1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * VM - Hardware Address Translation management for i386 and amd64 30 * 31 * Implementation of the interfaces described in <common/vm/hat.h> 32 * 33 * Nearly all the details of how the hardware is managed should not be 34 * visible outside this layer except for misc. machine specific functions 35 * that work in conjunction with this code. 36 * 37 * Routines used only inside of i86pc/vm start with hati_ for HAT Internal. 38 */ 39 40 #include <sys/machparam.h> 41 #include <sys/machsystm.h> 42 #include <sys/mman.h> 43 #include <sys/types.h> 44 #include <sys/systm.h> 45 #include <sys/cpuvar.h> 46 #include <sys/thread.h> 47 #include <sys/proc.h> 48 #include <sys/cpu.h> 49 #include <sys/kmem.h> 50 #include <sys/disp.h> 51 #include <sys/shm.h> 52 #include <sys/sysmacros.h> 53 #include <sys/machparam.h> 54 #include <sys/vmem.h> 55 #include <sys/vmsystm.h> 56 #include <sys/promif.h> 57 #include <sys/var.h> 58 #include <sys/x86_archext.h> 59 #include <sys/atomic.h> 60 #include <sys/bitmap.h> 61 #include <sys/controlregs.h> 62 #include <sys/bootconf.h> 63 #include <sys/bootsvcs.h> 64 #include <sys/bootinfo.h> 65 #include <sys/archsystm.h> 66 67 #include <vm/seg_kmem.h> 68 #include <vm/hat_i86.h> 69 #include <vm/as.h> 70 #include <vm/seg.h> 71 #include <vm/page.h> 72 #include <vm/seg_kp.h> 73 #include <vm/seg_kpm.h> 74 #include <vm/vm_dep.h> 75 #include <vm/kboot_mmu.h> 76 77 #include <sys/cmn_err.h> 78 79 /* 80 * Basic parameters for hat operation. 81 */ 82 struct hat_mmu_info mmu; 83 84 /* 85 * The page that is the kernel's top level pagetable. 86 * 87 * For 32 bit VLP support, the kernel hat will use the 1st 4 entries 88 * on this 4K page for its top level page table. The remaining groups of 89 * 4 entries are used for per processor copies of user VLP pagetables for 90 * running threads. See hat_switch() and reload_pae32() for details. 91 * 92 * vlp_page[0] - 0th level==2 PTE for kernel HAT (will be zero) 93 * vlp_page[1] - 1st level==2 PTE for kernel HAT (will be zero) 94 * vlp_page[2] - 2nd level==2 PTE for kernel HAT (zero for small memory) 95 * vlp_page[3] - 3rd level==2 PTE for kernel 96 * 97 * vlp_page[4] - 0th level==2 PTE for user thread on cpu 0 98 * vlp_page[5] - 1st level==2 PTE for user thread on cpu 0 99 * vlp_page[6] - 2nd level==2 PTE for user thread on cpu 0 100 * vlp_page[7] - probably copy of kernel PTE 101 * 102 * vlp_page[8] - 0th level==2 PTE for user thread on cpu 1 103 * vlp_page[9] - 1st level==2 PTE for user thread on cpu 1 104 * vlp_page[10] - 2nd level==2 PTE for user thread on cpu 1 105 * vlp_page[11] - probably copy of kernel PTE 106 * ... 107 * 108 * when / where the kernel PTE's are (entry 2 or 3 or none) depends 109 * on kernelbase. 110 */ 111 static x86pte_t *vlp_page; 112 113 /* 114 * forward declaration of internal utility routines 115 */ 116 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, 117 x86pte_t new); 118 119 /* 120 * The kernel address space exists in all HATs. To implement this the 121 * kernel reserves a fixed number of entries in every topmost level page 122 * table. The values are setup in hat_init() and then copied to every hat 123 * created by hat_alloc(). This means that kernelbase must be: 124 * 125 * 4Meg aligned for 32 bit kernels 126 * 512Gig aligned for x86_64 64 bit kernel 127 * 128 * The PAE 32 bit hat is handled as a special case. Otherwise requiring 1Gig 129 * alignment would use too much VA for the kernel. 130 * 131 */ 132 static uint_t khat_start; /* index of 1st entry in kernel's top ptable */ 133 static uint_t khat_entries; /* number of entries in kernel's top ptable */ 134 135 #if defined(__i386) 136 137 static htable_t *khat_pae32_htable = NULL; 138 static uint_t khat_pae32_start; 139 static uint_t khat_pae32_entries; 140 141 #endif 142 143 uint_t use_boot_reserve = 1; /* cleared after early boot process */ 144 uint_t can_steal_post_boot = 0; /* set late in boot to enable stealing */ 145 146 /* 147 * A cpuset for all cpus. This is used for kernel address cross calls, since 148 * the kernel addresses apply to all cpus. 149 */ 150 cpuset_t khat_cpuset; 151 152 /* 153 * management stuff for hat structures 154 */ 155 kmutex_t hat_list_lock; 156 kcondvar_t hat_list_cv; 157 kmem_cache_t *hat_cache; 158 kmem_cache_t *hat_hash_cache; 159 kmem_cache_t *vlp_hash_cache; 160 161 /* 162 * Simple statistics 163 */ 164 struct hatstats hatstat; 165 166 /* 167 * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's. 168 */ 169 extern void atomic_orb(uchar_t *addr, uchar_t val); 170 extern void atomic_andb(uchar_t *addr, uchar_t val); 171 172 #define PP_GETRM(pp, rmmask) (pp->p_nrm & rmmask) 173 #define PP_ISMOD(pp) PP_GETRM(pp, P_MOD) 174 #define PP_ISREF(pp) PP_GETRM(pp, P_REF) 175 #define PP_ISRO(pp) PP_GETRM(pp, P_RO) 176 177 #define PP_SETRM(pp, rm) atomic_orb(&(pp->p_nrm), rm) 178 #define PP_SETMOD(pp) PP_SETRM(pp, P_MOD) 179 #define PP_SETREF(pp) PP_SETRM(pp, P_REF) 180 #define PP_SETRO(pp) PP_SETRM(pp, P_RO) 181 182 #define PP_CLRRM(pp, rm) atomic_andb(&(pp->p_nrm), ~(rm)) 183 #define PP_CLRMOD(pp) PP_CLRRM(pp, P_MOD) 184 #define PP_CLRREF(pp) PP_CLRRM(pp, P_REF) 185 #define PP_CLRRO(pp) PP_CLRRM(pp, P_RO) 186 #define PP_CLRALL(pp) PP_CLRRM(pp, P_MOD | P_REF | P_RO) 187 188 /* 189 * kmem cache constructor for struct hat 190 */ 191 /*ARGSUSED*/ 192 static int 193 hati_constructor(void *buf, void *handle, int kmflags) 194 { 195 hat_t *hat = buf; 196 197 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 198 bzero(hat->hat_pages_mapped, 199 sizeof (pgcnt_t) * (mmu.max_page_level + 1)); 200 hat->hat_stats = 0; 201 hat->hat_flags = 0; 202 CPUSET_ZERO(hat->hat_cpus); 203 hat->hat_htable = NULL; 204 hat->hat_ht_hash = NULL; 205 return (0); 206 } 207 208 /* 209 * Allocate a hat structure for as. We also create the top level 210 * htable and initialize it to contain the kernel hat entries. 211 */ 212 hat_t * 213 hat_alloc(struct as *as) 214 { 215 hat_t *hat; 216 htable_t *ht; /* top level htable */ 217 uint_t use_vlp; 218 219 /* 220 * Once we start creating user process HATs we can enable 221 * the htable_steal() code. 222 */ 223 if (can_steal_post_boot == 0) 224 can_steal_post_boot = 1; 225 226 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 227 hat = kmem_cache_alloc(hat_cache, KM_SLEEP); 228 hat->hat_as = as; 229 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 230 ASSERT(hat->hat_flags == 0); 231 232 /* 233 * a 32 bit process uses a VLP style hat when using PAE 234 */ 235 #if defined(__amd64) 236 use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32); 237 #elif defined(__i386) 238 use_vlp = mmu.pae_hat; 239 #endif 240 if (use_vlp) { 241 hat->hat_flags = HAT_VLP; 242 bzero(hat->hat_vlp_ptes, VLP_SIZE); 243 } 244 245 /* 246 * Allocate the htable hash 247 */ 248 if ((hat->hat_flags & HAT_VLP)) { 249 hat->hat_num_hash = mmu.vlp_hash_cnt; 250 hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP); 251 } else { 252 hat->hat_num_hash = mmu.hash_cnt; 253 hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP); 254 } 255 bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *)); 256 257 /* 258 * Initialize Kernel HAT entries at the top of the top level page 259 * table for the new hat. 260 * 261 * Note that we don't call htable_release() for the top level, that 262 * happens when the hat is destroyed in hat_free_end() 263 */ 264 hat->hat_htable = NULL; 265 hat->hat_ht_cached = NULL; 266 ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL); 267 268 if (!(hat->hat_flags & HAT_VLP)) 269 x86pte_copy(kas.a_hat->hat_htable, ht, khat_start, 270 khat_entries); 271 #if defined(__i386) 272 else if (khat_entries > 0) 273 bcopy(vlp_page + khat_start, hat->hat_vlp_ptes + khat_start, 274 khat_entries * sizeof (x86pte_t)); 275 #endif 276 hat->hat_htable = ht; 277 278 #if defined(__i386) 279 /* 280 * PAE32 HAT alignment is less restrictive than the others to keep 281 * the kernel from using too much VA. Because of this we may need 282 * one layer further down when kernelbase isn't 1Gig aligned. 283 * See hat_free_end() for the htable_release() that goes with this 284 * htable_create() 285 */ 286 if (khat_pae32_htable != NULL) { 287 ht = htable_create(hat, kernelbase, 288 khat_pae32_htable->ht_level, NULL); 289 x86pte_copy(khat_pae32_htable, ht, khat_pae32_start, 290 khat_pae32_entries); 291 ht->ht_valid_cnt = khat_pae32_entries; 292 } 293 #endif 294 295 /* 296 * Put it at the start of the global list of all hats (used by stealing) 297 * 298 * kas.a_hat is not in the list but is instead used to find the 299 * first and last items in the list. 300 * 301 * - kas.a_hat->hat_next points to the start of the user hats. 302 * The list ends where hat->hat_next == NULL 303 * 304 * - kas.a_hat->hat_prev points to the last of the user hats. 305 * The list begins where hat->hat_prev == NULL 306 */ 307 mutex_enter(&hat_list_lock); 308 hat->hat_prev = NULL; 309 hat->hat_next = kas.a_hat->hat_next; 310 if (hat->hat_next) 311 hat->hat_next->hat_prev = hat; 312 else 313 kas.a_hat->hat_prev = hat; 314 kas.a_hat->hat_next = hat; 315 mutex_exit(&hat_list_lock); 316 317 return (hat); 318 } 319 320 /* 321 * process has finished executing but as has not been cleaned up yet. 322 */ 323 /*ARGSUSED*/ 324 void 325 hat_free_start(hat_t *hat) 326 { 327 ASSERT(AS_WRITE_HELD(hat->hat_as, &hat->hat_as->a_lock)); 328 329 /* 330 * If the hat is currently a stealing victim, wait for the stealing 331 * to finish. Once we mark it as HAT_FREEING, htable_steal() 332 * won't look at its pagetables anymore. 333 */ 334 mutex_enter(&hat_list_lock); 335 while (hat->hat_flags & HAT_VICTIM) 336 cv_wait(&hat_list_cv, &hat_list_lock); 337 hat->hat_flags |= HAT_FREEING; 338 mutex_exit(&hat_list_lock); 339 } 340 341 /* 342 * An address space is being destroyed, so we destroy the associated hat. 343 */ 344 void 345 hat_free_end(hat_t *hat) 346 { 347 int i; 348 kmem_cache_t *cache; 349 350 #ifdef DEBUG 351 for (i = 0; i <= mmu.max_page_level; i++) 352 ASSERT(hat->hat_pages_mapped[i] == 0); 353 #endif 354 ASSERT(hat->hat_flags & HAT_FREEING); 355 356 /* 357 * must not be running on the given hat 358 */ 359 ASSERT(CPU->cpu_current_hat != hat); 360 361 /* 362 * Remove it from the list of HATs 363 */ 364 mutex_enter(&hat_list_lock); 365 if (hat->hat_prev) 366 hat->hat_prev->hat_next = hat->hat_next; 367 else 368 kas.a_hat->hat_next = hat->hat_next; 369 if (hat->hat_next) 370 hat->hat_next->hat_prev = hat->hat_prev; 371 else 372 kas.a_hat->hat_prev = hat->hat_prev; 373 mutex_exit(&hat_list_lock); 374 hat->hat_next = hat->hat_prev = NULL; 375 376 /* 377 * Make a pass through the htables freeing them all up. 378 */ 379 htable_purge_hat(hat); 380 381 /* 382 * Decide which kmem cache the hash table came from, then free it. 383 */ 384 if (hat->hat_flags & HAT_VLP) 385 cache = vlp_hash_cache; 386 else 387 cache = hat_hash_cache; 388 kmem_cache_free(cache, hat->hat_ht_hash); 389 hat->hat_ht_hash = NULL; 390 391 hat->hat_flags = 0; 392 kmem_cache_free(hat_cache, hat); 393 } 394 395 /* 396 * round kernelbase down to a supported value to use for _userlimit 397 * 398 * userlimit must be aligned down to an entry in the top level htable. 399 * The one exception is for 32 bit HAT's running PAE. 400 */ 401 uintptr_t 402 hat_kernelbase(uintptr_t va) 403 { 404 #if defined(__i386) 405 va &= LEVEL_MASK(1); 406 #endif 407 if (IN_VA_HOLE(va)) 408 panic("_userlimit %p will fall in VA hole\n", (void *)va); 409 return (va); 410 } 411 412 /* 413 * Initialize hat data structures based on processor MMU information. 414 */ 415 void 416 mmu_init(void) 417 { 418 uint_t max_htables; 419 uint_t pa_bits; 420 uint_t va_bits; 421 int i; 422 423 /* 424 * If CPU enabled the page table global bit, use it for the kernel 425 * This is bit 7 in CR4 (PGE - Page Global Enable). 426 */ 427 if ((x86_feature & X86_PGE) != 0 && (getcr4() & CR4_PGE) != 0) 428 mmu.pt_global = PT_GLOBAL; 429 430 /* 431 * Detect NX and PAE usage. 432 */ 433 mmu.pae_hat = kbm_pae_support; 434 if (kbm_nx_support) 435 mmu.pt_nx = PT_NX; 436 else 437 mmu.pt_nx = 0; 438 439 /* 440 * Intel CPUs allow speculative caching (in TLB-like h/w) of 441 * entries in upper page tables even though there may not be 442 * any valid entries in lower tables. This implies we have to 443 * re-INVLPG at every upper page table entry invalidation. 444 */ 445 if (cpuid_getvendor(CPU) == X86_VENDOR_Intel) 446 mmu.inval_nonleaf = 1; 447 else 448 mmu.inval_nonleaf = 0; 449 /* 450 * Use CPU info to set various MMU parameters 451 */ 452 cpuid_get_addrsize(CPU, &pa_bits, &va_bits); 453 454 if (va_bits < sizeof (void *) * NBBY) { 455 mmu.hole_start = (1ul << (va_bits - 1)); 456 mmu.hole_end = 0ul - mmu.hole_start - 1; 457 } else { 458 mmu.hole_end = 0; 459 mmu.hole_start = mmu.hole_end - 1; 460 } 461 #if defined(OPTERON_ERRATUM_121) 462 /* 463 * If erratum 121 has already been detected at this time, hole_start 464 * contains the value to be subtracted from mmu.hole_start. 465 */ 466 ASSERT(hole_start == 0 || opteron_erratum_121 != 0); 467 hole_start = mmu.hole_start - hole_start; 468 #else 469 hole_start = mmu.hole_start; 470 #endif 471 hole_end = mmu.hole_end; 472 473 mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1); 474 if (mmu.pae_hat == 0 && pa_bits > 32) 475 mmu.highest_pfn = PFN_4G - 1; 476 477 if (mmu.pae_hat) { 478 mmu.pte_size = 8; /* 8 byte PTEs */ 479 mmu.pte_size_shift = 3; 480 } else { 481 mmu.pte_size = 4; /* 4 byte PTEs */ 482 mmu.pte_size_shift = 2; 483 } 484 485 if (mmu.pae_hat && (x86_feature & X86_PAE) == 0) 486 panic("Processor does not support PAE"); 487 488 if ((x86_feature & X86_CX8) == 0) 489 panic("Processor does not support cmpxchg8b instruction"); 490 491 /* 492 * Initialize parameters based on the 64 or 32 bit kernels and 493 * for the 32 bit kernel decide if we should use PAE. 494 */ 495 if (kbm_largepage_support) 496 mmu.max_page_level = 1; 497 else 498 mmu.max_page_level = 0; 499 mmu_page_sizes = mmu.max_page_level + 1; 500 mmu_exported_page_sizes = mmu_page_sizes; 501 502 #if defined(__amd64) 503 504 mmu.num_level = 4; 505 mmu.max_level = 3; 506 mmu.ptes_per_table = 512; 507 mmu.top_level_count = 512; 508 509 mmu.level_shift[0] = 12; 510 mmu.level_shift[1] = 21; 511 mmu.level_shift[2] = 30; 512 mmu.level_shift[3] = 39; 513 514 #elif defined(__i386) 515 516 if (mmu.pae_hat) { 517 mmu.num_level = 3; 518 mmu.max_level = 2; 519 mmu.ptes_per_table = 512; 520 mmu.top_level_count = 4; 521 522 mmu.level_shift[0] = 12; 523 mmu.level_shift[1] = 21; 524 mmu.level_shift[2] = 30; 525 526 } else { 527 mmu.num_level = 2; 528 mmu.max_level = 1; 529 mmu.ptes_per_table = 1024; 530 mmu.top_level_count = 1024; 531 532 mmu.level_shift[0] = 12; 533 mmu.level_shift[1] = 22; 534 } 535 536 #endif /* __i386 */ 537 538 for (i = 0; i < mmu.num_level; ++i) { 539 mmu.level_size[i] = 1UL << mmu.level_shift[i]; 540 mmu.level_offset[i] = mmu.level_size[i] - 1; 541 mmu.level_mask[i] = ~mmu.level_offset[i]; 542 } 543 544 for (i = 0; i <= mmu.max_page_level; ++i) { 545 mmu.pte_bits[i] = PT_VALID; 546 if (i > 0) 547 mmu.pte_bits[i] |= PT_PAGESIZE; 548 } 549 550 /* 551 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level. 552 */ 553 for (i = 1; i < mmu.num_level; ++i) 554 mmu.ptp_bits[i] = PT_PTPBITS; 555 556 #if defined(__i386) 557 mmu.ptp_bits[2] = PT_VALID; 558 #endif 559 560 /* 561 * Compute how many hash table entries to have per process for htables. 562 * We start with 1 page's worth of entries. 563 * 564 * If physical memory is small, reduce the amount need to cover it. 565 */ 566 max_htables = physmax / mmu.ptes_per_table; 567 mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *); 568 while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables) 569 mmu.hash_cnt >>= 1; 570 mmu.vlp_hash_cnt = mmu.hash_cnt; 571 572 #if defined(__amd64) 573 /* 574 * If running in 64 bits and physical memory is large, 575 * increase the size of the cache to cover all of memory for 576 * a 64 bit process. 577 */ 578 #define HASH_MAX_LENGTH 4 579 while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables) 580 mmu.hash_cnt <<= 1; 581 #endif 582 } 583 584 585 /* 586 * initialize hat data structures 587 */ 588 void 589 hat_init() 590 { 591 #if defined(__i386) 592 /* 593 * _userlimit must be aligned correctly 594 */ 595 if ((_userlimit & LEVEL_MASK(1)) != _userlimit) { 596 prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n", 597 (void *)_userlimit, (void *)LEVEL_SIZE(1)); 598 halt("hat_init(): Unable to continue"); 599 } 600 #endif 601 602 cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL); 603 604 /* 605 * initialize kmem caches 606 */ 607 htable_init(); 608 hment_init(); 609 610 hat_cache = kmem_cache_create("hat_t", 611 sizeof (hat_t), 0, hati_constructor, NULL, NULL, 612 NULL, 0, 0); 613 614 hat_hash_cache = kmem_cache_create("HatHash", 615 mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 616 NULL, 0, 0); 617 618 /* 619 * VLP hats can use a smaller hash table size on large memroy machines 620 */ 621 if (mmu.hash_cnt == mmu.vlp_hash_cnt) { 622 vlp_hash_cache = hat_hash_cache; 623 } else { 624 vlp_hash_cache = kmem_cache_create("HatVlpHash", 625 mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 626 NULL, 0, 0); 627 } 628 629 /* 630 * Set up the kernel's hat 631 */ 632 AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER); 633 kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP); 634 mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 635 kas.a_hat->hat_as = &kas; 636 kas.a_hat->hat_flags = 0; 637 AS_LOCK_EXIT(&kas, &kas.a_lock); 638 639 CPUSET_ZERO(khat_cpuset); 640 CPUSET_ADD(khat_cpuset, CPU->cpu_id); 641 642 /* 643 * The kernel hat's next pointer serves as the head of the hat list . 644 * The kernel hat's prev pointer tracks the last hat on the list for 645 * htable_steal() to use. 646 */ 647 kas.a_hat->hat_next = NULL; 648 kas.a_hat->hat_prev = NULL; 649 650 /* 651 * Allocate an htable hash bucket for the kernel 652 * XX64 - tune for 64 bit procs 653 */ 654 kas.a_hat->hat_num_hash = mmu.hash_cnt; 655 kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP); 656 bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *)); 657 658 /* 659 * zero out the top level and cached htable pointers 660 */ 661 kas.a_hat->hat_ht_cached = NULL; 662 kas.a_hat->hat_htable = NULL; 663 664 /* 665 * Pre-allocate hrm_hashtab before enabling the collection of 666 * refmod statistics. Allocating on the fly would mean us 667 * running the risk of suffering recursive mutex enters or 668 * deadlocks. 669 */ 670 hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *), 671 KM_SLEEP); 672 } 673 674 /* 675 * Prepare CPU specific pagetables for VLP processes on 64 bit kernels. 676 * 677 * Each CPU has a set of 2 pagetables that are reused for any 32 bit 678 * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and 679 * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes. 680 */ 681 /*ARGSUSED*/ 682 static void 683 hat_vlp_setup(struct cpu *cpu) 684 { 685 #if defined(__amd64) 686 struct hat_cpu_info *hci = cpu->cpu_hat_info; 687 pfn_t pfn; 688 689 /* 690 * allocate the level==2 page table for the bottom most 691 * 512Gig of address space (this is where 32 bit apps live) 692 */ 693 ASSERT(hci != NULL); 694 hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 695 696 /* 697 * Allocate a top level pagetable and copy the kernel's 698 * entries into it. Then link in hci_vlp_l2ptes in the 1st entry. 699 */ 700 hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 701 hci->hci_vlp_pfn = 702 hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes); 703 ASSERT(hci->hci_vlp_pfn != PFN_INVALID); 704 bcopy(vlp_page + khat_start, hci->hci_vlp_l3ptes + khat_start, 705 khat_entries * sizeof (x86pte_t)); 706 707 pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes); 708 ASSERT(pfn != PFN_INVALID); 709 hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2); 710 #endif /* __amd64 */ 711 } 712 713 /*ARGSUSED*/ 714 static void 715 hat_vlp_teardown(cpu_t *cpu) 716 { 717 #if defined(__amd64) 718 struct hat_cpu_info *hci; 719 720 if ((hci = cpu->cpu_hat_info) == NULL) 721 return; 722 if (hci->hci_vlp_l2ptes) 723 kmem_free(hci->hci_vlp_l2ptes, MMU_PAGESIZE); 724 if (hci->hci_vlp_l3ptes) 725 kmem_free(hci->hci_vlp_l3ptes, MMU_PAGESIZE); 726 #endif /* __amd64 */ 727 } 728 729 /* 730 * Finish filling in the kernel hat. 731 * Pre fill in all top level kernel page table entries for the kernel's 732 * part of the address range. From this point on we can't use any new 733 * kernel large pages if they need PTE's at max_level 734 * 735 * create the kmap mappings. 736 */ 737 void 738 hat_init_finish(void) 739 { 740 htable_t *top = kas.a_hat->hat_htable; 741 htable_t *ht; 742 uint_t e; 743 x86pte_t pte; 744 uintptr_t va = kernelbase; 745 size_t size; 746 747 748 #if defined(__i386) 749 ASSERT((va & LEVEL_MASK(1)) == va); 750 751 /* 752 * Deal with kernelbase not 1Gig aligned for 32 bit PAE hats. 753 */ 754 if (!mmu.pae_hat || (va & LEVEL_OFFSET(mmu.max_level)) == 0) { 755 khat_pae32_htable = NULL; 756 } else { 757 ASSERT(mmu.max_level == 2); 758 ASSERT((va & LEVEL_OFFSET(mmu.max_level - 1)) == 0); 759 khat_pae32_htable = 760 htable_create(kas.a_hat, va, mmu.max_level - 1, NULL); 761 khat_pae32_start = htable_va2entry(va, khat_pae32_htable); 762 khat_pae32_entries = mmu.ptes_per_table - khat_pae32_start; 763 for (e = khat_pae32_start; e < mmu.ptes_per_table; 764 ++e, va += LEVEL_SIZE(mmu.max_level - 1)) { 765 pte = x86pte_get(khat_pae32_htable, e); 766 if (PTE_ISVALID(pte)) 767 continue; 768 ht = htable_create(kas.a_hat, va, mmu.max_level - 2, 769 NULL); 770 ASSERT(ht != NULL); 771 } 772 } 773 #endif 774 775 /* 776 * The kernel hat will need fixed values in the highest level 777 * ptable for copying to all other hat's. This implies 778 * alignment restrictions on _userlimit. 779 * 780 * Note we don't htable_release() these htables. This keeps them 781 * from ever being stolen or free'd. 782 * 783 * top_level_count is used instead of ptes_per_table, since 784 * on 32-bit PAE we only have 4 usable entries at the top level ptable. 785 */ 786 if (va == 0) 787 khat_start = mmu.top_level_count; 788 else 789 khat_start = htable_va2entry(va, kas.a_hat->hat_htable); 790 khat_entries = mmu.top_level_count - khat_start; 791 for (e = khat_start; e < mmu.top_level_count; 792 ++e, va += LEVEL_SIZE(mmu.max_level)) { 793 if (IN_HYPERVISOR_VA(va)) 794 continue; 795 pte = x86pte_get(top, e); 796 if (PTE_ISVALID(pte)) 797 continue; 798 ht = htable_create(kas.a_hat, va, mmu.max_level - 1, NULL); 799 ASSERT(ht != NULL); 800 } 801 802 /* 803 * We are now effectively running on the kernel hat. 804 * Clearing use_boot_reserve shuts off using the pre-allocated boot 805 * reserve for all HAT allocations. From here on, the reserves are 806 * only used when mapping in memory for the hat's own allocations. 807 */ 808 use_boot_reserve = 0; 809 htable_adjust_reserve(); 810 811 /* 812 * 32 bit kernels use only 4 of the 512 entries in its top level 813 * pagetable. We'll use the remainder for the "per CPU" page tables 814 * for VLP processes. 815 * 816 * We also map the top level kernel pagetable into the kernel to make 817 * it easy to use bcopy to initialize new address spaces. 818 */ 819 if (mmu.pae_hat) { 820 vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP); 821 hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE, 822 kas.a_hat->hat_htable->ht_pfn, 823 PROT_WRITE | 824 PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK, 825 HAT_LOAD | HAT_LOAD_NOCONSIST); 826 } 827 hat_vlp_setup(CPU); 828 829 /* 830 * Create kmap (cached mappings of kernel PTEs) 831 * for 32 bit we map from segmap_start .. ekernelheap 832 * for 64 bit we map from segmap_start .. segmap_start + segmapsize; 833 */ 834 #if defined(__i386) 835 size = (uintptr_t)ekernelheap - segmap_start; 836 #elif defined(__amd64) 837 size = segmapsize; 838 #endif 839 hat_kmap_init((uintptr_t)segmap_start, size); 840 } 841 842 /* 843 * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references 844 * are 32 bit, so for safety we must use cas64() to install these. 845 */ 846 #ifdef __i386 847 static void 848 reload_pae32(hat_t *hat, cpu_t *cpu) 849 { 850 x86pte_t *src; 851 x86pte_t *dest; 852 x86pte_t pte; 853 int i; 854 855 /* 856 * Load the 4 entries of the level 2 page table into this 857 * cpu's range of the vlp_page and point cr3 at them. 858 */ 859 ASSERT(mmu.pae_hat); 860 src = hat->hat_vlp_ptes; 861 dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES; 862 for (i = 0; i < VLP_NUM_PTES; ++i) { 863 for (;;) { 864 pte = dest[i]; 865 if (pte == src[i]) 866 break; 867 if (cas64(dest + i, pte, src[i]) != src[i]) 868 break; 869 } 870 } 871 } 872 #endif 873 874 /* 875 * Switch to a new active hat, maintaining bit masks to track active CPUs. 876 */ 877 void 878 hat_switch(hat_t *hat) 879 { 880 uintptr_t newcr3; 881 cpu_t *cpu = CPU; 882 hat_t *old = cpu->cpu_current_hat; 883 884 /* 885 * set up this information first, so we don't miss any cross calls 886 */ 887 if (old != NULL) { 888 if (old == hat) 889 return; 890 if (old != kas.a_hat) 891 CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id); 892 } 893 894 /* 895 * Add this CPU to the active set for this HAT. 896 */ 897 if (hat != kas.a_hat) { 898 CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id); 899 } 900 cpu->cpu_current_hat = hat; 901 902 /* 903 * now go ahead and load cr3 904 */ 905 if (hat->hat_flags & HAT_VLP) { 906 #if defined(__amd64) 907 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes; 908 909 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 910 newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn); 911 #elif defined(__i386) 912 reload_pae32(hat, cpu); 913 newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) + 914 (cpu->cpu_id + 1) * VLP_SIZE; 915 #endif 916 } else { 917 newcr3 = MAKECR3(hat->hat_htable->ht_pfn); 918 } 919 setcr3(newcr3); 920 ASSERT(cpu == CPU); 921 } 922 923 /* 924 * Utility to return a valid x86pte_t from protections, pfn, and level number 925 */ 926 static x86pte_t 927 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags) 928 { 929 x86pte_t pte; 930 uint_t cache_attr = attr & HAT_ORDER_MASK; 931 932 pte = MAKEPTE(pfn, level); 933 934 if (attr & PROT_WRITE) 935 PTE_SET(pte, PT_WRITABLE); 936 937 if (attr & PROT_USER) 938 PTE_SET(pte, PT_USER); 939 940 if (!(attr & PROT_EXEC)) 941 PTE_SET(pte, mmu.pt_nx); 942 943 /* 944 * Set the software bits used track ref/mod sync's and hments. 945 * If not using REF/MOD, set them to avoid h/w rewriting PTEs. 946 */ 947 if (flags & HAT_LOAD_NOCONSIST) 948 PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD); 949 else if (attr & HAT_NOSYNC) 950 PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD); 951 952 /* 953 * Set the caching attributes in the PTE. The combination 954 * of attributes are poorly defined, so we pay attention 955 * to them in the given order. 956 * 957 * The test for HAT_STRICTORDER is different because it's defined 958 * as "0" - which was a stupid thing to do, but is too late to change! 959 */ 960 if (cache_attr == HAT_STRICTORDER) { 961 PTE_SET(pte, PT_NOCACHE); 962 /*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */ 963 } else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) { 964 /* nothing to set */; 965 } else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) { 966 PTE_SET(pte, PT_NOCACHE); 967 if (x86_feature & X86_PAT) 968 PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE); 969 else 970 PTE_SET(pte, PT_WRITETHRU); 971 } else { 972 panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr); 973 } 974 975 return (pte); 976 } 977 978 /* 979 * Duplicate address translations of the parent to the child. 980 * This function really isn't used anymore. 981 */ 982 /*ARGSUSED*/ 983 int 984 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag) 985 { 986 ASSERT((uintptr_t)addr < kernelbase); 987 ASSERT(new != kas.a_hat); 988 ASSERT(old != kas.a_hat); 989 return (0); 990 } 991 992 /* 993 * Allocate any hat resources required for a process being swapped in. 994 */ 995 /*ARGSUSED*/ 996 void 997 hat_swapin(hat_t *hat) 998 { 999 /* do nothing - we let everything fault back in */ 1000 } 1001 1002 /* 1003 * Unload all translations associated with an address space of a process 1004 * that is being swapped out. 1005 */ 1006 void 1007 hat_swapout(hat_t *hat) 1008 { 1009 uintptr_t vaddr = (uintptr_t)0; 1010 uintptr_t eaddr = _userlimit; 1011 htable_t *ht = NULL; 1012 level_t l; 1013 1014 /* 1015 * We can't just call hat_unload(hat, 0, _userlimit...) here, because 1016 * seg_spt and shared pagetables can't be swapped out. 1017 * Take a look at segspt_shmswapout() - it's a big no-op. 1018 * 1019 * Instead we'll walk through all the address space and unload 1020 * any mappings which we are sure are not shared, not locked. 1021 */ 1022 ASSERT(IS_PAGEALIGNED(vaddr)); 1023 ASSERT(IS_PAGEALIGNED(eaddr)); 1024 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1025 if ((uintptr_t)hat->hat_as->a_userlimit < eaddr) 1026 eaddr = (uintptr_t)hat->hat_as->a_userlimit; 1027 1028 while (vaddr < eaddr) { 1029 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1030 if (ht == NULL) 1031 break; 1032 1033 ASSERT(!IN_VA_HOLE(vaddr)); 1034 1035 /* 1036 * If the page table is shared skip its entire range. 1037 * This code knows that only level 0 page tables are shared 1038 */ 1039 l = ht->ht_level; 1040 if (ht->ht_flags & HTABLE_SHARED_PFN) { 1041 ASSERT(l == 0); 1042 vaddr = ht->ht_vaddr + LEVEL_SIZE(1); 1043 htable_release(ht); 1044 ht = NULL; 1045 continue; 1046 } 1047 1048 /* 1049 * If the page table has no locked entries, unload this one. 1050 */ 1051 if (ht->ht_lock_cnt == 0) 1052 hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l), 1053 HAT_UNLOAD_UNMAP); 1054 1055 /* 1056 * If we have a level 0 page table with locked entries, 1057 * skip the entire page table, otherwise skip just one entry. 1058 */ 1059 if (ht->ht_lock_cnt > 0 && l == 0) 1060 vaddr = ht->ht_vaddr + LEVEL_SIZE(1); 1061 else 1062 vaddr += LEVEL_SIZE(l); 1063 } 1064 if (ht) 1065 htable_release(ht); 1066 1067 /* 1068 * We're in swapout because the system is low on memory, so 1069 * go back and flush all the htables off the cached list. 1070 */ 1071 htable_purge_hat(hat); 1072 } 1073 1074 /* 1075 * returns number of bytes that have valid mappings in hat. 1076 */ 1077 size_t 1078 hat_get_mapped_size(hat_t *hat) 1079 { 1080 size_t total = 0; 1081 int l; 1082 1083 for (l = 0; l <= mmu.max_page_level; l++) 1084 total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l)); 1085 1086 return (total); 1087 } 1088 1089 /* 1090 * enable/disable collection of stats for hat. 1091 */ 1092 int 1093 hat_stats_enable(hat_t *hat) 1094 { 1095 atomic_add_32(&hat->hat_stats, 1); 1096 return (1); 1097 } 1098 1099 void 1100 hat_stats_disable(hat_t *hat) 1101 { 1102 atomic_add_32(&hat->hat_stats, -1); 1103 } 1104 1105 /* 1106 * Utility to sync the ref/mod bits from a page table entry to the page_t 1107 * We must be holding the mapping list lock when this is called. 1108 */ 1109 static void 1110 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level) 1111 { 1112 uint_t rm = 0; 1113 pgcnt_t pgcnt; 1114 1115 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) 1116 return; 1117 1118 if (PTE_GET(pte, PT_REF)) 1119 rm |= P_REF; 1120 1121 if (PTE_GET(pte, PT_MOD)) 1122 rm |= P_MOD; 1123 1124 if (rm == 0) 1125 return; 1126 1127 /* 1128 * sync to all constituent pages of a large page 1129 */ 1130 ASSERT(x86_hm_held(pp)); 1131 pgcnt = page_get_pagecnt(level); 1132 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 1133 for (; pgcnt > 0; --pgcnt) { 1134 /* 1135 * hat_page_demote() can't decrease 1136 * pszc below this mapping size 1137 * since this large mapping existed after we 1138 * took mlist lock. 1139 */ 1140 ASSERT(pp->p_szc >= level); 1141 hat_page_setattr(pp, rm); 1142 ++pp; 1143 } 1144 } 1145 1146 /* 1147 * This the set of PTE bits for PFN, permissions and caching 1148 * that require a TLB flush (hat_tlb_inval) if changed on a HAT_LOAD_REMAP 1149 */ 1150 #define PT_REMAP_BITS \ 1151 (PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU | \ 1152 PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE) 1153 1154 #define REMAPASSERT(EX) if (!(EX)) panic("hati_pte_map: " #EX) 1155 /* 1156 * Do the low-level work to get a mapping entered into a HAT's pagetables 1157 * and in the mapping list of the associated page_t. 1158 */ 1159 static int 1160 hati_pte_map( 1161 htable_t *ht, 1162 uint_t entry, 1163 page_t *pp, 1164 x86pte_t pte, 1165 int flags, 1166 void *pte_ptr) 1167 { 1168 hat_t *hat = ht->ht_hat; 1169 x86pte_t old_pte; 1170 level_t l = ht->ht_level; 1171 hment_t *hm; 1172 uint_t is_consist; 1173 int rv = 0; 1174 1175 /* 1176 * Is this a consistant (ie. need mapping list lock) mapping? 1177 */ 1178 is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0); 1179 1180 /* 1181 * Track locked mapping count in the htable. Do this first, 1182 * as we track locking even if there already is a mapping present. 1183 */ 1184 if ((flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat) 1185 HTABLE_LOCK_INC(ht); 1186 1187 /* 1188 * Acquire the page's mapping list lock and get an hment to use. 1189 * Note that hment_prepare() might return NULL. 1190 */ 1191 if (is_consist) { 1192 x86_hm_enter(pp); 1193 hm = hment_prepare(ht, entry, pp); 1194 } 1195 1196 /* 1197 * Set the new pte, retrieving the old one at the same time. 1198 */ 1199 old_pte = x86pte_set(ht, entry, pte, pte_ptr); 1200 1201 /* 1202 * did we get a large page / page table collision? 1203 */ 1204 if (old_pte == LPAGE_ERROR) { 1205 rv = -1; 1206 goto done; 1207 } 1208 1209 /* 1210 * If the mapping didn't change there is nothing more to do. 1211 */ 1212 if (PTE_EQUIV(pte, old_pte)) 1213 goto done; 1214 1215 /* 1216 * Install a new mapping in the page's mapping list 1217 */ 1218 if (!PTE_ISVALID(old_pte)) { 1219 if (is_consist) { 1220 hment_assign(ht, entry, pp, hm); 1221 x86_hm_exit(pp); 1222 } else { 1223 ASSERT(flags & HAT_LOAD_NOCONSIST); 1224 } 1225 HTABLE_INC(ht->ht_valid_cnt); 1226 PGCNT_INC(hat, l); 1227 return (rv); 1228 } 1229 1230 /* 1231 * Remap's are more complicated: 1232 * - HAT_LOAD_REMAP must be specified if changing the pfn. 1233 * We also require that NOCONSIST be specified. 1234 * - Otherwise only permission or caching bits may change. 1235 */ 1236 if (!PTE_ISPAGE(old_pte, l)) 1237 panic("non-null/page mapping pte=" FMT_PTE, old_pte); 1238 1239 if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) { 1240 REMAPASSERT(flags & HAT_LOAD_REMAP); 1241 REMAPASSERT(flags & HAT_LOAD_NOCONSIST); 1242 REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); 1243 REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) == 1244 pf_is_memory(PTE2PFN(pte, l))); 1245 REMAPASSERT(!is_consist); 1246 } 1247 1248 /* 1249 * We only let remaps change the bits for PFNs, permissions 1250 * or caching type. 1251 */ 1252 ASSERT(PTE_GET(old_pte, ~(PT_REMAP_BITS | PT_REF | PT_MOD)) == 1253 PTE_GET(pte, ~PT_REMAP_BITS)); 1254 1255 /* 1256 * We don't create any mapping list entries on a remap, so release 1257 * any allocated hment after we drop the mapping list lock. 1258 */ 1259 done: 1260 if (is_consist) { 1261 x86_hm_exit(pp); 1262 if (hm != NULL) 1263 hment_free(hm); 1264 } 1265 return (rv); 1266 } 1267 1268 /* 1269 * Internal routine to load a single page table entry. This only fails if 1270 * we attempt to overwrite a page table link with a large page. 1271 */ 1272 static int 1273 hati_load_common( 1274 hat_t *hat, 1275 uintptr_t va, 1276 page_t *pp, 1277 uint_t attr, 1278 uint_t flags, 1279 level_t level, 1280 pfn_t pfn) 1281 { 1282 htable_t *ht; 1283 uint_t entry; 1284 x86pte_t pte; 1285 int rv = 0; 1286 1287 /* 1288 * The number 16 is arbitrary and here to catch a recursion problem 1289 * early before we blow out the kernel stack. 1290 */ 1291 ++curthread->t_hatdepth; 1292 ASSERT(curthread->t_hatdepth < 16); 1293 1294 ASSERT(hat == kas.a_hat || 1295 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1296 1297 if (flags & HAT_LOAD_SHARE) 1298 hat->hat_flags |= HAT_SHARED; 1299 1300 /* 1301 * Find the page table that maps this page if it already exists. 1302 */ 1303 ht = htable_lookup(hat, va, level); 1304 1305 /* 1306 * We must have HAT_LOAD_NOCONSIST if page_t is NULL. 1307 */ 1308 if (pp == NULL) 1309 flags |= HAT_LOAD_NOCONSIST; 1310 1311 if (ht == NULL) { 1312 ht = htable_create(hat, va, level, NULL); 1313 ASSERT(ht != NULL); 1314 } 1315 entry = htable_va2entry(va, ht); 1316 1317 /* 1318 * a bunch of paranoid error checking 1319 */ 1320 ASSERT(ht->ht_busy > 0); 1321 if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht)) 1322 panic("hati_load_common: bad htable %p, va %p", ht, (void *)va); 1323 ASSERT(ht->ht_level == level); 1324 1325 /* 1326 * construct the new PTE 1327 */ 1328 if (hat == kas.a_hat) 1329 attr &= ~PROT_USER; 1330 pte = hati_mkpte(pfn, attr, level, flags); 1331 if (hat == kas.a_hat && va >= kernelbase) 1332 PTE_SET(pte, mmu.pt_global); 1333 1334 /* 1335 * establish the mapping 1336 */ 1337 rv = hati_pte_map(ht, entry, pp, pte, flags, NULL); 1338 1339 /* 1340 * release the htable and any reserves 1341 */ 1342 htable_release(ht); 1343 --curthread->t_hatdepth; 1344 return (rv); 1345 } 1346 1347 /* 1348 * special case of hat_memload to deal with some kernel addrs for performance 1349 */ 1350 static void 1351 hat_kmap_load( 1352 caddr_t addr, 1353 page_t *pp, 1354 uint_t attr, 1355 uint_t flags) 1356 { 1357 uintptr_t va = (uintptr_t)addr; 1358 x86pte_t pte; 1359 pfn_t pfn = page_pptonum(pp); 1360 pgcnt_t pg_off = mmu_btop(va - mmu.kmap_addr); 1361 htable_t *ht; 1362 uint_t entry; 1363 void *pte_ptr; 1364 1365 /* 1366 * construct the requested PTE 1367 */ 1368 attr &= ~PROT_USER; 1369 attr |= HAT_STORECACHING_OK; 1370 pte = hati_mkpte(pfn, attr, 0, flags); 1371 PTE_SET(pte, mmu.pt_global); 1372 1373 /* 1374 * Figure out the pte_ptr and htable and use common code to finish up 1375 */ 1376 if (mmu.pae_hat) 1377 pte_ptr = mmu.kmap_ptes + pg_off; 1378 else 1379 pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off; 1380 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >> 1381 LEVEL_SHIFT(1)]; 1382 entry = htable_va2entry(va, ht); 1383 ++curthread->t_hatdepth; 1384 ASSERT(curthread->t_hatdepth < 16); 1385 (void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr); 1386 --curthread->t_hatdepth; 1387 } 1388 1389 /* 1390 * hat_memload() - load a translation to the given page struct 1391 * 1392 * Flags for hat_memload/hat_devload/hat_*attr. 1393 * 1394 * HAT_LOAD Default flags to load a translation to the page. 1395 * 1396 * HAT_LOAD_LOCK Lock down mapping resources; hat_map(), hat_memload(), 1397 * and hat_devload(). 1398 * 1399 * HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list. 1400 * sets PT_NOCONSIST 1401 * 1402 * HAT_LOAD_SHARE A flag to hat_memload() to indicate h/w page tables 1403 * that map some user pages (not kas) is shared by more 1404 * than one process (eg. ISM). 1405 * 1406 * HAT_LOAD_REMAP Reload a valid pte with a different page frame. 1407 * 1408 * HAT_NO_KALLOC Do not kmem_alloc while creating the mapping; at this 1409 * point, it's setting up mapping to allocate internal 1410 * hat layer data structures. This flag forces hat layer 1411 * to tap its reserves in order to prevent infinite 1412 * recursion. 1413 * 1414 * The following is a protection attribute (like PROT_READ, etc.) 1415 * 1416 * HAT_NOSYNC set PT_NOSYNC - this mapping's ref/mod bits 1417 * are never cleared. 1418 * 1419 * Installing new valid PTE's and creation of the mapping list 1420 * entry are controlled under the same lock. It's derived from the 1421 * page_t being mapped. 1422 */ 1423 static uint_t supported_memload_flags = 1424 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST | 1425 HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT; 1426 1427 void 1428 hat_memload( 1429 hat_t *hat, 1430 caddr_t addr, 1431 page_t *pp, 1432 uint_t attr, 1433 uint_t flags) 1434 { 1435 uintptr_t va = (uintptr_t)addr; 1436 level_t level = 0; 1437 pfn_t pfn = page_pptonum(pp); 1438 1439 ASSERT(IS_PAGEALIGNED(va)); 1440 ASSERT(hat == kas.a_hat || va < _userlimit); 1441 ASSERT(hat == kas.a_hat || 1442 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1443 ASSERT((flags & supported_memload_flags) == flags); 1444 1445 ASSERT(!IN_VA_HOLE(va)); 1446 ASSERT(!PP_ISFREE(pp)); 1447 1448 /* 1449 * kernel address special case for performance. 1450 */ 1451 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 1452 ASSERT(hat == kas.a_hat); 1453 hat_kmap_load(addr, pp, attr, flags); 1454 return; 1455 } 1456 1457 /* 1458 * This is used for memory with normal caching enabled, so 1459 * always set HAT_STORECACHING_OK. 1460 */ 1461 attr |= HAT_STORECACHING_OK; 1462 if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0) 1463 panic("unexpected hati_load_common() failure"); 1464 } 1465 1466 /* 1467 * Load the given array of page structs using large pages when possible 1468 */ 1469 void 1470 hat_memload_array( 1471 hat_t *hat, 1472 caddr_t addr, 1473 size_t len, 1474 page_t **pages, 1475 uint_t attr, 1476 uint_t flags) 1477 { 1478 uintptr_t va = (uintptr_t)addr; 1479 uintptr_t eaddr = va + len; 1480 level_t level; 1481 size_t pgsize; 1482 pgcnt_t pgindx = 0; 1483 pfn_t pfn; 1484 pgcnt_t i; 1485 1486 ASSERT(IS_PAGEALIGNED(va)); 1487 ASSERT(hat == kas.a_hat || va + len <= _userlimit); 1488 ASSERT(hat == kas.a_hat || 1489 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1490 ASSERT((flags & supported_memload_flags) == flags); 1491 1492 /* 1493 * memload is used for memory with full caching enabled, so 1494 * set HAT_STORECACHING_OK. 1495 */ 1496 attr |= HAT_STORECACHING_OK; 1497 1498 /* 1499 * handle all pages using largest possible pagesize 1500 */ 1501 while (va < eaddr) { 1502 /* 1503 * decide what level mapping to use (ie. pagesize) 1504 */ 1505 pfn = page_pptonum(pages[pgindx]); 1506 for (level = mmu.max_page_level; ; --level) { 1507 pgsize = LEVEL_SIZE(level); 1508 if (level == 0) 1509 break; 1510 1511 if (!IS_P2ALIGNED(va, pgsize) || 1512 (eaddr - va) < pgsize || 1513 !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize)) 1514 continue; 1515 1516 /* 1517 * To use a large mapping of this size, all the 1518 * pages we are passed must be sequential subpages 1519 * of the large page. 1520 * hat_page_demote() can't change p_szc because 1521 * all pages are locked. 1522 */ 1523 if (pages[pgindx]->p_szc >= level) { 1524 for (i = 0; i < mmu_btop(pgsize); ++i) { 1525 if (pfn + i != 1526 page_pptonum(pages[pgindx + i])) 1527 break; 1528 ASSERT(pages[pgindx + i]->p_szc >= 1529 level); 1530 ASSERT(pages[pgindx] + i == 1531 pages[pgindx + i]); 1532 } 1533 if (i == mmu_btop(pgsize)) 1534 break; 1535 } 1536 } 1537 1538 /* 1539 * Load this page mapping. If the load fails, try a smaller 1540 * pagesize. 1541 */ 1542 ASSERT(!IN_VA_HOLE(va)); 1543 while (hati_load_common(hat, va, pages[pgindx], attr, 1544 flags, level, pfn) != 0) { 1545 if (level == 0) 1546 panic("unexpected hati_load_common() failure"); 1547 --level; 1548 pgsize = LEVEL_SIZE(level); 1549 } 1550 1551 /* 1552 * move to next page 1553 */ 1554 va += pgsize; 1555 pgindx += mmu_btop(pgsize); 1556 } 1557 } 1558 1559 /* 1560 * void hat_devload(hat, addr, len, pf, attr, flags) 1561 * load/lock the given page frame number 1562 * 1563 * Advisory ordering attributes. Apply only to device mappings. 1564 * 1565 * HAT_STRICTORDER: the CPU must issue the references in order, as the 1566 * programmer specified. This is the default. 1567 * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds 1568 * of reordering; store or load with store or load). 1569 * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores 1570 * to consecutive locations (for example, turn two consecutive byte 1571 * stores into one halfword store), and it may batch individual loads 1572 * (for example, turn two consecutive byte loads into one halfword load). 1573 * This also implies re-ordering. 1574 * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it 1575 * until another store occurs. The default is to fetch new data 1576 * on every load. This also implies merging. 1577 * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to 1578 * the device (perhaps with other data) at a later time. The default is 1579 * to push the data right away. This also implies load caching. 1580 * 1581 * Equivalent of hat_memload(), but can be used for device memory where 1582 * there are no page_t's and we support additional flags (write merging, etc). 1583 * Note that we can have large page mappings with this interface. 1584 */ 1585 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK | 1586 HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK | 1587 HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK; 1588 1589 void 1590 hat_devload( 1591 hat_t *hat, 1592 caddr_t addr, 1593 size_t len, 1594 pfn_t pfn, 1595 uint_t attr, 1596 int flags) 1597 { 1598 uintptr_t va = ALIGN2PAGE(addr); 1599 uintptr_t eva = va + len; 1600 level_t level; 1601 size_t pgsize; 1602 page_t *pp; 1603 int f; /* per PTE copy of flags - maybe modified */ 1604 uint_t a; /* per PTE copy of attr */ 1605 1606 ASSERT(IS_PAGEALIGNED(va)); 1607 ASSERT(hat == kas.a_hat || eva <= _userlimit); 1608 ASSERT(hat == kas.a_hat || 1609 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1610 ASSERT((flags & supported_devload_flags) == flags); 1611 1612 /* 1613 * handle all pages 1614 */ 1615 while (va < eva) { 1616 1617 /* 1618 * decide what level mapping to use (ie. pagesize) 1619 */ 1620 for (level = mmu.max_page_level; ; --level) { 1621 pgsize = LEVEL_SIZE(level); 1622 if (level == 0) 1623 break; 1624 if (IS_P2ALIGNED(va, pgsize) && 1625 (eva - va) >= pgsize && 1626 IS_P2ALIGNED(pfn, mmu_btop(pgsize))) 1627 break; 1628 } 1629 1630 /* 1631 * If this is just memory then allow caching (this happens 1632 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used 1633 * to override that. If we don't have a page_t then make sure 1634 * NOCONSIST is set. 1635 */ 1636 a = attr; 1637 f = flags; 1638 if (pf_is_memory(pfn)) { 1639 if (!(a & HAT_PLAT_NOCACHE)) 1640 a |= HAT_STORECACHING_OK; 1641 1642 if (f & HAT_LOAD_NOCONSIST) 1643 pp = NULL; 1644 else 1645 pp = page_numtopp_nolock(pfn); 1646 } else { 1647 pp = NULL; 1648 f |= HAT_LOAD_NOCONSIST; 1649 } 1650 1651 /* 1652 * load this page mapping 1653 */ 1654 ASSERT(!IN_VA_HOLE(va)); 1655 while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) { 1656 if (level == 0) 1657 panic("unexpected hati_load_common() failure"); 1658 --level; 1659 pgsize = LEVEL_SIZE(level); 1660 } 1661 1662 /* 1663 * move to next page 1664 */ 1665 va += pgsize; 1666 pfn += mmu_btop(pgsize); 1667 } 1668 } 1669 1670 /* 1671 * void hat_unlock(hat, addr, len) 1672 * unlock the mappings to a given range of addresses 1673 * 1674 * Locks are tracked by ht_lock_cnt in the htable. 1675 */ 1676 void 1677 hat_unlock(hat_t *hat, caddr_t addr, size_t len) 1678 { 1679 uintptr_t vaddr = (uintptr_t)addr; 1680 uintptr_t eaddr = vaddr + len; 1681 htable_t *ht = NULL; 1682 1683 /* 1684 * kernel entries are always locked, we don't track lock counts 1685 */ 1686 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 1687 ASSERT(IS_PAGEALIGNED(vaddr)); 1688 ASSERT(IS_PAGEALIGNED(eaddr)); 1689 if (hat == kas.a_hat) 1690 return; 1691 if (eaddr > _userlimit) 1692 panic("hat_unlock() address out of range - above _userlimit"); 1693 1694 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1695 while (vaddr < eaddr) { 1696 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1697 if (ht == NULL) 1698 break; 1699 1700 ASSERT(!IN_VA_HOLE(vaddr)); 1701 1702 if (ht->ht_lock_cnt < 1) 1703 panic("hat_unlock(): lock_cnt < 1, " 1704 "htable=%p, vaddr=%p\n", ht, (caddr_t)vaddr); 1705 HTABLE_LOCK_DEC(ht); 1706 1707 vaddr += LEVEL_SIZE(ht->ht_level); 1708 } 1709 if (ht) 1710 htable_release(ht); 1711 } 1712 1713 /* 1714 * Cross call service routine to demap a virtual page on 1715 * the current CPU or flush all mappings in TLB. 1716 */ 1717 /*ARGSUSED*/ 1718 static int 1719 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3) 1720 { 1721 hat_t *hat = (hat_t *)a1; 1722 caddr_t addr = (caddr_t)a2; 1723 1724 /* 1725 * If the target hat isn't the kernel and this CPU isn't operating 1726 * in the target hat, we can ignore the cross call. 1727 */ 1728 if (hat != kas.a_hat && hat != CPU->cpu_current_hat) 1729 return (0); 1730 1731 /* 1732 * For a normal address, we just flush one page mapping 1733 */ 1734 if ((uintptr_t)addr != DEMAP_ALL_ADDR) { 1735 mmu_tlbflush_entry(addr); 1736 return (0); 1737 } 1738 1739 /* 1740 * Otherwise we reload cr3 to effect a complete TLB flush. 1741 * 1742 * A reload of cr3 on a VLP process also means we must also recopy in 1743 * the pte values from the struct hat 1744 */ 1745 if (hat->hat_flags & HAT_VLP) { 1746 #if defined(__amd64) 1747 x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes; 1748 1749 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 1750 #elif defined(__i386) 1751 reload_pae32(hat, CPU); 1752 #endif 1753 } 1754 reload_cr3(); 1755 return (0); 1756 } 1757 1758 /* 1759 * Flush all TLB entries, including global (ie. kernel) ones. 1760 */ 1761 static void 1762 flush_all_tlb_entries(void) 1763 { 1764 ulong_t cr4 = getcr4(); 1765 1766 if (cr4 & CR4_PGE) { 1767 setcr4(cr4 & ~(ulong_t)CR4_PGE); 1768 setcr4(cr4); 1769 1770 /* 1771 * 32 bit PAE also needs to always reload_cr3() 1772 */ 1773 if (mmu.max_level == 2) 1774 reload_cr3(); 1775 } else { 1776 reload_cr3(); 1777 } 1778 } 1779 1780 #define TLB_CPU_HALTED (01ul) 1781 #define TLB_INVAL_ALL (02ul) 1782 #define CAS_TLB_INFO(cpu, old, new) \ 1783 caslong((ulong_t *)&(cpu)->cpu_m.mcpu_tlb_info, (old), (new)) 1784 1785 /* 1786 * Record that a CPU is going idle 1787 */ 1788 void 1789 tlb_going_idle(void) 1790 { 1791 atomic_or_long((ulong_t *)&CPU->cpu_m.mcpu_tlb_info, TLB_CPU_HALTED); 1792 } 1793 1794 /* 1795 * Service a delayed TLB flush if coming out of being idle. 1796 */ 1797 void 1798 tlb_service(void) 1799 { 1800 ulong_t flags = getflags(); 1801 ulong_t tlb_info; 1802 ulong_t found; 1803 1804 /* 1805 * Be sure interrupts are off while doing this so that 1806 * higher level interrupts correctly wait for flushes to finish. 1807 */ 1808 if (flags & PS_IE) 1809 flags = intr_clear(); 1810 1811 /* 1812 * We only have to do something if coming out of being idle. 1813 */ 1814 tlb_info = CPU->cpu_m.mcpu_tlb_info; 1815 if (tlb_info & TLB_CPU_HALTED) { 1816 ASSERT(CPU->cpu_current_hat == kas.a_hat); 1817 1818 /* 1819 * Atomic clear and fetch of old state. 1820 */ 1821 while ((found = CAS_TLB_INFO(CPU, tlb_info, 0)) != tlb_info) { 1822 ASSERT(found & TLB_CPU_HALTED); 1823 tlb_info = found; 1824 SMT_PAUSE(); 1825 } 1826 if (tlb_info & TLB_INVAL_ALL) 1827 flush_all_tlb_entries(); 1828 } 1829 1830 /* 1831 * Restore interrupt enable control bit. 1832 */ 1833 if (flags & PS_IE) 1834 sti(); 1835 } 1836 1837 /* 1838 * Internal routine to do cross calls to invalidate a range of pages on 1839 * all CPUs using a given hat. 1840 */ 1841 void 1842 hat_tlb_inval(hat_t *hat, uintptr_t va) 1843 { 1844 extern int flushes_require_xcalls; /* from mp_startup.c */ 1845 cpuset_t justme; 1846 cpuset_t check_cpus; 1847 cpuset_t cpus_to_shootdown; 1848 cpu_t *cpup; 1849 int c; 1850 1851 /* 1852 * If the hat is being destroyed, there are no more users, so 1853 * demap need not do anything. 1854 */ 1855 if (hat->hat_flags & HAT_FREEING) 1856 return; 1857 1858 /* 1859 * If demapping from a shared pagetable, we best demap the 1860 * entire set of user TLBs, since we don't know what addresses 1861 * these were shared at. 1862 */ 1863 if (hat->hat_flags & HAT_SHARED) { 1864 hat = kas.a_hat; 1865 va = DEMAP_ALL_ADDR; 1866 } 1867 1868 /* 1869 * if not running with multiple CPUs, don't use cross calls 1870 */ 1871 if (panicstr || !flushes_require_xcalls) { 1872 (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL); 1873 return; 1874 } 1875 1876 1877 /* 1878 * Determine CPUs to shootdown. Kernel changes always do all CPUs. 1879 * Otherwise it's just CPUs currently executing in this hat. 1880 */ 1881 kpreempt_disable(); 1882 CPUSET_ONLY(justme, CPU->cpu_id); 1883 if (hat == kas.a_hat) 1884 cpus_to_shootdown = khat_cpuset; 1885 else 1886 cpus_to_shootdown = hat->hat_cpus; 1887 1888 /* 1889 * If any CPUs in the set are idle, just request a delayed flush 1890 * and avoid waking them up. 1891 */ 1892 check_cpus = cpus_to_shootdown; 1893 for (c = 0; c < NCPU && !CPUSET_ISNULL(check_cpus); ++c) { 1894 ulong_t tlb_info; 1895 1896 if (!CPU_IN_SET(check_cpus, c)) 1897 continue; 1898 CPUSET_DEL(check_cpus, c); 1899 cpup = cpu[c]; 1900 if (cpup == NULL) 1901 continue; 1902 1903 tlb_info = cpup->cpu_m.mcpu_tlb_info; 1904 while (tlb_info == TLB_CPU_HALTED) { 1905 (void) CAS_TLB_INFO(cpup, TLB_CPU_HALTED, 1906 TLB_CPU_HALTED | TLB_INVAL_ALL); 1907 SMT_PAUSE(); 1908 tlb_info = cpup->cpu_m.mcpu_tlb_info; 1909 } 1910 if (tlb_info == (TLB_CPU_HALTED | TLB_INVAL_ALL)) { 1911 HATSTAT_INC(hs_tlb_inval_delayed); 1912 CPUSET_DEL(cpus_to_shootdown, c); 1913 } 1914 } 1915 1916 if (CPUSET_ISNULL(cpus_to_shootdown) || 1917 CPUSET_ISEQUAL(cpus_to_shootdown, justme)) { 1918 1919 (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL); 1920 1921 } else { 1922 1923 CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id); 1924 xc_call((xc_arg_t)hat, (xc_arg_t)va, NULL, X_CALL_HIPRI, 1925 cpus_to_shootdown, hati_demap_func); 1926 1927 } 1928 kpreempt_enable(); 1929 } 1930 1931 /* 1932 * Interior routine for HAT_UNLOADs from hat_unload_callback(), 1933 * hat_kmap_unload() OR from hat_steal() code. This routine doesn't 1934 * handle releasing of the htables. 1935 */ 1936 void 1937 hat_pte_unmap( 1938 htable_t *ht, 1939 uint_t entry, 1940 uint_t flags, 1941 x86pte_t old_pte, 1942 void *pte_ptr) 1943 { 1944 hat_t *hat = ht->ht_hat; 1945 hment_t *hm = NULL; 1946 page_t *pp = NULL; 1947 level_t l = ht->ht_level; 1948 pfn_t pfn; 1949 1950 /* 1951 * We always track the locking counts, even if nothing is unmapped 1952 */ 1953 if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) { 1954 ASSERT(ht->ht_lock_cnt > 0); 1955 HTABLE_LOCK_DEC(ht); 1956 } 1957 1958 /* 1959 * Figure out which page's mapping list lock to acquire using the PFN 1960 * passed in "old" PTE. We then attempt to invalidate the PTE. 1961 * If another thread, probably a hat_pageunload, has asynchronously 1962 * unmapped/remapped this address we'll loop here. 1963 */ 1964 ASSERT(ht->ht_busy > 0); 1965 while (PTE_ISVALID(old_pte)) { 1966 pfn = PTE2PFN(old_pte, l); 1967 if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) { 1968 pp = NULL; 1969 } else { 1970 pp = page_numtopp_nolock(pfn); 1971 if (pp == NULL) { 1972 panic("no page_t, not NOCONSIST: old_pte=" 1973 FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx", 1974 old_pte, (uintptr_t)ht, entry, 1975 (uintptr_t)pte_ptr); 1976 } 1977 x86_hm_enter(pp); 1978 } 1979 1980 /* 1981 * If freeing the address space, check that the PTE 1982 * hasn't changed, as the mappings are no longer in use by 1983 * any thread, invalidation is unnecessary. 1984 * If not freeing, do a full invalidate. 1985 */ 1986 if (hat->hat_flags & HAT_FREEING) 1987 old_pte = x86pte_get(ht, entry); 1988 else 1989 old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr); 1990 1991 /* 1992 * If the page hadn't changed we've unmapped it and can proceed 1993 */ 1994 if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn) 1995 break; 1996 1997 /* 1998 * Otherwise, we'll have to retry with the current old_pte. 1999 * Drop the hment lock, since the pfn may have changed. 2000 */ 2001 if (pp != NULL) { 2002 x86_hm_exit(pp); 2003 pp = NULL; 2004 } else { 2005 ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); 2006 } 2007 } 2008 2009 /* 2010 * If the old mapping wasn't valid, there's nothing more to do 2011 */ 2012 if (!PTE_ISVALID(old_pte)) { 2013 if (pp != NULL) 2014 x86_hm_exit(pp); 2015 return; 2016 } 2017 2018 /* 2019 * Take care of syncing any MOD/REF bits and removing the hment. 2020 */ 2021 if (pp != NULL) { 2022 if (!(flags & HAT_UNLOAD_NOSYNC)) 2023 hati_sync_pte_to_page(pp, old_pte, l); 2024 hm = hment_remove(pp, ht, entry); 2025 x86_hm_exit(pp); 2026 if (hm != NULL) 2027 hment_free(hm); 2028 } 2029 2030 /* 2031 * Handle book keeping in the htable and hat 2032 */ 2033 ASSERT(ht->ht_valid_cnt > 0); 2034 HTABLE_DEC(ht->ht_valid_cnt); 2035 PGCNT_DEC(hat, l); 2036 } 2037 2038 /* 2039 * very cheap unload implementation to special case some kernel addresses 2040 */ 2041 static void 2042 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags) 2043 { 2044 uintptr_t va = (uintptr_t)addr; 2045 uintptr_t eva = va + len; 2046 pgcnt_t pg_index; 2047 htable_t *ht; 2048 uint_t entry; 2049 x86pte_t *pte_ptr; 2050 x86pte_t old_pte; 2051 2052 for (; va < eva; va += MMU_PAGESIZE) { 2053 /* 2054 * Get the PTE 2055 */ 2056 pg_index = mmu_btop(va - mmu.kmap_addr); 2057 pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index); 2058 old_pte = GET_PTE(pte_ptr); 2059 2060 /* 2061 * get the htable / entry 2062 */ 2063 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) 2064 >> LEVEL_SHIFT(1)]; 2065 entry = htable_va2entry(va, ht); 2066 2067 /* 2068 * use mostly common code to unmap it. 2069 */ 2070 hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr); 2071 } 2072 } 2073 2074 2075 /* 2076 * unload a range of virtual address space (no callback) 2077 */ 2078 void 2079 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2080 { 2081 uintptr_t va = (uintptr_t)addr; 2082 2083 ASSERT(hat == kas.a_hat || va + len <= _userlimit); 2084 2085 /* 2086 * special case for performance. 2087 */ 2088 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 2089 ASSERT(hat == kas.a_hat); 2090 hat_kmap_unload(addr, len, flags); 2091 } else { 2092 hat_unload_callback(hat, addr, len, flags, NULL); 2093 } 2094 } 2095 2096 /* 2097 * Do the callbacks for ranges being unloaded. 2098 */ 2099 typedef struct range_info { 2100 uintptr_t rng_va; 2101 ulong_t rng_cnt; 2102 level_t rng_level; 2103 } range_info_t; 2104 2105 static void 2106 handle_ranges(hat_callback_t *cb, uint_t cnt, range_info_t *range) 2107 { 2108 /* 2109 * do callbacks to upper level VM system 2110 */ 2111 while (cb != NULL && cnt > 0) { 2112 --cnt; 2113 cb->hcb_start_addr = (caddr_t)range[cnt].rng_va; 2114 cb->hcb_end_addr = cb->hcb_start_addr; 2115 cb->hcb_end_addr += 2116 range[cnt].rng_cnt << LEVEL_SIZE(range[cnt].rng_level); 2117 cb->hcb_function(cb); 2118 } 2119 } 2120 2121 /* 2122 * Unload a given range of addresses (has optional callback) 2123 * 2124 * Flags: 2125 * define HAT_UNLOAD 0x00 2126 * define HAT_UNLOAD_NOSYNC 0x02 2127 * define HAT_UNLOAD_UNLOCK 0x04 2128 * define HAT_UNLOAD_OTHER 0x08 - not used 2129 * define HAT_UNLOAD_UNMAP 0x10 - same as HAT_UNLOAD 2130 */ 2131 #define MAX_UNLOAD_CNT (8) 2132 void 2133 hat_unload_callback( 2134 hat_t *hat, 2135 caddr_t addr, 2136 size_t len, 2137 uint_t flags, 2138 hat_callback_t *cb) 2139 { 2140 uintptr_t vaddr = (uintptr_t)addr; 2141 uintptr_t eaddr = vaddr + len; 2142 htable_t *ht = NULL; 2143 uint_t entry; 2144 uintptr_t contig_va = (uintptr_t)-1L; 2145 range_info_t r[MAX_UNLOAD_CNT]; 2146 uint_t r_cnt = 0; 2147 x86pte_t old_pte; 2148 2149 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 2150 ASSERT(IS_PAGEALIGNED(vaddr)); 2151 ASSERT(IS_PAGEALIGNED(eaddr)); 2152 2153 /* 2154 * Special case a single page being unloaded for speed. This happens 2155 * quite frequently, COW faults after a fork() for example. 2156 */ 2157 if (cb == NULL && len == MMU_PAGESIZE) { 2158 ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0); 2159 if (ht != NULL) { 2160 if (PTE_ISVALID(old_pte)) 2161 hat_pte_unmap(ht, entry, flags, old_pte, NULL); 2162 htable_release(ht); 2163 } 2164 return; 2165 } 2166 2167 while (vaddr < eaddr) { 2168 old_pte = htable_walk(hat, &ht, &vaddr, eaddr); 2169 if (ht == NULL) 2170 break; 2171 2172 ASSERT(!IN_VA_HOLE(vaddr)); 2173 2174 if (vaddr < (uintptr_t)addr) 2175 panic("hat_unload_callback(): unmap inside large page"); 2176 2177 /* 2178 * We'll do the call backs for contiguous ranges 2179 */ 2180 if (vaddr != contig_va || 2181 (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) { 2182 if (r_cnt == MAX_UNLOAD_CNT) { 2183 handle_ranges(cb, r_cnt, r); 2184 r_cnt = 0; 2185 } 2186 r[r_cnt].rng_va = vaddr; 2187 r[r_cnt].rng_cnt = 0; 2188 r[r_cnt].rng_level = ht->ht_level; 2189 ++r_cnt; 2190 } 2191 2192 /* 2193 * Unload one mapping from the page tables. 2194 */ 2195 entry = htable_va2entry(vaddr, ht); 2196 hat_pte_unmap(ht, entry, flags, old_pte, NULL); 2197 ASSERT(ht->ht_level <= mmu.max_page_level); 2198 vaddr += LEVEL_SIZE(ht->ht_level); 2199 contig_va = vaddr; 2200 ++r[r_cnt - 1].rng_cnt; 2201 } 2202 if (ht) 2203 htable_release(ht); 2204 2205 /* 2206 * handle last range for callbacks 2207 */ 2208 if (r_cnt > 0) 2209 handle_ranges(cb, r_cnt, r); 2210 } 2211 2212 /* 2213 * synchronize mapping with software data structures 2214 * 2215 * This interface is currently only used by the working set monitor 2216 * driver. 2217 */ 2218 /*ARGSUSED*/ 2219 void 2220 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2221 { 2222 uintptr_t vaddr = (uintptr_t)addr; 2223 uintptr_t eaddr = vaddr + len; 2224 htable_t *ht = NULL; 2225 uint_t entry; 2226 x86pte_t pte; 2227 x86pte_t save_pte; 2228 x86pte_t new; 2229 page_t *pp; 2230 2231 ASSERT(!IN_VA_HOLE(vaddr)); 2232 ASSERT(IS_PAGEALIGNED(vaddr)); 2233 ASSERT(IS_PAGEALIGNED(eaddr)); 2234 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 2235 2236 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2237 try_again: 2238 pte = htable_walk(hat, &ht, &vaddr, eaddr); 2239 if (ht == NULL) 2240 break; 2241 entry = htable_va2entry(vaddr, ht); 2242 2243 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || 2244 PTE_GET(pte, PT_REF | PT_MOD) == 0) 2245 continue; 2246 2247 /* 2248 * We need to acquire the mapping list lock to protect 2249 * against hat_pageunload(), hat_unload(), etc. 2250 */ 2251 pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level)); 2252 if (pp == NULL) 2253 break; 2254 x86_hm_enter(pp); 2255 save_pte = pte; 2256 pte = x86pte_get(ht, entry); 2257 if (pte != save_pte) { 2258 x86_hm_exit(pp); 2259 goto try_again; 2260 } 2261 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || 2262 PTE_GET(pte, PT_REF | PT_MOD) == 0) { 2263 x86_hm_exit(pp); 2264 continue; 2265 } 2266 2267 /* 2268 * Need to clear ref or mod bits. We may compete with 2269 * hardware updating the R/M bits and have to try again. 2270 */ 2271 if (flags == HAT_SYNC_ZERORM) { 2272 new = pte; 2273 PTE_CLR(new, PT_REF | PT_MOD); 2274 pte = hati_update_pte(ht, entry, pte, new); 2275 if (pte != 0) { 2276 x86_hm_exit(pp); 2277 goto try_again; 2278 } 2279 } else { 2280 /* 2281 * sync the PTE to the page_t 2282 */ 2283 hati_sync_pte_to_page(pp, save_pte, ht->ht_level); 2284 } 2285 x86_hm_exit(pp); 2286 } 2287 if (ht) 2288 htable_release(ht); 2289 } 2290 2291 /* 2292 * void hat_map(hat, addr, len, flags) 2293 */ 2294 /*ARGSUSED*/ 2295 void 2296 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2297 { 2298 /* does nothing */ 2299 } 2300 2301 /* 2302 * uint_t hat_getattr(hat, addr, *attr) 2303 * returns attr for <hat,addr> in *attr. returns 0 if there was a 2304 * mapping and *attr is valid, nonzero if there was no mapping and 2305 * *attr is not valid. 2306 */ 2307 uint_t 2308 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr) 2309 { 2310 uintptr_t vaddr = ALIGN2PAGE(addr); 2311 htable_t *ht = NULL; 2312 x86pte_t pte; 2313 2314 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2315 2316 if (IN_VA_HOLE(vaddr)) 2317 return ((uint_t)-1); 2318 2319 ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level); 2320 if (ht == NULL) 2321 return ((uint_t)-1); 2322 2323 if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) { 2324 htable_release(ht); 2325 return ((uint_t)-1); 2326 } 2327 2328 *attr = PROT_READ; 2329 if (PTE_GET(pte, PT_WRITABLE)) 2330 *attr |= PROT_WRITE; 2331 if (PTE_GET(pte, PT_USER)) 2332 *attr |= PROT_USER; 2333 if (!PTE_GET(pte, mmu.pt_nx)) 2334 *attr |= PROT_EXEC; 2335 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) 2336 *attr |= HAT_NOSYNC; 2337 htable_release(ht); 2338 return (0); 2339 } 2340 2341 /* 2342 * hat_updateattr() applies the given attribute change to an existing mapping 2343 */ 2344 #define HAT_LOAD_ATTR 1 2345 #define HAT_SET_ATTR 2 2346 #define HAT_CLR_ATTR 3 2347 2348 static void 2349 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what) 2350 { 2351 uintptr_t vaddr = (uintptr_t)addr; 2352 uintptr_t eaddr = (uintptr_t)addr + len; 2353 htable_t *ht = NULL; 2354 uint_t entry; 2355 x86pte_t oldpte, newpte; 2356 page_t *pp; 2357 2358 ASSERT(IS_PAGEALIGNED(vaddr)); 2359 ASSERT(IS_PAGEALIGNED(eaddr)); 2360 ASSERT(hat == kas.a_hat || 2361 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 2362 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2363 try_again: 2364 oldpte = htable_walk(hat, &ht, &vaddr, eaddr); 2365 if (ht == NULL) 2366 break; 2367 if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST) 2368 continue; 2369 2370 pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level)); 2371 if (pp == NULL) 2372 continue; 2373 x86_hm_enter(pp); 2374 2375 newpte = oldpte; 2376 /* 2377 * We found a page table entry in the desired range, 2378 * figure out the new attributes. 2379 */ 2380 if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) { 2381 if ((attr & PROT_WRITE) && 2382 !PTE_GET(oldpte, PT_WRITABLE)) 2383 newpte |= PT_WRITABLE; 2384 2385 if ((attr & HAT_NOSYNC) && 2386 PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC) 2387 newpte |= PT_NOSYNC; 2388 2389 if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx)) 2390 newpte &= ~mmu.pt_nx; 2391 } 2392 2393 if (what == HAT_LOAD_ATTR) { 2394 if (!(attr & PROT_WRITE) && 2395 PTE_GET(oldpte, PT_WRITABLE)) 2396 newpte &= ~PT_WRITABLE; 2397 2398 if (!(attr & HAT_NOSYNC) && 2399 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) 2400 newpte &= ~PT_SOFTWARE; 2401 2402 if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2403 newpte |= mmu.pt_nx; 2404 } 2405 2406 if (what == HAT_CLR_ATTR) { 2407 if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE)) 2408 newpte &= ~PT_WRITABLE; 2409 2410 if ((attr & HAT_NOSYNC) && 2411 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) 2412 newpte &= ~PT_SOFTWARE; 2413 2414 if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2415 newpte |= mmu.pt_nx; 2416 } 2417 2418 /* 2419 * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set. 2420 * x86pte_set() depends on this. 2421 */ 2422 if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC) 2423 newpte |= PT_REF | PT_MOD; 2424 2425 /* 2426 * what about PROT_READ or others? this code only handles: 2427 * EXEC, WRITE, NOSYNC 2428 */ 2429 2430 /* 2431 * If new PTE really changed, update the table. 2432 */ 2433 if (newpte != oldpte) { 2434 entry = htable_va2entry(vaddr, ht); 2435 oldpte = hati_update_pte(ht, entry, oldpte, newpte); 2436 if (oldpte != 0) { 2437 x86_hm_exit(pp); 2438 goto try_again; 2439 } 2440 } 2441 x86_hm_exit(pp); 2442 } 2443 if (ht) 2444 htable_release(ht); 2445 } 2446 2447 /* 2448 * Various wrappers for hat_updateattr() 2449 */ 2450 void 2451 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2452 { 2453 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2454 hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR); 2455 } 2456 2457 void 2458 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2459 { 2460 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2461 hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR); 2462 } 2463 2464 void 2465 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2466 { 2467 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2468 hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR); 2469 } 2470 2471 void 2472 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot) 2473 { 2474 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2475 hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR); 2476 } 2477 2478 /* 2479 * size_t hat_getpagesize(hat, addr) 2480 * returns pagesize in bytes for <hat, addr>. returns -1 of there is 2481 * no mapping. This is an advisory call. 2482 */ 2483 ssize_t 2484 hat_getpagesize(hat_t *hat, caddr_t addr) 2485 { 2486 uintptr_t vaddr = ALIGN2PAGE(addr); 2487 htable_t *ht; 2488 size_t pagesize; 2489 2490 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2491 if (IN_VA_HOLE(vaddr)) 2492 return (-1); 2493 ht = htable_getpage(hat, vaddr, NULL); 2494 if (ht == NULL) 2495 return (-1); 2496 pagesize = LEVEL_SIZE(ht->ht_level); 2497 htable_release(ht); 2498 return (pagesize); 2499 } 2500 2501 2502 2503 /* 2504 * pfn_t hat_getpfnum(hat, addr) 2505 * returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid. 2506 */ 2507 pfn_t 2508 hat_getpfnum(hat_t *hat, caddr_t addr) 2509 { 2510 uintptr_t vaddr = ALIGN2PAGE(addr); 2511 htable_t *ht; 2512 uint_t entry; 2513 pfn_t pfn = PFN_INVALID; 2514 2515 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2516 if (khat_running == 0) 2517 return (PFN_INVALID); 2518 2519 if (IN_VA_HOLE(vaddr)) 2520 return (PFN_INVALID); 2521 2522 /* 2523 * A very common use of hat_getpfnum() is from the DDI for kernel pages. 2524 * Use the kmap_ptes (which also covers the 32 bit heap) to speed 2525 * this up. 2526 */ 2527 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2528 x86pte_t pte; 2529 pgcnt_t pg_index; 2530 2531 pg_index = mmu_btop(vaddr - mmu.kmap_addr); 2532 pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index)); 2533 if (!PTE_ISVALID(pte)) 2534 return (PFN_INVALID); 2535 /*LINTED [use of constant 0 causes a silly lint warning] */ 2536 return (PTE2PFN(pte, 0)); 2537 } 2538 2539 ht = htable_getpage(hat, vaddr, &entry); 2540 if (ht == NULL) 2541 return (PFN_INVALID); 2542 ASSERT(vaddr >= ht->ht_vaddr); 2543 ASSERT(vaddr <= HTABLE_LAST_PAGE(ht)); 2544 pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level); 2545 if (ht->ht_level > 0) 2546 pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level)); 2547 htable_release(ht); 2548 return (pfn); 2549 } 2550 2551 /* 2552 * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged. 2553 * Use hat_getpfnum(kas.a_hat, ...) instead. 2554 * 2555 * We'd like to return PFN_INVALID if the mappings have underlying page_t's 2556 * but can't right now due to the fact that some software has grown to use 2557 * this interface incorrectly. So for now when the interface is misused, 2558 * return a warning to the user that in the future it won't work in the 2559 * way they're abusing it, and carry on. 2560 * 2561 * Note that hat_getkpfnum() is never supported on amd64. 2562 */ 2563 #if !defined(__amd64) 2564 pfn_t 2565 hat_getkpfnum(caddr_t addr) 2566 { 2567 pfn_t pfn; 2568 int badcaller = 0; 2569 2570 if (khat_running == 0) 2571 panic("hat_getkpfnum(): called too early\n"); 2572 if ((uintptr_t)addr < kernelbase) 2573 return (PFN_INVALID); 2574 2575 2576 if (segkpm && IS_KPM_ADDR(addr)) { 2577 badcaller = 1; 2578 pfn = hat_kpm_va2pfn(addr); 2579 } else { 2580 pfn = hat_getpfnum(kas.a_hat, addr); 2581 badcaller = pf_is_memory(pfn); 2582 } 2583 2584 if (badcaller) 2585 hat_getkpfnum_badcall(caller()); 2586 return (pfn); 2587 } 2588 #endif /* __amd64 */ 2589 2590 /* 2591 * int hat_probe(hat, addr) 2592 * return 0 if no valid mapping is present. Faster version 2593 * of hat_getattr in certain architectures. 2594 */ 2595 int 2596 hat_probe(hat_t *hat, caddr_t addr) 2597 { 2598 uintptr_t vaddr = ALIGN2PAGE(addr); 2599 uint_t entry; 2600 htable_t *ht; 2601 pgcnt_t pg_off; 2602 2603 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2604 ASSERT(hat == kas.a_hat || 2605 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 2606 if (IN_VA_HOLE(vaddr)) 2607 return (0); 2608 2609 /* 2610 * Most common use of hat_probe is from segmap. We special case it 2611 * for performance. 2612 */ 2613 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2614 pg_off = mmu_btop(vaddr - mmu.kmap_addr); 2615 if (mmu.pae_hat) 2616 return (PTE_ISVALID(mmu.kmap_ptes[pg_off])); 2617 else 2618 return (PTE_ISVALID( 2619 ((x86pte32_t *)mmu.kmap_ptes)[pg_off])); 2620 } 2621 2622 ht = htable_getpage(hat, vaddr, &entry); 2623 if (ht == NULL) 2624 return (0); 2625 htable_release(ht); 2626 return (1); 2627 } 2628 2629 /* 2630 * Simple implementation of ISM. hat_share() is just like hat_memload_array(), 2631 * except that we use the ism_hat's existing mappings to determine the pages 2632 * and protections to use for this hat. In case we find a properly aligned 2633 * and sized pagetable of 4K mappings, we will attempt to share the pagetable 2634 * itself. 2635 */ 2636 /*ARGSUSED*/ 2637 int 2638 hat_share( 2639 hat_t *hat, 2640 caddr_t addr, 2641 hat_t *ism_hat, 2642 caddr_t src_addr, 2643 size_t len, /* almost useless value, see below.. */ 2644 uint_t ismszc) 2645 { 2646 uintptr_t vaddr_start = (uintptr_t)addr; 2647 uintptr_t vaddr; 2648 uintptr_t pt_vaddr; 2649 uintptr_t eaddr = vaddr_start + len; 2650 uintptr_t ism_addr_start = (uintptr_t)src_addr; 2651 uintptr_t ism_addr = ism_addr_start; 2652 uintptr_t e_ism_addr = ism_addr + len; 2653 htable_t *ism_ht = NULL; 2654 htable_t *ht; 2655 x86pte_t pte; 2656 page_t *pp; 2657 pfn_t pfn; 2658 level_t l; 2659 pgcnt_t pgcnt; 2660 uint_t prot; 2661 uint_t valid_cnt; 2662 2663 /* 2664 * We might be asked to share an empty DISM hat by as_dup() 2665 */ 2666 ASSERT(hat != kas.a_hat); 2667 ASSERT(eaddr <= _userlimit); 2668 if (!(ism_hat->hat_flags & HAT_SHARED)) { 2669 ASSERT(hat_get_mapped_size(ism_hat) == 0); 2670 return (0); 2671 } 2672 2673 /* 2674 * The SPT segment driver often passes us a size larger than there are 2675 * valid mappings. That's because it rounds the segment size up to a 2676 * large pagesize, even if the actual memory mapped by ism_hat is less. 2677 */ 2678 ASSERT(IS_PAGEALIGNED(vaddr_start)); 2679 ASSERT(IS_PAGEALIGNED(ism_addr_start)); 2680 ASSERT(ism_hat->hat_flags & HAT_SHARED); 2681 while (ism_addr < e_ism_addr) { 2682 /* 2683 * use htable_walk to get the next valid ISM mapping 2684 */ 2685 pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr); 2686 if (ism_ht == NULL) 2687 break; 2688 2689 /* 2690 * Find the largest page size we can use, based on the 2691 * ISM mapping size, our address alignment and the remaining 2692 * map length. 2693 */ 2694 vaddr = vaddr_start + (ism_addr - ism_addr_start); 2695 for (l = ism_ht->ht_level; l > 0; --l) { 2696 if (LEVEL_SIZE(l) <= eaddr - vaddr && 2697 (vaddr & LEVEL_OFFSET(l)) == 0) 2698 break; 2699 } 2700 2701 /* 2702 * attempt to share the pagetable 2703 * 2704 * - only 4K pagetables are shared (ie. level == 0) 2705 * - the hat_share() length must cover the whole pagetable 2706 * - the shared address must align at level 1 2707 * - a shared PTE for this address already exists OR 2708 * - no page table for this address exists yet 2709 */ 2710 pt_vaddr = 2711 vaddr_start + (ism_ht->ht_vaddr - ism_addr_start); 2712 if (ism_ht->ht_level == 0 && 2713 ism_ht->ht_vaddr + LEVEL_SIZE(1) <= e_ism_addr && 2714 (pt_vaddr & LEVEL_OFFSET(1)) == 0) { 2715 2716 ht = htable_lookup(hat, pt_vaddr, 0); 2717 if (ht == NULL) 2718 ht = htable_create(hat, pt_vaddr, 0, ism_ht); 2719 2720 if (ht->ht_level > 0 || 2721 !(ht->ht_flags & HTABLE_SHARED_PFN)) { 2722 2723 htable_release(ht); 2724 2725 } else { 2726 2727 /* 2728 * share the page table 2729 */ 2730 ASSERT(ht->ht_level == 0); 2731 ASSERT(ht->ht_shares == ism_ht); 2732 valid_cnt = ism_ht->ht_valid_cnt; 2733 atomic_add_long(&hat->hat_pages_mapped[0], 2734 valid_cnt - ht->ht_valid_cnt); 2735 ht->ht_valid_cnt = valid_cnt; 2736 htable_release(ht); 2737 ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(1); 2738 htable_release(ism_ht); 2739 ism_ht = NULL; 2740 continue; 2741 } 2742 } 2743 2744 /* 2745 * Unable to share the page table. Instead we will 2746 * create new mappings from the values in the ISM mappings. 2747 * 2748 * The ISM mapping might be larger than the share area, 2749 * be careful to trunctate it if needed. 2750 */ 2751 if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) { 2752 pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level)); 2753 } else { 2754 pgcnt = mmu_btop(eaddr - vaddr); 2755 l = 0; 2756 } 2757 2758 pfn = PTE2PFN(pte, ism_ht->ht_level); 2759 ASSERT(pfn != PFN_INVALID); 2760 while (pgcnt > 0) { 2761 /* 2762 * Make a new pte for the PFN for this level. 2763 * Copy protections for the pte from the ISM pte. 2764 */ 2765 pp = page_numtopp_nolock(pfn); 2766 ASSERT(pp != NULL); 2767 2768 prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK; 2769 if (PTE_GET(pte, PT_WRITABLE)) 2770 prot |= PROT_WRITE; 2771 if (!PTE_GET(pte, PT_NX)) 2772 prot |= PROT_EXEC; 2773 2774 /* 2775 * XX64 -- can shm ever be written to swap? 2776 * if not we could use HAT_NOSYNC here. 2777 */ 2778 while (hati_load_common(hat, vaddr, pp, prot, HAT_LOAD, 2779 l, pfn) != 0) { 2780 if (l == 0) 2781 panic("hati_load_common() failure"); 2782 --l; 2783 } 2784 2785 vaddr += LEVEL_SIZE(l); 2786 ism_addr += LEVEL_SIZE(l); 2787 pfn += mmu_btop(LEVEL_SIZE(l)); 2788 pgcnt -= mmu_btop(LEVEL_SIZE(l)); 2789 } 2790 } 2791 if (ism_ht != NULL) 2792 htable_release(ism_ht); 2793 return (0); 2794 } 2795 2796 2797 /* 2798 * hat_unshare() is similar to hat_unload_callback(), but 2799 * we have to look for empty shared pagetables. Note that 2800 * hat_unshare() is always invoked against an entire segment. 2801 */ 2802 /*ARGSUSED*/ 2803 void 2804 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc) 2805 { 2806 uintptr_t vaddr = (uintptr_t)addr; 2807 uintptr_t eaddr = vaddr + len; 2808 htable_t *ht = NULL; 2809 uint_t need_demaps = 0; 2810 2811 ASSERT(hat != kas.a_hat); 2812 ASSERT(eaddr <= _userlimit); 2813 ASSERT(IS_PAGEALIGNED(vaddr)); 2814 ASSERT(IS_PAGEALIGNED(eaddr)); 2815 2816 /* 2817 * First go through and remove any shared pagetables. 2818 * 2819 * Note that it's ok to delay the TLB shootdown till the entire range is 2820 * finished, because if hat_pageunload() were to unload a shared 2821 * pagetable page, its hat_tlb_inval() will do a global TLB invalidate. 2822 */ 2823 while (vaddr < eaddr) { 2824 ASSERT(!IN_VA_HOLE(vaddr)); 2825 /* 2826 * find the pagetable that would map the current address 2827 */ 2828 ht = htable_lookup(hat, vaddr, 0); 2829 if (ht != NULL) { 2830 if (ht->ht_flags & HTABLE_SHARED_PFN) { 2831 /* 2832 * clear mapped pages count, set valid_cnt to 0 2833 * and let htable_release() finish the job 2834 */ 2835 atomic_add_long(&hat->hat_pages_mapped[0], 2836 -ht->ht_valid_cnt); 2837 ht->ht_valid_cnt = 0; 2838 need_demaps = 1; 2839 } 2840 htable_release(ht); 2841 } 2842 vaddr = (vaddr & LEVEL_MASK(1)) + LEVEL_SIZE(1); 2843 } 2844 2845 /* 2846 * flush the TLBs - since we're probably dealing with MANY mappings 2847 * we do just one CR3 reload. 2848 */ 2849 if (!(hat->hat_flags & HAT_FREEING) && need_demaps) 2850 hat_tlb_inval(hat, DEMAP_ALL_ADDR); 2851 2852 /* 2853 * Now go back and clean up any unaligned mappings that 2854 * couldn't share pagetables. 2855 */ 2856 hat_unload(hat, addr, len, HAT_UNLOAD_UNMAP); 2857 } 2858 2859 2860 /* 2861 * hat_reserve() does nothing 2862 */ 2863 /*ARGSUSED*/ 2864 void 2865 hat_reserve(struct as *as, caddr_t addr, size_t len) 2866 { 2867 } 2868 2869 2870 /* 2871 * Called when all mappings to a page should have write permission removed. 2872 * Mostly stolem from hat_pagesync() 2873 */ 2874 static void 2875 hati_page_clrwrt(struct page *pp) 2876 { 2877 hment_t *hm = NULL; 2878 htable_t *ht; 2879 uint_t entry; 2880 x86pte_t old; 2881 x86pte_t new; 2882 uint_t pszc = 0; 2883 2884 next_size: 2885 /* 2886 * walk thru the mapping list clearing write permission 2887 */ 2888 x86_hm_enter(pp); 2889 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 2890 if (ht->ht_level < pszc) 2891 continue; 2892 old = x86pte_get(ht, entry); 2893 2894 for (;;) { 2895 /* 2896 * Is this mapping of interest? 2897 */ 2898 if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum || 2899 PTE_GET(old, PT_WRITABLE) == 0) 2900 break; 2901 2902 /* 2903 * Clear ref/mod writable bits. This requires cross 2904 * calls to ensure any executing TLBs see cleared bits. 2905 */ 2906 new = old; 2907 PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE); 2908 old = hati_update_pte(ht, entry, old, new); 2909 if (old != 0) 2910 continue; 2911 2912 break; 2913 } 2914 } 2915 x86_hm_exit(pp); 2916 while (pszc < pp->p_szc) { 2917 page_t *tpp; 2918 pszc++; 2919 tpp = PP_GROUPLEADER(pp, pszc); 2920 if (pp != tpp) { 2921 pp = tpp; 2922 goto next_size; 2923 } 2924 } 2925 } 2926 2927 /* 2928 * void hat_page_setattr(pp, flag) 2929 * void hat_page_clrattr(pp, flag) 2930 * used to set/clr ref/mod bits. 2931 */ 2932 void 2933 hat_page_setattr(struct page *pp, uint_t flag) 2934 { 2935 vnode_t *vp = pp->p_vnode; 2936 kmutex_t *vphm = NULL; 2937 page_t **listp; 2938 2939 if (PP_GETRM(pp, flag) == flag) 2940 return; 2941 2942 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { 2943 vphm = page_vnode_mutex(vp); 2944 mutex_enter(vphm); 2945 } 2946 2947 PP_SETRM(pp, flag); 2948 2949 if (vphm != NULL) { 2950 2951 /* 2952 * Some File Systems examine v_pages for NULL w/o 2953 * grabbing the vphm mutex. Must not let it become NULL when 2954 * pp is the only page on the list. 2955 */ 2956 if (pp->p_vpnext != pp) { 2957 page_vpsub(&vp->v_pages, pp); 2958 if (vp->v_pages != NULL) 2959 listp = &vp->v_pages->p_vpprev->p_vpnext; 2960 else 2961 listp = &vp->v_pages; 2962 page_vpadd(listp, pp); 2963 } 2964 mutex_exit(vphm); 2965 } 2966 } 2967 2968 void 2969 hat_page_clrattr(struct page *pp, uint_t flag) 2970 { 2971 vnode_t *vp = pp->p_vnode; 2972 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 2973 2974 /* 2975 * Caller is expected to hold page's io lock for VMODSORT to work 2976 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod 2977 * bit is cleared. 2978 * We don't have assert to avoid tripping some existing third party 2979 * code. The dirty page is moved back to top of the v_page list 2980 * after IO is done in pvn_write_done(). 2981 */ 2982 PP_CLRRM(pp, flag); 2983 2984 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { 2985 2986 /* 2987 * VMODSORT works by removing write permissions and getting 2988 * a fault when a page is made dirty. At this point 2989 * we need to remove write permission from all mappings 2990 * to this page. 2991 */ 2992 hati_page_clrwrt(pp); 2993 } 2994 } 2995 2996 /* 2997 * If flag is specified, returns 0 if attribute is disabled 2998 * and non zero if enabled. If flag specifes multiple attributs 2999 * then returns 0 if ALL atriibutes are disabled. This is an advisory 3000 * call. 3001 */ 3002 uint_t 3003 hat_page_getattr(struct page *pp, uint_t flag) 3004 { 3005 return (PP_GETRM(pp, flag)); 3006 } 3007 3008 3009 /* 3010 * common code used by hat_pageunload() and hment_steal() 3011 */ 3012 hment_t * 3013 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry) 3014 { 3015 x86pte_t old_pte; 3016 pfn_t pfn = pp->p_pagenum; 3017 hment_t *hm; 3018 3019 /* 3020 * We need to acquire a hold on the htable in order to 3021 * do the invalidate. We know the htable must exist, since 3022 * unmap's don't release the htable until after removing any 3023 * hment. Having x86_hm_enter() keeps that from proceeding. 3024 */ 3025 htable_acquire(ht); 3026 3027 /* 3028 * Invalidate the PTE and remove the hment. 3029 */ 3030 old_pte = x86pte_inval(ht, entry, 0, NULL); 3031 if (PTE2PFN(old_pte, ht->ht_level) != pfn) { 3032 panic("x86pte_inval() failure found PTE = " FMT_PTE 3033 " pfn being unmapped is %lx ht=0x%lx entry=0x%x", 3034 old_pte, pfn, (uintptr_t)ht, entry); 3035 } 3036 3037 /* 3038 * Clean up all the htable information for this mapping 3039 */ 3040 ASSERT(ht->ht_valid_cnt > 0); 3041 HTABLE_DEC(ht->ht_valid_cnt); 3042 PGCNT_DEC(ht->ht_hat, ht->ht_level); 3043 3044 /* 3045 * sync ref/mod bits to the page_t 3046 */ 3047 if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC) 3048 hati_sync_pte_to_page(pp, old_pte, ht->ht_level); 3049 3050 /* 3051 * Remove the mapping list entry for this page. 3052 */ 3053 hm = hment_remove(pp, ht, entry); 3054 3055 /* 3056 * drop the mapping list lock so that we might free the 3057 * hment and htable. 3058 */ 3059 x86_hm_exit(pp); 3060 htable_release(ht); 3061 return (hm); 3062 } 3063 3064 extern int vpm_enable; 3065 /* 3066 * Unload all translations to a page. If the page is a subpage of a large 3067 * page, the large page mappings are also removed. 3068 * 3069 * The forceflags are unused. 3070 */ 3071 3072 /*ARGSUSED*/ 3073 static int 3074 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag) 3075 { 3076 page_t *cur_pp = pp; 3077 hment_t *hm; 3078 hment_t *prev; 3079 htable_t *ht; 3080 uint_t entry; 3081 level_t level; 3082 3083 #if defined(__amd64) 3084 /* 3085 * clear the vpm ref. 3086 */ 3087 if (vpm_enable) { 3088 pp->p_vpmref = 0; 3089 } 3090 #endif 3091 /* 3092 * The loop with next_size handles pages with multiple pagesize mappings 3093 */ 3094 next_size: 3095 for (;;) { 3096 3097 /* 3098 * Get a mapping list entry 3099 */ 3100 x86_hm_enter(cur_pp); 3101 for (prev = NULL; ; prev = hm) { 3102 hm = hment_walk(cur_pp, &ht, &entry, prev); 3103 if (hm == NULL) { 3104 x86_hm_exit(cur_pp); 3105 3106 /* 3107 * If not part of a larger page, we're done. 3108 */ 3109 if (cur_pp->p_szc <= pg_szcd) { 3110 return (0); 3111 } 3112 3113 /* 3114 * Else check the next larger page size. 3115 * hat_page_demote() may decrease p_szc 3116 * but that's ok we'll just take an extra 3117 * trip discover there're no larger mappings 3118 * and return. 3119 */ 3120 ++pg_szcd; 3121 cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd); 3122 goto next_size; 3123 } 3124 3125 /* 3126 * If this mapping size matches, remove it. 3127 */ 3128 level = ht->ht_level; 3129 if (level == pg_szcd) 3130 break; 3131 } 3132 3133 /* 3134 * Remove the mapping list entry for this page. 3135 * Note this does the x86_hm_exit() for us. 3136 */ 3137 hm = hati_page_unmap(cur_pp, ht, entry); 3138 if (hm != NULL) 3139 hment_free(hm); 3140 } 3141 } 3142 3143 int 3144 hat_pageunload(struct page *pp, uint_t forceflag) 3145 { 3146 ASSERT(PAGE_EXCL(pp)); 3147 return (hati_pageunload(pp, 0, forceflag)); 3148 } 3149 3150 /* 3151 * Unload all large mappings to pp and reduce by 1 p_szc field of every large 3152 * page level that included pp. 3153 * 3154 * pp must be locked EXCL. Even though no other constituent pages are locked 3155 * it's legal to unload large mappings to pp because all constituent pages of 3156 * large locked mappings have to be locked SHARED. therefore if we have EXCL 3157 * lock on one of constituent pages none of the large mappings to pp are 3158 * locked. 3159 * 3160 * Change (always decrease) p_szc field starting from the last constituent 3161 * page and ending with root constituent page so that root's pszc always shows 3162 * the area where hat_page_demote() may be active. 3163 * 3164 * This mechanism is only used for file system pages where it's not always 3165 * possible to get EXCL locks on all constituent pages to demote the size code 3166 * (as is done for anonymous or kernel large pages). 3167 */ 3168 void 3169 hat_page_demote(page_t *pp) 3170 { 3171 uint_t pszc; 3172 uint_t rszc; 3173 uint_t szc; 3174 page_t *rootpp; 3175 page_t *firstpp; 3176 page_t *lastpp; 3177 pgcnt_t pgcnt; 3178 3179 ASSERT(PAGE_EXCL(pp)); 3180 ASSERT(!PP_ISFREE(pp)); 3181 ASSERT(page_szc_lock_assert(pp)); 3182 3183 if (pp->p_szc == 0) 3184 return; 3185 3186 rootpp = PP_GROUPLEADER(pp, 1); 3187 (void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD); 3188 3189 /* 3190 * all large mappings to pp are gone 3191 * and no new can be setup since pp is locked exclusively. 3192 * 3193 * Lock the root to make sure there's only one hat_page_demote() 3194 * outstanding within the area of this root's pszc. 3195 * 3196 * Second potential hat_page_demote() is already eliminated by upper 3197 * VM layer via page_szc_lock() but we don't rely on it and use our 3198 * own locking (so that upper layer locking can be changed without 3199 * assumptions that hat depends on upper layer VM to prevent multiple 3200 * hat_page_demote() to be issued simultaneously to the same large 3201 * page). 3202 */ 3203 again: 3204 pszc = pp->p_szc; 3205 if (pszc == 0) 3206 return; 3207 rootpp = PP_GROUPLEADER(pp, pszc); 3208 x86_hm_enter(rootpp); 3209 /* 3210 * If root's p_szc is different from pszc we raced with another 3211 * hat_page_demote(). Drop the lock and try to find the root again. 3212 * If root's p_szc is greater than pszc previous hat_page_demote() is 3213 * not done yet. Take and release mlist lock of root's root to wait 3214 * for previous hat_page_demote() to complete. 3215 */ 3216 if ((rszc = rootpp->p_szc) != pszc) { 3217 x86_hm_exit(rootpp); 3218 if (rszc > pszc) { 3219 /* p_szc of a locked non free page can't increase */ 3220 ASSERT(pp != rootpp); 3221 3222 rootpp = PP_GROUPLEADER(rootpp, rszc); 3223 x86_hm_enter(rootpp); 3224 x86_hm_exit(rootpp); 3225 } 3226 goto again; 3227 } 3228 ASSERT(pp->p_szc == pszc); 3229 3230 /* 3231 * Decrement by 1 p_szc of every constituent page of a region that 3232 * covered pp. For example if original szc is 3 it gets changed to 2 3233 * everywhere except in region 2 that covered pp. Region 2 that 3234 * covered pp gets demoted to 1 everywhere except in region 1 that 3235 * covered pp. The region 1 that covered pp is demoted to region 3236 * 0. It's done this way because from region 3 we removed level 3 3237 * mappings, from region 2 that covered pp we removed level 2 mappings 3238 * and from region 1 that covered pp we removed level 1 mappings. All 3239 * changes are done from from high pfn's to low pfn's so that roots 3240 * are changed last allowing one to know the largest region where 3241 * hat_page_demote() is stil active by only looking at the root page. 3242 * 3243 * This algorithm is implemented in 2 while loops. First loop changes 3244 * p_szc of pages to the right of pp's level 1 region and second 3245 * loop changes p_szc of pages of level 1 region that covers pp 3246 * and all pages to the left of level 1 region that covers pp. 3247 * In the first loop p_szc keeps dropping with every iteration 3248 * and in the second loop it keeps increasing with every iteration. 3249 * 3250 * First loop description: Demote pages to the right of pp outside of 3251 * level 1 region that covers pp. In every iteration of the while 3252 * loop below find the last page of szc region and the first page of 3253 * (szc - 1) region that is immediately to the right of (szc - 1) 3254 * region that covers pp. From last such page to first such page 3255 * change every page's szc to szc - 1. Decrement szc and continue 3256 * looping until szc is 1. If pp belongs to the last (szc - 1) region 3257 * of szc region skip to the next iteration. 3258 */ 3259 szc = pszc; 3260 while (szc > 1) { 3261 lastpp = PP_GROUPLEADER(pp, szc); 3262 pgcnt = page_get_pagecnt(szc); 3263 lastpp += pgcnt - 1; 3264 firstpp = PP_GROUPLEADER(pp, (szc - 1)); 3265 pgcnt = page_get_pagecnt(szc - 1); 3266 if (lastpp - firstpp < pgcnt) { 3267 szc--; 3268 continue; 3269 } 3270 firstpp += pgcnt; 3271 while (lastpp != firstpp) { 3272 ASSERT(lastpp->p_szc == pszc); 3273 lastpp->p_szc = szc - 1; 3274 lastpp--; 3275 } 3276 firstpp->p_szc = szc - 1; 3277 szc--; 3278 } 3279 3280 /* 3281 * Second loop description: 3282 * First iteration changes p_szc to 0 of every 3283 * page of level 1 region that covers pp. 3284 * Subsequent iterations find last page of szc region 3285 * immediately to the left of szc region that covered pp 3286 * and first page of (szc + 1) region that covers pp. 3287 * From last to first page change p_szc of every page to szc. 3288 * Increment szc and continue looping until szc is pszc. 3289 * If pp belongs to the fist szc region of (szc + 1) region 3290 * skip to the next iteration. 3291 * 3292 */ 3293 szc = 0; 3294 while (szc < pszc) { 3295 firstpp = PP_GROUPLEADER(pp, (szc + 1)); 3296 if (szc == 0) { 3297 pgcnt = page_get_pagecnt(1); 3298 lastpp = firstpp + (pgcnt - 1); 3299 } else { 3300 lastpp = PP_GROUPLEADER(pp, szc); 3301 if (firstpp == lastpp) { 3302 szc++; 3303 continue; 3304 } 3305 lastpp--; 3306 pgcnt = page_get_pagecnt(szc); 3307 } 3308 while (lastpp != firstpp) { 3309 ASSERT(lastpp->p_szc == pszc); 3310 lastpp->p_szc = szc; 3311 lastpp--; 3312 } 3313 firstpp->p_szc = szc; 3314 if (firstpp == rootpp) 3315 break; 3316 szc++; 3317 } 3318 x86_hm_exit(rootpp); 3319 } 3320 3321 /* 3322 * get hw stats from hardware into page struct and reset hw stats 3323 * returns attributes of page 3324 * Flags for hat_pagesync, hat_getstat, hat_sync 3325 * 3326 * define HAT_SYNC_ZERORM 0x01 3327 * 3328 * Additional flags for hat_pagesync 3329 * 3330 * define HAT_SYNC_STOPON_REF 0x02 3331 * define HAT_SYNC_STOPON_MOD 0x04 3332 * define HAT_SYNC_STOPON_RM 0x06 3333 * define HAT_SYNC_STOPON_SHARED 0x08 3334 */ 3335 uint_t 3336 hat_pagesync(struct page *pp, uint_t flags) 3337 { 3338 hment_t *hm = NULL; 3339 htable_t *ht; 3340 uint_t entry; 3341 x86pte_t old, save_old; 3342 x86pte_t new; 3343 uchar_t nrmbits = P_REF|P_MOD|P_RO; 3344 extern ulong_t po_share; 3345 page_t *save_pp = pp; 3346 uint_t pszc = 0; 3347 3348 ASSERT(PAGE_LOCKED(pp) || panicstr); 3349 3350 if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD)) 3351 return (pp->p_nrm & nrmbits); 3352 3353 if ((flags & HAT_SYNC_ZERORM) == 0) { 3354 3355 if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp)) 3356 return (pp->p_nrm & nrmbits); 3357 3358 if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp)) 3359 return (pp->p_nrm & nrmbits); 3360 3361 if ((flags & HAT_SYNC_STOPON_SHARED) != 0 && 3362 hat_page_getshare(pp) > po_share) { 3363 if (PP_ISRO(pp)) 3364 PP_SETREF(pp); 3365 return (pp->p_nrm & nrmbits); 3366 } 3367 } 3368 3369 next_size: 3370 /* 3371 * walk thru the mapping list syncing (and clearing) ref/mod bits. 3372 */ 3373 x86_hm_enter(pp); 3374 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 3375 if (ht->ht_level < pszc) 3376 continue; 3377 old = x86pte_get(ht, entry); 3378 try_again: 3379 3380 ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum); 3381 3382 if (PTE_GET(old, PT_REF | PT_MOD) == 0) 3383 continue; 3384 3385 save_old = old; 3386 if ((flags & HAT_SYNC_ZERORM) != 0) { 3387 3388 /* 3389 * Need to clear ref or mod bits. Need to demap 3390 * to make sure any executing TLBs see cleared bits. 3391 */ 3392 new = old; 3393 PTE_CLR(new, PT_REF | PT_MOD); 3394 old = hati_update_pte(ht, entry, old, new); 3395 if (old != 0) 3396 goto try_again; 3397 3398 old = save_old; 3399 } 3400 3401 /* 3402 * Sync the PTE 3403 */ 3404 if (!(flags & HAT_SYNC_ZERORM) && 3405 PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC) 3406 hati_sync_pte_to_page(pp, old, ht->ht_level); 3407 3408 /* 3409 * can stop short if we found a ref'd or mod'd page 3410 */ 3411 if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) || 3412 (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) { 3413 x86_hm_exit(pp); 3414 goto done; 3415 } 3416 } 3417 x86_hm_exit(pp); 3418 while (pszc < pp->p_szc) { 3419 page_t *tpp; 3420 pszc++; 3421 tpp = PP_GROUPLEADER(pp, pszc); 3422 if (pp != tpp) { 3423 pp = tpp; 3424 goto next_size; 3425 } 3426 } 3427 done: 3428 return (save_pp->p_nrm & nrmbits); 3429 } 3430 3431 /* 3432 * returns approx number of mappings to this pp. A return of 0 implies 3433 * there are no mappings to the page. 3434 */ 3435 ulong_t 3436 hat_page_getshare(page_t *pp) 3437 { 3438 uint_t cnt; 3439 cnt = hment_mapcnt(pp); 3440 #if defined(__amd64) 3441 if (vpm_enable && pp->p_vpmref) { 3442 cnt += 1; 3443 } 3444 #endif 3445 return (cnt); 3446 } 3447 3448 /* 3449 * hat_softlock isn't supported anymore 3450 */ 3451 /*ARGSUSED*/ 3452 faultcode_t 3453 hat_softlock( 3454 hat_t *hat, 3455 caddr_t addr, 3456 size_t *len, 3457 struct page **page_array, 3458 uint_t flags) 3459 { 3460 return (FC_NOSUPPORT); 3461 } 3462 3463 3464 3465 /* 3466 * Routine to expose supported HAT features to platform independent code. 3467 */ 3468 /*ARGSUSED*/ 3469 int 3470 hat_supported(enum hat_features feature, void *arg) 3471 { 3472 switch (feature) { 3473 3474 case HAT_SHARED_PT: /* this is really ISM */ 3475 return (1); 3476 3477 case HAT_DYNAMIC_ISM_UNMAP: 3478 return (0); 3479 3480 case HAT_VMODSORT: 3481 return (1); 3482 3483 default: 3484 panic("hat_supported() - unknown feature"); 3485 } 3486 return (0); 3487 } 3488 3489 /* 3490 * Called when a thread is exiting and has been switched to the kernel AS 3491 */ 3492 void 3493 hat_thread_exit(kthread_t *thd) 3494 { 3495 ASSERT(thd->t_procp->p_as == &kas); 3496 hat_switch(thd->t_procp->p_as->a_hat); 3497 } 3498 3499 /* 3500 * Setup the given brand new hat structure as the new HAT on this cpu's mmu. 3501 */ 3502 /*ARGSUSED*/ 3503 void 3504 hat_setup(hat_t *hat, int flags) 3505 { 3506 kpreempt_disable(); 3507 3508 hat_switch(hat); 3509 3510 kpreempt_enable(); 3511 } 3512 3513 /* 3514 * Prepare for a CPU private mapping for the given address. 3515 * 3516 * The address can only be used from a single CPU and can be remapped 3517 * using hat_mempte_remap(). Return the address of the PTE. 3518 * 3519 * We do the htable_create() if necessary and increment the valid count so 3520 * the htable can't disappear. We also hat_devload() the page table into 3521 * kernel so that the PTE is quickly accessed. 3522 */ 3523 hat_mempte_t 3524 hat_mempte_setup(caddr_t addr) 3525 { 3526 uintptr_t va = (uintptr_t)addr; 3527 htable_t *ht; 3528 uint_t entry; 3529 x86pte_t oldpte; 3530 hat_mempte_t p; 3531 3532 ASSERT(IS_PAGEALIGNED(va)); 3533 ASSERT(!IN_VA_HOLE(va)); 3534 ++curthread->t_hatdepth; 3535 ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0); 3536 if (ht == NULL) { 3537 ht = htable_create(kas.a_hat, va, 0, NULL); 3538 entry = htable_va2entry(va, ht); 3539 ASSERT(ht->ht_level == 0); 3540 oldpte = x86pte_get(ht, entry); 3541 } 3542 if (PTE_ISVALID(oldpte)) 3543 panic("hat_mempte_setup(): address already mapped" 3544 "ht=%p, entry=%d, pte=" FMT_PTE, ht, entry, oldpte); 3545 3546 /* 3547 * increment ht_valid_cnt so that the pagetable can't disappear 3548 */ 3549 HTABLE_INC(ht->ht_valid_cnt); 3550 3551 /* 3552 * return the PTE physical address to the caller. 3553 */ 3554 htable_release(ht); 3555 p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry); 3556 --curthread->t_hatdepth; 3557 return (p); 3558 } 3559 3560 /* 3561 * Release a CPU private mapping for the given address. 3562 * We decrement the htable valid count so it might be destroyed. 3563 */ 3564 /*ARGSUSED1*/ 3565 void 3566 hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa) 3567 { 3568 htable_t *ht; 3569 3570 /* 3571 * invalidate any left over mapping and decrement the htable valid count 3572 */ 3573 { 3574 x86pte_t *pteptr; 3575 3576 pteptr = x86pte_mapin(mmu_btop(pte_pa), 3577 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); 3578 if (mmu.pae_hat) 3579 *pteptr = 0; 3580 else 3581 *(x86pte32_t *)pteptr = 0; 3582 mmu_tlbflush_entry(addr); 3583 x86pte_mapout(); 3584 } 3585 3586 ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0); 3587 if (ht == NULL) 3588 panic("hat_mempte_release(): invalid address"); 3589 ASSERT(ht->ht_level == 0); 3590 HTABLE_DEC(ht->ht_valid_cnt); 3591 htable_release(ht); 3592 } 3593 3594 /* 3595 * Apply a temporary CPU private mapping to a page. We flush the TLB only 3596 * on this CPU, so this ought to have been called with preemption disabled. 3597 */ 3598 void 3599 hat_mempte_remap( 3600 pfn_t pfn, 3601 caddr_t addr, 3602 hat_mempte_t pte_pa, 3603 uint_t attr, 3604 uint_t flags) 3605 { 3606 uintptr_t va = (uintptr_t)addr; 3607 x86pte_t pte; 3608 3609 /* 3610 * Remap the given PTE to the new page's PFN. Invalidate only 3611 * on this CPU. 3612 */ 3613 #ifdef DEBUG 3614 htable_t *ht; 3615 uint_t entry; 3616 3617 ASSERT(IS_PAGEALIGNED(va)); 3618 ASSERT(!IN_VA_HOLE(va)); 3619 ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0); 3620 ASSERT(ht != NULL); 3621 ASSERT(ht->ht_level == 0); 3622 ASSERT(ht->ht_valid_cnt > 0); 3623 ASSERT(ht->ht_pfn == mmu_btop(pte_pa)); 3624 htable_release(ht); 3625 #endif 3626 pte = hati_mkpte(pfn, attr, 0, flags); 3627 { 3628 x86pte_t *pteptr; 3629 3630 pteptr = x86pte_mapin(mmu_btop(pte_pa), 3631 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); 3632 if (mmu.pae_hat) 3633 *(x86pte_t *)pteptr = pte; 3634 else 3635 *(x86pte32_t *)pteptr = (x86pte32_t)pte; 3636 mmu_tlbflush_entry(addr); 3637 x86pte_mapout(); 3638 } 3639 } 3640 3641 3642 3643 /* 3644 * Hat locking functions 3645 * XXX - these two functions are currently being used by hatstats 3646 * they can be removed by using a per-as mutex for hatstats. 3647 */ 3648 void 3649 hat_enter(hat_t *hat) 3650 { 3651 mutex_enter(&hat->hat_mutex); 3652 } 3653 3654 void 3655 hat_exit(hat_t *hat) 3656 { 3657 mutex_exit(&hat->hat_mutex); 3658 } 3659 3660 /* 3661 * HAT part of cpu initialization. 3662 */ 3663 void 3664 hat_cpu_online(struct cpu *cpup) 3665 { 3666 if (cpup != CPU) { 3667 x86pte_cpu_init(cpup); 3668 hat_vlp_setup(cpup); 3669 } 3670 CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id); 3671 } 3672 3673 /* 3674 * HAT part of cpu deletion. 3675 * (currently, we only call this after the cpu is safely passivated.) 3676 */ 3677 void 3678 hat_cpu_offline(struct cpu *cpup) 3679 { 3680 ASSERT(cpup != CPU); 3681 3682 CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id); 3683 x86pte_cpu_fini(cpup); 3684 hat_vlp_teardown(cpup); 3685 } 3686 3687 /* 3688 * Function called after all CPUs are brought online. 3689 * Used to remove low address boot mappings. 3690 */ 3691 void 3692 clear_boot_mappings(uintptr_t low, uintptr_t high) 3693 { 3694 uintptr_t vaddr = low; 3695 htable_t *ht = NULL; 3696 level_t level; 3697 uint_t entry; 3698 x86pte_t pte; 3699 3700 /* 3701 * On 1st CPU we can unload the prom mappings, basically we blow away 3702 * all virtual mappings under _userlimit. 3703 */ 3704 while (vaddr < high) { 3705 pte = htable_walk(kas.a_hat, &ht, &vaddr, high); 3706 if (ht == NULL) 3707 break; 3708 3709 level = ht->ht_level; 3710 entry = htable_va2entry(vaddr, ht); 3711 ASSERT(level <= mmu.max_page_level); 3712 ASSERT(PTE_ISPAGE(pte, level)); 3713 3714 /* 3715 * Unload the mapping from the page tables. 3716 */ 3717 (void) x86pte_inval(ht, entry, 0, NULL); 3718 ASSERT(ht->ht_valid_cnt > 0); 3719 HTABLE_DEC(ht->ht_valid_cnt); 3720 PGCNT_DEC(ht->ht_hat, ht->ht_level); 3721 3722 vaddr += LEVEL_SIZE(ht->ht_level); 3723 } 3724 if (ht) 3725 htable_release(ht); 3726 } 3727 3728 /* 3729 * Atomically update a new translation for a single page. If the 3730 * currently installed PTE doesn't match the value we expect to find, 3731 * it's not updated and we return the PTE we found. 3732 * 3733 * If activating nosync or NOWRITE and the page was modified we need to sync 3734 * with the page_t. Also sync with page_t if clearing ref/mod bits. 3735 */ 3736 static x86pte_t 3737 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new) 3738 { 3739 page_t *pp; 3740 uint_t rm = 0; 3741 x86pte_t replaced; 3742 3743 if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC && 3744 PTE_GET(expected, PT_MOD | PT_REF) && 3745 (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) || 3746 !PTE_GET(new, PT_MOD | PT_REF))) { 3747 3748 ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level))); 3749 pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level)); 3750 ASSERT(pp != NULL); 3751 if (PTE_GET(expected, PT_MOD)) 3752 rm |= P_MOD; 3753 if (PTE_GET(expected, PT_REF)) 3754 rm |= P_REF; 3755 PTE_CLR(new, PT_MOD | PT_REF); 3756 } 3757 3758 replaced = x86pte_update(ht, entry, expected, new); 3759 if (replaced != expected) 3760 return (replaced); 3761 3762 if (rm) { 3763 /* 3764 * sync to all constituent pages of a large page 3765 */ 3766 pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level); 3767 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 3768 while (pgcnt-- > 0) { 3769 /* 3770 * hat_page_demote() can't decrease 3771 * pszc below this mapping size 3772 * since large mapping existed after we 3773 * took mlist lock. 3774 */ 3775 ASSERT(pp->p_szc >= ht->ht_level); 3776 hat_page_setattr(pp, rm); 3777 ++pp; 3778 } 3779 } 3780 3781 return (0); 3782 } 3783 3784 /* 3785 * Kernel Physical Mapping (kpm) facility 3786 * 3787 * Most of the routines needed to support segkpm are almost no-ops on the 3788 * x86 platform. We map in the entire segment when it is created and leave 3789 * it mapped in, so there is no additional work required to set up and tear 3790 * down individual mappings. All of these routines were created to support 3791 * SPARC platforms that have to avoid aliasing in their virtually indexed 3792 * caches. 3793 * 3794 * Most of the routines have sanity checks in them (e.g. verifying that the 3795 * passed-in page is locked). We don't actually care about most of these 3796 * checks on x86, but we leave them in place to identify problems in the 3797 * upper levels. 3798 */ 3799 3800 /* 3801 * Map in a locked page and return the vaddr. 3802 */ 3803 /*ARGSUSED*/ 3804 caddr_t 3805 hat_kpm_mapin(struct page *pp, struct kpme *kpme) 3806 { 3807 caddr_t vaddr; 3808 3809 #ifdef DEBUG 3810 if (kpm_enable == 0) { 3811 cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n"); 3812 return ((caddr_t)NULL); 3813 } 3814 3815 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 3816 cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n"); 3817 return ((caddr_t)NULL); 3818 } 3819 #endif 3820 3821 vaddr = hat_kpm_page2va(pp, 1); 3822 3823 return (vaddr); 3824 } 3825 3826 /* 3827 * Mapout a locked page. 3828 */ 3829 /*ARGSUSED*/ 3830 void 3831 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr) 3832 { 3833 #ifdef DEBUG 3834 if (kpm_enable == 0) { 3835 cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n"); 3836 return; 3837 } 3838 3839 if (IS_KPM_ADDR(vaddr) == 0) { 3840 cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n"); 3841 return; 3842 } 3843 3844 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 3845 cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n"); 3846 return; 3847 } 3848 #endif 3849 } 3850 3851 /* 3852 * Return the kpm virtual address for a specific pfn 3853 */ 3854 caddr_t 3855 hat_kpm_pfn2va(pfn_t pfn) 3856 { 3857 uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn); 3858 3859 return ((caddr_t)vaddr); 3860 } 3861 3862 /* 3863 * Return the kpm virtual address for the page at pp. 3864 */ 3865 /*ARGSUSED*/ 3866 caddr_t 3867 hat_kpm_page2va(struct page *pp, int checkswap) 3868 { 3869 return (hat_kpm_pfn2va(pp->p_pagenum)); 3870 } 3871 3872 /* 3873 * Return the page frame number for the kpm virtual address vaddr. 3874 */ 3875 pfn_t 3876 hat_kpm_va2pfn(caddr_t vaddr) 3877 { 3878 pfn_t pfn; 3879 3880 ASSERT(IS_KPM_ADDR(vaddr)); 3881 3882 pfn = (pfn_t)btop(vaddr - kpm_vbase); 3883 3884 return (pfn); 3885 } 3886 3887 3888 /* 3889 * Return the page for the kpm virtual address vaddr. 3890 */ 3891 page_t * 3892 hat_kpm_vaddr2page(caddr_t vaddr) 3893 { 3894 pfn_t pfn; 3895 3896 ASSERT(IS_KPM_ADDR(vaddr)); 3897 3898 pfn = hat_kpm_va2pfn(vaddr); 3899 3900 return (page_numtopp_nolock(pfn)); 3901 } 3902 3903 /* 3904 * hat_kpm_fault is called from segkpm_fault when we take a page fault on a 3905 * KPM page. This should never happen on x86 3906 */ 3907 int 3908 hat_kpm_fault(hat_t *hat, caddr_t vaddr) 3909 { 3910 panic("pagefault in seg_kpm. hat: 0x%p vaddr: 0x%p", hat, vaddr); 3911 3912 return (0); 3913 } 3914 3915 /*ARGSUSED*/ 3916 void 3917 hat_kpm_mseghash_clear(int nentries) 3918 {} 3919 3920 /*ARGSUSED*/ 3921 void 3922 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp) 3923 {} 3924