1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * VM - Hardware Address Translation management for i386 and amd64 30 * 31 * Implementation of the interfaces described in <common/vm/hat.h> 32 * 33 * Nearly all the details of how the hardware is managed should not be 34 * visible outside this layer except for misc. machine specific functions 35 * that work in conjunction with this code. 36 * 37 * Routines used only inside of i86pc/vm start with hati_ for HAT Internal. 38 */ 39 40 #include <sys/machparam.h> 41 #include <sys/machsystm.h> 42 #include <sys/mman.h> 43 #include <sys/types.h> 44 #include <sys/systm.h> 45 #include <sys/cpuvar.h> 46 #include <sys/thread.h> 47 #include <sys/proc.h> 48 #include <sys/cpu.h> 49 #include <sys/kmem.h> 50 #include <sys/disp.h> 51 #include <sys/shm.h> 52 #include <sys/sysmacros.h> 53 #include <sys/machparam.h> 54 #include <sys/vmem.h> 55 #include <sys/vmsystm.h> 56 #include <sys/promif.h> 57 #include <sys/var.h> 58 #include <sys/x86_archext.h> 59 #include <sys/atomic.h> 60 #include <sys/bitmap.h> 61 #include <sys/controlregs.h> 62 #include <sys/bootconf.h> 63 #include <sys/bootsvcs.h> 64 #include <sys/bootinfo.h> 65 #include <sys/archsystm.h> 66 67 #include <vm/seg_kmem.h> 68 #include <vm/hat_i86.h> 69 #include <vm/as.h> 70 #include <vm/seg.h> 71 #include <vm/page.h> 72 #include <vm/seg_kp.h> 73 #include <vm/seg_kpm.h> 74 #include <vm/vm_dep.h> 75 #ifdef __xpv 76 #include <sys/hypervisor.h> 77 #endif 78 #include <vm/kboot_mmu.h> 79 #include <vm/seg_spt.h> 80 81 #include <sys/cmn_err.h> 82 83 /* 84 * Basic parameters for hat operation. 85 */ 86 struct hat_mmu_info mmu; 87 88 /* 89 * The page that is the kernel's top level pagetable. 90 * 91 * For 32 bit PAE support on i86pc, the kernel hat will use the 1st 4 entries 92 * on this 4K page for its top level page table. The remaining groups of 93 * 4 entries are used for per processor copies of user VLP pagetables for 94 * running threads. See hat_switch() and reload_pae32() for details. 95 * 96 * vlp_page[0..3] - level==2 PTEs for kernel HAT 97 * vlp_page[4..7] - level==2 PTEs for user thread on cpu 0 98 * vlp_page[8..11] - level==2 PTE for user thread on cpu 1 99 * etc... 100 */ 101 static x86pte_t *vlp_page; 102 103 /* 104 * forward declaration of internal utility routines 105 */ 106 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, 107 x86pte_t new); 108 109 /* 110 * The kernel address space exists in all HATs. To implement this the 111 * kernel reserves a fixed number of entries in the topmost level(s) of page 112 * tables. The values are setup during startup and then copied to every user 113 * hat created by hat_alloc(). This means that kernelbase must be: 114 * 115 * 4Meg aligned for 32 bit kernels 116 * 512Gig aligned for x86_64 64 bit kernel 117 * 118 * The hat_kernel_range_ts describe what needs to be copied from kernel hat 119 * to each user hat. 120 */ 121 typedef struct hat_kernel_range { 122 level_t hkr_level; 123 uintptr_t hkr_start_va; 124 uintptr_t hkr_end_va; /* zero means to end of memory */ 125 } hat_kernel_range_t; 126 #define NUM_KERNEL_RANGE 2 127 static hat_kernel_range_t kernel_ranges[NUM_KERNEL_RANGE]; 128 static int num_kernel_ranges; 129 130 uint_t use_boot_reserve = 1; /* cleared after early boot process */ 131 uint_t can_steal_post_boot = 0; /* set late in boot to enable stealing */ 132 133 /* export 1g page size to user applications if set */ 134 int enable_1gpg = 1; 135 136 #ifdef DEBUG 137 uint_t map1gcnt; 138 #endif 139 140 141 /* 142 * A cpuset for all cpus. This is used for kernel address cross calls, since 143 * the kernel addresses apply to all cpus. 144 */ 145 cpuset_t khat_cpuset; 146 147 /* 148 * management stuff for hat structures 149 */ 150 kmutex_t hat_list_lock; 151 kcondvar_t hat_list_cv; 152 kmem_cache_t *hat_cache; 153 kmem_cache_t *hat_hash_cache; 154 kmem_cache_t *vlp_hash_cache; 155 156 /* 157 * Simple statistics 158 */ 159 struct hatstats hatstat; 160 161 /* 162 * Some earlier hypervisor versions do not emulate cmpxchg of PTEs 163 * correctly. For such hypervisors we must set PT_USER for kernel 164 * entries ourselves (normally the emulation would set PT_USER for 165 * kernel entries and PT_USER|PT_GLOBAL for user entries). pt_kern is 166 * thus set appropriately. Note that dboot/kbm is OK, as only the full 167 * HAT uses cmpxchg() and the other paths (hypercall etc.) were never 168 * incorrect. 169 */ 170 int pt_kern; 171 172 /* 173 * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's. 174 */ 175 extern void atomic_orb(uchar_t *addr, uchar_t val); 176 extern void atomic_andb(uchar_t *addr, uchar_t val); 177 178 #define PP_GETRM(pp, rmmask) (pp->p_nrm & rmmask) 179 #define PP_ISMOD(pp) PP_GETRM(pp, P_MOD) 180 #define PP_ISREF(pp) PP_GETRM(pp, P_REF) 181 #define PP_ISRO(pp) PP_GETRM(pp, P_RO) 182 183 #define PP_SETRM(pp, rm) atomic_orb(&(pp->p_nrm), rm) 184 #define PP_SETMOD(pp) PP_SETRM(pp, P_MOD) 185 #define PP_SETREF(pp) PP_SETRM(pp, P_REF) 186 #define PP_SETRO(pp) PP_SETRM(pp, P_RO) 187 188 #define PP_CLRRM(pp, rm) atomic_andb(&(pp->p_nrm), ~(rm)) 189 #define PP_CLRMOD(pp) PP_CLRRM(pp, P_MOD) 190 #define PP_CLRREF(pp) PP_CLRRM(pp, P_REF) 191 #define PP_CLRRO(pp) PP_CLRRM(pp, P_RO) 192 #define PP_CLRALL(pp) PP_CLRRM(pp, P_MOD | P_REF | P_RO) 193 194 /* 195 * kmem cache constructor for struct hat 196 */ 197 /*ARGSUSED*/ 198 static int 199 hati_constructor(void *buf, void *handle, int kmflags) 200 { 201 hat_t *hat = buf; 202 203 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 204 bzero(hat->hat_pages_mapped, 205 sizeof (pgcnt_t) * (mmu.max_page_level + 1)); 206 hat->hat_ism_pgcnt = 0; 207 hat->hat_stats = 0; 208 hat->hat_flags = 0; 209 CPUSET_ZERO(hat->hat_cpus); 210 hat->hat_htable = NULL; 211 hat->hat_ht_hash = NULL; 212 return (0); 213 } 214 215 /* 216 * Allocate a hat structure for as. We also create the top level 217 * htable and initialize it to contain the kernel hat entries. 218 */ 219 hat_t * 220 hat_alloc(struct as *as) 221 { 222 hat_t *hat; 223 htable_t *ht; /* top level htable */ 224 uint_t use_vlp; 225 uint_t r; 226 hat_kernel_range_t *rp; 227 uintptr_t va; 228 uintptr_t eva; 229 uint_t start; 230 uint_t cnt; 231 htable_t *src; 232 233 /* 234 * Once we start creating user process HATs we can enable 235 * the htable_steal() code. 236 */ 237 if (can_steal_post_boot == 0) 238 can_steal_post_boot = 1; 239 240 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 241 hat = kmem_cache_alloc(hat_cache, KM_SLEEP); 242 hat->hat_as = as; 243 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 244 ASSERT(hat->hat_flags == 0); 245 246 #if defined(__xpv) 247 /* 248 * No VLP stuff on the hypervisor due to the 64-bit split top level 249 * page tables. On 32-bit it's not needed as the hypervisor takes 250 * care of copying the top level PTEs to a below 4Gig page. 251 */ 252 use_vlp = 0; 253 #else /* __xpv */ 254 /* 32 bit processes uses a VLP style hat when running with PAE */ 255 #if defined(__amd64) 256 use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32); 257 #elif defined(__i386) 258 use_vlp = mmu.pae_hat; 259 #endif 260 #endif /* __xpv */ 261 if (use_vlp) { 262 hat->hat_flags = HAT_VLP; 263 bzero(hat->hat_vlp_ptes, VLP_SIZE); 264 } 265 266 /* 267 * Allocate the htable hash 268 */ 269 if ((hat->hat_flags & HAT_VLP)) { 270 hat->hat_num_hash = mmu.vlp_hash_cnt; 271 hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP); 272 } else { 273 hat->hat_num_hash = mmu.hash_cnt; 274 hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP); 275 } 276 bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *)); 277 278 /* 279 * Initialize Kernel HAT entries at the top of the top level page 280 * tables for the new hat. 281 */ 282 hat->hat_htable = NULL; 283 hat->hat_ht_cached = NULL; 284 XPV_DISALLOW_MIGRATE(); 285 ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL); 286 hat->hat_htable = ht; 287 288 #if defined(__amd64) 289 if (hat->hat_flags & HAT_VLP) 290 goto init_done; 291 #endif 292 293 for (r = 0; r < num_kernel_ranges; ++r) { 294 rp = &kernel_ranges[r]; 295 for (va = rp->hkr_start_va; va != rp->hkr_end_va; 296 va += cnt * LEVEL_SIZE(rp->hkr_level)) { 297 298 if (rp->hkr_level == TOP_LEVEL(hat)) 299 ht = hat->hat_htable; 300 else 301 ht = htable_create(hat, va, rp->hkr_level, 302 NULL); 303 304 start = htable_va2entry(va, ht); 305 cnt = HTABLE_NUM_PTES(ht) - start; 306 eva = va + 307 ((uintptr_t)cnt << LEVEL_SHIFT(rp->hkr_level)); 308 if (rp->hkr_end_va != 0 && 309 (eva > rp->hkr_end_va || eva == 0)) 310 cnt = htable_va2entry(rp->hkr_end_va, ht) - 311 start; 312 313 #if defined(__i386) && !defined(__xpv) 314 if (ht->ht_flags & HTABLE_VLP) { 315 bcopy(&vlp_page[start], 316 &hat->hat_vlp_ptes[start], 317 cnt * sizeof (x86pte_t)); 318 continue; 319 } 320 #endif 321 src = htable_lookup(kas.a_hat, va, rp->hkr_level); 322 ASSERT(src != NULL); 323 x86pte_copy(src, ht, start, cnt); 324 htable_release(src); 325 } 326 } 327 328 init_done: 329 XPV_ALLOW_MIGRATE(); 330 331 #if defined(__xpv) 332 /* 333 * Pin top level page tables after initializing them 334 */ 335 xen_pin(hat->hat_htable->ht_pfn, mmu.max_level); 336 #if defined(__amd64) 337 xen_pin(hat->hat_user_ptable, mmu.max_level); 338 #endif 339 #endif 340 341 /* 342 * Put it at the start of the global list of all hats (used by stealing) 343 * 344 * kas.a_hat is not in the list but is instead used to find the 345 * first and last items in the list. 346 * 347 * - kas.a_hat->hat_next points to the start of the user hats. 348 * The list ends where hat->hat_next == NULL 349 * 350 * - kas.a_hat->hat_prev points to the last of the user hats. 351 * The list begins where hat->hat_prev == NULL 352 */ 353 mutex_enter(&hat_list_lock); 354 hat->hat_prev = NULL; 355 hat->hat_next = kas.a_hat->hat_next; 356 if (hat->hat_next) 357 hat->hat_next->hat_prev = hat; 358 else 359 kas.a_hat->hat_prev = hat; 360 kas.a_hat->hat_next = hat; 361 mutex_exit(&hat_list_lock); 362 363 return (hat); 364 } 365 366 /* 367 * process has finished executing but as has not been cleaned up yet. 368 */ 369 /*ARGSUSED*/ 370 void 371 hat_free_start(hat_t *hat) 372 { 373 ASSERT(AS_WRITE_HELD(hat->hat_as, &hat->hat_as->a_lock)); 374 375 /* 376 * If the hat is currently a stealing victim, wait for the stealing 377 * to finish. Once we mark it as HAT_FREEING, htable_steal() 378 * won't look at its pagetables anymore. 379 */ 380 mutex_enter(&hat_list_lock); 381 while (hat->hat_flags & HAT_VICTIM) 382 cv_wait(&hat_list_cv, &hat_list_lock); 383 hat->hat_flags |= HAT_FREEING; 384 mutex_exit(&hat_list_lock); 385 } 386 387 /* 388 * An address space is being destroyed, so we destroy the associated hat. 389 */ 390 void 391 hat_free_end(hat_t *hat) 392 { 393 kmem_cache_t *cache; 394 395 ASSERT(hat->hat_flags & HAT_FREEING); 396 397 /* 398 * must not be running on the given hat 399 */ 400 ASSERT(CPU->cpu_current_hat != hat); 401 402 /* 403 * Remove it from the list of HATs 404 */ 405 mutex_enter(&hat_list_lock); 406 if (hat->hat_prev) 407 hat->hat_prev->hat_next = hat->hat_next; 408 else 409 kas.a_hat->hat_next = hat->hat_next; 410 if (hat->hat_next) 411 hat->hat_next->hat_prev = hat->hat_prev; 412 else 413 kas.a_hat->hat_prev = hat->hat_prev; 414 mutex_exit(&hat_list_lock); 415 hat->hat_next = hat->hat_prev = NULL; 416 417 #if defined(__xpv) 418 /* 419 * On the hypervisor, unpin top level page table(s) 420 */ 421 xen_unpin(hat->hat_htable->ht_pfn); 422 #if defined(__amd64) 423 xen_unpin(hat->hat_user_ptable); 424 #endif 425 #endif 426 427 /* 428 * Make a pass through the htables freeing them all up. 429 */ 430 htable_purge_hat(hat); 431 432 /* 433 * Decide which kmem cache the hash table came from, then free it. 434 */ 435 if (hat->hat_flags & HAT_VLP) 436 cache = vlp_hash_cache; 437 else 438 cache = hat_hash_cache; 439 kmem_cache_free(cache, hat->hat_ht_hash); 440 hat->hat_ht_hash = NULL; 441 442 hat->hat_flags = 0; 443 kmem_cache_free(hat_cache, hat); 444 } 445 446 /* 447 * round kernelbase down to a supported value to use for _userlimit 448 * 449 * userlimit must be aligned down to an entry in the top level htable. 450 * The one exception is for 32 bit HAT's running PAE. 451 */ 452 uintptr_t 453 hat_kernelbase(uintptr_t va) 454 { 455 #if defined(__i386) 456 va &= LEVEL_MASK(1); 457 #endif 458 if (IN_VA_HOLE(va)) 459 panic("_userlimit %p will fall in VA hole\n", (void *)va); 460 return (va); 461 } 462 463 /* 464 * Initialize hat data structures based on processor MMU information. 465 */ 466 void 467 mmu_init(void) 468 { 469 uint_t max_htables; 470 uint_t pa_bits; 471 uint_t va_bits; 472 int i; 473 474 /* 475 * If CPU enabled the page table global bit, use it for the kernel 476 * This is bit 7 in CR4 (PGE - Page Global Enable). 477 */ 478 if ((x86_feature & X86_PGE) != 0 && (getcr4() & CR4_PGE) != 0) 479 mmu.pt_global = PT_GLOBAL; 480 481 /* 482 * Detect NX and PAE usage. 483 */ 484 mmu.pae_hat = kbm_pae_support; 485 if (kbm_nx_support) 486 mmu.pt_nx = PT_NX; 487 else 488 mmu.pt_nx = 0; 489 490 /* 491 * Use CPU info to set various MMU parameters 492 */ 493 cpuid_get_addrsize(CPU, &pa_bits, &va_bits); 494 495 if (va_bits < sizeof (void *) * NBBY) { 496 mmu.hole_start = (1ul << (va_bits - 1)); 497 mmu.hole_end = 0ul - mmu.hole_start - 1; 498 } else { 499 mmu.hole_end = 0; 500 mmu.hole_start = mmu.hole_end - 1; 501 } 502 #if defined(OPTERON_ERRATUM_121) 503 /* 504 * If erratum 121 has already been detected at this time, hole_start 505 * contains the value to be subtracted from mmu.hole_start. 506 */ 507 ASSERT(hole_start == 0 || opteron_erratum_121 != 0); 508 hole_start = mmu.hole_start - hole_start; 509 #else 510 hole_start = mmu.hole_start; 511 #endif 512 hole_end = mmu.hole_end; 513 514 mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1); 515 if (mmu.pae_hat == 0 && pa_bits > 32) 516 mmu.highest_pfn = PFN_4G - 1; 517 518 if (mmu.pae_hat) { 519 mmu.pte_size = 8; /* 8 byte PTEs */ 520 mmu.pte_size_shift = 3; 521 } else { 522 mmu.pte_size = 4; /* 4 byte PTEs */ 523 mmu.pte_size_shift = 2; 524 } 525 526 if (mmu.pae_hat && (x86_feature & X86_PAE) == 0) 527 panic("Processor does not support PAE"); 528 529 if ((x86_feature & X86_CX8) == 0) 530 panic("Processor does not support cmpxchg8b instruction"); 531 532 /* 533 * Initialize parameters based on the 64 or 32 bit kernels and 534 * for the 32 bit kernel decide if we should use PAE. 535 */ 536 if (kbm_largepage_support) { 537 if (x86_feature & X86_1GPG) { 538 mmu.max_page_level = 2; 539 mmu.umax_page_level = (enable_1gpg) ? 2 : 1; 540 } else { 541 mmu.max_page_level = 1; 542 mmu.umax_page_level = 1; 543 } 544 } else { 545 mmu.max_page_level = 0; 546 mmu.umax_page_level = 0; 547 } 548 mmu_page_sizes = mmu.max_page_level + 1; 549 mmu_exported_page_sizes = mmu.umax_page_level + 1; 550 551 /* restrict legacy applications from using pagesizes 1g and above */ 552 mmu_legacy_page_sizes = 553 (mmu_exported_page_sizes > 2) ? 2 : mmu_exported_page_sizes; 554 555 556 #if defined(__amd64) 557 558 mmu.num_level = 4; 559 mmu.max_level = 3; 560 mmu.ptes_per_table = 512; 561 mmu.top_level_count = 512; 562 563 mmu.level_shift[0] = 12; 564 mmu.level_shift[1] = 21; 565 mmu.level_shift[2] = 30; 566 mmu.level_shift[3] = 39; 567 568 #elif defined(__i386) 569 570 if (mmu.pae_hat) { 571 mmu.num_level = 3; 572 mmu.max_level = 2; 573 mmu.ptes_per_table = 512; 574 mmu.top_level_count = 4; 575 576 mmu.level_shift[0] = 12; 577 mmu.level_shift[1] = 21; 578 mmu.level_shift[2] = 30; 579 580 } else { 581 mmu.num_level = 2; 582 mmu.max_level = 1; 583 mmu.ptes_per_table = 1024; 584 mmu.top_level_count = 1024; 585 586 mmu.level_shift[0] = 12; 587 mmu.level_shift[1] = 22; 588 } 589 590 #endif /* __i386 */ 591 592 for (i = 0; i < mmu.num_level; ++i) { 593 mmu.level_size[i] = 1UL << mmu.level_shift[i]; 594 mmu.level_offset[i] = mmu.level_size[i] - 1; 595 mmu.level_mask[i] = ~mmu.level_offset[i]; 596 } 597 598 for (i = 0; i <= mmu.max_page_level; ++i) { 599 mmu.pte_bits[i] = PT_VALID | pt_kern; 600 if (i > 0) 601 mmu.pte_bits[i] |= PT_PAGESIZE; 602 } 603 604 /* 605 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level. 606 */ 607 for (i = 1; i < mmu.num_level; ++i) 608 mmu.ptp_bits[i] = PT_PTPBITS; 609 610 #if defined(__i386) 611 mmu.ptp_bits[2] = PT_VALID; 612 #endif 613 614 /* 615 * Compute how many hash table entries to have per process for htables. 616 * We start with 1 page's worth of entries. 617 * 618 * If physical memory is small, reduce the amount need to cover it. 619 */ 620 max_htables = physmax / mmu.ptes_per_table; 621 mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *); 622 while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables) 623 mmu.hash_cnt >>= 1; 624 mmu.vlp_hash_cnt = mmu.hash_cnt; 625 626 #if defined(__amd64) 627 /* 628 * If running in 64 bits and physical memory is large, 629 * increase the size of the cache to cover all of memory for 630 * a 64 bit process. 631 */ 632 #define HASH_MAX_LENGTH 4 633 while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables) 634 mmu.hash_cnt <<= 1; 635 #endif 636 } 637 638 639 /* 640 * initialize hat data structures 641 */ 642 void 643 hat_init() 644 { 645 #if defined(__i386) 646 /* 647 * _userlimit must be aligned correctly 648 */ 649 if ((_userlimit & LEVEL_MASK(1)) != _userlimit) { 650 prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n", 651 (void *)_userlimit, (void *)LEVEL_SIZE(1)); 652 halt("hat_init(): Unable to continue"); 653 } 654 #endif 655 656 cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL); 657 658 /* 659 * initialize kmem caches 660 */ 661 htable_init(); 662 hment_init(); 663 664 hat_cache = kmem_cache_create("hat_t", 665 sizeof (hat_t), 0, hati_constructor, NULL, NULL, 666 NULL, 0, 0); 667 668 hat_hash_cache = kmem_cache_create("HatHash", 669 mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 670 NULL, 0, 0); 671 672 /* 673 * VLP hats can use a smaller hash table size on large memroy machines 674 */ 675 if (mmu.hash_cnt == mmu.vlp_hash_cnt) { 676 vlp_hash_cache = hat_hash_cache; 677 } else { 678 vlp_hash_cache = kmem_cache_create("HatVlpHash", 679 mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 680 NULL, 0, 0); 681 } 682 683 /* 684 * Set up the kernel's hat 685 */ 686 AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER); 687 kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP); 688 mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 689 kas.a_hat->hat_as = &kas; 690 kas.a_hat->hat_flags = 0; 691 AS_LOCK_EXIT(&kas, &kas.a_lock); 692 693 CPUSET_ZERO(khat_cpuset); 694 CPUSET_ADD(khat_cpuset, CPU->cpu_id); 695 696 /* 697 * The kernel hat's next pointer serves as the head of the hat list . 698 * The kernel hat's prev pointer tracks the last hat on the list for 699 * htable_steal() to use. 700 */ 701 kas.a_hat->hat_next = NULL; 702 kas.a_hat->hat_prev = NULL; 703 704 /* 705 * Allocate an htable hash bucket for the kernel 706 * XX64 - tune for 64 bit procs 707 */ 708 kas.a_hat->hat_num_hash = mmu.hash_cnt; 709 kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP); 710 bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *)); 711 712 /* 713 * zero out the top level and cached htable pointers 714 */ 715 kas.a_hat->hat_ht_cached = NULL; 716 kas.a_hat->hat_htable = NULL; 717 718 /* 719 * Pre-allocate hrm_hashtab before enabling the collection of 720 * refmod statistics. Allocating on the fly would mean us 721 * running the risk of suffering recursive mutex enters or 722 * deadlocks. 723 */ 724 hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *), 725 KM_SLEEP); 726 } 727 728 /* 729 * Prepare CPU specific pagetables for VLP processes on 64 bit kernels. 730 * 731 * Each CPU has a set of 2 pagetables that are reused for any 32 bit 732 * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and 733 * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes. 734 */ 735 /*ARGSUSED*/ 736 static void 737 hat_vlp_setup(struct cpu *cpu) 738 { 739 #if defined(__amd64) && !defined(__xpv) 740 struct hat_cpu_info *hci = cpu->cpu_hat_info; 741 pfn_t pfn; 742 743 /* 744 * allocate the level==2 page table for the bottom most 745 * 512Gig of address space (this is where 32 bit apps live) 746 */ 747 ASSERT(hci != NULL); 748 hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 749 750 /* 751 * Allocate a top level pagetable and copy the kernel's 752 * entries into it. Then link in hci_vlp_l2ptes in the 1st entry. 753 */ 754 hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 755 hci->hci_vlp_pfn = 756 hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes); 757 ASSERT(hci->hci_vlp_pfn != PFN_INVALID); 758 bcopy(vlp_page, hci->hci_vlp_l3ptes, MMU_PAGESIZE); 759 760 pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes); 761 ASSERT(pfn != PFN_INVALID); 762 hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2); 763 #endif /* __amd64 && !__xpv */ 764 } 765 766 /*ARGSUSED*/ 767 static void 768 hat_vlp_teardown(cpu_t *cpu) 769 { 770 #if defined(__amd64) && !defined(__xpv) 771 struct hat_cpu_info *hci; 772 773 if ((hci = cpu->cpu_hat_info) == NULL) 774 return; 775 if (hci->hci_vlp_l2ptes) 776 kmem_free(hci->hci_vlp_l2ptes, MMU_PAGESIZE); 777 if (hci->hci_vlp_l3ptes) 778 kmem_free(hci->hci_vlp_l3ptes, MMU_PAGESIZE); 779 #endif 780 } 781 782 #define NEXT_HKR(r, l, s, e) { \ 783 kernel_ranges[r].hkr_level = l; \ 784 kernel_ranges[r].hkr_start_va = s; \ 785 kernel_ranges[r].hkr_end_va = e; \ 786 ++r; \ 787 } 788 789 /* 790 * Finish filling in the kernel hat. 791 * Pre fill in all top level kernel page table entries for the kernel's 792 * part of the address range. From this point on we can't use any new 793 * kernel large pages if they need PTE's at max_level 794 * 795 * create the kmap mappings. 796 */ 797 void 798 hat_init_finish(void) 799 { 800 size_t size; 801 uint_t r = 0; 802 uintptr_t va; 803 hat_kernel_range_t *rp; 804 805 806 /* 807 * We are now effectively running on the kernel hat. 808 * Clearing use_boot_reserve shuts off using the pre-allocated boot 809 * reserve for all HAT allocations. From here on, the reserves are 810 * only used when avoiding recursion in kmem_alloc(). 811 */ 812 use_boot_reserve = 0; 813 htable_adjust_reserve(); 814 815 /* 816 * User HATs are initialized with copies of all kernel mappings in 817 * higher level page tables. Ensure that those entries exist. 818 */ 819 #if defined(__amd64) 820 821 NEXT_HKR(r, 3, kernelbase, 0); 822 #if defined(__xpv) 823 NEXT_HKR(r, 3, HYPERVISOR_VIRT_START, HYPERVISOR_VIRT_END); 824 #endif 825 826 #elif defined(__i386) 827 828 #if !defined(__xpv) 829 if (mmu.pae_hat) { 830 va = kernelbase; 831 if ((va & LEVEL_MASK(2)) != va) { 832 va = P2ROUNDUP(va, LEVEL_SIZE(2)); 833 NEXT_HKR(r, 1, kernelbase, va); 834 } 835 if (va != 0) 836 NEXT_HKR(r, 2, va, 0); 837 } else 838 #endif /* __xpv */ 839 NEXT_HKR(r, 1, kernelbase, 0); 840 841 #endif /* __i386 */ 842 843 num_kernel_ranges = r; 844 845 /* 846 * Create all the kernel pagetables that will have entries 847 * shared to user HATs. 848 */ 849 for (r = 0; r < num_kernel_ranges; ++r) { 850 rp = &kernel_ranges[r]; 851 for (va = rp->hkr_start_va; va != rp->hkr_end_va; 852 va += LEVEL_SIZE(rp->hkr_level)) { 853 htable_t *ht; 854 855 if (IN_HYPERVISOR_VA(va)) 856 continue; 857 858 /* can/must skip if a page mapping already exists */ 859 if (rp->hkr_level <= mmu.max_page_level && 860 (ht = htable_getpage(kas.a_hat, va, NULL)) != 861 NULL) { 862 htable_release(ht); 863 continue; 864 } 865 866 (void) htable_create(kas.a_hat, va, rp->hkr_level - 1, 867 NULL); 868 } 869 } 870 871 /* 872 * 32 bit PAE metal kernels use only 4 of the 512 entries in the 873 * page holding the top level pagetable. We use the remainder for 874 * the "per CPU" page tables for VLP processes. 875 * Map the top level kernel pagetable into the kernel to make 876 * it easy to use bcopy access these tables. 877 */ 878 if (mmu.pae_hat) { 879 vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP); 880 hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE, 881 kas.a_hat->hat_htable->ht_pfn, 882 #if !defined(__xpv) 883 PROT_WRITE | 884 #endif 885 PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK, 886 HAT_LOAD | HAT_LOAD_NOCONSIST); 887 } 888 hat_vlp_setup(CPU); 889 890 /* 891 * Create kmap (cached mappings of kernel PTEs) 892 * for 32 bit we map from segmap_start .. ekernelheap 893 * for 64 bit we map from segmap_start .. segmap_start + segmapsize; 894 */ 895 #if defined(__i386) 896 size = (uintptr_t)ekernelheap - segmap_start; 897 #elif defined(__amd64) 898 size = segmapsize; 899 #endif 900 hat_kmap_init((uintptr_t)segmap_start, size); 901 } 902 903 /* 904 * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references 905 * are 32 bit, so for safety we must use cas64() to install these. 906 */ 907 #ifdef __i386 908 static void 909 reload_pae32(hat_t *hat, cpu_t *cpu) 910 { 911 x86pte_t *src; 912 x86pte_t *dest; 913 x86pte_t pte; 914 int i; 915 916 /* 917 * Load the 4 entries of the level 2 page table into this 918 * cpu's range of the vlp_page and point cr3 at them. 919 */ 920 ASSERT(mmu.pae_hat); 921 src = hat->hat_vlp_ptes; 922 dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES; 923 for (i = 0; i < VLP_NUM_PTES; ++i) { 924 for (;;) { 925 pte = dest[i]; 926 if (pte == src[i]) 927 break; 928 if (cas64(dest + i, pte, src[i]) != src[i]) 929 break; 930 } 931 } 932 } 933 #endif 934 935 /* 936 * Switch to a new active hat, maintaining bit masks to track active CPUs. 937 * 938 * On the 32-bit PAE hypervisor, %cr3 is a 64-bit value, on metal it 939 * remains a 32-bit value. 940 */ 941 void 942 hat_switch(hat_t *hat) 943 { 944 uint64_t newcr3; 945 cpu_t *cpu = CPU; 946 hat_t *old = cpu->cpu_current_hat; 947 948 /* 949 * set up this information first, so we don't miss any cross calls 950 */ 951 if (old != NULL) { 952 if (old == hat) 953 return; 954 if (old != kas.a_hat) 955 CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id); 956 } 957 958 /* 959 * Add this CPU to the active set for this HAT. 960 */ 961 if (hat != kas.a_hat) { 962 CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id); 963 } 964 cpu->cpu_current_hat = hat; 965 966 /* 967 * now go ahead and load cr3 968 */ 969 if (hat->hat_flags & HAT_VLP) { 970 #if defined(__amd64) 971 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes; 972 973 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 974 newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn); 975 #elif defined(__i386) 976 reload_pae32(hat, cpu); 977 newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) + 978 (cpu->cpu_id + 1) * VLP_SIZE; 979 #endif 980 } else { 981 newcr3 = MAKECR3((uint64_t)hat->hat_htable->ht_pfn); 982 } 983 #ifdef __xpv 984 { 985 struct mmuext_op t[2]; 986 uint_t retcnt; 987 uint_t opcnt = 1; 988 989 t[0].cmd = MMUEXT_NEW_BASEPTR; 990 t[0].arg1.mfn = mmu_btop(pa_to_ma(newcr3)); 991 #if defined(__amd64) 992 /* 993 * There's an interesting problem here, as to what to 994 * actually specify when switching to the kernel hat. 995 * For now we'll reuse the kernel hat again. 996 */ 997 t[1].cmd = MMUEXT_NEW_USER_BASEPTR; 998 if (hat == kas.a_hat) 999 t[1].arg1.mfn = mmu_btop(pa_to_ma(newcr3)); 1000 else 1001 t[1].arg1.mfn = pfn_to_mfn(hat->hat_user_ptable); 1002 ++opcnt; 1003 #endif /* __amd64 */ 1004 if (HYPERVISOR_mmuext_op(t, opcnt, &retcnt, DOMID_SELF) < 0) 1005 panic("HYPERVISOR_mmu_update() failed"); 1006 ASSERT(retcnt == opcnt); 1007 1008 } 1009 #else 1010 setcr3(newcr3); 1011 #endif 1012 ASSERT(cpu == CPU); 1013 } 1014 1015 /* 1016 * Utility to return a valid x86pte_t from protections, pfn, and level number 1017 */ 1018 static x86pte_t 1019 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags) 1020 { 1021 x86pte_t pte; 1022 uint_t cache_attr = attr & HAT_ORDER_MASK; 1023 1024 pte = MAKEPTE(pfn, level); 1025 1026 if (attr & PROT_WRITE) 1027 PTE_SET(pte, PT_WRITABLE); 1028 1029 if (attr & PROT_USER) 1030 PTE_SET(pte, PT_USER); 1031 1032 if (!(attr & PROT_EXEC)) 1033 PTE_SET(pte, mmu.pt_nx); 1034 1035 /* 1036 * Set the software bits used track ref/mod sync's and hments. 1037 * If not using REF/MOD, set them to avoid h/w rewriting PTEs. 1038 */ 1039 if (flags & HAT_LOAD_NOCONSIST) 1040 PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD); 1041 else if (attr & HAT_NOSYNC) 1042 PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD); 1043 1044 /* 1045 * Set the caching attributes in the PTE. The combination 1046 * of attributes are poorly defined, so we pay attention 1047 * to them in the given order. 1048 * 1049 * The test for HAT_STRICTORDER is different because it's defined 1050 * as "0" - which was a stupid thing to do, but is too late to change! 1051 */ 1052 if (cache_attr == HAT_STRICTORDER) { 1053 PTE_SET(pte, PT_NOCACHE); 1054 /*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */ 1055 } else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) { 1056 /* nothing to set */; 1057 } else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) { 1058 PTE_SET(pte, PT_NOCACHE); 1059 if (x86_feature & X86_PAT) 1060 PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE); 1061 else 1062 PTE_SET(pte, PT_WRITETHRU); 1063 } else { 1064 panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr); 1065 } 1066 1067 return (pte); 1068 } 1069 1070 /* 1071 * Duplicate address translations of the parent to the child. 1072 * This function really isn't used anymore. 1073 */ 1074 /*ARGSUSED*/ 1075 int 1076 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag) 1077 { 1078 ASSERT((uintptr_t)addr < kernelbase); 1079 ASSERT(new != kas.a_hat); 1080 ASSERT(old != kas.a_hat); 1081 return (0); 1082 } 1083 1084 /* 1085 * Allocate any hat resources required for a process being swapped in. 1086 */ 1087 /*ARGSUSED*/ 1088 void 1089 hat_swapin(hat_t *hat) 1090 { 1091 /* do nothing - we let everything fault back in */ 1092 } 1093 1094 /* 1095 * Unload all translations associated with an address space of a process 1096 * that is being swapped out. 1097 */ 1098 void 1099 hat_swapout(hat_t *hat) 1100 { 1101 uintptr_t vaddr = (uintptr_t)0; 1102 uintptr_t eaddr = _userlimit; 1103 htable_t *ht = NULL; 1104 level_t l; 1105 1106 XPV_DISALLOW_MIGRATE(); 1107 /* 1108 * We can't just call hat_unload(hat, 0, _userlimit...) here, because 1109 * seg_spt and shared pagetables can't be swapped out. 1110 * Take a look at segspt_shmswapout() - it's a big no-op. 1111 * 1112 * Instead we'll walk through all the address space and unload 1113 * any mappings which we are sure are not shared, not locked. 1114 */ 1115 ASSERT(IS_PAGEALIGNED(vaddr)); 1116 ASSERT(IS_PAGEALIGNED(eaddr)); 1117 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1118 if ((uintptr_t)hat->hat_as->a_userlimit < eaddr) 1119 eaddr = (uintptr_t)hat->hat_as->a_userlimit; 1120 1121 while (vaddr < eaddr) { 1122 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1123 if (ht == NULL) 1124 break; 1125 1126 ASSERT(!IN_VA_HOLE(vaddr)); 1127 1128 /* 1129 * If the page table is shared skip its entire range. 1130 * This code knows that only level 0 page tables are shared 1131 */ 1132 l = ht->ht_level; 1133 if (ht->ht_flags & HTABLE_SHARED_PFN) { 1134 ASSERT(l == 0); 1135 vaddr = ht->ht_vaddr + LEVEL_SIZE(1); 1136 htable_release(ht); 1137 ht = NULL; 1138 continue; 1139 } 1140 1141 /* 1142 * If the page table has no locked entries, unload this one. 1143 */ 1144 if (ht->ht_lock_cnt == 0) 1145 hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l), 1146 HAT_UNLOAD_UNMAP); 1147 1148 /* 1149 * If we have a level 0 page table with locked entries, 1150 * skip the entire page table, otherwise skip just one entry. 1151 */ 1152 if (ht->ht_lock_cnt > 0 && l == 0) 1153 vaddr = ht->ht_vaddr + LEVEL_SIZE(1); 1154 else 1155 vaddr += LEVEL_SIZE(l); 1156 } 1157 if (ht) 1158 htable_release(ht); 1159 1160 /* 1161 * We're in swapout because the system is low on memory, so 1162 * go back and flush all the htables off the cached list. 1163 */ 1164 htable_purge_hat(hat); 1165 XPV_ALLOW_MIGRATE(); 1166 } 1167 1168 /* 1169 * returns number of bytes that have valid mappings in hat. 1170 */ 1171 size_t 1172 hat_get_mapped_size(hat_t *hat) 1173 { 1174 size_t total = 0; 1175 int l; 1176 1177 for (l = 0; l <= mmu.max_page_level; l++) 1178 total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l)); 1179 total += hat->hat_ism_pgcnt; 1180 1181 return (total); 1182 } 1183 1184 /* 1185 * enable/disable collection of stats for hat. 1186 */ 1187 int 1188 hat_stats_enable(hat_t *hat) 1189 { 1190 atomic_add_32(&hat->hat_stats, 1); 1191 return (1); 1192 } 1193 1194 void 1195 hat_stats_disable(hat_t *hat) 1196 { 1197 atomic_add_32(&hat->hat_stats, -1); 1198 } 1199 1200 /* 1201 * Utility to sync the ref/mod bits from a page table entry to the page_t 1202 * We must be holding the mapping list lock when this is called. 1203 */ 1204 static void 1205 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level) 1206 { 1207 uint_t rm = 0; 1208 pgcnt_t pgcnt; 1209 1210 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) 1211 return; 1212 1213 if (PTE_GET(pte, PT_REF)) 1214 rm |= P_REF; 1215 1216 if (PTE_GET(pte, PT_MOD)) 1217 rm |= P_MOD; 1218 1219 if (rm == 0) 1220 return; 1221 1222 /* 1223 * sync to all constituent pages of a large page 1224 */ 1225 ASSERT(x86_hm_held(pp)); 1226 pgcnt = page_get_pagecnt(level); 1227 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 1228 for (; pgcnt > 0; --pgcnt) { 1229 /* 1230 * hat_page_demote() can't decrease 1231 * pszc below this mapping size 1232 * since this large mapping existed after we 1233 * took mlist lock. 1234 */ 1235 ASSERT(pp->p_szc >= level); 1236 hat_page_setattr(pp, rm); 1237 ++pp; 1238 } 1239 } 1240 1241 /* 1242 * This the set of PTE bits for PFN, permissions and caching 1243 * that are allowed to change on a HAT_LOAD_REMAP 1244 */ 1245 #define PT_REMAP_BITS \ 1246 (PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU | \ 1247 PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE | PT_IGNORE | PT_REF | PT_MOD) 1248 1249 #define REMAPASSERT(EX) if (!(EX)) panic("hati_pte_map: " #EX) 1250 /* 1251 * Do the low-level work to get a mapping entered into a HAT's pagetables 1252 * and in the mapping list of the associated page_t. 1253 */ 1254 static int 1255 hati_pte_map( 1256 htable_t *ht, 1257 uint_t entry, 1258 page_t *pp, 1259 x86pte_t pte, 1260 int flags, 1261 void *pte_ptr) 1262 { 1263 hat_t *hat = ht->ht_hat; 1264 x86pte_t old_pte; 1265 level_t l = ht->ht_level; 1266 hment_t *hm; 1267 uint_t is_consist; 1268 int rv = 0; 1269 1270 /* 1271 * Is this a consistant (ie. need mapping list lock) mapping? 1272 */ 1273 is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0); 1274 1275 /* 1276 * Track locked mapping count in the htable. Do this first, 1277 * as we track locking even if there already is a mapping present. 1278 */ 1279 if ((flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat) 1280 HTABLE_LOCK_INC(ht); 1281 1282 /* 1283 * Acquire the page's mapping list lock and get an hment to use. 1284 * Note that hment_prepare() might return NULL. 1285 */ 1286 if (is_consist) { 1287 x86_hm_enter(pp); 1288 hm = hment_prepare(ht, entry, pp); 1289 } 1290 1291 /* 1292 * Set the new pte, retrieving the old one at the same time. 1293 */ 1294 old_pte = x86pte_set(ht, entry, pte, pte_ptr); 1295 1296 /* 1297 * did we get a large page / page table collision? 1298 */ 1299 if (old_pte == LPAGE_ERROR) { 1300 rv = -1; 1301 goto done; 1302 } 1303 1304 /* 1305 * If the mapping didn't change there is nothing more to do. 1306 */ 1307 if (PTE_EQUIV(pte, old_pte)) 1308 goto done; 1309 1310 /* 1311 * Install a new mapping in the page's mapping list 1312 */ 1313 if (!PTE_ISVALID(old_pte)) { 1314 if (is_consist) { 1315 hment_assign(ht, entry, pp, hm); 1316 x86_hm_exit(pp); 1317 } else { 1318 ASSERT(flags & HAT_LOAD_NOCONSIST); 1319 } 1320 #if defined(__amd64) 1321 if (ht->ht_flags & HTABLE_VLP) { 1322 cpu_t *cpu = CPU; 1323 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes; 1324 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 1325 } 1326 #endif 1327 HTABLE_INC(ht->ht_valid_cnt); 1328 PGCNT_INC(hat, l); 1329 return (rv); 1330 } 1331 1332 /* 1333 * Remap's are more complicated: 1334 * - HAT_LOAD_REMAP must be specified if changing the pfn. 1335 * We also require that NOCONSIST be specified. 1336 * - Otherwise only permission or caching bits may change. 1337 */ 1338 if (!PTE_ISPAGE(old_pte, l)) 1339 panic("non-null/page mapping pte=" FMT_PTE, old_pte); 1340 1341 if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) { 1342 REMAPASSERT(flags & HAT_LOAD_REMAP); 1343 REMAPASSERT(flags & HAT_LOAD_NOCONSIST); 1344 REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); 1345 REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) == 1346 pf_is_memory(PTE2PFN(pte, l))); 1347 REMAPASSERT(!is_consist); 1348 } 1349 1350 /* 1351 * We only let remaps change the certain bits in the PTE. 1352 */ 1353 if (PTE_GET(old_pte, ~PT_REMAP_BITS) != PTE_GET(pte, ~PT_REMAP_BITS)) 1354 panic("remap bits changed: old_pte="FMT_PTE", pte="FMT_PTE"\n", 1355 old_pte, pte); 1356 1357 /* 1358 * We don't create any mapping list entries on a remap, so release 1359 * any allocated hment after we drop the mapping list lock. 1360 */ 1361 done: 1362 if (is_consist) { 1363 x86_hm_exit(pp); 1364 if (hm != NULL) 1365 hment_free(hm); 1366 } 1367 return (rv); 1368 } 1369 1370 /* 1371 * Internal routine to load a single page table entry. This only fails if 1372 * we attempt to overwrite a page table link with a large page. 1373 */ 1374 static int 1375 hati_load_common( 1376 hat_t *hat, 1377 uintptr_t va, 1378 page_t *pp, 1379 uint_t attr, 1380 uint_t flags, 1381 level_t level, 1382 pfn_t pfn) 1383 { 1384 htable_t *ht; 1385 uint_t entry; 1386 x86pte_t pte; 1387 int rv = 0; 1388 1389 /* 1390 * The number 16 is arbitrary and here to catch a recursion problem 1391 * early before we blow out the kernel stack. 1392 */ 1393 ++curthread->t_hatdepth; 1394 ASSERT(curthread->t_hatdepth < 16); 1395 1396 ASSERT(hat == kas.a_hat || 1397 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1398 1399 if (flags & HAT_LOAD_SHARE) 1400 hat->hat_flags |= HAT_SHARED; 1401 1402 /* 1403 * Find the page table that maps this page if it already exists. 1404 */ 1405 ht = htable_lookup(hat, va, level); 1406 1407 /* 1408 * We must have HAT_LOAD_NOCONSIST if page_t is NULL. 1409 */ 1410 if (pp == NULL) 1411 flags |= HAT_LOAD_NOCONSIST; 1412 1413 if (ht == NULL) { 1414 ht = htable_create(hat, va, level, NULL); 1415 ASSERT(ht != NULL); 1416 } 1417 entry = htable_va2entry(va, ht); 1418 1419 /* 1420 * a bunch of paranoid error checking 1421 */ 1422 ASSERT(ht->ht_busy > 0); 1423 if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht)) 1424 panic("hati_load_common: bad htable %p, va %p", ht, (void *)va); 1425 ASSERT(ht->ht_level == level); 1426 1427 /* 1428 * construct the new PTE 1429 */ 1430 if (hat == kas.a_hat) 1431 attr &= ~PROT_USER; 1432 pte = hati_mkpte(pfn, attr, level, flags); 1433 if (hat == kas.a_hat && va >= kernelbase) 1434 PTE_SET(pte, mmu.pt_global); 1435 1436 /* 1437 * establish the mapping 1438 */ 1439 rv = hati_pte_map(ht, entry, pp, pte, flags, NULL); 1440 1441 /* 1442 * release the htable and any reserves 1443 */ 1444 htable_release(ht); 1445 --curthread->t_hatdepth; 1446 return (rv); 1447 } 1448 1449 /* 1450 * special case of hat_memload to deal with some kernel addrs for performance 1451 */ 1452 static void 1453 hat_kmap_load( 1454 caddr_t addr, 1455 page_t *pp, 1456 uint_t attr, 1457 uint_t flags) 1458 { 1459 uintptr_t va = (uintptr_t)addr; 1460 x86pte_t pte; 1461 pfn_t pfn = page_pptonum(pp); 1462 pgcnt_t pg_off = mmu_btop(va - mmu.kmap_addr); 1463 htable_t *ht; 1464 uint_t entry; 1465 void *pte_ptr; 1466 1467 /* 1468 * construct the requested PTE 1469 */ 1470 attr &= ~PROT_USER; 1471 attr |= HAT_STORECACHING_OK; 1472 pte = hati_mkpte(pfn, attr, 0, flags); 1473 PTE_SET(pte, mmu.pt_global); 1474 1475 /* 1476 * Figure out the pte_ptr and htable and use common code to finish up 1477 */ 1478 if (mmu.pae_hat) 1479 pte_ptr = mmu.kmap_ptes + pg_off; 1480 else 1481 pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off; 1482 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >> 1483 LEVEL_SHIFT(1)]; 1484 entry = htable_va2entry(va, ht); 1485 ++curthread->t_hatdepth; 1486 ASSERT(curthread->t_hatdepth < 16); 1487 (void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr); 1488 --curthread->t_hatdepth; 1489 } 1490 1491 /* 1492 * hat_memload() - load a translation to the given page struct 1493 * 1494 * Flags for hat_memload/hat_devload/hat_*attr. 1495 * 1496 * HAT_LOAD Default flags to load a translation to the page. 1497 * 1498 * HAT_LOAD_LOCK Lock down mapping resources; hat_map(), hat_memload(), 1499 * and hat_devload(). 1500 * 1501 * HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list. 1502 * sets PT_NOCONSIST 1503 * 1504 * HAT_LOAD_SHARE A flag to hat_memload() to indicate h/w page tables 1505 * that map some user pages (not kas) is shared by more 1506 * than one process (eg. ISM). 1507 * 1508 * HAT_LOAD_REMAP Reload a valid pte with a different page frame. 1509 * 1510 * HAT_NO_KALLOC Do not kmem_alloc while creating the mapping; at this 1511 * point, it's setting up mapping to allocate internal 1512 * hat layer data structures. This flag forces hat layer 1513 * to tap its reserves in order to prevent infinite 1514 * recursion. 1515 * 1516 * The following is a protection attribute (like PROT_READ, etc.) 1517 * 1518 * HAT_NOSYNC set PT_NOSYNC - this mapping's ref/mod bits 1519 * are never cleared. 1520 * 1521 * Installing new valid PTE's and creation of the mapping list 1522 * entry are controlled under the same lock. It's derived from the 1523 * page_t being mapped. 1524 */ 1525 static uint_t supported_memload_flags = 1526 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST | 1527 HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT; 1528 1529 void 1530 hat_memload( 1531 hat_t *hat, 1532 caddr_t addr, 1533 page_t *pp, 1534 uint_t attr, 1535 uint_t flags) 1536 { 1537 uintptr_t va = (uintptr_t)addr; 1538 level_t level = 0; 1539 pfn_t pfn = page_pptonum(pp); 1540 1541 XPV_DISALLOW_MIGRATE(); 1542 ASSERT(IS_PAGEALIGNED(va)); 1543 ASSERT(hat == kas.a_hat || va < _userlimit); 1544 ASSERT(hat == kas.a_hat || 1545 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1546 ASSERT((flags & supported_memload_flags) == flags); 1547 1548 ASSERT(!IN_VA_HOLE(va)); 1549 ASSERT(!PP_ISFREE(pp)); 1550 1551 /* 1552 * kernel address special case for performance. 1553 */ 1554 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 1555 ASSERT(hat == kas.a_hat); 1556 hat_kmap_load(addr, pp, attr, flags); 1557 XPV_ALLOW_MIGRATE(); 1558 return; 1559 } 1560 1561 /* 1562 * This is used for memory with normal caching enabled, so 1563 * always set HAT_STORECACHING_OK. 1564 */ 1565 attr |= HAT_STORECACHING_OK; 1566 if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0) 1567 panic("unexpected hati_load_common() failure"); 1568 XPV_ALLOW_MIGRATE(); 1569 } 1570 1571 /* ARGSUSED */ 1572 void 1573 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp, 1574 uint_t attr, uint_t flags, hat_region_cookie_t rcookie) 1575 { 1576 hat_memload(hat, addr, pp, attr, flags); 1577 } 1578 1579 /* 1580 * Load the given array of page structs using large pages when possible 1581 */ 1582 void 1583 hat_memload_array( 1584 hat_t *hat, 1585 caddr_t addr, 1586 size_t len, 1587 page_t **pages, 1588 uint_t attr, 1589 uint_t flags) 1590 { 1591 uintptr_t va = (uintptr_t)addr; 1592 uintptr_t eaddr = va + len; 1593 level_t level; 1594 size_t pgsize; 1595 pgcnt_t pgindx = 0; 1596 pfn_t pfn; 1597 pgcnt_t i; 1598 1599 XPV_DISALLOW_MIGRATE(); 1600 ASSERT(IS_PAGEALIGNED(va)); 1601 ASSERT(hat == kas.a_hat || va + len <= _userlimit); 1602 ASSERT(hat == kas.a_hat || 1603 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1604 ASSERT((flags & supported_memload_flags) == flags); 1605 1606 /* 1607 * memload is used for memory with full caching enabled, so 1608 * set HAT_STORECACHING_OK. 1609 */ 1610 attr |= HAT_STORECACHING_OK; 1611 1612 /* 1613 * handle all pages using largest possible pagesize 1614 */ 1615 while (va < eaddr) { 1616 /* 1617 * decide what level mapping to use (ie. pagesize) 1618 */ 1619 pfn = page_pptonum(pages[pgindx]); 1620 for (level = mmu.max_page_level; ; --level) { 1621 pgsize = LEVEL_SIZE(level); 1622 if (level == 0) 1623 break; 1624 1625 if (!IS_P2ALIGNED(va, pgsize) || 1626 (eaddr - va) < pgsize || 1627 !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize)) 1628 continue; 1629 1630 /* 1631 * To use a large mapping of this size, all the 1632 * pages we are passed must be sequential subpages 1633 * of the large page. 1634 * hat_page_demote() can't change p_szc because 1635 * all pages are locked. 1636 */ 1637 if (pages[pgindx]->p_szc >= level) { 1638 for (i = 0; i < mmu_btop(pgsize); ++i) { 1639 if (pfn + i != 1640 page_pptonum(pages[pgindx + i])) 1641 break; 1642 ASSERT(pages[pgindx + i]->p_szc >= 1643 level); 1644 ASSERT(pages[pgindx] + i == 1645 pages[pgindx + i]); 1646 } 1647 if (i == mmu_btop(pgsize)) { 1648 #ifdef DEBUG 1649 if (level == 2) 1650 map1gcnt++; 1651 #endif 1652 break; 1653 } 1654 } 1655 } 1656 1657 /* 1658 * Load this page mapping. If the load fails, try a smaller 1659 * pagesize. 1660 */ 1661 ASSERT(!IN_VA_HOLE(va)); 1662 while (hati_load_common(hat, va, pages[pgindx], attr, 1663 flags, level, pfn) != 0) { 1664 if (level == 0) 1665 panic("unexpected hati_load_common() failure"); 1666 --level; 1667 pgsize = LEVEL_SIZE(level); 1668 } 1669 1670 /* 1671 * move to next page 1672 */ 1673 va += pgsize; 1674 pgindx += mmu_btop(pgsize); 1675 } 1676 XPV_ALLOW_MIGRATE(); 1677 } 1678 1679 /* ARGSUSED */ 1680 void 1681 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len, 1682 struct page **pps, uint_t attr, uint_t flags, 1683 hat_region_cookie_t rcookie) 1684 { 1685 hat_memload_array(hat, addr, len, pps, attr, flags); 1686 } 1687 1688 /* 1689 * void hat_devload(hat, addr, len, pf, attr, flags) 1690 * load/lock the given page frame number 1691 * 1692 * Advisory ordering attributes. Apply only to device mappings. 1693 * 1694 * HAT_STRICTORDER: the CPU must issue the references in order, as the 1695 * programmer specified. This is the default. 1696 * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds 1697 * of reordering; store or load with store or load). 1698 * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores 1699 * to consecutive locations (for example, turn two consecutive byte 1700 * stores into one halfword store), and it may batch individual loads 1701 * (for example, turn two consecutive byte loads into one halfword load). 1702 * This also implies re-ordering. 1703 * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it 1704 * until another store occurs. The default is to fetch new data 1705 * on every load. This also implies merging. 1706 * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to 1707 * the device (perhaps with other data) at a later time. The default is 1708 * to push the data right away. This also implies load caching. 1709 * 1710 * Equivalent of hat_memload(), but can be used for device memory where 1711 * there are no page_t's and we support additional flags (write merging, etc). 1712 * Note that we can have large page mappings with this interface. 1713 */ 1714 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK | 1715 HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK | 1716 HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK; 1717 1718 void 1719 hat_devload( 1720 hat_t *hat, 1721 caddr_t addr, 1722 size_t len, 1723 pfn_t pfn, 1724 uint_t attr, 1725 int flags) 1726 { 1727 uintptr_t va = ALIGN2PAGE(addr); 1728 uintptr_t eva = va + len; 1729 level_t level; 1730 size_t pgsize; 1731 page_t *pp; 1732 int f; /* per PTE copy of flags - maybe modified */ 1733 uint_t a; /* per PTE copy of attr */ 1734 1735 XPV_DISALLOW_MIGRATE(); 1736 ASSERT(IS_PAGEALIGNED(va)); 1737 ASSERT(hat == kas.a_hat || eva <= _userlimit); 1738 ASSERT(hat == kas.a_hat || 1739 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1740 ASSERT((flags & supported_devload_flags) == flags); 1741 1742 /* 1743 * handle all pages 1744 */ 1745 while (va < eva) { 1746 1747 /* 1748 * decide what level mapping to use (ie. pagesize) 1749 */ 1750 for (level = mmu.max_page_level; ; --level) { 1751 pgsize = LEVEL_SIZE(level); 1752 if (level == 0) 1753 break; 1754 if (IS_P2ALIGNED(va, pgsize) && 1755 (eva - va) >= pgsize && 1756 IS_P2ALIGNED(pfn, mmu_btop(pgsize))) { 1757 #ifdef DEBUG 1758 if (level == 2) 1759 map1gcnt++; 1760 #endif 1761 break; 1762 } 1763 } 1764 1765 /* 1766 * If this is just memory then allow caching (this happens 1767 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used 1768 * to override that. If we don't have a page_t then make sure 1769 * NOCONSIST is set. 1770 */ 1771 a = attr; 1772 f = flags; 1773 if (!pf_is_memory(pfn)) 1774 f |= HAT_LOAD_NOCONSIST; 1775 else if (!(a & HAT_PLAT_NOCACHE)) 1776 a |= HAT_STORECACHING_OK; 1777 1778 if (f & HAT_LOAD_NOCONSIST) 1779 pp = NULL; 1780 else 1781 pp = page_numtopp_nolock(pfn); 1782 1783 /* 1784 * load this page mapping 1785 */ 1786 ASSERT(!IN_VA_HOLE(va)); 1787 while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) { 1788 if (level == 0) 1789 panic("unexpected hati_load_common() failure"); 1790 --level; 1791 pgsize = LEVEL_SIZE(level); 1792 } 1793 1794 /* 1795 * move to next page 1796 */ 1797 va += pgsize; 1798 pfn += mmu_btop(pgsize); 1799 } 1800 XPV_ALLOW_MIGRATE(); 1801 } 1802 1803 /* 1804 * void hat_unlock(hat, addr, len) 1805 * unlock the mappings to a given range of addresses 1806 * 1807 * Locks are tracked by ht_lock_cnt in the htable. 1808 */ 1809 void 1810 hat_unlock(hat_t *hat, caddr_t addr, size_t len) 1811 { 1812 uintptr_t vaddr = (uintptr_t)addr; 1813 uintptr_t eaddr = vaddr + len; 1814 htable_t *ht = NULL; 1815 1816 /* 1817 * kernel entries are always locked, we don't track lock counts 1818 */ 1819 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 1820 ASSERT(IS_PAGEALIGNED(vaddr)); 1821 ASSERT(IS_PAGEALIGNED(eaddr)); 1822 if (hat == kas.a_hat) 1823 return; 1824 if (eaddr > _userlimit) 1825 panic("hat_unlock() address out of range - above _userlimit"); 1826 1827 XPV_DISALLOW_MIGRATE(); 1828 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1829 while (vaddr < eaddr) { 1830 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1831 if (ht == NULL) 1832 break; 1833 1834 ASSERT(!IN_VA_HOLE(vaddr)); 1835 1836 if (ht->ht_lock_cnt < 1) 1837 panic("hat_unlock(): lock_cnt < 1, " 1838 "htable=%p, vaddr=%p\n", ht, (caddr_t)vaddr); 1839 HTABLE_LOCK_DEC(ht); 1840 1841 vaddr += LEVEL_SIZE(ht->ht_level); 1842 } 1843 if (ht) 1844 htable_release(ht); 1845 XPV_ALLOW_MIGRATE(); 1846 } 1847 1848 /* ARGSUSED */ 1849 void 1850 hat_unlock_region(struct hat *hat, caddr_t addr, size_t len, 1851 hat_region_cookie_t rcookie) 1852 { 1853 panic("No shared region support on x86"); 1854 } 1855 1856 #if !defined(__xpv) 1857 /* 1858 * Cross call service routine to demap a virtual page on 1859 * the current CPU or flush all mappings in TLB. 1860 */ 1861 /*ARGSUSED*/ 1862 static int 1863 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3) 1864 { 1865 hat_t *hat = (hat_t *)a1; 1866 caddr_t addr = (caddr_t)a2; 1867 1868 /* 1869 * If the target hat isn't the kernel and this CPU isn't operating 1870 * in the target hat, we can ignore the cross call. 1871 */ 1872 if (hat != kas.a_hat && hat != CPU->cpu_current_hat) 1873 return (0); 1874 1875 /* 1876 * For a normal address, we just flush one page mapping 1877 */ 1878 if ((uintptr_t)addr != DEMAP_ALL_ADDR) { 1879 mmu_tlbflush_entry(addr); 1880 return (0); 1881 } 1882 1883 /* 1884 * Otherwise we reload cr3 to effect a complete TLB flush. 1885 * 1886 * A reload of cr3 on a VLP process also means we must also recopy in 1887 * the pte values from the struct hat 1888 */ 1889 if (hat->hat_flags & HAT_VLP) { 1890 #if defined(__amd64) 1891 x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes; 1892 1893 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 1894 #elif defined(__i386) 1895 reload_pae32(hat, CPU); 1896 #endif 1897 } 1898 reload_cr3(); 1899 return (0); 1900 } 1901 1902 /* 1903 * Flush all TLB entries, including global (ie. kernel) ones. 1904 */ 1905 static void 1906 flush_all_tlb_entries(void) 1907 { 1908 ulong_t cr4 = getcr4(); 1909 1910 if (cr4 & CR4_PGE) { 1911 setcr4(cr4 & ~(ulong_t)CR4_PGE); 1912 setcr4(cr4); 1913 1914 /* 1915 * 32 bit PAE also needs to always reload_cr3() 1916 */ 1917 if (mmu.max_level == 2) 1918 reload_cr3(); 1919 } else { 1920 reload_cr3(); 1921 } 1922 } 1923 1924 #define TLB_CPU_HALTED (01ul) 1925 #define TLB_INVAL_ALL (02ul) 1926 #define CAS_TLB_INFO(cpu, old, new) \ 1927 caslong((ulong_t *)&(cpu)->cpu_m.mcpu_tlb_info, (old), (new)) 1928 1929 /* 1930 * Record that a CPU is going idle 1931 */ 1932 void 1933 tlb_going_idle(void) 1934 { 1935 atomic_or_long((ulong_t *)&CPU->cpu_m.mcpu_tlb_info, TLB_CPU_HALTED); 1936 } 1937 1938 /* 1939 * Service a delayed TLB flush if coming out of being idle. 1940 */ 1941 void 1942 tlb_service(void) 1943 { 1944 ulong_t flags = getflags(); 1945 ulong_t tlb_info; 1946 ulong_t found; 1947 1948 /* 1949 * Be sure interrupts are off while doing this so that 1950 * higher level interrupts correctly wait for flushes to finish. 1951 */ 1952 if (flags & PS_IE) 1953 flags = intr_clear(); 1954 1955 /* 1956 * We only have to do something if coming out of being idle. 1957 */ 1958 tlb_info = CPU->cpu_m.mcpu_tlb_info; 1959 if (tlb_info & TLB_CPU_HALTED) { 1960 ASSERT(CPU->cpu_current_hat == kas.a_hat); 1961 1962 /* 1963 * Atomic clear and fetch of old state. 1964 */ 1965 while ((found = CAS_TLB_INFO(CPU, tlb_info, 0)) != tlb_info) { 1966 ASSERT(found & TLB_CPU_HALTED); 1967 tlb_info = found; 1968 SMT_PAUSE(); 1969 } 1970 if (tlb_info & TLB_INVAL_ALL) 1971 flush_all_tlb_entries(); 1972 } 1973 1974 /* 1975 * Restore interrupt enable control bit. 1976 */ 1977 if (flags & PS_IE) 1978 sti(); 1979 } 1980 #endif /* !__xpv */ 1981 1982 /* 1983 * Internal routine to do cross calls to invalidate a range of pages on 1984 * all CPUs using a given hat. 1985 */ 1986 void 1987 hat_tlb_inval(hat_t *hat, uintptr_t va) 1988 { 1989 extern int flushes_require_xcalls; /* from mp_startup.c */ 1990 cpuset_t justme; 1991 cpuset_t cpus_to_shootdown; 1992 #ifndef __xpv 1993 cpuset_t check_cpus; 1994 cpu_t *cpup; 1995 int c; 1996 #endif 1997 1998 /* 1999 * If the hat is being destroyed, there are no more users, so 2000 * demap need not do anything. 2001 */ 2002 if (hat->hat_flags & HAT_FREEING) 2003 return; 2004 2005 /* 2006 * If demapping from a shared pagetable, we best demap the 2007 * entire set of user TLBs, since we don't know what addresses 2008 * these were shared at. 2009 */ 2010 if (hat->hat_flags & HAT_SHARED) { 2011 hat = kas.a_hat; 2012 va = DEMAP_ALL_ADDR; 2013 } 2014 2015 /* 2016 * if not running with multiple CPUs, don't use cross calls 2017 */ 2018 if (panicstr || !flushes_require_xcalls) { 2019 #ifdef __xpv 2020 if (va == DEMAP_ALL_ADDR) 2021 xen_flush_tlb(); 2022 else 2023 xen_flush_va((caddr_t)va); 2024 #else 2025 (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL); 2026 #endif 2027 return; 2028 } 2029 2030 2031 /* 2032 * Determine CPUs to shootdown. Kernel changes always do all CPUs. 2033 * Otherwise it's just CPUs currently executing in this hat. 2034 */ 2035 kpreempt_disable(); 2036 CPUSET_ONLY(justme, CPU->cpu_id); 2037 if (hat == kas.a_hat) 2038 cpus_to_shootdown = khat_cpuset; 2039 else 2040 cpus_to_shootdown = hat->hat_cpus; 2041 2042 #ifndef __xpv 2043 /* 2044 * If any CPUs in the set are idle, just request a delayed flush 2045 * and avoid waking them up. 2046 */ 2047 check_cpus = cpus_to_shootdown; 2048 for (c = 0; c < NCPU && !CPUSET_ISNULL(check_cpus); ++c) { 2049 ulong_t tlb_info; 2050 2051 if (!CPU_IN_SET(check_cpus, c)) 2052 continue; 2053 CPUSET_DEL(check_cpus, c); 2054 cpup = cpu[c]; 2055 if (cpup == NULL) 2056 continue; 2057 2058 tlb_info = cpup->cpu_m.mcpu_tlb_info; 2059 while (tlb_info == TLB_CPU_HALTED) { 2060 (void) CAS_TLB_INFO(cpup, TLB_CPU_HALTED, 2061 TLB_CPU_HALTED | TLB_INVAL_ALL); 2062 SMT_PAUSE(); 2063 tlb_info = cpup->cpu_m.mcpu_tlb_info; 2064 } 2065 if (tlb_info == (TLB_CPU_HALTED | TLB_INVAL_ALL)) { 2066 HATSTAT_INC(hs_tlb_inval_delayed); 2067 CPUSET_DEL(cpus_to_shootdown, c); 2068 } 2069 } 2070 #endif 2071 2072 if (CPUSET_ISNULL(cpus_to_shootdown) || 2073 CPUSET_ISEQUAL(cpus_to_shootdown, justme)) { 2074 2075 #ifdef __xpv 2076 if (va == DEMAP_ALL_ADDR) 2077 xen_flush_tlb(); 2078 else 2079 xen_flush_va((caddr_t)va); 2080 #else 2081 (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL); 2082 #endif 2083 2084 } else { 2085 2086 CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id); 2087 #ifdef __xpv 2088 if (va == DEMAP_ALL_ADDR) 2089 xen_gflush_tlb(cpus_to_shootdown); 2090 else 2091 xen_gflush_va((caddr_t)va, cpus_to_shootdown); 2092 #else 2093 xc_call((xc_arg_t)hat, (xc_arg_t)va, NULL, X_CALL_HIPRI, 2094 cpus_to_shootdown, hati_demap_func); 2095 #endif 2096 2097 } 2098 kpreempt_enable(); 2099 } 2100 2101 /* 2102 * Interior routine for HAT_UNLOADs from hat_unload_callback(), 2103 * hat_kmap_unload() OR from hat_steal() code. This routine doesn't 2104 * handle releasing of the htables. 2105 */ 2106 void 2107 hat_pte_unmap( 2108 htable_t *ht, 2109 uint_t entry, 2110 uint_t flags, 2111 x86pte_t old_pte, 2112 void *pte_ptr) 2113 { 2114 hat_t *hat = ht->ht_hat; 2115 hment_t *hm = NULL; 2116 page_t *pp = NULL; 2117 level_t l = ht->ht_level; 2118 pfn_t pfn; 2119 2120 /* 2121 * We always track the locking counts, even if nothing is unmapped 2122 */ 2123 if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) { 2124 ASSERT(ht->ht_lock_cnt > 0); 2125 HTABLE_LOCK_DEC(ht); 2126 } 2127 2128 /* 2129 * Figure out which page's mapping list lock to acquire using the PFN 2130 * passed in "old" PTE. We then attempt to invalidate the PTE. 2131 * If another thread, probably a hat_pageunload, has asynchronously 2132 * unmapped/remapped this address we'll loop here. 2133 */ 2134 ASSERT(ht->ht_busy > 0); 2135 while (PTE_ISVALID(old_pte)) { 2136 pfn = PTE2PFN(old_pte, l); 2137 if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) { 2138 pp = NULL; 2139 } else { 2140 #ifdef __xpv 2141 if (pfn == PFN_INVALID) 2142 panic("Invalid PFN, but not PT_NOCONSIST"); 2143 #endif 2144 pp = page_numtopp_nolock(pfn); 2145 if (pp == NULL) { 2146 panic("no page_t, not NOCONSIST: old_pte=" 2147 FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx", 2148 old_pte, (uintptr_t)ht, entry, 2149 (uintptr_t)pte_ptr); 2150 } 2151 x86_hm_enter(pp); 2152 } 2153 2154 /* 2155 * If freeing the address space, check that the PTE 2156 * hasn't changed, as the mappings are no longer in use by 2157 * any thread, invalidation is unnecessary. 2158 * If not freeing, do a full invalidate. 2159 * 2160 * On the hypervisor we must always remove mappings, as a 2161 * writable mapping left behind could cause a page table 2162 * allocation to fail. 2163 */ 2164 #if !defined(__xpv) 2165 if (hat->hat_flags & HAT_FREEING) 2166 old_pte = x86pte_get(ht, entry); 2167 else 2168 #endif 2169 old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr); 2170 2171 /* 2172 * If the page hadn't changed we've unmapped it and can proceed 2173 */ 2174 if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn) 2175 break; 2176 2177 /* 2178 * Otherwise, we'll have to retry with the current old_pte. 2179 * Drop the hment lock, since the pfn may have changed. 2180 */ 2181 if (pp != NULL) { 2182 x86_hm_exit(pp); 2183 pp = NULL; 2184 } else { 2185 ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); 2186 } 2187 } 2188 2189 /* 2190 * If the old mapping wasn't valid, there's nothing more to do 2191 */ 2192 if (!PTE_ISVALID(old_pte)) { 2193 if (pp != NULL) 2194 x86_hm_exit(pp); 2195 return; 2196 } 2197 2198 /* 2199 * Take care of syncing any MOD/REF bits and removing the hment. 2200 */ 2201 if (pp != NULL) { 2202 if (!(flags & HAT_UNLOAD_NOSYNC)) 2203 hati_sync_pte_to_page(pp, old_pte, l); 2204 hm = hment_remove(pp, ht, entry); 2205 x86_hm_exit(pp); 2206 if (hm != NULL) 2207 hment_free(hm); 2208 } 2209 2210 /* 2211 * Handle book keeping in the htable and hat 2212 */ 2213 ASSERT(ht->ht_valid_cnt > 0); 2214 HTABLE_DEC(ht->ht_valid_cnt); 2215 PGCNT_DEC(hat, l); 2216 } 2217 2218 /* 2219 * very cheap unload implementation to special case some kernel addresses 2220 */ 2221 static void 2222 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags) 2223 { 2224 uintptr_t va = (uintptr_t)addr; 2225 uintptr_t eva = va + len; 2226 pgcnt_t pg_index; 2227 htable_t *ht; 2228 uint_t entry; 2229 x86pte_t *pte_ptr; 2230 x86pte_t old_pte; 2231 2232 for (; va < eva; va += MMU_PAGESIZE) { 2233 /* 2234 * Get the PTE 2235 */ 2236 pg_index = mmu_btop(va - mmu.kmap_addr); 2237 pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index); 2238 old_pte = GET_PTE(pte_ptr); 2239 2240 /* 2241 * get the htable / entry 2242 */ 2243 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) 2244 >> LEVEL_SHIFT(1)]; 2245 entry = htable_va2entry(va, ht); 2246 2247 /* 2248 * use mostly common code to unmap it. 2249 */ 2250 hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr); 2251 } 2252 } 2253 2254 2255 /* 2256 * unload a range of virtual address space (no callback) 2257 */ 2258 void 2259 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2260 { 2261 uintptr_t va = (uintptr_t)addr; 2262 2263 XPV_DISALLOW_MIGRATE(); 2264 ASSERT(hat == kas.a_hat || va + len <= _userlimit); 2265 2266 /* 2267 * special case for performance. 2268 */ 2269 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 2270 ASSERT(hat == kas.a_hat); 2271 hat_kmap_unload(addr, len, flags); 2272 } else { 2273 hat_unload_callback(hat, addr, len, flags, NULL); 2274 } 2275 XPV_ALLOW_MIGRATE(); 2276 } 2277 2278 /* 2279 * Do the callbacks for ranges being unloaded. 2280 */ 2281 typedef struct range_info { 2282 uintptr_t rng_va; 2283 ulong_t rng_cnt; 2284 level_t rng_level; 2285 } range_info_t; 2286 2287 static void 2288 handle_ranges(hat_callback_t *cb, uint_t cnt, range_info_t *range) 2289 { 2290 /* 2291 * do callbacks to upper level VM system 2292 */ 2293 while (cb != NULL && cnt > 0) { 2294 --cnt; 2295 cb->hcb_start_addr = (caddr_t)range[cnt].rng_va; 2296 cb->hcb_end_addr = cb->hcb_start_addr; 2297 cb->hcb_end_addr += 2298 range[cnt].rng_cnt << LEVEL_SIZE(range[cnt].rng_level); 2299 cb->hcb_function(cb); 2300 } 2301 } 2302 2303 /* 2304 * Unload a given range of addresses (has optional callback) 2305 * 2306 * Flags: 2307 * define HAT_UNLOAD 0x00 2308 * define HAT_UNLOAD_NOSYNC 0x02 2309 * define HAT_UNLOAD_UNLOCK 0x04 2310 * define HAT_UNLOAD_OTHER 0x08 - not used 2311 * define HAT_UNLOAD_UNMAP 0x10 - same as HAT_UNLOAD 2312 */ 2313 #define MAX_UNLOAD_CNT (8) 2314 void 2315 hat_unload_callback( 2316 hat_t *hat, 2317 caddr_t addr, 2318 size_t len, 2319 uint_t flags, 2320 hat_callback_t *cb) 2321 { 2322 uintptr_t vaddr = (uintptr_t)addr; 2323 uintptr_t eaddr = vaddr + len; 2324 htable_t *ht = NULL; 2325 uint_t entry; 2326 uintptr_t contig_va = (uintptr_t)-1L; 2327 range_info_t r[MAX_UNLOAD_CNT]; 2328 uint_t r_cnt = 0; 2329 x86pte_t old_pte; 2330 2331 XPV_DISALLOW_MIGRATE(); 2332 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 2333 ASSERT(IS_PAGEALIGNED(vaddr)); 2334 ASSERT(IS_PAGEALIGNED(eaddr)); 2335 2336 /* 2337 * Special case a single page being unloaded for speed. This happens 2338 * quite frequently, COW faults after a fork() for example. 2339 */ 2340 if (cb == NULL && len == MMU_PAGESIZE) { 2341 ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0); 2342 if (ht != NULL) { 2343 if (PTE_ISVALID(old_pte)) 2344 hat_pte_unmap(ht, entry, flags, old_pte, NULL); 2345 htable_release(ht); 2346 } 2347 XPV_ALLOW_MIGRATE(); 2348 return; 2349 } 2350 2351 while (vaddr < eaddr) { 2352 old_pte = htable_walk(hat, &ht, &vaddr, eaddr); 2353 if (ht == NULL) 2354 break; 2355 2356 ASSERT(!IN_VA_HOLE(vaddr)); 2357 2358 if (vaddr < (uintptr_t)addr) 2359 panic("hat_unload_callback(): unmap inside large page"); 2360 2361 /* 2362 * We'll do the call backs for contiguous ranges 2363 */ 2364 if (vaddr != contig_va || 2365 (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) { 2366 if (r_cnt == MAX_UNLOAD_CNT) { 2367 handle_ranges(cb, r_cnt, r); 2368 r_cnt = 0; 2369 } 2370 r[r_cnt].rng_va = vaddr; 2371 r[r_cnt].rng_cnt = 0; 2372 r[r_cnt].rng_level = ht->ht_level; 2373 ++r_cnt; 2374 } 2375 2376 /* 2377 * Unload one mapping from the page tables. 2378 */ 2379 entry = htable_va2entry(vaddr, ht); 2380 hat_pte_unmap(ht, entry, flags, old_pte, NULL); 2381 ASSERT(ht->ht_level <= mmu.max_page_level); 2382 vaddr += LEVEL_SIZE(ht->ht_level); 2383 contig_va = vaddr; 2384 ++r[r_cnt - 1].rng_cnt; 2385 } 2386 if (ht) 2387 htable_release(ht); 2388 2389 /* 2390 * handle last range for callbacks 2391 */ 2392 if (r_cnt > 0) 2393 handle_ranges(cb, r_cnt, r); 2394 XPV_ALLOW_MIGRATE(); 2395 } 2396 2397 /* 2398 * synchronize mapping with software data structures 2399 * 2400 * This interface is currently only used by the working set monitor 2401 * driver. 2402 */ 2403 /*ARGSUSED*/ 2404 void 2405 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2406 { 2407 uintptr_t vaddr = (uintptr_t)addr; 2408 uintptr_t eaddr = vaddr + len; 2409 htable_t *ht = NULL; 2410 uint_t entry; 2411 x86pte_t pte; 2412 x86pte_t save_pte; 2413 x86pte_t new; 2414 page_t *pp; 2415 2416 ASSERT(!IN_VA_HOLE(vaddr)); 2417 ASSERT(IS_PAGEALIGNED(vaddr)); 2418 ASSERT(IS_PAGEALIGNED(eaddr)); 2419 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 2420 2421 XPV_DISALLOW_MIGRATE(); 2422 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2423 try_again: 2424 pte = htable_walk(hat, &ht, &vaddr, eaddr); 2425 if (ht == NULL) 2426 break; 2427 entry = htable_va2entry(vaddr, ht); 2428 2429 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || 2430 PTE_GET(pte, PT_REF | PT_MOD) == 0) 2431 continue; 2432 2433 /* 2434 * We need to acquire the mapping list lock to protect 2435 * against hat_pageunload(), hat_unload(), etc. 2436 */ 2437 pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level)); 2438 if (pp == NULL) 2439 break; 2440 x86_hm_enter(pp); 2441 save_pte = pte; 2442 pte = x86pte_get(ht, entry); 2443 if (pte != save_pte) { 2444 x86_hm_exit(pp); 2445 goto try_again; 2446 } 2447 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || 2448 PTE_GET(pte, PT_REF | PT_MOD) == 0) { 2449 x86_hm_exit(pp); 2450 continue; 2451 } 2452 2453 /* 2454 * Need to clear ref or mod bits. We may compete with 2455 * hardware updating the R/M bits and have to try again. 2456 */ 2457 if (flags == HAT_SYNC_ZERORM) { 2458 new = pte; 2459 PTE_CLR(new, PT_REF | PT_MOD); 2460 pte = hati_update_pte(ht, entry, pte, new); 2461 if (pte != 0) { 2462 x86_hm_exit(pp); 2463 goto try_again; 2464 } 2465 } else { 2466 /* 2467 * sync the PTE to the page_t 2468 */ 2469 hati_sync_pte_to_page(pp, save_pte, ht->ht_level); 2470 } 2471 x86_hm_exit(pp); 2472 } 2473 if (ht) 2474 htable_release(ht); 2475 XPV_ALLOW_MIGRATE(); 2476 } 2477 2478 /* 2479 * void hat_map(hat, addr, len, flags) 2480 */ 2481 /*ARGSUSED*/ 2482 void 2483 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2484 { 2485 /* does nothing */ 2486 } 2487 2488 /* 2489 * uint_t hat_getattr(hat, addr, *attr) 2490 * returns attr for <hat,addr> in *attr. returns 0 if there was a 2491 * mapping and *attr is valid, nonzero if there was no mapping and 2492 * *attr is not valid. 2493 */ 2494 uint_t 2495 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr) 2496 { 2497 uintptr_t vaddr = ALIGN2PAGE(addr); 2498 htable_t *ht = NULL; 2499 x86pte_t pte; 2500 2501 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2502 2503 if (IN_VA_HOLE(vaddr)) 2504 return ((uint_t)-1); 2505 2506 ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level); 2507 if (ht == NULL) 2508 return ((uint_t)-1); 2509 2510 if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) { 2511 htable_release(ht); 2512 return ((uint_t)-1); 2513 } 2514 2515 *attr = PROT_READ; 2516 if (PTE_GET(pte, PT_WRITABLE)) 2517 *attr |= PROT_WRITE; 2518 if (PTE_GET(pte, PT_USER)) 2519 *attr |= PROT_USER; 2520 if (!PTE_GET(pte, mmu.pt_nx)) 2521 *attr |= PROT_EXEC; 2522 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) 2523 *attr |= HAT_NOSYNC; 2524 htable_release(ht); 2525 return (0); 2526 } 2527 2528 /* 2529 * hat_updateattr() applies the given attribute change to an existing mapping 2530 */ 2531 #define HAT_LOAD_ATTR 1 2532 #define HAT_SET_ATTR 2 2533 #define HAT_CLR_ATTR 3 2534 2535 static void 2536 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what) 2537 { 2538 uintptr_t vaddr = (uintptr_t)addr; 2539 uintptr_t eaddr = (uintptr_t)addr + len; 2540 htable_t *ht = NULL; 2541 uint_t entry; 2542 x86pte_t oldpte, newpte; 2543 page_t *pp; 2544 2545 XPV_DISALLOW_MIGRATE(); 2546 ASSERT(IS_PAGEALIGNED(vaddr)); 2547 ASSERT(IS_PAGEALIGNED(eaddr)); 2548 ASSERT(hat == kas.a_hat || 2549 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 2550 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2551 try_again: 2552 oldpte = htable_walk(hat, &ht, &vaddr, eaddr); 2553 if (ht == NULL) 2554 break; 2555 if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST) 2556 continue; 2557 2558 pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level)); 2559 if (pp == NULL) 2560 continue; 2561 x86_hm_enter(pp); 2562 2563 newpte = oldpte; 2564 /* 2565 * We found a page table entry in the desired range, 2566 * figure out the new attributes. 2567 */ 2568 if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) { 2569 if ((attr & PROT_WRITE) && 2570 !PTE_GET(oldpte, PT_WRITABLE)) 2571 newpte |= PT_WRITABLE; 2572 2573 if ((attr & HAT_NOSYNC) && 2574 PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC) 2575 newpte |= PT_NOSYNC; 2576 2577 if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx)) 2578 newpte &= ~mmu.pt_nx; 2579 } 2580 2581 if (what == HAT_LOAD_ATTR) { 2582 if (!(attr & PROT_WRITE) && 2583 PTE_GET(oldpte, PT_WRITABLE)) 2584 newpte &= ~PT_WRITABLE; 2585 2586 if (!(attr & HAT_NOSYNC) && 2587 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) 2588 newpte &= ~PT_SOFTWARE; 2589 2590 if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2591 newpte |= mmu.pt_nx; 2592 } 2593 2594 if (what == HAT_CLR_ATTR) { 2595 if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE)) 2596 newpte &= ~PT_WRITABLE; 2597 2598 if ((attr & HAT_NOSYNC) && 2599 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) 2600 newpte &= ~PT_SOFTWARE; 2601 2602 if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2603 newpte |= mmu.pt_nx; 2604 } 2605 2606 /* 2607 * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set. 2608 * x86pte_set() depends on this. 2609 */ 2610 if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC) 2611 newpte |= PT_REF | PT_MOD; 2612 2613 /* 2614 * what about PROT_READ or others? this code only handles: 2615 * EXEC, WRITE, NOSYNC 2616 */ 2617 2618 /* 2619 * If new PTE really changed, update the table. 2620 */ 2621 if (newpte != oldpte) { 2622 entry = htable_va2entry(vaddr, ht); 2623 oldpte = hati_update_pte(ht, entry, oldpte, newpte); 2624 if (oldpte != 0) { 2625 x86_hm_exit(pp); 2626 goto try_again; 2627 } 2628 } 2629 x86_hm_exit(pp); 2630 } 2631 if (ht) 2632 htable_release(ht); 2633 XPV_ALLOW_MIGRATE(); 2634 } 2635 2636 /* 2637 * Various wrappers for hat_updateattr() 2638 */ 2639 void 2640 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2641 { 2642 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2643 hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR); 2644 } 2645 2646 void 2647 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2648 { 2649 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2650 hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR); 2651 } 2652 2653 void 2654 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2655 { 2656 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2657 hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR); 2658 } 2659 2660 void 2661 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot) 2662 { 2663 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2664 hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR); 2665 } 2666 2667 /* 2668 * size_t hat_getpagesize(hat, addr) 2669 * returns pagesize in bytes for <hat, addr>. returns -1 of there is 2670 * no mapping. This is an advisory call. 2671 */ 2672 ssize_t 2673 hat_getpagesize(hat_t *hat, caddr_t addr) 2674 { 2675 uintptr_t vaddr = ALIGN2PAGE(addr); 2676 htable_t *ht; 2677 size_t pagesize; 2678 2679 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2680 if (IN_VA_HOLE(vaddr)) 2681 return (-1); 2682 ht = htable_getpage(hat, vaddr, NULL); 2683 if (ht == NULL) 2684 return (-1); 2685 pagesize = LEVEL_SIZE(ht->ht_level); 2686 htable_release(ht); 2687 return (pagesize); 2688 } 2689 2690 2691 2692 /* 2693 * pfn_t hat_getpfnum(hat, addr) 2694 * returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid. 2695 */ 2696 pfn_t 2697 hat_getpfnum(hat_t *hat, caddr_t addr) 2698 { 2699 uintptr_t vaddr = ALIGN2PAGE(addr); 2700 htable_t *ht; 2701 uint_t entry; 2702 pfn_t pfn = PFN_INVALID; 2703 2704 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2705 if (khat_running == 0) 2706 return (PFN_INVALID); 2707 2708 if (IN_VA_HOLE(vaddr)) 2709 return (PFN_INVALID); 2710 2711 XPV_DISALLOW_MIGRATE(); 2712 /* 2713 * A very common use of hat_getpfnum() is from the DDI for kernel pages. 2714 * Use the kmap_ptes (which also covers the 32 bit heap) to speed 2715 * this up. 2716 */ 2717 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2718 x86pte_t pte; 2719 pgcnt_t pg_index; 2720 2721 pg_index = mmu_btop(vaddr - mmu.kmap_addr); 2722 pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index)); 2723 if (PTE_ISVALID(pte)) 2724 /*LINTED [use of constant 0 causes a lint warning] */ 2725 pfn = PTE2PFN(pte, 0); 2726 XPV_ALLOW_MIGRATE(); 2727 return (pfn); 2728 } 2729 2730 ht = htable_getpage(hat, vaddr, &entry); 2731 if (ht == NULL) { 2732 XPV_ALLOW_MIGRATE(); 2733 return (PFN_INVALID); 2734 } 2735 ASSERT(vaddr >= ht->ht_vaddr); 2736 ASSERT(vaddr <= HTABLE_LAST_PAGE(ht)); 2737 pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level); 2738 if (ht->ht_level > 0) 2739 pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level)); 2740 htable_release(ht); 2741 XPV_ALLOW_MIGRATE(); 2742 return (pfn); 2743 } 2744 2745 /* 2746 * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged. 2747 * Use hat_getpfnum(kas.a_hat, ...) instead. 2748 * 2749 * We'd like to return PFN_INVALID if the mappings have underlying page_t's 2750 * but can't right now due to the fact that some software has grown to use 2751 * this interface incorrectly. So for now when the interface is misused, 2752 * return a warning to the user that in the future it won't work in the 2753 * way they're abusing it, and carry on. 2754 * 2755 * Note that hat_getkpfnum() is never supported on amd64. 2756 */ 2757 #if !defined(__amd64) 2758 pfn_t 2759 hat_getkpfnum(caddr_t addr) 2760 { 2761 pfn_t pfn; 2762 int badcaller = 0; 2763 2764 if (khat_running == 0) 2765 panic("hat_getkpfnum(): called too early\n"); 2766 if ((uintptr_t)addr < kernelbase) 2767 return (PFN_INVALID); 2768 2769 XPV_DISALLOW_MIGRATE(); 2770 if (segkpm && IS_KPM_ADDR(addr)) { 2771 badcaller = 1; 2772 pfn = hat_kpm_va2pfn(addr); 2773 } else { 2774 pfn = hat_getpfnum(kas.a_hat, addr); 2775 badcaller = pf_is_memory(pfn); 2776 } 2777 2778 if (badcaller) 2779 hat_getkpfnum_badcall(caller()); 2780 XPV_ALLOW_MIGRATE(); 2781 return (pfn); 2782 } 2783 #endif /* __amd64 */ 2784 2785 /* 2786 * int hat_probe(hat, addr) 2787 * return 0 if no valid mapping is present. Faster version 2788 * of hat_getattr in certain architectures. 2789 */ 2790 int 2791 hat_probe(hat_t *hat, caddr_t addr) 2792 { 2793 uintptr_t vaddr = ALIGN2PAGE(addr); 2794 uint_t entry; 2795 htable_t *ht; 2796 pgcnt_t pg_off; 2797 2798 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2799 ASSERT(hat == kas.a_hat || 2800 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 2801 if (IN_VA_HOLE(vaddr)) 2802 return (0); 2803 2804 /* 2805 * Most common use of hat_probe is from segmap. We special case it 2806 * for performance. 2807 */ 2808 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2809 pg_off = mmu_btop(vaddr - mmu.kmap_addr); 2810 if (mmu.pae_hat) 2811 return (PTE_ISVALID(mmu.kmap_ptes[pg_off])); 2812 else 2813 return (PTE_ISVALID( 2814 ((x86pte32_t *)mmu.kmap_ptes)[pg_off])); 2815 } 2816 2817 ht = htable_getpage(hat, vaddr, &entry); 2818 htable_release(ht); 2819 return (ht != NULL); 2820 } 2821 2822 /* 2823 * Find out if the segment for hat_share()/hat_unshare() is DISM or locked ISM. 2824 */ 2825 static int 2826 is_it_dism(hat_t *hat, caddr_t va) 2827 { 2828 struct seg *seg; 2829 struct shm_data *shmd; 2830 struct spt_data *sptd; 2831 2832 seg = as_findseg(hat->hat_as, va, 0); 2833 ASSERT(seg != NULL); 2834 ASSERT(seg->s_base <= va); 2835 shmd = (struct shm_data *)seg->s_data; 2836 ASSERT(shmd != NULL); 2837 sptd = (struct spt_data *)shmd->shm_sptseg->s_data; 2838 ASSERT(sptd != NULL); 2839 if (sptd->spt_flags & SHM_PAGEABLE) 2840 return (1); 2841 return (0); 2842 } 2843 2844 /* 2845 * Simple implementation of ISM. hat_share() is similar to hat_memload_array(), 2846 * except that we use the ism_hat's existing mappings to determine the pages 2847 * and protections to use for this hat. If we find a full properly aligned 2848 * and sized pagetable, we will attempt to share the pagetable itself. 2849 */ 2850 /*ARGSUSED*/ 2851 int 2852 hat_share( 2853 hat_t *hat, 2854 caddr_t addr, 2855 hat_t *ism_hat, 2856 caddr_t src_addr, 2857 size_t len, /* almost useless value, see below.. */ 2858 uint_t ismszc) 2859 { 2860 uintptr_t vaddr_start = (uintptr_t)addr; 2861 uintptr_t vaddr; 2862 uintptr_t eaddr = vaddr_start + len; 2863 uintptr_t ism_addr_start = (uintptr_t)src_addr; 2864 uintptr_t ism_addr = ism_addr_start; 2865 uintptr_t e_ism_addr = ism_addr + len; 2866 htable_t *ism_ht = NULL; 2867 htable_t *ht; 2868 x86pte_t pte; 2869 page_t *pp; 2870 pfn_t pfn; 2871 level_t l; 2872 pgcnt_t pgcnt; 2873 uint_t prot; 2874 int is_dism; 2875 int flags; 2876 2877 /* 2878 * We might be asked to share an empty DISM hat by as_dup() 2879 */ 2880 ASSERT(hat != kas.a_hat); 2881 ASSERT(eaddr <= _userlimit); 2882 if (!(ism_hat->hat_flags & HAT_SHARED)) { 2883 ASSERT(hat_get_mapped_size(ism_hat) == 0); 2884 return (0); 2885 } 2886 XPV_DISALLOW_MIGRATE(); 2887 2888 /* 2889 * The SPT segment driver often passes us a size larger than there are 2890 * valid mappings. That's because it rounds the segment size up to a 2891 * large pagesize, even if the actual memory mapped by ism_hat is less. 2892 */ 2893 ASSERT(IS_PAGEALIGNED(vaddr_start)); 2894 ASSERT(IS_PAGEALIGNED(ism_addr_start)); 2895 ASSERT(ism_hat->hat_flags & HAT_SHARED); 2896 is_dism = is_it_dism(hat, addr); 2897 while (ism_addr < e_ism_addr) { 2898 /* 2899 * use htable_walk to get the next valid ISM mapping 2900 */ 2901 pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr); 2902 if (ism_ht == NULL) 2903 break; 2904 2905 /* 2906 * First check to see if we already share the page table. 2907 */ 2908 l = ism_ht->ht_level; 2909 vaddr = vaddr_start + (ism_addr - ism_addr_start); 2910 ht = htable_lookup(hat, vaddr, l); 2911 if (ht != NULL) { 2912 if (ht->ht_flags & HTABLE_SHARED_PFN) 2913 goto shared; 2914 htable_release(ht); 2915 goto not_shared; 2916 } 2917 2918 /* 2919 * Can't ever share top table. 2920 */ 2921 if (l == mmu.max_level) 2922 goto not_shared; 2923 2924 /* 2925 * Avoid level mismatches later due to DISM faults. 2926 */ 2927 if (is_dism && l > 0) 2928 goto not_shared; 2929 2930 /* 2931 * addresses and lengths must align 2932 * table must be fully populated 2933 * no lower level page tables 2934 */ 2935 if (ism_addr != ism_ht->ht_vaddr || 2936 (vaddr & LEVEL_OFFSET(l + 1)) != 0) 2937 goto not_shared; 2938 2939 /* 2940 * The range of address space must cover a full table. 2941 */ 2942 if (e_ism_addr - ism_addr < LEVEL_SIZE(l + 1)) 2943 goto not_shared; 2944 2945 /* 2946 * All entries in the ISM page table must be leaf PTEs. 2947 */ 2948 if (l > 0) { 2949 int e; 2950 2951 /* 2952 * We know the 0th is from htable_walk() above. 2953 */ 2954 for (e = 1; e < HTABLE_NUM_PTES(ism_ht); ++e) { 2955 x86pte_t pte; 2956 pte = x86pte_get(ism_ht, e); 2957 if (!PTE_ISPAGE(pte, l)) 2958 goto not_shared; 2959 } 2960 } 2961 2962 /* 2963 * share the page table 2964 */ 2965 ht = htable_create(hat, vaddr, l, ism_ht); 2966 shared: 2967 ASSERT(ht->ht_flags & HTABLE_SHARED_PFN); 2968 ASSERT(ht->ht_shares == ism_ht); 2969 hat->hat_ism_pgcnt += 2970 (ism_ht->ht_valid_cnt - ht->ht_valid_cnt) << 2971 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT); 2972 ht->ht_valid_cnt = ism_ht->ht_valid_cnt; 2973 htable_release(ht); 2974 ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(l + 1); 2975 htable_release(ism_ht); 2976 ism_ht = NULL; 2977 continue; 2978 2979 not_shared: 2980 /* 2981 * Unable to share the page table. Instead we will 2982 * create new mappings from the values in the ISM mappings. 2983 * Figure out what level size mappings to use; 2984 */ 2985 for (l = ism_ht->ht_level; l > 0; --l) { 2986 if (LEVEL_SIZE(l) <= eaddr - vaddr && 2987 (vaddr & LEVEL_OFFSET(l)) == 0) 2988 break; 2989 } 2990 2991 /* 2992 * The ISM mapping might be larger than the share area, 2993 * be careful to truncate it if needed. 2994 */ 2995 if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) { 2996 pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level)); 2997 } else { 2998 pgcnt = mmu_btop(eaddr - vaddr); 2999 l = 0; 3000 } 3001 3002 pfn = PTE2PFN(pte, ism_ht->ht_level); 3003 ASSERT(pfn != PFN_INVALID); 3004 while (pgcnt > 0) { 3005 /* 3006 * Make a new pte for the PFN for this level. 3007 * Copy protections for the pte from the ISM pte. 3008 */ 3009 pp = page_numtopp_nolock(pfn); 3010 ASSERT(pp != NULL); 3011 3012 prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK; 3013 if (PTE_GET(pte, PT_WRITABLE)) 3014 prot |= PROT_WRITE; 3015 if (!PTE_GET(pte, PT_NX)) 3016 prot |= PROT_EXEC; 3017 3018 flags = HAT_LOAD; 3019 if (!is_dism) 3020 flags |= HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST; 3021 while (hati_load_common(hat, vaddr, pp, prot, flags, 3022 l, pfn) != 0) { 3023 if (l == 0) 3024 panic("hati_load_common() failure"); 3025 --l; 3026 } 3027 3028 vaddr += LEVEL_SIZE(l); 3029 ism_addr += LEVEL_SIZE(l); 3030 pfn += mmu_btop(LEVEL_SIZE(l)); 3031 pgcnt -= mmu_btop(LEVEL_SIZE(l)); 3032 } 3033 } 3034 if (ism_ht != NULL) 3035 htable_release(ism_ht); 3036 XPV_ALLOW_MIGRATE(); 3037 return (0); 3038 } 3039 3040 3041 /* 3042 * hat_unshare() is similar to hat_unload_callback(), but 3043 * we have to look for empty shared pagetables. Note that 3044 * hat_unshare() is always invoked against an entire segment. 3045 */ 3046 /*ARGSUSED*/ 3047 void 3048 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc) 3049 { 3050 uint64_t vaddr = (uintptr_t)addr; 3051 uintptr_t eaddr = vaddr + len; 3052 htable_t *ht = NULL; 3053 uint_t need_demaps = 0; 3054 int flags = HAT_UNLOAD_UNMAP; 3055 level_t l; 3056 3057 ASSERT(hat != kas.a_hat); 3058 ASSERT(eaddr <= _userlimit); 3059 ASSERT(IS_PAGEALIGNED(vaddr)); 3060 ASSERT(IS_PAGEALIGNED(eaddr)); 3061 XPV_DISALLOW_MIGRATE(); 3062 3063 /* 3064 * First go through and remove any shared pagetables. 3065 * 3066 * Note that it's ok to delay the TLB shootdown till the entire range is 3067 * finished, because if hat_pageunload() were to unload a shared 3068 * pagetable page, its hat_tlb_inval() will do a global TLB invalidate. 3069 */ 3070 l = mmu.max_page_level; 3071 if (l == mmu.max_level) 3072 --l; 3073 for (; l >= 0; --l) { 3074 for (vaddr = (uintptr_t)addr; vaddr < eaddr; 3075 vaddr = (vaddr & LEVEL_MASK(l + 1)) + LEVEL_SIZE(l + 1)) { 3076 ASSERT(!IN_VA_HOLE(vaddr)); 3077 /* 3078 * find a pagetable that maps the current address 3079 */ 3080 ht = htable_lookup(hat, vaddr, l); 3081 if (ht == NULL) 3082 continue; 3083 if (ht->ht_flags & HTABLE_SHARED_PFN) { 3084 /* 3085 * clear page count, set valid_cnt to 0, 3086 * let htable_release() finish the job 3087 */ 3088 hat->hat_ism_pgcnt -= ht->ht_valid_cnt << 3089 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT); 3090 ht->ht_valid_cnt = 0; 3091 need_demaps = 1; 3092 } 3093 htable_release(ht); 3094 } 3095 } 3096 3097 /* 3098 * flush the TLBs - since we're probably dealing with MANY mappings 3099 * we do just one CR3 reload. 3100 */ 3101 if (!(hat->hat_flags & HAT_FREEING) && need_demaps) 3102 hat_tlb_inval(hat, DEMAP_ALL_ADDR); 3103 3104 /* 3105 * Now go back and clean up any unaligned mappings that 3106 * couldn't share pagetables. 3107 */ 3108 if (!is_it_dism(hat, addr)) 3109 flags |= HAT_UNLOAD_UNLOCK; 3110 hat_unload(hat, addr, len, flags); 3111 XPV_ALLOW_MIGRATE(); 3112 } 3113 3114 3115 /* 3116 * hat_reserve() does nothing 3117 */ 3118 /*ARGSUSED*/ 3119 void 3120 hat_reserve(struct as *as, caddr_t addr, size_t len) 3121 { 3122 } 3123 3124 3125 /* 3126 * Called when all mappings to a page should have write permission removed. 3127 * Mostly stolem from hat_pagesync() 3128 */ 3129 static void 3130 hati_page_clrwrt(struct page *pp) 3131 { 3132 hment_t *hm = NULL; 3133 htable_t *ht; 3134 uint_t entry; 3135 x86pte_t old; 3136 x86pte_t new; 3137 uint_t pszc = 0; 3138 3139 XPV_DISALLOW_MIGRATE(); 3140 next_size: 3141 /* 3142 * walk thru the mapping list clearing write permission 3143 */ 3144 x86_hm_enter(pp); 3145 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 3146 if (ht->ht_level < pszc) 3147 continue; 3148 old = x86pte_get(ht, entry); 3149 3150 for (;;) { 3151 /* 3152 * Is this mapping of interest? 3153 */ 3154 if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum || 3155 PTE_GET(old, PT_WRITABLE) == 0) 3156 break; 3157 3158 /* 3159 * Clear ref/mod writable bits. This requires cross 3160 * calls to ensure any executing TLBs see cleared bits. 3161 */ 3162 new = old; 3163 PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE); 3164 old = hati_update_pte(ht, entry, old, new); 3165 if (old != 0) 3166 continue; 3167 3168 break; 3169 } 3170 } 3171 x86_hm_exit(pp); 3172 while (pszc < pp->p_szc) { 3173 page_t *tpp; 3174 pszc++; 3175 tpp = PP_GROUPLEADER(pp, pszc); 3176 if (pp != tpp) { 3177 pp = tpp; 3178 goto next_size; 3179 } 3180 } 3181 XPV_ALLOW_MIGRATE(); 3182 } 3183 3184 /* 3185 * void hat_page_setattr(pp, flag) 3186 * void hat_page_clrattr(pp, flag) 3187 * used to set/clr ref/mod bits. 3188 */ 3189 void 3190 hat_page_setattr(struct page *pp, uint_t flag) 3191 { 3192 vnode_t *vp = pp->p_vnode; 3193 kmutex_t *vphm = NULL; 3194 page_t **listp; 3195 int noshuffle; 3196 3197 noshuffle = flag & P_NSH; 3198 flag &= ~P_NSH; 3199 3200 if (PP_GETRM(pp, flag) == flag) 3201 return; 3202 3203 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) && 3204 !noshuffle) { 3205 vphm = page_vnode_mutex(vp); 3206 mutex_enter(vphm); 3207 } 3208 3209 PP_SETRM(pp, flag); 3210 3211 if (vphm != NULL) { 3212 3213 /* 3214 * Some File Systems examine v_pages for NULL w/o 3215 * grabbing the vphm mutex. Must not let it become NULL when 3216 * pp is the only page on the list. 3217 */ 3218 if (pp->p_vpnext != pp) { 3219 page_vpsub(&vp->v_pages, pp); 3220 if (vp->v_pages != NULL) 3221 listp = &vp->v_pages->p_vpprev->p_vpnext; 3222 else 3223 listp = &vp->v_pages; 3224 page_vpadd(listp, pp); 3225 } 3226 mutex_exit(vphm); 3227 } 3228 } 3229 3230 void 3231 hat_page_clrattr(struct page *pp, uint_t flag) 3232 { 3233 vnode_t *vp = pp->p_vnode; 3234 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 3235 3236 /* 3237 * Caller is expected to hold page's io lock for VMODSORT to work 3238 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod 3239 * bit is cleared. 3240 * We don't have assert to avoid tripping some existing third party 3241 * code. The dirty page is moved back to top of the v_page list 3242 * after IO is done in pvn_write_done(). 3243 */ 3244 PP_CLRRM(pp, flag); 3245 3246 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { 3247 3248 /* 3249 * VMODSORT works by removing write permissions and getting 3250 * a fault when a page is made dirty. At this point 3251 * we need to remove write permission from all mappings 3252 * to this page. 3253 */ 3254 hati_page_clrwrt(pp); 3255 } 3256 } 3257 3258 /* 3259 * If flag is specified, returns 0 if attribute is disabled 3260 * and non zero if enabled. If flag specifes multiple attributs 3261 * then returns 0 if ALL atriibutes are disabled. This is an advisory 3262 * call. 3263 */ 3264 uint_t 3265 hat_page_getattr(struct page *pp, uint_t flag) 3266 { 3267 return (PP_GETRM(pp, flag)); 3268 } 3269 3270 3271 /* 3272 * common code used by hat_pageunload() and hment_steal() 3273 */ 3274 hment_t * 3275 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry) 3276 { 3277 x86pte_t old_pte; 3278 pfn_t pfn = pp->p_pagenum; 3279 hment_t *hm; 3280 3281 /* 3282 * We need to acquire a hold on the htable in order to 3283 * do the invalidate. We know the htable must exist, since 3284 * unmap's don't release the htable until after removing any 3285 * hment. Having x86_hm_enter() keeps that from proceeding. 3286 */ 3287 htable_acquire(ht); 3288 3289 /* 3290 * Invalidate the PTE and remove the hment. 3291 */ 3292 old_pte = x86pte_inval(ht, entry, 0, NULL); 3293 if (PTE2PFN(old_pte, ht->ht_level) != pfn) { 3294 panic("x86pte_inval() failure found PTE = " FMT_PTE 3295 " pfn being unmapped is %lx ht=0x%lx entry=0x%x", 3296 old_pte, pfn, (uintptr_t)ht, entry); 3297 } 3298 3299 /* 3300 * Clean up all the htable information for this mapping 3301 */ 3302 ASSERT(ht->ht_valid_cnt > 0); 3303 HTABLE_DEC(ht->ht_valid_cnt); 3304 PGCNT_DEC(ht->ht_hat, ht->ht_level); 3305 3306 /* 3307 * sync ref/mod bits to the page_t 3308 */ 3309 if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC) 3310 hati_sync_pte_to_page(pp, old_pte, ht->ht_level); 3311 3312 /* 3313 * Remove the mapping list entry for this page. 3314 */ 3315 hm = hment_remove(pp, ht, entry); 3316 3317 /* 3318 * drop the mapping list lock so that we might free the 3319 * hment and htable. 3320 */ 3321 x86_hm_exit(pp); 3322 htable_release(ht); 3323 return (hm); 3324 } 3325 3326 extern int vpm_enable; 3327 /* 3328 * Unload all translations to a page. If the page is a subpage of a large 3329 * page, the large page mappings are also removed. 3330 * 3331 * The forceflags are unused. 3332 */ 3333 3334 /*ARGSUSED*/ 3335 static int 3336 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag) 3337 { 3338 page_t *cur_pp = pp; 3339 hment_t *hm; 3340 hment_t *prev; 3341 htable_t *ht; 3342 uint_t entry; 3343 level_t level; 3344 3345 XPV_DISALLOW_MIGRATE(); 3346 #if defined(__amd64) 3347 /* 3348 * clear the vpm ref. 3349 */ 3350 if (vpm_enable) { 3351 pp->p_vpmref = 0; 3352 } 3353 #endif 3354 /* 3355 * The loop with next_size handles pages with multiple pagesize mappings 3356 */ 3357 next_size: 3358 for (;;) { 3359 3360 /* 3361 * Get a mapping list entry 3362 */ 3363 x86_hm_enter(cur_pp); 3364 for (prev = NULL; ; prev = hm) { 3365 hm = hment_walk(cur_pp, &ht, &entry, prev); 3366 if (hm == NULL) { 3367 x86_hm_exit(cur_pp); 3368 3369 /* 3370 * If not part of a larger page, we're done. 3371 */ 3372 if (cur_pp->p_szc <= pg_szcd) { 3373 XPV_ALLOW_MIGRATE(); 3374 return (0); 3375 } 3376 3377 /* 3378 * Else check the next larger page size. 3379 * hat_page_demote() may decrease p_szc 3380 * but that's ok we'll just take an extra 3381 * trip discover there're no larger mappings 3382 * and return. 3383 */ 3384 ++pg_szcd; 3385 cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd); 3386 goto next_size; 3387 } 3388 3389 /* 3390 * If this mapping size matches, remove it. 3391 */ 3392 level = ht->ht_level; 3393 if (level == pg_szcd) 3394 break; 3395 } 3396 3397 /* 3398 * Remove the mapping list entry for this page. 3399 * Note this does the x86_hm_exit() for us. 3400 */ 3401 hm = hati_page_unmap(cur_pp, ht, entry); 3402 if (hm != NULL) 3403 hment_free(hm); 3404 } 3405 } 3406 3407 int 3408 hat_pageunload(struct page *pp, uint_t forceflag) 3409 { 3410 ASSERT(PAGE_EXCL(pp)); 3411 return (hati_pageunload(pp, 0, forceflag)); 3412 } 3413 3414 /* 3415 * Unload all large mappings to pp and reduce by 1 p_szc field of every large 3416 * page level that included pp. 3417 * 3418 * pp must be locked EXCL. Even though no other constituent pages are locked 3419 * it's legal to unload large mappings to pp because all constituent pages of 3420 * large locked mappings have to be locked SHARED. therefore if we have EXCL 3421 * lock on one of constituent pages none of the large mappings to pp are 3422 * locked. 3423 * 3424 * Change (always decrease) p_szc field starting from the last constituent 3425 * page and ending with root constituent page so that root's pszc always shows 3426 * the area where hat_page_demote() may be active. 3427 * 3428 * This mechanism is only used for file system pages where it's not always 3429 * possible to get EXCL locks on all constituent pages to demote the size code 3430 * (as is done for anonymous or kernel large pages). 3431 */ 3432 void 3433 hat_page_demote(page_t *pp) 3434 { 3435 uint_t pszc; 3436 uint_t rszc; 3437 uint_t szc; 3438 page_t *rootpp; 3439 page_t *firstpp; 3440 page_t *lastpp; 3441 pgcnt_t pgcnt; 3442 3443 ASSERT(PAGE_EXCL(pp)); 3444 ASSERT(!PP_ISFREE(pp)); 3445 ASSERT(page_szc_lock_assert(pp)); 3446 3447 if (pp->p_szc == 0) 3448 return; 3449 3450 rootpp = PP_GROUPLEADER(pp, 1); 3451 (void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD); 3452 3453 /* 3454 * all large mappings to pp are gone 3455 * and no new can be setup since pp is locked exclusively. 3456 * 3457 * Lock the root to make sure there's only one hat_page_demote() 3458 * outstanding within the area of this root's pszc. 3459 * 3460 * Second potential hat_page_demote() is already eliminated by upper 3461 * VM layer via page_szc_lock() but we don't rely on it and use our 3462 * own locking (so that upper layer locking can be changed without 3463 * assumptions that hat depends on upper layer VM to prevent multiple 3464 * hat_page_demote() to be issued simultaneously to the same large 3465 * page). 3466 */ 3467 again: 3468 pszc = pp->p_szc; 3469 if (pszc == 0) 3470 return; 3471 rootpp = PP_GROUPLEADER(pp, pszc); 3472 x86_hm_enter(rootpp); 3473 /* 3474 * If root's p_szc is different from pszc we raced with another 3475 * hat_page_demote(). Drop the lock and try to find the root again. 3476 * If root's p_szc is greater than pszc previous hat_page_demote() is 3477 * not done yet. Take and release mlist lock of root's root to wait 3478 * for previous hat_page_demote() to complete. 3479 */ 3480 if ((rszc = rootpp->p_szc) != pszc) { 3481 x86_hm_exit(rootpp); 3482 if (rszc > pszc) { 3483 /* p_szc of a locked non free page can't increase */ 3484 ASSERT(pp != rootpp); 3485 3486 rootpp = PP_GROUPLEADER(rootpp, rszc); 3487 x86_hm_enter(rootpp); 3488 x86_hm_exit(rootpp); 3489 } 3490 goto again; 3491 } 3492 ASSERT(pp->p_szc == pszc); 3493 3494 /* 3495 * Decrement by 1 p_szc of every constituent page of a region that 3496 * covered pp. For example if original szc is 3 it gets changed to 2 3497 * everywhere except in region 2 that covered pp. Region 2 that 3498 * covered pp gets demoted to 1 everywhere except in region 1 that 3499 * covered pp. The region 1 that covered pp is demoted to region 3500 * 0. It's done this way because from region 3 we removed level 3 3501 * mappings, from region 2 that covered pp we removed level 2 mappings 3502 * and from region 1 that covered pp we removed level 1 mappings. All 3503 * changes are done from from high pfn's to low pfn's so that roots 3504 * are changed last allowing one to know the largest region where 3505 * hat_page_demote() is stil active by only looking at the root page. 3506 * 3507 * This algorithm is implemented in 2 while loops. First loop changes 3508 * p_szc of pages to the right of pp's level 1 region and second 3509 * loop changes p_szc of pages of level 1 region that covers pp 3510 * and all pages to the left of level 1 region that covers pp. 3511 * In the first loop p_szc keeps dropping with every iteration 3512 * and in the second loop it keeps increasing with every iteration. 3513 * 3514 * First loop description: Demote pages to the right of pp outside of 3515 * level 1 region that covers pp. In every iteration of the while 3516 * loop below find the last page of szc region and the first page of 3517 * (szc - 1) region that is immediately to the right of (szc - 1) 3518 * region that covers pp. From last such page to first such page 3519 * change every page's szc to szc - 1. Decrement szc and continue 3520 * looping until szc is 1. If pp belongs to the last (szc - 1) region 3521 * of szc region skip to the next iteration. 3522 */ 3523 szc = pszc; 3524 while (szc > 1) { 3525 lastpp = PP_GROUPLEADER(pp, szc); 3526 pgcnt = page_get_pagecnt(szc); 3527 lastpp += pgcnt - 1; 3528 firstpp = PP_GROUPLEADER(pp, (szc - 1)); 3529 pgcnt = page_get_pagecnt(szc - 1); 3530 if (lastpp - firstpp < pgcnt) { 3531 szc--; 3532 continue; 3533 } 3534 firstpp += pgcnt; 3535 while (lastpp != firstpp) { 3536 ASSERT(lastpp->p_szc == pszc); 3537 lastpp->p_szc = szc - 1; 3538 lastpp--; 3539 } 3540 firstpp->p_szc = szc - 1; 3541 szc--; 3542 } 3543 3544 /* 3545 * Second loop description: 3546 * First iteration changes p_szc to 0 of every 3547 * page of level 1 region that covers pp. 3548 * Subsequent iterations find last page of szc region 3549 * immediately to the left of szc region that covered pp 3550 * and first page of (szc + 1) region that covers pp. 3551 * From last to first page change p_szc of every page to szc. 3552 * Increment szc and continue looping until szc is pszc. 3553 * If pp belongs to the fist szc region of (szc + 1) region 3554 * skip to the next iteration. 3555 * 3556 */ 3557 szc = 0; 3558 while (szc < pszc) { 3559 firstpp = PP_GROUPLEADER(pp, (szc + 1)); 3560 if (szc == 0) { 3561 pgcnt = page_get_pagecnt(1); 3562 lastpp = firstpp + (pgcnt - 1); 3563 } else { 3564 lastpp = PP_GROUPLEADER(pp, szc); 3565 if (firstpp == lastpp) { 3566 szc++; 3567 continue; 3568 } 3569 lastpp--; 3570 pgcnt = page_get_pagecnt(szc); 3571 } 3572 while (lastpp != firstpp) { 3573 ASSERT(lastpp->p_szc == pszc); 3574 lastpp->p_szc = szc; 3575 lastpp--; 3576 } 3577 firstpp->p_szc = szc; 3578 if (firstpp == rootpp) 3579 break; 3580 szc++; 3581 } 3582 x86_hm_exit(rootpp); 3583 } 3584 3585 /* 3586 * get hw stats from hardware into page struct and reset hw stats 3587 * returns attributes of page 3588 * Flags for hat_pagesync, hat_getstat, hat_sync 3589 * 3590 * define HAT_SYNC_ZERORM 0x01 3591 * 3592 * Additional flags for hat_pagesync 3593 * 3594 * define HAT_SYNC_STOPON_REF 0x02 3595 * define HAT_SYNC_STOPON_MOD 0x04 3596 * define HAT_SYNC_STOPON_RM 0x06 3597 * define HAT_SYNC_STOPON_SHARED 0x08 3598 */ 3599 uint_t 3600 hat_pagesync(struct page *pp, uint_t flags) 3601 { 3602 hment_t *hm = NULL; 3603 htable_t *ht; 3604 uint_t entry; 3605 x86pte_t old, save_old; 3606 x86pte_t new; 3607 uchar_t nrmbits = P_REF|P_MOD|P_RO; 3608 extern ulong_t po_share; 3609 page_t *save_pp = pp; 3610 uint_t pszc = 0; 3611 3612 ASSERT(PAGE_LOCKED(pp) || panicstr); 3613 3614 if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD)) 3615 return (pp->p_nrm & nrmbits); 3616 3617 if ((flags & HAT_SYNC_ZERORM) == 0) { 3618 3619 if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp)) 3620 return (pp->p_nrm & nrmbits); 3621 3622 if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp)) 3623 return (pp->p_nrm & nrmbits); 3624 3625 if ((flags & HAT_SYNC_STOPON_SHARED) != 0 && 3626 hat_page_getshare(pp) > po_share) { 3627 if (PP_ISRO(pp)) 3628 PP_SETREF(pp); 3629 return (pp->p_nrm & nrmbits); 3630 } 3631 } 3632 3633 XPV_DISALLOW_MIGRATE(); 3634 next_size: 3635 /* 3636 * walk thru the mapping list syncing (and clearing) ref/mod bits. 3637 */ 3638 x86_hm_enter(pp); 3639 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 3640 if (ht->ht_level < pszc) 3641 continue; 3642 old = x86pte_get(ht, entry); 3643 try_again: 3644 3645 ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum); 3646 3647 if (PTE_GET(old, PT_REF | PT_MOD) == 0) 3648 continue; 3649 3650 save_old = old; 3651 if ((flags & HAT_SYNC_ZERORM) != 0) { 3652 3653 /* 3654 * Need to clear ref or mod bits. Need to demap 3655 * to make sure any executing TLBs see cleared bits. 3656 */ 3657 new = old; 3658 PTE_CLR(new, PT_REF | PT_MOD); 3659 old = hati_update_pte(ht, entry, old, new); 3660 if (old != 0) 3661 goto try_again; 3662 3663 old = save_old; 3664 } 3665 3666 /* 3667 * Sync the PTE 3668 */ 3669 if (!(flags & HAT_SYNC_ZERORM) && 3670 PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC) 3671 hati_sync_pte_to_page(pp, old, ht->ht_level); 3672 3673 /* 3674 * can stop short if we found a ref'd or mod'd page 3675 */ 3676 if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) || 3677 (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) { 3678 x86_hm_exit(pp); 3679 goto done; 3680 } 3681 } 3682 x86_hm_exit(pp); 3683 while (pszc < pp->p_szc) { 3684 page_t *tpp; 3685 pszc++; 3686 tpp = PP_GROUPLEADER(pp, pszc); 3687 if (pp != tpp) { 3688 pp = tpp; 3689 goto next_size; 3690 } 3691 } 3692 done: 3693 XPV_ALLOW_MIGRATE(); 3694 return (save_pp->p_nrm & nrmbits); 3695 } 3696 3697 /* 3698 * returns approx number of mappings to this pp. A return of 0 implies 3699 * there are no mappings to the page. 3700 */ 3701 ulong_t 3702 hat_page_getshare(page_t *pp) 3703 { 3704 uint_t cnt; 3705 cnt = hment_mapcnt(pp); 3706 #if defined(__amd64) 3707 if (vpm_enable && pp->p_vpmref) { 3708 cnt += 1; 3709 } 3710 #endif 3711 return (cnt); 3712 } 3713 3714 /* 3715 * Return 1 the number of mappings exceeds sh_thresh. Return 0 3716 * otherwise. 3717 */ 3718 int 3719 hat_page_checkshare(page_t *pp, ulong_t sh_thresh) 3720 { 3721 return (hat_page_getshare(pp) > sh_thresh); 3722 } 3723 3724 /* 3725 * hat_softlock isn't supported anymore 3726 */ 3727 /*ARGSUSED*/ 3728 faultcode_t 3729 hat_softlock( 3730 hat_t *hat, 3731 caddr_t addr, 3732 size_t *len, 3733 struct page **page_array, 3734 uint_t flags) 3735 { 3736 return (FC_NOSUPPORT); 3737 } 3738 3739 3740 3741 /* 3742 * Routine to expose supported HAT features to platform independent code. 3743 */ 3744 /*ARGSUSED*/ 3745 int 3746 hat_supported(enum hat_features feature, void *arg) 3747 { 3748 switch (feature) { 3749 3750 case HAT_SHARED_PT: /* this is really ISM */ 3751 return (1); 3752 3753 case HAT_DYNAMIC_ISM_UNMAP: 3754 return (0); 3755 3756 case HAT_VMODSORT: 3757 return (1); 3758 3759 case HAT_SHARED_REGIONS: 3760 return (0); 3761 3762 default: 3763 panic("hat_supported() - unknown feature"); 3764 } 3765 return (0); 3766 } 3767 3768 /* 3769 * Called when a thread is exiting and has been switched to the kernel AS 3770 */ 3771 void 3772 hat_thread_exit(kthread_t *thd) 3773 { 3774 ASSERT(thd->t_procp->p_as == &kas); 3775 XPV_DISALLOW_MIGRATE(); 3776 hat_switch(thd->t_procp->p_as->a_hat); 3777 XPV_ALLOW_MIGRATE(); 3778 } 3779 3780 /* 3781 * Setup the given brand new hat structure as the new HAT on this cpu's mmu. 3782 */ 3783 /*ARGSUSED*/ 3784 void 3785 hat_setup(hat_t *hat, int flags) 3786 { 3787 XPV_DISALLOW_MIGRATE(); 3788 kpreempt_disable(); 3789 3790 hat_switch(hat); 3791 3792 kpreempt_enable(); 3793 XPV_ALLOW_MIGRATE(); 3794 } 3795 3796 /* 3797 * Prepare for a CPU private mapping for the given address. 3798 * 3799 * The address can only be used from a single CPU and can be remapped 3800 * using hat_mempte_remap(). Return the address of the PTE. 3801 * 3802 * We do the htable_create() if necessary and increment the valid count so 3803 * the htable can't disappear. We also hat_devload() the page table into 3804 * kernel so that the PTE is quickly accessed. 3805 */ 3806 hat_mempte_t 3807 hat_mempte_setup(caddr_t addr) 3808 { 3809 uintptr_t va = (uintptr_t)addr; 3810 htable_t *ht; 3811 uint_t entry; 3812 x86pte_t oldpte; 3813 hat_mempte_t p; 3814 3815 ASSERT(IS_PAGEALIGNED(va)); 3816 ASSERT(!IN_VA_HOLE(va)); 3817 ++curthread->t_hatdepth; 3818 ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0); 3819 if (ht == NULL) { 3820 ht = htable_create(kas.a_hat, va, 0, NULL); 3821 entry = htable_va2entry(va, ht); 3822 ASSERT(ht->ht_level == 0); 3823 oldpte = x86pte_get(ht, entry); 3824 } 3825 if (PTE_ISVALID(oldpte)) 3826 panic("hat_mempte_setup(): address already mapped" 3827 "ht=%p, entry=%d, pte=" FMT_PTE, ht, entry, oldpte); 3828 3829 /* 3830 * increment ht_valid_cnt so that the pagetable can't disappear 3831 */ 3832 HTABLE_INC(ht->ht_valid_cnt); 3833 3834 /* 3835 * return the PTE physical address to the caller. 3836 */ 3837 htable_release(ht); 3838 p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry); 3839 --curthread->t_hatdepth; 3840 return (p); 3841 } 3842 3843 /* 3844 * Release a CPU private mapping for the given address. 3845 * We decrement the htable valid count so it might be destroyed. 3846 */ 3847 /*ARGSUSED1*/ 3848 void 3849 hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa) 3850 { 3851 htable_t *ht; 3852 3853 /* 3854 * invalidate any left over mapping and decrement the htable valid count 3855 */ 3856 #ifdef __xpv 3857 if (HYPERVISOR_update_va_mapping((uintptr_t)addr, 0, 3858 UVMF_INVLPG | UVMF_LOCAL)) 3859 panic("HYPERVISOR_update_va_mapping() failed"); 3860 #else 3861 { 3862 x86pte_t *pteptr; 3863 3864 pteptr = x86pte_mapin(mmu_btop(pte_pa), 3865 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); 3866 if (mmu.pae_hat) 3867 *pteptr = 0; 3868 else 3869 *(x86pte32_t *)pteptr = 0; 3870 mmu_tlbflush_entry(addr); 3871 x86pte_mapout(); 3872 } 3873 #endif 3874 3875 ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0); 3876 if (ht == NULL) 3877 panic("hat_mempte_release(): invalid address"); 3878 ASSERT(ht->ht_level == 0); 3879 HTABLE_DEC(ht->ht_valid_cnt); 3880 htable_release(ht); 3881 } 3882 3883 /* 3884 * Apply a temporary CPU private mapping to a page. We flush the TLB only 3885 * on this CPU, so this ought to have been called with preemption disabled. 3886 */ 3887 void 3888 hat_mempte_remap( 3889 pfn_t pfn, 3890 caddr_t addr, 3891 hat_mempte_t pte_pa, 3892 uint_t attr, 3893 uint_t flags) 3894 { 3895 uintptr_t va = (uintptr_t)addr; 3896 x86pte_t pte; 3897 3898 /* 3899 * Remap the given PTE to the new page's PFN. Invalidate only 3900 * on this CPU. 3901 */ 3902 #ifdef DEBUG 3903 htable_t *ht; 3904 uint_t entry; 3905 3906 ASSERT(IS_PAGEALIGNED(va)); 3907 ASSERT(!IN_VA_HOLE(va)); 3908 ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0); 3909 ASSERT(ht != NULL); 3910 ASSERT(ht->ht_level == 0); 3911 ASSERT(ht->ht_valid_cnt > 0); 3912 ASSERT(ht->ht_pfn == mmu_btop(pte_pa)); 3913 htable_release(ht); 3914 #endif 3915 XPV_DISALLOW_MIGRATE(); 3916 pte = hati_mkpte(pfn, attr, 0, flags); 3917 #ifdef __xpv 3918 if (HYPERVISOR_update_va_mapping(va, pte, UVMF_INVLPG | UVMF_LOCAL)) 3919 panic("HYPERVISOR_update_va_mapping() failed"); 3920 #else 3921 { 3922 x86pte_t *pteptr; 3923 3924 pteptr = x86pte_mapin(mmu_btop(pte_pa), 3925 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); 3926 if (mmu.pae_hat) 3927 *(x86pte_t *)pteptr = pte; 3928 else 3929 *(x86pte32_t *)pteptr = (x86pte32_t)pte; 3930 mmu_tlbflush_entry(addr); 3931 x86pte_mapout(); 3932 } 3933 #endif 3934 XPV_ALLOW_MIGRATE(); 3935 } 3936 3937 3938 3939 /* 3940 * Hat locking functions 3941 * XXX - these two functions are currently being used by hatstats 3942 * they can be removed by using a per-as mutex for hatstats. 3943 */ 3944 void 3945 hat_enter(hat_t *hat) 3946 { 3947 mutex_enter(&hat->hat_mutex); 3948 } 3949 3950 void 3951 hat_exit(hat_t *hat) 3952 { 3953 mutex_exit(&hat->hat_mutex); 3954 } 3955 3956 /* 3957 * HAT part of cpu initialization. 3958 */ 3959 void 3960 hat_cpu_online(struct cpu *cpup) 3961 { 3962 if (cpup != CPU) { 3963 x86pte_cpu_init(cpup); 3964 hat_vlp_setup(cpup); 3965 } 3966 CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id); 3967 } 3968 3969 /* 3970 * HAT part of cpu deletion. 3971 * (currently, we only call this after the cpu is safely passivated.) 3972 */ 3973 void 3974 hat_cpu_offline(struct cpu *cpup) 3975 { 3976 ASSERT(cpup != CPU); 3977 3978 CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id); 3979 x86pte_cpu_fini(cpup); 3980 hat_vlp_teardown(cpup); 3981 } 3982 3983 /* 3984 * Function called after all CPUs are brought online. 3985 * Used to remove low address boot mappings. 3986 */ 3987 void 3988 clear_boot_mappings(uintptr_t low, uintptr_t high) 3989 { 3990 uintptr_t vaddr = low; 3991 htable_t *ht = NULL; 3992 level_t level; 3993 uint_t entry; 3994 x86pte_t pte; 3995 3996 /* 3997 * On 1st CPU we can unload the prom mappings, basically we blow away 3998 * all virtual mappings under _userlimit. 3999 */ 4000 while (vaddr < high) { 4001 pte = htable_walk(kas.a_hat, &ht, &vaddr, high); 4002 if (ht == NULL) 4003 break; 4004 4005 level = ht->ht_level; 4006 entry = htable_va2entry(vaddr, ht); 4007 ASSERT(level <= mmu.max_page_level); 4008 ASSERT(PTE_ISPAGE(pte, level)); 4009 4010 /* 4011 * Unload the mapping from the page tables. 4012 */ 4013 (void) x86pte_inval(ht, entry, 0, NULL); 4014 ASSERT(ht->ht_valid_cnt > 0); 4015 HTABLE_DEC(ht->ht_valid_cnt); 4016 PGCNT_DEC(ht->ht_hat, ht->ht_level); 4017 4018 vaddr += LEVEL_SIZE(ht->ht_level); 4019 } 4020 if (ht) 4021 htable_release(ht); 4022 } 4023 4024 /* 4025 * Atomically update a new translation for a single page. If the 4026 * currently installed PTE doesn't match the value we expect to find, 4027 * it's not updated and we return the PTE we found. 4028 * 4029 * If activating nosync or NOWRITE and the page was modified we need to sync 4030 * with the page_t. Also sync with page_t if clearing ref/mod bits. 4031 */ 4032 static x86pte_t 4033 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new) 4034 { 4035 page_t *pp; 4036 uint_t rm = 0; 4037 x86pte_t replaced; 4038 4039 if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC && 4040 PTE_GET(expected, PT_MOD | PT_REF) && 4041 (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) || 4042 !PTE_GET(new, PT_MOD | PT_REF))) { 4043 4044 ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level))); 4045 pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level)); 4046 ASSERT(pp != NULL); 4047 if (PTE_GET(expected, PT_MOD)) 4048 rm |= P_MOD; 4049 if (PTE_GET(expected, PT_REF)) 4050 rm |= P_REF; 4051 PTE_CLR(new, PT_MOD | PT_REF); 4052 } 4053 4054 replaced = x86pte_update(ht, entry, expected, new); 4055 if (replaced != expected) 4056 return (replaced); 4057 4058 if (rm) { 4059 /* 4060 * sync to all constituent pages of a large page 4061 */ 4062 pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level); 4063 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 4064 while (pgcnt-- > 0) { 4065 /* 4066 * hat_page_demote() can't decrease 4067 * pszc below this mapping size 4068 * since large mapping existed after we 4069 * took mlist lock. 4070 */ 4071 ASSERT(pp->p_szc >= ht->ht_level); 4072 hat_page_setattr(pp, rm); 4073 ++pp; 4074 } 4075 } 4076 4077 return (0); 4078 } 4079 4080 /* ARGSUSED */ 4081 void 4082 hat_join_srd(struct hat *hat, vnode_t *evp) 4083 { 4084 } 4085 4086 /* ARGSUSED */ 4087 hat_region_cookie_t 4088 hat_join_region(struct hat *hat, 4089 caddr_t r_saddr, 4090 size_t r_size, 4091 void *r_obj, 4092 u_offset_t r_objoff, 4093 uchar_t r_perm, 4094 uchar_t r_pgszc, 4095 hat_rgn_cb_func_t r_cb_function, 4096 uint_t flags) 4097 { 4098 panic("No shared region support on x86"); 4099 return (HAT_INVALID_REGION_COOKIE); 4100 } 4101 4102 /* ARGSUSED */ 4103 void 4104 hat_leave_region(struct hat *hat, hat_region_cookie_t rcookie, uint_t flags) 4105 { 4106 panic("No shared region support on x86"); 4107 } 4108 4109 /* ARGSUSED */ 4110 void 4111 hat_dup_region(struct hat *hat, hat_region_cookie_t rcookie) 4112 { 4113 panic("No shared region support on x86"); 4114 } 4115 4116 4117 /* 4118 * Kernel Physical Mapping (kpm) facility 4119 * 4120 * Most of the routines needed to support segkpm are almost no-ops on the 4121 * x86 platform. We map in the entire segment when it is created and leave 4122 * it mapped in, so there is no additional work required to set up and tear 4123 * down individual mappings. All of these routines were created to support 4124 * SPARC platforms that have to avoid aliasing in their virtually indexed 4125 * caches. 4126 * 4127 * Most of the routines have sanity checks in them (e.g. verifying that the 4128 * passed-in page is locked). We don't actually care about most of these 4129 * checks on x86, but we leave them in place to identify problems in the 4130 * upper levels. 4131 */ 4132 4133 /* 4134 * Map in a locked page and return the vaddr. 4135 */ 4136 /*ARGSUSED*/ 4137 caddr_t 4138 hat_kpm_mapin(struct page *pp, struct kpme *kpme) 4139 { 4140 caddr_t vaddr; 4141 4142 #ifdef DEBUG 4143 if (kpm_enable == 0) { 4144 cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n"); 4145 return ((caddr_t)NULL); 4146 } 4147 4148 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 4149 cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n"); 4150 return ((caddr_t)NULL); 4151 } 4152 #endif 4153 4154 vaddr = hat_kpm_page2va(pp, 1); 4155 4156 return (vaddr); 4157 } 4158 4159 /* 4160 * Mapout a locked page. 4161 */ 4162 /*ARGSUSED*/ 4163 void 4164 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr) 4165 { 4166 #ifdef DEBUG 4167 if (kpm_enable == 0) { 4168 cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n"); 4169 return; 4170 } 4171 4172 if (IS_KPM_ADDR(vaddr) == 0) { 4173 cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n"); 4174 return; 4175 } 4176 4177 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 4178 cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n"); 4179 return; 4180 } 4181 #endif 4182 } 4183 4184 /* 4185 * Return the kpm virtual address for a specific pfn 4186 */ 4187 caddr_t 4188 hat_kpm_pfn2va(pfn_t pfn) 4189 { 4190 uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn); 4191 4192 ASSERT(!pfn_is_foreign(pfn)); 4193 return ((caddr_t)vaddr); 4194 } 4195 4196 /* 4197 * Return the kpm virtual address for the page at pp. 4198 */ 4199 /*ARGSUSED*/ 4200 caddr_t 4201 hat_kpm_page2va(struct page *pp, int checkswap) 4202 { 4203 return (hat_kpm_pfn2va(pp->p_pagenum)); 4204 } 4205 4206 /* 4207 * Return the page frame number for the kpm virtual address vaddr. 4208 */ 4209 pfn_t 4210 hat_kpm_va2pfn(caddr_t vaddr) 4211 { 4212 pfn_t pfn; 4213 4214 ASSERT(IS_KPM_ADDR(vaddr)); 4215 4216 pfn = (pfn_t)btop(vaddr - kpm_vbase); 4217 4218 return (pfn); 4219 } 4220 4221 4222 /* 4223 * Return the page for the kpm virtual address vaddr. 4224 */ 4225 page_t * 4226 hat_kpm_vaddr2page(caddr_t vaddr) 4227 { 4228 pfn_t pfn; 4229 4230 ASSERT(IS_KPM_ADDR(vaddr)); 4231 4232 pfn = hat_kpm_va2pfn(vaddr); 4233 4234 return (page_numtopp_nolock(pfn)); 4235 } 4236 4237 /* 4238 * hat_kpm_fault is called from segkpm_fault when we take a page fault on a 4239 * KPM page. This should never happen on x86 4240 */ 4241 int 4242 hat_kpm_fault(hat_t *hat, caddr_t vaddr) 4243 { 4244 panic("pagefault in seg_kpm. hat: 0x%p vaddr: 0x%p", hat, vaddr); 4245 4246 return (0); 4247 } 4248 4249 /*ARGSUSED*/ 4250 void 4251 hat_kpm_mseghash_clear(int nentries) 4252 {} 4253 4254 /*ARGSUSED*/ 4255 void 4256 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp) 4257 {} 4258 4259 #ifdef __xpv 4260 /* 4261 * There are specific Hypervisor calls to establish and remove mappings 4262 * to grant table references and the privcmd driver. We have to ensure 4263 * that a page table actually exists. 4264 */ 4265 void 4266 hat_prepare_mapping(hat_t *hat, caddr_t addr) 4267 { 4268 ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE)); 4269 (void) htable_create(hat, (uintptr_t)addr, 0, NULL); 4270 } 4271 4272 void 4273 hat_release_mapping(hat_t *hat, caddr_t addr) 4274 { 4275 htable_t *ht; 4276 4277 ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE)); 4278 ht = htable_lookup(hat, (uintptr_t)addr, 0); 4279 ASSERT(ht != NULL); 4280 ASSERT(ht->ht_busy >= 2); 4281 htable_release(ht); 4282 htable_release(ht); 4283 } 4284 #endif 4285