xref: /titanic_50/usr/src/uts/i86pc/os/startup.c (revision dc20a3024900c47dd2ee44b9707e6df38f7d62a5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/t_lock.h>
30 #include <sys/param.h>
31 #include <sys/sysmacros.h>
32 #include <sys/signal.h>
33 #include <sys/systm.h>
34 #include <sys/user.h>
35 #include <sys/mman.h>
36 #include <sys/vm.h>
37 #include <sys/conf.h>
38 #include <sys/avintr.h>
39 #include <sys/autoconf.h>
40 #include <sys/disp.h>
41 #include <sys/class.h>
42 #include <sys/bitmap.h>
43 
44 #include <sys/privregs.h>
45 
46 #include <sys/proc.h>
47 #include <sys/buf.h>
48 #include <sys/kmem.h>
49 #include <sys/mem.h>
50 #include <sys/kstat.h>
51 
52 #include <sys/reboot.h>
53 
54 #include <sys/cred.h>
55 #include <sys/vnode.h>
56 #include <sys/file.h>
57 
58 #include <sys/procfs.h>
59 
60 #include <sys/vfs.h>
61 #include <sys/cmn_err.h>
62 #include <sys/utsname.h>
63 #include <sys/debug.h>
64 #include <sys/kdi.h>
65 
66 #include <sys/dumphdr.h>
67 #include <sys/bootconf.h>
68 #include <sys/varargs.h>
69 #include <sys/promif.h>
70 #include <sys/modctl.h>
71 
72 #include <sys/sunddi.h>
73 #include <sys/sunndi.h>
74 #include <sys/ndi_impldefs.h>
75 #include <sys/ddidmareq.h>
76 #include <sys/psw.h>
77 #include <sys/regset.h>
78 #include <sys/clock.h>
79 #include <sys/pte.h>
80 #include <sys/tss.h>
81 #include <sys/stack.h>
82 #include <sys/trap.h>
83 #include <sys/fp.h>
84 #include <vm/kboot_mmu.h>
85 #include <vm/anon.h>
86 #include <vm/as.h>
87 #include <vm/page.h>
88 #include <vm/seg.h>
89 #include <vm/seg_dev.h>
90 #include <vm/seg_kmem.h>
91 #include <vm/seg_kpm.h>
92 #include <vm/seg_map.h>
93 #include <vm/seg_vn.h>
94 #include <vm/seg_kp.h>
95 #include <sys/memnode.h>
96 #include <vm/vm_dep.h>
97 #include <sys/thread.h>
98 #include <sys/sysconf.h>
99 #include <sys/vm_machparam.h>
100 #include <sys/archsystm.h>
101 #include <sys/machsystm.h>
102 #include <vm/hat.h>
103 #include <vm/hat_i86.h>
104 #include <sys/pmem.h>
105 #include <sys/smp_impldefs.h>
106 #include <sys/x86_archext.h>
107 #include <sys/segments.h>
108 #include <sys/clconf.h>
109 #include <sys/kobj.h>
110 #include <sys/kobj_lex.h>
111 #include <sys/cpc_impl.h>
112 #include <sys/x86_archext.h>
113 #include <sys/cpu_module.h>
114 #include <sys/smbios.h>
115 #include <sys/debug_info.h>
116 #include <sys/bootinfo.h>
117 #include <sys/ddi_timer.h>
118 
119 #ifdef __xpv
120 
121 #include <sys/hypervisor.h>
122 #include <sys/xen_mmu.h>
123 #include <sys/evtchn_impl.h>
124 #include <sys/gnttab.h>
125 #include <sys/xpv_panic.h>
126 #include <xen/sys/xenbus_comms.h>
127 #include <xen/public/physdev.h>
128 
129 extern void xen_late_startup(void);
130 
131 struct xen_evt_data cpu0_evt_data;
132 
133 #endif /* __xpv */
134 
135 extern void progressbar_init(void);
136 extern void progressbar_start(void);
137 extern void brand_init(void);
138 
139 extern int size_pse_array(pgcnt_t, int);
140 
141 /*
142  * XXX make declaration below "static" when drivers no longer use this
143  * interface.
144  */
145 extern caddr_t p0_va;	/* Virtual address for accessing physical page 0 */
146 
147 /*
148  * segkp
149  */
150 extern int segkp_fromheap;
151 
152 static void kvm_init(void);
153 static void startup_init(void);
154 static void startup_memlist(void);
155 static void startup_kmem(void);
156 static void startup_modules(void);
157 static void startup_vm(void);
158 static void startup_end(void);
159 static void layout_kernel_va(void);
160 
161 /*
162  * Declare these as initialized data so we can patch them.
163  */
164 #ifdef __i386
165 
166 /*
167  * Due to virtual address space limitations running in 32 bit mode, restrict
168  * the amount of physical memory configured to a max of PHYSMEM pages (16g).
169  *
170  * If the physical max memory size of 64g were allowed to be configured, the
171  * size of user virtual address space will be less than 1g. A limited user
172  * address space greatly reduces the range of applications that can run.
173  *
174  * If more physical memory than PHYSMEM is required, users should preferably
175  * run in 64 bit mode which has far looser virtual address space limitations.
176  *
177  * If 64 bit mode is not available (as in IA32) and/or more physical memory
178  * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired
179  * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase
180  * should also be carefully tuned to balance out the need of the user
181  * application while minimizing the risk of kernel heap exhaustion due to
182  * kernelbase being set too high.
183  */
184 #define	PHYSMEM	0x400000
185 
186 #else /* __amd64 */
187 
188 /*
189  * For now we can handle memory with physical addresses up to about
190  * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly
191  * half the VA space for seg_kpm. When systems get bigger than 64TB this
192  * code will need revisiting. There is an implicit assumption that there
193  * are no *huge* holes in the physical address space too.
194  */
195 #define	TERABYTE		(1ul << 40)
196 #define	PHYSMEM_MAX64		mmu_btop(64 * TERABYTE)
197 #define	PHYSMEM			PHYSMEM_MAX64
198 #define	AMD64_VA_HOLE_END	0xFFFF800000000000ul
199 
200 #endif /* __amd64 */
201 
202 pgcnt_t physmem = PHYSMEM;
203 pgcnt_t obp_pages;	/* Memory used by PROM for its text and data */
204 
205 char *kobj_file_buf;
206 int kobj_file_bufsize;	/* set in /etc/system */
207 
208 /* Global variables for MP support. Used in mp_startup */
209 caddr_t	rm_platter_va;
210 uint32_t rm_platter_pa;
211 
212 int	auto_lpg_disable = 1;
213 
214 /*
215  * Some CPUs have holes in the middle of the 64-bit virtual address range.
216  */
217 uintptr_t hole_start, hole_end;
218 
219 /*
220  * kpm mapping window
221  */
222 caddr_t kpm_vbase;
223 size_t  kpm_size;
224 static int kpm_desired;
225 #ifdef __amd64
226 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE;
227 #endif
228 
229 /*
230  * Configuration parameters set at boot time.
231  */
232 
233 caddr_t econtig;		/* end of first block of contiguous kernel */
234 
235 struct bootops		*bootops = 0;	/* passed in from boot */
236 struct bootops		**bootopsp;
237 struct boot_syscalls	*sysp;		/* passed in from boot */
238 
239 char bootblock_fstype[16];
240 
241 char kern_bootargs[OBP_MAXPATHLEN];
242 
243 /*
244  * ZFS zio segment.  This allows us to exclude large portions of ZFS data that
245  * gets cached in kmem caches on the heap.  If this is set to zero, we allocate
246  * zio buffers from their own segment, otherwise they are allocated from the
247  * heap.  The optimization of allocating zio buffers from their own segment is
248  * only valid on 64-bit kernels.
249  */
250 #if defined(__amd64)
251 int segzio_fromheap = 0;
252 #else
253 int segzio_fromheap = 1;
254 #endif
255 
256 /*
257  * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
258  * depends on number of BOP_ALLOC calls made and requested size, memory size
259  * combination and whether boot.bin memory needs to be freed.
260  */
261 #define	POSS_NEW_FRAGMENTS	12
262 
263 /*
264  * VM data structures
265  */
266 long page_hashsz;		/* Size of page hash table (power of two) */
267 struct page *pp_base;		/* Base of initial system page struct array */
268 struct page **page_hash;	/* Page hash table */
269 pad_mutex_t *pse_mutex;		/* Locks protecting pp->p_selock */
270 size_t pse_table_size;		/* Number of mutexes in pse_mutex[] */
271 int pse_shift;			/* log2(pse_table_size) */
272 struct seg ktextseg;		/* Segment used for kernel executable image */
273 struct seg kvalloc;		/* Segment used for "valloc" mapping */
274 struct seg kpseg;		/* Segment used for pageable kernel virt mem */
275 struct seg kmapseg;		/* Segment used for generic kernel mappings */
276 struct seg kdebugseg;		/* Segment used for the kernel debugger */
277 
278 struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
279 static struct seg *segmap = &kmapseg;	/* easier to use name for in here */
280 
281 struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
282 
283 #if defined(__amd64)
284 struct seg kvseg_core;		/* Segment used for the core heap */
285 struct seg kpmseg;		/* Segment used for physical mapping */
286 struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
287 #else
288 struct seg *segkpm = NULL;	/* Unused on IA32 */
289 #endif
290 
291 caddr_t segkp_base;		/* Base address of segkp */
292 caddr_t segzio_base;		/* Base address of segzio */
293 #if defined(__amd64)
294 pgcnt_t segkpsize = btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
295 #else
296 pgcnt_t segkpsize = 0;
297 #endif
298 pgcnt_t segziosize = 0;		/* size of zio segment in pages */
299 
300 /*
301  * VA range available to the debugger
302  */
303 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
304 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
305 
306 struct memseg *memseg_base;
307 struct vnode unused_pages_vp;
308 
309 #define	FOURGB	0x100000000LL
310 
311 struct memlist *memlist;
312 
313 caddr_t s_text;		/* start of kernel text segment */
314 caddr_t e_text;		/* end of kernel text segment */
315 caddr_t s_data;		/* start of kernel data segment */
316 caddr_t e_data;		/* end of kernel data segment */
317 caddr_t modtext;	/* start of loadable module text reserved */
318 caddr_t e_modtext;	/* end of loadable module text reserved */
319 caddr_t moddata;	/* start of loadable module data reserved */
320 caddr_t e_moddata;	/* end of loadable module data reserved */
321 
322 struct memlist *phys_install;	/* Total installed physical memory */
323 struct memlist *phys_avail;	/* Total available physical memory */
324 
325 /*
326  * kphysm_init returns the number of pages that were processed
327  */
328 static pgcnt_t kphysm_init(page_t *, pgcnt_t);
329 
330 #define	IO_PROP_SIZE	64	/* device property size */
331 
332 /*
333  * a couple useful roundup macros
334  */
335 #define	ROUND_UP_PAGE(x)	\
336 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
337 #define	ROUND_UP_LPAGE(x)	\
338 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
339 #define	ROUND_UP_4MEG(x)	\
340 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG))
341 #define	ROUND_UP_TOPLEVEL(x)	\
342 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
343 
344 /*
345  *	32-bit Kernel's Virtual memory layout.
346  *		+-----------------------+
347  *		|			|
348  * 0xFFC00000  -|-----------------------|- ARGSBASE
349  *		|	debugger	|
350  * 0xFF800000  -|-----------------------|- SEGDEBUGBASE
351  *		|      Kernel Data	|
352  * 0xFEC00000  -|-----------------------|
353  *              |      Kernel Text	|
354  * 0xFE800000  -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen)
355  *		|---       GDT       ---|- GDT page (GDT_VA)
356  *		|---    debug info   ---|- debug info (DEBUG_INFO_VA)
357  *		|			|
358  * 		|   page_t structures	|
359  * 		|   memsegs, memlists, 	|
360  * 		|   page hash, etc.	|
361  * ---	       -|-----------------------|- ekernelheap, valloc_base (floating)
362  *		|			|  (segkp is just an arena in the heap)
363  *		|			|
364  *		|	kvseg		|
365  *		|			|
366  *		|			|
367  * ---         -|-----------------------|- kernelheap (floating)
368  * 		|        Segkmap	|
369  * 0xC3002000  -|-----------------------|- segmap_start (floating)
370  *		|	Red Zone	|
371  * 0xC3000000  -|-----------------------|- kernelbase / userlimit (floating)
372  *		|			|			||
373  *		|     Shared objects	|			\/
374  *		|			|
375  *		:			:
376  *		|	user data	|
377  *		|-----------------------|
378  *		|	user text	|
379  * 0x08048000  -|-----------------------|
380  *		|	user stack	|
381  *		:			:
382  *		|	invalid		|
383  * 0x00000000	+-----------------------+
384  *
385  *
386  *		64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
387  *			+-----------------------+
388  *			|			|
389  * 0xFFFFFFFF.FFC00000  |-----------------------|- ARGSBASE
390  *			|	debugger (?)	|
391  * 0xFFFFFFFF.FF800000  |-----------------------|- SEGDEBUGBASE
392  *			|      unused    	|
393  *			+-----------------------+
394  *			|      Kernel Data	|
395  * 0xFFFFFFFF.FBC00000  |-----------------------|
396  *			|      Kernel Text	|
397  * 0xFFFFFFFF.FB800000  |-----------------------|- KERNEL_TEXT
398  *			|---       GDT       ---|- GDT page (GDT_VA)
399  *			|---    debug info   ---|- debug info (DEBUG_INFO_VA)
400  *			|			|
401  * 			|      Core heap	| (used for loadable modules)
402  * 0xFFFFFFFF.C0000000  |-----------------------|- core_base / ekernelheap
403  *			|	 Kernel		|
404  *			|	  heap		|
405  * 0xFFFFFXXX.XXX00000  |-----------------------|- kernelheap (floating)
406  *			|	 segmap		|
407  * 0xFFFFFXXX.XXX00000  |-----------------------|- segmap_start (floating)
408  *			|    device mappings	|
409  * 0xFFFFFXXX.XXX00000  |-----------------------|- toxic_addr (floating)
410  *			|	  segzio	|
411  * 0xFFFFFXXX.XXX00000  |-----------------------|- segzio_base (floating)
412  *			|	  segkp		|
413  * ---                  |-----------------------|- segkp_base (floating)
414  * 			|   page_t structures	|  valloc_base + valloc_sz
415  * 			|   memsegs, memlists, 	|
416  * 			|   page hash, etc.	|
417  * 0xFFFFFF00.00000000  |-----------------------|- valloc_base (lower if > 1TB)
418  *			|	 segkpm		|
419  * 0xFFFFFE00.00000000  |-----------------------|
420  *			|	Red Zone	|
421  * 0xFFFFFD80.00000000  |-----------------------|- KERNELBASE (lower if > 1TB)
422  *			|     User stack	|- User space memory
423  * 			|			|
424  * 			| shared objects, etc	|	(grows downwards)
425  *			:			:
426  * 			|			|
427  * 0xFFFF8000.00000000  |-----------------------|
428  * 			|			|
429  * 			| VA Hole / unused	|
430  * 			|			|
431  * 0x00008000.00000000  |-----------------------|
432  *			|			|
433  *			|			|
434  *			:			:
435  *			|	user heap	|	(grows upwards)
436  *			|			|
437  *			|	user data	|
438  *			|-----------------------|
439  *			|	user text	|
440  * 0x00000000.04000000  |-----------------------|
441  *			|	invalid		|
442  * 0x00000000.00000000	+-----------------------+
443  *
444  * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
445  * kernel, except that userlimit is raised to 0xfe000000
446  *
447  * Floating values:
448  *
449  * valloc_base: start of the kernel's memory management/tracking data
450  * structures.  This region contains page_t structures for
451  * physical memory, memsegs, memlists, and the page hash.
452  *
453  * core_base: start of the kernel's "core" heap area on 64-bit systems.
454  * This area is intended to be used for global data as well as for module
455  * text/data that does not fit into the nucleus pages.  The core heap is
456  * restricted to a 2GB range, allowing every address within it to be
457  * accessed using rip-relative addressing
458  *
459  * ekernelheap: end of kernelheap and start of segmap.
460  *
461  * kernelheap: start of kernel heap.  On 32-bit systems, this starts right
462  * above a red zone that separates the user's address space from the
463  * kernel's.  On 64-bit systems, it sits above segkp and segkpm.
464  *
465  * segmap_start: start of segmap. The length of segmap can be modified
466  * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated).
467  * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems.
468  *
469  * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
470  * decreased by 2X the size required for page_t.  This allows the kernel
471  * heap to grow in size with physical memory.  With sizeof(page_t) == 80
472  * bytes, the following shows the values of kernelbase and kernel heap
473  * sizes for different memory configurations (assuming default segmap and
474  * segkp sizes).
475  *
476  *	mem	size for	kernelbase	kernel heap
477  *	size	page_t's			size
478  *	----	---------	----------	-----------
479  *	1gb	0x01400000	0xd1800000	684MB
480  *	2gb	0x02800000	0xcf000000	704MB
481  *	4gb	0x05000000	0xca000000	744MB
482  *	6gb	0x07800000	0xc5000000	784MB
483  *	8gb	0x0a000000	0xc0000000	824MB
484  *	16gb	0x14000000	0xac000000	984MB
485  *	32gb	0x28000000	0x84000000	1304MB
486  *	64gb	0x50000000	0x34000000	1944MB (*)
487  *
488  * kernelbase is less than the abi minimum of 0xc0000000 for memory
489  * configurations above 8gb.
490  *
491  * (*) support for memory configurations above 32gb will require manual tuning
492  * of kernelbase to balance out the need of user applications.
493  */
494 
495 /* real-time-clock initialization parameters */
496 extern time_t process_rtc_config_file(void);
497 
498 uintptr_t	kernelbase;
499 uintptr_t	postbootkernelbase;	/* not set till boot loader is gone */
500 uintptr_t	eprom_kernelbase;
501 size_t		segmapsize;
502 uintptr_t	segmap_start;
503 int		segmapfreelists;
504 pgcnt_t		npages;
505 pgcnt_t		orig_npages;
506 size_t		core_size;		/* size of "core" heap */
507 uintptr_t	core_base;		/* base address of "core" heap */
508 
509 /*
510  * List of bootstrap pages. We mark these as allocated in startup.
511  * release_bootstrap() will free them when we're completely done with
512  * the bootstrap.
513  */
514 static page_t *bootpages;
515 
516 /*
517  * boot time pages that have a vnode from the ramdisk will keep that forever.
518  */
519 static page_t *rd_pages;
520 
521 struct system_hardware system_hardware;
522 
523 /*
524  * Is this Solaris instance running in a fully virtualized xVM domain?
525  */
526 int xpv_is_hvm = 0;
527 
528 /*
529  * Enable some debugging messages concerning memory usage...
530  */
531 static void
532 print_memlist(char *title, struct memlist *mp)
533 {
534 	prom_printf("MEMLIST: %s:\n", title);
535 	while (mp != NULL)  {
536 		prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
537 		    mp->address, mp->size);
538 		mp = mp->next;
539 	}
540 }
541 
542 /*
543  * XX64 need a comment here.. are these just default values, surely
544  * we read the "cpuid" type information to figure this out.
545  */
546 int	l2cache_sz = 0x80000;
547 int	l2cache_linesz = 0x40;
548 int	l2cache_assoc = 1;
549 
550 static size_t	textrepl_min_gb = 10;
551 
552 /*
553  * on 64 bit we use a predifined VA range for mapping devices in the kernel
554  * on 32 bit the mappings are intermixed in the heap, so we use a bit map
555  */
556 #ifdef __amd64
557 
558 vmem_t		*device_arena;
559 uintptr_t	toxic_addr = (uintptr_t)NULL;
560 size_t		toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
561 
562 #else	/* __i386 */
563 
564 ulong_t		*toxic_bit_map;	/* one bit for each 4k of VA in heap_arena */
565 size_t		toxic_bit_map_len = 0;	/* in bits */
566 
567 #endif	/* __i386 */
568 
569 /*
570  * Simple boot time debug facilities
571  */
572 static char *prm_dbg_str[] = {
573 	"%s:%d: '%s' is 0x%x\n",
574 	"%s:%d: '%s' is 0x%llx\n"
575 };
576 
577 int prom_debug;
578 
579 #define	PRM_DEBUG(q)	if (prom_debug) 	\
580 	prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q);
581 #define	PRM_POINT(q)	if (prom_debug) 	\
582 	prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q);
583 
584 /*
585  * This structure is used to keep track of the intial allocations
586  * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
587  * be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
588  */
589 #define	NUM_ALLOCATIONS 7
590 int num_allocations = 0;
591 struct {
592 	void **al_ptr;
593 	size_t al_size;
594 } allocations[NUM_ALLOCATIONS];
595 size_t valloc_sz = 0;
596 uintptr_t valloc_base;
597 
598 #define	ADD_TO_ALLOCATIONS(ptr, size) {					\
599 		size = ROUND_UP_PAGE(size);		 		\
600 		if (num_allocations == NUM_ALLOCATIONS)			\
601 			panic("too many ADD_TO_ALLOCATIONS()");		\
602 		allocations[num_allocations].al_ptr = (void**)&ptr;	\
603 		allocations[num_allocations].al_size = size;		\
604 		valloc_sz += size;					\
605 		++num_allocations;				 	\
606 	}
607 
608 /*
609  * Allocate all the initial memory needed by the page allocator.
610  */
611 static void
612 perform_allocations(void)
613 {
614 	caddr_t mem;
615 	int i;
616 	int valloc_align;
617 
618 	PRM_DEBUG(valloc_base);
619 	PRM_DEBUG(valloc_sz);
620 	valloc_align = mmu.level_size[mmu.max_page_level > 0];
621 	mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align);
622 	if (mem != (caddr_t)valloc_base)
623 		panic("BOP_ALLOC() failed");
624 	bzero(mem, valloc_sz);
625 	for (i = 0; i < num_allocations; ++i) {
626 		*allocations[i].al_ptr = (void *)mem;
627 		mem += allocations[i].al_size;
628 	}
629 }
630 
631 /*
632  * Our world looks like this at startup time.
633  *
634  * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
635  * at 0xfec00000.  On a 64-bit OS, kernel text and data are loaded at
636  * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively.  Those
637  * addresses are fixed in the binary at link time.
638  *
639  * On the text page:
640  * unix/genunix/krtld/module text loads.
641  *
642  * On the data page:
643  * unix/genunix/krtld/module data loads.
644  *
645  * Machine-dependent startup code
646  */
647 void
648 startup(void)
649 {
650 #if !defined(__xpv)
651 	extern void startup_bios_disk(void);
652 	extern void startup_pci_bios(void);
653 #endif
654 	/*
655 	 * Make sure that nobody tries to use sekpm until we have
656 	 * initialized it properly.
657 	 */
658 #if defined(__amd64)
659 	kpm_desired = 1;
660 #endif
661 	kpm_enable = 0;
662 
663 #if defined(__xpv)	/* XXPV fix me! */
664 	{
665 		extern int segvn_use_regions;
666 		segvn_use_regions = 0;
667 	}
668 #endif
669 	progressbar_init();
670 	startup_init();
671 #if defined(__xpv)
672 	startup_xen_version();
673 #endif
674 	startup_memlist();
675 	startup_kmem();
676 	startup_vm();
677 #if !defined(__xpv)
678 	startup_pci_bios();
679 #endif
680 	startup_modules();
681 #if !defined(__xpv)
682 	startup_bios_disk();
683 #endif
684 	startup_end();
685 	progressbar_start();
686 }
687 
688 static void
689 startup_init()
690 {
691 	PRM_POINT("startup_init() starting...");
692 
693 	/*
694 	 * Complete the extraction of cpuid data
695 	 */
696 	cpuid_pass2(CPU);
697 
698 	(void) check_boot_version(BOP_GETVERSION(bootops));
699 
700 	/*
701 	 * Check for prom_debug in boot environment
702 	 */
703 	if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
704 		++prom_debug;
705 		PRM_POINT("prom_debug found in boot enviroment");
706 	}
707 
708 	/*
709 	 * Collect node, cpu and memory configuration information.
710 	 */
711 	get_system_configuration();
712 
713 	/*
714 	 * Halt if this is an unsupported processor.
715 	 */
716 	if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
717 		printf("\n486 processor (\"%s\") detected.\n",
718 		    CPU->cpu_brandstr);
719 		halt("This processor is not supported by this release "
720 		    "of Solaris.");
721 	}
722 
723 	PRM_POINT("startup_init() done");
724 }
725 
726 /*
727  * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
728  * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
729  * also filters out physical page zero.  There is some reliance on the
730  * boot loader allocating only a few contiguous physical memory chunks.
731  */
732 static void
733 avail_filter(uint64_t *addr, uint64_t *size)
734 {
735 	uintptr_t va;
736 	uintptr_t next_va;
737 	pfn_t pfn;
738 	uint64_t pfn_addr;
739 	uint64_t pfn_eaddr;
740 	uint_t prot;
741 	size_t len;
742 	uint_t change;
743 
744 	if (prom_debug)
745 		prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
746 		    *addr, *size);
747 
748 	/*
749 	 * page zero is required for BIOS.. never make it available
750 	 */
751 	if (*addr == 0) {
752 		*addr += MMU_PAGESIZE;
753 		*size -= MMU_PAGESIZE;
754 	}
755 
756 	/*
757 	 * First we trim from the front of the range. Since kbm_probe()
758 	 * walks ranges in virtual order, but addr/size are physical, we need
759 	 * to the list until no changes are seen.  This deals with the case
760 	 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
761 	 * but w < v.
762 	 */
763 	do {
764 		change = 0;
765 		for (va = KERNEL_TEXT;
766 		    *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
767 		    va = next_va) {
768 
769 			next_va = va + len;
770 			pfn_addr = pfn_to_pa(pfn);
771 			pfn_eaddr = pfn_addr + len;
772 
773 			if (pfn_addr <= *addr && pfn_eaddr > *addr) {
774 				change = 1;
775 				while (*size > 0 && len > 0) {
776 					*addr += MMU_PAGESIZE;
777 					*size -= MMU_PAGESIZE;
778 					len -= MMU_PAGESIZE;
779 				}
780 			}
781 		}
782 		if (change && prom_debug)
783 			prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
784 			    *addr, *size);
785 	} while (change);
786 
787 	/*
788 	 * Trim pages from the end of the range.
789 	 */
790 	for (va = KERNEL_TEXT;
791 	    *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
792 	    va = next_va) {
793 
794 		next_va = va + len;
795 		pfn_addr = pfn_to_pa(pfn);
796 
797 		if (pfn_addr >= *addr && pfn_addr < *addr + *size)
798 			*size = pfn_addr - *addr;
799 	}
800 
801 	if (prom_debug)
802 		prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
803 		    *addr, *size);
804 }
805 
806 static void
807 kpm_init()
808 {
809 	struct segkpm_crargs b;
810 
811 	/*
812 	 * These variables were all designed for sfmmu in which segkpm is
813 	 * mapped using a single pagesize - either 8KB or 4MB.  On x86, we
814 	 * might use 2+ page sizes on a single machine, so none of these
815 	 * variables have a single correct value.  They are set up as if we
816 	 * always use a 4KB pagesize, which should do no harm.  In the long
817 	 * run, we should get rid of KPM's assumption that only a single
818 	 * pagesize is used.
819 	 */
820 	kpm_pgshft = MMU_PAGESHIFT;
821 	kpm_pgsz =  MMU_PAGESIZE;
822 	kpm_pgoff = MMU_PAGEOFFSET;
823 	kpmp2pshft = 0;
824 	kpmpnpgs = 1;
825 	ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
826 
827 	PRM_POINT("about to create segkpm");
828 	rw_enter(&kas.a_lock, RW_WRITER);
829 
830 	if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
831 		panic("cannot attach segkpm");
832 
833 	b.prot = PROT_READ | PROT_WRITE;
834 	b.nvcolors = 1;
835 
836 	if (segkpm_create(segkpm, (caddr_t)&b) != 0)
837 		panic("segkpm_create segkpm");
838 
839 	rw_exit(&kas.a_lock);
840 }
841 
842 /*
843  * The debug info page provides enough information to allow external
844  * inspectors (e.g. when running under a hypervisor) to bootstrap
845  * themselves into allowing full-blown kernel debugging.
846  */
847 static void
848 init_debug_info(void)
849 {
850 	caddr_t mem;
851 	debug_info_t *di;
852 
853 #ifndef __lint
854 	ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE);
855 #endif
856 
857 	mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE,
858 	    MMU_PAGESIZE);
859 
860 	if (mem != (caddr_t)DEBUG_INFO_VA)
861 		panic("BOP_ALLOC() failed");
862 	bzero(mem, MMU_PAGESIZE);
863 
864 	di = (debug_info_t *)mem;
865 
866 	di->di_magic = DEBUG_INFO_MAGIC;
867 	di->di_version = DEBUG_INFO_VERSION;
868 	di->di_modules = (uintptr_t)&modules;
869 	di->di_s_text = (uintptr_t)s_text;
870 	di->di_e_text = (uintptr_t)e_text;
871 	di->di_s_data = (uintptr_t)s_data;
872 	di->di_e_data = (uintptr_t)e_data;
873 	di->di_hat_htable_off = offsetof(hat_t, hat_htable);
874 	di->di_ht_pfn_off = offsetof(htable_t, ht_pfn);
875 }
876 
877 /*
878  * Build the memlists and other kernel essential memory system data structures.
879  * This is everything at valloc_base.
880  */
881 static void
882 startup_memlist(void)
883 {
884 	size_t memlist_sz;
885 	size_t memseg_sz;
886 	size_t pagehash_sz;
887 	size_t pp_sz;
888 	uintptr_t va;
889 	size_t len;
890 	uint_t prot;
891 	pfn_t pfn;
892 	int memblocks;
893 	caddr_t pagecolor_mem;
894 	size_t pagecolor_memsz;
895 	caddr_t page_ctrs_mem;
896 	size_t page_ctrs_size;
897 	size_t pse_table_alloc_size;
898 	struct memlist *current;
899 	extern void startup_build_mem_nodes(struct memlist *);
900 
901 	/* XX64 fix these - they should be in include files */
902 	extern size_t page_coloring_init(uint_t, int, int);
903 	extern void page_coloring_setup(caddr_t);
904 
905 	PRM_POINT("startup_memlist() starting...");
906 
907 	/*
908 	 * Use leftover large page nucleus text/data space for loadable modules.
909 	 * Use at most MODTEXT/MODDATA.
910 	 */
911 	len = kbm_nucleus_size;
912 	ASSERT(len > MMU_PAGESIZE);
913 
914 	moddata = (caddr_t)ROUND_UP_PAGE(e_data);
915 	e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len);
916 	if (e_moddata - moddata > MODDATA)
917 		e_moddata = moddata + MODDATA;
918 
919 	modtext = (caddr_t)ROUND_UP_PAGE(e_text);
920 	e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len);
921 	if (e_modtext - modtext > MODTEXT)
922 		e_modtext = modtext + MODTEXT;
923 
924 	econtig = e_moddata;
925 
926 	PRM_DEBUG(modtext);
927 	PRM_DEBUG(e_modtext);
928 	PRM_DEBUG(moddata);
929 	PRM_DEBUG(e_moddata);
930 	PRM_DEBUG(econtig);
931 
932 	/*
933 	 * Examine the boot loader physical memory map to find out:
934 	 * - total memory in system - physinstalled
935 	 * - the max physical address - physmax
936 	 * - the number of discontiguous segments of memory.
937 	 */
938 	if (prom_debug)
939 		print_memlist("boot physinstalled",
940 		    bootops->boot_mem->physinstalled);
941 	installed_top_size(bootops->boot_mem->physinstalled, &physmax,
942 	    &physinstalled, &memblocks);
943 	PRM_DEBUG(physmax);
944 	PRM_DEBUG(physinstalled);
945 	PRM_DEBUG(memblocks);
946 
947 	/*
948 	 * Initialize hat's mmu parameters.
949 	 * Check for enforce-prot-exec in boot environment. It's used to
950 	 * enable/disable support for the page table entry NX bit.
951 	 * The default is to enforce PROT_EXEC on processors that support NX.
952 	 * Boot seems to round up the "len", but 8 seems to be big enough.
953 	 */
954 	mmu_init();
955 
956 #ifdef	__i386
957 	/*
958 	 * physmax is lowered if there is more memory than can be
959 	 * physically addressed in 32 bit (PAE/non-PAE) modes.
960 	 */
961 	if (mmu.pae_hat) {
962 		if (PFN_ABOVE64G(physmax)) {
963 			physinstalled -= (physmax - (PFN_64G - 1));
964 			physmax = PFN_64G - 1;
965 		}
966 	} else {
967 		if (PFN_ABOVE4G(physmax)) {
968 			physinstalled -= (physmax - (PFN_4G - 1));
969 			physmax = PFN_4G - 1;
970 		}
971 	}
972 #endif
973 
974 	startup_build_mem_nodes(bootops->boot_mem->physinstalled);
975 
976 	if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
977 		int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
978 		char value[8];
979 
980 		if (len < 8)
981 			(void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
982 		else
983 			(void) strcpy(value, "");
984 		if (strcmp(value, "off") == 0)
985 			mmu.pt_nx = 0;
986 	}
987 	PRM_DEBUG(mmu.pt_nx);
988 
989 	/*
990 	 * We will need page_t's for every page in the system, except for
991 	 * memory mapped at or above above the start of the kernel text segment.
992 	 *
993 	 * pages above e_modtext are attributed to kernel debugger (obp_pages)
994 	 */
995 	npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
996 	obp_pages = 0;
997 	va = KERNEL_TEXT;
998 	while (kbm_probe(&va, &len, &pfn, &prot) != 0) {
999 		npages -= len >> MMU_PAGESHIFT;
1000 		if (va >= (uintptr_t)e_moddata)
1001 			obp_pages += len >> MMU_PAGESHIFT;
1002 		va += len;
1003 	}
1004 	PRM_DEBUG(npages);
1005 	PRM_DEBUG(obp_pages);
1006 
1007 	/*
1008 	 * If physmem is patched to be non-zero, use it instead of the computed
1009 	 * value unless it is larger than the actual amount of memory on hand.
1010 	 */
1011 	if (physmem == 0 || physmem > npages) {
1012 		physmem = npages;
1013 	} else if (physmem < npages) {
1014 		orig_npages = npages;
1015 		npages = physmem;
1016 	}
1017 	PRM_DEBUG(physmem);
1018 
1019 	/*
1020 	 * We now compute the sizes of all the  initial allocations for
1021 	 * structures the kernel needs in order do kmem_alloc(). These
1022 	 * include:
1023 	 *	memsegs
1024 	 *	memlists
1025 	 *	page hash table
1026 	 *	page_t's
1027 	 *	page coloring data structs
1028 	 */
1029 	memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
1030 	ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
1031 	PRM_DEBUG(memseg_sz);
1032 
1033 	/*
1034 	 * Reserve space for memlists. There's no real good way to know exactly
1035 	 * how much room we'll need, but this should be a good upper bound.
1036 	 */
1037 	memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1038 	    (memblocks + POSS_NEW_FRAGMENTS));
1039 	ADD_TO_ALLOCATIONS(memlist, memlist_sz);
1040 	PRM_DEBUG(memlist_sz);
1041 
1042 	/*
1043 	 * The page structure hash table size is a power of 2
1044 	 * such that the average hash chain length is PAGE_HASHAVELEN.
1045 	 */
1046 	page_hashsz = npages / PAGE_HASHAVELEN;
1047 	page_hashsz = 1 << highbit(page_hashsz);
1048 	pagehash_sz = sizeof (struct page *) * page_hashsz;
1049 	ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
1050 	PRM_DEBUG(pagehash_sz);
1051 
1052 	/*
1053 	 * Set aside room for the page structures themselves.
1054 	 */
1055 	PRM_DEBUG(npages);
1056 	pp_sz = sizeof (struct page) * npages;
1057 	ADD_TO_ALLOCATIONS(pp_base, pp_sz);
1058 	PRM_DEBUG(pp_sz);
1059 
1060 	/*
1061 	 * determine l2 cache info and memory size for page coloring
1062 	 */
1063 	(void) getl2cacheinfo(CPU,
1064 	    &l2cache_sz, &l2cache_linesz, &l2cache_assoc);
1065 	pagecolor_memsz =
1066 	    page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
1067 	ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
1068 	PRM_DEBUG(pagecolor_memsz);
1069 
1070 	page_ctrs_size = page_ctrs_sz();
1071 	ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
1072 	PRM_DEBUG(page_ctrs_size);
1073 
1074 	/*
1075 	 * Allocate the array that protects pp->p_selock.
1076 	 */
1077 	pse_shift = size_pse_array(physmem, max_ncpus);
1078 	pse_table_size = 1 << pse_shift;
1079 	pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t);
1080 	ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size);
1081 
1082 #if defined(__amd64)
1083 	valloc_sz = ROUND_UP_LPAGE(valloc_sz);
1084 	valloc_base = VALLOC_BASE;
1085 
1086 	/*
1087 	 * The default values of VALLOC_BASE and SEGKPM_BASE should work
1088 	 * for values of physmax up to 1 Terabyte. They need adjusting when
1089 	 * memory is at addresses above 1 TB.
1090 	 */
1091 	if (physmax + 1 > mmu_btop(TERABYTE)) {
1092 		uint64_t kpm_resv_amount = mmu_ptob(physmax + 1);
1093 
1094 		/* Round to largest possible pagesize for now */
1095 		kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG);
1096 
1097 		segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */
1098 
1099 		/* make sure we leave some space for user apps above hole */
1100 		segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE);
1101 		if (segkpm_base > SEGKPM_BASE)
1102 			segkpm_base = SEGKPM_BASE;
1103 		PRM_DEBUG(segkpm_base);
1104 
1105 		valloc_base = segkpm_base + kpm_resv_amount;
1106 		PRM_DEBUG(valloc_base);
1107 	}
1108 #else	/* __i386 */
1109 	valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz);
1110 	valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]);
1111 	PRM_DEBUG(valloc_base);
1112 #endif	/* __i386 */
1113 
1114 	/*
1115 	 * do all the initial allocations
1116 	 */
1117 	perform_allocations();
1118 
1119 	/*
1120 	 * Build phys_install and phys_avail in kernel memspace.
1121 	 * - phys_install should be all memory in the system.
1122 	 * - phys_avail is phys_install minus any memory mapped before this
1123 	 *    point above KERNEL_TEXT.
1124 	 */
1125 	current = phys_install = memlist;
1126 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current, NULL);
1127 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1128 		panic("physinstalled was too big!");
1129 	if (prom_debug)
1130 		print_memlist("phys_install", phys_install);
1131 
1132 	phys_avail = current;
1133 	PRM_POINT("Building phys_avail:\n");
1134 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current,
1135 	    avail_filter);
1136 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1137 		panic("physavail was too big!");
1138 	if (prom_debug)
1139 		print_memlist("phys_avail", phys_avail);
1140 
1141 	/*
1142 	 * setup page coloring
1143 	 */
1144 	page_coloring_setup(pagecolor_mem);
1145 	page_lock_init();	/* currently a no-op */
1146 
1147 	/*
1148 	 * free page list counters
1149 	 */
1150 	(void) page_ctrs_alloc(page_ctrs_mem);
1151 
1152 	/*
1153 	 * Initialize the page structures from the memory lists.
1154 	 */
1155 	availrmem_initial = availrmem = freemem = 0;
1156 	PRM_POINT("Calling kphysm_init()...");
1157 	npages = kphysm_init(pp_base, npages);
1158 	PRM_POINT("kphysm_init() done");
1159 	PRM_DEBUG(npages);
1160 
1161 	init_debug_info();
1162 
1163 	/*
1164 	 * Now that page_t's have been initialized, remove all the
1165 	 * initial allocation pages from the kernel free page lists.
1166 	 */
1167 	boot_mapin((caddr_t)valloc_base, valloc_sz);
1168 	boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE);
1169 	PRM_POINT("startup_memlist() done");
1170 
1171 	PRM_DEBUG(valloc_sz);
1172 
1173 #if defined(__amd64)
1174 	if ((availrmem >> (30 - MMU_PAGESHIFT)) >=
1175 	    textrepl_min_gb && l2cache_sz <= 2 << 20) {
1176 		extern size_t textrepl_size_thresh;
1177 		textrepl_size_thresh = (16 << 20) - 1;
1178 	}
1179 #endif
1180 }
1181 
1182 /*
1183  * Layout the kernel's part of address space and initialize kmem allocator.
1184  */
1185 static void
1186 startup_kmem(void)
1187 {
1188 	extern void page_set_colorequiv_arr(void);
1189 
1190 	PRM_POINT("startup_kmem() starting...");
1191 
1192 #if defined(__amd64)
1193 	if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
1194 		cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
1195 		    "systems.");
1196 	kernelbase = segkpm_base - KERNEL_REDZONE_SIZE;
1197 	core_base = (uintptr_t)COREHEAP_BASE;
1198 	core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE;
1199 #else	/* __i386 */
1200 	/*
1201 	 * We configure kernelbase based on:
1202 	 *
1203 	 * 1. user specified kernelbase via eeprom command. Value cannot exceed
1204 	 *    KERNELBASE_MAX. we large page align eprom_kernelbase
1205 	 *
1206 	 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t.
1207 	 *    On large memory systems we must lower kernelbase to allow
1208 	 *    enough room for page_t's for all of memory.
1209 	 *
1210 	 * The value set here, might be changed a little later.
1211 	 */
1212 	if (eprom_kernelbase) {
1213 		kernelbase = eprom_kernelbase & mmu.level_mask[1];
1214 		if (kernelbase > KERNELBASE_MAX)
1215 			kernelbase = KERNELBASE_MAX;
1216 	} else {
1217 		kernelbase = (uintptr_t)KERNELBASE;
1218 		kernelbase -= ROUND_UP_4MEG(2 * valloc_sz);
1219 	}
1220 	ASSERT((kernelbase & mmu.level_offset[1]) == 0);
1221 	core_base = valloc_base;
1222 	core_size = 0;
1223 #endif	/* __i386 */
1224 
1225 	PRM_DEBUG(core_base);
1226 	PRM_DEBUG(core_size);
1227 	PRM_DEBUG(kernelbase);
1228 
1229 #if defined(__i386)
1230 	segkp_fromheap = 1;
1231 #endif	/* __i386 */
1232 
1233 	ekernelheap = (char *)core_base;
1234 	PRM_DEBUG(ekernelheap);
1235 
1236 	/*
1237 	 * Now that we know the real value of kernelbase,
1238 	 * update variables that were initialized with a value of
1239 	 * KERNELBASE (in common/conf/param.c).
1240 	 *
1241 	 * XXX	The problem with this sort of hackery is that the
1242 	 *	compiler just may feel like putting the const declarations
1243 	 *	(in param.c) into the .text section.  Perhaps they should
1244 	 *	just be declared as variables there?
1245 	 */
1246 
1247 	*(uintptr_t *)&_kernelbase = kernelbase;
1248 	*(uintptr_t *)&_userlimit = kernelbase;
1249 #if defined(__amd64)
1250 	*(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT;
1251 #else
1252 	*(uintptr_t *)&_userlimit32 = _userlimit;
1253 #endif
1254 	PRM_DEBUG(_kernelbase);
1255 	PRM_DEBUG(_userlimit);
1256 	PRM_DEBUG(_userlimit32);
1257 
1258 	layout_kernel_va();
1259 
1260 #if defined(__i386)
1261 	/*
1262 	 * If segmap is too large we can push the bottom of the kernel heap
1263 	 * higher than the base.  Or worse, it could exceed the top of the
1264 	 * VA space entirely, causing it to wrap around.
1265 	 */
1266 	if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase)
1267 		panic("too little address space available for kernelheap,"
1268 		    " use eeprom for lower kernelbase or smaller segmapsize");
1269 #endif	/* __i386 */
1270 
1271 	/*
1272 	 * Initialize the kernel heap. Note 3rd argument must be > 1st.
1273 	 */
1274 	kernelheap_init(kernelheap, ekernelheap,
1275 	    kernelheap + MMU_PAGESIZE,
1276 	    (void *)core_base, (void *)(core_base + core_size));
1277 
1278 #if defined(__xpv)
1279 	/*
1280 	 * Link pending events struct into cpu struct
1281 	 */
1282 	CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data;
1283 #endif
1284 	/*
1285 	 * Initialize kernel memory allocator.
1286 	 */
1287 	kmem_init();
1288 
1289 	/*
1290 	 * Factor in colorequiv to check additional 'equivalent' bins
1291 	 */
1292 	page_set_colorequiv_arr();
1293 
1294 	/*
1295 	 * print this out early so that we know what's going on
1296 	 */
1297 	cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE);
1298 
1299 	/*
1300 	 * Initialize bp_mapin().
1301 	 */
1302 	bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
1303 
1304 	/*
1305 	 * orig_npages is non-zero if physmem has been configured for less
1306 	 * than the available memory.
1307 	 */
1308 	if (orig_npages) {
1309 		cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages",
1310 		    (npages == PHYSMEM ? "Due to virtual address space " : ""),
1311 		    npages, orig_npages);
1312 	}
1313 #if defined(__i386)
1314 	if (eprom_kernelbase && (eprom_kernelbase != kernelbase))
1315 		cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, "
1316 		    "System using 0x%lx",
1317 		    (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase);
1318 #endif
1319 
1320 #ifdef	KERNELBASE_ABI_MIN
1321 	if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
1322 		cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
1323 		    "i386 ABI compliant.", (uintptr_t)kernelbase);
1324 	}
1325 #endif
1326 
1327 #ifdef __xpv
1328 	/*
1329 	 * Some of the xen start information has to be relocated up
1330 	 * into the kernel's permanent address space.
1331 	 */
1332 	PRM_POINT("calling xen_relocate_start_info()");
1333 	xen_relocate_start_info();
1334 	PRM_POINT("xen_relocate_start_info() done");
1335 
1336 	/*
1337 	 * (Update the vcpu pointer in our cpu structure to point into
1338 	 * the relocated shared info.)
1339 	 */
1340 	CPU->cpu_m.mcpu_vcpu_info =
1341 	    &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id];
1342 #endif
1343 
1344 	PRM_POINT("startup_kmem() done");
1345 }
1346 
1347 #ifndef __xpv
1348 /*
1349  * If we have detected that we are running in an HVM environment, we need
1350  * to prepend the PV driver directory to the module search path.
1351  */
1352 #define	HVM_MOD_DIR "/platform/i86hvm/kernel"
1353 static void
1354 update_default_path()
1355 {
1356 	char *current, *newpath;
1357 	int newlen;
1358 
1359 	/*
1360 	 * We are about to resync with krtld.  krtld will reset its
1361 	 * internal module search path iff Solaris has set default_path.
1362 	 * We want to be sure we're prepending this new directory to the
1363 	 * right search path.
1364 	 */
1365 	current = (default_path == NULL) ? kobj_module_path : default_path;
1366 
1367 	newlen = strlen(HVM_MOD_DIR) + strlen(current) + 1;
1368 	newpath = kmem_alloc(newlen, KM_SLEEP);
1369 	(void) strcpy(newpath, HVM_MOD_DIR);
1370 	(void) strcat(newpath, " ");
1371 	(void) strcat(newpath, current);
1372 
1373 	default_path = newpath;
1374 }
1375 #endif
1376 
1377 static void
1378 startup_modules(void)
1379 {
1380 	unsigned int i;
1381 	extern void prom_setup(void);
1382 
1383 	PRM_POINT("startup_modules() starting...");
1384 
1385 #ifndef __xpv
1386 	/*
1387 	 * Initialize ten-micro second timer so that drivers will
1388 	 * not get short changed in their init phase. This was
1389 	 * not getting called until clkinit which, on fast cpu's
1390 	 * caused the drv_usecwait to be way too short.
1391 	 */
1392 	microfind();
1393 
1394 	if (xpv_is_hvm)
1395 		update_default_path();
1396 #endif
1397 
1398 	/*
1399 	 * Read the GMT lag from /etc/rtc_config.
1400 	 */
1401 	sgmtl(process_rtc_config_file());
1402 
1403 	/*
1404 	 * Calculate default settings of system parameters based upon
1405 	 * maxusers, yet allow to be overridden via the /etc/system file.
1406 	 */
1407 	param_calc(0);
1408 
1409 	mod_setup();
1410 
1411 	/*
1412 	 * Initialize system parameters.
1413 	 */
1414 	param_init();
1415 
1416 	/*
1417 	 * Initialize the default brands
1418 	 */
1419 	brand_init();
1420 
1421 	/*
1422 	 * maxmem is the amount of physical memory we're playing with.
1423 	 */
1424 	maxmem = physmem;
1425 
1426 	/*
1427 	 * Initialize segment management stuff.
1428 	 */
1429 	seg_init();
1430 
1431 	if (modload("fs", "specfs") == -1)
1432 		halt("Can't load specfs");
1433 
1434 	if (modload("fs", "devfs") == -1)
1435 		halt("Can't load devfs");
1436 
1437 	if (modload("fs", "dev") == -1)
1438 		halt("Can't load dev");
1439 
1440 	(void) modloadonly("sys", "lbl_edition");
1441 
1442 	dispinit();
1443 
1444 	/*
1445 	 * This is needed here to initialize hw_serial[] for cluster booting.
1446 	 */
1447 	if ((i = modload("misc", "sysinit")) != (unsigned int)-1)
1448 		(void) modunload(i);
1449 	else
1450 		cmn_err(CE_CONT, "sysinit load failed");
1451 
1452 	/* Read cluster configuration data. */
1453 	clconf_init();
1454 
1455 #if defined(__xpv)
1456 	ec_init();
1457 	gnttab_init();
1458 	(void) xs_early_init();
1459 #endif /* __xpv */
1460 
1461 	/*
1462 	 * Create a kernel device tree. First, create rootnex and
1463 	 * then invoke bus specific code to probe devices.
1464 	 */
1465 	setup_ddi();
1466 
1467 #ifndef __xpv
1468 	{
1469 		/*
1470 		 * Set up the CPU module subsystem.  Modifies the device tree,
1471 		 * so it must be done after setup_ddi().
1472 		 */
1473 
1474 		cmi_hdl_t hdl;
1475 
1476 		if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1477 		    cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) {
1478 			if (x86_feature & X86_MCA)
1479 				cmi_mca_init(hdl);
1480 		}
1481 	}
1482 #endif	/* __xpv */
1483 
1484 	/*
1485 	 * Fake a prom tree such that /dev/openprom continues to work
1486 	 */
1487 	PRM_POINT("startup_modules: calling prom_setup...");
1488 	prom_setup();
1489 	PRM_POINT("startup_modules: done");
1490 
1491 	/*
1492 	 * Load all platform specific modules
1493 	 */
1494 	PRM_POINT("startup_modules: calling psm_modload...");
1495 	psm_modload();
1496 
1497 	PRM_POINT("startup_modules() done");
1498 }
1499 
1500 /*
1501  * claim a "setaside" boot page for use in the kernel
1502  */
1503 page_t *
1504 boot_claim_page(pfn_t pfn)
1505 {
1506 	page_t *pp;
1507 
1508 	pp = page_numtopp_nolock(pfn);
1509 	ASSERT(pp != NULL);
1510 
1511 	if (PP_ISBOOTPAGES(pp)) {
1512 		if (pp->p_next != NULL)
1513 			pp->p_next->p_prev = pp->p_prev;
1514 		if (pp->p_prev == NULL)
1515 			bootpages = pp->p_next;
1516 		else
1517 			pp->p_prev->p_next = pp->p_next;
1518 	} else {
1519 		/*
1520 		 * htable_attach() expects a base pagesize page
1521 		 */
1522 		if (pp->p_szc != 0)
1523 			page_boot_demote(pp);
1524 		pp = page_numtopp(pfn, SE_EXCL);
1525 	}
1526 	return (pp);
1527 }
1528 
1529 /*
1530  * Walk through the pagetables looking for pages mapped in by boot.  If the
1531  * setaside flag is set the pages are expected to be returned to the
1532  * kernel later in boot, so we add them to the bootpages list.
1533  */
1534 static void
1535 protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
1536 {
1537 	uintptr_t va = low;
1538 	size_t len;
1539 	uint_t prot;
1540 	pfn_t pfn;
1541 	page_t *pp;
1542 	pgcnt_t boot_protect_cnt = 0;
1543 
1544 	while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
1545 		if (va + len >= high)
1546 			panic("0x%lx byte mapping at 0x%p exceeds boot's "
1547 			    "legal range.", len, (void *)va);
1548 
1549 		while (len > 0) {
1550 			pp = page_numtopp_alloc(pfn);
1551 			if (pp != NULL) {
1552 				if (setaside == 0)
1553 					panic("Unexpected mapping by boot.  "
1554 					    "addr=%p pfn=%lx\n",
1555 					    (void *)va, pfn);
1556 
1557 				pp->p_next = bootpages;
1558 				pp->p_prev = NULL;
1559 				PP_SETBOOTPAGES(pp);
1560 				if (bootpages != NULL) {
1561 					bootpages->p_prev = pp;
1562 				}
1563 				bootpages = pp;
1564 				++boot_protect_cnt;
1565 			}
1566 
1567 			++pfn;
1568 			len -= MMU_PAGESIZE;
1569 			va += MMU_PAGESIZE;
1570 		}
1571 	}
1572 	PRM_DEBUG(boot_protect_cnt);
1573 }
1574 
1575 /*
1576  *
1577  */
1578 static void
1579 layout_kernel_va(void)
1580 {
1581 	PRM_POINT("layout_kernel_va() starting...");
1582 	/*
1583 	 * Establish the final size of the kernel's heap, size of segmap,
1584 	 * segkp, etc.
1585 	 */
1586 
1587 #if defined(__amd64)
1588 
1589 	kpm_vbase = (caddr_t)segkpm_base;
1590 	kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1));
1591 	if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base)
1592 		panic("not enough room for kpm!");
1593 	PRM_DEBUG(kpm_size);
1594 	PRM_DEBUG(kpm_vbase);
1595 
1596 	/*
1597 	 * By default we create a seg_kp in 64 bit kernels, it's a little
1598 	 * faster to access than embedding it in the heap.
1599 	 */
1600 	segkp_base = (caddr_t)valloc_base + valloc_sz;
1601 	if (!segkp_fromheap) {
1602 		size_t sz = mmu_ptob(segkpsize);
1603 
1604 		/*
1605 		 * determine size of segkp
1606 		 */
1607 		if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) {
1608 			sz = SEGKPDEFSIZE;
1609 			cmn_err(CE_WARN, "!Illegal value for segkpsize. "
1610 			    "segkpsize has been reset to %ld pages",
1611 			    mmu_btop(sz));
1612 		}
1613 		sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem)));
1614 
1615 		segkpsize = mmu_btop(ROUND_UP_LPAGE(sz));
1616 	}
1617 	PRM_DEBUG(segkp_base);
1618 	PRM_DEBUG(segkpsize);
1619 
1620 	/*
1621 	 * segzio is used for ZFS cached data. It uses a distinct VA
1622 	 * segment (from kernel heap) so that we can easily tell not to
1623 	 * include it in kernel crash dumps on 64 bit kernels. The trick is
1624 	 * to give it lots of VA, but not constrain the kernel heap.
1625 	 * We scale the size of segzio linearly with physmem up to
1626 	 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem.
1627 	 */
1628 	segzio_base = segkp_base + mmu_ptob(segkpsize);
1629 	if (segzio_fromheap) {
1630 		segziosize = 0;
1631 	} else {
1632 		size_t physmem_size = mmu_ptob(physmem);
1633 		size_t size = (segziosize == 0) ?
1634 		    physmem_size : mmu_ptob(segziosize);
1635 
1636 		if (size < SEGZIOMINSIZE)
1637 			size = SEGZIOMINSIZE;
1638 		if (size > SEGZIOMAXSIZE) {
1639 			size = SEGZIOMAXSIZE;
1640 			if (physmem_size > size)
1641 				size += (physmem_size - size) / 2;
1642 		}
1643 		segziosize = mmu_btop(ROUND_UP_LPAGE(size));
1644 	}
1645 	PRM_DEBUG(segziosize);
1646 	PRM_DEBUG(segzio_base);
1647 
1648 	/*
1649 	 * Put the range of VA for device mappings next, kmdb knows to not
1650 	 * grep in this range of addresses.
1651 	 */
1652 	toxic_addr =
1653 	    ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize));
1654 	PRM_DEBUG(toxic_addr);
1655 	segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size);
1656 #else /* __i386 */
1657 	segmap_start = ROUND_UP_LPAGE(kernelbase);
1658 #endif /* __i386 */
1659 	PRM_DEBUG(segmap_start);
1660 
1661 	/*
1662 	 * Users can change segmapsize through eeprom or /etc/system.
1663 	 * If the variable is tuned through eeprom, there is no upper
1664 	 * bound on the size of segmap.  If it is tuned through
1665 	 * /etc/system on 32-bit systems, it must be no larger than we
1666 	 * planned for in startup_memlist().
1667 	 */
1668 	segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
1669 
1670 #if defined(__i386)
1671 	/*
1672 	 * 32-bit systems don't have segkpm or segkp, so segmap appears at
1673 	 * the bottom of the kernel's address range.  Set aside space for a
1674 	 * small red zone just below the start of segmap.
1675 	 */
1676 	segmap_start += KERNEL_REDZONE_SIZE;
1677 	segmapsize -= KERNEL_REDZONE_SIZE;
1678 #endif
1679 
1680 	PRM_DEBUG(segmap_start);
1681 	PRM_DEBUG(segmapsize);
1682 	kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize);
1683 	PRM_DEBUG(kernelheap);
1684 	PRM_POINT("layout_kernel_va() done...");
1685 }
1686 
1687 /*
1688  * Finish initializing the VM system, now that we are no longer
1689  * relying on the boot time memory allocators.
1690  */
1691 static void
1692 startup_vm(void)
1693 {
1694 	struct segmap_crargs a;
1695 
1696 	extern int use_brk_lpg, use_stk_lpg;
1697 
1698 	PRM_POINT("startup_vm() starting...");
1699 
1700 	/*
1701 	 * Initialize the hat layer.
1702 	 */
1703 	hat_init();
1704 
1705 	/*
1706 	 * Do final allocations of HAT data structures that need to
1707 	 * be allocated before quiescing the boot loader.
1708 	 */
1709 	PRM_POINT("Calling hat_kern_alloc()...");
1710 	hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap);
1711 	PRM_POINT("hat_kern_alloc() done");
1712 
1713 #ifndef __xpv
1714 	/*
1715 	 * Setup Page Attribute Table
1716 	 */
1717 	pat_sync();
1718 #endif
1719 
1720 	/*
1721 	 * The next two loops are done in distinct steps in order
1722 	 * to be sure that any page that is doubly mapped (both above
1723 	 * KERNEL_TEXT and below kernelbase) is dealt with correctly.
1724 	 * Note this may never happen, but it might someday.
1725 	 */
1726 	bootpages = NULL;
1727 	PRM_POINT("Protecting boot pages");
1728 
1729 	/*
1730 	 * Protect any pages mapped above KERNEL_TEXT that somehow have
1731 	 * page_t's. This can only happen if something weird allocated
1732 	 * in this range (like kadb/kmdb).
1733 	 */
1734 	protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
1735 
1736 	/*
1737 	 * Before we can take over memory allocation/mapping from the boot
1738 	 * loader we must remove from our free page lists any boot allocated
1739 	 * pages that stay mapped until release_bootstrap().
1740 	 */
1741 	protect_boot_range(0, kernelbase, 1);
1742 
1743 
1744 	/*
1745 	 * Switch to running on regular HAT (not boot_mmu)
1746 	 */
1747 	PRM_POINT("Calling hat_kern_setup()...");
1748 	hat_kern_setup();
1749 
1750 	/*
1751 	 * It is no longer safe to call BOP_ALLOC(), so make sure we don't.
1752 	 */
1753 	bop_no_more_mem();
1754 
1755 	PRM_POINT("hat_kern_setup() done");
1756 
1757 	hat_cpu_online(CPU);
1758 
1759 	/*
1760 	 * Initialize VM system
1761 	 */
1762 	PRM_POINT("Calling kvm_init()...");
1763 	kvm_init();
1764 	PRM_POINT("kvm_init() done");
1765 
1766 	/*
1767 	 * Tell kmdb that the VM system is now working
1768 	 */
1769 	if (boothowto & RB_DEBUG)
1770 		kdi_dvec_vmready();
1771 
1772 #if defined(__xpv)
1773 	/*
1774 	 * Populate the I/O pool on domain 0
1775 	 */
1776 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1777 		extern long populate_io_pool(void);
1778 		long init_io_pool_cnt;
1779 
1780 		PRM_POINT("Populating reserve I/O page pool");
1781 		init_io_pool_cnt = populate_io_pool();
1782 		PRM_DEBUG(init_io_pool_cnt);
1783 	}
1784 #endif
1785 	/*
1786 	 * Mangle the brand string etc.
1787 	 */
1788 	cpuid_pass3(CPU);
1789 
1790 #if defined(__amd64)
1791 
1792 	/*
1793 	 * Create the device arena for toxic (to dtrace/kmdb) mappings.
1794 	 */
1795 	device_arena = vmem_create("device", (void *)toxic_addr,
1796 	    toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
1797 
1798 #else	/* __i386 */
1799 
1800 	/*
1801 	 * allocate the bit map that tracks toxic pages
1802 	 */
1803 	toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase));
1804 	PRM_DEBUG(toxic_bit_map_len);
1805 	toxic_bit_map =
1806 	    kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP);
1807 	ASSERT(toxic_bit_map != NULL);
1808 	PRM_DEBUG(toxic_bit_map);
1809 
1810 #endif	/* __i386 */
1811 
1812 
1813 	/*
1814 	 * Now that we've got more VA, as well as the ability to allocate from
1815 	 * it, tell the debugger.
1816 	 */
1817 	if (boothowto & RB_DEBUG)
1818 		kdi_dvec_memavail();
1819 
1820 	/*
1821 	 * The following code installs a special page fault handler (#pf)
1822 	 * to work around a pentium bug.
1823 	 */
1824 #if !defined(__amd64) && !defined(__xpv)
1825 	if (x86_type == X86_TYPE_P5) {
1826 		desctbr_t idtr;
1827 		gate_desc_t *newidt;
1828 
1829 		if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL)
1830 			panic("failed to install pentium_pftrap");
1831 
1832 		bcopy(idt0, newidt, NIDT * sizeof (*idt0));
1833 		set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap,
1834 		    KCS_SEL, SDT_SYSIGT, TRP_KPL);
1835 
1836 		(void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE,
1837 		    PROT_READ | PROT_EXEC);
1838 
1839 		CPU->cpu_idt = newidt;
1840 		idtr.dtr_base = (uintptr_t)CPU->cpu_idt;
1841 		idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1;
1842 		wr_idtr(&idtr);
1843 	}
1844 #endif	/* !__amd64 */
1845 
1846 #if !defined(__xpv)
1847 	/*
1848 	 * Map page pfn=0 for drivers, such as kd, that need to pick up
1849 	 * parameters left there by controllers/BIOS.
1850 	 */
1851 	PRM_POINT("setup up p0_va");
1852 	p0_va = i86devmap(0, 1, PROT_READ);
1853 	PRM_DEBUG(p0_va);
1854 #endif
1855 
1856 	cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
1857 	    physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
1858 
1859 	/*
1860 	 * disable automatic large pages for small memory systems or
1861 	 * when the disable flag is set.
1862 	 *
1863 	 * Do not yet consider page sizes larger than 2m/4m.
1864 	 */
1865 	if (!auto_lpg_disable && mmu.max_page_level > 0) {
1866 		max_uheap_lpsize = LEVEL_SIZE(1);
1867 		max_ustack_lpsize = LEVEL_SIZE(1);
1868 		max_privmap_lpsize = LEVEL_SIZE(1);
1869 		max_uidata_lpsize = LEVEL_SIZE(1);
1870 		max_utext_lpsize = LEVEL_SIZE(1);
1871 		max_shm_lpsize = LEVEL_SIZE(1);
1872 	}
1873 	if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 ||
1874 	    auto_lpg_disable) {
1875 		use_brk_lpg = 0;
1876 		use_stk_lpg = 0;
1877 	}
1878 	mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level);
1879 
1880 	PRM_POINT("Calling hat_init_finish()...");
1881 	hat_init_finish();
1882 	PRM_POINT("hat_init_finish() done");
1883 
1884 	/*
1885 	 * Initialize the segkp segment type.
1886 	 */
1887 	rw_enter(&kas.a_lock, RW_WRITER);
1888 	PRM_POINT("Attaching segkp");
1889 	if (segkp_fromheap) {
1890 		segkp->s_as = &kas;
1891 	} else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
1892 	    segkp) < 0) {
1893 		panic("startup: cannot attach segkp");
1894 		/*NOTREACHED*/
1895 	}
1896 	PRM_POINT("Doing segkp_create()");
1897 	if (segkp_create(segkp) != 0) {
1898 		panic("startup: segkp_create failed");
1899 		/*NOTREACHED*/
1900 	}
1901 	PRM_DEBUG(segkp);
1902 	rw_exit(&kas.a_lock);
1903 
1904 	/*
1905 	 * kpm segment
1906 	 */
1907 	segmap_kpm = 0;
1908 	if (kpm_desired) {
1909 		kpm_init();
1910 		kpm_enable = 1;
1911 		vpm_enable = 1;
1912 	}
1913 
1914 	/*
1915 	 * Now create segmap segment.
1916 	 */
1917 	rw_enter(&kas.a_lock, RW_WRITER);
1918 	if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) {
1919 		panic("cannot attach segmap");
1920 		/*NOTREACHED*/
1921 	}
1922 	PRM_DEBUG(segmap);
1923 
1924 	a.prot = PROT_READ | PROT_WRITE;
1925 	a.shmsize = 0;
1926 	a.nfreelist = segmapfreelists;
1927 
1928 	if (segmap_create(segmap, (caddr_t)&a) != 0)
1929 		panic("segmap_create segmap");
1930 	rw_exit(&kas.a_lock);
1931 
1932 	setup_vaddr_for_ppcopy(CPU);
1933 
1934 	segdev_init();
1935 #if defined(__xpv)
1936 	if (DOMAIN_IS_INITDOMAIN(xen_info))
1937 #endif
1938 		pmem_init();
1939 
1940 	PRM_POINT("startup_vm() done");
1941 }
1942 
1943 /*
1944  * Load a tod module for the non-standard tod part found on this system.
1945  */
1946 static void
1947 load_tod_module(char *todmod)
1948 {
1949 	if (modload("tod", todmod) == -1)
1950 		halt("Can't load TOD module");
1951 }
1952 
1953 static void
1954 startup_end(void)
1955 {
1956 	int i;
1957 	extern void setx86isalist(void);
1958 
1959 	PRM_POINT("startup_end() starting...");
1960 
1961 	/*
1962 	 * Perform tasks that get done after most of the VM
1963 	 * initialization has been done but before the clock
1964 	 * and other devices get started.
1965 	 */
1966 	kern_setup1();
1967 
1968 	/*
1969 	 * Perform CPC initialization for this CPU.
1970 	 */
1971 	kcpc_hw_init(CPU);
1972 
1973 #if defined(OPTERON_WORKAROUND_6323525)
1974 	if (opteron_workaround_6323525)
1975 		patch_workaround_6323525();
1976 #endif
1977 	/*
1978 	 * If needed, load TOD module now so that ddi_get_time(9F) etc. work
1979 	 * (For now, "needed" is defined as set tod_module_name in /etc/system)
1980 	 */
1981 	if (tod_module_name != NULL) {
1982 		PRM_POINT("load_tod_module()");
1983 		load_tod_module(tod_module_name);
1984 	}
1985 
1986 #if defined(__xpv)
1987 	/*
1988 	 * Forceload interposing TOD module for the hypervisor.
1989 	 */
1990 	PRM_POINT("load_tod_module()");
1991 	load_tod_module("xpvtod");
1992 #endif
1993 
1994 	/*
1995 	 * Configure the system.
1996 	 */
1997 	PRM_POINT("Calling configure()...");
1998 	configure();		/* set up devices */
1999 	PRM_POINT("configure() done");
2000 
2001 	/*
2002 	 * Set the isa_list string to the defined instruction sets we
2003 	 * support.
2004 	 */
2005 	setx86isalist();
2006 	cpu_intr_alloc(CPU, NINTR_THREADS);
2007 	psm_install();
2008 
2009 	/*
2010 	 * We're done with bootops.  We don't unmap the bootstrap yet because
2011 	 * we're still using bootsvcs.
2012 	 */
2013 	PRM_POINT("NULLing out bootops");
2014 	*bootopsp = (struct bootops *)NULL;
2015 	bootops = (struct bootops *)NULL;
2016 
2017 #if defined(__xpv)
2018 	ec_init_debug_irq();
2019 	xs_domu_init();
2020 #endif
2021 	PRM_POINT("Enabling interrupts");
2022 	(*picinitf)();
2023 	sti();
2024 #if defined(__xpv)
2025 	ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0);
2026 	xen_late_startup();
2027 #endif
2028 
2029 	(void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
2030 	    "softlevel1", NULL, NULL); /* XXX to be moved later */
2031 
2032 	/*
2033 	 * Register these software interrupts for ddi timer.
2034 	 * Software interrupts up to the level 10 are supported.
2035 	 */
2036 	for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
2037 		char name[sizeof ("timer_softintr") + 2];
2038 		(void) sprintf(name, "timer_softintr%02d", i);
2039 		(void) add_avsoftintr((void *)&softlevel_hdl[i-1], i,
2040 		    (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL);
2041 	}
2042 
2043 	PRM_POINT("startup_end() done");
2044 }
2045 
2046 extern char hw_serial[];
2047 char *_hs1107 = hw_serial;
2048 ulong_t  _bdhs34;
2049 
2050 void
2051 post_startup(void)
2052 {
2053 	/*
2054 	 * Set the system wide, processor-specific flags to be passed
2055 	 * to userland via the aux vector for performance hints and
2056 	 * instruction set extensions.
2057 	 */
2058 	bind_hwcap();
2059 
2060 #ifdef __xpv
2061 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2062 #endif
2063 	{
2064 		/*
2065 		 * Load the System Management BIOS into the global ksmbios
2066 		 * handle, if an SMBIOS is present on this system.
2067 		 */
2068 		ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL);
2069 
2070 #if defined(__xpv)
2071 		xpv_panic_init();
2072 #else
2073 		/*
2074 		 * Startup the memory scrubber.
2075 		 * XXPV	This should be running somewhere ..
2076 		 */
2077 		memscrub_init();
2078 #endif
2079 	}
2080 
2081 	/*
2082 	 * Complete CPU module initialization
2083 	 */
2084 	cmi_post_startup();
2085 
2086 	/*
2087 	 * Perform forceloading tasks for /etc/system.
2088 	 */
2089 	(void) mod_sysctl(SYS_FORCELOAD, NULL);
2090 
2091 	/*
2092 	 * ON4.0: Force /proc module in until clock interrupt handle fixed
2093 	 * ON4.0: This must be fixed or restated in /etc/systems.
2094 	 */
2095 	(void) modload("fs", "procfs");
2096 
2097 	(void) i_ddi_attach_hw_nodes("pit_beep");
2098 
2099 #if defined(__i386)
2100 	/*
2101 	 * Check for required functional Floating Point hardware,
2102 	 * unless FP hardware explicitly disabled.
2103 	 */
2104 	if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO))
2105 		halt("No working FP hardware found");
2106 #endif
2107 
2108 	maxmem = freemem;
2109 
2110 	add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi);
2111 }
2112 
2113 static int
2114 pp_in_ramdisk(page_t *pp)
2115 {
2116 	extern uint64_t ramdisk_start, ramdisk_end;
2117 
2118 	return ((pp->p_pagenum >= btop(ramdisk_start)) &&
2119 	    (pp->p_pagenum < btopr(ramdisk_end)));
2120 }
2121 
2122 void
2123 release_bootstrap(void)
2124 {
2125 	int root_is_ramdisk;
2126 	page_t *pp;
2127 	extern void kobj_boot_unmountroot(void);
2128 	extern dev_t rootdev;
2129 
2130 	/* unmount boot ramdisk and release kmem usage */
2131 	kobj_boot_unmountroot();
2132 
2133 	/*
2134 	 * We're finished using the boot loader so free its pages.
2135 	 */
2136 	PRM_POINT("Unmapping lower boot pages");
2137 	clear_boot_mappings(0, _userlimit);
2138 	postbootkernelbase = kernelbase;
2139 
2140 	/*
2141 	 * If root isn't on ramdisk, destroy the hardcoded
2142 	 * ramdisk node now and release the memory. Else,
2143 	 * ramdisk memory is kept in rd_pages.
2144 	 */
2145 	root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
2146 	if (!root_is_ramdisk) {
2147 		dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
2148 		ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
2149 		ndi_rele_devi(dip);	/* held from ddi_find_devinfo */
2150 		(void) ddi_remove_child(dip, 0);
2151 	}
2152 
2153 	PRM_POINT("Releasing boot pages");
2154 	while (bootpages) {
2155 		pp = bootpages;
2156 		bootpages = pp->p_next;
2157 		if (root_is_ramdisk && pp_in_ramdisk(pp)) {
2158 			pp->p_next = rd_pages;
2159 			rd_pages = pp;
2160 			continue;
2161 		}
2162 		pp->p_next = (struct page *)0;
2163 		pp->p_prev = (struct page *)0;
2164 		PP_CLRBOOTPAGES(pp);
2165 		page_free(pp, 1);
2166 	}
2167 	PRM_POINT("Boot pages released");
2168 
2169 #if !defined(__xpv)
2170 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */
2171 	/*
2172 	 * Find 1 page below 1 MB so that other processors can boot up.
2173 	 * Make sure it has a kernel VA as well as a 1:1 mapping.
2174 	 * We should have just free'd one up.
2175 	 */
2176 	if (use_mp) {
2177 		pfn_t pfn;
2178 
2179 		for (pfn = 1; pfn < btop(1*1024*1024); pfn++) {
2180 			if (page_numtopp_alloc(pfn) == NULL)
2181 				continue;
2182 			rm_platter_va = i86devmap(pfn, 1,
2183 			    PROT_READ | PROT_WRITE | PROT_EXEC);
2184 			rm_platter_pa = ptob(pfn);
2185 			hat_devload(kas.a_hat,
2186 			    (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
2187 			    pfn, PROT_READ | PROT_WRITE | PROT_EXEC,
2188 			    HAT_LOAD_NOCONSIST);
2189 			break;
2190 		}
2191 		if (pfn == btop(1*1024*1024))
2192 			panic("No page available for starting "
2193 			    "other processors");
2194 	}
2195 #endif	/* !__xpv */
2196 }
2197 
2198 /*
2199  * Initialize the platform-specific parts of a page_t.
2200  */
2201 void
2202 add_physmem_cb(page_t *pp, pfn_t pnum)
2203 {
2204 	pp->p_pagenum = pnum;
2205 	pp->p_mapping = NULL;
2206 	pp->p_embed = 0;
2207 	pp->p_share = 0;
2208 	pp->p_mlentry = 0;
2209 }
2210 
2211 /*
2212  * kphysm_init() initializes physical memory.
2213  */
2214 static pgcnt_t
2215 kphysm_init(
2216 	page_t *pp,
2217 	pgcnt_t npages)
2218 {
2219 	struct memlist	*pmem;
2220 	struct memseg	*cur_memseg;
2221 	pfn_t		base_pfn;
2222 	pgcnt_t		num;
2223 	pgcnt_t		pages_done = 0;
2224 	uint64_t	addr;
2225 	uint64_t	size;
2226 	extern pfn_t	ddiphysmin;
2227 
2228 	ASSERT(page_hash != NULL && page_hashsz != 0);
2229 
2230 	cur_memseg = memseg_base;
2231 	for (pmem = phys_avail; pmem && npages; pmem = pmem->next) {
2232 		/*
2233 		 * In a 32 bit kernel can't use higher memory if we're
2234 		 * not booting in PAE mode. This check takes care of that.
2235 		 */
2236 		addr = pmem->address;
2237 		size = pmem->size;
2238 		if (btop(addr) > physmax)
2239 			continue;
2240 
2241 		/*
2242 		 * align addr and size - they may not be at page boundaries
2243 		 */
2244 		if ((addr & MMU_PAGEOFFSET) != 0) {
2245 			addr += MMU_PAGEOFFSET;
2246 			addr &= ~(uint64_t)MMU_PAGEOFFSET;
2247 			size -= addr - pmem->address;
2248 		}
2249 
2250 		/* only process pages below or equal to physmax */
2251 		if ((btop(addr + size) - 1) > physmax)
2252 			size = ptob(physmax - btop(addr) + 1);
2253 
2254 		num = btop(size);
2255 		if (num == 0)
2256 			continue;
2257 
2258 		if (num > npages)
2259 			num = npages;
2260 
2261 		npages -= num;
2262 		pages_done += num;
2263 		base_pfn = btop(addr);
2264 
2265 		if (prom_debug)
2266 			prom_printf("MEMSEG addr=0x%" PRIx64
2267 			    " pgs=0x%lx pfn 0x%lx-0x%lx\n",
2268 			    addr, num, base_pfn, base_pfn + num);
2269 
2270 		/*
2271 		 * Ignore pages below ddiphysmin to simplify ddi memory
2272 		 * allocation with non-zero addr_lo requests.
2273 		 */
2274 		if (base_pfn < ddiphysmin) {
2275 			if (base_pfn + num <= ddiphysmin)
2276 				continue;
2277 			pp += (ddiphysmin - base_pfn);
2278 			num -= (ddiphysmin - base_pfn);
2279 			base_pfn = ddiphysmin;
2280 		}
2281 
2282 		/*
2283 		 * Build the memsegs entry
2284 		 */
2285 		cur_memseg->pages = pp;
2286 		cur_memseg->epages = pp + num;
2287 		cur_memseg->pages_base = base_pfn;
2288 		cur_memseg->pages_end = base_pfn + num;
2289 
2290 		/*
2291 		 * Insert into memseg list in decreasing pfn range order.
2292 		 * Low memory is typically more fragmented such that this
2293 		 * ordering keeps the larger ranges at the front of the list
2294 		 * for code that searches memseg.
2295 		 * This ASSERTS that the memsegs coming in from boot are in
2296 		 * increasing physical address order and not contiguous.
2297 		 */
2298 		if (memsegs != NULL) {
2299 			ASSERT(cur_memseg->pages_base >= memsegs->pages_end);
2300 			cur_memseg->next = memsegs;
2301 		}
2302 		memsegs = cur_memseg;
2303 
2304 		/*
2305 		 * add_physmem() initializes the PSM part of the page
2306 		 * struct by calling the PSM back with add_physmem_cb().
2307 		 * In addition it coalesces pages into larger pages as
2308 		 * it initializes them.
2309 		 */
2310 		add_physmem(pp, num, base_pfn);
2311 		cur_memseg++;
2312 		availrmem_initial += num;
2313 		availrmem += num;
2314 
2315 		pp += num;
2316 	}
2317 
2318 	PRM_DEBUG(availrmem_initial);
2319 	PRM_DEBUG(availrmem);
2320 	PRM_DEBUG(freemem);
2321 	build_pfn_hash();
2322 	return (pages_done);
2323 }
2324 
2325 /*
2326  * Kernel VM initialization.
2327  */
2328 static void
2329 kvm_init(void)
2330 {
2331 	ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
2332 
2333 	/*
2334 	 * Put the kernel segments in kernel address space.
2335 	 */
2336 	rw_enter(&kas.a_lock, RW_WRITER);
2337 	as_avlinit(&kas);
2338 
2339 	(void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
2340 	(void) segkmem_create(&ktextseg);
2341 
2342 	(void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
2343 	(void) segkmem_create(&kvalloc);
2344 
2345 	(void) seg_attach(&kas, kernelheap,
2346 	    ekernelheap - kernelheap, &kvseg);
2347 	(void) segkmem_create(&kvseg);
2348 
2349 	if (core_size > 0) {
2350 		PRM_POINT("attaching kvseg_core");
2351 		(void) seg_attach(&kas, (caddr_t)core_base, core_size,
2352 		    &kvseg_core);
2353 		(void) segkmem_create(&kvseg_core);
2354 	}
2355 
2356 	if (segziosize > 0) {
2357 		PRM_POINT("attaching segzio");
2358 		(void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2359 		    &kzioseg);
2360 		(void) segkmem_zio_create(&kzioseg);
2361 
2362 		/* create zio area covering new segment */
2363 		segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2364 	}
2365 
2366 	(void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2367 	(void) segkmem_create(&kdebugseg);
2368 
2369 	rw_exit(&kas.a_lock);
2370 
2371 	/*
2372 	 * Ensure that the red zone at kernelbase is never accessible.
2373 	 */
2374 	PRM_POINT("protecting redzone");
2375 	(void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
2376 
2377 	/*
2378 	 * Make the text writable so that it can be hot patched by DTrace.
2379 	 */
2380 	(void) as_setprot(&kas, s_text, e_modtext - s_text,
2381 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2382 
2383 	/*
2384 	 * Make data writable until end.
2385 	 */
2386 	(void) as_setprot(&kas, s_data, e_moddata - s_data,
2387 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2388 }
2389 
2390 #ifndef __xpv
2391 /*
2392  * Solaris adds an entry for Write Combining caching to the PAT
2393  */
2394 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
2395 
2396 void
2397 pat_sync(void)
2398 {
2399 	ulong_t	cr0, cr0_orig, cr4;
2400 
2401 	if (!(x86_feature & X86_PAT))
2402 		return;
2403 	cr0_orig = cr0 = getcr0();
2404 	cr4 = getcr4();
2405 
2406 	/* disable caching and flush all caches and TLBs */
2407 	cr0 |= CR0_CD;
2408 	cr0 &= ~CR0_NW;
2409 	setcr0(cr0);
2410 	invalidate_cache();
2411 	if (cr4 & CR4_PGE) {
2412 		setcr4(cr4 & ~(ulong_t)CR4_PGE);
2413 		setcr4(cr4);
2414 	} else {
2415 		reload_cr3();
2416 	}
2417 
2418 	/* add our entry to the PAT */
2419 	wrmsr(REG_PAT, pat_attr_reg);
2420 
2421 	/* flush TLBs and cache again, then reenable cr0 caching */
2422 	if (cr4 & CR4_PGE) {
2423 		setcr4(cr4 & ~(ulong_t)CR4_PGE);
2424 		setcr4(cr4);
2425 	} else {
2426 		reload_cr3();
2427 	}
2428 	invalidate_cache();
2429 	setcr0(cr0_orig);
2430 }
2431 
2432 #endif /* !__xpv */
2433 
2434 void
2435 get_system_configuration(void)
2436 {
2437 	char	prop[32];
2438 	u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
2439 
2440 	if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) ||
2441 	    BOP_GETPROP(bootops, "nodes", prop) < 0 ||
2442 	    kobj_getvalue(prop, &nodes_ll) == -1 ||
2443 	    nodes_ll > MAXNODES ||
2444 	    BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) ||
2445 	    BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 ||
2446 	    kobj_getvalue(prop, &cpus_pernode_ll) == -1) {
2447 		system_hardware.hd_nodes = 1;
2448 		system_hardware.hd_cpus_per_node = 0;
2449 	} else {
2450 		system_hardware.hd_nodes = (int)nodes_ll;
2451 		system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
2452 	}
2453 
2454 	if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) ||
2455 	    BOP_GETPROP(bootops, "kernelbase", prop) < 0 ||
2456 	    kobj_getvalue(prop, &lvalue) == -1)
2457 		eprom_kernelbase = NULL;
2458 	else
2459 		eprom_kernelbase = (uintptr_t)lvalue;
2460 
2461 	if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) ||
2462 	    BOP_GETPROP(bootops, "segmapsize", prop) < 0 ||
2463 	    kobj_getvalue(prop, &lvalue) == -1)
2464 		segmapsize = SEGMAPDEFAULT;
2465 	else
2466 		segmapsize = (uintptr_t)lvalue;
2467 
2468 	if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) ||
2469 	    BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 ||
2470 	    kobj_getvalue(prop, &lvalue) == -1)
2471 		segmapfreelists = 0;	/* use segmap driver default */
2472 	else
2473 		segmapfreelists = (int)lvalue;
2474 
2475 	/* physmem used to be here, but moved much earlier to fakebop.c */
2476 }
2477 
2478 /*
2479  * Add to a memory list.
2480  * start = start of new memory segment
2481  * len = length of new memory segment in bytes
2482  * new = pointer to a new struct memlist
2483  * memlistp = memory list to which to add segment.
2484  */
2485 void
2486 memlist_add(
2487 	uint64_t start,
2488 	uint64_t len,
2489 	struct memlist *new,
2490 	struct memlist **memlistp)
2491 {
2492 	struct memlist *cur;
2493 	uint64_t end = start + len;
2494 
2495 	new->address = start;
2496 	new->size = len;
2497 
2498 	cur = *memlistp;
2499 
2500 	while (cur) {
2501 		if (cur->address >= end) {
2502 			new->next = cur;
2503 			*memlistp = new;
2504 			new->prev = cur->prev;
2505 			cur->prev = new;
2506 			return;
2507 		}
2508 		ASSERT(cur->address + cur->size <= start);
2509 		if (cur->next == NULL) {
2510 			cur->next = new;
2511 			new->prev = cur;
2512 			new->next = NULL;
2513 			return;
2514 		}
2515 		memlistp = &cur->next;
2516 		cur = cur->next;
2517 	}
2518 }
2519 
2520 void
2521 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
2522 {
2523 	size_t tsize = e_modtext - modtext;
2524 	size_t dsize = e_moddata - moddata;
2525 
2526 	*text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
2527 	    1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
2528 	*data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
2529 	    1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
2530 }
2531 
2532 caddr_t
2533 kobj_text_alloc(vmem_t *arena, size_t size)
2534 {
2535 	return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
2536 }
2537 
2538 /*ARGSUSED*/
2539 caddr_t
2540 kobj_texthole_alloc(caddr_t addr, size_t size)
2541 {
2542 	panic("unexpected call to kobj_texthole_alloc()");
2543 	/*NOTREACHED*/
2544 	return (0);
2545 }
2546 
2547 /*ARGSUSED*/
2548 void
2549 kobj_texthole_free(caddr_t addr, size_t size)
2550 {
2551 	panic("unexpected call to kobj_texthole_free()");
2552 }
2553 
2554 /*
2555  * This is called just after configure() in startup().
2556  *
2557  * The ISALIST concept is a bit hopeless on Intel, because
2558  * there's no guarantee of an ever-more-capable processor
2559  * given that various parts of the instruction set may appear
2560  * and disappear between different implementations.
2561  *
2562  * While it would be possible to correct it and even enhance
2563  * it somewhat, the explicit hardware capability bitmask allows
2564  * more flexibility.
2565  *
2566  * So, we just leave this alone.
2567  */
2568 void
2569 setx86isalist(void)
2570 {
2571 	char *tp;
2572 	size_t len;
2573 	extern char *isa_list;
2574 
2575 #define	TBUFSIZE	1024
2576 
2577 	tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
2578 	*tp = '\0';
2579 
2580 #if defined(__amd64)
2581 	(void) strcpy(tp, "amd64 ");
2582 #endif
2583 
2584 	switch (x86_vendor) {
2585 	case X86_VENDOR_Intel:
2586 	case X86_VENDOR_AMD:
2587 	case X86_VENDOR_TM:
2588 		if (x86_feature & X86_CMOV) {
2589 			/*
2590 			 * Pentium Pro or later
2591 			 */
2592 			(void) strcat(tp, "pentium_pro");
2593 			(void) strcat(tp, x86_feature & X86_MMX ?
2594 			    "+mmx pentium_pro " : " ");
2595 		}
2596 		/*FALLTHROUGH*/
2597 	case X86_VENDOR_Cyrix:
2598 		/*
2599 		 * The Cyrix 6x86 does not have any Pentium features
2600 		 * accessible while not at privilege level 0.
2601 		 */
2602 		if (x86_feature & X86_CPUID) {
2603 			(void) strcat(tp, "pentium");
2604 			(void) strcat(tp, x86_feature & X86_MMX ?
2605 			    "+mmx pentium " : " ");
2606 		}
2607 		break;
2608 	default:
2609 		break;
2610 	}
2611 	(void) strcat(tp, "i486 i386 i86");
2612 	len = strlen(tp) + 1;   /* account for NULL at end of string */
2613 	isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
2614 	kmem_free(tp, TBUFSIZE);
2615 
2616 #undef TBUFSIZE
2617 }
2618 
2619 
2620 #ifdef __amd64
2621 
2622 void *
2623 device_arena_alloc(size_t size, int vm_flag)
2624 {
2625 	return (vmem_alloc(device_arena, size, vm_flag));
2626 }
2627 
2628 void
2629 device_arena_free(void *vaddr, size_t size)
2630 {
2631 	vmem_free(device_arena, vaddr, size);
2632 }
2633 
2634 #else /* __i386 */
2635 
2636 void *
2637 device_arena_alloc(size_t size, int vm_flag)
2638 {
2639 	caddr_t	vaddr;
2640 	uintptr_t v;
2641 	size_t	start;
2642 	size_t	end;
2643 
2644 	vaddr = vmem_alloc(heap_arena, size, vm_flag);
2645 	if (vaddr == NULL)
2646 		return (NULL);
2647 
2648 	v = (uintptr_t)vaddr;
2649 	ASSERT(v >= kernelbase);
2650 	ASSERT(v + size <= valloc_base);
2651 
2652 	start = btop(v - kernelbase);
2653 	end = btop(v + size - 1 - kernelbase);
2654 	ASSERT(start < toxic_bit_map_len);
2655 	ASSERT(end < toxic_bit_map_len);
2656 
2657 	while (start <= end) {
2658 		BT_ATOMIC_SET(toxic_bit_map, start);
2659 		++start;
2660 	}
2661 	return (vaddr);
2662 }
2663 
2664 void
2665 device_arena_free(void *vaddr, size_t size)
2666 {
2667 	uintptr_t v = (uintptr_t)vaddr;
2668 	size_t	start;
2669 	size_t	end;
2670 
2671 	ASSERT(v >= kernelbase);
2672 	ASSERT(v + size <= valloc_base);
2673 
2674 	start = btop(v - kernelbase);
2675 	end = btop(v + size - 1 - kernelbase);
2676 	ASSERT(start < toxic_bit_map_len);
2677 	ASSERT(end < toxic_bit_map_len);
2678 
2679 	while (start <= end) {
2680 		ASSERT(BT_TEST(toxic_bit_map, start) != 0);
2681 		BT_ATOMIC_CLEAR(toxic_bit_map, start);
2682 		++start;
2683 	}
2684 	vmem_free(heap_arena, vaddr, size);
2685 }
2686 
2687 /*
2688  * returns 1st address in range that is in device arena, or NULL
2689  * if len is not NULL it returns the length of the toxic range
2690  */
2691 void *
2692 device_arena_contains(void *vaddr, size_t size, size_t *len)
2693 {
2694 	uintptr_t v = (uintptr_t)vaddr;
2695 	uintptr_t eaddr = v + size;
2696 	size_t start;
2697 	size_t end;
2698 
2699 	/*
2700 	 * if called very early by kmdb, just return NULL
2701 	 */
2702 	if (toxic_bit_map == NULL)
2703 		return (NULL);
2704 
2705 	/*
2706 	 * First check if we're completely outside the bitmap range.
2707 	 */
2708 	if (v >= valloc_base || eaddr < kernelbase)
2709 		return (NULL);
2710 
2711 	/*
2712 	 * Trim ends of search to look at only what the bitmap covers.
2713 	 */
2714 	if (v < kernelbase)
2715 		v = kernelbase;
2716 	start = btop(v - kernelbase);
2717 	end = btop(eaddr - kernelbase);
2718 	if (end >= toxic_bit_map_len)
2719 		end = toxic_bit_map_len;
2720 
2721 	if (bt_range(toxic_bit_map, &start, &end, end) == 0)
2722 		return (NULL);
2723 
2724 	v = kernelbase + ptob(start);
2725 	if (len != NULL)
2726 		*len = ptob(end - start);
2727 	return ((void *)v);
2728 }
2729 
2730 #endif	/* __i386 */
2731