence the return value might be inaccurate if this is called without
636  * doing an x86_hm_enter().
637  */
638 uint_t
639 hment_mapcnt(page_t *pp)
640 {
641 	uint_t cnt;
642 	uint_t szc;
643 	page_t *larger;
644 	hment_t	*hm;
645 
646 	x86_hm_enter(pp);
647 	if (pp->p_mapping == NULL)
648 		cnt = 0;
649 	else if (pp->p_embed)
650 		cnt = 1;
651 	else
652 		cnt = pp->p_share;
653 	x86_hm_exit(pp);
654 
655 	/*
656 	 * walk through all larger mapping sizes counting mappings
657 	 */
658 	for (szc = 1; szc <= pp->p_szc; ++szc) {
659 		larger = PP_GROUPLEADER(pp, szc);
660 		if (larger == pp)	/* don't double count large mappings */
661 			continue;
662 
663 		x86_hm_enter(larger);
664 		if (larger->p_mapping != NULL) {
665 			if (larger->p_embed &&
666 			    ((htable_t *)larger->p_mapping)->ht_level == szc) {
667 				++cnt;
668 			} else if (!larger->p_embed) {
669 				for (hm = larger->p_mapping; hm;
670 				    hm = hm->hm_next) {
671 					if (hm->hm_htable->ht_level == szc)
672 						++cnt;
673 				}
674 			}
675 		}
676 		x86_hm_exit(larger);
677 	}
678 	return (cnt);
679 }
680 
681 /*
682  * We need to steal an hment. Walk through all the page_t's until we
683  * find one that has multiple mappings. Unload one of the mappings
684  * and reclaim that hment. Note that we'll save/restart the starting
685  * page to try and spread the pain.
686  */
687 static page_t *last_page = NULL;
688 
689 static hment_t *
690 hment_steal(void)
691 {
692 	page_t *last = last_page;
693 	page_t *pp = last;
694 	hment_t *hm = NULL;
695 	hment_t *hm2;
696 	htable_t *ht;
697 	uint_t found_one = 0;
698 
699 	HATSTAT_INC(hs_hm_steals);
700 	if (pp == NULL)
701 		last = pp = page_first();
702 
703 	while (!found_one) {
704 		HATSTAT_INC(hs_hm_steal_exam);
705 		pp = page_next(pp);
706 		if (pp == NULL)
707 			pp = page_first();
708 
709 		/*
710 		 * The loop and function exit here if nothing found to steal.
711 		 */
712 		if (pp == last)
713 			return (NULL);
714 
715 		/*
716 		 * Only lock the page_t if it has hments.
717 		 */
718 		if (pp->p_mapping == NULL || pp->p_embed)
719 			continue;
720 
721 		/*
722 		 * Search the mapping list for a usable mapping.
723 		 */
724 		x86_hm_enter(pp);
725 		if (!pp->p_embed) {
726 			for (hm = pp->p_mapping; hm; hm = hm->hm_next) {
727 				ht = hm->hm_htable;
728 				if (ht->ht_hat != kas.a_hat &&
729 				    ht->ht_busy == 0 &&
730 				    ht->ht_lock_cnt == 0) {
731 					found_one = 1;
732 					break;
733 				}
734 			}
735 		}
736 		if (!found_one)
737 			x86_hm_exit(pp);
738 	}
739 
740 	/*
741 	 * Steal the mapping we found.  Note that hati_page_unmap() will
742 	 * do the x86_hm_exit().
743 	 */
744 	hm2 = hati_page_unmap(pp, ht, hm->hm_entry);
745 	ASSERT(hm2 == hm);
746 	last_page = pp;
747 	return (hm);
748 }
749