xref: /titanic_50/usr/src/uts/i86pc/sys/rootnex.h (revision 20906b23a341979b80c2e40ac68778cd082f5458)
112f080e7Smrj /*
212f080e7Smrj  * CDDL HEADER START
312f080e7Smrj  *
412f080e7Smrj  * The contents of this file are subject to the terms of the
586c1f4dcSVikram Hegde  * Common Development and Distribution License (the "License").
686c1f4dcSVikram Hegde  * You may not use this file except in compliance with the License.
712f080e7Smrj  *
812f080e7Smrj  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
912f080e7Smrj  * or http://www.opensolaris.org/os/licensing.
1012f080e7Smrj  * See the License for the specific language governing permissions
1112f080e7Smrj  * and limitations under the License.
1212f080e7Smrj  *
1312f080e7Smrj  * When distributing Covered Code, include this CDDL HEADER in each
1412f080e7Smrj  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
1512f080e7Smrj  * If applicable, add the following below this CDDL HEADER, with the
1612f080e7Smrj  * fields enclosed by brackets "[]" replaced with your own identifying
1712f080e7Smrj  * information: Portions Copyright [yyyy] [name of copyright owner]
1812f080e7Smrj  *
1912f080e7Smrj  * CDDL HEADER END
2012f080e7Smrj  */
2112f080e7Smrj /*
2286c1f4dcSVikram Hegde  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
2312f080e7Smrj  * Use is subject to license terms.
2412f080e7Smrj  */
2512f080e7Smrj 
2612f080e7Smrj #ifndef	_SYS_ROOTNEX_H
2712f080e7Smrj #define	_SYS_ROOTNEX_H
2812f080e7Smrj 
2912f080e7Smrj /*
3012f080e7Smrj  * x86 root nexus implementation specific state
3112f080e7Smrj  */
3212f080e7Smrj 
3312f080e7Smrj #include <sys/types.h>
3412f080e7Smrj #include <sys/conf.h>
3512f080e7Smrj #include <sys/modctl.h>
3612f080e7Smrj #include <sys/sunddi.h>
37*20906b23SVikram Hegde #include <sys/iommulib.h>
3812f080e7Smrj 
3912f080e7Smrj #ifdef	__cplusplus
4012f080e7Smrj extern "C" {
4112f080e7Smrj #endif
4212f080e7Smrj 
4312f080e7Smrj 
4412f080e7Smrj /* size of buffer used for ctlop reportdev */
4512f080e7Smrj #define	REPORTDEV_BUFSIZE	1024
4612f080e7Smrj 
4712f080e7Smrj /* min and max interrupt vectors */
4812f080e7Smrj #define	VEC_MIN			1
4912f080e7Smrj #define	VEC_MAX			255
5012f080e7Smrj 
5112f080e7Smrj /* atomic increment/decrement to keep track of outstanding binds, etc */
5212f080e7Smrj #define	ROOTNEX_PROF_INC(addr)		atomic_inc_64(addr)
5312f080e7Smrj #define	ROOTNEX_PROF_DEC(addr)		atomic_add_64(addr, -1)
5412f080e7Smrj 
5512f080e7Smrj /* set in dmac_type to signify that this cookie uses the copy buffer */
5612f080e7Smrj #define	ROOTNEX_USES_COPYBUF		0x80000000
5712f080e7Smrj 
5812f080e7Smrj /*
5912f080e7Smrj  * integer or boolean property name and value. A few static rootnex properties
6012f080e7Smrj  * are created during rootnex attach from an array of rootnex_intprop_t..
6112f080e7Smrj  */
6212f080e7Smrj typedef struct rootnex_intprop_s {
6312f080e7Smrj 	char	*prop_name;
6412f080e7Smrj 	int	prop_value;
6512f080e7Smrj } rootnex_intprop_t;
6612f080e7Smrj 
6712f080e7Smrj /*
6812f080e7Smrj  * sgl related information which is visible to rootnex_get_sgl(). Trying to
6912f080e7Smrj  * isolate get_sgl() as much as possible so it can be easily replaced.
7012f080e7Smrj  */
7112f080e7Smrj typedef struct rootnex_sglinfo_s {
7212f080e7Smrj 	/*
7312f080e7Smrj 	 * These are passed into rootnex_get_sgl().
7412f080e7Smrj 	 *
7512f080e7Smrj 	 * si_min_addr - the minimum physical address
7612f080e7Smrj 	 * si_max_addr - the maximum physical address
7712f080e7Smrj 	 * si_max_cookie_size - the maximum size of a physically contiguous
7812f080e7Smrj 	 *    piece of memory that we can handle in a sgl.
7912f080e7Smrj 	 * si_segmask - segment mask to determine if we cross a segment boundary
8012f080e7Smrj 	 * si_max_pages - max number of pages this sgl could occupy (which
8112f080e7Smrj 	 *    is also the maximum number of cookies we might see.
8212f080e7Smrj 	 */
8312f080e7Smrj 	uint64_t	si_min_addr;
8412f080e7Smrj 	uint64_t	si_max_addr;
8512f080e7Smrj 	uint64_t	si_max_cookie_size;
8612f080e7Smrj 	uint64_t	si_segmask;
8712f080e7Smrj 	uint_t		si_max_pages;
8812f080e7Smrj 
8912f080e7Smrj 	/*
9012f080e7Smrj 	 * these are returned by rootnex_get_sgl()
9112f080e7Smrj 	 *
9212f080e7Smrj 	 * si_copybuf_req - amount of copy buffer needed by the buffer.
9312f080e7Smrj 	 * si_buf_offset - The initial offset into the first page of the buffer.
9412f080e7Smrj 	 *    It's set in get sgl and used in the bind slow path to help
9512f080e7Smrj 	 *    calculate the current page index & offset from the current offset
9612f080e7Smrj 	 *    which is relative to the start of the buffer.
9712f080e7Smrj 	 * si_asp - address space of buffer passed in.
9812f080e7Smrj 	 * si_sgl_size - The actual number of cookies in the sgl. This does
9912f080e7Smrj 	 *    not reflect and sharing that we might do on window boundaries.
10012f080e7Smrj 	 */
10112f080e7Smrj 	size_t		si_copybuf_req;
10212f080e7Smrj 	off_t		si_buf_offset;
10312f080e7Smrj 	struct as	*si_asp;
10412f080e7Smrj 	uint_t		si_sgl_size;
10512f080e7Smrj } rootnex_sglinfo_t;
10612f080e7Smrj 
10712f080e7Smrj /*
10812f080e7Smrj  * When we have to use the copy buffer, we allocate one of these structures per
10912f080e7Smrj  * buffer page to track which pages need the copy buffer, what the kernel
11012f080e7Smrj  * virtual address is (which the device can't reach), and what the copy buffer
11112f080e7Smrj  * virtual address is (where the device dma's to/from). For 32-bit kernels,
11212f080e7Smrj  * since we can't use seg kpm, we also need to keep the page_t around and state
11312f080e7Smrj  * if we've currently mapped in the page into KVA space for buffers which don't
11412f080e7Smrj  * have kva already and when we have multiple windows because we used up all our
11512f080e7Smrj  * copy buffer space.
11612f080e7Smrj  */
11712f080e7Smrj typedef struct rootnex_pgmap_s {
11812f080e7Smrj 	boolean_t	pm_uses_copybuf;
11912f080e7Smrj #if !defined(__amd64)
12012f080e7Smrj 	boolean_t	pm_mapped;
12112f080e7Smrj 	page_t		*pm_pp;
12212f080e7Smrj 	caddr_t		pm_vaddr;
12312f080e7Smrj #endif
12412f080e7Smrj 	caddr_t		pm_kaddr;
12512f080e7Smrj 	caddr_t		pm_cbaddr;
12612f080e7Smrj } rootnex_pgmap_t;
12712f080e7Smrj 
12812f080e7Smrj /*
12912f080e7Smrj  * We only need to trim a buffer when we have multiple windows. Each window has
13012f080e7Smrj  * trim state. We might have trimmed the end of the previous window, leaving the
13112f080e7Smrj  * first cookie of this window trimmed[tr_trim_first] (which basically means we
13212f080e7Smrj  * won't start with a new cookie), or we might need to trim the end of the
13312f080e7Smrj  * current window [tr_trim_last] (which basically means we won't end with a
13412f080e7Smrj  * complete cookie). We keep the same state for the first & last cookie in a
13512f080e7Smrj  * window (a window can have one or more cookies). However, when we trim the
13612f080e7Smrj  * last cookie, we keep a pointer to the last cookie in the trim state since we
13712f080e7Smrj  * only need this info when we trim. The pointer to the first cookie in the
13812f080e7Smrj  * window is in the window state since we need to know what the first cookie in
13912f080e7Smrj  * the window is in various places.
14012f080e7Smrj  *
14112f080e7Smrj  * If we do trim a cookie, we save away the physical address and size of the
14212f080e7Smrj  * cookie so that we can over write the cookie when we switch windows (the
14312f080e7Smrj  * space for a cookie which is in two windows is shared between the windows.
14412f080e7Smrj  * We keep around the same information for the last page in a window.
14512f080e7Smrj  *
14612f080e7Smrj  * if we happened to trim on a page that uses the copy buffer, and that page
14712f080e7Smrj  * is also in the middle of a window boundary because we have filled up the
14812f080e7Smrj  * copy buffer, we need to remember the copy buffer address for both windows
14912f080e7Smrj  * since the same page will have different copy buffer addresses in the two
15012f080e7Smrj  * windows. We need to due the same for kaddr in the 32-bit kernel since we
15112f080e7Smrj  * have a limited kva space which we map to.
15212f080e7Smrj  */
15312f080e7Smrj typedef struct rootnex_trim_s {
15412f080e7Smrj 	boolean_t		tr_trim_first;
15512f080e7Smrj 	boolean_t		tr_trim_last;
15612f080e7Smrj 	ddi_dma_cookie_t	*tr_last_cookie;
15712f080e7Smrj 	uint64_t		tr_first_paddr;
15812f080e7Smrj 	uint64_t		tr_last_paddr;
15912f080e7Smrj 	size_t			tr_first_size;
16012f080e7Smrj 	size_t			tr_last_size;
16112f080e7Smrj 
16212f080e7Smrj 	boolean_t		tr_first_copybuf_win;
16312f080e7Smrj 	boolean_t		tr_last_copybuf_win;
16412f080e7Smrj 	uint_t			tr_first_pidx;
16512f080e7Smrj 	uint_t			tr_last_pidx;
16612f080e7Smrj 	caddr_t			tr_first_cbaddr;
16712f080e7Smrj 	caddr_t			tr_last_cbaddr;
16812f080e7Smrj #if !defined(__amd64)
16912f080e7Smrj 	caddr_t			tr_first_kaddr;
17012f080e7Smrj 	caddr_t			tr_last_kaddr;
17112f080e7Smrj #endif
17212f080e7Smrj } rootnex_trim_t;
17312f080e7Smrj 
17412f080e7Smrj /*
17512f080e7Smrj  * per window state. A bound DMA handle can have multiple windows. Each window
17612f080e7Smrj  * will have the following state. We track if this window needs to sync,
17712f080e7Smrj  * the offset into the buffer where the window starts, the size of the window.
17812f080e7Smrj  * a pointer to the first cookie in the window, the number of cookies in the
17912f080e7Smrj  * window, and the trim state for the window. For the 32-bit kernel, we keep
18012f080e7Smrj  * track of if we need to remap the copy buffer when we switch to a this window
18112f080e7Smrj  */
18212f080e7Smrj typedef struct rootnex_window_s {
18312f080e7Smrj 	boolean_t		wd_dosync;
18412f080e7Smrj 	uint_t			wd_cookie_cnt;
18512f080e7Smrj 	off_t			wd_offset;
18612f080e7Smrj 	size_t			wd_size;
18712f080e7Smrj 	ddi_dma_cookie_t	*wd_first_cookie;
18812f080e7Smrj 	rootnex_trim_t		wd_trim;
18912f080e7Smrj #if !defined(__amd64)
19012f080e7Smrj 	boolean_t		wd_remap_copybuf;
19112f080e7Smrj #endif
19212f080e7Smrj } rootnex_window_t;
19312f080e7Smrj 
19412f080e7Smrj /* per dma handle private state */
19512f080e7Smrj typedef struct rootnex_dma_s {
19612f080e7Smrj 	/*
19712f080e7Smrj 	 * sgl related state used to build and describe the sgl.
19812f080e7Smrj 	 *
19912f080e7Smrj 	 * dp_partial_required - used in the bind slow path to identify if we
20012f080e7Smrj 	 *    need to do a partial mapping or not.
20112f080e7Smrj 	 * dp_trim_required - used in the bind slow path to identify if we
20212f080e7Smrj 	 *    need to trim when switching to a new window. This should only be
20312f080e7Smrj 	 *    set when partial is set.
20412f080e7Smrj 	 * dp_granularity_power_2 - set in alloc handle and used in bind slow
20512f080e7Smrj 	 *    path to determine if we & or % to calculate the trim.
20612f080e7Smrj 	 * dp_dma - copy of dma "object" passed in during bind
20712f080e7Smrj 	 * dp_maxxfer - trimmed dma_attr_maxxfer so that it is a whole
20812f080e7Smrj 	 *    multiple of granularity
20912f080e7Smrj 	 * dp_sglinfo - See rootnex_sglinfo_t above.
21012f080e7Smrj 	 */
21112f080e7Smrj 	boolean_t		dp_partial_required;
21212f080e7Smrj 	boolean_t		dp_trim_required;
21312f080e7Smrj 	boolean_t		dp_granularity_power_2;
21412f080e7Smrj 	uint64_t		dp_maxxfer;
21512f080e7Smrj 	ddi_dma_obj_t		dp_dma;
21612f080e7Smrj 	rootnex_sglinfo_t	dp_sglinfo;
21712f080e7Smrj 
21812f080e7Smrj 	/*
21912f080e7Smrj 	 * Copy buffer related state
22012f080e7Smrj 	 *
22112f080e7Smrj 	 * dp_copybuf_size - the actual size of the copy buffer that we are
22212f080e7Smrj 	 *    using. This can be smaller that dp_copybuf_req, i.e. bind size >
22312f080e7Smrj 	 *    max copy buffer size.
22412f080e7Smrj 	 * dp_cbaddr - kernel address of copy buffer. Used to determine where
22512f080e7Smrj 	 *    where to copy to/from.
22612f080e7Smrj 	 * dp_cbsize - the "real" size returned from the copy buffer alloc.
22712f080e7Smrj 	 *    Set in the copybuf alloc and used to free copybuf.
22812f080e7Smrj 	 * dp_pgmap - page map used in sync to determine which pages in the
22912f080e7Smrj 	 *    buffer use the copy buffer and what addresses to use to copy to/
23012f080e7Smrj 	 *    from.
23112f080e7Smrj 	 * dp_cb_remaping - status if this bind causes us to have to remap
23212f080e7Smrj 	 *    the copybuf when switching to new windows. This is only used in
23312f080e7Smrj 	 *    the 32-bit kernel since we use seg kpm in the 64-bit kernel for
23412f080e7Smrj 	 *    this case.
23512f080e7Smrj 	 * dp_kva - kernel heap arena vmem space for mapping to buffers which
23612f080e7Smrj 	 *    we don't have a kernel VA to bcopy to/from. This is only used in
23712f080e7Smrj 	 *    the 32-bit kernel since we use seg kpm in the 64-bit kernel for
23812f080e7Smrj 	 *    this case.
23912f080e7Smrj 	 */
24012f080e7Smrj 	size_t			dp_copybuf_size;
24112f080e7Smrj 	caddr_t			dp_cbaddr;
24212f080e7Smrj 	size_t			dp_cbsize;
24312f080e7Smrj 	rootnex_pgmap_t		*dp_pgmap;
24412f080e7Smrj #if !defined(__amd64)
24512f080e7Smrj 	boolean_t		dp_cb_remaping;
24612f080e7Smrj 	caddr_t			dp_kva;
24712f080e7Smrj #endif
24812f080e7Smrj 
24912f080e7Smrj 	/*
25012f080e7Smrj 	 * window related state. The pointer to the window state array which may
25112f080e7Smrj 	 * be a pointer into the pre allocated state, or we may have had to
25212f080e7Smrj 	 * allocate the window array on the fly because it wouldn't fit. If
25312f080e7Smrj 	 * we allocate it, we'll use dp_need_to_free_window and dp_window_size
25412f080e7Smrj 	 * during cleanup. dp_current_win keeps track of the current window.
25512f080e7Smrj 	 * dp_max_win is the maximum number of windows we could have.
25612f080e7Smrj 	 */
25712f080e7Smrj 	uint_t			dp_current_win;
25812f080e7Smrj 	rootnex_window_t	*dp_window;
25912f080e7Smrj 	boolean_t		dp_need_to_free_window;
26012f080e7Smrj 	uint_t			dp_window_size;
26112f080e7Smrj 	uint_t			dp_max_win;
26212f080e7Smrj 
26312f080e7Smrj 	/* dip of driver which "owns" handle. set to rdip in alloc_handle() */
26412f080e7Smrj 	dev_info_t		*dp_dip;
26512f080e7Smrj 
26612f080e7Smrj 	/*
26712f080e7Smrj 	 * dp_mutex and dp_inuse are only used to see if a driver is trying to
26812f080e7Smrj 	 * bind to an already bound dma handle. dp_mutex only used for dp_inuse
26912f080e7Smrj 	 */
27012f080e7Smrj 	kmutex_t		dp_mutex;
27112f080e7Smrj 	boolean_t		dp_inuse;
27212f080e7Smrj 
27312f080e7Smrj 	/*
27412f080e7Smrj 	 * cookie related state. The pointer to the cookies (dp_cookies) may
27512f080e7Smrj 	 * be a pointer into the pre allocated state, or we may have had to
27612f080e7Smrj 	 * allocate the cookie array on the fly because it wouldn't fit. If
27712f080e7Smrj 	 * we allocate it, we'll use dp_need_to_free_cookie and dp_cookie_size
27812f080e7Smrj 	 * during cleanup. dp_current_cookie is only used in the obsoleted
27912f080e7Smrj 	 * interfaces to determine when we've used up all the cookies in a
28012f080e7Smrj 	 * window during nextseg()..
28112f080e7Smrj 	 */
28212f080e7Smrj 	size_t			dp_cookie_size;
28312f080e7Smrj 	ddi_dma_cookie_t	*dp_cookies;
28412f080e7Smrj 	boolean_t		dp_need_to_free_cookie;
28512f080e7Smrj 	uint_t			dp_current_cookie; /* for obsoleted I/Fs */
28612f080e7Smrj 
28712f080e7Smrj 	/*
28812f080e7Smrj 	 * pre allocated space for the bind state, allocated during alloc
28912f080e7Smrj 	 * handle. For a lot of devices, this will save us from having to do
29012f080e7Smrj 	 * kmem_alloc's during the bind most of the time. kmem_alloc's can be
29112f080e7Smrj 	 * expensive on x86 when the cpu count goes up since xcalls are
29212f080e7Smrj 	 * expensive on x86.
29312f080e7Smrj 	 */
29412f080e7Smrj 	uchar_t			*dp_prealloc_buffer;
29586c1f4dcSVikram Hegde 
29686c1f4dcSVikram Hegde 	/*
29786c1f4dcSVikram Hegde 	 * intel iommu related state
29886c1f4dcSVikram Hegde 	 * dvma_cookies saves the dvma allocated for this handler, it has the
29986c1f4dcSVikram Hegde 	 * size of si_max_pages, set when bind handler and freed when unbind
30086c1f4dcSVikram Hegde 	 */
30186c1f4dcSVikram Hegde 	void			*dp_dvma_cookies;
30212f080e7Smrj } rootnex_dma_t;
30312f080e7Smrj 
30412f080e7Smrj /*
30512f080e7Smrj  * profile/performance counters. Most things will be dtrace probes, but there
30612f080e7Smrj  * are a couple of things we want to keep track all the time. We track the
30712f080e7Smrj  * total number of active handles and binds (i.e. an alloc without a free or
30812f080e7Smrj  * a bind without an unbind) since rootnex attach. We also track the total
30912f080e7Smrj  * number of binds which have failed since rootnex attach.
31012f080e7Smrj  */
31112f080e7Smrj typedef enum {
31212f080e7Smrj 	ROOTNEX_CNT_ACTIVE_HDLS = 0,
31312f080e7Smrj 	ROOTNEX_CNT_ACTIVE_BINDS = 1,
31412f080e7Smrj 	ROOTNEX_CNT_ALLOC_FAIL = 2,
31512f080e7Smrj 	ROOTNEX_CNT_BIND_FAIL = 3,
31612f080e7Smrj 	ROOTNEX_CNT_SYNC_FAIL = 4,
31712f080e7Smrj 	ROOTNEX_CNT_GETWIN_FAIL = 5,
31812f080e7Smrj 
31912f080e7Smrj 	/* This one must be last */
32012f080e7Smrj 	ROOTNEX_CNT_LAST
32112f080e7Smrj } rootnex_cnt_t;
32212f080e7Smrj 
32312f080e7Smrj /*
32412f080e7Smrj  * global driver state.
32512f080e7Smrj  *   r_dmahdl_cache - dma_handle kmem_cache
32612f080e7Smrj  *   r_dvma_call_list_id - ddi_set_callback() id
32712f080e7Smrj  *   r_peekpoke_mutex - serialize peeks and pokes.
32812f080e7Smrj  *   r_dip - rootnex dip
32912f080e7Smrj  *   r_reserved_msg_printed - ctlops reserve message threshold
33012f080e7Smrj  *   r_counters - profile/performance counters
33186c1f4dcSVikram Hegde  *   r_intel_iommu_enabled - intel iommu enabled
33212f080e7Smrj  */
33312f080e7Smrj typedef struct rootnex_state_s {
33412f080e7Smrj 	uint_t			r_prealloc_cookies;
33512f080e7Smrj 	uint_t			r_prealloc_size;
33612f080e7Smrj 	kmem_cache_t		*r_dmahdl_cache;
33712f080e7Smrj 	uintptr_t		r_dvma_call_list_id;
33812f080e7Smrj 	kmutex_t		r_peekpoke_mutex;
33912f080e7Smrj 	dev_info_t		*r_dip;
3407aec1d6eScindi 	ddi_iblock_cookie_t	r_err_ibc;
34112f080e7Smrj 	boolean_t		r_reserved_msg_printed;
34212f080e7Smrj 	uint64_t		r_counters[ROOTNEX_CNT_LAST];
34386c1f4dcSVikram Hegde 	boolean_t		r_intel_iommu_enabled;
344*20906b23SVikram Hegde 	iommulib_nexhandle_t    r_iommulib_handle;
34512f080e7Smrj } rootnex_state_t;
34612f080e7Smrj 
34712f080e7Smrj 
34812f080e7Smrj #ifdef	__cplusplus
34912f080e7Smrj }
35012f080e7Smrj #endif
35112f080e7Smrj 
35212f080e7Smrj #endif	/* _SYS_ROOTNEX_H */
353