xref: /titanic_50/usr/src/uts/i86pc/os/x_call.c (revision 0167b58cea98965c58fab4be4e690b6e456f7440)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Facilities for cross-processor subroutine calls using "mailbox" interrupts.
31  *
32  */
33 
34 #include <sys/types.h>
35 
36 #include <sys/param.h>
37 #include <sys/t_lock.h>
38 #include <sys/thread.h>
39 #include <sys/cpuvar.h>
40 #include <sys/x_call.h>
41 #include <sys/cpu.h>
42 #include <sys/psw.h>
43 #include <sys/sunddi.h>
44 #include <sys/mmu.h>
45 #include <sys/debug.h>
46 #include <sys/systm.h>
47 #include <sys/machsystm.h>
48 #include <sys/mutex_impl.h>
49 
50 static struct	xc_mbox xc_mboxes[X_CALL_LEVELS];
51 static kmutex_t xc_mbox_lock[X_CALL_LEVELS];
52 static uint_t 	xc_xlat_xcptoipl[X_CALL_LEVELS] = {
53 	XC_LO_PIL,
54 	XC_MED_PIL,
55 	XC_HI_PIL
56 };
57 
58 static void xc_common(xc_func_t, xc_arg_t, xc_arg_t, xc_arg_t,
59     int, cpuset_t, int);
60 
61 static int	xc_initialized = 0;
62 extern ulong_t	cpu_ready_set;
63 
64 void
65 xc_init()
66 {
67 	/*
68 	 * By making these mutexes type MUTEX_DRIVER, the ones below
69 	 * LOCK_LEVEL will be implemented as adaptive mutexes, and the
70 	 * ones above LOCK_LEVEL will be spin mutexes.
71 	 */
72 	mutex_init(&xc_mbox_lock[0], NULL, MUTEX_DRIVER,
73 	    (void *)ipltospl(XC_LO_PIL));
74 	mutex_init(&xc_mbox_lock[1], NULL, MUTEX_DRIVER,
75 	    (void *)ipltospl(XC_MED_PIL));
76 	mutex_init(&xc_mbox_lock[2], NULL, MUTEX_DRIVER,
77 	    (void *)ipltospl(XC_HI_PIL));
78 
79 	xc_initialized = 1;
80 }
81 
82 /*
83  * Used by the debugger to determine whether or not cross calls have been
84  * initialized and are safe to use.
85  */
86 int
87 kdi_xc_initialized(void)
88 {
89 	return (xc_initialized);
90 }
91 
92 #define	CAPTURE_CPU_ARG	0xffffffff
93 
94 /*
95  * X-call interrupt service routine.
96  *
97  * arg == X_CALL_MEDPRI	-  capture cpus.
98  *
99  * We're protected against changing CPUs by being a high-priority interrupt.
100  */
101 /*ARGSUSED*/
102 uint_t
103 xc_serv(caddr_t arg1, caddr_t arg2)
104 {
105 	int	op;
106 	int	pri = (int)(uintptr_t)arg1;
107 	struct cpu *cpup = CPU;
108 	xc_arg_t *argp;
109 	xc_arg_t arg2val;
110 	uint_t	tlbflush;
111 
112 	if (pri == X_CALL_MEDPRI) {
113 
114 		argp = &xc_mboxes[X_CALL_MEDPRI].arg2;
115 		arg2val = *argp;
116 		if (arg2val != CAPTURE_CPU_ARG &&
117 		    !(arg2val & (1 << cpup->cpu_id)))
118 			return (DDI_INTR_UNCLAIMED);
119 		ASSERT(arg2val == CAPTURE_CPU_ARG);
120 		if (cpup->cpu_m.xc_pend[pri] == 0)
121 			return (DDI_INTR_UNCLAIMED);
122 
123 		cpup->cpu_m.xc_pend[X_CALL_MEDPRI] = 0;
124 		cpup->cpu_m.xc_ack[X_CALL_MEDPRI] = 1;
125 
126 		for (;;) {
127 			if ((cpup->cpu_m.xc_state[X_CALL_MEDPRI] == XC_DONE) ||
128 				(cpup->cpu_m.xc_pend[X_CALL_MEDPRI]))
129 				break;
130 			ht_pause();
131 		}
132 		return (DDI_INTR_CLAIMED);
133 	}
134 	if (cpup->cpu_m.xc_pend[pri] == 0)
135 		return (DDI_INTR_UNCLAIMED);
136 
137 	cpup->cpu_m.xc_pend[pri] = 0;
138 	op = cpup->cpu_m.xc_state[pri];
139 
140 	/*
141 	 * When invalidating TLB entries, wait until the initiator changes the
142 	 * memory PTE before doing any INVLPG. Otherwise, if the PTE in memory
143 	 * hasn't been changed, the processor's TLB Flush filter may ignore
144 	 * the INVLPG instruction.
145 	 */
146 	tlbflush = (cpup->cpu_m.xc_wait[pri] == 2);
147 
148 	/*
149 	 * Don't invoke a null function.
150 	 */
151 	if (xc_mboxes[pri].func != NULL) {
152 		if (!tlbflush)
153 			cpup->cpu_m.xc_retval[pri] = (*xc_mboxes[pri].func)
154 			    (xc_mboxes[pri].arg1, xc_mboxes[pri].arg2,
155 				xc_mboxes[pri].arg3);
156 	} else
157 		cpup->cpu_m.xc_retval[pri] = 0;
158 
159 	/*
160 	 * Acknowledge that we have completed the x-call operation.
161 	 */
162 	cpup->cpu_m.xc_ack[pri] = 1;
163 
164 	if (op == XC_CALL_OP)
165 		return (DDI_INTR_CLAIMED);
166 
167 	/*
168 	 * for (op == XC_SYNC_OP)
169 	 * Wait for the initiator of the x-call to indicate
170 	 * that all CPUs involved can proceed.
171 	 */
172 	while (cpup->cpu_m.xc_wait[pri])
173 		ht_pause();
174 
175 	while (cpup->cpu_m.xc_state[pri] != XC_DONE)
176 		ht_pause();
177 
178 	/*
179 	 * Flush the TLB, if that's what is requested.
180 	 */
181 	if (xc_mboxes[pri].func != NULL && tlbflush) {
182 		cpup->cpu_m.xc_retval[pri] = (*xc_mboxes[pri].func)
183 		    (xc_mboxes[pri].arg1, xc_mboxes[pri].arg2,
184 			xc_mboxes[pri].arg3);
185 	}
186 
187 	/*
188 	 * Acknowledge that we have received the directive to continue.
189 	 */
190 	ASSERT(cpup->cpu_m.xc_ack[pri] == 0);
191 	cpup->cpu_m.xc_ack[pri] = 1;
192 
193 	return (DDI_INTR_CLAIMED);
194 }
195 
196 
197 /*
198  * xc_do_call:
199  */
200 static void
201 xc_do_call(
202 	xc_arg_t arg1,
203 	xc_arg_t arg2,
204 	xc_arg_t arg3,
205 	int pri,
206 	cpuset_t set,
207 	xc_func_t func,
208 	int sync)
209 {
210 	/*
211 	 * If the pri indicates a low priority lock (below LOCK_LEVEL),
212 	 * we must disable preemption to avoid migrating to another CPU
213 	 * during the call.
214 	 */
215 	if (pri == X_CALL_LOPRI) {
216 		kpreempt_disable();
217 	} else {
218 		pri = X_CALL_HIPRI;
219 	}
220 
221 	/* always grab highest mutex to avoid deadlock */
222 	mutex_enter(&xc_mbox_lock[X_CALL_HIPRI]);
223 	xc_common(func, arg1, arg2, arg3, pri, set, sync);
224 	mutex_exit(&xc_mbox_lock[X_CALL_HIPRI]);
225 	if (pri == X_CALL_LOPRI)
226 		kpreempt_enable();
227 }
228 
229 
230 /*
231  * xc_call: call specified function on all processors
232  * remotes may continue after service
233  * we wait here until everybody has completed.
234  */
235 void
236 xc_call(
237 	xc_arg_t arg1,
238 	xc_arg_t arg2,
239 	xc_arg_t arg3,
240 	int pri,
241 	cpuset_t set,
242 	xc_func_t func)
243 {
244 	xc_do_call(arg1, arg2, arg3, pri, set, func, 0);
245 }
246 
247 /*
248  * xc_sync: call specified function on all processors
249  * after doing work, each remote waits until we let
250  * it continue; send the contiunue after everyone has
251  * informed us that they are done.
252  */
253 void
254 xc_sync(
255 	xc_arg_t arg1,
256 	xc_arg_t arg2,
257 	xc_arg_t arg3,
258 	int pri,
259 	cpuset_t set,
260 	xc_func_t func)
261 {
262 	xc_do_call(arg1, arg2, arg3, pri, set, func, 1);
263 }
264 
265 /*
266  * xc_sync_wait: similar to xc_sync(), except that the starting
267  * cpu waits for all other cpus to check in before running its
268  * service locally.
269  */
270 void
271 xc_wait_sync(
272 	xc_arg_t arg1,
273 	xc_arg_t arg2,
274 	xc_arg_t arg3,
275 	int pri,
276 	cpuset_t set,
277 	xc_func_t func)
278 {
279 	xc_do_call(arg1, arg2, arg3, pri, set, func, 2);
280 }
281 
282 
283 /*
284  * The routines xc_capture_cpus and xc_release_cpus
285  * can be used in place of xc_sync in order to implement a critical
286  * code section where all CPUs in the system can be controlled.
287  * xc_capture_cpus is used to start the critical code section, and
288  * xc_release_cpus is used to end the critical code section.
289  */
290 
291 /*
292  * Capture the CPUs specified in order to start a x-call session,
293  * and/or to begin a critical section.
294  */
295 void
296 xc_capture_cpus(cpuset_t set)
297 {
298 	int cix;
299 	int lcx;
300 	struct cpu *cpup;
301 	int	i;
302 	cpuset_t *cpus;
303 	cpuset_t c;
304 
305 	CPU_STATS_ADDQ(CPU, sys, xcalls, 1);
306 
307 	/*
308 	 * Prevent deadlocks where we take an interrupt and are waiting
309 	 * for a mutex owned by one of the CPUs that is captured for
310 	 * the x-call, while that CPU is waiting for some x-call signal
311 	 * to be set by us.
312 	 *
313 	 * This mutex also prevents preemption, since it raises SPL above
314 	 * LOCK_LEVEL (it is a spin-type driver mutex).
315 	 */
316 	/* always grab highest mutex to avoid deadlock */
317 	mutex_enter(&xc_mbox_lock[X_CALL_HIPRI]);
318 	lcx = CPU->cpu_id;	/* now we're safe */
319 
320 	ASSERT(CPU->cpu_flags & CPU_READY);
321 
322 	/*
323 	 * Wait for all cpus
324 	 */
325 	cpus = (cpuset_t *)&xc_mboxes[X_CALL_MEDPRI].arg2;
326 	if (CPU_IN_SET(*cpus, CPU->cpu_id))
327 		CPUSET_ATOMIC_DEL(*cpus, CPU->cpu_id);
328 	for (;;) {
329 		c = *(volatile cpuset_t *)cpus;
330 		CPUSET_AND(c, cpu_ready_set);
331 		if (CPUSET_ISNULL(c))
332 			break;
333 		ht_pause();
334 	}
335 
336 	/*
337 	 * Store the set of CPUs involved in the x-call session, so that
338 	 * xc_release_cpus will know what CPUs to act upon.
339 	 */
340 	xc_mboxes[X_CALL_MEDPRI].set = set;
341 	xc_mboxes[X_CALL_MEDPRI].arg2 = CAPTURE_CPU_ARG;
342 
343 	/*
344 	 * Now capture each CPU in the set and cause it to go into a
345 	 * holding pattern.
346 	 */
347 	i = 0;
348 	for (cix = 0; cix < NCPU; cix++) {
349 		if ((cpup = cpu[cix]) == NULL ||
350 		    (cpup->cpu_flags & CPU_READY) == 0) {
351 			/*
352 			 * In case CPU wasn't ready, but becomes ready later,
353 			 * take the CPU out of the set now.
354 			 */
355 			CPUSET_DEL(set, cix);
356 			continue;
357 		}
358 		if (cix != lcx && CPU_IN_SET(set, cix)) {
359 			cpup->cpu_m.xc_ack[X_CALL_MEDPRI] = 0;
360 			cpup->cpu_m.xc_state[X_CALL_MEDPRI] = XC_HOLD;
361 			cpup->cpu_m.xc_pend[X_CALL_MEDPRI] = 1;
362 			send_dirint(cix, XC_MED_PIL);
363 		}
364 		i++;
365 		if (i >= ncpus)
366 			break;
367 	}
368 
369 	/*
370 	 * Wait here until all remote calls to complete.
371 	 */
372 	i = 0;
373 	for (cix = 0; cix < NCPU; cix++) {
374 		if (lcx != cix && CPU_IN_SET(set, cix)) {
375 			cpup = cpu[cix];
376 			while (cpup->cpu_m.xc_ack[X_CALL_MEDPRI] == 0)
377 				ht_pause();
378 			cpup->cpu_m.xc_ack[X_CALL_MEDPRI] = 0;
379 		}
380 		i++;
381 		if (i >= ncpus)
382 			break;
383 	}
384 
385 }
386 
387 /*
388  * Release the CPUs captured by xc_capture_cpus, thus terminating the
389  * x-call session and exiting the critical section.
390  */
391 void
392 xc_release_cpus(void)
393 {
394 	int cix;
395 	int lcx = (int)(CPU->cpu_id);
396 	cpuset_t set = xc_mboxes[X_CALL_MEDPRI].set;
397 	struct cpu *cpup;
398 	int	i;
399 
400 	ASSERT(MUTEX_HELD(&xc_mbox_lock[X_CALL_HIPRI]));
401 
402 	/*
403 	 * Allow each CPU to exit its holding pattern.
404 	 */
405 	i = 0;
406 	for (cix = 0; cix < NCPU; cix++) {
407 		if ((cpup = cpu[cix]) == NULL)
408 			continue;
409 		if ((cpup->cpu_flags & CPU_READY) &&
410 		    (cix != lcx) && CPU_IN_SET(set, cix)) {
411 			/*
412 			 * Clear xc_ack since we will be waiting for it
413 			 * to be set again after we set XC_DONE.
414 			 */
415 			cpup->cpu_m.xc_state[X_CALL_MEDPRI] = XC_DONE;
416 		}
417 		i++;
418 		if (i >= ncpus)
419 			break;
420 	}
421 
422 	xc_mboxes[X_CALL_MEDPRI].arg2 = 0;
423 	mutex_exit(&xc_mbox_lock[X_CALL_HIPRI]);
424 }
425 
426 /*
427  * Common code to call a specified function on a set of processors.
428  * sync specifies what kind of waiting is done.
429  *	-1 - no waiting, don't release remotes
430  *	0 - no waiting, release remotes immediately
431  *	1 - run service locally w/o waiting for remotes.
432  *	2 - wait for remotes before running locally
433  */
434 static void
435 xc_common(
436 	xc_func_t func,
437 	xc_arg_t arg1,
438 	xc_arg_t arg2,
439 	xc_arg_t arg3,
440 	int pri,
441 	cpuset_t set,
442 	int sync)
443 {
444 	int cix;
445 	int lcx = (int)(CPU->cpu_id);
446 	struct cpu *cpup;
447 
448 	ASSERT(panicstr == NULL);
449 
450 	ASSERT(MUTEX_HELD(&xc_mbox_lock[X_CALL_HIPRI]));
451 	ASSERT(CPU->cpu_flags & CPU_READY);
452 
453 	/*
454 	 * Set up the service definition mailbox.
455 	 */
456 	xc_mboxes[pri].func = func;
457 	xc_mboxes[pri].arg1 = arg1;
458 	xc_mboxes[pri].arg2 = arg2;
459 	xc_mboxes[pri].arg3 = arg3;
460 
461 	/*
462 	 * Request service on all remote processors.
463 	 */
464 	for (cix = 0; cix < NCPU; cix++) {
465 		if ((cpup = cpu[cix]) == NULL ||
466 		    (cpup->cpu_flags & CPU_READY) == 0) {
467 			/*
468 			 * In case the non-local CPU is not ready but becomes
469 			 * ready later, take it out of the set now. The local
470 			 * CPU needs to remain in the set to complete the
471 			 * requested function.
472 			 */
473 			if (cix != lcx)
474 				CPUSET_DEL(set, cix);
475 		} else if (cix != lcx && CPU_IN_SET(set, cix)) {
476 			CPU_STATS_ADDQ(CPU, sys, xcalls, 1);
477 			cpup->cpu_m.xc_ack[pri] = 0;
478 			cpup->cpu_m.xc_wait[pri] = sync;
479 			if (sync > 0)
480 				cpup->cpu_m.xc_state[pri] = XC_SYNC_OP;
481 			else
482 				cpup->cpu_m.xc_state[pri] = XC_CALL_OP;
483 			cpup->cpu_m.xc_pend[pri] = 1;
484 			send_dirint(cix, xc_xlat_xcptoipl[pri]);
485 		}
486 	}
487 
488 	/*
489 	 * Run service locally if not waiting for remotes.
490 	 */
491 	if (sync != 2 && CPU_IN_SET(set, lcx) && func != NULL)
492 		CPU->cpu_m.xc_retval[pri] = (*func)(arg1, arg2, arg3);
493 
494 	if (sync == -1)
495 		return;
496 
497 	/*
498 	 * Wait here until all remote calls complete.
499 	 */
500 	for (cix = 0; cix < NCPU; cix++) {
501 		if (lcx != cix && CPU_IN_SET(set, cix)) {
502 			cpup = cpu[cix];
503 			while (cpup->cpu_m.xc_ack[pri] == 0)
504 				ht_pause();
505 			cpup->cpu_m.xc_ack[pri] = 0;
506 		}
507 	}
508 
509 	/*
510 	 * Run service locally if waiting for remotes.
511 	 */
512 	if (sync == 2 && CPU_IN_SET(set, lcx) && func != NULL)
513 		CPU->cpu_m.xc_retval[pri] = (*func)(arg1, arg2, arg3);
514 
515 	if (sync == 0)
516 		return;
517 
518 	/*
519 	 * Release any waiting CPUs
520 	 */
521 	for (cix = 0; cix < NCPU; cix++) {
522 		if (lcx != cix && CPU_IN_SET(set, cix)) {
523 			cpup = cpu[cix];
524 			if (cpup != NULL && (cpup->cpu_flags & CPU_READY)) {
525 				cpup->cpu_m.xc_wait[pri] = 0;
526 				cpup->cpu_m.xc_state[pri] = XC_DONE;
527 			}
528 		}
529 	}
530 
531 	/*
532 	 * Wait for all CPUs to acknowledge completion before we continue.
533 	 * Without this check it's possible (on a VM or hyper-threaded CPUs
534 	 * or in the presence of Service Management Interrupts which can all
535 	 * cause delays) for the remote processor to still be waiting by
536 	 * the time xc_common() is next invoked with the sync flag set
537 	 * resulting in a deadlock.
538 	 */
539 	for (cix = 0; cix < NCPU; cix++) {
540 		if (lcx != cix && CPU_IN_SET(set, cix)) {
541 			cpup = cpu[cix];
542 			if (cpup != NULL && (cpup->cpu_flags & CPU_READY)) {
543 				while (cpup->cpu_m.xc_ack[pri] == 0)
544 					ht_pause();
545 				cpup->cpu_m.xc_ack[pri] = 0;
546 			}
547 		}
548 	}
549 }
550 
551 /*
552  * xc_trycall: attempt to call specified function on all processors
553  * remotes may wait for a long time
554  * we continue immediately
555  */
556 void
557 xc_trycall(
558 	xc_arg_t arg1,
559 	xc_arg_t arg2,
560 	xc_arg_t arg3,
561 	cpuset_t set,
562 	xc_func_t func)
563 {
564 	int		save_kernel_preemption;
565 	extern int	IGNORE_KERNEL_PREEMPTION;
566 
567 	/*
568 	 * If we can grab the mutex, we'll do the cross-call.  If not -- if
569 	 * someone else is already doing a cross-call -- we won't.
570 	 */
571 
572 	save_kernel_preemption = IGNORE_KERNEL_PREEMPTION;
573 	IGNORE_KERNEL_PREEMPTION = 1;
574 	if (mutex_tryenter(&xc_mbox_lock[X_CALL_HIPRI])) {
575 		xc_common(func, arg1, arg2, arg3, X_CALL_HIPRI, set, -1);
576 		mutex_exit(&xc_mbox_lock[X_CALL_HIPRI]);
577 	}
578 	IGNORE_KERNEL_PREEMPTION = save_kernel_preemption;
579 }
580 
581 /*
582  * Used by the debugger to cross-call the other CPUs, thus causing them to
583  * enter the debugger.  We can't hold locks, so we spin on the cross-call
584  * lock until we get it.  When we get it, we send the cross-call, and assume
585  * that we successfully stopped the other CPUs.
586  */
587 void
588 kdi_xc_others(int this_cpu, void (*func)(void))
589 {
590 	extern int	IGNORE_KERNEL_PREEMPTION;
591 	int save_kernel_preemption;
592 	mutex_impl_t *lp;
593 	cpuset_t set;
594 	int x;
595 
596 	CPUSET_ALL_BUT(set, this_cpu);
597 
598 	save_kernel_preemption = IGNORE_KERNEL_PREEMPTION;
599 	IGNORE_KERNEL_PREEMPTION = 1;
600 
601 	lp = (mutex_impl_t *)&xc_mbox_lock[X_CALL_HIPRI];
602 	for (x = 0; x < 0x400000; x++) {
603 		if (lock_spin_try(&lp->m_spin.m_spinlock)) {
604 			xc_common((xc_func_t)func, 0, 0, 0, X_CALL_HIPRI,
605 			    set, -1);
606 			lp->m_spin.m_spinlock = 0; /* XXX */
607 			break;
608 		}
609 		(void) xc_serv((caddr_t)X_CALL_MEDPRI, NULL);
610 	}
611 	IGNORE_KERNEL_PREEMPTION = save_kernel_preemption;
612 }
613