1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 /* 25 * Copyright (c) 2010, Intel Corporation. 26 * All rights reserved. 27 */ 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/systm.h> 35 #include <sys/user.h> 36 #include <sys/mman.h> 37 #include <sys/vm.h> 38 #include <sys/conf.h> 39 #include <sys/avintr.h> 40 #include <sys/autoconf.h> 41 #include <sys/disp.h> 42 #include <sys/class.h> 43 #include <sys/bitmap.h> 44 45 #include <sys/privregs.h> 46 47 #include <sys/proc.h> 48 #include <sys/buf.h> 49 #include <sys/kmem.h> 50 #include <sys/mem.h> 51 #include <sys/kstat.h> 52 53 #include <sys/reboot.h> 54 55 #include <sys/cred.h> 56 #include <sys/vnode.h> 57 #include <sys/file.h> 58 59 #include <sys/procfs.h> 60 61 #include <sys/vfs.h> 62 #include <sys/cmn_err.h> 63 #include <sys/utsname.h> 64 #include <sys/debug.h> 65 #include <sys/kdi.h> 66 67 #include <sys/dumphdr.h> 68 #include <sys/bootconf.h> 69 #include <sys/memlist_plat.h> 70 #include <sys/varargs.h> 71 #include <sys/promif.h> 72 #include <sys/modctl.h> 73 74 #include <sys/sunddi.h> 75 #include <sys/sunndi.h> 76 #include <sys/ndi_impldefs.h> 77 #include <sys/ddidmareq.h> 78 #include <sys/psw.h> 79 #include <sys/regset.h> 80 #include <sys/clock.h> 81 #include <sys/pte.h> 82 #include <sys/tss.h> 83 #include <sys/stack.h> 84 #include <sys/trap.h> 85 #include <sys/fp.h> 86 #include <vm/kboot_mmu.h> 87 #include <vm/anon.h> 88 #include <vm/as.h> 89 #include <vm/page.h> 90 #include <vm/seg.h> 91 #include <vm/seg_dev.h> 92 #include <vm/seg_kmem.h> 93 #include <vm/seg_kpm.h> 94 #include <vm/seg_map.h> 95 #include <vm/seg_vn.h> 96 #include <vm/seg_kp.h> 97 #include <sys/memnode.h> 98 #include <vm/vm_dep.h> 99 #include <sys/thread.h> 100 #include <sys/sysconf.h> 101 #include <sys/vm_machparam.h> 102 #include <sys/archsystm.h> 103 #include <sys/machsystm.h> 104 #include <vm/hat.h> 105 #include <vm/hat_i86.h> 106 #include <sys/pmem.h> 107 #include <sys/smp_impldefs.h> 108 #include <sys/x86_archext.h> 109 #include <sys/cpuvar.h> 110 #include <sys/segments.h> 111 #include <sys/clconf.h> 112 #include <sys/kobj.h> 113 #include <sys/kobj_lex.h> 114 #include <sys/cpc_impl.h> 115 #include <sys/cpu_module.h> 116 #include <sys/smbios.h> 117 #include <sys/debug_info.h> 118 #include <sys/bootinfo.h> 119 #include <sys/ddi_timer.h> 120 #include <sys/systeminfo.h> 121 #include <sys/multiboot.h> 122 #include <sys/kflt_mem.h> 123 124 #ifdef __xpv 125 126 #include <sys/hypervisor.h> 127 #include <sys/xen_mmu.h> 128 #include <sys/evtchn_impl.h> 129 #include <sys/gnttab.h> 130 #include <sys/xpv_panic.h> 131 #include <xen/sys/xenbus_comms.h> 132 #include <xen/public/physdev.h> 133 134 extern void xen_late_startup(void); 135 136 struct xen_evt_data cpu0_evt_data; 137 138 #else /* __xpv */ 139 #include <sys/memlist_impl.h> 140 141 extern void mem_config_init(void); 142 #endif /* __xpv */ 143 144 extern void progressbar_init(void); 145 extern void brand_init(void); 146 extern void pcf_init(void); 147 extern void pg_init(void); 148 149 extern int size_pse_array(pgcnt_t, int); 150 151 #if defined(_SOFT_HOSTID) 152 153 #include <sys/rtc.h> 154 155 static int32_t set_soft_hostid(void); 156 static char hostid_file[] = "/etc/hostid"; 157 158 #endif 159 160 void *gfx_devinfo_list; 161 162 #if defined(__amd64) && !defined(__xpv) 163 extern void immu_startup(void); 164 #endif 165 166 /* 167 * XXX make declaration below "static" when drivers no longer use this 168 * interface. 169 */ 170 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 171 172 /* 173 * segkp 174 */ 175 extern int segkp_fromheap; 176 177 static void kvm_init(void); 178 static void startup_init(void); 179 static void startup_memlist(void); 180 static void startup_kmem(void); 181 static void startup_modules(void); 182 static void startup_vm(void); 183 static void startup_end(void); 184 static void layout_kernel_va(void); 185 186 /* 187 * Declare these as initialized data so we can patch them. 188 */ 189 #ifdef __i386 190 191 /* 192 * Due to virtual address space limitations running in 32 bit mode, restrict 193 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 194 * 195 * If the physical max memory size of 64g were allowed to be configured, the 196 * size of user virtual address space will be less than 1g. A limited user 197 * address space greatly reduces the range of applications that can run. 198 * 199 * If more physical memory than PHYSMEM is required, users should preferably 200 * run in 64 bit mode which has far looser virtual address space limitations. 201 * 202 * If 64 bit mode is not available (as in IA32) and/or more physical memory 203 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 204 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 205 * should also be carefully tuned to balance out the need of the user 206 * application while minimizing the risk of kernel heap exhaustion due to 207 * kernelbase being set too high. 208 */ 209 #define PHYSMEM 0x400000 210 211 #else /* __amd64 */ 212 213 /* 214 * For now we can handle memory with physical addresses up to about 215 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 216 * half the VA space for seg_kpm. When systems get bigger than 64TB this 217 * code will need revisiting. There is an implicit assumption that there 218 * are no *huge* holes in the physical address space too. 219 */ 220 #define TERABYTE (1ul << 40) 221 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 222 #define PHYSMEM PHYSMEM_MAX64 223 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 224 225 #endif /* __amd64 */ 226 227 pgcnt_t physmem = PHYSMEM; 228 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 229 230 char *kobj_file_buf; 231 int kobj_file_bufsize; /* set in /etc/system */ 232 233 /* Global variables for MP support. Used in mp_startup */ 234 caddr_t rm_platter_va = 0; 235 uint32_t rm_platter_pa; 236 237 /* 238 * On 64 bit systems enable the kernel page freelist 239 */ 240 #if defined(__amd64) && !defined(__xpv) 241 int kflt_disable = 0; 242 #else 243 int kflt_disable = 1; 244 #endif /* __amd64 && !__xpv */ 245 int auto_lpg_disable = 1; 246 247 /* 248 * Some CPUs have holes in the middle of the 64-bit virtual address range. 249 */ 250 uintptr_t hole_start, hole_end; 251 252 /* 253 * kpm mapping window 254 */ 255 caddr_t kpm_vbase; 256 size_t kpm_size; 257 static int kpm_desired; 258 #ifdef __amd64 259 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 260 #endif 261 262 /* 263 * Configuration parameters set at boot time. 264 */ 265 266 caddr_t econtig; /* end of first block of contiguous kernel */ 267 268 struct bootops *bootops = 0; /* passed in from boot */ 269 struct bootops **bootopsp; 270 struct boot_syscalls *sysp; /* passed in from boot */ 271 272 char bootblock_fstype[16]; 273 274 char kern_bootargs[OBP_MAXPATHLEN]; 275 char kern_bootfile[OBP_MAXPATHLEN]; 276 277 /* 278 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 279 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 280 * zio buffers from their own segment, otherwise they are allocated from the 281 * heap. The optimization of allocating zio buffers from their own segment is 282 * only valid on 64-bit kernels. 283 */ 284 #if defined(__amd64) 285 int segzio_fromheap = 0; 286 #else 287 int segzio_fromheap = 1; 288 #endif 289 290 /* 291 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 292 * depends on number of BOP_ALLOC calls made and requested size, memory size 293 * combination and whether boot.bin memory needs to be freed. 294 */ 295 #define POSS_NEW_FRAGMENTS 12 296 297 /* 298 * VM data structures 299 */ 300 long page_hashsz; /* Size of page hash table (power of two) */ 301 unsigned int page_hashsz_shift; /* log2(page_hashsz) */ 302 struct page *pp_base; /* Base of initial system page struct array */ 303 struct page **page_hash; /* Page hash table */ 304 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 305 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 306 int pse_shift; /* log2(pse_table_size) */ 307 struct seg ktextseg; /* Segment used for kernel executable image */ 308 struct seg kvalloc; /* Segment used for "valloc" mapping */ 309 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 310 struct seg kmapseg; /* Segment used for generic kernel mappings */ 311 struct seg kdebugseg; /* Segment used for the kernel debugger */ 312 313 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 314 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 315 316 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 317 318 #if defined(__amd64) 319 struct seg kvseg_core; /* Segment used for the core heap */ 320 struct seg kpmseg; /* Segment used for physical mapping */ 321 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 322 #else 323 struct seg *segkpm = NULL; /* Unused on IA32 */ 324 #endif 325 326 caddr_t segkp_base; /* Base address of segkp */ 327 caddr_t segzio_base; /* Base address of segzio */ 328 #if defined(__amd64) 329 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 330 #else 331 pgcnt_t segkpsize = 0; 332 #endif 333 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 334 335 /* 336 * A static DR page_t VA map is reserved that can map the page structures 337 * for a domain's entire RA space. The pages that back this space are 338 * dynamically allocated and need not be physically contiguous. The DR 339 * map size is derived from KPM size. 340 * This mechanism isn't used by x86 yet, so just stubs here. 341 */ 342 int ppvm_enable = 0; /* Static virtual map for page structs */ 343 page_t *ppvm_base = NULL; /* Base of page struct map */ 344 pgcnt_t ppvm_size = 0; /* Size of page struct map */ 345 346 /* 347 * VA range available to the debugger 348 */ 349 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 350 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 351 352 struct memseg *memseg_base; 353 struct vnode unused_pages_vp; 354 355 #define FOURGB 0x100000000LL 356 357 struct memlist *memlist; 358 359 caddr_t s_text; /* start of kernel text segment */ 360 caddr_t e_text; /* end of kernel text segment */ 361 caddr_t s_data; /* start of kernel data segment */ 362 caddr_t e_data; /* end of kernel data segment */ 363 caddr_t modtext; /* start of loadable module text reserved */ 364 caddr_t e_modtext; /* end of loadable module text reserved */ 365 caddr_t moddata; /* start of loadable module data reserved */ 366 caddr_t e_moddata; /* end of loadable module data reserved */ 367 368 struct memlist *phys_install; /* Total installed physical memory */ 369 struct memlist *phys_avail; /* Total available physical memory */ 370 struct memlist *bios_rsvd; /* Bios reserved memory */ 371 372 /* 373 * kphysm_init returns the number of pages that were processed 374 */ 375 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 376 377 #define IO_PROP_SIZE 64 /* device property size */ 378 379 /* 380 * a couple useful roundup macros 381 */ 382 #define ROUND_UP_PAGE(x) \ 383 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 384 #define ROUND_UP_LPAGE(x) \ 385 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 386 #define ROUND_UP_4MEG(x) \ 387 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 388 #define ROUND_UP_TOPLEVEL(x) \ 389 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 390 391 /* 392 * 32-bit Kernel's Virtual memory layout. 393 * +-----------------------+ 394 * | | 395 * 0xFFC00000 -|-----------------------|- ARGSBASE 396 * | debugger | 397 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 398 * | Kernel Data | 399 * 0xFEC00000 -|-----------------------| 400 * | Kernel Text | 401 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 402 * |--- GDT ---|- GDT page (GDT_VA) 403 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 404 * | | 405 * | page_t structures | 406 * | memsegs, memlists, | 407 * | page hash, etc. | 408 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 409 * | | (segkp is just an arena in the heap) 410 * | | 411 * | kvseg | 412 * | | 413 * | | 414 * --- -|-----------------------|- kernelheap (floating) 415 * | Segkmap | 416 * 0xC3002000 -|-----------------------|- segmap_start (floating) 417 * | Red Zone | 418 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 419 * | | || 420 * | Shared objects | \/ 421 * | | 422 * : : 423 * | user data | 424 * |-----------------------| 425 * | user text | 426 * 0x08048000 -|-----------------------| 427 * | user stack | 428 * : : 429 * | invalid | 430 * 0x00000000 +-----------------------+ 431 * 432 * 433 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 434 * +-----------------------+ 435 * | | 436 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 437 * | debugger (?) | 438 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 439 * | unused | 440 * +-----------------------+ 441 * | Kernel Data | 442 * 0xFFFFFFFF.FBC00000 |-----------------------| 443 * | Kernel Text | 444 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 445 * |--- GDT ---|- GDT page (GDT_VA) 446 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 447 * | | 448 * | Core heap | (used for loadable modules) 449 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 450 * | Kernel | 451 * | heap | 452 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 453 * | segmap | 454 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 455 * | device mappings | 456 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 457 * | segzio | 458 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 459 * | segkp | 460 * --- |-----------------------|- segkp_base (floating) 461 * | page_t structures | valloc_base + valloc_sz 462 * | memsegs, memlists, | 463 * | page hash, etc. | 464 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB) 465 * | segkpm | 466 * 0xFFFFFE00.00000000 |-----------------------| 467 * | Red Zone | 468 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB) 469 * | User stack |- User space memory 470 * | | 471 * | shared objects, etc | (grows downwards) 472 * : : 473 * | | 474 * 0xFFFF8000.00000000 |-----------------------| 475 * | | 476 * | VA Hole / unused | 477 * | | 478 * 0x00008000.00000000 |-----------------------| 479 * | | 480 * | | 481 * : : 482 * | user heap | (grows upwards) 483 * | | 484 * | user data | 485 * |-----------------------| 486 * | user text | 487 * 0x00000000.04000000 |-----------------------| 488 * | invalid | 489 * 0x00000000.00000000 +-----------------------+ 490 * 491 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 492 * kernel, except that userlimit is raised to 0xfe000000 493 * 494 * Floating values: 495 * 496 * valloc_base: start of the kernel's memory management/tracking data 497 * structures. This region contains page_t structures for 498 * physical memory, memsegs, memlists, and the page hash. 499 * 500 * core_base: start of the kernel's "core" heap area on 64-bit systems. 501 * This area is intended to be used for global data as well as for module 502 * text/data that does not fit into the nucleus pages. The core heap is 503 * restricted to a 2GB range, allowing every address within it to be 504 * accessed using rip-relative addressing 505 * 506 * ekernelheap: end of kernelheap and start of segmap. 507 * 508 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 509 * above a red zone that separates the user's address space from the 510 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 511 * 512 * segmap_start: start of segmap. The length of segmap can be modified 513 * through eeprom. The default length is 16MB on 32-bit systems and 64MB 514 * on 64-bit systems. 515 * 516 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 517 * decreased by 2X the size required for page_t. This allows the kernel 518 * heap to grow in size with physical memory. With sizeof(page_t) == 80 519 * bytes, the following shows the values of kernelbase and kernel heap 520 * sizes for different memory configurations (assuming default segmap and 521 * segkp sizes). 522 * 523 * mem size for kernelbase kernel heap 524 * size page_t's size 525 * ---- --------- ---------- ----------- 526 * 1gb 0x01400000 0xd1800000 684MB 527 * 2gb 0x02800000 0xcf000000 704MB 528 * 4gb 0x05000000 0xca000000 744MB 529 * 6gb 0x07800000 0xc5000000 784MB 530 * 8gb 0x0a000000 0xc0000000 824MB 531 * 16gb 0x14000000 0xac000000 984MB 532 * 32gb 0x28000000 0x84000000 1304MB 533 * 64gb 0x50000000 0x34000000 1944MB (*) 534 * 535 * kernelbase is less than the abi minimum of 0xc0000000 for memory 536 * configurations above 8gb. 537 * 538 * (*) support for memory configurations above 32gb will require manual tuning 539 * of kernelbase to balance out the need of user applications. 540 */ 541 542 /* real-time-clock initialization parameters */ 543 extern time_t process_rtc_config_file(void); 544 545 uintptr_t kernelbase; 546 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 547 uintptr_t eprom_kernelbase; 548 size_t segmapsize; 549 uintptr_t segmap_start; 550 int segmapfreelists; 551 pgcnt_t npages; 552 pgcnt_t orig_npages; 553 size_t core_size; /* size of "core" heap */ 554 uintptr_t core_base; /* base address of "core" heap */ 555 556 /* 557 * List of bootstrap pages. We mark these as allocated in startup. 558 * release_bootstrap() will free them when we're completely done with 559 * the bootstrap. 560 */ 561 static page_t *bootpages; 562 563 /* 564 * boot time pages that have a vnode from the ramdisk will keep that forever. 565 */ 566 static page_t *rd_pages; 567 568 /* 569 * Lower 64K 570 */ 571 static page_t *lower_pages = NULL; 572 static int lower_pages_count = 0; 573 574 struct system_hardware system_hardware; 575 576 /* 577 * Enable some debugging messages concerning memory usage... 578 */ 579 static void 580 print_memlist(char *title, struct memlist *mp) 581 { 582 prom_printf("MEMLIST: %s:\n", title); 583 while (mp != NULL) { 584 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 585 mp->ml_address, mp->ml_size); 586 mp = mp->ml_next; 587 } 588 } 589 590 /* 591 * XX64 need a comment here.. are these just default values, surely 592 * we read the "cpuid" type information to figure this out. 593 */ 594 int l2cache_sz = 0x80000; 595 int l2cache_linesz = 0x40; 596 int l2cache_assoc = 1; 597 598 static size_t textrepl_min_gb = 10; 599 600 /* 601 * on 64 bit we use a predifined VA range for mapping devices in the kernel 602 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 603 */ 604 #ifdef __amd64 605 606 vmem_t *device_arena; 607 uintptr_t toxic_addr = (uintptr_t)NULL; 608 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 609 610 #else /* __i386 */ 611 612 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 613 size_t toxic_bit_map_len = 0; /* in bits */ 614 615 #endif /* __i386 */ 616 617 /* 618 * Simple boot time debug facilities 619 */ 620 static char *prm_dbg_str[] = { 621 "%s:%d: '%s' is 0x%x\n", 622 "%s:%d: '%s' is 0x%llx\n" 623 }; 624 625 int prom_debug; 626 627 #define PRM_DEBUG(q) if (prom_debug) \ 628 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 629 #define PRM_POINT(q) if (prom_debug) \ 630 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 631 632 /* 633 * This structure is used to keep track of the intial allocations 634 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 635 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 636 */ 637 #define NUM_ALLOCATIONS 8 638 int num_allocations = 0; 639 struct { 640 void **al_ptr; 641 size_t al_size; 642 } allocations[NUM_ALLOCATIONS]; 643 size_t valloc_sz = 0; 644 uintptr_t valloc_base; 645 646 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 647 size = ROUND_UP_PAGE(size); \ 648 if (num_allocations == NUM_ALLOCATIONS) \ 649 panic("too many ADD_TO_ALLOCATIONS()"); \ 650 allocations[num_allocations].al_ptr = (void**)&ptr; \ 651 allocations[num_allocations].al_size = size; \ 652 valloc_sz += size; \ 653 ++num_allocations; \ 654 } 655 656 /* 657 * Allocate all the initial memory needed by the page allocator. 658 */ 659 static void 660 perform_allocations(void) 661 { 662 caddr_t mem; 663 int i; 664 int valloc_align; 665 666 PRM_DEBUG(valloc_base); 667 PRM_DEBUG(valloc_sz); 668 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 669 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 670 if (mem != (caddr_t)valloc_base) 671 panic("BOP_ALLOC() failed"); 672 bzero(mem, valloc_sz); 673 for (i = 0; i < num_allocations; ++i) { 674 *allocations[i].al_ptr = (void *)mem; 675 mem += allocations[i].al_size; 676 } 677 } 678 679 /* 680 * Our world looks like this at startup time. 681 * 682 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 683 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 684 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 685 * addresses are fixed in the binary at link time. 686 * 687 * On the text page: 688 * unix/genunix/krtld/module text loads. 689 * 690 * On the data page: 691 * unix/genunix/krtld/module data loads. 692 * 693 * Machine-dependent startup code 694 */ 695 void 696 startup(void) 697 { 698 #if !defined(__xpv) 699 extern void startup_pci_bios(void); 700 #endif 701 extern cpuset_t cpu_ready_set; 702 703 /* 704 * Make sure that nobody tries to use sekpm until we have 705 * initialized it properly. 706 */ 707 #if defined(__amd64) 708 kpm_desired = 1; 709 #endif 710 kpm_enable = 0; 711 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 712 713 #if defined(__xpv) /* XXPV fix me! */ 714 { 715 extern int segvn_use_regions; 716 segvn_use_regions = 0; 717 } 718 #endif 719 progressbar_init(); 720 startup_init(); 721 #if defined(__xpv) 722 startup_xen_version(); 723 #endif 724 startup_memlist(); 725 startup_kmem(); 726 startup_vm(); 727 #if !defined(__xpv) 728 /* 729 * Note we need to do this even on fast reboot in order to access 730 * the irq routing table (used for pci labels). 731 */ 732 startup_pci_bios(); 733 #endif 734 #if defined(__xpv) 735 startup_xen_mca(); 736 #endif 737 startup_modules(); 738 739 startup_end(); 740 } 741 742 static void 743 startup_init() 744 { 745 PRM_POINT("startup_init() starting..."); 746 747 /* 748 * Complete the extraction of cpuid data 749 */ 750 cpuid_pass2(CPU); 751 752 (void) check_boot_version(BOP_GETVERSION(bootops)); 753 754 /* 755 * Check for prom_debug in boot environment 756 */ 757 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 758 ++prom_debug; 759 PRM_POINT("prom_debug found in boot enviroment"); 760 } 761 762 /* 763 * Collect node, cpu and memory configuration information. 764 */ 765 get_system_configuration(); 766 767 /* 768 * Halt if this is an unsupported processor. 769 */ 770 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 771 printf("\n486 processor (\"%s\") detected.\n", 772 CPU->cpu_brandstr); 773 halt("This processor is not supported by this release " 774 "of Solaris."); 775 } 776 777 PRM_POINT("startup_init() done"); 778 } 779 780 /* 781 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 782 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 783 * also filters out physical page zero. There is some reliance on the 784 * boot loader allocating only a few contiguous physical memory chunks. 785 */ 786 static void 787 avail_filter(uint64_t *addr, uint64_t *size) 788 { 789 uintptr_t va; 790 uintptr_t next_va; 791 pfn_t pfn; 792 uint64_t pfn_addr; 793 uint64_t pfn_eaddr; 794 uint_t prot; 795 size_t len; 796 uint_t change; 797 798 if (prom_debug) 799 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 800 *addr, *size); 801 802 /* 803 * page zero is required for BIOS.. never make it available 804 */ 805 if (*addr == 0) { 806 *addr += MMU_PAGESIZE; 807 *size -= MMU_PAGESIZE; 808 } 809 810 /* 811 * First we trim from the front of the range. Since kbm_probe() 812 * walks ranges in virtual order, but addr/size are physical, we need 813 * to the list until no changes are seen. This deals with the case 814 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 815 * but w < v. 816 */ 817 do { 818 change = 0; 819 for (va = KERNEL_TEXT; 820 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 821 va = next_va) { 822 823 next_va = va + len; 824 pfn_addr = pfn_to_pa(pfn); 825 pfn_eaddr = pfn_addr + len; 826 827 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 828 change = 1; 829 while (*size > 0 && len > 0) { 830 *addr += MMU_PAGESIZE; 831 *size -= MMU_PAGESIZE; 832 len -= MMU_PAGESIZE; 833 } 834 } 835 } 836 if (change && prom_debug) 837 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 838 *addr, *size); 839 } while (change); 840 841 /* 842 * Trim pages from the end of the range. 843 */ 844 for (va = KERNEL_TEXT; 845 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 846 va = next_va) { 847 848 next_va = va + len; 849 pfn_addr = pfn_to_pa(pfn); 850 851 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 852 *size = pfn_addr - *addr; 853 } 854 855 if (prom_debug) 856 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 857 *addr, *size); 858 } 859 860 static void 861 kpm_init() 862 { 863 struct segkpm_crargs b; 864 865 /* 866 * These variables were all designed for sfmmu in which segkpm is 867 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 868 * might use 2+ page sizes on a single machine, so none of these 869 * variables have a single correct value. They are set up as if we 870 * always use a 4KB pagesize, which should do no harm. In the long 871 * run, we should get rid of KPM's assumption that only a single 872 * pagesize is used. 873 */ 874 kpm_pgshft = MMU_PAGESHIFT; 875 kpm_pgsz = MMU_PAGESIZE; 876 kpm_pgoff = MMU_PAGEOFFSET; 877 kpmp2pshft = 0; 878 kpmpnpgs = 1; 879 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 880 881 PRM_POINT("about to create segkpm"); 882 rw_enter(&kas.a_lock, RW_WRITER); 883 884 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 885 panic("cannot attach segkpm"); 886 887 b.prot = PROT_READ | PROT_WRITE; 888 b.nvcolors = 1; 889 890 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 891 panic("segkpm_create segkpm"); 892 893 rw_exit(&kas.a_lock); 894 } 895 896 /* 897 * The debug info page provides enough information to allow external 898 * inspectors (e.g. when running under a hypervisor) to bootstrap 899 * themselves into allowing full-blown kernel debugging. 900 */ 901 static void 902 init_debug_info(void) 903 { 904 caddr_t mem; 905 debug_info_t *di; 906 907 #ifndef __lint 908 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 909 #endif 910 911 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 912 MMU_PAGESIZE); 913 914 if (mem != (caddr_t)DEBUG_INFO_VA) 915 panic("BOP_ALLOC() failed"); 916 bzero(mem, MMU_PAGESIZE); 917 918 di = (debug_info_t *)mem; 919 920 di->di_magic = DEBUG_INFO_MAGIC; 921 di->di_version = DEBUG_INFO_VERSION; 922 di->di_modules = (uintptr_t)&modules; 923 di->di_s_text = (uintptr_t)s_text; 924 di->di_e_text = (uintptr_t)e_text; 925 di->di_s_data = (uintptr_t)s_data; 926 di->di_e_data = (uintptr_t)e_data; 927 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 928 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 929 } 930 931 /* 932 * Build the memlists and other kernel essential memory system data structures. 933 * This is everything at valloc_base. 934 */ 935 static void 936 startup_memlist(void) 937 { 938 size_t memlist_sz; 939 size_t memseg_sz; 940 size_t pagehash_sz; 941 size_t pp_sz; 942 uintptr_t va; 943 size_t len; 944 uint_t prot; 945 pfn_t pfn; 946 int memblocks; 947 pfn_t rsvd_high_pfn; 948 pgcnt_t rsvd_pgcnt; 949 size_t rsvdmemlist_sz; 950 int rsvdmemblocks; 951 caddr_t pagecolor_mem; 952 size_t pagecolor_memsz; 953 caddr_t page_ctrs_mem; 954 size_t page_ctrs_size; 955 size_t pse_table_alloc_size; 956 struct memlist *current; 957 extern void startup_build_mem_nodes(struct memlist *); 958 959 /* XX64 fix these - they should be in include files */ 960 extern size_t page_coloring_init(uint_t, int, int); 961 extern void page_coloring_setup(caddr_t); 962 963 PRM_POINT("startup_memlist() starting..."); 964 965 /* 966 * Use leftover large page nucleus text/data space for loadable modules. 967 * Use at most MODTEXT/MODDATA. 968 */ 969 len = kbm_nucleus_size; 970 ASSERT(len > MMU_PAGESIZE); 971 972 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 973 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 974 if (e_moddata - moddata > MODDATA) 975 e_moddata = moddata + MODDATA; 976 977 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 978 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 979 if (e_modtext - modtext > MODTEXT) 980 e_modtext = modtext + MODTEXT; 981 982 econtig = e_moddata; 983 984 PRM_DEBUG(modtext); 985 PRM_DEBUG(e_modtext); 986 PRM_DEBUG(moddata); 987 PRM_DEBUG(e_moddata); 988 PRM_DEBUG(econtig); 989 990 /* 991 * Examine the boot loader physical memory map to find out: 992 * - total memory in system - physinstalled 993 * - the max physical address - physmax 994 * - the number of discontiguous segments of memory. 995 */ 996 if (prom_debug) 997 print_memlist("boot physinstalled", 998 bootops->boot_mem->physinstalled); 999 installed_top_size_ex(bootops->boot_mem->physinstalled, &physmax, 1000 &physinstalled, &memblocks); 1001 PRM_DEBUG(physmax); 1002 PRM_DEBUG(physinstalled); 1003 PRM_DEBUG(memblocks); 1004 1005 /* 1006 * Compute maximum physical address for memory DR operations. 1007 * Memory DR operations are unsupported on xpv or 32bit OSes. 1008 */ 1009 #ifdef __amd64 1010 if (plat_dr_support_memory()) { 1011 if (plat_dr_physmax == 0) { 1012 uint_t pabits = UINT_MAX; 1013 1014 cpuid_get_addrsize(CPU, &pabits, NULL); 1015 plat_dr_physmax = btop(1ULL << pabits); 1016 } 1017 if (plat_dr_physmax > PHYSMEM_MAX64) 1018 plat_dr_physmax = PHYSMEM_MAX64; 1019 } else 1020 #endif 1021 plat_dr_physmax = 0; 1022 1023 /* 1024 * Examine the bios reserved memory to find out: 1025 * - the number of discontiguous segments of memory. 1026 */ 1027 if (prom_debug) 1028 print_memlist("boot reserved mem", 1029 bootops->boot_mem->rsvdmem); 1030 installed_top_size_ex(bootops->boot_mem->rsvdmem, &rsvd_high_pfn, 1031 &rsvd_pgcnt, &rsvdmemblocks); 1032 PRM_DEBUG(rsvd_high_pfn); 1033 PRM_DEBUG(rsvd_pgcnt); 1034 PRM_DEBUG(rsvdmemblocks); 1035 1036 /* 1037 * Initialize hat's mmu parameters. 1038 * Check for enforce-prot-exec in boot environment. It's used to 1039 * enable/disable support for the page table entry NX bit. 1040 * The default is to enforce PROT_EXEC on processors that support NX. 1041 * Boot seems to round up the "len", but 8 seems to be big enough. 1042 */ 1043 mmu_init(); 1044 1045 #ifdef __i386 1046 /* 1047 * physmax is lowered if there is more memory than can be 1048 * physically addressed in 32 bit (PAE/non-PAE) modes. 1049 */ 1050 if (mmu.pae_hat) { 1051 if (PFN_ABOVE64G(physmax)) { 1052 physinstalled -= (physmax - (PFN_64G - 1)); 1053 physmax = PFN_64G - 1; 1054 } 1055 } else { 1056 if (PFN_ABOVE4G(physmax)) { 1057 physinstalled -= (physmax - (PFN_4G - 1)); 1058 physmax = PFN_4G - 1; 1059 } 1060 } 1061 #endif 1062 1063 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 1064 1065 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 1066 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 1067 char value[8]; 1068 1069 if (len < 8) 1070 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 1071 else 1072 (void) strcpy(value, ""); 1073 if (strcmp(value, "off") == 0) 1074 mmu.pt_nx = 0; 1075 } 1076 PRM_DEBUG(mmu.pt_nx); 1077 1078 /* 1079 * We will need page_t's for every page in the system, except for 1080 * memory mapped at or above above the start of the kernel text segment. 1081 * 1082 * pages above e_modtext are attributed to kernel debugger (obp_pages) 1083 */ 1084 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1085 obp_pages = 0; 1086 va = KERNEL_TEXT; 1087 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1088 npages -= len >> MMU_PAGESHIFT; 1089 if (va >= (uintptr_t)e_moddata) 1090 obp_pages += len >> MMU_PAGESHIFT; 1091 va += len; 1092 } 1093 PRM_DEBUG(npages); 1094 PRM_DEBUG(obp_pages); 1095 1096 /* 1097 * If physmem is patched to be non-zero, use it instead of the computed 1098 * value unless it is larger than the actual amount of memory on hand. 1099 */ 1100 if (physmem == 0 || physmem > npages) { 1101 physmem = npages; 1102 } else if (physmem < npages) { 1103 orig_npages = npages; 1104 npages = physmem; 1105 } 1106 PRM_DEBUG(physmem); 1107 1108 /* 1109 * We now compute the sizes of all the initial allocations for 1110 * structures the kernel needs in order do kmem_alloc(). These 1111 * include: 1112 * memsegs 1113 * memlists 1114 * page hash table 1115 * page_t's 1116 * page coloring data structs 1117 */ 1118 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1119 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1120 PRM_DEBUG(memseg_sz); 1121 1122 /* 1123 * Reserve space for memlists. There's no real good way to know exactly 1124 * how much room we'll need, but this should be a good upper bound. 1125 */ 1126 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1127 (memblocks + POSS_NEW_FRAGMENTS)); 1128 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1129 PRM_DEBUG(memlist_sz); 1130 1131 /* 1132 * Reserve space for bios reserved memlists. 1133 */ 1134 rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1135 (rsvdmemblocks + POSS_NEW_FRAGMENTS)); 1136 ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz); 1137 PRM_DEBUG(rsvdmemlist_sz); 1138 1139 /* LINTED */ 1140 ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), sizeof (struct page))); 1141 /* 1142 * The page structure hash table size is a power of 2 1143 * such that the average hash chain length is PAGE_HASHAVELEN. 1144 */ 1145 page_hashsz = npages / PAGE_HASHAVELEN; 1146 page_hashsz_shift = highbit(page_hashsz); 1147 page_hashsz = 1 << page_hashsz_shift; 1148 pagehash_sz = sizeof (struct page *) * page_hashsz; 1149 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1150 PRM_DEBUG(pagehash_sz); 1151 1152 /* 1153 * Set aside room for the page structures themselves. 1154 */ 1155 PRM_DEBUG(npages); 1156 pp_sz = sizeof (struct page) * npages; 1157 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1158 PRM_DEBUG(pp_sz); 1159 1160 /* 1161 * determine l2 cache info and memory size for page coloring 1162 */ 1163 (void) getl2cacheinfo(CPU, 1164 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1165 pagecolor_memsz = 1166 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1167 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1168 PRM_DEBUG(pagecolor_memsz); 1169 1170 page_ctrs_size = page_ctrs_sz(); 1171 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1172 PRM_DEBUG(page_ctrs_size); 1173 1174 /* 1175 * Allocate the array that protects pp->p_selock. 1176 */ 1177 pse_shift = size_pse_array(physmem, max_ncpus); 1178 pse_table_size = 1 << pse_shift; 1179 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1180 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1181 1182 #if defined(__amd64) 1183 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1184 valloc_base = VALLOC_BASE; 1185 1186 /* 1187 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1188 * for values of physmax up to 1 Terabyte. They need adjusting when 1189 * memory is at addresses above 1 TB. When adjusted, segkpm_base must 1190 * be aligned on KERNEL_REDZONE_SIZE boundary (span of top level pte). 1191 */ 1192 if (physmax + 1 > mmu_btop(TERABYTE) || 1193 plat_dr_physmax > mmu_btop(TERABYTE)) { 1194 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1195 1196 if (kpm_resv_amount < mmu_ptob(plat_dr_physmax)) { 1197 kpm_resv_amount = mmu_ptob(plat_dr_physmax); 1198 } 1199 1200 segkpm_base = -(P2ROUNDUP((2 * kpm_resv_amount), 1201 KERNEL_REDZONE_SIZE)); /* down from top VA */ 1202 1203 /* make sure we leave some space for user apps above hole */ 1204 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1205 if (segkpm_base > SEGKPM_BASE) 1206 segkpm_base = SEGKPM_BASE; 1207 PRM_DEBUG(segkpm_base); 1208 1209 valloc_base = segkpm_base + P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1210 if (valloc_base < segkpm_base) 1211 panic("not enough kernel VA to support memory size"); 1212 PRM_DEBUG(valloc_base); 1213 } 1214 #else /* __i386 */ 1215 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1216 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1217 PRM_DEBUG(valloc_base); 1218 #endif /* __i386 */ 1219 1220 /* 1221 * do all the initial allocations 1222 */ 1223 perform_allocations(); 1224 1225 /* 1226 * Build phys_install and phys_avail in kernel memspace. 1227 * - phys_install should be all memory in the system. 1228 * - phys_avail is phys_install minus any memory mapped before this 1229 * point above KERNEL_TEXT. 1230 */ 1231 current = phys_install = memlist; 1232 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1233 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1234 panic("physinstalled was too big!"); 1235 if (prom_debug) 1236 print_memlist("phys_install", phys_install); 1237 1238 phys_avail = current; 1239 PRM_POINT("Building phys_avail:\n"); 1240 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1241 avail_filter); 1242 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1243 panic("physavail was too big!"); 1244 if (prom_debug) 1245 print_memlist("phys_avail", phys_avail); 1246 #ifndef __xpv 1247 /* 1248 * Free unused memlist items, which may be used by memory DR driver 1249 * at runtime. 1250 */ 1251 if ((caddr_t)current < (caddr_t)memlist + memlist_sz) { 1252 memlist_free_block((caddr_t)current, 1253 (caddr_t)memlist + memlist_sz - (caddr_t)current); 1254 } 1255 #endif 1256 1257 /* 1258 * Build bios reserved memspace 1259 */ 1260 current = bios_rsvd; 1261 copy_memlist_filter(bootops->boot_mem->rsvdmem, ¤t, NULL); 1262 if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz) 1263 panic("bios_rsvd was too big!"); 1264 if (prom_debug) 1265 print_memlist("bios_rsvd", bios_rsvd); 1266 #ifndef __xpv 1267 /* 1268 * Free unused memlist items, which may be used by memory DR driver 1269 * at runtime. 1270 */ 1271 if ((caddr_t)current < (caddr_t)bios_rsvd + rsvdmemlist_sz) { 1272 memlist_free_block((caddr_t)current, 1273 (caddr_t)bios_rsvd + rsvdmemlist_sz - (caddr_t)current); 1274 } 1275 #endif 1276 1277 /* 1278 * setup page coloring 1279 */ 1280 page_coloring_setup(pagecolor_mem); 1281 page_lock_init(); /* currently a no-op */ 1282 1283 /* 1284 * free page list counters 1285 */ 1286 (void) page_ctrs_alloc(page_ctrs_mem); 1287 1288 /* 1289 * Size the pcf array based on the number of cpus in the box at 1290 * boot time. 1291 */ 1292 1293 pcf_init(); 1294 1295 /* 1296 * Initialize the page structures from the memory lists. 1297 */ 1298 availrmem_initial = availrmem = freemem = 0; 1299 PRM_POINT("Calling kphysm_init()..."); 1300 npages = kphysm_init(pp_base, npages); 1301 PRM_POINT("kphysm_init() done"); 1302 PRM_DEBUG(npages); 1303 1304 init_debug_info(); 1305 1306 /* 1307 * Now that page_t's have been initialized, remove all the 1308 * initial allocation pages from the kernel free page lists. 1309 */ 1310 boot_mapin((caddr_t)valloc_base, valloc_sz); 1311 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1312 PRM_POINT("startup_memlist() done"); 1313 1314 PRM_DEBUG(valloc_sz); 1315 1316 #if defined(__amd64) 1317 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1318 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1319 extern size_t textrepl_size_thresh; 1320 textrepl_size_thresh = (16 << 20) - 1; 1321 } 1322 #endif 1323 } 1324 1325 /* 1326 * Layout the kernel's part of address space and initialize kmem allocator. 1327 */ 1328 static void 1329 startup_kmem(void) 1330 { 1331 extern void page_set_colorequiv_arr(void); 1332 const char *fmt = "?features: %b\n"; 1333 1334 PRM_POINT("startup_kmem() starting..."); 1335 1336 #if defined(__amd64) 1337 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1338 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1339 "systems."); 1340 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1341 core_base = (uintptr_t)COREHEAP_BASE; 1342 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1343 #else /* __i386 */ 1344 /* 1345 * We configure kernelbase based on: 1346 * 1347 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1348 * KERNELBASE_MAX. we large page align eprom_kernelbase 1349 * 1350 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1351 * On large memory systems we must lower kernelbase to allow 1352 * enough room for page_t's for all of memory. 1353 * 1354 * The value set here, might be changed a little later. 1355 */ 1356 if (eprom_kernelbase) { 1357 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1358 if (kernelbase > KERNELBASE_MAX) 1359 kernelbase = KERNELBASE_MAX; 1360 } else { 1361 kernelbase = (uintptr_t)KERNELBASE; 1362 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1363 } 1364 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1365 core_base = valloc_base; 1366 core_size = 0; 1367 #endif /* __i386 */ 1368 1369 PRM_DEBUG(core_base); 1370 PRM_DEBUG(core_size); 1371 PRM_DEBUG(kernelbase); 1372 1373 #if defined(__i386) 1374 segkp_fromheap = 1; 1375 #endif /* __i386 */ 1376 1377 ekernelheap = (char *)core_base; 1378 PRM_DEBUG(ekernelheap); 1379 1380 /* 1381 * Now that we know the real value of kernelbase, 1382 * update variables that were initialized with a value of 1383 * KERNELBASE (in common/conf/param.c). 1384 * 1385 * XXX The problem with this sort of hackery is that the 1386 * compiler just may feel like putting the const declarations 1387 * (in param.c) into the .text section. Perhaps they should 1388 * just be declared as variables there? 1389 */ 1390 1391 *(uintptr_t *)&_kernelbase = kernelbase; 1392 *(uintptr_t *)&_userlimit = kernelbase; 1393 #if defined(__amd64) 1394 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1395 #else 1396 *(uintptr_t *)&_userlimit32 = _userlimit; 1397 #endif 1398 PRM_DEBUG(_kernelbase); 1399 PRM_DEBUG(_userlimit); 1400 PRM_DEBUG(_userlimit32); 1401 1402 layout_kernel_va(); 1403 1404 #if defined(__i386) 1405 /* 1406 * If segmap is too large we can push the bottom of the kernel heap 1407 * higher than the base. Or worse, it could exceed the top of the 1408 * VA space entirely, causing it to wrap around. 1409 */ 1410 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1411 panic("too little address space available for kernelheap," 1412 " use eeprom for lower kernelbase or smaller segmapsize"); 1413 #endif /* __i386 */ 1414 1415 /* 1416 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1417 */ 1418 kernelheap_init(kernelheap, ekernelheap, 1419 kernelheap + MMU_PAGESIZE, 1420 (void *)core_base, (void *)(core_base + core_size)); 1421 1422 #if defined(__xpv) 1423 /* 1424 * Link pending events struct into cpu struct 1425 */ 1426 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1427 #endif 1428 /* 1429 * Initialize kernel memory allocator. 1430 */ 1431 kmem_init(); 1432 1433 /* 1434 * Factor in colorequiv to check additional 'equivalent' bins 1435 */ 1436 page_set_colorequiv_arr(); 1437 1438 /* 1439 * print this out early so that we know what's going on 1440 */ 1441 cmn_err(CE_CONT, fmt, x86_feature, FMT_X86_FEATURE); 1442 1443 /* 1444 * Initialize bp_mapin(). 1445 */ 1446 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1447 1448 /* 1449 * orig_npages is non-zero if physmem has been configured for less 1450 * than the available memory. 1451 */ 1452 if (orig_npages) { 1453 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1454 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1455 npages, orig_npages); 1456 } 1457 #if defined(__i386) 1458 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1459 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1460 "System using 0x%lx", 1461 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1462 #endif 1463 1464 #ifdef KERNELBASE_ABI_MIN 1465 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1466 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1467 "i386 ABI compliant.", (uintptr_t)kernelbase); 1468 } 1469 #endif 1470 1471 #ifndef __xpv 1472 if (plat_dr_support_memory()) { 1473 mem_config_init(); 1474 } 1475 #else /* __xpv */ 1476 /* 1477 * Some of the xen start information has to be relocated up 1478 * into the kernel's permanent address space. 1479 */ 1480 PRM_POINT("calling xen_relocate_start_info()"); 1481 xen_relocate_start_info(); 1482 PRM_POINT("xen_relocate_start_info() done"); 1483 1484 /* 1485 * (Update the vcpu pointer in our cpu structure to point into 1486 * the relocated shared info.) 1487 */ 1488 CPU->cpu_m.mcpu_vcpu_info = 1489 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1490 #endif /* __xpv */ 1491 1492 PRM_POINT("startup_kmem() done"); 1493 } 1494 1495 #ifndef __xpv 1496 /* 1497 * If we have detected that we are running in an HVM environment, we need 1498 * to prepend the PV driver directory to the module search path. 1499 */ 1500 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1501 static void 1502 update_default_path() 1503 { 1504 char *current, *newpath; 1505 int newlen; 1506 1507 /* 1508 * We are about to resync with krtld. krtld will reset its 1509 * internal module search path iff Solaris has set default_path. 1510 * We want to be sure we're prepending this new directory to the 1511 * right search path. 1512 */ 1513 current = (default_path == NULL) ? kobj_module_path : default_path; 1514 1515 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 2; 1516 newpath = kmem_alloc(newlen, KM_SLEEP); 1517 (void) strcpy(newpath, HVM_MOD_DIR); 1518 (void) strcat(newpath, " "); 1519 (void) strcat(newpath, current); 1520 1521 default_path = newpath; 1522 } 1523 #endif 1524 1525 static void 1526 startup_modules(void) 1527 { 1528 int cnt; 1529 extern void prom_setup(void); 1530 int32_t v, h; 1531 char d[11]; 1532 char *cp; 1533 cmi_hdl_t hdl; 1534 1535 PRM_POINT("startup_modules() starting..."); 1536 1537 #ifndef __xpv 1538 /* 1539 * Initialize ten-micro second timer so that drivers will 1540 * not get short changed in their init phase. This was 1541 * not getting called until clkinit which, on fast cpu's 1542 * caused the drv_usecwait to be way too short. 1543 */ 1544 microfind(); 1545 1546 if (get_hwenv() == HW_XEN_HVM) 1547 update_default_path(); 1548 #endif 1549 1550 /* 1551 * Read the GMT lag from /etc/rtc_config. 1552 */ 1553 sgmtl(process_rtc_config_file()); 1554 1555 /* 1556 * Calculate default settings of system parameters based upon 1557 * maxusers, yet allow to be overridden via the /etc/system file. 1558 */ 1559 param_calc(0); 1560 1561 mod_setup(); 1562 1563 /* 1564 * Initialize system parameters. 1565 */ 1566 param_init(); 1567 1568 /* 1569 * Initialize the default brands 1570 */ 1571 brand_init(); 1572 1573 /* 1574 * maxmem is the amount of physical memory we're playing with. 1575 */ 1576 maxmem = physmem; 1577 1578 /* 1579 * Initialize segment management stuff. 1580 */ 1581 seg_init(); 1582 1583 if (modload("fs", "specfs") == -1) 1584 halt("Can't load specfs"); 1585 1586 if (modload("fs", "devfs") == -1) 1587 halt("Can't load devfs"); 1588 1589 if (modload("fs", "dev") == -1) 1590 halt("Can't load dev"); 1591 1592 if (modload("fs", "procfs") == -1) 1593 halt("Can't load procfs"); 1594 1595 (void) modloadonly("sys", "lbl_edition"); 1596 1597 dispinit(); 1598 1599 /* 1600 * This is needed here to initialize hw_serial[] for cluster booting. 1601 */ 1602 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) { 1603 cmn_err(CE_WARN, "Unable to set hostid"); 1604 } else { 1605 for (v = h, cnt = 0; cnt < 10; cnt++) { 1606 d[cnt] = (char)(v % 10); 1607 v /= 10; 1608 if (v == 0) 1609 break; 1610 } 1611 for (cp = hw_serial; cnt >= 0; cnt--) 1612 *cp++ = d[cnt] + '0'; 1613 *cp = 0; 1614 } 1615 1616 /* Read cluster configuration data. */ 1617 clconf_init(); 1618 1619 #if defined(__xpv) 1620 (void) ec_init(); 1621 gnttab_init(); 1622 (void) xs_early_init(); 1623 #endif /* __xpv */ 1624 1625 /* 1626 * Create a kernel device tree. First, create rootnex and 1627 * then invoke bus specific code to probe devices. 1628 */ 1629 setup_ddi(); 1630 1631 #ifdef __xpv 1632 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1633 #endif 1634 { 1635 /* 1636 * Load the System Management BIOS into the global ksmbios 1637 * handle, if an SMBIOS is present on this system. 1638 */ 1639 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1640 } 1641 1642 1643 /* 1644 * Set up the CPU module subsystem for the boot cpu in the native 1645 * case, and all physical cpu resource in the xpv dom0 case. 1646 * Modifies the device tree, so this must be done after 1647 * setup_ddi(). 1648 */ 1649 #ifdef __xpv 1650 /* 1651 * If paravirtualized and on dom0 then we initialize all physical 1652 * cpu handles now; if paravirtualized on a domU then do not 1653 * initialize. 1654 */ 1655 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1656 xen_mc_lcpu_cookie_t cpi; 1657 1658 for (cpi = xen_physcpu_next(NULL); cpi != NULL; 1659 cpi = xen_physcpu_next(cpi)) { 1660 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA, 1661 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi), 1662 xen_physcpu_strandid(cpi))) != NULL && 1663 (x86_feature & X86_MCA)) 1664 cmi_mca_init(hdl); 1665 } 1666 } 1667 #else 1668 /* 1669 * Initialize a handle for the boot cpu - others will initialize 1670 * as they startup. Do not do this if we know we are in an HVM domU. 1671 */ 1672 if ((get_hwenv() != HW_XEN_HVM) && 1673 (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1674 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL && 1675 (x86_feature & X86_MCA)) { 1676 cmi_mca_init(hdl); 1677 CPU->cpu_m.mcpu_cmi_hdl = hdl; 1678 } 1679 #endif /* __xpv */ 1680 1681 /* 1682 * Fake a prom tree such that /dev/openprom continues to work 1683 */ 1684 PRM_POINT("startup_modules: calling prom_setup..."); 1685 prom_setup(); 1686 PRM_POINT("startup_modules: done"); 1687 1688 /* 1689 * Load all platform specific modules 1690 */ 1691 PRM_POINT("startup_modules: calling psm_modload..."); 1692 psm_modload(); 1693 1694 PRM_POINT("startup_modules() done"); 1695 } 1696 1697 /* 1698 * claim a "setaside" boot page for use in the kernel 1699 */ 1700 page_t * 1701 boot_claim_page(pfn_t pfn) 1702 { 1703 page_t *pp; 1704 1705 pp = page_numtopp_nolock(pfn); 1706 ASSERT(pp != NULL); 1707 1708 if (PP_ISBOOTPAGES(pp)) { 1709 if (pp->p_next != NULL) 1710 pp->p_next->p_prev = pp->p_prev; 1711 if (pp->p_prev == NULL) 1712 bootpages = pp->p_next; 1713 else 1714 pp->p_prev->p_next = pp->p_next; 1715 } else { 1716 /* 1717 * htable_attach() expects a base pagesize page 1718 */ 1719 if (pp->p_szc != 0) 1720 page_boot_demote(pp); 1721 pp = page_numtopp(pfn, SE_EXCL); 1722 } 1723 return (pp); 1724 } 1725 1726 /* 1727 * Walk through the pagetables looking for pages mapped in by boot. If the 1728 * setaside flag is set the pages are expected to be returned to the 1729 * kernel later in boot, so we add them to the bootpages list. 1730 */ 1731 static void 1732 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1733 { 1734 uintptr_t va = low; 1735 size_t len; 1736 uint_t prot; 1737 pfn_t pfn; 1738 page_t *pp; 1739 pgcnt_t boot_protect_cnt = 0; 1740 1741 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1742 if (va + len >= high) 1743 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1744 "legal range.", len, (void *)va); 1745 1746 while (len > 0) { 1747 pp = page_numtopp_alloc(pfn); 1748 if (pp != NULL) { 1749 if (setaside == 0) 1750 panic("Unexpected mapping by boot. " 1751 "addr=%p pfn=%lx\n", 1752 (void *)va, pfn); 1753 1754 pp->p_next = bootpages; 1755 pp->p_prev = NULL; 1756 PP_SETBOOTPAGES(pp); 1757 if (bootpages != NULL) { 1758 bootpages->p_prev = pp; 1759 } 1760 bootpages = pp; 1761 ++boot_protect_cnt; 1762 } 1763 1764 ++pfn; 1765 len -= MMU_PAGESIZE; 1766 va += MMU_PAGESIZE; 1767 } 1768 } 1769 PRM_DEBUG(boot_protect_cnt); 1770 } 1771 1772 /* 1773 * 1774 */ 1775 static void 1776 layout_kernel_va(void) 1777 { 1778 PRM_POINT("layout_kernel_va() starting..."); 1779 /* 1780 * Establish the final size of the kernel's heap, size of segmap, 1781 * segkp, etc. 1782 */ 1783 1784 #if defined(__amd64) 1785 1786 kpm_vbase = (caddr_t)segkpm_base; 1787 if (physmax + 1 < plat_dr_physmax) { 1788 kpm_size = ROUND_UP_LPAGE(mmu_ptob(plat_dr_physmax)); 1789 } else { 1790 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1791 } 1792 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1793 panic("not enough room for kpm!"); 1794 PRM_DEBUG(kpm_size); 1795 PRM_DEBUG(kpm_vbase); 1796 1797 /* 1798 * By default we create a seg_kp in 64 bit kernels, it's a little 1799 * faster to access than embedding it in the heap. 1800 */ 1801 segkp_base = (caddr_t)valloc_base + valloc_sz; 1802 if (!segkp_fromheap) { 1803 size_t sz = mmu_ptob(segkpsize); 1804 1805 /* 1806 * determine size of segkp 1807 */ 1808 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1809 sz = SEGKPDEFSIZE; 1810 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1811 "segkpsize has been reset to %ld pages", 1812 mmu_btop(sz)); 1813 } 1814 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1815 1816 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1817 } 1818 PRM_DEBUG(segkp_base); 1819 PRM_DEBUG(segkpsize); 1820 1821 /* 1822 * segzio is used for ZFS cached data. It uses a distinct VA 1823 * segment (from kernel heap) so that we can easily tell not to 1824 * include it in kernel crash dumps on 64 bit kernels. The trick is 1825 * to give it lots of VA, but not constrain the kernel heap. 1826 * We scale the size of segzio linearly with physmem up to 1827 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem. 1828 */ 1829 segzio_base = segkp_base + mmu_ptob(segkpsize); 1830 if (segzio_fromheap) { 1831 segziosize = 0; 1832 } else { 1833 size_t physmem_size = mmu_ptob(physmem); 1834 size_t size = (segziosize == 0) ? 1835 physmem_size : mmu_ptob(segziosize); 1836 1837 if (size < SEGZIOMINSIZE) 1838 size = SEGZIOMINSIZE; 1839 if (size > SEGZIOMAXSIZE) { 1840 size = SEGZIOMAXSIZE; 1841 if (physmem_size > size) 1842 size += (physmem_size - size) / 2; 1843 } 1844 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1845 } 1846 PRM_DEBUG(segziosize); 1847 PRM_DEBUG(segzio_base); 1848 1849 /* 1850 * Put the range of VA for device mappings next, kmdb knows to not 1851 * grep in this range of addresses. 1852 */ 1853 toxic_addr = 1854 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1855 PRM_DEBUG(toxic_addr); 1856 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1857 #else /* __i386 */ 1858 segmap_start = ROUND_UP_LPAGE(kernelbase); 1859 #endif /* __i386 */ 1860 PRM_DEBUG(segmap_start); 1861 1862 /* 1863 * Users can change segmapsize through eeprom. If the variable 1864 * is tuned through eeprom, there is no upper bound on the 1865 * size of segmap. 1866 */ 1867 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1868 1869 #if defined(__i386) 1870 /* 1871 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1872 * the bottom of the kernel's address range. Set aside space for a 1873 * small red zone just below the start of segmap. 1874 */ 1875 segmap_start += KERNEL_REDZONE_SIZE; 1876 segmapsize -= KERNEL_REDZONE_SIZE; 1877 #endif 1878 1879 PRM_DEBUG(segmap_start); 1880 PRM_DEBUG(segmapsize); 1881 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1882 PRM_DEBUG(kernelheap); 1883 PRM_POINT("layout_kernel_va() done..."); 1884 } 1885 1886 /* 1887 * Finish initializing the VM system, now that we are no longer 1888 * relying on the boot time memory allocators. 1889 */ 1890 static void 1891 startup_vm(void) 1892 { 1893 struct segmap_crargs a; 1894 1895 extern int use_brk_lpg, use_stk_lpg; 1896 1897 PRM_POINT("startup_vm() starting..."); 1898 1899 /* 1900 * Initialize the hat layer. 1901 */ 1902 hat_init(); 1903 1904 /* 1905 * Do final allocations of HAT data structures that need to 1906 * be allocated before quiescing the boot loader. 1907 */ 1908 PRM_POINT("Calling hat_kern_alloc()..."); 1909 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1910 PRM_POINT("hat_kern_alloc() done"); 1911 1912 #ifndef __xpv 1913 /* 1914 * Setup Page Attribute Table 1915 */ 1916 pat_sync(); 1917 #endif 1918 1919 /* 1920 * The next two loops are done in distinct steps in order 1921 * to be sure that any page that is doubly mapped (both above 1922 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1923 * Note this may never happen, but it might someday. 1924 */ 1925 bootpages = NULL; 1926 PRM_POINT("Protecting boot pages"); 1927 1928 /* 1929 * Protect any pages mapped above KERNEL_TEXT that somehow have 1930 * page_t's. This can only happen if something weird allocated 1931 * in this range (like kadb/kmdb). 1932 */ 1933 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1934 1935 /* 1936 * Before we can take over memory allocation/mapping from the boot 1937 * loader we must remove from our free page lists any boot allocated 1938 * pages that stay mapped until release_bootstrap(). 1939 */ 1940 protect_boot_range(0, kernelbase, 1); 1941 1942 1943 /* 1944 * Switch to running on regular HAT (not boot_mmu) 1945 */ 1946 PRM_POINT("Calling hat_kern_setup()..."); 1947 hat_kern_setup(); 1948 1949 /* 1950 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1951 */ 1952 bop_no_more_mem(); 1953 1954 PRM_POINT("hat_kern_setup() done"); 1955 1956 hat_cpu_online(CPU); 1957 1958 /* 1959 * Initialize VM system 1960 */ 1961 PRM_POINT("Calling kvm_init()..."); 1962 kvm_init(); 1963 PRM_POINT("kvm_init() done"); 1964 1965 /* 1966 * Tell kmdb that the VM system is now working 1967 */ 1968 if (boothowto & RB_DEBUG) 1969 kdi_dvec_vmready(); 1970 1971 #if defined(__xpv) 1972 /* 1973 * Populate the I/O pool on domain 0 1974 */ 1975 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1976 extern long populate_io_pool(void); 1977 long init_io_pool_cnt; 1978 1979 PRM_POINT("Populating reserve I/O page pool"); 1980 init_io_pool_cnt = populate_io_pool(); 1981 PRM_DEBUG(init_io_pool_cnt); 1982 } 1983 #endif 1984 /* 1985 * Mangle the brand string etc. 1986 */ 1987 cpuid_pass3(CPU); 1988 1989 #if defined(__amd64) 1990 1991 /* 1992 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1993 */ 1994 device_arena = vmem_create("device", (void *)toxic_addr, 1995 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1996 1997 #else /* __i386 */ 1998 1999 /* 2000 * allocate the bit map that tracks toxic pages 2001 */ 2002 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 2003 PRM_DEBUG(toxic_bit_map_len); 2004 toxic_bit_map = 2005 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 2006 ASSERT(toxic_bit_map != NULL); 2007 PRM_DEBUG(toxic_bit_map); 2008 2009 #endif /* __i386 */ 2010 2011 2012 /* 2013 * Now that we've got more VA, as well as the ability to allocate from 2014 * it, tell the debugger. 2015 */ 2016 if (boothowto & RB_DEBUG) 2017 kdi_dvec_memavail(); 2018 2019 /* 2020 * The following code installs a special page fault handler (#pf) 2021 * to work around a pentium bug. 2022 */ 2023 #if !defined(__amd64) && !defined(__xpv) 2024 if (x86_type == X86_TYPE_P5) { 2025 desctbr_t idtr; 2026 gate_desc_t *newidt; 2027 2028 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 2029 panic("failed to install pentium_pftrap"); 2030 2031 bcopy(idt0, newidt, NIDT * sizeof (*idt0)); 2032 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 2033 KCS_SEL, SDT_SYSIGT, TRP_KPL, 0); 2034 2035 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 2036 PROT_READ | PROT_EXEC); 2037 2038 CPU->cpu_idt = newidt; 2039 idtr.dtr_base = (uintptr_t)CPU->cpu_idt; 2040 idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1; 2041 wr_idtr(&idtr); 2042 } 2043 #endif /* !__amd64 */ 2044 2045 #if !defined(__xpv) 2046 /* 2047 * Map page pfn=0 for drivers, such as kd, that need to pick up 2048 * parameters left there by controllers/BIOS. 2049 */ 2050 PRM_POINT("setup up p0_va"); 2051 p0_va = i86devmap(0, 1, PROT_READ); 2052 PRM_DEBUG(p0_va); 2053 #endif 2054 2055 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 2056 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 2057 2058 /* 2059 * disable automatic large pages for small memory systems or 2060 * when the disable flag is set. 2061 * 2062 * Do not yet consider page sizes larger than 2m/4m. 2063 */ 2064 if (!auto_lpg_disable && mmu.max_page_level > 0) { 2065 max_uheap_lpsize = LEVEL_SIZE(1); 2066 max_ustack_lpsize = LEVEL_SIZE(1); 2067 max_privmap_lpsize = LEVEL_SIZE(1); 2068 max_uidata_lpsize = LEVEL_SIZE(1); 2069 max_utext_lpsize = LEVEL_SIZE(1); 2070 max_shm_lpsize = LEVEL_SIZE(1); 2071 } 2072 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 2073 auto_lpg_disable) { 2074 use_brk_lpg = 0; 2075 use_stk_lpg = 0; 2076 } 2077 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 2078 2079 PRM_POINT("Calling hat_init_finish()..."); 2080 hat_init_finish(); 2081 PRM_POINT("hat_init_finish() done"); 2082 2083 /* 2084 * Initialize the segkp segment type. 2085 */ 2086 rw_enter(&kas.a_lock, RW_WRITER); 2087 PRM_POINT("Attaching segkp"); 2088 if (segkp_fromheap) { 2089 segkp->s_as = &kas; 2090 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 2091 segkp) < 0) { 2092 panic("startup: cannot attach segkp"); 2093 /*NOTREACHED*/ 2094 } 2095 PRM_POINT("Doing segkp_create()"); 2096 if (segkp_create(segkp) != 0) { 2097 panic("startup: segkp_create failed"); 2098 /*NOTREACHED*/ 2099 } 2100 PRM_DEBUG(segkp); 2101 rw_exit(&kas.a_lock); 2102 2103 /* 2104 * kpm segment 2105 */ 2106 segmap_kpm = 0; 2107 if (kpm_desired) { 2108 kpm_init(); 2109 kpm_enable = 1; 2110 } 2111 2112 /* 2113 * Now create segmap segment. 2114 */ 2115 rw_enter(&kas.a_lock, RW_WRITER); 2116 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 2117 panic("cannot attach segmap"); 2118 /*NOTREACHED*/ 2119 } 2120 PRM_DEBUG(segmap); 2121 2122 a.prot = PROT_READ | PROT_WRITE; 2123 a.shmsize = 0; 2124 a.nfreelist = segmapfreelists; 2125 2126 if (segmap_create(segmap, (caddr_t)&a) != 0) 2127 panic("segmap_create segmap"); 2128 rw_exit(&kas.a_lock); 2129 2130 setup_vaddr_for_ppcopy(CPU); 2131 2132 segdev_init(); 2133 #if defined(__xpv) 2134 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2135 #endif 2136 pmem_init(); 2137 2138 PRM_POINT("startup_vm() done"); 2139 } 2140 2141 /* 2142 * Load a tod module for the non-standard tod part found on this system. 2143 */ 2144 static void 2145 load_tod_module(char *todmod) 2146 { 2147 if (modload("tod", todmod) == -1) 2148 halt("Can't load TOD module"); 2149 } 2150 2151 static void 2152 startup_end(void) 2153 { 2154 int i; 2155 extern void setx86isalist(void); 2156 extern void cpu_event_init(void); 2157 2158 PRM_POINT("startup_end() starting..."); 2159 2160 /* 2161 * Perform tasks that get done after most of the VM 2162 * initialization has been done but before the clock 2163 * and other devices get started. 2164 */ 2165 kern_setup1(); 2166 2167 /* 2168 * Perform CPC initialization for this CPU. 2169 */ 2170 kcpc_hw_init(CPU); 2171 2172 /* 2173 * Initialize cpu event framework. 2174 */ 2175 cpu_event_init(); 2176 2177 #if defined(OPTERON_WORKAROUND_6323525) 2178 if (opteron_workaround_6323525) 2179 patch_workaround_6323525(); 2180 #endif 2181 /* 2182 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 2183 * (For now, "needed" is defined as set tod_module_name in /etc/system) 2184 */ 2185 if (tod_module_name != NULL) { 2186 PRM_POINT("load_tod_module()"); 2187 load_tod_module(tod_module_name); 2188 } 2189 2190 #if defined(__xpv) 2191 /* 2192 * Forceload interposing TOD module for the hypervisor. 2193 */ 2194 PRM_POINT("load_tod_module()"); 2195 load_tod_module("xpvtod"); 2196 #endif 2197 2198 /* 2199 * Create the kernel page freelist management thread for x64 systems. 2200 */ 2201 if (!kflt_disable) { 2202 kflt_init(); 2203 } 2204 2205 /* 2206 * Configure the system. 2207 */ 2208 PRM_POINT("Calling configure()..."); 2209 configure(); /* set up devices */ 2210 PRM_POINT("configure() done"); 2211 2212 /* 2213 * Set the isa_list string to the defined instruction sets we 2214 * support. 2215 */ 2216 setx86isalist(); 2217 cpu_intr_alloc(CPU, NINTR_THREADS); 2218 psm_install(); 2219 2220 /* 2221 * We're done with bootops. We don't unmap the bootstrap yet because 2222 * we're still using bootsvcs. 2223 */ 2224 PRM_POINT("NULLing out bootops"); 2225 *bootopsp = (struct bootops *)NULL; 2226 bootops = (struct bootops *)NULL; 2227 2228 #if defined(__xpv) 2229 ec_init_debug_irq(); 2230 xs_domu_init(); 2231 #endif 2232 2233 #if defined(__amd64) && !defined(__xpv) 2234 /* 2235 * Intel IOMMU has been setup/initialized in ddi_impl.c 2236 * Start it up now. 2237 */ 2238 immu_startup(); 2239 #endif 2240 2241 PRM_POINT("Enabling interrupts"); 2242 (*picinitf)(); 2243 sti(); 2244 #if defined(__xpv) 2245 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2246 xen_late_startup(); 2247 #endif 2248 2249 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2250 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2251 2252 /* 2253 * Register these software interrupts for ddi timer. 2254 * Software interrupts up to the level 10 are supported. 2255 */ 2256 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2257 char name[sizeof ("timer_softintr") + 2]; 2258 (void) sprintf(name, "timer_softintr%02d", i); 2259 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2260 (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL); 2261 } 2262 2263 #if !defined(__xpv) 2264 if (modload("drv", "amd_iommu") < 0) { 2265 PRM_POINT("No AMD IOMMU present\n"); 2266 } else if (ddi_hold_installed_driver(ddi_name_to_major( 2267 "amd_iommu")) == NULL) { 2268 prom_printf("ERROR: failed to attach AMD IOMMU\n"); 2269 } 2270 #endif 2271 post_startup_cpu_fixups(); 2272 2273 PRM_POINT("startup_end() done"); 2274 } 2275 2276 /* 2277 * Don't remove the following 2 variables. They are necessary 2278 * for reading the hostid from the legacy file (/kernel/misc/sysinit). 2279 */ 2280 char *_hs1107 = hw_serial; 2281 ulong_t _bdhs34; 2282 2283 void 2284 post_startup(void) 2285 { 2286 extern void cpupm_init(cpu_t *); 2287 extern void cpu_event_init_cpu(cpu_t *); 2288 2289 /* 2290 * Set the system wide, processor-specific flags to be passed 2291 * to userland via the aux vector for performance hints and 2292 * instruction set extensions. 2293 */ 2294 bind_hwcap(); 2295 2296 #ifdef __xpv 2297 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2298 #endif 2299 { 2300 #if defined(__xpv) 2301 xpv_panic_init(); 2302 #else 2303 /* 2304 * Startup the memory scrubber. 2305 * XXPV This should be running somewhere .. 2306 */ 2307 if (get_hwenv() != HW_XEN_HVM) 2308 memscrub_init(); 2309 #endif 2310 } 2311 2312 /* 2313 * Complete CPU module initialization 2314 */ 2315 cmi_post_startup(); 2316 2317 /* 2318 * Perform forceloading tasks for /etc/system. 2319 */ 2320 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2321 2322 /* 2323 * ON4.0: Force /proc module in until clock interrupt handle fixed 2324 * ON4.0: This must be fixed or restated in /etc/systems. 2325 */ 2326 (void) modload("fs", "procfs"); 2327 2328 (void) i_ddi_attach_hw_nodes("pit_beep"); 2329 2330 #if defined(__i386) 2331 /* 2332 * Check for required functional Floating Point hardware, 2333 * unless FP hardware explicitly disabled. 2334 */ 2335 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2336 halt("No working FP hardware found"); 2337 #endif 2338 2339 maxmem = freemem; 2340 2341 cpu_event_init_cpu(CPU); 2342 cpupm_init(CPU); 2343 (void) mach_cpu_create_device_node(CPU, NULL); 2344 2345 pg_init(); 2346 } 2347 2348 static int 2349 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr) 2350 { 2351 return ((pp->p_pagenum >= btop(low_addr)) && 2352 (pp->p_pagenum < btopr(high_addr))); 2353 } 2354 2355 void 2356 release_bootstrap(void) 2357 { 2358 int root_is_ramdisk; 2359 page_t *pp; 2360 extern void kobj_boot_unmountroot(void); 2361 extern dev_t rootdev; 2362 #if !defined(__xpv) 2363 pfn_t pfn; 2364 #endif 2365 2366 /* unmount boot ramdisk and release kmem usage */ 2367 kobj_boot_unmountroot(); 2368 2369 /* 2370 * We're finished using the boot loader so free its pages. 2371 */ 2372 PRM_POINT("Unmapping lower boot pages"); 2373 2374 clear_boot_mappings(0, _userlimit); 2375 2376 postbootkernelbase = kernelbase; 2377 2378 /* 2379 * If root isn't on ramdisk, destroy the hardcoded 2380 * ramdisk node now and release the memory. Else, 2381 * ramdisk memory is kept in rd_pages. 2382 */ 2383 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2384 if (!root_is_ramdisk) { 2385 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2386 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2387 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2388 (void) ddi_remove_child(dip, 0); 2389 } 2390 2391 PRM_POINT("Releasing boot pages"); 2392 while (bootpages) { 2393 extern uint64_t ramdisk_start, ramdisk_end; 2394 pp = bootpages; 2395 bootpages = pp->p_next; 2396 2397 2398 /* Keep pages for the lower 64K */ 2399 if (pp_in_range(pp, 0, 0x40000)) { 2400 pp->p_next = lower_pages; 2401 lower_pages = pp; 2402 lower_pages_count++; 2403 continue; 2404 } 2405 2406 2407 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start, 2408 ramdisk_end)) { 2409 pp->p_next = rd_pages; 2410 rd_pages = pp; 2411 continue; 2412 } 2413 pp->p_next = (struct page *)0; 2414 pp->p_prev = (struct page *)0; 2415 PP_CLRBOOTPAGES(pp); 2416 page_free(pp, 1); 2417 } 2418 PRM_POINT("Boot pages released"); 2419 2420 #if !defined(__xpv) 2421 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2422 /* 2423 * Find 1 page below 1 MB so that other processors can boot up or 2424 * so that any processor can resume. 2425 * Make sure it has a kernel VA as well as a 1:1 mapping. 2426 * We should have just free'd one up. 2427 */ 2428 2429 /* 2430 * 0x10 pages is 64K. Leave the bottom 64K alone 2431 * for BIOS. 2432 */ 2433 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) { 2434 if (page_numtopp_alloc(pfn) == NULL) 2435 continue; 2436 rm_platter_va = i86devmap(pfn, 1, 2437 PROT_READ | PROT_WRITE | PROT_EXEC); 2438 rm_platter_pa = ptob(pfn); 2439 break; 2440 } 2441 if (pfn == btop(1*1024*1024) && use_mp) 2442 panic("No page below 1M available for starting " 2443 "other processors or for resuming from system-suspend"); 2444 #endif /* !__xpv */ 2445 } 2446 2447 /* 2448 * Initialize the platform-specific parts of a page_t. 2449 */ 2450 void 2451 add_physmem_cb(page_t *pp, pfn_t pnum) 2452 { 2453 pp->p_pagenum = pnum; 2454 pp->p_mapping = NULL; 2455 pp->p_embed = 0; 2456 pp->p_share = 0; 2457 pp->p_mlentry = 0; 2458 } 2459 2460 /* 2461 * kphysm_init() initializes physical memory. 2462 */ 2463 static pgcnt_t 2464 kphysm_init( 2465 page_t *pp, 2466 pgcnt_t npages) 2467 { 2468 struct memlist *pmem; 2469 struct memseg *cur_memseg; 2470 pfn_t base_pfn; 2471 pfn_t end_pfn; 2472 pgcnt_t num; 2473 pgcnt_t pages_done = 0; 2474 uint64_t addr; 2475 uint64_t size; 2476 extern pfn_t ddiphysmin; 2477 extern int mnode_xwa; 2478 int ms = 0, me = 0; 2479 2480 ASSERT(page_hash != NULL && page_hashsz != 0); 2481 2482 cur_memseg = memseg_base; 2483 for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) { 2484 /* 2485 * In a 32 bit kernel can't use higher memory if we're 2486 * not booting in PAE mode. This check takes care of that. 2487 */ 2488 addr = pmem->ml_address; 2489 size = pmem->ml_size; 2490 if (btop(addr) > physmax) 2491 continue; 2492 2493 /* 2494 * align addr and size - they may not be at page boundaries 2495 */ 2496 if ((addr & MMU_PAGEOFFSET) != 0) { 2497 addr += MMU_PAGEOFFSET; 2498 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2499 size -= addr - pmem->ml_address; 2500 } 2501 2502 /* only process pages below or equal to physmax */ 2503 if ((btop(addr + size) - 1) > physmax) 2504 size = ptob(physmax - btop(addr) + 1); 2505 2506 num = btop(size); 2507 if (num == 0) 2508 continue; 2509 2510 if (num > npages) 2511 num = npages; 2512 2513 npages -= num; 2514 pages_done += num; 2515 base_pfn = btop(addr); 2516 2517 if (prom_debug) 2518 prom_printf("MEMSEG addr=0x%" PRIx64 2519 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2520 addr, num, base_pfn, base_pfn + num); 2521 2522 /* 2523 * Ignore pages below ddiphysmin to simplify ddi memory 2524 * allocation with non-zero addr_lo requests. 2525 */ 2526 if (base_pfn < ddiphysmin) { 2527 if (base_pfn + num <= ddiphysmin) 2528 continue; 2529 pp += (ddiphysmin - base_pfn); 2530 num -= (ddiphysmin - base_pfn); 2531 base_pfn = ddiphysmin; 2532 } 2533 2534 /* 2535 * mnode_xwa is greater than 1 when large pages regions can 2536 * cross memory node boundaries. To prevent the formation 2537 * of these large pages, configure the memsegs based on the 2538 * memory node ranges which had been made non-contiguous. 2539 */ 2540 if (mnode_xwa > 1) { 2541 2542 end_pfn = base_pfn + num - 1; 2543 ms = PFN_2_MEM_NODE(base_pfn); 2544 me = PFN_2_MEM_NODE(end_pfn); 2545 2546 if (ms != me) { 2547 /* 2548 * current range spans more than 1 memory node. 2549 * Set num to only the pfn range in the start 2550 * memory node. 2551 */ 2552 num = mem_node_config[ms].physmax - base_pfn 2553 + 1; 2554 ASSERT(end_pfn > mem_node_config[ms].physmax); 2555 } 2556 } 2557 2558 for (;;) { 2559 /* 2560 * Build the memsegs entry 2561 */ 2562 cur_memseg->pages = pp; 2563 cur_memseg->epages = pp + num; 2564 cur_memseg->pages_base = base_pfn; 2565 cur_memseg->pages_end = base_pfn + num; 2566 2567 /* 2568 * Insert into memseg list in decreasing pfn range 2569 * order. Low memory is typically more fragmented such 2570 * that this ordering keeps the larger ranges at the 2571 * front of the list for code that searches memseg. 2572 * This ASSERTS that the memsegs coming in from boot 2573 * are in increasing physical address order and not 2574 * contiguous. 2575 */ 2576 if (memsegs != NULL) { 2577 ASSERT(cur_memseg->pages_base >= 2578 memsegs->pages_end); 2579 cur_memseg->next = memsegs; 2580 } 2581 memsegs = cur_memseg; 2582 2583 /* 2584 * add_physmem() initializes the PSM part of the page 2585 * struct by calling the PSM back with add_physmem_cb(). 2586 * In addition it coalesces pages into larger pages as 2587 * it initializes them. 2588 */ 2589 add_physmem(pp, num, base_pfn); 2590 cur_memseg++; 2591 availrmem_initial += num; 2592 availrmem += num; 2593 2594 pp += num; 2595 if (ms >= me) 2596 break; 2597 2598 /* process next memory node range */ 2599 ms++; 2600 base_pfn = mem_node_config[ms].physbase; 2601 num = MIN(mem_node_config[ms].physmax, 2602 end_pfn) - base_pfn + 1; 2603 } 2604 } 2605 2606 PRM_DEBUG(availrmem_initial); 2607 PRM_DEBUG(availrmem); 2608 PRM_DEBUG(freemem); 2609 build_pfn_hash(); 2610 return (pages_done); 2611 } 2612 2613 /* 2614 * Kernel VM initialization. 2615 */ 2616 static void 2617 kvm_init(void) 2618 { 2619 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2620 2621 /* 2622 * Put the kernel segments in kernel address space. 2623 */ 2624 rw_enter(&kas.a_lock, RW_WRITER); 2625 as_avlinit(&kas); 2626 2627 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2628 (void) segkmem_create(&ktextseg); 2629 2630 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2631 (void) segkmem_create(&kvalloc); 2632 2633 (void) seg_attach(&kas, kernelheap, 2634 ekernelheap - kernelheap, &kvseg); 2635 (void) segkmem_create(&kvseg); 2636 2637 if (core_size > 0) { 2638 PRM_POINT("attaching kvseg_core"); 2639 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2640 &kvseg_core); 2641 (void) segkmem_create(&kvseg_core); 2642 } 2643 2644 if (segziosize > 0) { 2645 PRM_POINT("attaching segzio"); 2646 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2647 &kzioseg); 2648 (void) segkmem_zio_create(&kzioseg); 2649 2650 /* create zio area covering new segment */ 2651 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2652 } 2653 2654 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2655 (void) segkmem_create(&kdebugseg); 2656 2657 rw_exit(&kas.a_lock); 2658 2659 /* 2660 * Ensure that the red zone at kernelbase is never accessible. 2661 */ 2662 PRM_POINT("protecting redzone"); 2663 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2664 2665 /* 2666 * Make the text writable so that it can be hot patched by DTrace. 2667 */ 2668 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2669 PROT_READ | PROT_WRITE | PROT_EXEC); 2670 2671 /* 2672 * Make data writable until end. 2673 */ 2674 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2675 PROT_READ | PROT_WRITE | PROT_EXEC); 2676 } 2677 2678 #ifndef __xpv 2679 /* 2680 * Solaris adds an entry for Write Combining caching to the PAT 2681 */ 2682 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2683 2684 void 2685 pat_sync(void) 2686 { 2687 ulong_t cr0, cr0_orig, cr4; 2688 2689 if (!(x86_feature & X86_PAT)) 2690 return; 2691 cr0_orig = cr0 = getcr0(); 2692 cr4 = getcr4(); 2693 2694 /* disable caching and flush all caches and TLBs */ 2695 cr0 |= CR0_CD; 2696 cr0 &= ~CR0_NW; 2697 setcr0(cr0); 2698 invalidate_cache(); 2699 if (cr4 & CR4_PGE) { 2700 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2701 setcr4(cr4); 2702 } else { 2703 reload_cr3(); 2704 } 2705 2706 /* add our entry to the PAT */ 2707 wrmsr(REG_PAT, pat_attr_reg); 2708 2709 /* flush TLBs and cache again, then reenable cr0 caching */ 2710 if (cr4 & CR4_PGE) { 2711 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2712 setcr4(cr4); 2713 } else { 2714 reload_cr3(); 2715 } 2716 invalidate_cache(); 2717 setcr0(cr0_orig); 2718 } 2719 2720 #endif /* !__xpv */ 2721 2722 #if defined(_SOFT_HOSTID) 2723 /* 2724 * On platforms that do not have a hardware serial number, attempt 2725 * to set one based on the contents of /etc/hostid. If this file does 2726 * not exist, assume that we are to generate a new hostid and set 2727 * it in the kernel, for subsequent saving by a userland process 2728 * once the system is up and the root filesystem is mounted r/w. 2729 * 2730 * In order to gracefully support upgrade on OpenSolaris, if 2731 * /etc/hostid does not exist, we will attempt to get a serial number 2732 * using the legacy method (/kernel/misc/sysinit). 2733 * 2734 * In an attempt to make the hostid less prone to abuse 2735 * (for license circumvention, etc), we store it in /etc/hostid 2736 * in rot47 format. 2737 */ 2738 extern volatile unsigned long tenmicrodata; 2739 static int atoi(char *); 2740 2741 static int32_t 2742 set_soft_hostid(void) 2743 { 2744 struct _buf *file; 2745 char tokbuf[MAXNAMELEN]; 2746 token_t token; 2747 int done = 0; 2748 u_longlong_t tmp; 2749 int i; 2750 int32_t hostid = (int32_t)HW_INVALID_HOSTID; 2751 unsigned char *c; 2752 hrtime_t tsc; 2753 2754 /* 2755 * If /etc/hostid file not found, we'd like to get a pseudo 2756 * random number to use at the hostid. A nice way to do this 2757 * is to read the real time clock. To remain xen-compatible, 2758 * we can't poke the real hardware, so we use tsc_read() to 2759 * read the real time clock. However, there is an ominous 2760 * warning in tsc_read that says it can return zero, so we 2761 * deal with that possibility by falling back to using the 2762 * (hopefully random enough) value in tenmicrodata. 2763 */ 2764 2765 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) { 2766 /* 2767 * hostid file not found - try to load sysinit module 2768 * and see if it has a nonzero hostid value...use that 2769 * instead of generating a new hostid here if so. 2770 */ 2771 if ((i = modload("misc", "sysinit")) != -1) { 2772 if (strlen(hw_serial) > 0) 2773 hostid = (int32_t)atoi(hw_serial); 2774 (void) modunload(i); 2775 } 2776 if (hostid == HW_INVALID_HOSTID) { 2777 tsc = tsc_read(); 2778 if (tsc == 0) /* tsc_read can return zero sometimes */ 2779 hostid = (int32_t)tenmicrodata & 0x0CFFFFF; 2780 else 2781 hostid = (int32_t)tsc & 0x0CFFFFF; 2782 } 2783 } else { 2784 /* hostid file found */ 2785 while (!done) { 2786 token = kobj_lex(file, tokbuf, sizeof (tokbuf)); 2787 2788 switch (token) { 2789 case POUND: 2790 /* 2791 * skip comments 2792 */ 2793 kobj_find_eol(file); 2794 break; 2795 case STRING: 2796 /* 2797 * un-rot47 - obviously this 2798 * nonsense is ascii-specific 2799 */ 2800 for (c = (unsigned char *)tokbuf; 2801 *c != '\0'; c++) { 2802 *c += 47; 2803 if (*c > '~') 2804 *c -= 94; 2805 else if (*c < '!') 2806 *c += 94; 2807 } 2808 /* 2809 * now we should have a real number 2810 */ 2811 2812 if (kobj_getvalue(tokbuf, &tmp) != 0) 2813 kobj_file_err(CE_WARN, file, 2814 "Bad value %s for hostid", 2815 tokbuf); 2816 else 2817 hostid = (int32_t)tmp; 2818 2819 break; 2820 case EOF: 2821 done = 1; 2822 /* FALLTHROUGH */ 2823 case NEWLINE: 2824 kobj_newline(file); 2825 break; 2826 default: 2827 break; 2828 2829 } 2830 } 2831 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */ 2832 kobj_file_err(CE_WARN, file, 2833 "hostid missing or corrupt"); 2834 2835 kobj_close_file(file); 2836 } 2837 /* 2838 * hostid is now the value read from /etc/hostid, or the 2839 * new hostid we generated in this routine or HW_INVALID_HOSTID if not 2840 * set. 2841 */ 2842 return (hostid); 2843 } 2844 2845 static int 2846 atoi(char *p) 2847 { 2848 int i = 0; 2849 2850 while (*p != '\0') 2851 i = 10 * i + (*p++ - '0'); 2852 2853 return (i); 2854 } 2855 2856 #endif /* _SOFT_HOSTID */ 2857 2858 void 2859 get_system_configuration(void) 2860 { 2861 char prop[32]; 2862 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2863 2864 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2865 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2866 kobj_getvalue(prop, &nodes_ll) == -1 || 2867 nodes_ll > MAXNODES || 2868 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2869 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2870 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2871 system_hardware.hd_nodes = 1; 2872 system_hardware.hd_cpus_per_node = 0; 2873 } else { 2874 system_hardware.hd_nodes = (int)nodes_ll; 2875 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2876 } 2877 2878 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2879 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2880 kobj_getvalue(prop, &lvalue) == -1) 2881 eprom_kernelbase = NULL; 2882 else 2883 eprom_kernelbase = (uintptr_t)lvalue; 2884 2885 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2886 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2887 kobj_getvalue(prop, &lvalue) == -1) 2888 segmapsize = SEGMAPDEFAULT; 2889 else 2890 segmapsize = (uintptr_t)lvalue; 2891 2892 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2893 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2894 kobj_getvalue(prop, &lvalue) == -1) 2895 segmapfreelists = 0; /* use segmap driver default */ 2896 else 2897 segmapfreelists = (int)lvalue; 2898 2899 /* physmem used to be here, but moved much earlier to fakebop.c */ 2900 } 2901 2902 /* 2903 * Add to a memory list. 2904 * start = start of new memory segment 2905 * len = length of new memory segment in bytes 2906 * new = pointer to a new struct memlist 2907 * memlistp = memory list to which to add segment. 2908 */ 2909 void 2910 memlist_add( 2911 uint64_t start, 2912 uint64_t len, 2913 struct memlist *new, 2914 struct memlist **memlistp) 2915 { 2916 struct memlist *cur; 2917 uint64_t end = start + len; 2918 2919 new->ml_address = start; 2920 new->ml_size = len; 2921 2922 cur = *memlistp; 2923 2924 while (cur) { 2925 if (cur->ml_address >= end) { 2926 new->ml_next = cur; 2927 *memlistp = new; 2928 new->ml_prev = cur->ml_prev; 2929 cur->ml_prev = new; 2930 return; 2931 } 2932 ASSERT(cur->ml_address + cur->ml_size <= start); 2933 if (cur->ml_next == NULL) { 2934 cur->ml_next = new; 2935 new->ml_prev = cur; 2936 new->ml_next = NULL; 2937 return; 2938 } 2939 memlistp = &cur->ml_next; 2940 cur = cur->ml_next; 2941 } 2942 } 2943 2944 void 2945 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2946 { 2947 size_t tsize = e_modtext - modtext; 2948 size_t dsize = e_moddata - moddata; 2949 2950 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2951 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2952 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2953 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2954 } 2955 2956 caddr_t 2957 kobj_text_alloc(vmem_t *arena, size_t size) 2958 { 2959 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2960 } 2961 2962 /*ARGSUSED*/ 2963 caddr_t 2964 kobj_texthole_alloc(caddr_t addr, size_t size) 2965 { 2966 panic("unexpected call to kobj_texthole_alloc()"); 2967 /*NOTREACHED*/ 2968 return (0); 2969 } 2970 2971 /*ARGSUSED*/ 2972 void 2973 kobj_texthole_free(caddr_t addr, size_t size) 2974 { 2975 panic("unexpected call to kobj_texthole_free()"); 2976 } 2977 2978 /* 2979 * This is called just after configure() in startup(). 2980 * 2981 * The ISALIST concept is a bit hopeless on Intel, because 2982 * there's no guarantee of an ever-more-capable processor 2983 * given that various parts of the instruction set may appear 2984 * and disappear between different implementations. 2985 * 2986 * While it would be possible to correct it and even enhance 2987 * it somewhat, the explicit hardware capability bitmask allows 2988 * more flexibility. 2989 * 2990 * So, we just leave this alone. 2991 */ 2992 void 2993 setx86isalist(void) 2994 { 2995 char *tp; 2996 size_t len; 2997 extern char *isa_list; 2998 2999 #define TBUFSIZE 1024 3000 3001 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 3002 *tp = '\0'; 3003 3004 #if defined(__amd64) 3005 (void) strcpy(tp, "amd64 "); 3006 #endif 3007 3008 switch (x86_vendor) { 3009 case X86_VENDOR_Intel: 3010 case X86_VENDOR_AMD: 3011 case X86_VENDOR_TM: 3012 if (x86_feature & X86_CMOV) { 3013 /* 3014 * Pentium Pro or later 3015 */ 3016 (void) strcat(tp, "pentium_pro"); 3017 (void) strcat(tp, x86_feature & X86_MMX ? 3018 "+mmx pentium_pro " : " "); 3019 } 3020 /*FALLTHROUGH*/ 3021 case X86_VENDOR_Cyrix: 3022 /* 3023 * The Cyrix 6x86 does not have any Pentium features 3024 * accessible while not at privilege level 0. 3025 */ 3026 if (x86_feature & X86_CPUID) { 3027 (void) strcat(tp, "pentium"); 3028 (void) strcat(tp, x86_feature & X86_MMX ? 3029 "+mmx pentium " : " "); 3030 } 3031 break; 3032 default: 3033 break; 3034 } 3035 (void) strcat(tp, "i486 i386 i86"); 3036 len = strlen(tp) + 1; /* account for NULL at end of string */ 3037 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 3038 kmem_free(tp, TBUFSIZE); 3039 3040 #undef TBUFSIZE 3041 } 3042 3043 3044 #ifdef __amd64 3045 3046 void * 3047 device_arena_alloc(size_t size, int vm_flag) 3048 { 3049 return (vmem_alloc(device_arena, size, vm_flag)); 3050 } 3051 3052 void 3053 device_arena_free(void *vaddr, size_t size) 3054 { 3055 vmem_free(device_arena, vaddr, size); 3056 } 3057 3058 #else /* __i386 */ 3059 3060 void * 3061 device_arena_alloc(size_t size, int vm_flag) 3062 { 3063 caddr_t vaddr; 3064 uintptr_t v; 3065 size_t start; 3066 size_t end; 3067 3068 vaddr = vmem_alloc(heap_arena, size, vm_flag); 3069 if (vaddr == NULL) 3070 return (NULL); 3071 3072 v = (uintptr_t)vaddr; 3073 ASSERT(v >= kernelbase); 3074 ASSERT(v + size <= valloc_base); 3075 3076 start = btop(v - kernelbase); 3077 end = btop(v + size - 1 - kernelbase); 3078 ASSERT(start < toxic_bit_map_len); 3079 ASSERT(end < toxic_bit_map_len); 3080 3081 while (start <= end) { 3082 BT_ATOMIC_SET(toxic_bit_map, start); 3083 ++start; 3084 } 3085 return (vaddr); 3086 } 3087 3088 void 3089 device_arena_free(void *vaddr, size_t size) 3090 { 3091 uintptr_t v = (uintptr_t)vaddr; 3092 size_t start; 3093 size_t end; 3094 3095 ASSERT(v >= kernelbase); 3096 ASSERT(v + size <= valloc_base); 3097 3098 start = btop(v - kernelbase); 3099 end = btop(v + size - 1 - kernelbase); 3100 ASSERT(start < toxic_bit_map_len); 3101 ASSERT(end < toxic_bit_map_len); 3102 3103 while (start <= end) { 3104 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 3105 BT_ATOMIC_CLEAR(toxic_bit_map, start); 3106 ++start; 3107 } 3108 vmem_free(heap_arena, vaddr, size); 3109 } 3110 3111 /* 3112 * returns 1st address in range that is in device arena, or NULL 3113 * if len is not NULL it returns the length of the toxic range 3114 */ 3115 void * 3116 device_arena_contains(void *vaddr, size_t size, size_t *len) 3117 { 3118 uintptr_t v = (uintptr_t)vaddr; 3119 uintptr_t eaddr = v + size; 3120 size_t start; 3121 size_t end; 3122 3123 /* 3124 * if called very early by kmdb, just return NULL 3125 */ 3126 if (toxic_bit_map == NULL) 3127 return (NULL); 3128 3129 /* 3130 * First check if we're completely outside the bitmap range. 3131 */ 3132 if (v >= valloc_base || eaddr < kernelbase) 3133 return (NULL); 3134 3135 /* 3136 * Trim ends of search to look at only what the bitmap covers. 3137 */ 3138 if (v < kernelbase) 3139 v = kernelbase; 3140 start = btop(v - kernelbase); 3141 end = btop(eaddr - kernelbase); 3142 if (end >= toxic_bit_map_len) 3143 end = toxic_bit_map_len; 3144 3145 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 3146 return (NULL); 3147 3148 v = kernelbase + ptob(start); 3149 if (len != NULL) 3150 *len = ptob(end - start); 3151 return ((void *)v); 3152 } 3153 3154 #endif /* __i386 */ 3155