xref: /titanic_50/usr/src/uts/i86pc/os/trap.c (revision 70f9559bd0c02885d84a425eaafc8c280df10efb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*	Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T   */
28 /*		All Rights Reserved   				*/
29 /*								*/
30 /*	Copyright (c) 1987, 1988 Microsoft Corporation  	*/
31 /*		All Rights Reserved   				*/
32 /*								*/
33 
34 /*
35  * Copyright 2011 Joyent, Inc. All rights reserved.
36  */
37 
38 #include <sys/types.h>
39 #include <sys/sysmacros.h>
40 #include <sys/param.h>
41 #include <sys/signal.h>
42 #include <sys/systm.h>
43 #include <sys/user.h>
44 #include <sys/proc.h>
45 #include <sys/disp.h>
46 #include <sys/class.h>
47 #include <sys/core.h>
48 #include <sys/syscall.h>
49 #include <sys/cpuvar.h>
50 #include <sys/vm.h>
51 #include <sys/sysinfo.h>
52 #include <sys/fault.h>
53 #include <sys/stack.h>
54 #include <sys/psw.h>
55 #include <sys/regset.h>
56 #include <sys/fp.h>
57 #include <sys/trap.h>
58 #include <sys/kmem.h>
59 #include <sys/vtrace.h>
60 #include <sys/cmn_err.h>
61 #include <sys/prsystm.h>
62 #include <sys/mutex_impl.h>
63 #include <sys/machsystm.h>
64 #include <sys/archsystm.h>
65 #include <sys/sdt.h>
66 #include <sys/avintr.h>
67 #include <sys/kobj.h>
68 
69 #include <vm/hat.h>
70 
71 #include <vm/seg_kmem.h>
72 #include <vm/as.h>
73 #include <vm/seg.h>
74 #include <vm/hat_pte.h>
75 #include <vm/hat_i86.h>
76 
77 #include <sys/procfs.h>
78 
79 #include <sys/reboot.h>
80 #include <sys/debug.h>
81 #include <sys/debugreg.h>
82 #include <sys/modctl.h>
83 #include <sys/aio_impl.h>
84 #include <sys/tnf.h>
85 #include <sys/tnf_probe.h>
86 #include <sys/cred.h>
87 #include <sys/mman.h>
88 #include <sys/x86_archext.h>
89 #include <sys/copyops.h>
90 #include <c2/audit.h>
91 #include <sys/ftrace.h>
92 #include <sys/panic.h>
93 #include <sys/traptrace.h>
94 #include <sys/ontrap.h>
95 #include <sys/cpc_impl.h>
96 #include <sys/bootconf.h>
97 #include <sys/bootinfo.h>
98 #include <sys/promif.h>
99 #include <sys/mach_mmu.h>
100 #if defined(__xpv)
101 #include <sys/hypervisor.h>
102 #endif
103 #include <sys/contract/process_impl.h>
104 
105 #define	USER	0x10000		/* user-mode flag added to trap type */
106 
107 static const char *trap_type_mnemonic[] = {
108 	"de",	"db",	"2",	"bp",
109 	"of",	"br",	"ud",	"nm",
110 	"df",	"9",	"ts",	"np",
111 	"ss",	"gp",	"pf",	"15",
112 	"mf",	"ac",	"mc",	"xf"
113 };
114 
115 static const char *trap_type[] = {
116 	"Divide error",				/* trap id 0 	*/
117 	"Debug",				/* trap id 1	*/
118 	"NMI interrupt",			/* trap id 2	*/
119 	"Breakpoint",				/* trap id 3 	*/
120 	"Overflow",				/* trap id 4 	*/
121 	"BOUND range exceeded",			/* trap id 5 	*/
122 	"Invalid opcode",			/* trap id 6 	*/
123 	"Device not available",			/* trap id 7 	*/
124 	"Double fault",				/* trap id 8 	*/
125 	"Coprocessor segment overrun",		/* trap id 9 	*/
126 	"Invalid TSS",				/* trap id 10 	*/
127 	"Segment not present",			/* trap id 11 	*/
128 	"Stack segment fault",			/* trap id 12 	*/
129 	"General protection",			/* trap id 13 	*/
130 	"Page fault",				/* trap id 14 	*/
131 	"Reserved",				/* trap id 15 	*/
132 	"x87 floating point error",		/* trap id 16 	*/
133 	"Alignment check",			/* trap id 17 	*/
134 	"Machine check",			/* trap id 18	*/
135 	"SIMD floating point exception",	/* trap id 19	*/
136 };
137 
138 #define	TRAP_TYPES	(sizeof (trap_type) / sizeof (trap_type[0]))
139 
140 #define	SLOW_SCALL_SIZE	2
141 #define	FAST_SCALL_SIZE	2
142 
143 int tudebug = 0;
144 int tudebugbpt = 0;
145 int tudebugfpe = 0;
146 int tudebugsse = 0;
147 
148 #if defined(TRAPDEBUG) || defined(lint)
149 int tdebug = 0;
150 int lodebug = 0;
151 int faultdebug = 0;
152 #else
153 #define	tdebug	0
154 #define	lodebug	0
155 #define	faultdebug	0
156 #endif /* defined(TRAPDEBUG) || defined(lint) */
157 
158 #if defined(TRAPTRACE)
159 /*
160  * trap trace record for cpu0 is allocated here.
161  * trap trace records for non-boot cpus are allocated in mp_startup_init().
162  */
163 static trap_trace_rec_t trap_tr0[TRAPTR_NENT];
164 trap_trace_ctl_t trap_trace_ctl[NCPU] = {
165 	{
166 	    (uintptr_t)trap_tr0,			/* next record */
167 	    (uintptr_t)trap_tr0,			/* first record */
168 	    (uintptr_t)(trap_tr0 + TRAPTR_NENT),	/* limit */
169 	    (uintptr_t)0				/* current */
170 	},
171 };
172 
173 /*
174  * default trap buffer size
175  */
176 size_t trap_trace_bufsize = TRAPTR_NENT * sizeof (trap_trace_rec_t);
177 int trap_trace_freeze = 0;
178 int trap_trace_off = 0;
179 
180 /*
181  * A dummy TRAPTRACE entry to use after death.
182  */
183 trap_trace_rec_t trap_trace_postmort;
184 
185 static void dump_ttrace(void);
186 #endif	/* TRAPTRACE */
187 static void dumpregs(struct regs *);
188 static void showregs(uint_t, struct regs *, caddr_t);
189 static int kern_gpfault(struct regs *);
190 
191 /*ARGSUSED*/
192 static int
193 die(uint_t type, struct regs *rp, caddr_t addr, processorid_t cpuid)
194 {
195 	struct panic_trap_info ti;
196 	const char *trap_name, *trap_mnemonic;
197 
198 	if (type < TRAP_TYPES) {
199 		trap_name = trap_type[type];
200 		trap_mnemonic = trap_type_mnemonic[type];
201 	} else {
202 		trap_name = "trap";
203 		trap_mnemonic = "-";
204 	}
205 
206 #ifdef TRAPTRACE
207 	TRAPTRACE_FREEZE;
208 #endif
209 
210 	ti.trap_regs = rp;
211 	ti.trap_type = type & ~USER;
212 	ti.trap_addr = addr;
213 
214 	curthread->t_panic_trap = &ti;
215 
216 	if (type == T_PGFLT && addr < (caddr_t)KERNELBASE) {
217 		panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p "
218 		    "occurred in module \"%s\" due to %s",
219 		    type, trap_mnemonic, trap_name, (void *)rp, (void *)addr,
220 		    mod_containing_pc((caddr_t)rp->r_pc),
221 		    addr < (caddr_t)PAGESIZE ?
222 		    "a NULL pointer dereference" :
223 		    "an illegal access to a user address");
224 	} else
225 		panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p",
226 		    type, trap_mnemonic, trap_name, (void *)rp, (void *)addr);
227 	return (0);
228 }
229 
230 /*
231  * Rewrite the instruction at pc to be an int $T_SYSCALLINT instruction.
232  *
233  * int <vector> is two bytes: 0xCD <vector>
234  */
235 
236 static int
237 rewrite_syscall(caddr_t pc)
238 {
239 	uchar_t instr[SLOW_SCALL_SIZE] = { 0xCD, T_SYSCALLINT };
240 
241 	if (uwrite(curthread->t_procp, instr, SLOW_SCALL_SIZE,
242 	    (uintptr_t)pc) != 0)
243 		return (1);
244 
245 	return (0);
246 }
247 
248 /*
249  * Test to see if the instruction at pc is sysenter or syscall. The second
250  * argument should be the x86 feature flag corresponding to the expected
251  * instruction.
252  *
253  * sysenter is two bytes: 0x0F 0x34
254  * syscall is two bytes:  0x0F 0x05
255  * int $T_SYSCALLINT is two bytes: 0xCD 0x91
256  */
257 
258 static int
259 instr_is_other_syscall(caddr_t pc, int which)
260 {
261 	uchar_t instr[FAST_SCALL_SIZE];
262 
263 	ASSERT(which == X86FSET_SEP || which == X86FSET_ASYSC || which == 0xCD);
264 
265 	if (copyin_nowatch(pc, (caddr_t)instr, FAST_SCALL_SIZE) != 0)
266 		return (0);
267 
268 	switch (which) {
269 	case X86FSET_SEP:
270 		if (instr[0] == 0x0F && instr[1] == 0x34)
271 			return (1);
272 		break;
273 	case X86FSET_ASYSC:
274 		if (instr[0] == 0x0F && instr[1] == 0x05)
275 			return (1);
276 		break;
277 	case 0xCD:
278 		if (instr[0] == 0xCD && instr[1] == T_SYSCALLINT)
279 			return (1);
280 		break;
281 	}
282 
283 	return (0);
284 }
285 
286 static const char *
287 syscall_insn_string(int syscall_insn)
288 {
289 	switch (syscall_insn) {
290 	case X86FSET_SEP:
291 		return ("sysenter");
292 	case X86FSET_ASYSC:
293 		return ("syscall");
294 	case 0xCD:
295 		return ("int");
296 	default:
297 		return ("Unknown");
298 	}
299 }
300 
301 static int
302 ldt_rewrite_syscall(struct regs *rp, proc_t *p, int syscall_insn)
303 {
304 	caddr_t	linearpc;
305 	int return_code = 0;
306 
307 	mutex_enter(&p->p_ldtlock);	/* Must be held across linear_pc() */
308 
309 	if (linear_pc(rp, p, &linearpc) == 0) {
310 
311 		/*
312 		 * If another thread beat us here, it already changed
313 		 * this site to the slower (int) syscall instruction.
314 		 */
315 		if (instr_is_other_syscall(linearpc, 0xCD)) {
316 			return_code = 1;
317 		} else if (instr_is_other_syscall(linearpc, syscall_insn)) {
318 
319 			if (rewrite_syscall(linearpc) == 0) {
320 				return_code = 1;
321 			}
322 #ifdef DEBUG
323 			else
324 				cmn_err(CE_WARN, "failed to rewrite %s "
325 				    "instruction in process %d",
326 				    syscall_insn_string(syscall_insn),
327 				    p->p_pid);
328 #endif /* DEBUG */
329 		}
330 	}
331 
332 	mutex_exit(&p->p_ldtlock);	/* Must be held across linear_pc() */
333 
334 	return (return_code);
335 }
336 
337 /*
338  * Test to see if the instruction at pc is a system call instruction.
339  *
340  * The bytes of an lcall instruction used for the syscall trap.
341  * static uchar_t lcall[7] = { 0x9a, 0, 0, 0, 0, 0x7, 0 };
342  * static uchar_t lcallalt[7] = { 0x9a, 0, 0, 0, 0, 0x27, 0 };
343  */
344 
345 #define	LCALLSIZE	7
346 
347 static int
348 instr_is_lcall_syscall(caddr_t pc)
349 {
350 	uchar_t instr[LCALLSIZE];
351 
352 	if (copyin_nowatch(pc, (caddr_t)instr, LCALLSIZE) == 0 &&
353 	    instr[0] == 0x9a &&
354 	    instr[1] == 0 &&
355 	    instr[2] == 0 &&
356 	    instr[3] == 0 &&
357 	    instr[4] == 0 &&
358 	    (instr[5] == 0x7 || instr[5] == 0x27) &&
359 	    instr[6] == 0)
360 		return (1);
361 
362 	return (0);
363 }
364 
365 #ifdef __amd64
366 
367 /*
368  * In the first revisions of amd64 CPUs produced by AMD, the LAHF and
369  * SAHF instructions were not implemented in 64-bit mode. Later revisions
370  * did implement these instructions. An extension to the cpuid instruction
371  * was added to check for the capability of executing these instructions
372  * in 64-bit mode.
373  *
374  * Intel originally did not implement these instructions in EM64T either,
375  * but added them in later revisions.
376  *
377  * So, there are different chip revisions by both vendors out there that
378  * may or may not implement these instructions. The easy solution is to
379  * just always emulate these instructions on demand.
380  *
381  * SAHF == store %ah in the lower 8 bits of %rflags (opcode 0x9e)
382  * LAHF == load the lower 8 bits of %rflags into %ah (opcode 0x9f)
383  */
384 
385 #define	LSAHFSIZE 1
386 
387 static int
388 instr_is_lsahf(caddr_t pc, uchar_t *instr)
389 {
390 	if (copyin_nowatch(pc, (caddr_t)instr, LSAHFSIZE) == 0 &&
391 	    (*instr == 0x9e || *instr == 0x9f))
392 		return (1);
393 	return (0);
394 }
395 
396 /*
397  * Emulate the LAHF and SAHF instructions. The reference manuals define
398  * these instructions to always load/store bit 1 as a 1, and bits 3 and 5
399  * as a 0. The other, defined, bits are copied (the PS_ICC bits and PS_P).
400  *
401  * Note that %ah is bits 8-15 of %rax.
402  */
403 static void
404 emulate_lsahf(struct regs *rp, uchar_t instr)
405 {
406 	if (instr == 0x9e) {
407 		/* sahf. Copy bits from %ah to flags. */
408 		rp->r_ps = (rp->r_ps & ~0xff) |
409 		    ((rp->r_rax >> 8) & PSL_LSAHFMASK) | PS_MB1;
410 	} else {
411 		/* lahf. Copy bits from flags to %ah. */
412 		rp->r_rax = (rp->r_rax & ~0xff00) |
413 		    (((rp->r_ps & PSL_LSAHFMASK) | PS_MB1) << 8);
414 	}
415 	rp->r_pc += LSAHFSIZE;
416 }
417 #endif /* __amd64 */
418 
419 #ifdef OPTERON_ERRATUM_91
420 
421 /*
422  * Test to see if the instruction at pc is a prefetch instruction.
423  *
424  * The first byte of prefetch instructions is always 0x0F.
425  * The second byte is 0x18 for regular prefetch or 0x0D for AMD 3dnow prefetch.
426  * The third byte (ModRM) contains the register field bits (bits 3-5).
427  * These bits must be between 0 and 3 inclusive for regular prefetch and
428  * 0 and 1 inclusive for AMD 3dnow prefetch.
429  *
430  * In 64-bit mode, there may be a one-byte REX prefex (0x40-0x4F).
431  */
432 
433 static int
434 cmp_to_prefetch(uchar_t *p)
435 {
436 #ifdef _LP64
437 	if ((p[0] & 0xF0) == 0x40)	/* 64-bit REX prefix */
438 		p++;
439 #endif
440 	return ((p[0] == 0x0F && p[1] == 0x18 && ((p[2] >> 3) & 7) <= 3) ||
441 	    (p[0] == 0x0F && p[1] == 0x0D && ((p[2] >> 3) & 7) <= 1));
442 }
443 
444 static int
445 instr_is_prefetch(caddr_t pc)
446 {
447 	uchar_t instr[4];	/* optional REX prefix plus 3-byte opcode */
448 
449 	return (copyin_nowatch(pc, instr, sizeof (instr)) == 0 &&
450 	    cmp_to_prefetch(instr));
451 }
452 
453 #endif /* OPTERON_ERRATUM_91 */
454 
455 /*
456  * Called from the trap handler when a processor trap occurs.
457  *
458  * Note: All user-level traps that might call stop() must exit
459  * trap() by 'goto out' or by falling through.
460  * Note Also: trap() is usually called with interrupts enabled, (PS_IE == 1)
461  * however, there are paths that arrive here with PS_IE == 0 so special care
462  * must be taken in those cases.
463  */
464 void
465 trap(struct regs *rp, caddr_t addr, processorid_t cpuid)
466 {
467 	kthread_t *ct = curthread;
468 	enum seg_rw rw;
469 	unsigned type;
470 	proc_t *p = ttoproc(ct);
471 	klwp_t *lwp = ttolwp(ct);
472 	uintptr_t lofault;
473 	faultcode_t pagefault(), res, errcode;
474 	enum fault_type fault_type;
475 	k_siginfo_t siginfo;
476 	uint_t fault = 0;
477 	int mstate;
478 	int sicode = 0;
479 	int watchcode;
480 	int watchpage;
481 	caddr_t vaddr;
482 	int singlestep_twiddle;
483 	size_t sz;
484 	int ta;
485 #ifdef __amd64
486 	uchar_t instr;
487 #endif
488 
489 	ASSERT_STACK_ALIGNED();
490 
491 	type = rp->r_trapno;
492 	CPU_STATS_ADDQ(CPU, sys, trap, 1);
493 	ASSERT(ct->t_schedflag & TS_DONT_SWAP);
494 
495 	if (type == T_PGFLT) {
496 
497 		errcode = rp->r_err;
498 		if (errcode & PF_ERR_WRITE)
499 			rw = S_WRITE;
500 		else if ((caddr_t)rp->r_pc == addr ||
501 		    (mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC)))
502 			rw = S_EXEC;
503 		else
504 			rw = S_READ;
505 
506 #if defined(__i386)
507 		/*
508 		 * Pentium Pro work-around
509 		 */
510 		if ((errcode & PF_ERR_PROT) && pentiumpro_bug4046376) {
511 			uint_t	attr;
512 			uint_t	priv_violation;
513 			uint_t	access_violation;
514 
515 			if (hat_getattr(addr < (caddr_t)kernelbase ?
516 			    curproc->p_as->a_hat : kas.a_hat, addr, &attr)
517 			    == -1) {
518 				errcode &= ~PF_ERR_PROT;
519 			} else {
520 				priv_violation = (errcode & PF_ERR_USER) &&
521 				    !(attr & PROT_USER);
522 				access_violation = (errcode & PF_ERR_WRITE) &&
523 				    !(attr & PROT_WRITE);
524 				if (!priv_violation && !access_violation)
525 					goto cleanup;
526 			}
527 		}
528 #endif /* __i386 */
529 
530 	} else if (type == T_SGLSTP && lwp != NULL)
531 		lwp->lwp_pcb.pcb_drstat = (uintptr_t)addr;
532 
533 	if (tdebug)
534 		showregs(type, rp, addr);
535 
536 	if (USERMODE(rp->r_cs)) {
537 		/*
538 		 * Set up the current cred to use during this trap. u_cred
539 		 * no longer exists.  t_cred is used instead.
540 		 * The current process credential applies to the thread for
541 		 * the entire trap.  If trapping from the kernel, this
542 		 * should already be set up.
543 		 */
544 		if (ct->t_cred != p->p_cred) {
545 			cred_t *oldcred = ct->t_cred;
546 			/*
547 			 * DTrace accesses t_cred in probe context.  t_cred
548 			 * must always be either NULL, or point to a valid,
549 			 * allocated cred structure.
550 			 */
551 			ct->t_cred = crgetcred();
552 			crfree(oldcred);
553 		}
554 		ASSERT(lwp != NULL);
555 		type |= USER;
556 		ASSERT(lwptoregs(lwp) == rp);
557 		lwp->lwp_state = LWP_SYS;
558 
559 		switch (type) {
560 		case T_PGFLT + USER:
561 			if ((caddr_t)rp->r_pc == addr)
562 				mstate = LMS_TFAULT;
563 			else
564 				mstate = LMS_DFAULT;
565 			break;
566 		default:
567 			mstate = LMS_TRAP;
568 			break;
569 		}
570 		/* Kernel probe */
571 		TNF_PROBE_1(thread_state, "thread", /* CSTYLED */,
572 		    tnf_microstate, state, mstate);
573 		mstate = new_mstate(ct, mstate);
574 
575 		bzero(&siginfo, sizeof (siginfo));
576 	}
577 
578 	switch (type) {
579 	case T_PGFLT + USER:
580 	case T_SGLSTP:
581 	case T_SGLSTP + USER:
582 	case T_BPTFLT + USER:
583 		break;
584 
585 	default:
586 		FTRACE_2("trap(): type=0x%lx, regs=0x%lx",
587 		    (ulong_t)type, (ulong_t)rp);
588 		break;
589 	}
590 
591 	switch (type) {
592 	case T_SIMDFPE:
593 		/* Make sure we enable interrupts before die()ing */
594 		sti();	/* The SIMD exception comes in via cmninttrap */
595 		/*FALLTHROUGH*/
596 	default:
597 		if (type & USER) {
598 			if (tudebug)
599 				showregs(type, rp, (caddr_t)0);
600 			printf("trap: Unknown trap type %d in user mode\n",
601 			    type & ~USER);
602 			siginfo.si_signo = SIGILL;
603 			siginfo.si_code  = ILL_ILLTRP;
604 			siginfo.si_addr  = (caddr_t)rp->r_pc;
605 			siginfo.si_trapno = type & ~USER;
606 			fault = FLTILL;
607 			break;
608 		} else {
609 			(void) die(type, rp, addr, cpuid);
610 			/*NOTREACHED*/
611 		}
612 
613 	case T_PGFLT:		/* system page fault */
614 		/*
615 		 * If we're under on_trap() protection (see <sys/ontrap.h>),
616 		 * set ot_trap and bounce back to the on_trap() call site
617 		 * via the installed trampoline.
618 		 */
619 		if ((ct->t_ontrap != NULL) &&
620 		    (ct->t_ontrap->ot_prot & OT_DATA_ACCESS)) {
621 			ct->t_ontrap->ot_trap |= OT_DATA_ACCESS;
622 			rp->r_pc = ct->t_ontrap->ot_trampoline;
623 			goto cleanup;
624 		}
625 
626 		/*
627 		 * See if we can handle as pagefault. Save lofault
628 		 * across this. Here we assume that an address
629 		 * less than KERNELBASE is a user fault.
630 		 * We can do this as copy.s routines verify that the
631 		 * starting address is less than KERNELBASE before
632 		 * starting and because we know that we always have
633 		 * KERNELBASE mapped as invalid to serve as a "barrier".
634 		 */
635 		lofault = ct->t_lofault;
636 		ct->t_lofault = 0;
637 
638 		mstate = new_mstate(ct, LMS_KFAULT);
639 
640 		if (addr < (caddr_t)kernelbase) {
641 			res = pagefault(addr,
642 			    (errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 0);
643 			if (res == FC_NOMAP &&
644 			    addr < p->p_usrstack &&
645 			    grow(addr))
646 				res = 0;
647 		} else {
648 			res = pagefault(addr,
649 			    (errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 1);
650 		}
651 		(void) new_mstate(ct, mstate);
652 
653 		/*
654 		 * Restore lofault. If we resolved the fault, exit.
655 		 * If we didn't and lofault wasn't set, die.
656 		 */
657 		ct->t_lofault = lofault;
658 		if (res == 0)
659 			goto cleanup;
660 
661 #if defined(OPTERON_ERRATUM_93) && defined(_LP64)
662 		if (lofault == 0 && opteron_erratum_93) {
663 			/*
664 			 * Workaround for Opteron Erratum 93. On return from
665 			 * a System Managment Interrupt at a HLT instruction
666 			 * the %rip might be truncated to a 32 bit value.
667 			 * BIOS is supposed to fix this, but some don't.
668 			 * If this occurs we simply restore the high order bits.
669 			 * The HLT instruction is 1 byte of 0xf4.
670 			 */
671 			uintptr_t	rip = rp->r_pc;
672 
673 			if ((rip & 0xfffffffful) == rip) {
674 				rip |= 0xfffffffful << 32;
675 				if (hat_getpfnum(kas.a_hat, (caddr_t)rip) !=
676 				    PFN_INVALID &&
677 				    (*(uchar_t *)rip == 0xf4 ||
678 				    *(uchar_t *)(rip - 1) == 0xf4)) {
679 					rp->r_pc = rip;
680 					goto cleanup;
681 				}
682 			}
683 		}
684 #endif /* OPTERON_ERRATUM_93 && _LP64 */
685 
686 #ifdef OPTERON_ERRATUM_91
687 		if (lofault == 0 && opteron_erratum_91) {
688 			/*
689 			 * Workaround for Opteron Erratum 91. Prefetches may
690 			 * generate a page fault (they're not supposed to do
691 			 * that!). If this occurs we simply return back to the
692 			 * instruction.
693 			 */
694 			caddr_t		pc = (caddr_t)rp->r_pc;
695 
696 			/*
697 			 * If the faulting PC is not mapped, this is a
698 			 * legitimate kernel page fault that must result in a
699 			 * panic. If the faulting PC is mapped, it could contain
700 			 * a prefetch instruction. Check for that here.
701 			 */
702 			if (hat_getpfnum(kas.a_hat, pc) != PFN_INVALID) {
703 				if (cmp_to_prefetch((uchar_t *)pc)) {
704 #ifdef DEBUG
705 					cmn_err(CE_WARN, "Opteron erratum 91 "
706 					    "occurred: kernel prefetch"
707 					    " at %p generated a page fault!",
708 					    (void *)rp->r_pc);
709 #endif /* DEBUG */
710 					goto cleanup;
711 				}
712 			}
713 			(void) die(type, rp, addr, cpuid);
714 		}
715 #endif /* OPTERON_ERRATUM_91 */
716 
717 		if (lofault == 0)
718 			(void) die(type, rp, addr, cpuid);
719 
720 		/*
721 		 * Cannot resolve fault.  Return to lofault.
722 		 */
723 		if (lodebug) {
724 			showregs(type, rp, addr);
725 			traceregs(rp);
726 		}
727 		if (FC_CODE(res) == FC_OBJERR)
728 			res = FC_ERRNO(res);
729 		else
730 			res = EFAULT;
731 		rp->r_r0 = res;
732 		rp->r_pc = ct->t_lofault;
733 		goto cleanup;
734 
735 	case T_PGFLT + USER:	/* user page fault */
736 		if (faultdebug) {
737 			char *fault_str;
738 
739 			switch (rw) {
740 			case S_READ:
741 				fault_str = "read";
742 				break;
743 			case S_WRITE:
744 				fault_str = "write";
745 				break;
746 			case S_EXEC:
747 				fault_str = "exec";
748 				break;
749 			default:
750 				fault_str = "";
751 				break;
752 			}
753 			printf("user %s fault:  addr=0x%lx errcode=0x%x\n",
754 			    fault_str, (uintptr_t)addr, errcode);
755 		}
756 
757 #if defined(OPTERON_ERRATUM_100) && defined(_LP64)
758 		/*
759 		 * Workaround for AMD erratum 100
760 		 *
761 		 * A 32-bit process may receive a page fault on a non
762 		 * 32-bit address by mistake. The range of the faulting
763 		 * address will be
764 		 *
765 		 *	0xffffffff80000000 .. 0xffffffffffffffff or
766 		 *	0x0000000100000000 .. 0x000000017fffffff
767 		 *
768 		 * The fault is always due to an instruction fetch, however
769 		 * the value of r_pc should be correct (in 32 bit range),
770 		 * so we ignore the page fault on the bogus address.
771 		 */
772 		if (p->p_model == DATAMODEL_ILP32 &&
773 		    (0xffffffff80000000 <= (uintptr_t)addr ||
774 		    (0x100000000 <= (uintptr_t)addr &&
775 		    (uintptr_t)addr <= 0x17fffffff))) {
776 			if (!opteron_erratum_100)
777 				panic("unexpected erratum #100");
778 			if (rp->r_pc <= 0xffffffff)
779 				goto out;
780 		}
781 #endif /* OPTERON_ERRATUM_100 && _LP64 */
782 
783 		ASSERT(!(curthread->t_flag & T_WATCHPT));
784 		watchpage = (pr_watch_active(p) && pr_is_watchpage(addr, rw));
785 #ifdef __i386
786 		/*
787 		 * In 32-bit mode, the lcall (system call) instruction fetches
788 		 * one word from the stack, at the stack pointer, because of the
789 		 * way the call gate is constructed.  This is a bogus
790 		 * read and should not be counted as a read watchpoint.
791 		 * We work around the problem here by testing to see if
792 		 * this situation applies and, if so, simply jumping to
793 		 * the code in locore.s that fields the system call trap.
794 		 * The registers on the stack are already set up properly
795 		 * due to the match between the call gate sequence and the
796 		 * trap gate sequence.  We just have to adjust the pc.
797 		 */
798 		if (watchpage && addr == (caddr_t)rp->r_sp &&
799 		    rw == S_READ && instr_is_lcall_syscall((caddr_t)rp->r_pc)) {
800 			extern void watch_syscall(void);
801 
802 			rp->r_pc += LCALLSIZE;
803 			watch_syscall();	/* never returns */
804 			/* NOTREACHED */
805 		}
806 #endif /* __i386 */
807 		vaddr = addr;
808 		if (!watchpage || (sz = instr_size(rp, &vaddr, rw)) <= 0)
809 			fault_type = (errcode & PF_ERR_PROT)? F_PROT: F_INVAL;
810 		else if ((watchcode = pr_is_watchpoint(&vaddr, &ta,
811 		    sz, NULL, rw)) != 0) {
812 			if (ta) {
813 				do_watch_step(vaddr, sz, rw,
814 				    watchcode, rp->r_pc);
815 				fault_type = F_INVAL;
816 			} else {
817 				bzero(&siginfo, sizeof (siginfo));
818 				siginfo.si_signo = SIGTRAP;
819 				siginfo.si_code = watchcode;
820 				siginfo.si_addr = vaddr;
821 				siginfo.si_trapafter = 0;
822 				siginfo.si_pc = (caddr_t)rp->r_pc;
823 				fault = FLTWATCH;
824 				break;
825 			}
826 		} else {
827 			/* XXX pr_watch_emul() never succeeds (for now) */
828 			if (rw != S_EXEC && pr_watch_emul(rp, vaddr, rw))
829 				goto out;
830 			do_watch_step(vaddr, sz, rw, 0, 0);
831 			fault_type = F_INVAL;
832 		}
833 
834 		res = pagefault(addr, fault_type, rw, 0);
835 
836 		/*
837 		 * If pagefault() succeeded, ok.
838 		 * Otherwise attempt to grow the stack.
839 		 */
840 		if (res == 0 ||
841 		    (res == FC_NOMAP &&
842 		    addr < p->p_usrstack &&
843 		    grow(addr))) {
844 			lwp->lwp_lastfault = FLTPAGE;
845 			lwp->lwp_lastfaddr = addr;
846 			if (prismember(&p->p_fltmask, FLTPAGE)) {
847 				bzero(&siginfo, sizeof (siginfo));
848 				siginfo.si_addr = addr;
849 				(void) stop_on_fault(FLTPAGE, &siginfo);
850 			}
851 			goto out;
852 		} else if (res == FC_PROT && addr < p->p_usrstack &&
853 		    (mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC))) {
854 			report_stack_exec(p, addr);
855 		}
856 
857 #ifdef OPTERON_ERRATUM_91
858 		/*
859 		 * Workaround for Opteron Erratum 91. Prefetches may generate a
860 		 * page fault (they're not supposed to do that!). If this
861 		 * occurs we simply return back to the instruction.
862 		 *
863 		 * We rely on copyin to properly fault in the page with r_pc.
864 		 */
865 		if (opteron_erratum_91 &&
866 		    addr != (caddr_t)rp->r_pc &&
867 		    instr_is_prefetch((caddr_t)rp->r_pc)) {
868 #ifdef DEBUG
869 			cmn_err(CE_WARN, "Opteron erratum 91 occurred: "
870 			    "prefetch at %p in pid %d generated a trap!",
871 			    (void *)rp->r_pc, p->p_pid);
872 #endif /* DEBUG */
873 			goto out;
874 		}
875 #endif /* OPTERON_ERRATUM_91 */
876 
877 		if (tudebug)
878 			showregs(type, rp, addr);
879 		/*
880 		 * In the case where both pagefault and grow fail,
881 		 * set the code to the value provided by pagefault.
882 		 * We map all errors returned from pagefault() to SIGSEGV.
883 		 */
884 		bzero(&siginfo, sizeof (siginfo));
885 		siginfo.si_addr = addr;
886 		switch (FC_CODE(res)) {
887 		case FC_HWERR:
888 		case FC_NOSUPPORT:
889 			siginfo.si_signo = SIGBUS;
890 			siginfo.si_code = BUS_ADRERR;
891 			fault = FLTACCESS;
892 			break;
893 		case FC_ALIGN:
894 			siginfo.si_signo = SIGBUS;
895 			siginfo.si_code = BUS_ADRALN;
896 			fault = FLTACCESS;
897 			break;
898 		case FC_OBJERR:
899 			if ((siginfo.si_errno = FC_ERRNO(res)) != EINTR) {
900 				siginfo.si_signo = SIGBUS;
901 				siginfo.si_code = BUS_OBJERR;
902 				fault = FLTACCESS;
903 			}
904 			break;
905 		default:	/* FC_NOMAP or FC_PROT */
906 			siginfo.si_signo = SIGSEGV;
907 			siginfo.si_code =
908 			    (res == FC_NOMAP)? SEGV_MAPERR : SEGV_ACCERR;
909 			fault = FLTBOUNDS;
910 			break;
911 		}
912 		break;
913 
914 	case T_ILLINST + USER:	/* invalid opcode fault */
915 		/*
916 		 * If the syscall instruction is disabled due to LDT usage, a
917 		 * user program that attempts to execute it will trigger a #ud
918 		 * trap. Check for that case here. If this occurs on a CPU which
919 		 * doesn't even support syscall, the result of all of this will
920 		 * be to emulate that particular instruction.
921 		 */
922 		if (p->p_ldt != NULL &&
923 		    ldt_rewrite_syscall(rp, p, X86FSET_ASYSC))
924 			goto out;
925 
926 #ifdef __amd64
927 		/*
928 		 * Emulate the LAHF and SAHF instructions if needed.
929 		 * See the instr_is_lsahf function for details.
930 		 */
931 		if (p->p_model == DATAMODEL_LP64 &&
932 		    instr_is_lsahf((caddr_t)rp->r_pc, &instr)) {
933 			emulate_lsahf(rp, instr);
934 			goto out;
935 		}
936 #endif
937 
938 		/*FALLTHROUGH*/
939 
940 		if (tudebug)
941 			showregs(type, rp, (caddr_t)0);
942 		siginfo.si_signo = SIGILL;
943 		siginfo.si_code  = ILL_ILLOPC;
944 		siginfo.si_addr  = (caddr_t)rp->r_pc;
945 		fault = FLTILL;
946 		break;
947 
948 	case T_ZERODIV + USER:		/* integer divide by zero */
949 		if (tudebug && tudebugfpe)
950 			showregs(type, rp, (caddr_t)0);
951 		siginfo.si_signo = SIGFPE;
952 		siginfo.si_code  = FPE_INTDIV;
953 		siginfo.si_addr  = (caddr_t)rp->r_pc;
954 		fault = FLTIZDIV;
955 		break;
956 
957 	case T_OVFLW + USER:	/* integer overflow */
958 		if (tudebug && tudebugfpe)
959 			showregs(type, rp, (caddr_t)0);
960 		siginfo.si_signo = SIGFPE;
961 		siginfo.si_code  = FPE_INTOVF;
962 		siginfo.si_addr  = (caddr_t)rp->r_pc;
963 		fault = FLTIOVF;
964 		break;
965 
966 	case T_NOEXTFLT + USER:	/* math coprocessor not available */
967 		if (tudebug && tudebugfpe)
968 			showregs(type, rp, addr);
969 		if (fpnoextflt(rp)) {
970 			siginfo.si_signo = SIGILL;
971 			siginfo.si_code  = ILL_ILLOPC;
972 			siginfo.si_addr  = (caddr_t)rp->r_pc;
973 			fault = FLTILL;
974 		}
975 		break;
976 
977 	case T_EXTOVRFLT:	/* extension overrun fault */
978 		/* check if we took a kernel trap on behalf of user */
979 		{
980 			extern  void ndptrap_frstor(void);
981 			if (rp->r_pc != (uintptr_t)ndptrap_frstor) {
982 				sti(); /* T_EXTOVRFLT comes in via cmninttrap */
983 				(void) die(type, rp, addr, cpuid);
984 			}
985 			type |= USER;
986 		}
987 		/*FALLTHROUGH*/
988 	case T_EXTOVRFLT + USER:	/* extension overrun fault */
989 		if (tudebug && tudebugfpe)
990 			showregs(type, rp, addr);
991 		if (fpextovrflt(rp)) {
992 			siginfo.si_signo = SIGSEGV;
993 			siginfo.si_code  = SEGV_MAPERR;
994 			siginfo.si_addr  = (caddr_t)rp->r_pc;
995 			fault = FLTBOUNDS;
996 		}
997 		break;
998 
999 	case T_EXTERRFLT:	/* x87 floating point exception pending */
1000 		/* check if we took a kernel trap on behalf of user */
1001 		{
1002 			extern  void ndptrap_frstor(void);
1003 			if (rp->r_pc != (uintptr_t)ndptrap_frstor) {
1004 				sti(); /* T_EXTERRFLT comes in via cmninttrap */
1005 				(void) die(type, rp, addr, cpuid);
1006 			}
1007 			type |= USER;
1008 		}
1009 		/*FALLTHROUGH*/
1010 
1011 	case T_EXTERRFLT + USER: /* x87 floating point exception pending */
1012 		if (tudebug && tudebugfpe)
1013 			showregs(type, rp, addr);
1014 		if (sicode = fpexterrflt(rp)) {
1015 			siginfo.si_signo = SIGFPE;
1016 			siginfo.si_code  = sicode;
1017 			siginfo.si_addr  = (caddr_t)rp->r_pc;
1018 			fault = FLTFPE;
1019 		}
1020 		break;
1021 
1022 	case T_SIMDFPE + USER:		/* SSE and SSE2 exceptions */
1023 		if (tudebug && tudebugsse)
1024 			showregs(type, rp, addr);
1025 		if (!is_x86_feature(x86_featureset, X86FSET_SSE) &&
1026 		    !is_x86_feature(x86_featureset, X86FSET_SSE2)) {
1027 			/*
1028 			 * There are rumours that some user instructions
1029 			 * on older CPUs can cause this trap to occur; in
1030 			 * which case send a SIGILL instead of a SIGFPE.
1031 			 */
1032 			siginfo.si_signo = SIGILL;
1033 			siginfo.si_code  = ILL_ILLTRP;
1034 			siginfo.si_addr  = (caddr_t)rp->r_pc;
1035 			siginfo.si_trapno = type & ~USER;
1036 			fault = FLTILL;
1037 		} else if ((sicode = fpsimderrflt(rp)) != 0) {
1038 			siginfo.si_signo = SIGFPE;
1039 			siginfo.si_code = sicode;
1040 			siginfo.si_addr = (caddr_t)rp->r_pc;
1041 			fault = FLTFPE;
1042 		}
1043 
1044 		sti();	/* The SIMD exception comes in via cmninttrap */
1045 		break;
1046 
1047 	case T_BPTFLT:	/* breakpoint trap */
1048 		/*
1049 		 * Kernel breakpoint traps should only happen when kmdb is
1050 		 * active, and even then, it'll have interposed on the IDT, so
1051 		 * control won't get here.  If it does, we've hit a breakpoint
1052 		 * without the debugger, which is very strange, and very
1053 		 * fatal.
1054 		 */
1055 		if (tudebug && tudebugbpt)
1056 			showregs(type, rp, (caddr_t)0);
1057 
1058 		(void) die(type, rp, addr, cpuid);
1059 		break;
1060 
1061 	case T_SGLSTP: /* single step/hw breakpoint exception */
1062 
1063 		/* Now evaluate how we got here */
1064 		if (lwp != NULL && (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP)) {
1065 			/*
1066 			 * i386 single-steps even through lcalls which
1067 			 * change the privilege level. So we take a trap at
1068 			 * the first instruction in privileged mode.
1069 			 *
1070 			 * Set a flag to indicate that upon completion of
1071 			 * the system call, deal with the single-step trap.
1072 			 *
1073 			 * The same thing happens for sysenter, too.
1074 			 */
1075 			singlestep_twiddle = 0;
1076 			if (rp->r_pc == (uintptr_t)sys_sysenter ||
1077 			    rp->r_pc == (uintptr_t)brand_sys_sysenter) {
1078 				singlestep_twiddle = 1;
1079 #if defined(__amd64)
1080 				/*
1081 				 * Since we are already on the kernel's
1082 				 * %gs, on 64-bit systems the sysenter case
1083 				 * needs to adjust the pc to avoid
1084 				 * executing the swapgs instruction at the
1085 				 * top of the handler.
1086 				 */
1087 				if (rp->r_pc == (uintptr_t)sys_sysenter)
1088 					rp->r_pc = (uintptr_t)
1089 					    _sys_sysenter_post_swapgs;
1090 				else
1091 					rp->r_pc = (uintptr_t)
1092 					    _brand_sys_sysenter_post_swapgs;
1093 #endif
1094 			}
1095 #if defined(__i386)
1096 			else if (rp->r_pc == (uintptr_t)sys_call ||
1097 			    rp->r_pc == (uintptr_t)brand_sys_call) {
1098 				singlestep_twiddle = 1;
1099 			}
1100 #endif
1101 			else {
1102 				/* not on sysenter/syscall; uregs available */
1103 				if (tudebug && tudebugbpt)
1104 					showregs(type, rp, (caddr_t)0);
1105 			}
1106 			if (singlestep_twiddle) {
1107 				rp->r_ps &= ~PS_T; /* turn off trace */
1108 				lwp->lwp_pcb.pcb_flags |= DEBUG_PENDING;
1109 				ct->t_post_sys = 1;
1110 				aston(curthread);
1111 				goto cleanup;
1112 			}
1113 		}
1114 		/* XXX - needs review on debugger interface? */
1115 		if (boothowto & RB_DEBUG)
1116 			debug_enter((char *)NULL);
1117 		else
1118 			(void) die(type, rp, addr, cpuid);
1119 		break;
1120 
1121 	case T_NMIFLT:	/* NMI interrupt */
1122 		printf("Unexpected NMI in system mode\n");
1123 		goto cleanup;
1124 
1125 	case T_NMIFLT + USER:	/* NMI interrupt */
1126 		printf("Unexpected NMI in user mode\n");
1127 		break;
1128 
1129 	case T_GPFLT:	/* general protection violation */
1130 		/*
1131 		 * Any #GP that occurs during an on_trap .. no_trap bracket
1132 		 * with OT_DATA_ACCESS or OT_SEGMENT_ACCESS protection,
1133 		 * or in a on_fault .. no_fault bracket, is forgiven
1134 		 * and we trampoline.  This protection is given regardless
1135 		 * of whether we are 32/64 bit etc - if a distinction is
1136 		 * required then define new on_trap protection types.
1137 		 *
1138 		 * On amd64, we can get a #gp from referencing addresses
1139 		 * in the virtual address hole e.g. from a copyin or in
1140 		 * update_sregs while updating user segment registers.
1141 		 *
1142 		 * On the 32-bit hypervisor we could also generate one in
1143 		 * mfn_to_pfn by reaching around or into where the hypervisor
1144 		 * lives which is protected by segmentation.
1145 		 */
1146 
1147 		/*
1148 		 * If we're under on_trap() protection (see <sys/ontrap.h>),
1149 		 * set ot_trap and trampoline back to the on_trap() call site
1150 		 * for OT_DATA_ACCESS or OT_SEGMENT_ACCESS.
1151 		 */
1152 		if (ct->t_ontrap != NULL) {
1153 			int ttype =  ct->t_ontrap->ot_prot &
1154 			    (OT_DATA_ACCESS | OT_SEGMENT_ACCESS);
1155 
1156 			if (ttype != 0) {
1157 				ct->t_ontrap->ot_trap |= ttype;
1158 				if (tudebug)
1159 					showregs(type, rp, (caddr_t)0);
1160 				rp->r_pc = ct->t_ontrap->ot_trampoline;
1161 				goto cleanup;
1162 			}
1163 		}
1164 
1165 		/*
1166 		 * If we're under lofault protection (copyin etc.),
1167 		 * longjmp back to lofault with an EFAULT.
1168 		 */
1169 		if (ct->t_lofault) {
1170 			/*
1171 			 * Fault is not resolvable, so just return to lofault
1172 			 */
1173 			if (lodebug) {
1174 				showregs(type, rp, addr);
1175 				traceregs(rp);
1176 			}
1177 			rp->r_r0 = EFAULT;
1178 			rp->r_pc = ct->t_lofault;
1179 			goto cleanup;
1180 		}
1181 
1182 		/*
1183 		 * We fall through to the next case, which repeats
1184 		 * the OT_SEGMENT_ACCESS check which we've already
1185 		 * done, so we'll always fall through to the
1186 		 * T_STKFLT case.
1187 		 */
1188 		/*FALLTHROUGH*/
1189 	case T_SEGFLT:	/* segment not present fault */
1190 		/*
1191 		 * One example of this is #NP in update_sregs while
1192 		 * attempting to update a user segment register
1193 		 * that points to a descriptor that is marked not
1194 		 * present.
1195 		 */
1196 		if (ct->t_ontrap != NULL &&
1197 		    ct->t_ontrap->ot_prot & OT_SEGMENT_ACCESS) {
1198 			ct->t_ontrap->ot_trap |= OT_SEGMENT_ACCESS;
1199 			if (tudebug)
1200 				showregs(type, rp, (caddr_t)0);
1201 			rp->r_pc = ct->t_ontrap->ot_trampoline;
1202 			goto cleanup;
1203 		}
1204 		/*FALLTHROUGH*/
1205 	case T_STKFLT:	/* stack fault */
1206 	case T_TSSFLT:	/* invalid TSS fault */
1207 		if (tudebug)
1208 			showregs(type, rp, (caddr_t)0);
1209 		if (kern_gpfault(rp))
1210 			(void) die(type, rp, addr, cpuid);
1211 		goto cleanup;
1212 
1213 	/*
1214 	 * ONLY 32-bit PROCESSES can USE a PRIVATE LDT! 64-bit apps
1215 	 * should have no need for them, so we put a stop to it here.
1216 	 *
1217 	 * So: not-present fault is ONLY valid for 32-bit processes with
1218 	 * a private LDT trying to do a system call. Emulate it.
1219 	 *
1220 	 * #gp fault is ONLY valid for 32-bit processes also, which DO NOT
1221 	 * have a private LDT, and are trying to do a system call. Emulate it.
1222 	 */
1223 
1224 	case T_SEGFLT + USER:	/* segment not present fault */
1225 	case T_GPFLT + USER:	/* general protection violation */
1226 #ifdef _SYSCALL32_IMPL
1227 		if (p->p_model != DATAMODEL_NATIVE) {
1228 #endif /* _SYSCALL32_IMPL */
1229 		if (instr_is_lcall_syscall((caddr_t)rp->r_pc)) {
1230 			if (type == T_SEGFLT + USER)
1231 				ASSERT(p->p_ldt != NULL);
1232 
1233 			if ((p->p_ldt == NULL && type == T_GPFLT + USER) ||
1234 			    type == T_SEGFLT + USER) {
1235 
1236 			/*
1237 			 * The user attempted a system call via the obsolete
1238 			 * call gate mechanism. Because the process doesn't have
1239 			 * an LDT (i.e. the ldtr contains 0), a #gp results.
1240 			 * Emulate the syscall here, just as we do above for a
1241 			 * #np trap.
1242 			 */
1243 
1244 			/*
1245 			 * Since this is a not-present trap, rp->r_pc points to
1246 			 * the trapping lcall instruction. We need to bump it
1247 			 * to the next insn so the app can continue on.
1248 			 */
1249 			rp->r_pc += LCALLSIZE;
1250 			lwp->lwp_regs = rp;
1251 
1252 			/*
1253 			 * Normally the microstate of the LWP is forced back to
1254 			 * LMS_USER by the syscall handlers. Emulate that
1255 			 * behavior here.
1256 			 */
1257 			mstate = LMS_USER;
1258 
1259 			dosyscall();
1260 			goto out;
1261 			}
1262 		}
1263 #ifdef _SYSCALL32_IMPL
1264 		}
1265 #endif /* _SYSCALL32_IMPL */
1266 		/*
1267 		 * If the current process is using a private LDT and the
1268 		 * trapping instruction is sysenter, the sysenter instruction
1269 		 * has been disabled on the CPU because it destroys segment
1270 		 * registers. If this is the case, rewrite the instruction to
1271 		 * be a safe system call and retry it. If this occurs on a CPU
1272 		 * which doesn't even support sysenter, the result of all of
1273 		 * this will be to emulate that particular instruction.
1274 		 */
1275 		if (p->p_ldt != NULL &&
1276 		    ldt_rewrite_syscall(rp, p, X86FSET_SEP))
1277 			goto out;
1278 
1279 		/*FALLTHROUGH*/
1280 
1281 	case T_BOUNDFLT + USER:	/* bound fault */
1282 	case T_STKFLT + USER:	/* stack fault */
1283 	case T_TSSFLT + USER:	/* invalid TSS fault */
1284 		if (tudebug)
1285 			showregs(type, rp, (caddr_t)0);
1286 		siginfo.si_signo = SIGSEGV;
1287 		siginfo.si_code  = SEGV_MAPERR;
1288 		siginfo.si_addr  = (caddr_t)rp->r_pc;
1289 		fault = FLTBOUNDS;
1290 		break;
1291 
1292 	case T_ALIGNMENT + USER:	/* user alignment error (486) */
1293 		if (tudebug)
1294 			showregs(type, rp, (caddr_t)0);
1295 		bzero(&siginfo, sizeof (siginfo));
1296 		siginfo.si_signo = SIGBUS;
1297 		siginfo.si_code = BUS_ADRALN;
1298 		siginfo.si_addr = (caddr_t)rp->r_pc;
1299 		fault = FLTACCESS;
1300 		break;
1301 
1302 	case T_SGLSTP + USER: /* single step/hw breakpoint exception */
1303 		if (tudebug && tudebugbpt)
1304 			showregs(type, rp, (caddr_t)0);
1305 
1306 		/* Was it single-stepping? */
1307 		if (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP) {
1308 			pcb_t *pcb = &lwp->lwp_pcb;
1309 
1310 			rp->r_ps &= ~PS_T;
1311 			/*
1312 			 * If both NORMAL_STEP and WATCH_STEP are in effect,
1313 			 * give precedence to WATCH_STEP.  If neither is set,
1314 			 * user must have set the PS_T bit in %efl; treat this
1315 			 * as NORMAL_STEP.
1316 			 */
1317 			if ((fault = undo_watch_step(&siginfo)) == 0 &&
1318 			    ((pcb->pcb_flags & NORMAL_STEP) ||
1319 			    !(pcb->pcb_flags & WATCH_STEP))) {
1320 				siginfo.si_signo = SIGTRAP;
1321 				siginfo.si_code = TRAP_TRACE;
1322 				siginfo.si_addr = (caddr_t)rp->r_pc;
1323 				fault = FLTTRACE;
1324 			}
1325 			pcb->pcb_flags &= ~(NORMAL_STEP|WATCH_STEP);
1326 		}
1327 		break;
1328 
1329 	case T_BPTFLT + USER:	/* breakpoint trap */
1330 		if (tudebug && tudebugbpt)
1331 			showregs(type, rp, (caddr_t)0);
1332 		/*
1333 		 * int 3 (the breakpoint instruction) leaves the pc referring
1334 		 * to the address one byte after the breakpointed address.
1335 		 * If the P_PR_BPTADJ flag has been set via /proc, We adjust
1336 		 * it back so it refers to the breakpointed address.
1337 		 */
1338 		if (p->p_proc_flag & P_PR_BPTADJ)
1339 			rp->r_pc--;
1340 		siginfo.si_signo = SIGTRAP;
1341 		siginfo.si_code  = TRAP_BRKPT;
1342 		siginfo.si_addr  = (caddr_t)rp->r_pc;
1343 		fault = FLTBPT;
1344 		break;
1345 
1346 	case T_AST:
1347 		/*
1348 		 * This occurs only after the cs register has been made to
1349 		 * look like a kernel selector, either through debugging or
1350 		 * possibly by functions like setcontext().  The thread is
1351 		 * about to cause a general protection fault at common_iret()
1352 		 * in locore.  We let that happen immediately instead of
1353 		 * doing the T_AST processing.
1354 		 */
1355 		goto cleanup;
1356 
1357 	case T_AST + USER:	/* profiling, resched, h/w error pseudo trap */
1358 		if (lwp->lwp_pcb.pcb_flags & ASYNC_HWERR) {
1359 			proc_t *p = ttoproc(curthread);
1360 			extern void print_msg_hwerr(ctid_t ct_id, proc_t *p);
1361 
1362 			lwp->lwp_pcb.pcb_flags &= ~ASYNC_HWERR;
1363 			print_msg_hwerr(p->p_ct_process->conp_contract.ct_id,
1364 			    p);
1365 			contract_process_hwerr(p->p_ct_process, p);
1366 			siginfo.si_signo = SIGKILL;
1367 			siginfo.si_code = SI_NOINFO;
1368 		} else if (lwp->lwp_pcb.pcb_flags & CPC_OVERFLOW) {
1369 			lwp->lwp_pcb.pcb_flags &= ~CPC_OVERFLOW;
1370 			if (kcpc_overflow_ast()) {
1371 				/*
1372 				 * Signal performance counter overflow
1373 				 */
1374 				if (tudebug)
1375 					showregs(type, rp, (caddr_t)0);
1376 				bzero(&siginfo, sizeof (siginfo));
1377 				siginfo.si_signo = SIGEMT;
1378 				siginfo.si_code = EMT_CPCOVF;
1379 				siginfo.si_addr = (caddr_t)rp->r_pc;
1380 				fault = FLTCPCOVF;
1381 			}
1382 		}
1383 
1384 		break;
1385 	}
1386 
1387 	/*
1388 	 * We can't get here from a system trap
1389 	 */
1390 	ASSERT(type & USER);
1391 
1392 	if (fault) {
1393 		/* We took a fault so abort single step. */
1394 		lwp->lwp_pcb.pcb_flags &= ~(NORMAL_STEP|WATCH_STEP);
1395 		/*
1396 		 * Remember the fault and fault adddress
1397 		 * for real-time (SIGPROF) profiling.
1398 		 */
1399 		lwp->lwp_lastfault = fault;
1400 		lwp->lwp_lastfaddr = siginfo.si_addr;
1401 
1402 		DTRACE_PROC2(fault, int, fault, ksiginfo_t *, &siginfo);
1403 
1404 		/*
1405 		 * If a debugger has declared this fault to be an
1406 		 * event of interest, stop the lwp.  Otherwise just
1407 		 * deliver the associated signal.
1408 		 */
1409 		if (siginfo.si_signo != SIGKILL &&
1410 		    prismember(&p->p_fltmask, fault) &&
1411 		    stop_on_fault(fault, &siginfo) == 0)
1412 			siginfo.si_signo = 0;
1413 	}
1414 
1415 	if (siginfo.si_signo)
1416 		trapsig(&siginfo, (fault != FLTFPE && fault != FLTCPCOVF));
1417 
1418 	if (lwp->lwp_oweupc)
1419 		profil_tick(rp->r_pc);
1420 
1421 	if (ct->t_astflag | ct->t_sig_check) {
1422 		/*
1423 		 * Turn off the AST flag before checking all the conditions that
1424 		 * may have caused an AST.  This flag is on whenever a signal or
1425 		 * unusual condition should be handled after the next trap or
1426 		 * syscall.
1427 		 */
1428 		astoff(ct);
1429 		/*
1430 		 * If a single-step trap occurred on a syscall (see above)
1431 		 * recognize it now.  Do this before checking for signals
1432 		 * because deferred_singlestep_trap() may generate a SIGTRAP to
1433 		 * the LWP or may otherwise mark the LWP to call issig(FORREAL).
1434 		 */
1435 		if (lwp->lwp_pcb.pcb_flags & DEBUG_PENDING)
1436 			deferred_singlestep_trap((caddr_t)rp->r_pc);
1437 
1438 		ct->t_sig_check = 0;
1439 
1440 		mutex_enter(&p->p_lock);
1441 		if (curthread->t_proc_flag & TP_CHANGEBIND) {
1442 			timer_lwpbind();
1443 			curthread->t_proc_flag &= ~TP_CHANGEBIND;
1444 		}
1445 		mutex_exit(&p->p_lock);
1446 
1447 		/*
1448 		 * for kaio requests that are on the per-process poll queue,
1449 		 * aiop->aio_pollq, they're AIO_POLL bit is set, the kernel
1450 		 * should copyout their result_t to user memory. by copying
1451 		 * out the result_t, the user can poll on memory waiting
1452 		 * for the kaio request to complete.
1453 		 */
1454 		if (p->p_aio)
1455 			aio_cleanup(0);
1456 		/*
1457 		 * If this LWP was asked to hold, call holdlwp(), which will
1458 		 * stop.  holdlwps() sets this up and calls pokelwps() which
1459 		 * sets the AST flag.
1460 		 *
1461 		 * Also check TP_EXITLWP, since this is used by fresh new LWPs
1462 		 * through lwp_rtt().  That flag is set if the lwp_create(2)
1463 		 * syscall failed after creating the LWP.
1464 		 */
1465 		if (ISHOLD(p))
1466 			holdlwp();
1467 
1468 		/*
1469 		 * All code that sets signals and makes ISSIG evaluate true must
1470 		 * set t_astflag afterwards.
1471 		 */
1472 		if (ISSIG_PENDING(ct, lwp, p)) {
1473 			if (issig(FORREAL))
1474 				psig();
1475 			ct->t_sig_check = 1;
1476 		}
1477 
1478 		if (ct->t_rprof != NULL) {
1479 			realsigprof(0, 0, 0);
1480 			ct->t_sig_check = 1;
1481 		}
1482 
1483 		/*
1484 		 * /proc can't enable/disable the trace bit itself
1485 		 * because that could race with the call gate used by
1486 		 * system calls via "lcall". If that happened, an
1487 		 * invalid EFLAGS would result. prstep()/prnostep()
1488 		 * therefore schedule an AST for the purpose.
1489 		 */
1490 		if (lwp->lwp_pcb.pcb_flags & REQUEST_STEP) {
1491 			lwp->lwp_pcb.pcb_flags &= ~REQUEST_STEP;
1492 			rp->r_ps |= PS_T;
1493 		}
1494 		if (lwp->lwp_pcb.pcb_flags & REQUEST_NOSTEP) {
1495 			lwp->lwp_pcb.pcb_flags &= ~REQUEST_NOSTEP;
1496 			rp->r_ps &= ~PS_T;
1497 		}
1498 	}
1499 
1500 out:	/* We can't get here from a system trap */
1501 	ASSERT(type & USER);
1502 
1503 	if (ISHOLD(p))
1504 		holdlwp();
1505 
1506 	/*
1507 	 * Set state to LWP_USER here so preempt won't give us a kernel
1508 	 * priority if it occurs after this point.  Call CL_TRAPRET() to
1509 	 * restore the user-level priority.
1510 	 *
1511 	 * It is important that no locks (other than spinlocks) be entered
1512 	 * after this point before returning to user mode (unless lwp_state
1513 	 * is set back to LWP_SYS).
1514 	 */
1515 	lwp->lwp_state = LWP_USER;
1516 
1517 	if (ct->t_trapret) {
1518 		ct->t_trapret = 0;
1519 		thread_lock(ct);
1520 		CL_TRAPRET(ct);
1521 		thread_unlock(ct);
1522 	}
1523 	if (CPU->cpu_runrun || curthread->t_schedflag & TS_ANYWAITQ)
1524 		preempt();
1525 	prunstop();
1526 	(void) new_mstate(ct, mstate);
1527 
1528 	/* Kernel probe */
1529 	TNF_PROBE_1(thread_state, "thread", /* CSTYLED */,
1530 	    tnf_microstate, state, LMS_USER);
1531 
1532 	return;
1533 
1534 cleanup:	/* system traps end up here */
1535 	ASSERT(!(type & USER));
1536 }
1537 
1538 /*
1539  * Patch non-zero to disable preemption of threads in the kernel.
1540  */
1541 int IGNORE_KERNEL_PREEMPTION = 0;	/* XXX - delete this someday */
1542 
1543 struct kpreempt_cnts {		/* kernel preemption statistics */
1544 	int	kpc_idle;	/* executing idle thread */
1545 	int	kpc_intr;	/* executing interrupt thread */
1546 	int	kpc_clock;	/* executing clock thread */
1547 	int	kpc_blocked;	/* thread has blocked preemption (t_preempt) */
1548 	int	kpc_notonproc;	/* thread is surrendering processor */
1549 	int	kpc_inswtch;	/* thread has ratified scheduling decision */
1550 	int	kpc_prilevel;	/* processor interrupt level is too high */
1551 	int	kpc_apreempt;	/* asynchronous preemption */
1552 	int	kpc_spreempt;	/* synchronous preemption */
1553 } kpreempt_cnts;
1554 
1555 /*
1556  * kernel preemption: forced rescheduling, preempt the running kernel thread.
1557  *	the argument is old PIL for an interrupt,
1558  *	or the distingished value KPREEMPT_SYNC.
1559  */
1560 void
1561 kpreempt(int asyncspl)
1562 {
1563 	kthread_t *ct = curthread;
1564 
1565 	if (IGNORE_KERNEL_PREEMPTION) {
1566 		aston(CPU->cpu_dispthread);
1567 		return;
1568 	}
1569 
1570 	/*
1571 	 * Check that conditions are right for kernel preemption
1572 	 */
1573 	do {
1574 		if (ct->t_preempt) {
1575 			/*
1576 			 * either a privileged thread (idle, panic, interrupt)
1577 			 * or will check when t_preempt is lowered
1578 			 * We need to specifically handle the case where
1579 			 * the thread is in the middle of swtch (resume has
1580 			 * been called) and has its t_preempt set
1581 			 * [idle thread and a thread which is in kpreempt
1582 			 * already] and then a high priority thread is
1583 			 * available in the local dispatch queue.
1584 			 * In this case the resumed thread needs to take a
1585 			 * trap so that it can call kpreempt. We achieve
1586 			 * this by using siron().
1587 			 * How do we detect this condition:
1588 			 * idle thread is running and is in the midst of
1589 			 * resume: curthread->t_pri == -1 && CPU->dispthread
1590 			 * != CPU->thread
1591 			 * Need to ensure that this happens only at high pil
1592 			 * resume is called at high pil
1593 			 * Only in resume_from_idle is the pil changed.
1594 			 */
1595 			if (ct->t_pri < 0) {
1596 				kpreempt_cnts.kpc_idle++;
1597 				if (CPU->cpu_dispthread != CPU->cpu_thread)
1598 					siron();
1599 			} else if (ct->t_flag & T_INTR_THREAD) {
1600 				kpreempt_cnts.kpc_intr++;
1601 				if (ct->t_pil == CLOCK_LEVEL)
1602 					kpreempt_cnts.kpc_clock++;
1603 			} else {
1604 				kpreempt_cnts.kpc_blocked++;
1605 				if (CPU->cpu_dispthread != CPU->cpu_thread)
1606 					siron();
1607 			}
1608 			aston(CPU->cpu_dispthread);
1609 			return;
1610 		}
1611 		if (ct->t_state != TS_ONPROC ||
1612 		    ct->t_disp_queue != CPU->cpu_disp) {
1613 			/* this thread will be calling swtch() shortly */
1614 			kpreempt_cnts.kpc_notonproc++;
1615 			if (CPU->cpu_thread != CPU->cpu_dispthread) {
1616 				/* already in swtch(), force another */
1617 				kpreempt_cnts.kpc_inswtch++;
1618 				siron();
1619 			}
1620 			return;
1621 		}
1622 		if (getpil() >= DISP_LEVEL) {
1623 			/*
1624 			 * We can't preempt this thread if it is at
1625 			 * a PIL >= DISP_LEVEL since it may be holding
1626 			 * a spin lock (like sched_lock).
1627 			 */
1628 			siron();	/* check back later */
1629 			kpreempt_cnts.kpc_prilevel++;
1630 			return;
1631 		}
1632 		if (!interrupts_enabled()) {
1633 			/*
1634 			 * Can't preempt while running with ints disabled
1635 			 */
1636 			kpreempt_cnts.kpc_prilevel++;
1637 			return;
1638 		}
1639 		if (asyncspl != KPREEMPT_SYNC)
1640 			kpreempt_cnts.kpc_apreempt++;
1641 		else
1642 			kpreempt_cnts.kpc_spreempt++;
1643 
1644 		ct->t_preempt++;
1645 		preempt();
1646 		ct->t_preempt--;
1647 	} while (CPU->cpu_kprunrun);
1648 }
1649 
1650 /*
1651  * Print out debugging info.
1652  */
1653 static void
1654 showregs(uint_t type, struct regs *rp, caddr_t addr)
1655 {
1656 	int s;
1657 
1658 	s = spl7();
1659 	type &= ~USER;
1660 	if (PTOU(curproc)->u_comm[0])
1661 		printf("%s: ", PTOU(curproc)->u_comm);
1662 	if (type < TRAP_TYPES)
1663 		printf("#%s %s\n", trap_type_mnemonic[type], trap_type[type]);
1664 	else
1665 		switch (type) {
1666 		case T_SYSCALL:
1667 			printf("Syscall Trap:\n");
1668 			break;
1669 		case T_AST:
1670 			printf("AST\n");
1671 			break;
1672 		default:
1673 			printf("Bad Trap = %d\n", type);
1674 			break;
1675 		}
1676 	if (type == T_PGFLT) {
1677 		printf("Bad %s fault at addr=0x%lx\n",
1678 		    USERMODE(rp->r_cs) ? "user": "kernel", (uintptr_t)addr);
1679 	} else if (addr) {
1680 		printf("addr=0x%lx\n", (uintptr_t)addr);
1681 	}
1682 
1683 	printf("pid=%d, pc=0x%lx, sp=0x%lx, eflags=0x%lx\n",
1684 	    (ttoproc(curthread) && ttoproc(curthread)->p_pidp) ?
1685 	    ttoproc(curthread)->p_pid : 0, rp->r_pc, rp->r_sp, rp->r_ps);
1686 
1687 #if defined(__lint)
1688 	/*
1689 	 * this clause can be deleted when lint bug 4870403 is fixed
1690 	 * (lint thinks that bit 32 is illegal in a %b format string)
1691 	 */
1692 	printf("cr0: %x cr4: %b\n",
1693 	    (uint_t)getcr0(), (uint_t)getcr4(), FMT_CR4);
1694 #else
1695 	printf("cr0: %b cr4: %b\n",
1696 	    (uint_t)getcr0(), FMT_CR0, (uint_t)getcr4(), FMT_CR4);
1697 #endif	/* __lint */
1698 
1699 	printf("cr2: %lx", getcr2());
1700 #if !defined(__xpv)
1701 	printf("cr3: %lx", getcr3());
1702 #if defined(__amd64)
1703 	printf("cr8: %lx\n", getcr8());
1704 #endif
1705 #endif
1706 	printf("\n");
1707 
1708 	dumpregs(rp);
1709 	splx(s);
1710 }
1711 
1712 static void
1713 dumpregs(struct regs *rp)
1714 {
1715 #if defined(__amd64)
1716 	const char fmt[] = "\t%3s: %16lx %3s: %16lx %3s: %16lx\n";
1717 
1718 	printf(fmt, "rdi", rp->r_rdi, "rsi", rp->r_rsi, "rdx", rp->r_rdx);
1719 	printf(fmt, "rcx", rp->r_rcx, " r8", rp->r_r8, " r9", rp->r_r9);
1720 	printf(fmt, "rax", rp->r_rax, "rbx", rp->r_rbx, "rbp", rp->r_rbp);
1721 	printf(fmt, "r10", rp->r_r10, "r11", rp->r_r11, "r12", rp->r_r12);
1722 	printf(fmt, "r13", rp->r_r13, "r14", rp->r_r14, "r15", rp->r_r15);
1723 
1724 	printf(fmt, "fsb", rdmsr(MSR_AMD_FSBASE), "gsb", rdmsr(MSR_AMD_GSBASE),
1725 	    " ds", rp->r_ds);
1726 	printf(fmt, " es", rp->r_es, " fs", rp->r_fs, " gs", rp->r_gs);
1727 
1728 	printf(fmt, "trp", rp->r_trapno, "err", rp->r_err, "rip", rp->r_rip);
1729 	printf(fmt, " cs", rp->r_cs, "rfl", rp->r_rfl, "rsp", rp->r_rsp);
1730 
1731 	printf("\t%3s: %16lx\n", " ss", rp->r_ss);
1732 
1733 #elif defined(__i386)
1734 	const char fmt[] = "\t%3s: %8lx %3s: %8lx %3s: %8lx %3s: %8lx\n";
1735 
1736 	printf(fmt, " gs", rp->r_gs, " fs", rp->r_fs,
1737 	    " es", rp->r_es, " ds", rp->r_ds);
1738 	printf(fmt, "edi", rp->r_edi, "esi", rp->r_esi,
1739 	    "ebp", rp->r_ebp, "esp", rp->r_esp);
1740 	printf(fmt, "ebx", rp->r_ebx, "edx", rp->r_edx,
1741 	    "ecx", rp->r_ecx, "eax", rp->r_eax);
1742 	printf(fmt, "trp", rp->r_trapno, "err", rp->r_err,
1743 	    "eip", rp->r_eip, " cs", rp->r_cs);
1744 	printf("\t%3s: %8lx %3s: %8lx %3s: %8lx\n",
1745 	    "efl", rp->r_efl, "usp", rp->r_uesp, " ss", rp->r_ss);
1746 
1747 #endif	/* __i386 */
1748 }
1749 
1750 /*
1751  * Test to see if the instruction is iret on i386 or iretq on amd64.
1752  *
1753  * On the hypervisor we can only test for nopop_sys_rtt_syscall. If true
1754  * then we are in the context of hypervisor's failsafe handler because it
1755  * tried to iret and failed due to a bad selector. See xen_failsafe_callback.
1756  */
1757 static int
1758 instr_is_iret(caddr_t pc)
1759 {
1760 
1761 #if defined(__xpv)
1762 	extern void nopop_sys_rtt_syscall(void);
1763 	return ((pc == (caddr_t)nopop_sys_rtt_syscall) ? 1 : 0);
1764 
1765 #else
1766 
1767 #if defined(__amd64)
1768 	static const uint8_t iret_insn[2] = { 0x48, 0xcf };	/* iretq */
1769 
1770 #elif defined(__i386)
1771 	static const uint8_t iret_insn[1] = { 0xcf };		/* iret */
1772 #endif	/* __i386 */
1773 	return (bcmp(pc, iret_insn, sizeof (iret_insn)) == 0);
1774 
1775 #endif	/* __xpv */
1776 }
1777 
1778 #if defined(__i386)
1779 
1780 /*
1781  * Test to see if the instruction is part of __SEGREGS_POP
1782  *
1783  * Note carefully the appallingly awful dependency between
1784  * the instruction sequence used in __SEGREGS_POP and these
1785  * instructions encoded here.
1786  */
1787 static int
1788 instr_is_segregs_pop(caddr_t pc)
1789 {
1790 	static const uint8_t movw_0_esp_gs[4] = { 0x8e, 0x6c, 0x24, 0x0 };
1791 	static const uint8_t movw_4_esp_fs[4] = { 0x8e, 0x64, 0x24, 0x4 };
1792 	static const uint8_t movw_8_esp_es[4] = { 0x8e, 0x44, 0x24, 0x8 };
1793 	static const uint8_t movw_c_esp_ds[4] = { 0x8e, 0x5c, 0x24, 0xc };
1794 
1795 	if (bcmp(pc, movw_0_esp_gs, sizeof (movw_0_esp_gs)) == 0 ||
1796 	    bcmp(pc, movw_4_esp_fs, sizeof (movw_4_esp_fs)) == 0 ||
1797 	    bcmp(pc, movw_8_esp_es, sizeof (movw_8_esp_es)) == 0 ||
1798 	    bcmp(pc, movw_c_esp_ds, sizeof (movw_c_esp_ds)) == 0)
1799 		return (1);
1800 
1801 	return (0);
1802 }
1803 
1804 #endif	/* __i386 */
1805 
1806 /*
1807  * Test to see if the instruction is part of _sys_rtt.
1808  *
1809  * Again on the hypervisor if we try to IRET to user land with a bad code
1810  * or stack selector we will get vectored through xen_failsafe_callback.
1811  * In which case we assume we got here via _sys_rtt since we only allow
1812  * IRET to user land to take place in _sys_rtt.
1813  */
1814 static int
1815 instr_is_sys_rtt(caddr_t pc)
1816 {
1817 	extern void _sys_rtt(), _sys_rtt_end();
1818 
1819 	if ((uintptr_t)pc < (uintptr_t)_sys_rtt ||
1820 	    (uintptr_t)pc > (uintptr_t)_sys_rtt_end)
1821 		return (0);
1822 
1823 	return (1);
1824 }
1825 
1826 /*
1827  * Handle #gp faults in kernel mode.
1828  *
1829  * One legitimate way this can happen is if we attempt to update segment
1830  * registers to naughty values on the way out of the kernel.
1831  *
1832  * This can happen in a couple of ways: someone - either accidentally or
1833  * on purpose - creates (setcontext(2), lwp_create(2)) or modifies
1834  * (signal(2)) a ucontext that contains silly segment register values.
1835  * Or someone - either accidentally or on purpose - modifies the prgregset_t
1836  * of a subject process via /proc to contain silly segment register values.
1837  *
1838  * (The unfortunate part is that we can end up discovering the bad segment
1839  * register value in the middle of an 'iret' after we've popped most of the
1840  * stack.  So it becomes quite difficult to associate an accurate ucontext
1841  * with the lwp, because the act of taking the #gp trap overwrites most of
1842  * what we were going to send the lwp.)
1843  *
1844  * OTOH if it turns out that's -not- the problem, and we're -not- an lwp
1845  * trying to return to user mode and we get a #gp fault, then we need
1846  * to die() -- which will happen if we return non-zero from this routine.
1847  */
1848 static int
1849 kern_gpfault(struct regs *rp)
1850 {
1851 	kthread_t *t = curthread;
1852 	proc_t *p = ttoproc(t);
1853 	klwp_t *lwp = ttolwp(t);
1854 	struct regs tmpregs, *trp = NULL;
1855 	caddr_t pc = (caddr_t)rp->r_pc;
1856 	int v;
1857 	uint32_t auditing = AU_AUDITING();
1858 
1859 	/*
1860 	 * if we're not an lwp, or in the case of running native the
1861 	 * pc range is outside _sys_rtt, then we should immediately
1862 	 * be die()ing horribly.
1863 	 */
1864 	if (lwp == NULL || !instr_is_sys_rtt(pc))
1865 		return (1);
1866 
1867 	/*
1868 	 * So at least we're in the right part of the kernel.
1869 	 *
1870 	 * Disassemble the instruction at the faulting pc.
1871 	 * Once we know what it is, we carefully reconstruct the stack
1872 	 * based on the order in which the stack is deconstructed in
1873 	 * _sys_rtt. Ew.
1874 	 */
1875 	if (instr_is_iret(pc)) {
1876 		/*
1877 		 * We took the #gp while trying to perform the IRET.
1878 		 * This means that either %cs or %ss are bad.
1879 		 * All we know for sure is that most of the general
1880 		 * registers have been restored, including the
1881 		 * segment registers, and all we have left on the
1882 		 * topmost part of the lwp's stack are the
1883 		 * registers that the iretq was unable to consume.
1884 		 *
1885 		 * All the rest of the state was crushed by the #gp
1886 		 * which pushed -its- registers atop our old save area
1887 		 * (because we had to decrement the stack pointer, sigh) so
1888 		 * all that we can try and do is to reconstruct the
1889 		 * crushed frame from the #gp trap frame itself.
1890 		 */
1891 		trp = &tmpregs;
1892 		trp->r_ss = lwptoregs(lwp)->r_ss;
1893 		trp->r_sp = lwptoregs(lwp)->r_sp;
1894 		trp->r_ps = lwptoregs(lwp)->r_ps;
1895 		trp->r_cs = lwptoregs(lwp)->r_cs;
1896 		trp->r_pc = lwptoregs(lwp)->r_pc;
1897 		bcopy(rp, trp, offsetof(struct regs, r_pc));
1898 
1899 		/*
1900 		 * Validate simple math
1901 		 */
1902 		ASSERT(trp->r_pc == lwptoregs(lwp)->r_pc);
1903 		ASSERT(trp->r_err == rp->r_err);
1904 
1905 
1906 
1907 	}
1908 
1909 #if defined(__amd64)
1910 	if (trp == NULL && lwp->lwp_pcb.pcb_rupdate != 0) {
1911 
1912 		/*
1913 		 * This is the common case -- we're trying to load
1914 		 * a bad segment register value in the only section
1915 		 * of kernel code that ever loads segment registers.
1916 		 *
1917 		 * We don't need to do anything at this point because
1918 		 * the pcb contains all the pending segment register
1919 		 * state, and the regs are still intact because we
1920 		 * didn't adjust the stack pointer yet.  Given the fidelity
1921 		 * of all this, we could conceivably send a signal
1922 		 * to the lwp, rather than core-ing.
1923 		 */
1924 		trp = lwptoregs(lwp);
1925 		ASSERT((caddr_t)trp == (caddr_t)rp->r_sp);
1926 	}
1927 
1928 #elif defined(__i386)
1929 
1930 	if (trp == NULL && instr_is_segregs_pop(pc))
1931 		trp = lwptoregs(lwp);
1932 
1933 #endif	/* __i386 */
1934 
1935 	if (trp == NULL)
1936 		return (1);
1937 
1938 	/*
1939 	 * If we get to here, we're reasonably confident that we've
1940 	 * correctly decoded what happened on the way out of the kernel.
1941 	 * Rewrite the lwp's registers so that we can create a core dump
1942 	 * the (at least vaguely) represents the mcontext we were
1943 	 * being asked to restore when things went so terribly wrong.
1944 	 */
1945 
1946 	/*
1947 	 * Make sure that we have a meaningful %trapno and %err.
1948 	 */
1949 	trp->r_trapno = rp->r_trapno;
1950 	trp->r_err = rp->r_err;
1951 
1952 	if ((caddr_t)trp != (caddr_t)lwptoregs(lwp))
1953 		bcopy(trp, lwptoregs(lwp), sizeof (*trp));
1954 
1955 
1956 	mutex_enter(&p->p_lock);
1957 	lwp->lwp_cursig = SIGSEGV;
1958 	mutex_exit(&p->p_lock);
1959 
1960 	/*
1961 	 * Terminate all LWPs but don't discard them.  If another lwp beat
1962 	 * us to the punch by calling exit(), evaporate now.
1963 	 */
1964 	proc_is_exiting(p);
1965 	if (exitlwps(1) != 0) {
1966 		mutex_enter(&p->p_lock);
1967 		lwp_exit();
1968 	}
1969 
1970 	if (auditing)		/* audit core dump */
1971 		audit_core_start(SIGSEGV);
1972 	v = core(SIGSEGV, B_FALSE);
1973 	if (auditing)		/* audit core dump */
1974 		audit_core_finish(v ? CLD_KILLED : CLD_DUMPED);
1975 	exit(v ? CLD_KILLED : CLD_DUMPED, SIGSEGV);
1976 	return (0);
1977 }
1978 
1979 /*
1980  * dump_tss() - Display the TSS structure
1981  */
1982 
1983 #if !defined(__xpv)
1984 #if defined(__amd64)
1985 
1986 static void
1987 dump_tss(void)
1988 {
1989 	const char tss_fmt[] = "tss.%s:\t0x%p\n";  /* Format string */
1990 	tss_t *tss = CPU->cpu_tss;
1991 
1992 	printf(tss_fmt, "tss_rsp0", (void *)tss->tss_rsp0);
1993 	printf(tss_fmt, "tss_rsp1", (void *)tss->tss_rsp1);
1994 	printf(tss_fmt, "tss_rsp2", (void *)tss->tss_rsp2);
1995 
1996 	printf(tss_fmt, "tss_ist1", (void *)tss->tss_ist1);
1997 	printf(tss_fmt, "tss_ist2", (void *)tss->tss_ist2);
1998 	printf(tss_fmt, "tss_ist3", (void *)tss->tss_ist3);
1999 	printf(tss_fmt, "tss_ist4", (void *)tss->tss_ist4);
2000 	printf(tss_fmt, "tss_ist5", (void *)tss->tss_ist5);
2001 	printf(tss_fmt, "tss_ist6", (void *)tss->tss_ist6);
2002 	printf(tss_fmt, "tss_ist7", (void *)tss->tss_ist7);
2003 }
2004 
2005 #elif defined(__i386)
2006 
2007 static void
2008 dump_tss(void)
2009 {
2010 	const char tss_fmt[] = "tss.%s:\t0x%p\n";  /* Format string */
2011 	tss_t *tss = CPU->cpu_tss;
2012 
2013 	printf(tss_fmt, "tss_link", (void *)(uintptr_t)tss->tss_link);
2014 	printf(tss_fmt, "tss_esp0", (void *)(uintptr_t)tss->tss_esp0);
2015 	printf(tss_fmt, "tss_ss0", (void *)(uintptr_t)tss->tss_ss0);
2016 	printf(tss_fmt, "tss_esp1", (void *)(uintptr_t)tss->tss_esp1);
2017 	printf(tss_fmt, "tss_ss1", (void *)(uintptr_t)tss->tss_ss1);
2018 	printf(tss_fmt, "tss_esp2", (void *)(uintptr_t)tss->tss_esp2);
2019 	printf(tss_fmt, "tss_ss2", (void *)(uintptr_t)tss->tss_ss2);
2020 	printf(tss_fmt, "tss_cr3", (void *)(uintptr_t)tss->tss_cr3);
2021 	printf(tss_fmt, "tss_eip", (void *)(uintptr_t)tss->tss_eip);
2022 	printf(tss_fmt, "tss_eflags", (void *)(uintptr_t)tss->tss_eflags);
2023 	printf(tss_fmt, "tss_eax", (void *)(uintptr_t)tss->tss_eax);
2024 	printf(tss_fmt, "tss_ebx", (void *)(uintptr_t)tss->tss_ebx);
2025 	printf(tss_fmt, "tss_ecx", (void *)(uintptr_t)tss->tss_ecx);
2026 	printf(tss_fmt, "tss_edx", (void *)(uintptr_t)tss->tss_edx);
2027 	printf(tss_fmt, "tss_esp", (void *)(uintptr_t)tss->tss_esp);
2028 }
2029 
2030 #endif	/* __amd64 */
2031 #endif	/* !__xpv */
2032 
2033 #if defined(TRAPTRACE)
2034 
2035 int ttrace_nrec = 10;		/* number of records to dump out */
2036 int ttrace_dump_nregs = 0;	/* dump out this many records with regs too */
2037 
2038 /*
2039  * Dump out the last ttrace_nrec traptrace records on each CPU
2040  */
2041 static void
2042 dump_ttrace(void)
2043 {
2044 	trap_trace_ctl_t *ttc;
2045 	trap_trace_rec_t *rec;
2046 	uintptr_t current;
2047 	int i, j, k;
2048 	int n = NCPU;
2049 #if defined(__amd64)
2050 	const char banner[] =
2051 	    "\ncpu          address    timestamp "
2052 	    "type  vc  handler   pc\n";
2053 	const char fmt1[] = "%3d %016lx %12llx ";
2054 #elif defined(__i386)
2055 	const char banner[] =
2056 	    "\ncpu  address     timestamp type  vc  handler   pc\n";
2057 	const char fmt1[] = "%3d %08lx %12llx ";
2058 #endif
2059 	const char fmt2[] = "%4s %3x ";
2060 	const char fmt3[] = "%8s ";
2061 
2062 	if (ttrace_nrec == 0)
2063 		return;
2064 
2065 	printf(banner);
2066 
2067 	for (i = 0; i < n; i++) {
2068 		ttc = &trap_trace_ctl[i];
2069 		if (ttc->ttc_first == NULL)
2070 			continue;
2071 
2072 		current = ttc->ttc_next - sizeof (trap_trace_rec_t);
2073 		for (j = 0; j < ttrace_nrec; j++) {
2074 			struct sysent	*sys;
2075 			struct autovec	*vec;
2076 			extern struct av_head autovect[];
2077 			int type;
2078 			ulong_t	off;
2079 			char *sym, *stype;
2080 
2081 			if (current < ttc->ttc_first)
2082 				current =
2083 				    ttc->ttc_limit - sizeof (trap_trace_rec_t);
2084 
2085 			if (current == NULL)
2086 				continue;
2087 
2088 			rec = (trap_trace_rec_t *)current;
2089 
2090 			if (rec->ttr_stamp == 0)
2091 				break;
2092 
2093 			printf(fmt1, i, (uintptr_t)rec, rec->ttr_stamp);
2094 
2095 			switch (rec->ttr_marker) {
2096 			case TT_SYSCALL:
2097 			case TT_SYSENTER:
2098 			case TT_SYSC:
2099 			case TT_SYSC64:
2100 #if defined(__amd64)
2101 				sys = &sysent32[rec->ttr_sysnum];
2102 				switch (rec->ttr_marker) {
2103 				case TT_SYSC64:
2104 					sys = &sysent[rec->ttr_sysnum];
2105 					/*FALLTHROUGH*/
2106 #elif defined(__i386)
2107 				sys = &sysent[rec->ttr_sysnum];
2108 				switch (rec->ttr_marker) {
2109 				case TT_SYSC64:
2110 #endif
2111 				case TT_SYSC:
2112 					stype = "sysc";	/* syscall */
2113 					break;
2114 				case TT_SYSCALL:
2115 					stype = "lcal";	/* lcall */
2116 					break;
2117 				case TT_SYSENTER:
2118 					stype = "syse";	/* sysenter */
2119 					break;
2120 				default:
2121 					break;
2122 				}
2123 				printf(fmt2, "sysc", rec->ttr_sysnum);
2124 				if (sys != NULL) {
2125 					sym = kobj_getsymname(
2126 					    (uintptr_t)sys->sy_callc,
2127 					    &off);
2128 					if (sym != NULL)
2129 						printf(fmt3, sym);
2130 					else
2131 						printf("%p ", sys->sy_callc);
2132 				} else {
2133 					printf(fmt3, "unknown");
2134 				}
2135 				break;
2136 
2137 			case TT_INTERRUPT:
2138 				printf(fmt2, "intr", rec->ttr_vector);
2139 				if (get_intr_handler != NULL)
2140 					vec = (struct autovec *)
2141 					    (*get_intr_handler)
2142 					    (rec->ttr_cpuid, rec->ttr_vector);
2143 				else
2144 					vec =
2145 					    autovect[rec->ttr_vector].avh_link;
2146 
2147 				if (vec != NULL) {
2148 					sym = kobj_getsymname(
2149 					    (uintptr_t)vec->av_vector, &off);
2150 					if (sym != NULL)
2151 						printf(fmt3, sym);
2152 					else
2153 						printf("%p ", vec->av_vector);
2154 				} else {
2155 					printf(fmt3, "unknown ");
2156 				}
2157 				break;
2158 
2159 			case TT_TRAP:
2160 			case TT_EVENT:
2161 				type = rec->ttr_regs.r_trapno;
2162 				printf(fmt2, "trap", type);
2163 				if (type < TRAP_TYPES)
2164 					printf("     #%s ",
2165 					    trap_type_mnemonic[type]);
2166 				else
2167 					switch (type) {
2168 					case T_AST:
2169 						printf(fmt3, "ast");
2170 						break;
2171 					default:
2172 						printf(fmt3, "");
2173 						break;
2174 					}
2175 				break;
2176 
2177 			default:
2178 				break;
2179 			}
2180 
2181 			sym = kobj_getsymname(rec->ttr_regs.r_pc, &off);
2182 			if (sym != NULL)
2183 				printf("%s+%lx\n", sym, off);
2184 			else
2185 				printf("%lx\n", rec->ttr_regs.r_pc);
2186 
2187 			if (ttrace_dump_nregs-- > 0) {
2188 				int s;
2189 
2190 				if (rec->ttr_marker == TT_INTERRUPT)
2191 					printf(
2192 					    "\t\tipl %x spl %x pri %x\n",
2193 					    rec->ttr_ipl,
2194 					    rec->ttr_spl,
2195 					    rec->ttr_pri);
2196 
2197 				dumpregs(&rec->ttr_regs);
2198 
2199 				printf("\t%3s: %p\n\n", " ct",
2200 				    (void *)rec->ttr_curthread);
2201 
2202 				/*
2203 				 * print out the pc stack that we recorded
2204 				 * at trap time (if any)
2205 				 */
2206 				for (s = 0; s < rec->ttr_sdepth; s++) {
2207 					uintptr_t fullpc;
2208 
2209 					if (s >= TTR_STACK_DEPTH) {
2210 						printf("ttr_sdepth corrupt\n");
2211 						break;
2212 					}
2213 
2214 					fullpc = (uintptr_t)rec->ttr_stack[s];
2215 
2216 					sym = kobj_getsymname(fullpc, &off);
2217 					if (sym != NULL)
2218 						printf("-> %s+0x%lx()\n",
2219 						    sym, off);
2220 					else
2221 						printf("-> 0x%lx()\n", fullpc);
2222 				}
2223 				printf("\n");
2224 			}
2225 			current -= sizeof (trap_trace_rec_t);
2226 		}
2227 	}
2228 }
2229 
2230 #endif	/* TRAPTRACE */
2231 
2232 void
2233 panic_showtrap(struct panic_trap_info *tip)
2234 {
2235 	showregs(tip->trap_type, tip->trap_regs, tip->trap_addr);
2236 
2237 #if defined(TRAPTRACE)
2238 	dump_ttrace();
2239 #endif
2240 
2241 #if !defined(__xpv)
2242 	if (tip->trap_type == T_DBLFLT)
2243 		dump_tss();
2244 #endif
2245 }
2246 
2247 void
2248 panic_savetrap(panic_data_t *pdp, struct panic_trap_info *tip)
2249 {
2250 	panic_saveregs(pdp, tip->trap_regs);
2251 }
2252