xref: /titanic_50/usr/src/uts/i86pc/os/startup.c (revision 7ab4e62e3b5c454f248a38bec0d489e8f5543324)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2012 DEY Storage Systems, Inc.  All rights reserved.
24  * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
25  */
26 /*
27  * Copyright (c) 2010, Intel Corporation.
28  * All rights reserved.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/t_lock.h>
33 #include <sys/param.h>
34 #include <sys/sysmacros.h>
35 #include <sys/signal.h>
36 #include <sys/systm.h>
37 #include <sys/user.h>
38 #include <sys/mman.h>
39 #include <sys/vm.h>
40 #include <sys/conf.h>
41 #include <sys/avintr.h>
42 #include <sys/autoconf.h>
43 #include <sys/disp.h>
44 #include <sys/class.h>
45 #include <sys/bitmap.h>
46 
47 #include <sys/privregs.h>
48 
49 #include <sys/proc.h>
50 #include <sys/buf.h>
51 #include <sys/kmem.h>
52 #include <sys/mem.h>
53 #include <sys/kstat.h>
54 
55 #include <sys/reboot.h>
56 
57 #include <sys/cred.h>
58 #include <sys/vnode.h>
59 #include <sys/file.h>
60 
61 #include <sys/procfs.h>
62 
63 #include <sys/vfs.h>
64 #include <sys/cmn_err.h>
65 #include <sys/utsname.h>
66 #include <sys/debug.h>
67 #include <sys/kdi.h>
68 
69 #include <sys/dumphdr.h>
70 #include <sys/bootconf.h>
71 #include <sys/memlist_plat.h>
72 #include <sys/varargs.h>
73 #include <sys/promif.h>
74 #include <sys/modctl.h>
75 
76 #include <sys/sunddi.h>
77 #include <sys/sunndi.h>
78 #include <sys/ndi_impldefs.h>
79 #include <sys/ddidmareq.h>
80 #include <sys/psw.h>
81 #include <sys/regset.h>
82 #include <sys/clock.h>
83 #include <sys/pte.h>
84 #include <sys/tss.h>
85 #include <sys/stack.h>
86 #include <sys/trap.h>
87 #include <sys/fp.h>
88 #include <vm/kboot_mmu.h>
89 #include <vm/anon.h>
90 #include <vm/as.h>
91 #include <vm/page.h>
92 #include <vm/seg.h>
93 #include <vm/seg_dev.h>
94 #include <vm/seg_kmem.h>
95 #include <vm/seg_kpm.h>
96 #include <vm/seg_map.h>
97 #include <vm/seg_vn.h>
98 #include <vm/seg_kp.h>
99 #include <sys/memnode.h>
100 #include <vm/vm_dep.h>
101 #include <sys/thread.h>
102 #include <sys/sysconf.h>
103 #include <sys/vm_machparam.h>
104 #include <sys/archsystm.h>
105 #include <sys/machsystm.h>
106 #include <vm/hat.h>
107 #include <vm/hat_i86.h>
108 #include <sys/pmem.h>
109 #include <sys/smp_impldefs.h>
110 #include <sys/x86_archext.h>
111 #include <sys/cpuvar.h>
112 #include <sys/segments.h>
113 #include <sys/clconf.h>
114 #include <sys/kobj.h>
115 #include <sys/kobj_lex.h>
116 #include <sys/cpc_impl.h>
117 #include <sys/cpu_module.h>
118 #include <sys/smbios.h>
119 #include <sys/debug_info.h>
120 #include <sys/bootinfo.h>
121 #include <sys/ddi_periodic.h>
122 #include <sys/systeminfo.h>
123 #include <sys/multiboot.h>
124 
125 #ifdef	__xpv
126 
127 #include <sys/hypervisor.h>
128 #include <sys/xen_mmu.h>
129 #include <sys/evtchn_impl.h>
130 #include <sys/gnttab.h>
131 #include <sys/xpv_panic.h>
132 #include <xen/sys/xenbus_comms.h>
133 #include <xen/public/physdev.h>
134 
135 extern void xen_late_startup(void);
136 
137 struct xen_evt_data cpu0_evt_data;
138 
139 #else	/* __xpv */
140 #include <sys/memlist_impl.h>
141 
142 extern void mem_config_init(void);
143 #endif /* __xpv */
144 
145 extern void progressbar_init(void);
146 extern void brand_init(void);
147 extern void pcf_init(void);
148 extern void pg_init(void);
149 
150 extern int size_pse_array(pgcnt_t, int);
151 
152 #if defined(_SOFT_HOSTID)
153 
154 #include <sys/rtc.h>
155 
156 static int32_t set_soft_hostid(void);
157 static char hostid_file[] = "/etc/hostid";
158 
159 #endif
160 
161 void *gfx_devinfo_list;
162 
163 #if defined(__amd64) && !defined(__xpv)
164 extern void immu_startup(void);
165 #endif
166 
167 /*
168  * XXX make declaration below "static" when drivers no longer use this
169  * interface.
170  */
171 extern caddr_t p0_va;	/* Virtual address for accessing physical page 0 */
172 
173 /*
174  * segkp
175  */
176 extern int segkp_fromheap;
177 
178 static void kvm_init(void);
179 static void startup_init(void);
180 static void startup_memlist(void);
181 static void startup_kmem(void);
182 static void startup_modules(void);
183 static void startup_vm(void);
184 static void startup_end(void);
185 static void layout_kernel_va(void);
186 
187 /*
188  * Declare these as initialized data so we can patch them.
189  */
190 #ifdef __i386
191 
192 /*
193  * Due to virtual address space limitations running in 32 bit mode, restrict
194  * the amount of physical memory configured to a max of PHYSMEM pages (16g).
195  *
196  * If the physical max memory size of 64g were allowed to be configured, the
197  * size of user virtual address space will be less than 1g. A limited user
198  * address space greatly reduces the range of applications that can run.
199  *
200  * If more physical memory than PHYSMEM is required, users should preferably
201  * run in 64 bit mode which has far looser virtual address space limitations.
202  *
203  * If 64 bit mode is not available (as in IA32) and/or more physical memory
204  * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired
205  * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase
206  * should also be carefully tuned to balance out the need of the user
207  * application while minimizing the risk of kernel heap exhaustion due to
208  * kernelbase being set too high.
209  */
210 #define	PHYSMEM	0x400000
211 
212 #else /* __amd64 */
213 
214 /*
215  * For now we can handle memory with physical addresses up to about
216  * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly
217  * half the VA space for seg_kpm. When systems get bigger than 64TB this
218  * code will need revisiting. There is an implicit assumption that there
219  * are no *huge* holes in the physical address space too.
220  */
221 #define	TERABYTE		(1ul << 40)
222 #define	PHYSMEM_MAX64		mmu_btop(64 * TERABYTE)
223 #define	PHYSMEM			PHYSMEM_MAX64
224 #define	AMD64_VA_HOLE_END	0xFFFF800000000000ul
225 
226 #endif /* __amd64 */
227 
228 pgcnt_t physmem = PHYSMEM;
229 pgcnt_t obp_pages;	/* Memory used by PROM for its text and data */
230 
231 char *kobj_file_buf;
232 int kobj_file_bufsize;	/* set in /etc/system */
233 
234 /* Global variables for MP support. Used in mp_startup */
235 caddr_t	rm_platter_va = 0;
236 uint32_t rm_platter_pa;
237 
238 int	auto_lpg_disable = 1;
239 
240 /*
241  * Some CPUs have holes in the middle of the 64-bit virtual address range.
242  */
243 uintptr_t hole_start, hole_end;
244 
245 /*
246  * kpm mapping window
247  */
248 caddr_t kpm_vbase;
249 size_t  kpm_size;
250 static int kpm_desired;
251 #ifdef __amd64
252 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE;
253 #endif
254 
255 /*
256  * Configuration parameters set at boot time.
257  */
258 
259 caddr_t econtig;		/* end of first block of contiguous kernel */
260 
261 struct bootops		*bootops = 0;	/* passed in from boot */
262 struct bootops		**bootopsp;
263 struct boot_syscalls	*sysp;		/* passed in from boot */
264 
265 char bootblock_fstype[16];
266 
267 char kern_bootargs[OBP_MAXPATHLEN];
268 char kern_bootfile[OBP_MAXPATHLEN];
269 
270 /*
271  * ZFS zio segment.  This allows us to exclude large portions of ZFS data that
272  * gets cached in kmem caches on the heap.  If this is set to zero, we allocate
273  * zio buffers from their own segment, otherwise they are allocated from the
274  * heap.  The optimization of allocating zio buffers from their own segment is
275  * only valid on 64-bit kernels.
276  */
277 #if defined(__amd64)
278 int segzio_fromheap = 0;
279 #else
280 int segzio_fromheap = 1;
281 #endif
282 
283 /*
284  * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
285  * depends on number of BOP_ALLOC calls made and requested size, memory size
286  * combination and whether boot.bin memory needs to be freed.
287  */
288 #define	POSS_NEW_FRAGMENTS	12
289 
290 /*
291  * VM data structures
292  */
293 long page_hashsz;		/* Size of page hash table (power of two) */
294 unsigned int page_hashsz_shift;	/* log2(page_hashsz) */
295 struct page *pp_base;		/* Base of initial system page struct array */
296 struct page **page_hash;	/* Page hash table */
297 pad_mutex_t *pse_mutex;		/* Locks protecting pp->p_selock */
298 size_t pse_table_size;		/* Number of mutexes in pse_mutex[] */
299 int pse_shift;			/* log2(pse_table_size) */
300 struct seg ktextseg;		/* Segment used for kernel executable image */
301 struct seg kvalloc;		/* Segment used for "valloc" mapping */
302 struct seg kpseg;		/* Segment used for pageable kernel virt mem */
303 struct seg kmapseg;		/* Segment used for generic kernel mappings */
304 struct seg kdebugseg;		/* Segment used for the kernel debugger */
305 
306 struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
307 static struct seg *segmap = &kmapseg;	/* easier to use name for in here */
308 
309 struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
310 
311 #if defined(__amd64)
312 struct seg kvseg_core;		/* Segment used for the core heap */
313 struct seg kpmseg;		/* Segment used for physical mapping */
314 struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
315 #else
316 struct seg *segkpm = NULL;	/* Unused on IA32 */
317 #endif
318 
319 caddr_t segkp_base;		/* Base address of segkp */
320 caddr_t segzio_base;		/* Base address of segzio */
321 #if defined(__amd64)
322 pgcnt_t segkpsize = btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
323 #else
324 pgcnt_t segkpsize = 0;
325 #endif
326 pgcnt_t segziosize = 0;		/* size of zio segment in pages */
327 
328 /*
329  * A static DR page_t VA map is reserved that can map the page structures
330  * for a domain's entire RA space. The pages that back this space are
331  * dynamically allocated and need not be physically contiguous.  The DR
332  * map size is derived from KPM size.
333  * This mechanism isn't used by x86 yet, so just stubs here.
334  */
335 int ppvm_enable = 0;		/* Static virtual map for page structs */
336 page_t *ppvm_base = NULL;	/* Base of page struct map */
337 pgcnt_t ppvm_size = 0;		/* Size of page struct map */
338 
339 /*
340  * VA range available to the debugger
341  */
342 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
343 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
344 
345 struct memseg *memseg_base;
346 struct vnode unused_pages_vp;
347 
348 #define	FOURGB	0x100000000LL
349 
350 struct memlist *memlist;
351 
352 caddr_t s_text;		/* start of kernel text segment */
353 caddr_t e_text;		/* end of kernel text segment */
354 caddr_t s_data;		/* start of kernel data segment */
355 caddr_t e_data;		/* end of kernel data segment */
356 caddr_t modtext;	/* start of loadable module text reserved */
357 caddr_t e_modtext;	/* end of loadable module text reserved */
358 caddr_t moddata;	/* start of loadable module data reserved */
359 caddr_t e_moddata;	/* end of loadable module data reserved */
360 
361 struct memlist *phys_install;	/* Total installed physical memory */
362 struct memlist *phys_avail;	/* Total available physical memory */
363 struct memlist *bios_rsvd;	/* Bios reserved memory */
364 
365 /*
366  * kphysm_init returns the number of pages that were processed
367  */
368 static pgcnt_t kphysm_init(page_t *, pgcnt_t);
369 
370 #define	IO_PROP_SIZE	64	/* device property size */
371 
372 /*
373  * a couple useful roundup macros
374  */
375 #define	ROUND_UP_PAGE(x)	\
376 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
377 #define	ROUND_UP_LPAGE(x)	\
378 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
379 #define	ROUND_UP_4MEG(x)	\
380 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG))
381 #define	ROUND_UP_TOPLEVEL(x)	\
382 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
383 
384 /*
385  *	32-bit Kernel's Virtual memory layout.
386  *		+-----------------------+
387  *		|			|
388  * 0xFFC00000  -|-----------------------|- ARGSBASE
389  *		|	debugger	|
390  * 0xFF800000  -|-----------------------|- SEGDEBUGBASE
391  *		|      Kernel Data	|
392  * 0xFEC00000  -|-----------------------|
393  *              |      Kernel Text	|
394  * 0xFE800000  -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen)
395  *		|---       GDT       ---|- GDT page (GDT_VA)
396  *		|---    debug info   ---|- debug info (DEBUG_INFO_VA)
397  *		|			|
398  * 		|   page_t structures	|
399  * 		|   memsegs, memlists, 	|
400  * 		|   page hash, etc.	|
401  * ---	       -|-----------------------|- ekernelheap, valloc_base (floating)
402  *		|			|  (segkp is just an arena in the heap)
403  *		|			|
404  *		|	kvseg		|
405  *		|			|
406  *		|			|
407  * ---         -|-----------------------|- kernelheap (floating)
408  * 		|        Segkmap	|
409  * 0xC3002000  -|-----------------------|- segmap_start (floating)
410  *		|	Red Zone	|
411  * 0xC3000000  -|-----------------------|- kernelbase / userlimit (floating)
412  *		|			|			||
413  *		|     Shared objects	|			\/
414  *		|			|
415  *		:			:
416  *		|	user data	|
417  *		|-----------------------|
418  *		|	user text	|
419  * 0x08048000  -|-----------------------|
420  *		|	user stack	|
421  *		:			:
422  *		|	invalid		|
423  * 0x00000000	+-----------------------+
424  *
425  *
426  *		64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
427  *			+-----------------------+
428  *			|			|
429  * 0xFFFFFFFF.FFC00000  |-----------------------|- ARGSBASE
430  *			|	debugger (?)	|
431  * 0xFFFFFFFF.FF800000  |-----------------------|- SEGDEBUGBASE
432  *			|      unused    	|
433  *			+-----------------------+
434  *			|      Kernel Data	|
435  * 0xFFFFFFFF.FBC00000  |-----------------------|
436  *			|      Kernel Text	|
437  * 0xFFFFFFFF.FB800000  |-----------------------|- KERNEL_TEXT
438  *			|---       GDT       ---|- GDT page (GDT_VA)
439  *			|---    debug info   ---|- debug info (DEBUG_INFO_VA)
440  *			|			|
441  * 			|      Core heap	| (used for loadable modules)
442  * 0xFFFFFFFF.C0000000  |-----------------------|- core_base / ekernelheap
443  *			|	 Kernel		|
444  *			|	  heap		|
445  * 0xFFFFFXXX.XXX00000  |-----------------------|- kernelheap (floating)
446  *			|	 segmap		|
447  * 0xFFFFFXXX.XXX00000  |-----------------------|- segmap_start (floating)
448  *			|    device mappings	|
449  * 0xFFFFFXXX.XXX00000  |-----------------------|- toxic_addr (floating)
450  *			|	  segzio	|
451  * 0xFFFFFXXX.XXX00000  |-----------------------|- segzio_base (floating)
452  *			|	  segkp		|
453  * ---                  |-----------------------|- segkp_base (floating)
454  * 			|   page_t structures	|  valloc_base + valloc_sz
455  * 			|   memsegs, memlists, 	|
456  * 			|   page hash, etc.	|
457  * 0xFFFFFF00.00000000  |-----------------------|- valloc_base (lower if > 1TB)
458  *			|	 segkpm		|
459  * 0xFFFFFE00.00000000  |-----------------------|
460  *			|	Red Zone	|
461  * 0xFFFFFD80.00000000  |-----------------------|- KERNELBASE (lower if > 1TB)
462  *			|     User stack	|- User space memory
463  * 			|			|
464  * 			| shared objects, etc	|	(grows downwards)
465  *			:			:
466  * 			|			|
467  * 0xFFFF8000.00000000  |-----------------------|
468  * 			|			|
469  * 			| VA Hole / unused	|
470  * 			|			|
471  * 0x00008000.00000000  |-----------------------|
472  *			|			|
473  *			|			|
474  *			:			:
475  *			|	user heap	|	(grows upwards)
476  *			|			|
477  *			|	user data	|
478  *			|-----------------------|
479  *			|	user text	|
480  * 0x00000000.04000000  |-----------------------|
481  *			|	invalid		|
482  * 0x00000000.00000000	+-----------------------+
483  *
484  * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
485  * kernel, except that userlimit is raised to 0xfe000000
486  *
487  * Floating values:
488  *
489  * valloc_base: start of the kernel's memory management/tracking data
490  * structures.  This region contains page_t structures for
491  * physical memory, memsegs, memlists, and the page hash.
492  *
493  * core_base: start of the kernel's "core" heap area on 64-bit systems.
494  * This area is intended to be used for global data as well as for module
495  * text/data that does not fit into the nucleus pages.  The core heap is
496  * restricted to a 2GB range, allowing every address within it to be
497  * accessed using rip-relative addressing
498  *
499  * ekernelheap: end of kernelheap and start of segmap.
500  *
501  * kernelheap: start of kernel heap.  On 32-bit systems, this starts right
502  * above a red zone that separates the user's address space from the
503  * kernel's.  On 64-bit systems, it sits above segkp and segkpm.
504  *
505  * segmap_start: start of segmap. The length of segmap can be modified
506  * through eeprom. The default length is 16MB on 32-bit systems and 64MB
507  * on 64-bit systems.
508  *
509  * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
510  * decreased by 2X the size required for page_t.  This allows the kernel
511  * heap to grow in size with physical memory.  With sizeof(page_t) == 80
512  * bytes, the following shows the values of kernelbase and kernel heap
513  * sizes for different memory configurations (assuming default segmap and
514  * segkp sizes).
515  *
516  *	mem	size for	kernelbase	kernel heap
517  *	size	page_t's			size
518  *	----	---------	----------	-----------
519  *	1gb	0x01400000	0xd1800000	684MB
520  *	2gb	0x02800000	0xcf000000	704MB
521  *	4gb	0x05000000	0xca000000	744MB
522  *	6gb	0x07800000	0xc5000000	784MB
523  *	8gb	0x0a000000	0xc0000000	824MB
524  *	16gb	0x14000000	0xac000000	984MB
525  *	32gb	0x28000000	0x84000000	1304MB
526  *	64gb	0x50000000	0x34000000	1944MB (*)
527  *
528  * kernelbase is less than the abi minimum of 0xc0000000 for memory
529  * configurations above 8gb.
530  *
531  * (*) support for memory configurations above 32gb will require manual tuning
532  * of kernelbase to balance out the need of user applications.
533  */
534 
535 /* real-time-clock initialization parameters */
536 extern time_t process_rtc_config_file(void);
537 
538 uintptr_t	kernelbase;
539 uintptr_t	postbootkernelbase;	/* not set till boot loader is gone */
540 uintptr_t	eprom_kernelbase;
541 size_t		segmapsize;
542 uintptr_t	segmap_start;
543 int		segmapfreelists;
544 pgcnt_t		npages;
545 pgcnt_t		orig_npages;
546 size_t		core_size;		/* size of "core" heap */
547 uintptr_t	core_base;		/* base address of "core" heap */
548 
549 /*
550  * List of bootstrap pages. We mark these as allocated in startup.
551  * release_bootstrap() will free them when we're completely done with
552  * the bootstrap.
553  */
554 static page_t *bootpages;
555 
556 /*
557  * boot time pages that have a vnode from the ramdisk will keep that forever.
558  */
559 static page_t *rd_pages;
560 
561 /*
562  * Lower 64K
563  */
564 static page_t *lower_pages = NULL;
565 static int lower_pages_count = 0;
566 
567 struct system_hardware system_hardware;
568 
569 /*
570  * Enable some debugging messages concerning memory usage...
571  */
572 static void
573 print_memlist(char *title, struct memlist *mp)
574 {
575 	prom_printf("MEMLIST: %s:\n", title);
576 	while (mp != NULL)  {
577 		prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
578 		    mp->ml_address, mp->ml_size);
579 		mp = mp->ml_next;
580 	}
581 }
582 
583 /*
584  * XX64 need a comment here.. are these just default values, surely
585  * we read the "cpuid" type information to figure this out.
586  */
587 int	l2cache_sz = 0x80000;
588 int	l2cache_linesz = 0x40;
589 int	l2cache_assoc = 1;
590 
591 static size_t	textrepl_min_gb = 10;
592 
593 /*
594  * on 64 bit we use a predifined VA range for mapping devices in the kernel
595  * on 32 bit the mappings are intermixed in the heap, so we use a bit map
596  */
597 #ifdef __amd64
598 
599 vmem_t		*device_arena;
600 uintptr_t	toxic_addr = (uintptr_t)NULL;
601 size_t		toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
602 
603 #else	/* __i386 */
604 
605 ulong_t		*toxic_bit_map;	/* one bit for each 4k of VA in heap_arena */
606 size_t		toxic_bit_map_len = 0;	/* in bits */
607 
608 #endif	/* __i386 */
609 
610 /*
611  * Simple boot time debug facilities
612  */
613 static char *prm_dbg_str[] = {
614 	"%s:%d: '%s' is 0x%x\n",
615 	"%s:%d: '%s' is 0x%llx\n"
616 };
617 
618 int prom_debug;
619 
620 #define	PRM_DEBUG(q)	if (prom_debug) 	\
621 	prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q);
622 #define	PRM_POINT(q)	if (prom_debug) 	\
623 	prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q);
624 
625 /*
626  * This structure is used to keep track of the intial allocations
627  * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
628  * be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
629  */
630 #define	NUM_ALLOCATIONS 8
631 int num_allocations = 0;
632 struct {
633 	void **al_ptr;
634 	size_t al_size;
635 } allocations[NUM_ALLOCATIONS];
636 size_t valloc_sz = 0;
637 uintptr_t valloc_base;
638 
639 #define	ADD_TO_ALLOCATIONS(ptr, size) {					\
640 		size = ROUND_UP_PAGE(size);		 		\
641 		if (num_allocations == NUM_ALLOCATIONS)			\
642 			panic("too many ADD_TO_ALLOCATIONS()");		\
643 		allocations[num_allocations].al_ptr = (void**)&ptr;	\
644 		allocations[num_allocations].al_size = size;		\
645 		valloc_sz += size;					\
646 		++num_allocations;				 	\
647 	}
648 
649 /*
650  * Allocate all the initial memory needed by the page allocator.
651  */
652 static void
653 perform_allocations(void)
654 {
655 	caddr_t mem;
656 	int i;
657 	int valloc_align;
658 
659 	PRM_DEBUG(valloc_base);
660 	PRM_DEBUG(valloc_sz);
661 	valloc_align = mmu.level_size[mmu.max_page_level > 0];
662 	mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align);
663 	if (mem != (caddr_t)valloc_base)
664 		panic("BOP_ALLOC() failed");
665 	bzero(mem, valloc_sz);
666 	for (i = 0; i < num_allocations; ++i) {
667 		*allocations[i].al_ptr = (void *)mem;
668 		mem += allocations[i].al_size;
669 	}
670 }
671 
672 /*
673  * Our world looks like this at startup time.
674  *
675  * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
676  * at 0xfec00000.  On a 64-bit OS, kernel text and data are loaded at
677  * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively.  Those
678  * addresses are fixed in the binary at link time.
679  *
680  * On the text page:
681  * unix/genunix/krtld/module text loads.
682  *
683  * On the data page:
684  * unix/genunix/krtld/module data loads.
685  *
686  * Machine-dependent startup code
687  */
688 void
689 startup(void)
690 {
691 #if !defined(__xpv)
692 	extern void startup_pci_bios(void);
693 #endif
694 	extern cpuset_t cpu_ready_set;
695 
696 	/*
697 	 * Make sure that nobody tries to use sekpm until we have
698 	 * initialized it properly.
699 	 */
700 #if defined(__amd64)
701 	kpm_desired = 1;
702 #endif
703 	kpm_enable = 0;
704 	CPUSET_ONLY(cpu_ready_set, 0);	/* cpu 0 is boot cpu */
705 
706 #if defined(__xpv)	/* XXPV fix me! */
707 	{
708 		extern int segvn_use_regions;
709 		segvn_use_regions = 0;
710 	}
711 #endif
712 	progressbar_init();
713 	startup_init();
714 #if defined(__xpv)
715 	startup_xen_version();
716 #endif
717 	startup_memlist();
718 	startup_kmem();
719 	startup_vm();
720 #if !defined(__xpv)
721 	/*
722 	 * Note we need to do this even on fast reboot in order to access
723 	 * the irq routing table (used for pci labels).
724 	 */
725 	startup_pci_bios();
726 #endif
727 #if defined(__xpv)
728 	startup_xen_mca();
729 #endif
730 	startup_modules();
731 
732 	startup_end();
733 }
734 
735 static void
736 startup_init()
737 {
738 	PRM_POINT("startup_init() starting...");
739 
740 	/*
741 	 * Complete the extraction of cpuid data
742 	 */
743 	cpuid_pass2(CPU);
744 
745 	(void) check_boot_version(BOP_GETVERSION(bootops));
746 
747 	/*
748 	 * Check for prom_debug in boot environment
749 	 */
750 	if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
751 		++prom_debug;
752 		PRM_POINT("prom_debug found in boot enviroment");
753 	}
754 
755 	/*
756 	 * Collect node, cpu and memory configuration information.
757 	 */
758 	get_system_configuration();
759 
760 	/*
761 	 * Halt if this is an unsupported processor.
762 	 */
763 	if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
764 		printf("\n486 processor (\"%s\") detected.\n",
765 		    CPU->cpu_brandstr);
766 		halt("This processor is not supported by this release "
767 		    "of Solaris.");
768 	}
769 
770 	PRM_POINT("startup_init() done");
771 }
772 
773 /*
774  * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
775  * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
776  * also filters out physical page zero.  There is some reliance on the
777  * boot loader allocating only a few contiguous physical memory chunks.
778  */
779 static void
780 avail_filter(uint64_t *addr, uint64_t *size)
781 {
782 	uintptr_t va;
783 	uintptr_t next_va;
784 	pfn_t pfn;
785 	uint64_t pfn_addr;
786 	uint64_t pfn_eaddr;
787 	uint_t prot;
788 	size_t len;
789 	uint_t change;
790 
791 	if (prom_debug)
792 		prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
793 		    *addr, *size);
794 
795 	/*
796 	 * page zero is required for BIOS.. never make it available
797 	 */
798 	if (*addr == 0) {
799 		*addr += MMU_PAGESIZE;
800 		*size -= MMU_PAGESIZE;
801 	}
802 
803 	/*
804 	 * First we trim from the front of the range. Since kbm_probe()
805 	 * walks ranges in virtual order, but addr/size are physical, we need
806 	 * to the list until no changes are seen.  This deals with the case
807 	 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
808 	 * but w < v.
809 	 */
810 	do {
811 		change = 0;
812 		for (va = KERNEL_TEXT;
813 		    *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
814 		    va = next_va) {
815 
816 			next_va = va + len;
817 			pfn_addr = pfn_to_pa(pfn);
818 			pfn_eaddr = pfn_addr + len;
819 
820 			if (pfn_addr <= *addr && pfn_eaddr > *addr) {
821 				change = 1;
822 				while (*size > 0 && len > 0) {
823 					*addr += MMU_PAGESIZE;
824 					*size -= MMU_PAGESIZE;
825 					len -= MMU_PAGESIZE;
826 				}
827 			}
828 		}
829 		if (change && prom_debug)
830 			prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
831 			    *addr, *size);
832 	} while (change);
833 
834 	/*
835 	 * Trim pages from the end of the range.
836 	 */
837 	for (va = KERNEL_TEXT;
838 	    *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
839 	    va = next_va) {
840 
841 		next_va = va + len;
842 		pfn_addr = pfn_to_pa(pfn);
843 
844 		if (pfn_addr >= *addr && pfn_addr < *addr + *size)
845 			*size = pfn_addr - *addr;
846 	}
847 
848 	if (prom_debug)
849 		prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
850 		    *addr, *size);
851 }
852 
853 static void
854 kpm_init()
855 {
856 	struct segkpm_crargs b;
857 
858 	/*
859 	 * These variables were all designed for sfmmu in which segkpm is
860 	 * mapped using a single pagesize - either 8KB or 4MB.  On x86, we
861 	 * might use 2+ page sizes on a single machine, so none of these
862 	 * variables have a single correct value.  They are set up as if we
863 	 * always use a 4KB pagesize, which should do no harm.  In the long
864 	 * run, we should get rid of KPM's assumption that only a single
865 	 * pagesize is used.
866 	 */
867 	kpm_pgshft = MMU_PAGESHIFT;
868 	kpm_pgsz =  MMU_PAGESIZE;
869 	kpm_pgoff = MMU_PAGEOFFSET;
870 	kpmp2pshft = 0;
871 	kpmpnpgs = 1;
872 	ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
873 
874 	PRM_POINT("about to create segkpm");
875 	rw_enter(&kas.a_lock, RW_WRITER);
876 
877 	if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
878 		panic("cannot attach segkpm");
879 
880 	b.prot = PROT_READ | PROT_WRITE;
881 	b.nvcolors = 1;
882 
883 	if (segkpm_create(segkpm, (caddr_t)&b) != 0)
884 		panic("segkpm_create segkpm");
885 
886 	rw_exit(&kas.a_lock);
887 }
888 
889 /*
890  * The debug info page provides enough information to allow external
891  * inspectors (e.g. when running under a hypervisor) to bootstrap
892  * themselves into allowing full-blown kernel debugging.
893  */
894 static void
895 init_debug_info(void)
896 {
897 	caddr_t mem;
898 	debug_info_t *di;
899 
900 #ifndef __lint
901 	ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE);
902 #endif
903 
904 	mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE,
905 	    MMU_PAGESIZE);
906 
907 	if (mem != (caddr_t)DEBUG_INFO_VA)
908 		panic("BOP_ALLOC() failed");
909 	bzero(mem, MMU_PAGESIZE);
910 
911 	di = (debug_info_t *)mem;
912 
913 	di->di_magic = DEBUG_INFO_MAGIC;
914 	di->di_version = DEBUG_INFO_VERSION;
915 	di->di_modules = (uintptr_t)&modules;
916 	di->di_s_text = (uintptr_t)s_text;
917 	di->di_e_text = (uintptr_t)e_text;
918 	di->di_s_data = (uintptr_t)s_data;
919 	di->di_e_data = (uintptr_t)e_data;
920 	di->di_hat_htable_off = offsetof(hat_t, hat_htable);
921 	di->di_ht_pfn_off = offsetof(htable_t, ht_pfn);
922 }
923 
924 /*
925  * Build the memlists and other kernel essential memory system data structures.
926  * This is everything at valloc_base.
927  */
928 static void
929 startup_memlist(void)
930 {
931 	size_t memlist_sz;
932 	size_t memseg_sz;
933 	size_t pagehash_sz;
934 	size_t pp_sz;
935 	uintptr_t va;
936 	size_t len;
937 	uint_t prot;
938 	pfn_t pfn;
939 	int memblocks;
940 	pfn_t rsvd_high_pfn;
941 	pgcnt_t rsvd_pgcnt;
942 	size_t rsvdmemlist_sz;
943 	int rsvdmemblocks;
944 	caddr_t pagecolor_mem;
945 	size_t pagecolor_memsz;
946 	caddr_t page_ctrs_mem;
947 	size_t page_ctrs_size;
948 	size_t pse_table_alloc_size;
949 	struct memlist *current;
950 	extern void startup_build_mem_nodes(struct memlist *);
951 
952 	/* XX64 fix these - they should be in include files */
953 	extern size_t page_coloring_init(uint_t, int, int);
954 	extern void page_coloring_setup(caddr_t);
955 
956 	PRM_POINT("startup_memlist() starting...");
957 
958 	/*
959 	 * Use leftover large page nucleus text/data space for loadable modules.
960 	 * Use at most MODTEXT/MODDATA.
961 	 */
962 	len = kbm_nucleus_size;
963 	ASSERT(len > MMU_PAGESIZE);
964 
965 	moddata = (caddr_t)ROUND_UP_PAGE(e_data);
966 	e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len);
967 	if (e_moddata - moddata > MODDATA)
968 		e_moddata = moddata + MODDATA;
969 
970 	modtext = (caddr_t)ROUND_UP_PAGE(e_text);
971 	e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len);
972 	if (e_modtext - modtext > MODTEXT)
973 		e_modtext = modtext + MODTEXT;
974 
975 	econtig = e_moddata;
976 
977 	PRM_DEBUG(modtext);
978 	PRM_DEBUG(e_modtext);
979 	PRM_DEBUG(moddata);
980 	PRM_DEBUG(e_moddata);
981 	PRM_DEBUG(econtig);
982 
983 	/*
984 	 * Examine the boot loader physical memory map to find out:
985 	 * - total memory in system - physinstalled
986 	 * - the max physical address - physmax
987 	 * - the number of discontiguous segments of memory.
988 	 */
989 	if (prom_debug)
990 		print_memlist("boot physinstalled",
991 		    bootops->boot_mem->physinstalled);
992 	installed_top_size_ex(bootops->boot_mem->physinstalled, &physmax,
993 	    &physinstalled, &memblocks);
994 	PRM_DEBUG(physmax);
995 	PRM_DEBUG(physinstalled);
996 	PRM_DEBUG(memblocks);
997 
998 	/*
999 	 * Compute maximum physical address for memory DR operations.
1000 	 * Memory DR operations are unsupported on xpv or 32bit OSes.
1001 	 */
1002 #ifdef	__amd64
1003 	if (plat_dr_support_memory()) {
1004 		if (plat_dr_physmax == 0) {
1005 			uint_t pabits = UINT_MAX;
1006 
1007 			cpuid_get_addrsize(CPU, &pabits, NULL);
1008 			plat_dr_physmax = btop(1ULL << pabits);
1009 		}
1010 		if (plat_dr_physmax > PHYSMEM_MAX64)
1011 			plat_dr_physmax = PHYSMEM_MAX64;
1012 	} else
1013 #endif
1014 		plat_dr_physmax = 0;
1015 
1016 	/*
1017 	 * Examine the bios reserved memory to find out:
1018 	 * - the number of discontiguous segments of memory.
1019 	 */
1020 	if (prom_debug)
1021 		print_memlist("boot reserved mem",
1022 		    bootops->boot_mem->rsvdmem);
1023 	installed_top_size_ex(bootops->boot_mem->rsvdmem, &rsvd_high_pfn,
1024 	    &rsvd_pgcnt, &rsvdmemblocks);
1025 	PRM_DEBUG(rsvd_high_pfn);
1026 	PRM_DEBUG(rsvd_pgcnt);
1027 	PRM_DEBUG(rsvdmemblocks);
1028 
1029 	/*
1030 	 * Initialize hat's mmu parameters.
1031 	 * Check for enforce-prot-exec in boot environment. It's used to
1032 	 * enable/disable support for the page table entry NX bit.
1033 	 * The default is to enforce PROT_EXEC on processors that support NX.
1034 	 * Boot seems to round up the "len", but 8 seems to be big enough.
1035 	 */
1036 	mmu_init();
1037 
1038 #ifdef	__i386
1039 	/*
1040 	 * physmax is lowered if there is more memory than can be
1041 	 * physically addressed in 32 bit (PAE/non-PAE) modes.
1042 	 */
1043 	if (mmu.pae_hat) {
1044 		if (PFN_ABOVE64G(physmax)) {
1045 			physinstalled -= (physmax - (PFN_64G - 1));
1046 			physmax = PFN_64G - 1;
1047 		}
1048 	} else {
1049 		if (PFN_ABOVE4G(physmax)) {
1050 			physinstalled -= (physmax - (PFN_4G - 1));
1051 			physmax = PFN_4G - 1;
1052 		}
1053 	}
1054 #endif
1055 
1056 	startup_build_mem_nodes(bootops->boot_mem->physinstalled);
1057 
1058 	if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
1059 		int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
1060 		char value[8];
1061 
1062 		if (len < 8)
1063 			(void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
1064 		else
1065 			(void) strcpy(value, "");
1066 		if (strcmp(value, "off") == 0)
1067 			mmu.pt_nx = 0;
1068 	}
1069 	PRM_DEBUG(mmu.pt_nx);
1070 
1071 	/*
1072 	 * We will need page_t's for every page in the system, except for
1073 	 * memory mapped at or above above the start of the kernel text segment.
1074 	 *
1075 	 * pages above e_modtext are attributed to kernel debugger (obp_pages)
1076 	 */
1077 	npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
1078 	obp_pages = 0;
1079 	va = KERNEL_TEXT;
1080 	while (kbm_probe(&va, &len, &pfn, &prot) != 0) {
1081 		npages -= len >> MMU_PAGESHIFT;
1082 		if (va >= (uintptr_t)e_moddata)
1083 			obp_pages += len >> MMU_PAGESHIFT;
1084 		va += len;
1085 	}
1086 	PRM_DEBUG(npages);
1087 	PRM_DEBUG(obp_pages);
1088 
1089 	/*
1090 	 * If physmem is patched to be non-zero, use it instead of the computed
1091 	 * value unless it is larger than the actual amount of memory on hand.
1092 	 */
1093 	if (physmem == 0 || physmem > npages) {
1094 		physmem = npages;
1095 	} else if (physmem < npages) {
1096 		orig_npages = npages;
1097 		npages = physmem;
1098 	}
1099 	PRM_DEBUG(physmem);
1100 
1101 	/*
1102 	 * We now compute the sizes of all the  initial allocations for
1103 	 * structures the kernel needs in order do kmem_alloc(). These
1104 	 * include:
1105 	 *	memsegs
1106 	 *	memlists
1107 	 *	page hash table
1108 	 *	page_t's
1109 	 *	page coloring data structs
1110 	 */
1111 	memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
1112 	ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
1113 	PRM_DEBUG(memseg_sz);
1114 
1115 	/*
1116 	 * Reserve space for memlists. There's no real good way to know exactly
1117 	 * how much room we'll need, but this should be a good upper bound.
1118 	 */
1119 	memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1120 	    (memblocks + POSS_NEW_FRAGMENTS));
1121 	ADD_TO_ALLOCATIONS(memlist, memlist_sz);
1122 	PRM_DEBUG(memlist_sz);
1123 
1124 	/*
1125 	 * Reserve space for bios reserved memlists.
1126 	 */
1127 	rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1128 	    (rsvdmemblocks + POSS_NEW_FRAGMENTS));
1129 	ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz);
1130 	PRM_DEBUG(rsvdmemlist_sz);
1131 
1132 	/* LINTED */
1133 	ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), sizeof (struct page)));
1134 	/*
1135 	 * The page structure hash table size is a power of 2
1136 	 * such that the average hash chain length is PAGE_HASHAVELEN.
1137 	 */
1138 	page_hashsz = npages / PAGE_HASHAVELEN;
1139 	page_hashsz_shift = highbit(page_hashsz);
1140 	page_hashsz = 1 << page_hashsz_shift;
1141 	pagehash_sz = sizeof (struct page *) * page_hashsz;
1142 	ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
1143 	PRM_DEBUG(pagehash_sz);
1144 
1145 	/*
1146 	 * Set aside room for the page structures themselves.
1147 	 */
1148 	PRM_DEBUG(npages);
1149 	pp_sz = sizeof (struct page) * npages;
1150 	ADD_TO_ALLOCATIONS(pp_base, pp_sz);
1151 	PRM_DEBUG(pp_sz);
1152 
1153 	/*
1154 	 * determine l2 cache info and memory size for page coloring
1155 	 */
1156 	(void) getl2cacheinfo(CPU,
1157 	    &l2cache_sz, &l2cache_linesz, &l2cache_assoc);
1158 	pagecolor_memsz =
1159 	    page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
1160 	ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
1161 	PRM_DEBUG(pagecolor_memsz);
1162 
1163 	page_ctrs_size = page_ctrs_sz();
1164 	ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
1165 	PRM_DEBUG(page_ctrs_size);
1166 
1167 	/*
1168 	 * Allocate the array that protects pp->p_selock.
1169 	 */
1170 	pse_shift = size_pse_array(physmem, max_ncpus);
1171 	pse_table_size = 1 << pse_shift;
1172 	pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t);
1173 	ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size);
1174 
1175 #if defined(__amd64)
1176 	valloc_sz = ROUND_UP_LPAGE(valloc_sz);
1177 	valloc_base = VALLOC_BASE;
1178 
1179 	/*
1180 	 * The default values of VALLOC_BASE and SEGKPM_BASE should work
1181 	 * for values of physmax up to 1 Terabyte. They need adjusting when
1182 	 * memory is at addresses above 1 TB. When adjusted, segkpm_base must
1183 	 * be aligned on KERNEL_REDZONE_SIZE boundary (span of top level pte).
1184 	 */
1185 	if (physmax + 1 > mmu_btop(TERABYTE) ||
1186 	    plat_dr_physmax > mmu_btop(TERABYTE)) {
1187 		uint64_t kpm_resv_amount = mmu_ptob(physmax + 1);
1188 
1189 		if (kpm_resv_amount < mmu_ptob(plat_dr_physmax)) {
1190 			kpm_resv_amount = mmu_ptob(plat_dr_physmax);
1191 		}
1192 
1193 		segkpm_base = -(P2ROUNDUP((2 * kpm_resv_amount),
1194 		    KERNEL_REDZONE_SIZE));	/* down from top VA */
1195 
1196 		/* make sure we leave some space for user apps above hole */
1197 		segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE);
1198 		if (segkpm_base > SEGKPM_BASE)
1199 			segkpm_base = SEGKPM_BASE;
1200 		PRM_DEBUG(segkpm_base);
1201 
1202 		valloc_base = segkpm_base + P2ROUNDUP(kpm_resv_amount, ONE_GIG);
1203 		if (valloc_base < segkpm_base)
1204 			panic("not enough kernel VA to support memory size");
1205 		PRM_DEBUG(valloc_base);
1206 	}
1207 #else	/* __i386 */
1208 	valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz);
1209 	valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]);
1210 	PRM_DEBUG(valloc_base);
1211 #endif	/* __i386 */
1212 
1213 	/*
1214 	 * do all the initial allocations
1215 	 */
1216 	perform_allocations();
1217 
1218 	/*
1219 	 * Build phys_install and phys_avail in kernel memspace.
1220 	 * - phys_install should be all memory in the system.
1221 	 * - phys_avail is phys_install minus any memory mapped before this
1222 	 *    point above KERNEL_TEXT.
1223 	 */
1224 	current = phys_install = memlist;
1225 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current, NULL);
1226 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1227 		panic("physinstalled was too big!");
1228 	if (prom_debug)
1229 		print_memlist("phys_install", phys_install);
1230 
1231 	phys_avail = current;
1232 	PRM_POINT("Building phys_avail:\n");
1233 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current,
1234 	    avail_filter);
1235 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1236 		panic("physavail was too big!");
1237 	if (prom_debug)
1238 		print_memlist("phys_avail", phys_avail);
1239 #ifndef	__xpv
1240 	/*
1241 	 * Free unused memlist items, which may be used by memory DR driver
1242 	 * at runtime.
1243 	 */
1244 	if ((caddr_t)current < (caddr_t)memlist + memlist_sz) {
1245 		memlist_free_block((caddr_t)current,
1246 		    (caddr_t)memlist + memlist_sz - (caddr_t)current);
1247 	}
1248 #endif
1249 
1250 	/*
1251 	 * Build bios reserved memspace
1252 	 */
1253 	current = bios_rsvd;
1254 	copy_memlist_filter(bootops->boot_mem->rsvdmem, &current, NULL);
1255 	if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz)
1256 		panic("bios_rsvd was too big!");
1257 	if (prom_debug)
1258 		print_memlist("bios_rsvd", bios_rsvd);
1259 #ifndef	__xpv
1260 	/*
1261 	 * Free unused memlist items, which may be used by memory DR driver
1262 	 * at runtime.
1263 	 */
1264 	if ((caddr_t)current < (caddr_t)bios_rsvd + rsvdmemlist_sz) {
1265 		memlist_free_block((caddr_t)current,
1266 		    (caddr_t)bios_rsvd + rsvdmemlist_sz - (caddr_t)current);
1267 	}
1268 #endif
1269 
1270 	/*
1271 	 * setup page coloring
1272 	 */
1273 	page_coloring_setup(pagecolor_mem);
1274 	page_lock_init();	/* currently a no-op */
1275 
1276 	/*
1277 	 * free page list counters
1278 	 */
1279 	(void) page_ctrs_alloc(page_ctrs_mem);
1280 
1281 	/*
1282 	 * Size the pcf array based on the number of cpus in the box at
1283 	 * boot time.
1284 	 */
1285 
1286 	pcf_init();
1287 
1288 	/*
1289 	 * Initialize the page structures from the memory lists.
1290 	 */
1291 	availrmem_initial = availrmem = freemem = 0;
1292 	PRM_POINT("Calling kphysm_init()...");
1293 	npages = kphysm_init(pp_base, npages);
1294 	PRM_POINT("kphysm_init() done");
1295 	PRM_DEBUG(npages);
1296 
1297 	init_debug_info();
1298 
1299 	/*
1300 	 * Now that page_t's have been initialized, remove all the
1301 	 * initial allocation pages from the kernel free page lists.
1302 	 */
1303 	boot_mapin((caddr_t)valloc_base, valloc_sz);
1304 	boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE);
1305 	PRM_POINT("startup_memlist() done");
1306 
1307 	PRM_DEBUG(valloc_sz);
1308 
1309 #if defined(__amd64)
1310 	if ((availrmem >> (30 - MMU_PAGESHIFT)) >=
1311 	    textrepl_min_gb && l2cache_sz <= 2 << 20) {
1312 		extern size_t textrepl_size_thresh;
1313 		textrepl_size_thresh = (16 << 20) - 1;
1314 	}
1315 #endif
1316 }
1317 
1318 /*
1319  * Layout the kernel's part of address space and initialize kmem allocator.
1320  */
1321 static void
1322 startup_kmem(void)
1323 {
1324 	extern void page_set_colorequiv_arr(void);
1325 
1326 	PRM_POINT("startup_kmem() starting...");
1327 
1328 #if defined(__amd64)
1329 	if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
1330 		cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
1331 		    "systems.");
1332 	kernelbase = segkpm_base - KERNEL_REDZONE_SIZE;
1333 	core_base = (uintptr_t)COREHEAP_BASE;
1334 	core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE;
1335 #else	/* __i386 */
1336 	/*
1337 	 * We configure kernelbase based on:
1338 	 *
1339 	 * 1. user specified kernelbase via eeprom command. Value cannot exceed
1340 	 *    KERNELBASE_MAX. we large page align eprom_kernelbase
1341 	 *
1342 	 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t.
1343 	 *    On large memory systems we must lower kernelbase to allow
1344 	 *    enough room for page_t's for all of memory.
1345 	 *
1346 	 * The value set here, might be changed a little later.
1347 	 */
1348 	if (eprom_kernelbase) {
1349 		kernelbase = eprom_kernelbase & mmu.level_mask[1];
1350 		if (kernelbase > KERNELBASE_MAX)
1351 			kernelbase = KERNELBASE_MAX;
1352 	} else {
1353 		kernelbase = (uintptr_t)KERNELBASE;
1354 		kernelbase -= ROUND_UP_4MEG(2 * valloc_sz);
1355 	}
1356 	ASSERT((kernelbase & mmu.level_offset[1]) == 0);
1357 	core_base = valloc_base;
1358 	core_size = 0;
1359 #endif	/* __i386 */
1360 
1361 	PRM_DEBUG(core_base);
1362 	PRM_DEBUG(core_size);
1363 	PRM_DEBUG(kernelbase);
1364 
1365 #if defined(__i386)
1366 	segkp_fromheap = 1;
1367 #endif	/* __i386 */
1368 
1369 	ekernelheap = (char *)core_base;
1370 	PRM_DEBUG(ekernelheap);
1371 
1372 	/*
1373 	 * Now that we know the real value of kernelbase,
1374 	 * update variables that were initialized with a value of
1375 	 * KERNELBASE (in common/conf/param.c).
1376 	 *
1377 	 * XXX	The problem with this sort of hackery is that the
1378 	 *	compiler just may feel like putting the const declarations
1379 	 *	(in param.c) into the .text section.  Perhaps they should
1380 	 *	just be declared as variables there?
1381 	 */
1382 
1383 	*(uintptr_t *)&_kernelbase = kernelbase;
1384 	*(uintptr_t *)&_userlimit = kernelbase;
1385 #if defined(__amd64)
1386 	*(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT;
1387 #else
1388 	*(uintptr_t *)&_userlimit32 = _userlimit;
1389 #endif
1390 	PRM_DEBUG(_kernelbase);
1391 	PRM_DEBUG(_userlimit);
1392 	PRM_DEBUG(_userlimit32);
1393 
1394 	layout_kernel_va();
1395 
1396 #if defined(__i386)
1397 	/*
1398 	 * If segmap is too large we can push the bottom of the kernel heap
1399 	 * higher than the base.  Or worse, it could exceed the top of the
1400 	 * VA space entirely, causing it to wrap around.
1401 	 */
1402 	if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase)
1403 		panic("too little address space available for kernelheap,"
1404 		    " use eeprom for lower kernelbase or smaller segmapsize");
1405 #endif	/* __i386 */
1406 
1407 	/*
1408 	 * Initialize the kernel heap. Note 3rd argument must be > 1st.
1409 	 */
1410 	kernelheap_init(kernelheap, ekernelheap,
1411 	    kernelheap + MMU_PAGESIZE,
1412 	    (void *)core_base, (void *)(core_base + core_size));
1413 
1414 #if defined(__xpv)
1415 	/*
1416 	 * Link pending events struct into cpu struct
1417 	 */
1418 	CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data;
1419 #endif
1420 	/*
1421 	 * Initialize kernel memory allocator.
1422 	 */
1423 	kmem_init();
1424 
1425 	/*
1426 	 * Factor in colorequiv to check additional 'equivalent' bins
1427 	 */
1428 	page_set_colorequiv_arr();
1429 
1430 	/*
1431 	 * print this out early so that we know what's going on
1432 	 */
1433 	print_x86_featureset(x86_featureset);
1434 
1435 	/*
1436 	 * Initialize bp_mapin().
1437 	 */
1438 	bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
1439 
1440 	/*
1441 	 * orig_npages is non-zero if physmem has been configured for less
1442 	 * than the available memory.
1443 	 */
1444 	if (orig_npages) {
1445 		cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages",
1446 		    (npages == PHYSMEM ? "Due to virtual address space " : ""),
1447 		    npages, orig_npages);
1448 	}
1449 #if defined(__i386)
1450 	if (eprom_kernelbase && (eprom_kernelbase != kernelbase))
1451 		cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, "
1452 		    "System using 0x%lx",
1453 		    (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase);
1454 #endif
1455 
1456 #ifdef	KERNELBASE_ABI_MIN
1457 	if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
1458 		cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
1459 		    "i386 ABI compliant.", (uintptr_t)kernelbase);
1460 	}
1461 #endif
1462 
1463 #ifndef __xpv
1464 	if (plat_dr_support_memory()) {
1465 		mem_config_init();
1466 	}
1467 #else	/* __xpv */
1468 	/*
1469 	 * Some of the xen start information has to be relocated up
1470 	 * into the kernel's permanent address space.
1471 	 */
1472 	PRM_POINT("calling xen_relocate_start_info()");
1473 	xen_relocate_start_info();
1474 	PRM_POINT("xen_relocate_start_info() done");
1475 
1476 	/*
1477 	 * (Update the vcpu pointer in our cpu structure to point into
1478 	 * the relocated shared info.)
1479 	 */
1480 	CPU->cpu_m.mcpu_vcpu_info =
1481 	    &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id];
1482 #endif	/* __xpv */
1483 
1484 	PRM_POINT("startup_kmem() done");
1485 }
1486 
1487 #ifndef __xpv
1488 /*
1489  * If we have detected that we are running in an HVM environment, we need
1490  * to prepend the PV driver directory to the module search path.
1491  */
1492 #define	HVM_MOD_DIR "/platform/i86hvm/kernel"
1493 static void
1494 update_default_path()
1495 {
1496 	char *current, *newpath;
1497 	int newlen;
1498 
1499 	/*
1500 	 * We are about to resync with krtld.  krtld will reset its
1501 	 * internal module search path iff Solaris has set default_path.
1502 	 * We want to be sure we're prepending this new directory to the
1503 	 * right search path.
1504 	 */
1505 	current = (default_path == NULL) ? kobj_module_path : default_path;
1506 
1507 	newlen = strlen(HVM_MOD_DIR) + strlen(current) + 2;
1508 	newpath = kmem_alloc(newlen, KM_SLEEP);
1509 	(void) strcpy(newpath, HVM_MOD_DIR);
1510 	(void) strcat(newpath, " ");
1511 	(void) strcat(newpath, current);
1512 
1513 	default_path = newpath;
1514 }
1515 #endif
1516 
1517 static void
1518 startup_modules(void)
1519 {
1520 	int cnt;
1521 	extern void prom_setup(void);
1522 	int32_t v, h;
1523 	char d[11];
1524 	char *cp;
1525 	cmi_hdl_t hdl;
1526 
1527 	PRM_POINT("startup_modules() starting...");
1528 
1529 #ifndef __xpv
1530 	/*
1531 	 * Initialize ten-micro second timer so that drivers will
1532 	 * not get short changed in their init phase. This was
1533 	 * not getting called until clkinit which, on fast cpu's
1534 	 * caused the drv_usecwait to be way too short.
1535 	 */
1536 	microfind();
1537 
1538 	if ((get_hwenv() & HW_XEN_HVM) != 0)
1539 		update_default_path();
1540 #endif
1541 
1542 	/*
1543 	 * Read the GMT lag from /etc/rtc_config.
1544 	 */
1545 	sgmtl(process_rtc_config_file());
1546 
1547 	/*
1548 	 * Calculate default settings of system parameters based upon
1549 	 * maxusers, yet allow to be overridden via the /etc/system file.
1550 	 */
1551 	param_calc(0);
1552 
1553 	mod_setup();
1554 
1555 	/*
1556 	 * Initialize system parameters.
1557 	 */
1558 	param_init();
1559 
1560 	/*
1561 	 * Initialize the default brands
1562 	 */
1563 	brand_init();
1564 
1565 	/*
1566 	 * maxmem is the amount of physical memory we're playing with.
1567 	 */
1568 	maxmem = physmem;
1569 
1570 	/*
1571 	 * Initialize segment management stuff.
1572 	 */
1573 	seg_init();
1574 
1575 	if (modload("fs", "specfs") == -1)
1576 		halt("Can't load specfs");
1577 
1578 	if (modload("fs", "devfs") == -1)
1579 		halt("Can't load devfs");
1580 
1581 	if (modload("fs", "dev") == -1)
1582 		halt("Can't load dev");
1583 
1584 	if (modload("fs", "procfs") == -1)
1585 		halt("Can't load procfs");
1586 
1587 	(void) modloadonly("sys", "lbl_edition");
1588 
1589 	dispinit();
1590 
1591 	/* Read cluster configuration data. */
1592 	clconf_init();
1593 
1594 #if defined(__xpv)
1595 	(void) ec_init();
1596 	gnttab_init();
1597 	(void) xs_early_init();
1598 #endif /* __xpv */
1599 
1600 	/*
1601 	 * Create a kernel device tree. First, create rootnex and
1602 	 * then invoke bus specific code to probe devices.
1603 	 */
1604 	setup_ddi();
1605 
1606 #ifdef __xpv
1607 	if (DOMAIN_IS_INITDOMAIN(xen_info))
1608 #endif
1609 	{
1610 		/*
1611 		 * Load the System Management BIOS into the global ksmbios
1612 		 * handle, if an SMBIOS is present on this system.
1613 		 */
1614 		ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL);
1615 	}
1616 
1617 
1618 	/*
1619 	 * Originally clconf_init() apparently needed the hostid.  But
1620 	 * this no longer appears to be true - it uses its own nodeid.
1621 	 * By placing the hostid logic here, we are able to make use of
1622 	 * the SMBIOS UUID.
1623 	 */
1624 	if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) {
1625 		cmn_err(CE_WARN, "Unable to set hostid");
1626 	} else {
1627 		for (v = h, cnt = 0; cnt < 10; cnt++) {
1628 			d[cnt] = (char)(v % 10);
1629 			v /= 10;
1630 			if (v == 0)
1631 				break;
1632 		}
1633 		for (cp = hw_serial; cnt >= 0; cnt--)
1634 			*cp++ = d[cnt] + '0';
1635 		*cp = 0;
1636 	}
1637 
1638 	/*
1639 	 * Set up the CPU module subsystem for the boot cpu in the native
1640 	 * case, and all physical cpu resource in the xpv dom0 case.
1641 	 * Modifies the device tree, so this must be done after
1642 	 * setup_ddi().
1643 	 */
1644 #ifdef __xpv
1645 	/*
1646 	 * If paravirtualized and on dom0 then we initialize all physical
1647 	 * cpu handles now;  if paravirtualized on a domU then do not
1648 	 * initialize.
1649 	 */
1650 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1651 		xen_mc_lcpu_cookie_t cpi;
1652 
1653 		for (cpi = xen_physcpu_next(NULL); cpi != NULL;
1654 		    cpi = xen_physcpu_next(cpi)) {
1655 			if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA,
1656 			    xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi),
1657 			    xen_physcpu_strandid(cpi))) != NULL &&
1658 			    is_x86_feature(x86_featureset, X86FSET_MCA))
1659 				cmi_mca_init(hdl);
1660 		}
1661 	}
1662 #else
1663 	/*
1664 	 * Initialize a handle for the boot cpu - others will initialize
1665 	 * as they startup.  Do not do this if we know we are in an HVM domU.
1666 	 */
1667 	if ((get_hwenv() & HW_XEN_HVM) == 0 &&
1668 	    (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1669 	    cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL &&
1670 	    is_x86_feature(x86_featureset, X86FSET_MCA)) {
1671 			cmi_mca_init(hdl);
1672 			CPU->cpu_m.mcpu_cmi_hdl = hdl;
1673 	}
1674 #endif	/* __xpv */
1675 
1676 	/*
1677 	 * Fake a prom tree such that /dev/openprom continues to work
1678 	 */
1679 	PRM_POINT("startup_modules: calling prom_setup...");
1680 	prom_setup();
1681 	PRM_POINT("startup_modules: done");
1682 
1683 	/*
1684 	 * Load all platform specific modules
1685 	 */
1686 	PRM_POINT("startup_modules: calling psm_modload...");
1687 	psm_modload();
1688 
1689 	PRM_POINT("startup_modules() done");
1690 }
1691 
1692 /*
1693  * claim a "setaside" boot page for use in the kernel
1694  */
1695 page_t *
1696 boot_claim_page(pfn_t pfn)
1697 {
1698 	page_t *pp;
1699 
1700 	pp = page_numtopp_nolock(pfn);
1701 	ASSERT(pp != NULL);
1702 
1703 	if (PP_ISBOOTPAGES(pp)) {
1704 		if (pp->p_next != NULL)
1705 			pp->p_next->p_prev = pp->p_prev;
1706 		if (pp->p_prev == NULL)
1707 			bootpages = pp->p_next;
1708 		else
1709 			pp->p_prev->p_next = pp->p_next;
1710 	} else {
1711 		/*
1712 		 * htable_attach() expects a base pagesize page
1713 		 */
1714 		if (pp->p_szc != 0)
1715 			page_boot_demote(pp);
1716 		pp = page_numtopp(pfn, SE_EXCL);
1717 	}
1718 	return (pp);
1719 }
1720 
1721 /*
1722  * Walk through the pagetables looking for pages mapped in by boot.  If the
1723  * setaside flag is set the pages are expected to be returned to the
1724  * kernel later in boot, so we add them to the bootpages list.
1725  */
1726 static void
1727 protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
1728 {
1729 	uintptr_t va = low;
1730 	size_t len;
1731 	uint_t prot;
1732 	pfn_t pfn;
1733 	page_t *pp;
1734 	pgcnt_t boot_protect_cnt = 0;
1735 
1736 	while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
1737 		if (va + len >= high)
1738 			panic("0x%lx byte mapping at 0x%p exceeds boot's "
1739 			    "legal range.", len, (void *)va);
1740 
1741 		while (len > 0) {
1742 			pp = page_numtopp_alloc(pfn);
1743 			if (pp != NULL) {
1744 				if (setaside == 0)
1745 					panic("Unexpected mapping by boot.  "
1746 					    "addr=%p pfn=%lx\n",
1747 					    (void *)va, pfn);
1748 
1749 				pp->p_next = bootpages;
1750 				pp->p_prev = NULL;
1751 				PP_SETBOOTPAGES(pp);
1752 				if (bootpages != NULL) {
1753 					bootpages->p_prev = pp;
1754 				}
1755 				bootpages = pp;
1756 				++boot_protect_cnt;
1757 			}
1758 
1759 			++pfn;
1760 			len -= MMU_PAGESIZE;
1761 			va += MMU_PAGESIZE;
1762 		}
1763 	}
1764 	PRM_DEBUG(boot_protect_cnt);
1765 }
1766 
1767 /*
1768  *
1769  */
1770 static void
1771 layout_kernel_va(void)
1772 {
1773 	PRM_POINT("layout_kernel_va() starting...");
1774 	/*
1775 	 * Establish the final size of the kernel's heap, size of segmap,
1776 	 * segkp, etc.
1777 	 */
1778 
1779 #if defined(__amd64)
1780 
1781 	kpm_vbase = (caddr_t)segkpm_base;
1782 	if (physmax + 1 < plat_dr_physmax) {
1783 		kpm_size = ROUND_UP_LPAGE(mmu_ptob(plat_dr_physmax));
1784 	} else {
1785 		kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1));
1786 	}
1787 	if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base)
1788 		panic("not enough room for kpm!");
1789 	PRM_DEBUG(kpm_size);
1790 	PRM_DEBUG(kpm_vbase);
1791 
1792 	/*
1793 	 * By default we create a seg_kp in 64 bit kernels, it's a little
1794 	 * faster to access than embedding it in the heap.
1795 	 */
1796 	segkp_base = (caddr_t)valloc_base + valloc_sz;
1797 	if (!segkp_fromheap) {
1798 		size_t sz = mmu_ptob(segkpsize);
1799 
1800 		/*
1801 		 * determine size of segkp
1802 		 */
1803 		if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) {
1804 			sz = SEGKPDEFSIZE;
1805 			cmn_err(CE_WARN, "!Illegal value for segkpsize. "
1806 			    "segkpsize has been reset to %ld pages",
1807 			    mmu_btop(sz));
1808 		}
1809 		sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem)));
1810 
1811 		segkpsize = mmu_btop(ROUND_UP_LPAGE(sz));
1812 	}
1813 	PRM_DEBUG(segkp_base);
1814 	PRM_DEBUG(segkpsize);
1815 
1816 	/*
1817 	 * segzio is used for ZFS cached data. It uses a distinct VA
1818 	 * segment (from kernel heap) so that we can easily tell not to
1819 	 * include it in kernel crash dumps on 64 bit kernels. The trick is
1820 	 * to give it lots of VA, but not constrain the kernel heap.
1821 	 * We scale the size of segzio linearly with physmem up to
1822 	 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem.
1823 	 */
1824 	segzio_base = segkp_base + mmu_ptob(segkpsize);
1825 	if (segzio_fromheap) {
1826 		segziosize = 0;
1827 	} else {
1828 		size_t physmem_size = mmu_ptob(physmem);
1829 		size_t size = (segziosize == 0) ?
1830 		    physmem_size : mmu_ptob(segziosize);
1831 
1832 		if (size < SEGZIOMINSIZE)
1833 			size = SEGZIOMINSIZE;
1834 		if (size > SEGZIOMAXSIZE) {
1835 			size = SEGZIOMAXSIZE;
1836 			if (physmem_size > size)
1837 				size += (physmem_size - size) / 2;
1838 		}
1839 		segziosize = mmu_btop(ROUND_UP_LPAGE(size));
1840 	}
1841 	PRM_DEBUG(segziosize);
1842 	PRM_DEBUG(segzio_base);
1843 
1844 	/*
1845 	 * Put the range of VA for device mappings next, kmdb knows to not
1846 	 * grep in this range of addresses.
1847 	 */
1848 	toxic_addr =
1849 	    ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize));
1850 	PRM_DEBUG(toxic_addr);
1851 	segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size);
1852 #else /* __i386 */
1853 	segmap_start = ROUND_UP_LPAGE(kernelbase);
1854 #endif /* __i386 */
1855 	PRM_DEBUG(segmap_start);
1856 
1857 	/*
1858 	 * Users can change segmapsize through eeprom. If the variable
1859 	 * is tuned through eeprom, there is no upper bound on the
1860 	 * size of segmap.
1861 	 */
1862 	segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
1863 
1864 #if defined(__i386)
1865 	/*
1866 	 * 32-bit systems don't have segkpm or segkp, so segmap appears at
1867 	 * the bottom of the kernel's address range.  Set aside space for a
1868 	 * small red zone just below the start of segmap.
1869 	 */
1870 	segmap_start += KERNEL_REDZONE_SIZE;
1871 	segmapsize -= KERNEL_REDZONE_SIZE;
1872 #endif
1873 
1874 	PRM_DEBUG(segmap_start);
1875 	PRM_DEBUG(segmapsize);
1876 	kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize);
1877 	PRM_DEBUG(kernelheap);
1878 	PRM_POINT("layout_kernel_va() done...");
1879 }
1880 
1881 /*
1882  * Finish initializing the VM system, now that we are no longer
1883  * relying on the boot time memory allocators.
1884  */
1885 static void
1886 startup_vm(void)
1887 {
1888 	struct segmap_crargs a;
1889 
1890 	extern int use_brk_lpg, use_stk_lpg;
1891 
1892 	PRM_POINT("startup_vm() starting...");
1893 
1894 	/*
1895 	 * Initialize the hat layer.
1896 	 */
1897 	hat_init();
1898 
1899 	/*
1900 	 * Do final allocations of HAT data structures that need to
1901 	 * be allocated before quiescing the boot loader.
1902 	 */
1903 	PRM_POINT("Calling hat_kern_alloc()...");
1904 	hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap);
1905 	PRM_POINT("hat_kern_alloc() done");
1906 
1907 #ifndef __xpv
1908 	/*
1909 	 * Setup Page Attribute Table
1910 	 */
1911 	pat_sync();
1912 #endif
1913 
1914 	/*
1915 	 * The next two loops are done in distinct steps in order
1916 	 * to be sure that any page that is doubly mapped (both above
1917 	 * KERNEL_TEXT and below kernelbase) is dealt with correctly.
1918 	 * Note this may never happen, but it might someday.
1919 	 */
1920 	bootpages = NULL;
1921 	PRM_POINT("Protecting boot pages");
1922 
1923 	/*
1924 	 * Protect any pages mapped above KERNEL_TEXT that somehow have
1925 	 * page_t's. This can only happen if something weird allocated
1926 	 * in this range (like kadb/kmdb).
1927 	 */
1928 	protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
1929 
1930 	/*
1931 	 * Before we can take over memory allocation/mapping from the boot
1932 	 * loader we must remove from our free page lists any boot allocated
1933 	 * pages that stay mapped until release_bootstrap().
1934 	 */
1935 	protect_boot_range(0, kernelbase, 1);
1936 
1937 
1938 	/*
1939 	 * Switch to running on regular HAT (not boot_mmu)
1940 	 */
1941 	PRM_POINT("Calling hat_kern_setup()...");
1942 	hat_kern_setup();
1943 
1944 	/*
1945 	 * It is no longer safe to call BOP_ALLOC(), so make sure we don't.
1946 	 */
1947 	bop_no_more_mem();
1948 
1949 	PRM_POINT("hat_kern_setup() done");
1950 
1951 	hat_cpu_online(CPU);
1952 
1953 	/*
1954 	 * Initialize VM system
1955 	 */
1956 	PRM_POINT("Calling kvm_init()...");
1957 	kvm_init();
1958 	PRM_POINT("kvm_init() done");
1959 
1960 	/*
1961 	 * Tell kmdb that the VM system is now working
1962 	 */
1963 	if (boothowto & RB_DEBUG)
1964 		kdi_dvec_vmready();
1965 
1966 #if defined(__xpv)
1967 	/*
1968 	 * Populate the I/O pool on domain 0
1969 	 */
1970 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1971 		extern long populate_io_pool(void);
1972 		long init_io_pool_cnt;
1973 
1974 		PRM_POINT("Populating reserve I/O page pool");
1975 		init_io_pool_cnt = populate_io_pool();
1976 		PRM_DEBUG(init_io_pool_cnt);
1977 	}
1978 #endif
1979 	/*
1980 	 * Mangle the brand string etc.
1981 	 */
1982 	cpuid_pass3(CPU);
1983 
1984 #if defined(__amd64)
1985 
1986 	/*
1987 	 * Create the device arena for toxic (to dtrace/kmdb) mappings.
1988 	 */
1989 	device_arena = vmem_create("device", (void *)toxic_addr,
1990 	    toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
1991 
1992 #else	/* __i386 */
1993 
1994 	/*
1995 	 * allocate the bit map that tracks toxic pages
1996 	 */
1997 	toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase));
1998 	PRM_DEBUG(toxic_bit_map_len);
1999 	toxic_bit_map =
2000 	    kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP);
2001 	ASSERT(toxic_bit_map != NULL);
2002 	PRM_DEBUG(toxic_bit_map);
2003 
2004 #endif	/* __i386 */
2005 
2006 
2007 	/*
2008 	 * Now that we've got more VA, as well as the ability to allocate from
2009 	 * it, tell the debugger.
2010 	 */
2011 	if (boothowto & RB_DEBUG)
2012 		kdi_dvec_memavail();
2013 
2014 	/*
2015 	 * The following code installs a special page fault handler (#pf)
2016 	 * to work around a pentium bug.
2017 	 */
2018 #if !defined(__amd64) && !defined(__xpv)
2019 	if (x86_type == X86_TYPE_P5) {
2020 		desctbr_t idtr;
2021 		gate_desc_t *newidt;
2022 
2023 		if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL)
2024 			panic("failed to install pentium_pftrap");
2025 
2026 		bcopy(idt0, newidt, NIDT * sizeof (*idt0));
2027 		set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap,
2028 		    KCS_SEL, SDT_SYSIGT, TRP_KPL, 0);
2029 
2030 		(void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE,
2031 		    PROT_READ | PROT_EXEC);
2032 
2033 		CPU->cpu_idt = newidt;
2034 		idtr.dtr_base = (uintptr_t)CPU->cpu_idt;
2035 		idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1;
2036 		wr_idtr(&idtr);
2037 	}
2038 #endif	/* !__amd64 */
2039 
2040 #if !defined(__xpv)
2041 	/*
2042 	 * Map page pfn=0 for drivers, such as kd, that need to pick up
2043 	 * parameters left there by controllers/BIOS.
2044 	 */
2045 	PRM_POINT("setup up p0_va");
2046 	p0_va = i86devmap(0, 1, PROT_READ);
2047 	PRM_DEBUG(p0_va);
2048 #endif
2049 
2050 	cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
2051 	    physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
2052 
2053 	/*
2054 	 * disable automatic large pages for small memory systems or
2055 	 * when the disable flag is set.
2056 	 *
2057 	 * Do not yet consider page sizes larger than 2m/4m.
2058 	 */
2059 	if (!auto_lpg_disable && mmu.max_page_level > 0) {
2060 		max_uheap_lpsize = LEVEL_SIZE(1);
2061 		max_ustack_lpsize = LEVEL_SIZE(1);
2062 		max_privmap_lpsize = LEVEL_SIZE(1);
2063 		max_uidata_lpsize = LEVEL_SIZE(1);
2064 		max_utext_lpsize = LEVEL_SIZE(1);
2065 		max_shm_lpsize = LEVEL_SIZE(1);
2066 	}
2067 	if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 ||
2068 	    auto_lpg_disable) {
2069 		use_brk_lpg = 0;
2070 		use_stk_lpg = 0;
2071 	}
2072 	mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level);
2073 
2074 	PRM_POINT("Calling hat_init_finish()...");
2075 	hat_init_finish();
2076 	PRM_POINT("hat_init_finish() done");
2077 
2078 	/*
2079 	 * Initialize the segkp segment type.
2080 	 */
2081 	rw_enter(&kas.a_lock, RW_WRITER);
2082 	PRM_POINT("Attaching segkp");
2083 	if (segkp_fromheap) {
2084 		segkp->s_as = &kas;
2085 	} else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
2086 	    segkp) < 0) {
2087 		panic("startup: cannot attach segkp");
2088 		/*NOTREACHED*/
2089 	}
2090 	PRM_POINT("Doing segkp_create()");
2091 	if (segkp_create(segkp) != 0) {
2092 		panic("startup: segkp_create failed");
2093 		/*NOTREACHED*/
2094 	}
2095 	PRM_DEBUG(segkp);
2096 	rw_exit(&kas.a_lock);
2097 
2098 	/*
2099 	 * kpm segment
2100 	 */
2101 	segmap_kpm = 0;
2102 	if (kpm_desired) {
2103 		kpm_init();
2104 		kpm_enable = 1;
2105 	}
2106 
2107 	/*
2108 	 * Now create segmap segment.
2109 	 */
2110 	rw_enter(&kas.a_lock, RW_WRITER);
2111 	if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) {
2112 		panic("cannot attach segmap");
2113 		/*NOTREACHED*/
2114 	}
2115 	PRM_DEBUG(segmap);
2116 
2117 	a.prot = PROT_READ | PROT_WRITE;
2118 	a.shmsize = 0;
2119 	a.nfreelist = segmapfreelists;
2120 
2121 	if (segmap_create(segmap, (caddr_t)&a) != 0)
2122 		panic("segmap_create segmap");
2123 	rw_exit(&kas.a_lock);
2124 
2125 	setup_vaddr_for_ppcopy(CPU);
2126 
2127 	segdev_init();
2128 #if defined(__xpv)
2129 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2130 #endif
2131 		pmem_init();
2132 
2133 	PRM_POINT("startup_vm() done");
2134 }
2135 
2136 /*
2137  * Load a tod module for the non-standard tod part found on this system.
2138  */
2139 static void
2140 load_tod_module(char *todmod)
2141 {
2142 	if (modload("tod", todmod) == -1)
2143 		halt("Can't load TOD module");
2144 }
2145 
2146 static void
2147 startup_end(void)
2148 {
2149 	int i;
2150 	extern void setx86isalist(void);
2151 	extern void cpu_event_init(void);
2152 
2153 	PRM_POINT("startup_end() starting...");
2154 
2155 	/*
2156 	 * Perform tasks that get done after most of the VM
2157 	 * initialization has been done but before the clock
2158 	 * and other devices get started.
2159 	 */
2160 	kern_setup1();
2161 
2162 	/*
2163 	 * Perform CPC initialization for this CPU.
2164 	 */
2165 	kcpc_hw_init(CPU);
2166 
2167 	/*
2168 	 * Initialize cpu event framework.
2169 	 */
2170 	cpu_event_init();
2171 
2172 #if defined(OPTERON_WORKAROUND_6323525)
2173 	if (opteron_workaround_6323525)
2174 		patch_workaround_6323525();
2175 #endif
2176 	/*
2177 	 * If needed, load TOD module now so that ddi_get_time(9F) etc. work
2178 	 * (For now, "needed" is defined as set tod_module_name in /etc/system)
2179 	 */
2180 	if (tod_module_name != NULL) {
2181 		PRM_POINT("load_tod_module()");
2182 		load_tod_module(tod_module_name);
2183 	}
2184 
2185 #if defined(__xpv)
2186 	/*
2187 	 * Forceload interposing TOD module for the hypervisor.
2188 	 */
2189 	PRM_POINT("load_tod_module()");
2190 	load_tod_module("xpvtod");
2191 #endif
2192 
2193 	/*
2194 	 * Configure the system.
2195 	 */
2196 	PRM_POINT("Calling configure()...");
2197 	configure();		/* set up devices */
2198 	PRM_POINT("configure() done");
2199 
2200 	/*
2201 	 * We can now setup for XSAVE because fpu_probe is done in configure().
2202 	 */
2203 	if (fp_save_mech == FP_XSAVE) {
2204 		xsave_setup_msr(CPU);
2205 	}
2206 
2207 	/*
2208 	 * Set the isa_list string to the defined instruction sets we
2209 	 * support.
2210 	 */
2211 	setx86isalist();
2212 	cpu_intr_alloc(CPU, NINTR_THREADS);
2213 	psm_install();
2214 
2215 	/*
2216 	 * We're done with bootops.  We don't unmap the bootstrap yet because
2217 	 * we're still using bootsvcs.
2218 	 */
2219 	PRM_POINT("NULLing out bootops");
2220 	*bootopsp = (struct bootops *)NULL;
2221 	bootops = (struct bootops *)NULL;
2222 
2223 #if defined(__xpv)
2224 	ec_init_debug_irq();
2225 	xs_domu_init();
2226 #endif
2227 
2228 #if defined(__amd64) && !defined(__xpv)
2229 	/*
2230 	 * Intel IOMMU has been setup/initialized in ddi_impl.c
2231 	 * Start it up now.
2232 	 */
2233 	immu_startup();
2234 #endif
2235 
2236 	PRM_POINT("Enabling interrupts");
2237 	(*picinitf)();
2238 	sti();
2239 #if defined(__xpv)
2240 	ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0);
2241 	xen_late_startup();
2242 #endif
2243 
2244 	(void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
2245 	    "softlevel1", NULL, NULL); /* XXX to be moved later */
2246 
2247 	/*
2248 	 * Register software interrupt handlers for ddi_periodic_add(9F).
2249 	 * Software interrupts up to the level 10 are supported.
2250 	 */
2251 	for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
2252 		(void) add_avsoftintr((void *)&softlevel_hdl[i-1], i,
2253 		    (avfunc)ddi_periodic_softintr, "ddi_periodic",
2254 		    (caddr_t)(uintptr_t)i, NULL);
2255 	}
2256 
2257 #if !defined(__xpv)
2258 	if (modload("drv", "amd_iommu") < 0) {
2259 		PRM_POINT("No AMD IOMMU present\n");
2260 	} else if (ddi_hold_installed_driver(ddi_name_to_major(
2261 	    "amd_iommu")) == NULL) {
2262 		prom_printf("ERROR: failed to attach AMD IOMMU\n");
2263 	}
2264 #endif
2265 	post_startup_cpu_fixups();
2266 
2267 	PRM_POINT("startup_end() done");
2268 }
2269 
2270 /*
2271  * Don't remove the following 2 variables.  They are necessary
2272  * for reading the hostid from the legacy file (/kernel/misc/sysinit).
2273  */
2274 char *_hs1107 = hw_serial;
2275 ulong_t  _bdhs34;
2276 
2277 void
2278 post_startup(void)
2279 {
2280 	extern void cpupm_init(cpu_t *);
2281 	extern void cpu_event_init_cpu(cpu_t *);
2282 
2283 	/*
2284 	 * Set the system wide, processor-specific flags to be passed
2285 	 * to userland via the aux vector for performance hints and
2286 	 * instruction set extensions.
2287 	 */
2288 	bind_hwcap();
2289 
2290 #ifdef __xpv
2291 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2292 #endif
2293 	{
2294 #if defined(__xpv)
2295 		xpv_panic_init();
2296 #else
2297 		/*
2298 		 * Startup the memory scrubber.
2299 		 * XXPV	This should be running somewhere ..
2300 		 */
2301 		if ((get_hwenv() & HW_VIRTUAL) == 0)
2302 			memscrub_init();
2303 #endif
2304 	}
2305 
2306 	/*
2307 	 * Complete CPU module initialization
2308 	 */
2309 	cmi_post_startup();
2310 
2311 	/*
2312 	 * Perform forceloading tasks for /etc/system.
2313 	 */
2314 	(void) mod_sysctl(SYS_FORCELOAD, NULL);
2315 
2316 	/*
2317 	 * ON4.0: Force /proc module in until clock interrupt handle fixed
2318 	 * ON4.0: This must be fixed or restated in /etc/systems.
2319 	 */
2320 	(void) modload("fs", "procfs");
2321 
2322 	(void) i_ddi_attach_hw_nodes("pit_beep");
2323 
2324 #if defined(__i386)
2325 	/*
2326 	 * Check for required functional Floating Point hardware,
2327 	 * unless FP hardware explicitly disabled.
2328 	 */
2329 	if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO))
2330 		halt("No working FP hardware found");
2331 #endif
2332 
2333 	maxmem = freemem;
2334 
2335 	cpu_event_init_cpu(CPU);
2336 	cpupm_init(CPU);
2337 	(void) mach_cpu_create_device_node(CPU, NULL);
2338 
2339 	pg_init();
2340 }
2341 
2342 static int
2343 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr)
2344 {
2345 	return ((pp->p_pagenum >= btop(low_addr)) &&
2346 	    (pp->p_pagenum < btopr(high_addr)));
2347 }
2348 
2349 void
2350 release_bootstrap(void)
2351 {
2352 	int root_is_ramdisk;
2353 	page_t *pp;
2354 	extern void kobj_boot_unmountroot(void);
2355 	extern dev_t rootdev;
2356 #if !defined(__xpv)
2357 	pfn_t	pfn;
2358 #endif
2359 
2360 	/* unmount boot ramdisk and release kmem usage */
2361 	kobj_boot_unmountroot();
2362 
2363 	/*
2364 	 * We're finished using the boot loader so free its pages.
2365 	 */
2366 	PRM_POINT("Unmapping lower boot pages");
2367 
2368 	clear_boot_mappings(0, _userlimit);
2369 
2370 	postbootkernelbase = kernelbase;
2371 
2372 	/*
2373 	 * If root isn't on ramdisk, destroy the hardcoded
2374 	 * ramdisk node now and release the memory. Else,
2375 	 * ramdisk memory is kept in rd_pages.
2376 	 */
2377 	root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
2378 	if (!root_is_ramdisk) {
2379 		dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
2380 		ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
2381 		ndi_rele_devi(dip);	/* held from ddi_find_devinfo */
2382 		(void) ddi_remove_child(dip, 0);
2383 	}
2384 
2385 	PRM_POINT("Releasing boot pages");
2386 	while (bootpages) {
2387 		extern uint64_t ramdisk_start, ramdisk_end;
2388 		pp = bootpages;
2389 		bootpages = pp->p_next;
2390 
2391 
2392 		/* Keep pages for the lower 64K */
2393 		if (pp_in_range(pp, 0, 0x40000)) {
2394 			pp->p_next = lower_pages;
2395 			lower_pages = pp;
2396 			lower_pages_count++;
2397 			continue;
2398 		}
2399 
2400 
2401 		if (root_is_ramdisk && pp_in_range(pp, ramdisk_start,
2402 		    ramdisk_end)) {
2403 			pp->p_next = rd_pages;
2404 			rd_pages = pp;
2405 			continue;
2406 		}
2407 		pp->p_next = (struct page *)0;
2408 		pp->p_prev = (struct page *)0;
2409 		PP_CLRBOOTPAGES(pp);
2410 		page_free(pp, 1);
2411 	}
2412 	PRM_POINT("Boot pages released");
2413 
2414 #if !defined(__xpv)
2415 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */
2416 	/*
2417 	 * Find 1 page below 1 MB so that other processors can boot up or
2418 	 * so that any processor can resume.
2419 	 * Make sure it has a kernel VA as well as a 1:1 mapping.
2420 	 * We should have just free'd one up.
2421 	 */
2422 
2423 	/*
2424 	 * 0x10 pages is 64K.  Leave the bottom 64K alone
2425 	 * for BIOS.
2426 	 */
2427 	for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) {
2428 		if (page_numtopp_alloc(pfn) == NULL)
2429 			continue;
2430 		rm_platter_va = i86devmap(pfn, 1,
2431 		    PROT_READ | PROT_WRITE | PROT_EXEC);
2432 		rm_platter_pa = ptob(pfn);
2433 		break;
2434 	}
2435 	if (pfn == btop(1*1024*1024) && use_mp)
2436 		panic("No page below 1M available for starting "
2437 		    "other processors or for resuming from system-suspend");
2438 #endif	/* !__xpv */
2439 }
2440 
2441 /*
2442  * Initialize the platform-specific parts of a page_t.
2443  */
2444 void
2445 add_physmem_cb(page_t *pp, pfn_t pnum)
2446 {
2447 	pp->p_pagenum = pnum;
2448 	pp->p_mapping = NULL;
2449 	pp->p_embed = 0;
2450 	pp->p_share = 0;
2451 	pp->p_mlentry = 0;
2452 }
2453 
2454 /*
2455  * kphysm_init() initializes physical memory.
2456  */
2457 static pgcnt_t
2458 kphysm_init(
2459 	page_t *pp,
2460 	pgcnt_t npages)
2461 {
2462 	struct memlist	*pmem;
2463 	struct memseg	*cur_memseg;
2464 	pfn_t		base_pfn;
2465 	pfn_t		end_pfn;
2466 	pgcnt_t		num;
2467 	pgcnt_t		pages_done = 0;
2468 	uint64_t	addr;
2469 	uint64_t	size;
2470 	extern pfn_t	ddiphysmin;
2471 	extern int	mnode_xwa;
2472 	int		ms = 0, me = 0;
2473 
2474 	ASSERT(page_hash != NULL && page_hashsz != 0);
2475 
2476 	cur_memseg = memseg_base;
2477 	for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) {
2478 		/*
2479 		 * In a 32 bit kernel can't use higher memory if we're
2480 		 * not booting in PAE mode. This check takes care of that.
2481 		 */
2482 		addr = pmem->ml_address;
2483 		size = pmem->ml_size;
2484 		if (btop(addr) > physmax)
2485 			continue;
2486 
2487 		/*
2488 		 * align addr and size - they may not be at page boundaries
2489 		 */
2490 		if ((addr & MMU_PAGEOFFSET) != 0) {
2491 			addr += MMU_PAGEOFFSET;
2492 			addr &= ~(uint64_t)MMU_PAGEOFFSET;
2493 			size -= addr - pmem->ml_address;
2494 		}
2495 
2496 		/* only process pages below or equal to physmax */
2497 		if ((btop(addr + size) - 1) > physmax)
2498 			size = ptob(physmax - btop(addr) + 1);
2499 
2500 		num = btop(size);
2501 		if (num == 0)
2502 			continue;
2503 
2504 		if (num > npages)
2505 			num = npages;
2506 
2507 		npages -= num;
2508 		pages_done += num;
2509 		base_pfn = btop(addr);
2510 
2511 		if (prom_debug)
2512 			prom_printf("MEMSEG addr=0x%" PRIx64
2513 			    " pgs=0x%lx pfn 0x%lx-0x%lx\n",
2514 			    addr, num, base_pfn, base_pfn + num);
2515 
2516 		/*
2517 		 * Ignore pages below ddiphysmin to simplify ddi memory
2518 		 * allocation with non-zero addr_lo requests.
2519 		 */
2520 		if (base_pfn < ddiphysmin) {
2521 			if (base_pfn + num <= ddiphysmin)
2522 				continue;
2523 			pp += (ddiphysmin - base_pfn);
2524 			num -= (ddiphysmin - base_pfn);
2525 			base_pfn = ddiphysmin;
2526 		}
2527 
2528 		/*
2529 		 * mnode_xwa is greater than 1 when large pages regions can
2530 		 * cross memory node boundaries. To prevent the formation
2531 		 * of these large pages, configure the memsegs based on the
2532 		 * memory node ranges which had been made non-contiguous.
2533 		 */
2534 		if (mnode_xwa > 1) {
2535 
2536 			end_pfn = base_pfn + num - 1;
2537 			ms = PFN_2_MEM_NODE(base_pfn);
2538 			me = PFN_2_MEM_NODE(end_pfn);
2539 
2540 			if (ms != me) {
2541 				/*
2542 				 * current range spans more than 1 memory node.
2543 				 * Set num to only the pfn range in the start
2544 				 * memory node.
2545 				 */
2546 				num = mem_node_config[ms].physmax - base_pfn
2547 				    + 1;
2548 				ASSERT(end_pfn > mem_node_config[ms].physmax);
2549 			}
2550 		}
2551 
2552 		for (;;) {
2553 			/*
2554 			 * Build the memsegs entry
2555 			 */
2556 			cur_memseg->pages = pp;
2557 			cur_memseg->epages = pp + num;
2558 			cur_memseg->pages_base = base_pfn;
2559 			cur_memseg->pages_end = base_pfn + num;
2560 
2561 			/*
2562 			 * Insert into memseg list in decreasing pfn range
2563 			 * order. Low memory is typically more fragmented such
2564 			 * that this ordering keeps the larger ranges at the
2565 			 * front of the list for code that searches memseg.
2566 			 * This ASSERTS that the memsegs coming in from boot
2567 			 * are in increasing physical address order and not
2568 			 * contiguous.
2569 			 */
2570 			if (memsegs != NULL) {
2571 				ASSERT(cur_memseg->pages_base >=
2572 				    memsegs->pages_end);
2573 				cur_memseg->next = memsegs;
2574 			}
2575 			memsegs = cur_memseg;
2576 
2577 			/*
2578 			 * add_physmem() initializes the PSM part of the page
2579 			 * struct by calling the PSM back with add_physmem_cb().
2580 			 * In addition it coalesces pages into larger pages as
2581 			 * it initializes them.
2582 			 */
2583 			add_physmem(pp, num, base_pfn);
2584 			cur_memseg++;
2585 			availrmem_initial += num;
2586 			availrmem += num;
2587 
2588 			pp += num;
2589 			if (ms >= me)
2590 				break;
2591 
2592 			/* process next memory node range */
2593 			ms++;
2594 			base_pfn = mem_node_config[ms].physbase;
2595 			num = MIN(mem_node_config[ms].physmax,
2596 			    end_pfn) - base_pfn + 1;
2597 		}
2598 	}
2599 
2600 	PRM_DEBUG(availrmem_initial);
2601 	PRM_DEBUG(availrmem);
2602 	PRM_DEBUG(freemem);
2603 	build_pfn_hash();
2604 	return (pages_done);
2605 }
2606 
2607 /*
2608  * Kernel VM initialization.
2609  */
2610 static void
2611 kvm_init(void)
2612 {
2613 	ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
2614 
2615 	/*
2616 	 * Put the kernel segments in kernel address space.
2617 	 */
2618 	rw_enter(&kas.a_lock, RW_WRITER);
2619 	as_avlinit(&kas);
2620 
2621 	(void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
2622 	(void) segkmem_create(&ktextseg);
2623 
2624 	(void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
2625 	(void) segkmem_create(&kvalloc);
2626 
2627 	(void) seg_attach(&kas, kernelheap,
2628 	    ekernelheap - kernelheap, &kvseg);
2629 	(void) segkmem_create(&kvseg);
2630 
2631 	if (core_size > 0) {
2632 		PRM_POINT("attaching kvseg_core");
2633 		(void) seg_attach(&kas, (caddr_t)core_base, core_size,
2634 		    &kvseg_core);
2635 		(void) segkmem_create(&kvseg_core);
2636 	}
2637 
2638 	if (segziosize > 0) {
2639 		PRM_POINT("attaching segzio");
2640 		(void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2641 		    &kzioseg);
2642 		(void) segkmem_zio_create(&kzioseg);
2643 
2644 		/* create zio area covering new segment */
2645 		segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2646 	}
2647 
2648 	(void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2649 	(void) segkmem_create(&kdebugseg);
2650 
2651 	rw_exit(&kas.a_lock);
2652 
2653 	/*
2654 	 * Ensure that the red zone at kernelbase is never accessible.
2655 	 */
2656 	PRM_POINT("protecting redzone");
2657 	(void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
2658 
2659 	/*
2660 	 * Make the text writable so that it can be hot patched by DTrace.
2661 	 */
2662 	(void) as_setprot(&kas, s_text, e_modtext - s_text,
2663 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2664 
2665 	/*
2666 	 * Make data writable until end.
2667 	 */
2668 	(void) as_setprot(&kas, s_data, e_moddata - s_data,
2669 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2670 }
2671 
2672 #ifndef __xpv
2673 /*
2674  * Solaris adds an entry for Write Combining caching to the PAT
2675  */
2676 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
2677 
2678 void
2679 pat_sync(void)
2680 {
2681 	ulong_t	cr0, cr0_orig, cr4;
2682 
2683 	if (!is_x86_feature(x86_featureset, X86FSET_PAT))
2684 		return;
2685 	cr0_orig = cr0 = getcr0();
2686 	cr4 = getcr4();
2687 
2688 	/* disable caching and flush all caches and TLBs */
2689 	cr0 |= CR0_CD;
2690 	cr0 &= ~CR0_NW;
2691 	setcr0(cr0);
2692 	invalidate_cache();
2693 	if (cr4 & CR4_PGE) {
2694 		setcr4(cr4 & ~(ulong_t)CR4_PGE);
2695 		setcr4(cr4);
2696 	} else {
2697 		reload_cr3();
2698 	}
2699 
2700 	/* add our entry to the PAT */
2701 	wrmsr(REG_PAT, pat_attr_reg);
2702 
2703 	/* flush TLBs and cache again, then reenable cr0 caching */
2704 	if (cr4 & CR4_PGE) {
2705 		setcr4(cr4 & ~(ulong_t)CR4_PGE);
2706 		setcr4(cr4);
2707 	} else {
2708 		reload_cr3();
2709 	}
2710 	invalidate_cache();
2711 	setcr0(cr0_orig);
2712 }
2713 
2714 #endif /* !__xpv */
2715 
2716 #if defined(_SOFT_HOSTID)
2717 /*
2718  * On platforms that do not have a hardware serial number, attempt
2719  * to set one based on the contents of /etc/hostid.  If this file does
2720  * not exist, assume that we are to generate a new hostid and set
2721  * it in the kernel, for subsequent saving by a userland process
2722  * once the system is up and the root filesystem is mounted r/w.
2723  *
2724  * In order to gracefully support upgrade on OpenSolaris, if
2725  * /etc/hostid does not exist, we will attempt to get a serial number
2726  * using the legacy method (/kernel/misc/sysinit).
2727  *
2728  * If that isn't present, we attempt to use an SMBIOS UUID, which is
2729  * a hardware serial number.  Note that we don't automatically trust
2730  * all SMBIOS UUIDs (some older platforms are defective and ship duplicate
2731  * UUIDs in violation of the standard), we check against a blacklist.
2732  *
2733  * In an attempt to make the hostid less prone to abuse
2734  * (for license circumvention, etc), we store it in /etc/hostid
2735  * in rot47 format.
2736  */
2737 extern volatile unsigned long tenmicrodata;
2738 static int atoi(char *);
2739 
2740 /*
2741  * Set this to non-zero in /etc/system if you think your SMBIOS returns a
2742  * UUID that is not unique. (Also report it so that the smbios_uuid_blacklist
2743  * array can be updated.)
2744  */
2745 int smbios_broken_uuid = 0;
2746 
2747 /*
2748  * List of known bad UUIDs.  This is just the lower 32-bit values, since
2749  * that's what we use for the host id.  If your hostid falls here, you need
2750  * to contact your hardware OEM for a fix for your BIOS.
2751  */
2752 static unsigned char
2753 smbios_uuid_blacklist[][16] = {
2754 
2755 	{	/* Reported bad UUID (Google search) */
2756 		0x00, 0x02, 0x00, 0x03, 0x00, 0x04, 0x00, 0x05,
2757 		0x00, 0x06, 0x00, 0x07, 0x00, 0x08, 0x00, 0x09,
2758 	},
2759 	{	/* Known bad DELL UUID */
2760 		0x4C, 0x4C, 0x45, 0x44, 0x00, 0x00, 0x20, 0x10,
2761 		0x80, 0x20, 0x80, 0xC0, 0x4F, 0x20, 0x20, 0x20,
2762 	},
2763 	{	/* Uninitialized flash */
2764 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
2765 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2766 	},
2767 	{	/* All zeros */
2768 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2769 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
2770 	},
2771 };
2772 
2773 static int32_t
2774 uuid_to_hostid(const uint8_t *uuid)
2775 {
2776 	/*
2777 	 * Although the UUIDs are 128-bits, they may not distribute entropy
2778 	 * evenly.  We would like to use SHA or MD5, but those are located
2779 	 * in loadable modules and not available this early in boot.  As we
2780 	 * don't need the values to be cryptographically strong, we just
2781 	 * generate 32-bit vaue by xor'ing the various sequences together,
2782 	 * which ensures that the entire UUID contributes to the hostid.
2783 	 */
2784 	uint32_t	id = 0;
2785 
2786 	/* first check against the blacklist */
2787 	for (int i = 0; i < (sizeof (smbios_uuid_blacklist) / 16); i++) {
2788 		if (bcmp(smbios_uuid_blacklist[0], uuid, 16) == 0) {
2789 			cmn_err(CE_CONT, "?Broken SMBIOS UUID. "
2790 			    "Contact BIOS manufacturer for repair.\n");
2791 			return ((int32_t)HW_INVALID_HOSTID);
2792 		}
2793 	}
2794 
2795 	for (int i = 0; i < 16; i++)
2796 		id ^= ((uuid[i]) << (8 * (i % sizeof (id))));
2797 
2798 	/* Make sure return value is positive */
2799 	return (id & 0x7fffffff);
2800 }
2801 
2802 static int32_t
2803 set_soft_hostid(void)
2804 {
2805 	struct _buf *file;
2806 	char tokbuf[MAXNAMELEN];
2807 	token_t token;
2808 	int done = 0;
2809 	u_longlong_t tmp;
2810 	int i;
2811 	int32_t hostid = (int32_t)HW_INVALID_HOSTID;
2812 	unsigned char *c;
2813 	hrtime_t tsc;
2814 	smbios_system_t smsys;
2815 
2816 	/*
2817 	 * If /etc/hostid file not found, we'd like to get a pseudo
2818 	 * random number to use at the hostid.  A nice way to do this
2819 	 * is to read the real time clock.  To remain xen-compatible,
2820 	 * we can't poke the real hardware, so we use tsc_read() to
2821 	 * read the real time clock.  However, there is an ominous
2822 	 * warning in tsc_read that says it can return zero, so we
2823 	 * deal with that possibility by falling back to using the
2824 	 * (hopefully random enough) value in tenmicrodata.
2825 	 */
2826 
2827 	if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) {
2828 		/*
2829 		 * hostid file not found - try to load sysinit module
2830 		 * and see if it has a nonzero hostid value...use that
2831 		 * instead of generating a new hostid here if so.
2832 		 */
2833 		if ((i = modload("misc", "sysinit")) != -1) {
2834 			if (strlen(hw_serial) > 0)
2835 				hostid = (int32_t)atoi(hw_serial);
2836 			(void) modunload(i);
2837 		}
2838 
2839 		/*
2840 		 * We try to use the SMBIOS UUID. But not if it is blacklisted
2841 		 * in /etc/system.
2842 		 */
2843 		if ((hostid == HW_INVALID_HOSTID) &&
2844 		    (smbios_broken_uuid == 0) &&
2845 		    (ksmbios != NULL) &&
2846 		    (smbios_info_system(ksmbios, &smsys) != SMB_ERR) &&
2847 		    (smsys.smbs_uuidlen >= 16)) {
2848 			hostid = uuid_to_hostid(smsys.smbs_uuid);
2849 		}
2850 
2851 		/*
2852 		 * Generate a "random" hostid using the clock.  These
2853 		 * hostids will change on each boot if the value is not
2854 		 * saved to a persistent /etc/hostid file.
2855 		 */
2856 		if (hostid == HW_INVALID_HOSTID) {
2857 			tsc = tsc_read();
2858 			if (tsc == 0)	/* tsc_read can return zero sometimes */
2859 				hostid = (int32_t)tenmicrodata & 0x0CFFFFF;
2860 			else
2861 				hostid = (int32_t)tsc & 0x0CFFFFF;
2862 		}
2863 	} else {
2864 		/* hostid file found */
2865 		while (!done) {
2866 			token = kobj_lex(file, tokbuf, sizeof (tokbuf));
2867 
2868 			switch (token) {
2869 			case POUND:
2870 				/*
2871 				 * skip comments
2872 				 */
2873 				kobj_find_eol(file);
2874 				break;
2875 			case STRING:
2876 				/*
2877 				 * un-rot47 - obviously this
2878 				 * nonsense is ascii-specific
2879 				 */
2880 				for (c = (unsigned char *)tokbuf;
2881 				    *c != '\0'; c++) {
2882 					*c += 47;
2883 					if (*c > '~')
2884 						*c -= 94;
2885 					else if (*c < '!')
2886 						*c += 94;
2887 				}
2888 				/*
2889 				 * now we should have a real number
2890 				 */
2891 
2892 				if (kobj_getvalue(tokbuf, &tmp) != 0)
2893 					kobj_file_err(CE_WARN, file,
2894 					    "Bad value %s for hostid",
2895 					    tokbuf);
2896 				else
2897 					hostid = (int32_t)tmp;
2898 
2899 				break;
2900 			case EOF:
2901 				done = 1;
2902 				/* FALLTHROUGH */
2903 			case NEWLINE:
2904 				kobj_newline(file);
2905 				break;
2906 			default:
2907 				break;
2908 
2909 			}
2910 		}
2911 		if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */
2912 			kobj_file_err(CE_WARN, file,
2913 			    "hostid missing or corrupt");
2914 
2915 		kobj_close_file(file);
2916 	}
2917 	/*
2918 	 * hostid is now the value read from /etc/hostid, or the
2919 	 * new hostid we generated in this routine or HW_INVALID_HOSTID if not
2920 	 * set.
2921 	 */
2922 	return (hostid);
2923 }
2924 
2925 static int
2926 atoi(char *p)
2927 {
2928 	int i = 0;
2929 
2930 	while (*p != '\0')
2931 		i = 10 * i + (*p++ - '0');
2932 
2933 	return (i);
2934 }
2935 
2936 #endif /* _SOFT_HOSTID */
2937 
2938 void
2939 get_system_configuration(void)
2940 {
2941 	char	prop[32];
2942 	u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
2943 
2944 	if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) ||
2945 	    BOP_GETPROP(bootops, "nodes", prop) < 0 ||
2946 	    kobj_getvalue(prop, &nodes_ll) == -1 ||
2947 	    nodes_ll > MAXNODES ||
2948 	    BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) ||
2949 	    BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 ||
2950 	    kobj_getvalue(prop, &cpus_pernode_ll) == -1) {
2951 		system_hardware.hd_nodes = 1;
2952 		system_hardware.hd_cpus_per_node = 0;
2953 	} else {
2954 		system_hardware.hd_nodes = (int)nodes_ll;
2955 		system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
2956 	}
2957 
2958 	if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) ||
2959 	    BOP_GETPROP(bootops, "kernelbase", prop) < 0 ||
2960 	    kobj_getvalue(prop, &lvalue) == -1)
2961 		eprom_kernelbase = NULL;
2962 	else
2963 		eprom_kernelbase = (uintptr_t)lvalue;
2964 
2965 	if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) ||
2966 	    BOP_GETPROP(bootops, "segmapsize", prop) < 0 ||
2967 	    kobj_getvalue(prop, &lvalue) == -1)
2968 		segmapsize = SEGMAPDEFAULT;
2969 	else
2970 		segmapsize = (uintptr_t)lvalue;
2971 
2972 	if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) ||
2973 	    BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 ||
2974 	    kobj_getvalue(prop, &lvalue) == -1)
2975 		segmapfreelists = 0;	/* use segmap driver default */
2976 	else
2977 		segmapfreelists = (int)lvalue;
2978 
2979 	/* physmem used to be here, but moved much earlier to fakebop.c */
2980 }
2981 
2982 /*
2983  * Add to a memory list.
2984  * start = start of new memory segment
2985  * len = length of new memory segment in bytes
2986  * new = pointer to a new struct memlist
2987  * memlistp = memory list to which to add segment.
2988  */
2989 void
2990 memlist_add(
2991 	uint64_t start,
2992 	uint64_t len,
2993 	struct memlist *new,
2994 	struct memlist **memlistp)
2995 {
2996 	struct memlist *cur;
2997 	uint64_t end = start + len;
2998 
2999 	new->ml_address = start;
3000 	new->ml_size = len;
3001 
3002 	cur = *memlistp;
3003 
3004 	while (cur) {
3005 		if (cur->ml_address >= end) {
3006 			new->ml_next = cur;
3007 			*memlistp = new;
3008 			new->ml_prev = cur->ml_prev;
3009 			cur->ml_prev = new;
3010 			return;
3011 		}
3012 		ASSERT(cur->ml_address + cur->ml_size <= start);
3013 		if (cur->ml_next == NULL) {
3014 			cur->ml_next = new;
3015 			new->ml_prev = cur;
3016 			new->ml_next = NULL;
3017 			return;
3018 		}
3019 		memlistp = &cur->ml_next;
3020 		cur = cur->ml_next;
3021 	}
3022 }
3023 
3024 void
3025 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3026 {
3027 	size_t tsize = e_modtext - modtext;
3028 	size_t dsize = e_moddata - moddata;
3029 
3030 	*text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
3031 	    1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
3032 	*data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
3033 	    1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3034 }
3035 
3036 caddr_t
3037 kobj_text_alloc(vmem_t *arena, size_t size)
3038 {
3039 	return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
3040 }
3041 
3042 /*ARGSUSED*/
3043 caddr_t
3044 kobj_texthole_alloc(caddr_t addr, size_t size)
3045 {
3046 	panic("unexpected call to kobj_texthole_alloc()");
3047 	/*NOTREACHED*/
3048 	return (0);
3049 }
3050 
3051 /*ARGSUSED*/
3052 void
3053 kobj_texthole_free(caddr_t addr, size_t size)
3054 {
3055 	panic("unexpected call to kobj_texthole_free()");
3056 }
3057 
3058 /*
3059  * This is called just after configure() in startup().
3060  *
3061  * The ISALIST concept is a bit hopeless on Intel, because
3062  * there's no guarantee of an ever-more-capable processor
3063  * given that various parts of the instruction set may appear
3064  * and disappear between different implementations.
3065  *
3066  * While it would be possible to correct it and even enhance
3067  * it somewhat, the explicit hardware capability bitmask allows
3068  * more flexibility.
3069  *
3070  * So, we just leave this alone.
3071  */
3072 void
3073 setx86isalist(void)
3074 {
3075 	char *tp;
3076 	size_t len;
3077 	extern char *isa_list;
3078 
3079 #define	TBUFSIZE	1024
3080 
3081 	tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
3082 	*tp = '\0';
3083 
3084 #if defined(__amd64)
3085 	(void) strcpy(tp, "amd64 ");
3086 #endif
3087 
3088 	switch (x86_vendor) {
3089 	case X86_VENDOR_Intel:
3090 	case X86_VENDOR_AMD:
3091 	case X86_VENDOR_TM:
3092 		if (is_x86_feature(x86_featureset, X86FSET_CMOV)) {
3093 			/*
3094 			 * Pentium Pro or later
3095 			 */
3096 			(void) strcat(tp, "pentium_pro");
3097 			(void) strcat(tp,
3098 			    is_x86_feature(x86_featureset, X86FSET_MMX) ?
3099 			    "+mmx pentium_pro " : " ");
3100 		}
3101 		/*FALLTHROUGH*/
3102 	case X86_VENDOR_Cyrix:
3103 		/*
3104 		 * The Cyrix 6x86 does not have any Pentium features
3105 		 * accessible while not at privilege level 0.
3106 		 */
3107 		if (is_x86_feature(x86_featureset, X86FSET_CPUID)) {
3108 			(void) strcat(tp, "pentium");
3109 			(void) strcat(tp,
3110 			    is_x86_feature(x86_featureset, X86FSET_MMX) ?
3111 			    "+mmx pentium " : " ");
3112 		}
3113 		break;
3114 	default:
3115 		break;
3116 	}
3117 	(void) strcat(tp, "i486 i386 i86");
3118 	len = strlen(tp) + 1;   /* account for NULL at end of string */
3119 	isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
3120 	kmem_free(tp, TBUFSIZE);
3121 
3122 #undef TBUFSIZE
3123 }
3124 
3125 
3126 #ifdef __amd64
3127 
3128 void *
3129 device_arena_alloc(size_t size, int vm_flag)
3130 {
3131 	return (vmem_alloc(device_arena, size, vm_flag));
3132 }
3133 
3134 void
3135 device_arena_free(void *vaddr, size_t size)
3136 {
3137 	vmem_free(device_arena, vaddr, size);
3138 }
3139 
3140 #else /* __i386 */
3141 
3142 void *
3143 device_arena_alloc(size_t size, int vm_flag)
3144 {
3145 	caddr_t	vaddr;
3146 	uintptr_t v;
3147 	size_t	start;
3148 	size_t	end;
3149 
3150 	vaddr = vmem_alloc(heap_arena, size, vm_flag);
3151 	if (vaddr == NULL)
3152 		return (NULL);
3153 
3154 	v = (uintptr_t)vaddr;
3155 	ASSERT(v >= kernelbase);
3156 	ASSERT(v + size <= valloc_base);
3157 
3158 	start = btop(v - kernelbase);
3159 	end = btop(v + size - 1 - kernelbase);
3160 	ASSERT(start < toxic_bit_map_len);
3161 	ASSERT(end < toxic_bit_map_len);
3162 
3163 	while (start <= end) {
3164 		BT_ATOMIC_SET(toxic_bit_map, start);
3165 		++start;
3166 	}
3167 	return (vaddr);
3168 }
3169 
3170 void
3171 device_arena_free(void *vaddr, size_t size)
3172 {
3173 	uintptr_t v = (uintptr_t)vaddr;
3174 	size_t	start;
3175 	size_t	end;
3176 
3177 	ASSERT(v >= kernelbase);
3178 	ASSERT(v + size <= valloc_base);
3179 
3180 	start = btop(v - kernelbase);
3181 	end = btop(v + size - 1 - kernelbase);
3182 	ASSERT(start < toxic_bit_map_len);
3183 	ASSERT(end < toxic_bit_map_len);
3184 
3185 	while (start <= end) {
3186 		ASSERT(BT_TEST(toxic_bit_map, start) != 0);
3187 		BT_ATOMIC_CLEAR(toxic_bit_map, start);
3188 		++start;
3189 	}
3190 	vmem_free(heap_arena, vaddr, size);
3191 }
3192 
3193 /*
3194  * returns 1st address in range that is in device arena, or NULL
3195  * if len is not NULL it returns the length of the toxic range
3196  */
3197 void *
3198 device_arena_contains(void *vaddr, size_t size, size_t *len)
3199 {
3200 	uintptr_t v = (uintptr_t)vaddr;
3201 	uintptr_t eaddr = v + size;
3202 	size_t start;
3203 	size_t end;
3204 
3205 	/*
3206 	 * if called very early by kmdb, just return NULL
3207 	 */
3208 	if (toxic_bit_map == NULL)
3209 		return (NULL);
3210 
3211 	/*
3212 	 * First check if we're completely outside the bitmap range.
3213 	 */
3214 	if (v >= valloc_base || eaddr < kernelbase)
3215 		return (NULL);
3216 
3217 	/*
3218 	 * Trim ends of search to look at only what the bitmap covers.
3219 	 */
3220 	if (v < kernelbase)
3221 		v = kernelbase;
3222 	start = btop(v - kernelbase);
3223 	end = btop(eaddr - kernelbase);
3224 	if (end >= toxic_bit_map_len)
3225 		end = toxic_bit_map_len;
3226 
3227 	if (bt_range(toxic_bit_map, &start, &end, end) == 0)
3228 		return (NULL);
3229 
3230 	v = kernelbase + ptob(start);
3231 	if (len != NULL)
3232 		*len = ptob(end - start);
3233 	return ((void *)v);
3234 }
3235 
3236 #endif	/* __i386 */
3237