xref: /titanic_50/usr/src/uts/i86pc/os/startup.c (revision 6ba597c56d749c61b4f783157f63196d7b2445f0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/t_lock.h>
28 #include <sys/param.h>
29 #include <sys/sysmacros.h>
30 #include <sys/signal.h>
31 #include <sys/systm.h>
32 #include <sys/user.h>
33 #include <sys/mman.h>
34 #include <sys/vm.h>
35 #include <sys/conf.h>
36 #include <sys/avintr.h>
37 #include <sys/autoconf.h>
38 #include <sys/disp.h>
39 #include <sys/class.h>
40 #include <sys/bitmap.h>
41 
42 #include <sys/privregs.h>
43 
44 #include <sys/proc.h>
45 #include <sys/buf.h>
46 #include <sys/kmem.h>
47 #include <sys/mem.h>
48 #include <sys/kstat.h>
49 
50 #include <sys/reboot.h>
51 
52 #include <sys/cred.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 
56 #include <sys/procfs.h>
57 
58 #include <sys/vfs.h>
59 #include <sys/cmn_err.h>
60 #include <sys/utsname.h>
61 #include <sys/debug.h>
62 #include <sys/kdi.h>
63 
64 #include <sys/dumphdr.h>
65 #include <sys/bootconf.h>
66 #include <sys/varargs.h>
67 #include <sys/promif.h>
68 #include <sys/modctl.h>
69 
70 #include <sys/sunddi.h>
71 #include <sys/sunndi.h>
72 #include <sys/ndi_impldefs.h>
73 #include <sys/ddidmareq.h>
74 #include <sys/psw.h>
75 #include <sys/regset.h>
76 #include <sys/clock.h>
77 #include <sys/pte.h>
78 #include <sys/tss.h>
79 #include <sys/stack.h>
80 #include <sys/trap.h>
81 #include <sys/fp.h>
82 #include <vm/kboot_mmu.h>
83 #include <vm/anon.h>
84 #include <vm/as.h>
85 #include <vm/page.h>
86 #include <vm/seg.h>
87 #include <vm/seg_dev.h>
88 #include <vm/seg_kmem.h>
89 #include <vm/seg_kpm.h>
90 #include <vm/seg_map.h>
91 #include <vm/seg_vn.h>
92 #include <vm/seg_kp.h>
93 #include <sys/memnode.h>
94 #include <vm/vm_dep.h>
95 #include <sys/thread.h>
96 #include <sys/sysconf.h>
97 #include <sys/vm_machparam.h>
98 #include <sys/archsystm.h>
99 #include <sys/machsystm.h>
100 #include <vm/hat.h>
101 #include <vm/hat_i86.h>
102 #include <sys/pmem.h>
103 #include <sys/smp_impldefs.h>
104 #include <sys/x86_archext.h>
105 #include <sys/cpuvar.h>
106 #include <sys/segments.h>
107 #include <sys/clconf.h>
108 #include <sys/kobj.h>
109 #include <sys/kobj_lex.h>
110 #include <sys/cpc_impl.h>
111 #include <sys/cpu_module.h>
112 #include <sys/smbios.h>
113 #include <sys/debug_info.h>
114 #include <sys/bootinfo.h>
115 #include <sys/ddi_timer.h>
116 #include <sys/systeminfo.h>
117 #include <sys/multiboot.h>
118 
119 #ifdef __xpv
120 
121 #include <sys/hypervisor.h>
122 #include <sys/xen_mmu.h>
123 #include <sys/evtchn_impl.h>
124 #include <sys/gnttab.h>
125 #include <sys/xpv_panic.h>
126 #include <xen/sys/xenbus_comms.h>
127 #include <xen/public/physdev.h>
128 
129 extern void xen_late_startup(void);
130 
131 struct xen_evt_data cpu0_evt_data;
132 
133 #endif /* __xpv */
134 
135 extern void progressbar_init(void);
136 extern void progressbar_start(void);
137 extern void brand_init(void);
138 extern void pcf_init(void);
139 extern void pg_init(void);
140 
141 extern int size_pse_array(pgcnt_t, int);
142 
143 #if defined(_SOFT_HOSTID)
144 
145 #include <sys/rtc.h>
146 
147 static int32_t set_soft_hostid(void);
148 static char hostid_file[] = "/etc/hostid";
149 
150 #endif
151 
152 void *gfx_devinfo_list;
153 
154 #if defined(__amd64) && !defined(__xpv)
155 extern void immu_startup(void);
156 #endif
157 
158 /*
159  * XXX make declaration below "static" when drivers no longer use this
160  * interface.
161  */
162 extern caddr_t p0_va;	/* Virtual address for accessing physical page 0 */
163 
164 /*
165  * segkp
166  */
167 extern int segkp_fromheap;
168 
169 static void kvm_init(void);
170 static void startup_init(void);
171 static void startup_memlist(void);
172 static void startup_kmem(void);
173 static void startup_modules(void);
174 static void startup_vm(void);
175 static void startup_end(void);
176 static void layout_kernel_va(void);
177 
178 /*
179  * Declare these as initialized data so we can patch them.
180  */
181 #ifdef __i386
182 
183 /*
184  * Due to virtual address space limitations running in 32 bit mode, restrict
185  * the amount of physical memory configured to a max of PHYSMEM pages (16g).
186  *
187  * If the physical max memory size of 64g were allowed to be configured, the
188  * size of user virtual address space will be less than 1g. A limited user
189  * address space greatly reduces the range of applications that can run.
190  *
191  * If more physical memory than PHYSMEM is required, users should preferably
192  * run in 64 bit mode which has far looser virtual address space limitations.
193  *
194  * If 64 bit mode is not available (as in IA32) and/or more physical memory
195  * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired
196  * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase
197  * should also be carefully tuned to balance out the need of the user
198  * application while minimizing the risk of kernel heap exhaustion due to
199  * kernelbase being set too high.
200  */
201 #define	PHYSMEM	0x400000
202 
203 #else /* __amd64 */
204 
205 /*
206  * For now we can handle memory with physical addresses up to about
207  * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly
208  * half the VA space for seg_kpm. When systems get bigger than 64TB this
209  * code will need revisiting. There is an implicit assumption that there
210  * are no *huge* holes in the physical address space too.
211  */
212 #define	TERABYTE		(1ul << 40)
213 #define	PHYSMEM_MAX64		mmu_btop(64 * TERABYTE)
214 #define	PHYSMEM			PHYSMEM_MAX64
215 #define	AMD64_VA_HOLE_END	0xFFFF800000000000ul
216 
217 #endif /* __amd64 */
218 
219 pgcnt_t physmem = PHYSMEM;
220 pgcnt_t obp_pages;	/* Memory used by PROM for its text and data */
221 
222 char *kobj_file_buf;
223 int kobj_file_bufsize;	/* set in /etc/system */
224 
225 /* Global variables for MP support. Used in mp_startup */
226 caddr_t	rm_platter_va = 0;
227 uint32_t rm_platter_pa;
228 
229 int	auto_lpg_disable = 1;
230 
231 /*
232  * Some CPUs have holes in the middle of the 64-bit virtual address range.
233  */
234 uintptr_t hole_start, hole_end;
235 
236 /*
237  * kpm mapping window
238  */
239 caddr_t kpm_vbase;
240 size_t  kpm_size;
241 static int kpm_desired;
242 #ifdef __amd64
243 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE;
244 #endif
245 
246 /*
247  * Configuration parameters set at boot time.
248  */
249 
250 caddr_t econtig;		/* end of first block of contiguous kernel */
251 
252 struct bootops		*bootops = 0;	/* passed in from boot */
253 struct bootops		**bootopsp;
254 struct boot_syscalls	*sysp;		/* passed in from boot */
255 
256 char bootblock_fstype[16];
257 
258 char kern_bootargs[OBP_MAXPATHLEN];
259 char kern_bootfile[OBP_MAXPATHLEN];
260 
261 /*
262  * ZFS zio segment.  This allows us to exclude large portions of ZFS data that
263  * gets cached in kmem caches on the heap.  If this is set to zero, we allocate
264  * zio buffers from their own segment, otherwise they are allocated from the
265  * heap.  The optimization of allocating zio buffers from their own segment is
266  * only valid on 64-bit kernels.
267  */
268 #if defined(__amd64)
269 int segzio_fromheap = 0;
270 #else
271 int segzio_fromheap = 1;
272 #endif
273 
274 /*
275  * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
276  * depends on number of BOP_ALLOC calls made and requested size, memory size
277  * combination and whether boot.bin memory needs to be freed.
278  */
279 #define	POSS_NEW_FRAGMENTS	12
280 
281 /*
282  * VM data structures
283  */
284 long page_hashsz;		/* Size of page hash table (power of two) */
285 struct page *pp_base;		/* Base of initial system page struct array */
286 struct page **page_hash;	/* Page hash table */
287 pad_mutex_t *pse_mutex;		/* Locks protecting pp->p_selock */
288 size_t pse_table_size;		/* Number of mutexes in pse_mutex[] */
289 int pse_shift;			/* log2(pse_table_size) */
290 struct seg ktextseg;		/* Segment used for kernel executable image */
291 struct seg kvalloc;		/* Segment used for "valloc" mapping */
292 struct seg kpseg;		/* Segment used for pageable kernel virt mem */
293 struct seg kmapseg;		/* Segment used for generic kernel mappings */
294 struct seg kdebugseg;		/* Segment used for the kernel debugger */
295 
296 struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
297 static struct seg *segmap = &kmapseg;	/* easier to use name for in here */
298 
299 struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
300 
301 #if defined(__amd64)
302 struct seg kvseg_core;		/* Segment used for the core heap */
303 struct seg kpmseg;		/* Segment used for physical mapping */
304 struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
305 #else
306 struct seg *segkpm = NULL;	/* Unused on IA32 */
307 #endif
308 
309 caddr_t segkp_base;		/* Base address of segkp */
310 caddr_t segzio_base;		/* Base address of segzio */
311 #if defined(__amd64)
312 pgcnt_t segkpsize = btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
313 #else
314 pgcnt_t segkpsize = 0;
315 #endif
316 pgcnt_t segziosize = 0;		/* size of zio segment in pages */
317 
318 /*
319  * VA range available to the debugger
320  */
321 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
322 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
323 
324 struct memseg *memseg_base;
325 struct vnode unused_pages_vp;
326 
327 #define	FOURGB	0x100000000LL
328 
329 struct memlist *memlist;
330 
331 caddr_t s_text;		/* start of kernel text segment */
332 caddr_t e_text;		/* end of kernel text segment */
333 caddr_t s_data;		/* start of kernel data segment */
334 caddr_t e_data;		/* end of kernel data segment */
335 caddr_t modtext;	/* start of loadable module text reserved */
336 caddr_t e_modtext;	/* end of loadable module text reserved */
337 caddr_t moddata;	/* start of loadable module data reserved */
338 caddr_t e_moddata;	/* end of loadable module data reserved */
339 
340 struct memlist *phys_install;	/* Total installed physical memory */
341 struct memlist *phys_avail;	/* Total available physical memory */
342 struct memlist *bios_rsvd;	/* Bios reserved memory */
343 
344 /*
345  * kphysm_init returns the number of pages that were processed
346  */
347 static pgcnt_t kphysm_init(page_t *, pgcnt_t);
348 
349 #define	IO_PROP_SIZE	64	/* device property size */
350 
351 /*
352  * a couple useful roundup macros
353  */
354 #define	ROUND_UP_PAGE(x)	\
355 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
356 #define	ROUND_UP_LPAGE(x)	\
357 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
358 #define	ROUND_UP_4MEG(x)	\
359 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG))
360 #define	ROUND_UP_TOPLEVEL(x)	\
361 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
362 
363 /*
364  *	32-bit Kernel's Virtual memory layout.
365  *		+-----------------------+
366  *		|			|
367  * 0xFFC00000  -|-----------------------|- ARGSBASE
368  *		|	debugger	|
369  * 0xFF800000  -|-----------------------|- SEGDEBUGBASE
370  *		|      Kernel Data	|
371  * 0xFEC00000  -|-----------------------|
372  *              |      Kernel Text	|
373  * 0xFE800000  -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen)
374  *		|---       GDT       ---|- GDT page (GDT_VA)
375  *		|---    debug info   ---|- debug info (DEBUG_INFO_VA)
376  *		|			|
377  * 		|   page_t structures	|
378  * 		|   memsegs, memlists, 	|
379  * 		|   page hash, etc.	|
380  * ---	       -|-----------------------|- ekernelheap, valloc_base (floating)
381  *		|			|  (segkp is just an arena in the heap)
382  *		|			|
383  *		|	kvseg		|
384  *		|			|
385  *		|			|
386  * ---         -|-----------------------|- kernelheap (floating)
387  * 		|        Segkmap	|
388  * 0xC3002000  -|-----------------------|- segmap_start (floating)
389  *		|	Red Zone	|
390  * 0xC3000000  -|-----------------------|- kernelbase / userlimit (floating)
391  *		|			|			||
392  *		|     Shared objects	|			\/
393  *		|			|
394  *		:			:
395  *		|	user data	|
396  *		|-----------------------|
397  *		|	user text	|
398  * 0x08048000  -|-----------------------|
399  *		|	user stack	|
400  *		:			:
401  *		|	invalid		|
402  * 0x00000000	+-----------------------+
403  *
404  *
405  *		64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
406  *			+-----------------------+
407  *			|			|
408  * 0xFFFFFFFF.FFC00000  |-----------------------|- ARGSBASE
409  *			|	debugger (?)	|
410  * 0xFFFFFFFF.FF800000  |-----------------------|- SEGDEBUGBASE
411  *			|      unused    	|
412  *			+-----------------------+
413  *			|      Kernel Data	|
414  * 0xFFFFFFFF.FBC00000  |-----------------------|
415  *			|      Kernel Text	|
416  * 0xFFFFFFFF.FB800000  |-----------------------|- KERNEL_TEXT
417  *			|---       GDT       ---|- GDT page (GDT_VA)
418  *			|---    debug info   ---|- debug info (DEBUG_INFO_VA)
419  *			|			|
420  * 			|      Core heap	| (used for loadable modules)
421  * 0xFFFFFFFF.C0000000  |-----------------------|- core_base / ekernelheap
422  *			|	 Kernel		|
423  *			|	  heap		|
424  * 0xFFFFFXXX.XXX00000  |-----------------------|- kernelheap (floating)
425  *			|	 segmap		|
426  * 0xFFFFFXXX.XXX00000  |-----------------------|- segmap_start (floating)
427  *			|    device mappings	|
428  * 0xFFFFFXXX.XXX00000  |-----------------------|- toxic_addr (floating)
429  *			|	  segzio	|
430  * 0xFFFFFXXX.XXX00000  |-----------------------|- segzio_base (floating)
431  *			|	  segkp		|
432  * ---                  |-----------------------|- segkp_base (floating)
433  * 			|   page_t structures	|  valloc_base + valloc_sz
434  * 			|   memsegs, memlists, 	|
435  * 			|   page hash, etc.	|
436  * 0xFFFFFF00.00000000  |-----------------------|- valloc_base (lower if > 1TB)
437  *			|	 segkpm		|
438  * 0xFFFFFE00.00000000  |-----------------------|
439  *			|	Red Zone	|
440  * 0xFFFFFD80.00000000  |-----------------------|- KERNELBASE (lower if > 1TB)
441  *			|     User stack	|- User space memory
442  * 			|			|
443  * 			| shared objects, etc	|	(grows downwards)
444  *			:			:
445  * 			|			|
446  * 0xFFFF8000.00000000  |-----------------------|
447  * 			|			|
448  * 			| VA Hole / unused	|
449  * 			|			|
450  * 0x00008000.00000000  |-----------------------|
451  *			|			|
452  *			|			|
453  *			:			:
454  *			|	user heap	|	(grows upwards)
455  *			|			|
456  *			|	user data	|
457  *			|-----------------------|
458  *			|	user text	|
459  * 0x00000000.04000000  |-----------------------|
460  *			|	invalid		|
461  * 0x00000000.00000000	+-----------------------+
462  *
463  * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
464  * kernel, except that userlimit is raised to 0xfe000000
465  *
466  * Floating values:
467  *
468  * valloc_base: start of the kernel's memory management/tracking data
469  * structures.  This region contains page_t structures for
470  * physical memory, memsegs, memlists, and the page hash.
471  *
472  * core_base: start of the kernel's "core" heap area on 64-bit systems.
473  * This area is intended to be used for global data as well as for module
474  * text/data that does not fit into the nucleus pages.  The core heap is
475  * restricted to a 2GB range, allowing every address within it to be
476  * accessed using rip-relative addressing
477  *
478  * ekernelheap: end of kernelheap and start of segmap.
479  *
480  * kernelheap: start of kernel heap.  On 32-bit systems, this starts right
481  * above a red zone that separates the user's address space from the
482  * kernel's.  On 64-bit systems, it sits above segkp and segkpm.
483  *
484  * segmap_start: start of segmap. The length of segmap can be modified
485  * through eeprom. The default length is 16MB on 32-bit systems and 64MB
486  * on 64-bit systems.
487  *
488  * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
489  * decreased by 2X the size required for page_t.  This allows the kernel
490  * heap to grow in size with physical memory.  With sizeof(page_t) == 80
491  * bytes, the following shows the values of kernelbase and kernel heap
492  * sizes for different memory configurations (assuming default segmap and
493  * segkp sizes).
494  *
495  *	mem	size for	kernelbase	kernel heap
496  *	size	page_t's			size
497  *	----	---------	----------	-----------
498  *	1gb	0x01400000	0xd1800000	684MB
499  *	2gb	0x02800000	0xcf000000	704MB
500  *	4gb	0x05000000	0xca000000	744MB
501  *	6gb	0x07800000	0xc5000000	784MB
502  *	8gb	0x0a000000	0xc0000000	824MB
503  *	16gb	0x14000000	0xac000000	984MB
504  *	32gb	0x28000000	0x84000000	1304MB
505  *	64gb	0x50000000	0x34000000	1944MB (*)
506  *
507  * kernelbase is less than the abi minimum of 0xc0000000 for memory
508  * configurations above 8gb.
509  *
510  * (*) support for memory configurations above 32gb will require manual tuning
511  * of kernelbase to balance out the need of user applications.
512  */
513 
514 /* real-time-clock initialization parameters */
515 extern time_t process_rtc_config_file(void);
516 
517 uintptr_t	kernelbase;
518 uintptr_t	postbootkernelbase;	/* not set till boot loader is gone */
519 uintptr_t	eprom_kernelbase;
520 size_t		segmapsize;
521 uintptr_t	segmap_start;
522 int		segmapfreelists;
523 pgcnt_t		npages;
524 pgcnt_t		orig_npages;
525 size_t		core_size;		/* size of "core" heap */
526 uintptr_t	core_base;		/* base address of "core" heap */
527 
528 /*
529  * List of bootstrap pages. We mark these as allocated in startup.
530  * release_bootstrap() will free them when we're completely done with
531  * the bootstrap.
532  */
533 static page_t *bootpages;
534 
535 /*
536  * boot time pages that have a vnode from the ramdisk will keep that forever.
537  */
538 static page_t *rd_pages;
539 
540 /*
541  * Lower 64K
542  */
543 static page_t *lower_pages = NULL;
544 static int lower_pages_count = 0;
545 
546 struct system_hardware system_hardware;
547 
548 /*
549  * Enable some debugging messages concerning memory usage...
550  */
551 static void
552 print_memlist(char *title, struct memlist *mp)
553 {
554 	prom_printf("MEMLIST: %s:\n", title);
555 	while (mp != NULL)  {
556 		prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
557 		    mp->ml_address, mp->ml_size);
558 		mp = mp->ml_next;
559 	}
560 }
561 
562 /*
563  * XX64 need a comment here.. are these just default values, surely
564  * we read the "cpuid" type information to figure this out.
565  */
566 int	l2cache_sz = 0x80000;
567 int	l2cache_linesz = 0x40;
568 int	l2cache_assoc = 1;
569 
570 static size_t	textrepl_min_gb = 10;
571 
572 /*
573  * on 64 bit we use a predifined VA range for mapping devices in the kernel
574  * on 32 bit the mappings are intermixed in the heap, so we use a bit map
575  */
576 #ifdef __amd64
577 
578 vmem_t		*device_arena;
579 uintptr_t	toxic_addr = (uintptr_t)NULL;
580 size_t		toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
581 
582 #else	/* __i386 */
583 
584 ulong_t		*toxic_bit_map;	/* one bit for each 4k of VA in heap_arena */
585 size_t		toxic_bit_map_len = 0;	/* in bits */
586 
587 #endif	/* __i386 */
588 
589 /*
590  * Simple boot time debug facilities
591  */
592 static char *prm_dbg_str[] = {
593 	"%s:%d: '%s' is 0x%x\n",
594 	"%s:%d: '%s' is 0x%llx\n"
595 };
596 
597 int prom_debug;
598 
599 #define	PRM_DEBUG(q)	if (prom_debug) 	\
600 	prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q);
601 #define	PRM_POINT(q)	if (prom_debug) 	\
602 	prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q);
603 
604 /*
605  * This structure is used to keep track of the intial allocations
606  * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
607  * be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
608  */
609 #define	NUM_ALLOCATIONS 8
610 int num_allocations = 0;
611 struct {
612 	void **al_ptr;
613 	size_t al_size;
614 } allocations[NUM_ALLOCATIONS];
615 size_t valloc_sz = 0;
616 uintptr_t valloc_base;
617 
618 #define	ADD_TO_ALLOCATIONS(ptr, size) {					\
619 		size = ROUND_UP_PAGE(size);		 		\
620 		if (num_allocations == NUM_ALLOCATIONS)			\
621 			panic("too many ADD_TO_ALLOCATIONS()");		\
622 		allocations[num_allocations].al_ptr = (void**)&ptr;	\
623 		allocations[num_allocations].al_size = size;		\
624 		valloc_sz += size;					\
625 		++num_allocations;				 	\
626 	}
627 
628 /*
629  * Allocate all the initial memory needed by the page allocator.
630  */
631 static void
632 perform_allocations(void)
633 {
634 	caddr_t mem;
635 	int i;
636 	int valloc_align;
637 
638 	PRM_DEBUG(valloc_base);
639 	PRM_DEBUG(valloc_sz);
640 	valloc_align = mmu.level_size[mmu.max_page_level > 0];
641 	mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align);
642 	if (mem != (caddr_t)valloc_base)
643 		panic("BOP_ALLOC() failed");
644 	bzero(mem, valloc_sz);
645 	for (i = 0; i < num_allocations; ++i) {
646 		*allocations[i].al_ptr = (void *)mem;
647 		mem += allocations[i].al_size;
648 	}
649 }
650 
651 /*
652  * Our world looks like this at startup time.
653  *
654  * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
655  * at 0xfec00000.  On a 64-bit OS, kernel text and data are loaded at
656  * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively.  Those
657  * addresses are fixed in the binary at link time.
658  *
659  * On the text page:
660  * unix/genunix/krtld/module text loads.
661  *
662  * On the data page:
663  * unix/genunix/krtld/module data loads.
664  *
665  * Machine-dependent startup code
666  */
667 void
668 startup(void)
669 {
670 #if !defined(__xpv)
671 	extern void startup_pci_bios(void);
672 	extern int post_fastreboot;
673 #endif
674 	extern cpuset_t cpu_ready_set;
675 
676 	/*
677 	 * Make sure that nobody tries to use sekpm until we have
678 	 * initialized it properly.
679 	 */
680 #if defined(__amd64)
681 	kpm_desired = 1;
682 #endif
683 	kpm_enable = 0;
684 	CPUSET_ONLY(cpu_ready_set, 0);	/* cpu 0 is boot cpu */
685 
686 #if defined(__xpv)	/* XXPV fix me! */
687 	{
688 		extern int segvn_use_regions;
689 		segvn_use_regions = 0;
690 	}
691 #endif
692 	progressbar_init();
693 	startup_init();
694 #if defined(__xpv)
695 	startup_xen_version();
696 #endif
697 	startup_memlist();
698 	startup_kmem();
699 	startup_vm();
700 #if !defined(__xpv)
701 	if (!post_fastreboot)
702 		startup_pci_bios();
703 #endif
704 #if defined(__xpv)
705 	startup_xen_mca();
706 #endif
707 	startup_modules();
708 
709 	startup_end();
710 	progressbar_start();
711 }
712 
713 static void
714 startup_init()
715 {
716 	PRM_POINT("startup_init() starting...");
717 
718 	/*
719 	 * Complete the extraction of cpuid data
720 	 */
721 	cpuid_pass2(CPU);
722 
723 	(void) check_boot_version(BOP_GETVERSION(bootops));
724 
725 	/*
726 	 * Check for prom_debug in boot environment
727 	 */
728 	if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
729 		++prom_debug;
730 		PRM_POINT("prom_debug found in boot enviroment");
731 	}
732 
733 	/*
734 	 * Collect node, cpu and memory configuration information.
735 	 */
736 	get_system_configuration();
737 
738 	/*
739 	 * Halt if this is an unsupported processor.
740 	 */
741 	if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
742 		printf("\n486 processor (\"%s\") detected.\n",
743 		    CPU->cpu_brandstr);
744 		halt("This processor is not supported by this release "
745 		    "of Solaris.");
746 	}
747 
748 	PRM_POINT("startup_init() done");
749 }
750 
751 /*
752  * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
753  * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
754  * also filters out physical page zero.  There is some reliance on the
755  * boot loader allocating only a few contiguous physical memory chunks.
756  */
757 static void
758 avail_filter(uint64_t *addr, uint64_t *size)
759 {
760 	uintptr_t va;
761 	uintptr_t next_va;
762 	pfn_t pfn;
763 	uint64_t pfn_addr;
764 	uint64_t pfn_eaddr;
765 	uint_t prot;
766 	size_t len;
767 	uint_t change;
768 
769 	if (prom_debug)
770 		prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
771 		    *addr, *size);
772 
773 	/*
774 	 * page zero is required for BIOS.. never make it available
775 	 */
776 	if (*addr == 0) {
777 		*addr += MMU_PAGESIZE;
778 		*size -= MMU_PAGESIZE;
779 	}
780 
781 	/*
782 	 * First we trim from the front of the range. Since kbm_probe()
783 	 * walks ranges in virtual order, but addr/size are physical, we need
784 	 * to the list until no changes are seen.  This deals with the case
785 	 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
786 	 * but w < v.
787 	 */
788 	do {
789 		change = 0;
790 		for (va = KERNEL_TEXT;
791 		    *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
792 		    va = next_va) {
793 
794 			next_va = va + len;
795 			pfn_addr = pfn_to_pa(pfn);
796 			pfn_eaddr = pfn_addr + len;
797 
798 			if (pfn_addr <= *addr && pfn_eaddr > *addr) {
799 				change = 1;
800 				while (*size > 0 && len > 0) {
801 					*addr += MMU_PAGESIZE;
802 					*size -= MMU_PAGESIZE;
803 					len -= MMU_PAGESIZE;
804 				}
805 			}
806 		}
807 		if (change && prom_debug)
808 			prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
809 			    *addr, *size);
810 	} while (change);
811 
812 	/*
813 	 * Trim pages from the end of the range.
814 	 */
815 	for (va = KERNEL_TEXT;
816 	    *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
817 	    va = next_va) {
818 
819 		next_va = va + len;
820 		pfn_addr = pfn_to_pa(pfn);
821 
822 		if (pfn_addr >= *addr && pfn_addr < *addr + *size)
823 			*size = pfn_addr - *addr;
824 	}
825 
826 	if (prom_debug)
827 		prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
828 		    *addr, *size);
829 }
830 
831 static void
832 kpm_init()
833 {
834 	struct segkpm_crargs b;
835 
836 	/*
837 	 * These variables were all designed for sfmmu in which segkpm is
838 	 * mapped using a single pagesize - either 8KB or 4MB.  On x86, we
839 	 * might use 2+ page sizes on a single machine, so none of these
840 	 * variables have a single correct value.  They are set up as if we
841 	 * always use a 4KB pagesize, which should do no harm.  In the long
842 	 * run, we should get rid of KPM's assumption that only a single
843 	 * pagesize is used.
844 	 */
845 	kpm_pgshft = MMU_PAGESHIFT;
846 	kpm_pgsz =  MMU_PAGESIZE;
847 	kpm_pgoff = MMU_PAGEOFFSET;
848 	kpmp2pshft = 0;
849 	kpmpnpgs = 1;
850 	ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
851 
852 	PRM_POINT("about to create segkpm");
853 	rw_enter(&kas.a_lock, RW_WRITER);
854 
855 	if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
856 		panic("cannot attach segkpm");
857 
858 	b.prot = PROT_READ | PROT_WRITE;
859 	b.nvcolors = 1;
860 
861 	if (segkpm_create(segkpm, (caddr_t)&b) != 0)
862 		panic("segkpm_create segkpm");
863 
864 	rw_exit(&kas.a_lock);
865 }
866 
867 /*
868  * The debug info page provides enough information to allow external
869  * inspectors (e.g. when running under a hypervisor) to bootstrap
870  * themselves into allowing full-blown kernel debugging.
871  */
872 static void
873 init_debug_info(void)
874 {
875 	caddr_t mem;
876 	debug_info_t *di;
877 
878 #ifndef __lint
879 	ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE);
880 #endif
881 
882 	mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE,
883 	    MMU_PAGESIZE);
884 
885 	if (mem != (caddr_t)DEBUG_INFO_VA)
886 		panic("BOP_ALLOC() failed");
887 	bzero(mem, MMU_PAGESIZE);
888 
889 	di = (debug_info_t *)mem;
890 
891 	di->di_magic = DEBUG_INFO_MAGIC;
892 	di->di_version = DEBUG_INFO_VERSION;
893 	di->di_modules = (uintptr_t)&modules;
894 	di->di_s_text = (uintptr_t)s_text;
895 	di->di_e_text = (uintptr_t)e_text;
896 	di->di_s_data = (uintptr_t)s_data;
897 	di->di_e_data = (uintptr_t)e_data;
898 	di->di_hat_htable_off = offsetof(hat_t, hat_htable);
899 	di->di_ht_pfn_off = offsetof(htable_t, ht_pfn);
900 }
901 
902 /*
903  * Build the memlists and other kernel essential memory system data structures.
904  * This is everything at valloc_base.
905  */
906 static void
907 startup_memlist(void)
908 {
909 	size_t memlist_sz;
910 	size_t memseg_sz;
911 	size_t pagehash_sz;
912 	size_t pp_sz;
913 	uintptr_t va;
914 	size_t len;
915 	uint_t prot;
916 	pfn_t pfn;
917 	int memblocks;
918 	pfn_t rsvd_high_pfn;
919 	pgcnt_t rsvd_pgcnt;
920 	size_t rsvdmemlist_sz;
921 	int rsvdmemblocks;
922 	caddr_t pagecolor_mem;
923 	size_t pagecolor_memsz;
924 	caddr_t page_ctrs_mem;
925 	size_t page_ctrs_size;
926 	size_t pse_table_alloc_size;
927 	struct memlist *current;
928 	extern void startup_build_mem_nodes(struct memlist *);
929 
930 	/* XX64 fix these - they should be in include files */
931 	extern size_t page_coloring_init(uint_t, int, int);
932 	extern void page_coloring_setup(caddr_t);
933 
934 	PRM_POINT("startup_memlist() starting...");
935 
936 	/*
937 	 * Use leftover large page nucleus text/data space for loadable modules.
938 	 * Use at most MODTEXT/MODDATA.
939 	 */
940 	len = kbm_nucleus_size;
941 	ASSERT(len > MMU_PAGESIZE);
942 
943 	moddata = (caddr_t)ROUND_UP_PAGE(e_data);
944 	e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len);
945 	if (e_moddata - moddata > MODDATA)
946 		e_moddata = moddata + MODDATA;
947 
948 	modtext = (caddr_t)ROUND_UP_PAGE(e_text);
949 	e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len);
950 	if (e_modtext - modtext > MODTEXT)
951 		e_modtext = modtext + MODTEXT;
952 
953 	econtig = e_moddata;
954 
955 	PRM_DEBUG(modtext);
956 	PRM_DEBUG(e_modtext);
957 	PRM_DEBUG(moddata);
958 	PRM_DEBUG(e_moddata);
959 	PRM_DEBUG(econtig);
960 
961 	/*
962 	 * Examine the boot loader physical memory map to find out:
963 	 * - total memory in system - physinstalled
964 	 * - the max physical address - physmax
965 	 * - the number of discontiguous segments of memory.
966 	 */
967 	if (prom_debug)
968 		print_memlist("boot physinstalled",
969 		    bootops->boot_mem->physinstalled);
970 	installed_top_size(bootops->boot_mem->physinstalled, &physmax,
971 	    &physinstalled, &memblocks);
972 	PRM_DEBUG(physmax);
973 	PRM_DEBUG(physinstalled);
974 	PRM_DEBUG(memblocks);
975 
976 	/*
977 	 * Examine the bios reserved memory to find out:
978 	 * - the number of discontiguous segments of memory.
979 	 */
980 	if (prom_debug)
981 		print_memlist("boot reserved mem",
982 		    bootops->boot_mem->rsvdmem);
983 	installed_top_size(bootops->boot_mem->rsvdmem, &rsvd_high_pfn,
984 	    &rsvd_pgcnt, &rsvdmemblocks);
985 	PRM_DEBUG(rsvd_high_pfn);
986 	PRM_DEBUG(rsvd_pgcnt);
987 	PRM_DEBUG(rsvdmemblocks);
988 
989 	/*
990 	 * Initialize hat's mmu parameters.
991 	 * Check for enforce-prot-exec in boot environment. It's used to
992 	 * enable/disable support for the page table entry NX bit.
993 	 * The default is to enforce PROT_EXEC on processors that support NX.
994 	 * Boot seems to round up the "len", but 8 seems to be big enough.
995 	 */
996 	mmu_init();
997 
998 #ifdef	__i386
999 	/*
1000 	 * physmax is lowered if there is more memory than can be
1001 	 * physically addressed in 32 bit (PAE/non-PAE) modes.
1002 	 */
1003 	if (mmu.pae_hat) {
1004 		if (PFN_ABOVE64G(physmax)) {
1005 			physinstalled -= (physmax - (PFN_64G - 1));
1006 			physmax = PFN_64G - 1;
1007 		}
1008 	} else {
1009 		if (PFN_ABOVE4G(physmax)) {
1010 			physinstalled -= (physmax - (PFN_4G - 1));
1011 			physmax = PFN_4G - 1;
1012 		}
1013 	}
1014 #endif
1015 
1016 	startup_build_mem_nodes(bootops->boot_mem->physinstalled);
1017 
1018 	if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
1019 		int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
1020 		char value[8];
1021 
1022 		if (len < 8)
1023 			(void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
1024 		else
1025 			(void) strcpy(value, "");
1026 		if (strcmp(value, "off") == 0)
1027 			mmu.pt_nx = 0;
1028 	}
1029 	PRM_DEBUG(mmu.pt_nx);
1030 
1031 	/*
1032 	 * We will need page_t's for every page in the system, except for
1033 	 * memory mapped at or above above the start of the kernel text segment.
1034 	 *
1035 	 * pages above e_modtext are attributed to kernel debugger (obp_pages)
1036 	 */
1037 	npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
1038 	obp_pages = 0;
1039 	va = KERNEL_TEXT;
1040 	while (kbm_probe(&va, &len, &pfn, &prot) != 0) {
1041 		npages -= len >> MMU_PAGESHIFT;
1042 		if (va >= (uintptr_t)e_moddata)
1043 			obp_pages += len >> MMU_PAGESHIFT;
1044 		va += len;
1045 	}
1046 	PRM_DEBUG(npages);
1047 	PRM_DEBUG(obp_pages);
1048 
1049 	/*
1050 	 * If physmem is patched to be non-zero, use it instead of the computed
1051 	 * value unless it is larger than the actual amount of memory on hand.
1052 	 */
1053 	if (physmem == 0 || physmem > npages) {
1054 		physmem = npages;
1055 	} else if (physmem < npages) {
1056 		orig_npages = npages;
1057 		npages = physmem;
1058 	}
1059 	PRM_DEBUG(physmem);
1060 
1061 	/*
1062 	 * We now compute the sizes of all the  initial allocations for
1063 	 * structures the kernel needs in order do kmem_alloc(). These
1064 	 * include:
1065 	 *	memsegs
1066 	 *	memlists
1067 	 *	page hash table
1068 	 *	page_t's
1069 	 *	page coloring data structs
1070 	 */
1071 	memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
1072 	ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
1073 	PRM_DEBUG(memseg_sz);
1074 
1075 	/*
1076 	 * Reserve space for memlists. There's no real good way to know exactly
1077 	 * how much room we'll need, but this should be a good upper bound.
1078 	 */
1079 	memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1080 	    (memblocks + POSS_NEW_FRAGMENTS));
1081 	ADD_TO_ALLOCATIONS(memlist, memlist_sz);
1082 	PRM_DEBUG(memlist_sz);
1083 
1084 	/*
1085 	 * Reserve space for bios reserved memlists.
1086 	 */
1087 	rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1088 	    (rsvdmemblocks + POSS_NEW_FRAGMENTS));
1089 	ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz);
1090 	PRM_DEBUG(rsvdmemlist_sz);
1091 
1092 	/*
1093 	 * The page structure hash table size is a power of 2
1094 	 * such that the average hash chain length is PAGE_HASHAVELEN.
1095 	 */
1096 	page_hashsz = npages / PAGE_HASHAVELEN;
1097 	page_hashsz = 1 << highbit(page_hashsz);
1098 	pagehash_sz = sizeof (struct page *) * page_hashsz;
1099 	ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
1100 	PRM_DEBUG(pagehash_sz);
1101 
1102 	/*
1103 	 * Set aside room for the page structures themselves.
1104 	 */
1105 	PRM_DEBUG(npages);
1106 	pp_sz = sizeof (struct page) * npages;
1107 	ADD_TO_ALLOCATIONS(pp_base, pp_sz);
1108 	PRM_DEBUG(pp_sz);
1109 
1110 	/*
1111 	 * determine l2 cache info and memory size for page coloring
1112 	 */
1113 	(void) getl2cacheinfo(CPU,
1114 	    &l2cache_sz, &l2cache_linesz, &l2cache_assoc);
1115 	pagecolor_memsz =
1116 	    page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
1117 	ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
1118 	PRM_DEBUG(pagecolor_memsz);
1119 
1120 	page_ctrs_size = page_ctrs_sz();
1121 	ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
1122 	PRM_DEBUG(page_ctrs_size);
1123 
1124 	/*
1125 	 * Allocate the array that protects pp->p_selock.
1126 	 */
1127 	pse_shift = size_pse_array(physmem, max_ncpus);
1128 	pse_table_size = 1 << pse_shift;
1129 	pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t);
1130 	ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size);
1131 
1132 #if defined(__amd64)
1133 	valloc_sz = ROUND_UP_LPAGE(valloc_sz);
1134 	valloc_base = VALLOC_BASE;
1135 
1136 	/*
1137 	 * The default values of VALLOC_BASE and SEGKPM_BASE should work
1138 	 * for values of physmax up to 1 Terabyte. They need adjusting when
1139 	 * memory is at addresses above 1 TB. When adjusted, segkpm_base must
1140 	 * be aligned on KERNEL_REDZONE_SIZE boundary (span of top level pte).
1141 	 */
1142 	if (physmax + 1 > mmu_btop(TERABYTE)) {
1143 		uint64_t kpm_resv_amount = mmu_ptob(physmax + 1);
1144 
1145 		segkpm_base = -(P2ROUNDUP((2 * kpm_resv_amount),
1146 		    KERNEL_REDZONE_SIZE));	/* down from top VA */
1147 
1148 		/* make sure we leave some space for user apps above hole */
1149 		segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE);
1150 		if (segkpm_base > SEGKPM_BASE)
1151 			segkpm_base = SEGKPM_BASE;
1152 		PRM_DEBUG(segkpm_base);
1153 
1154 		valloc_base = segkpm_base + P2ROUNDUP(kpm_resv_amount, ONE_GIG);
1155 		if (valloc_base < segkpm_base)
1156 			panic("not enough kernel VA to support memory size");
1157 		PRM_DEBUG(valloc_base);
1158 	}
1159 #else	/* __i386 */
1160 	valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz);
1161 	valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]);
1162 	PRM_DEBUG(valloc_base);
1163 #endif	/* __i386 */
1164 
1165 	/*
1166 	 * do all the initial allocations
1167 	 */
1168 	perform_allocations();
1169 
1170 	/*
1171 	 * Build phys_install and phys_avail in kernel memspace.
1172 	 * - phys_install should be all memory in the system.
1173 	 * - phys_avail is phys_install minus any memory mapped before this
1174 	 *    point above KERNEL_TEXT.
1175 	 */
1176 	current = phys_install = memlist;
1177 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current, NULL);
1178 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1179 		panic("physinstalled was too big!");
1180 	if (prom_debug)
1181 		print_memlist("phys_install", phys_install);
1182 
1183 	phys_avail = current;
1184 	PRM_POINT("Building phys_avail:\n");
1185 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current,
1186 	    avail_filter);
1187 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1188 		panic("physavail was too big!");
1189 	if (prom_debug)
1190 		print_memlist("phys_avail", phys_avail);
1191 
1192 	/*
1193 	 * Build bios reserved memspace
1194 	 */
1195 	current = bios_rsvd;
1196 	copy_memlist_filter(bootops->boot_mem->rsvdmem, &current, NULL);
1197 	if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz)
1198 		panic("bios_rsvd was too big!");
1199 	if (prom_debug)
1200 		print_memlist("bios_rsvd", bios_rsvd);
1201 
1202 	/*
1203 	 * setup page coloring
1204 	 */
1205 	page_coloring_setup(pagecolor_mem);
1206 	page_lock_init();	/* currently a no-op */
1207 
1208 	/*
1209 	 * free page list counters
1210 	 */
1211 	(void) page_ctrs_alloc(page_ctrs_mem);
1212 
1213 	/*
1214 	 * Size the pcf array based on the number of cpus in the box at
1215 	 * boot time.
1216 	 */
1217 
1218 	pcf_init();
1219 
1220 	/*
1221 	 * Initialize the page structures from the memory lists.
1222 	 */
1223 	availrmem_initial = availrmem = freemem = 0;
1224 	PRM_POINT("Calling kphysm_init()...");
1225 	npages = kphysm_init(pp_base, npages);
1226 	PRM_POINT("kphysm_init() done");
1227 	PRM_DEBUG(npages);
1228 
1229 	init_debug_info();
1230 
1231 	/*
1232 	 * Now that page_t's have been initialized, remove all the
1233 	 * initial allocation pages from the kernel free page lists.
1234 	 */
1235 	boot_mapin((caddr_t)valloc_base, valloc_sz);
1236 	boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE);
1237 	PRM_POINT("startup_memlist() done");
1238 
1239 	PRM_DEBUG(valloc_sz);
1240 
1241 #if defined(__amd64)
1242 	if ((availrmem >> (30 - MMU_PAGESHIFT)) >=
1243 	    textrepl_min_gb && l2cache_sz <= 2 << 20) {
1244 		extern size_t textrepl_size_thresh;
1245 		textrepl_size_thresh = (16 << 20) - 1;
1246 	}
1247 #endif
1248 }
1249 
1250 /*
1251  * Layout the kernel's part of address space and initialize kmem allocator.
1252  */
1253 static void
1254 startup_kmem(void)
1255 {
1256 	extern void page_set_colorequiv_arr(void);
1257 	const char *fmt = "?features: %b\n";
1258 
1259 	PRM_POINT("startup_kmem() starting...");
1260 
1261 #if defined(__amd64)
1262 	if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
1263 		cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
1264 		    "systems.");
1265 	kernelbase = segkpm_base - KERNEL_REDZONE_SIZE;
1266 	core_base = (uintptr_t)COREHEAP_BASE;
1267 	core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE;
1268 #else	/* __i386 */
1269 	/*
1270 	 * We configure kernelbase based on:
1271 	 *
1272 	 * 1. user specified kernelbase via eeprom command. Value cannot exceed
1273 	 *    KERNELBASE_MAX. we large page align eprom_kernelbase
1274 	 *
1275 	 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t.
1276 	 *    On large memory systems we must lower kernelbase to allow
1277 	 *    enough room for page_t's for all of memory.
1278 	 *
1279 	 * The value set here, might be changed a little later.
1280 	 */
1281 	if (eprom_kernelbase) {
1282 		kernelbase = eprom_kernelbase & mmu.level_mask[1];
1283 		if (kernelbase > KERNELBASE_MAX)
1284 			kernelbase = KERNELBASE_MAX;
1285 	} else {
1286 		kernelbase = (uintptr_t)KERNELBASE;
1287 		kernelbase -= ROUND_UP_4MEG(2 * valloc_sz);
1288 	}
1289 	ASSERT((kernelbase & mmu.level_offset[1]) == 0);
1290 	core_base = valloc_base;
1291 	core_size = 0;
1292 #endif	/* __i386 */
1293 
1294 	PRM_DEBUG(core_base);
1295 	PRM_DEBUG(core_size);
1296 	PRM_DEBUG(kernelbase);
1297 
1298 #if defined(__i386)
1299 	segkp_fromheap = 1;
1300 #endif	/* __i386 */
1301 
1302 	ekernelheap = (char *)core_base;
1303 	PRM_DEBUG(ekernelheap);
1304 
1305 	/*
1306 	 * Now that we know the real value of kernelbase,
1307 	 * update variables that were initialized with a value of
1308 	 * KERNELBASE (in common/conf/param.c).
1309 	 *
1310 	 * XXX	The problem with this sort of hackery is that the
1311 	 *	compiler just may feel like putting the const declarations
1312 	 *	(in param.c) into the .text section.  Perhaps they should
1313 	 *	just be declared as variables there?
1314 	 */
1315 
1316 	*(uintptr_t *)&_kernelbase = kernelbase;
1317 	*(uintptr_t *)&_userlimit = kernelbase;
1318 #if defined(__amd64)
1319 	*(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT;
1320 #else
1321 	*(uintptr_t *)&_userlimit32 = _userlimit;
1322 #endif
1323 	PRM_DEBUG(_kernelbase);
1324 	PRM_DEBUG(_userlimit);
1325 	PRM_DEBUG(_userlimit32);
1326 
1327 	layout_kernel_va();
1328 
1329 #if defined(__i386)
1330 	/*
1331 	 * If segmap is too large we can push the bottom of the kernel heap
1332 	 * higher than the base.  Or worse, it could exceed the top of the
1333 	 * VA space entirely, causing it to wrap around.
1334 	 */
1335 	if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase)
1336 		panic("too little address space available for kernelheap,"
1337 		    " use eeprom for lower kernelbase or smaller segmapsize");
1338 #endif	/* __i386 */
1339 
1340 	/*
1341 	 * Initialize the kernel heap. Note 3rd argument must be > 1st.
1342 	 */
1343 	kernelheap_init(kernelheap, ekernelheap,
1344 	    kernelheap + MMU_PAGESIZE,
1345 	    (void *)core_base, (void *)(core_base + core_size));
1346 
1347 #if defined(__xpv)
1348 	/*
1349 	 * Link pending events struct into cpu struct
1350 	 */
1351 	CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data;
1352 #endif
1353 	/*
1354 	 * Initialize kernel memory allocator.
1355 	 */
1356 	kmem_init();
1357 
1358 	/*
1359 	 * Factor in colorequiv to check additional 'equivalent' bins
1360 	 */
1361 	page_set_colorequiv_arr();
1362 
1363 	/*
1364 	 * print this out early so that we know what's going on
1365 	 */
1366 	cmn_err(CE_CONT, fmt, x86_feature, FMT_X86_FEATURE);
1367 
1368 	/*
1369 	 * Initialize bp_mapin().
1370 	 */
1371 	bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
1372 
1373 	/*
1374 	 * orig_npages is non-zero if physmem has been configured for less
1375 	 * than the available memory.
1376 	 */
1377 	if (orig_npages) {
1378 		cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages",
1379 		    (npages == PHYSMEM ? "Due to virtual address space " : ""),
1380 		    npages, orig_npages);
1381 	}
1382 #if defined(__i386)
1383 	if (eprom_kernelbase && (eprom_kernelbase != kernelbase))
1384 		cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, "
1385 		    "System using 0x%lx",
1386 		    (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase);
1387 #endif
1388 
1389 #ifdef	KERNELBASE_ABI_MIN
1390 	if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
1391 		cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
1392 		    "i386 ABI compliant.", (uintptr_t)kernelbase);
1393 	}
1394 #endif
1395 
1396 #ifdef __xpv
1397 	/*
1398 	 * Some of the xen start information has to be relocated up
1399 	 * into the kernel's permanent address space.
1400 	 */
1401 	PRM_POINT("calling xen_relocate_start_info()");
1402 	xen_relocate_start_info();
1403 	PRM_POINT("xen_relocate_start_info() done");
1404 
1405 	/*
1406 	 * (Update the vcpu pointer in our cpu structure to point into
1407 	 * the relocated shared info.)
1408 	 */
1409 	CPU->cpu_m.mcpu_vcpu_info =
1410 	    &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id];
1411 #endif
1412 
1413 	PRM_POINT("startup_kmem() done");
1414 }
1415 
1416 #ifndef __xpv
1417 /*
1418  * If we have detected that we are running in an HVM environment, we need
1419  * to prepend the PV driver directory to the module search path.
1420  */
1421 #define	HVM_MOD_DIR "/platform/i86hvm/kernel"
1422 static void
1423 update_default_path()
1424 {
1425 	char *current, *newpath;
1426 	int newlen;
1427 
1428 	/*
1429 	 * We are about to resync with krtld.  krtld will reset its
1430 	 * internal module search path iff Solaris has set default_path.
1431 	 * We want to be sure we're prepending this new directory to the
1432 	 * right search path.
1433 	 */
1434 	current = (default_path == NULL) ? kobj_module_path : default_path;
1435 
1436 	newlen = strlen(HVM_MOD_DIR) + strlen(current) + 1;
1437 	newpath = kmem_alloc(newlen, KM_SLEEP);
1438 	(void) strcpy(newpath, HVM_MOD_DIR);
1439 	(void) strcat(newpath, " ");
1440 	(void) strcat(newpath, current);
1441 
1442 	default_path = newpath;
1443 }
1444 #endif
1445 
1446 static void
1447 startup_modules(void)
1448 {
1449 	int cnt;
1450 	extern void prom_setup(void);
1451 	int32_t v, h;
1452 	char d[11];
1453 	char *cp;
1454 	cmi_hdl_t hdl;
1455 
1456 	PRM_POINT("startup_modules() starting...");
1457 
1458 #ifndef __xpv
1459 	/*
1460 	 * Initialize ten-micro second timer so that drivers will
1461 	 * not get short changed in their init phase. This was
1462 	 * not getting called until clkinit which, on fast cpu's
1463 	 * caused the drv_usecwait to be way too short.
1464 	 */
1465 	microfind();
1466 
1467 	if (get_hwenv() == HW_XEN_HVM)
1468 		update_default_path();
1469 #endif
1470 
1471 	/*
1472 	 * Read the GMT lag from /etc/rtc_config.
1473 	 */
1474 	sgmtl(process_rtc_config_file());
1475 
1476 	/*
1477 	 * Calculate default settings of system parameters based upon
1478 	 * maxusers, yet allow to be overridden via the /etc/system file.
1479 	 */
1480 	param_calc(0);
1481 
1482 	mod_setup();
1483 
1484 	/*
1485 	 * Initialize system parameters.
1486 	 */
1487 	param_init();
1488 
1489 	/*
1490 	 * Initialize the default brands
1491 	 */
1492 	brand_init();
1493 
1494 	/*
1495 	 * maxmem is the amount of physical memory we're playing with.
1496 	 */
1497 	maxmem = physmem;
1498 
1499 	/*
1500 	 * Initialize segment management stuff.
1501 	 */
1502 	seg_init();
1503 
1504 	if (modload("fs", "specfs") == -1)
1505 		halt("Can't load specfs");
1506 
1507 	if (modload("fs", "devfs") == -1)
1508 		halt("Can't load devfs");
1509 
1510 	if (modload("fs", "dev") == -1)
1511 		halt("Can't load dev");
1512 
1513 	if (modload("fs", "procfs") == -1)
1514 		halt("Can't load procfs");
1515 
1516 	(void) modloadonly("sys", "lbl_edition");
1517 
1518 	dispinit();
1519 
1520 	/*
1521 	 * This is needed here to initialize hw_serial[] for cluster booting.
1522 	 */
1523 	if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) {
1524 		cmn_err(CE_WARN, "Unable to set hostid");
1525 	} else {
1526 		for (v = h, cnt = 0; cnt < 10; cnt++) {
1527 			d[cnt] = (char)(v % 10);
1528 			v /= 10;
1529 			if (v == 0)
1530 				break;
1531 		}
1532 		for (cp = hw_serial; cnt >= 0; cnt--)
1533 			*cp++ = d[cnt] + '0';
1534 		*cp = 0;
1535 	}
1536 
1537 	/* Read cluster configuration data. */
1538 	clconf_init();
1539 
1540 #if defined(__xpv)
1541 	(void) ec_init();
1542 	gnttab_init();
1543 	(void) xs_early_init();
1544 #endif /* __xpv */
1545 
1546 	/*
1547 	 * Create a kernel device tree. First, create rootnex and
1548 	 * then invoke bus specific code to probe devices.
1549 	 */
1550 	setup_ddi();
1551 
1552 #ifdef __xpv
1553 	if (DOMAIN_IS_INITDOMAIN(xen_info))
1554 #endif
1555 	{
1556 		/*
1557 		 * Load the System Management BIOS into the global ksmbios
1558 		 * handle, if an SMBIOS is present on this system.
1559 		 */
1560 		ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL);
1561 	}
1562 
1563 
1564 	/*
1565 	 * Set up the CPU module subsystem for the boot cpu in the native
1566 	 * case, and all physical cpu resource in the xpv dom0 case.
1567 	 * Modifies the device tree, so this must be done after
1568 	 * setup_ddi().
1569 	 */
1570 #ifdef __xpv
1571 	/*
1572 	 * If paravirtualized and on dom0 then we initialize all physical
1573 	 * cpu handles now;  if paravirtualized on a domU then do not
1574 	 * initialize.
1575 	 */
1576 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1577 		xen_mc_lcpu_cookie_t cpi;
1578 
1579 		for (cpi = xen_physcpu_next(NULL); cpi != NULL;
1580 		    cpi = xen_physcpu_next(cpi)) {
1581 			if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA,
1582 			    xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi),
1583 			    xen_physcpu_strandid(cpi))) != NULL &&
1584 			    (x86_feature & X86_MCA))
1585 				cmi_mca_init(hdl);
1586 		}
1587 	}
1588 #else
1589 	/*
1590 	 * Initialize a handle for the boot cpu - others will initialize
1591 	 * as they startup.  Do not do this if we know we are in an HVM domU.
1592 	 */
1593 	if ((get_hwenv() != HW_XEN_HVM) &&
1594 	    (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1595 	    cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL &&
1596 	    (x86_feature & X86_MCA))
1597 			cmi_mca_init(hdl);
1598 #endif	/* __xpv */
1599 
1600 	/*
1601 	 * Fake a prom tree such that /dev/openprom continues to work
1602 	 */
1603 	PRM_POINT("startup_modules: calling prom_setup...");
1604 	prom_setup();
1605 	PRM_POINT("startup_modules: done");
1606 
1607 	/*
1608 	 * Load all platform specific modules
1609 	 */
1610 	PRM_POINT("startup_modules: calling psm_modload...");
1611 	psm_modload();
1612 
1613 	PRM_POINT("startup_modules() done");
1614 }
1615 
1616 /*
1617  * claim a "setaside" boot page for use in the kernel
1618  */
1619 page_t *
1620 boot_claim_page(pfn_t pfn)
1621 {
1622 	page_t *pp;
1623 
1624 	pp = page_numtopp_nolock(pfn);
1625 	ASSERT(pp != NULL);
1626 
1627 	if (PP_ISBOOTPAGES(pp)) {
1628 		if (pp->p_next != NULL)
1629 			pp->p_next->p_prev = pp->p_prev;
1630 		if (pp->p_prev == NULL)
1631 			bootpages = pp->p_next;
1632 		else
1633 			pp->p_prev->p_next = pp->p_next;
1634 	} else {
1635 		/*
1636 		 * htable_attach() expects a base pagesize page
1637 		 */
1638 		if (pp->p_szc != 0)
1639 			page_boot_demote(pp);
1640 		pp = page_numtopp(pfn, SE_EXCL);
1641 	}
1642 	return (pp);
1643 }
1644 
1645 /*
1646  * Walk through the pagetables looking for pages mapped in by boot.  If the
1647  * setaside flag is set the pages are expected to be returned to the
1648  * kernel later in boot, so we add them to the bootpages list.
1649  */
1650 static void
1651 protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
1652 {
1653 	uintptr_t va = low;
1654 	size_t len;
1655 	uint_t prot;
1656 	pfn_t pfn;
1657 	page_t *pp;
1658 	pgcnt_t boot_protect_cnt = 0;
1659 
1660 	while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
1661 		if (va + len >= high)
1662 			panic("0x%lx byte mapping at 0x%p exceeds boot's "
1663 			    "legal range.", len, (void *)va);
1664 
1665 		while (len > 0) {
1666 			pp = page_numtopp_alloc(pfn);
1667 			if (pp != NULL) {
1668 				if (setaside == 0)
1669 					panic("Unexpected mapping by boot.  "
1670 					    "addr=%p pfn=%lx\n",
1671 					    (void *)va, pfn);
1672 
1673 				pp->p_next = bootpages;
1674 				pp->p_prev = NULL;
1675 				PP_SETBOOTPAGES(pp);
1676 				if (bootpages != NULL) {
1677 					bootpages->p_prev = pp;
1678 				}
1679 				bootpages = pp;
1680 				++boot_protect_cnt;
1681 			}
1682 
1683 			++pfn;
1684 			len -= MMU_PAGESIZE;
1685 			va += MMU_PAGESIZE;
1686 		}
1687 	}
1688 	PRM_DEBUG(boot_protect_cnt);
1689 }
1690 
1691 /*
1692  *
1693  */
1694 static void
1695 layout_kernel_va(void)
1696 {
1697 	PRM_POINT("layout_kernel_va() starting...");
1698 	/*
1699 	 * Establish the final size of the kernel's heap, size of segmap,
1700 	 * segkp, etc.
1701 	 */
1702 
1703 #if defined(__amd64)
1704 
1705 	kpm_vbase = (caddr_t)segkpm_base;
1706 	kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1));
1707 	if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base)
1708 		panic("not enough room for kpm!");
1709 	PRM_DEBUG(kpm_size);
1710 	PRM_DEBUG(kpm_vbase);
1711 
1712 	/*
1713 	 * By default we create a seg_kp in 64 bit kernels, it's a little
1714 	 * faster to access than embedding it in the heap.
1715 	 */
1716 	segkp_base = (caddr_t)valloc_base + valloc_sz;
1717 	if (!segkp_fromheap) {
1718 		size_t sz = mmu_ptob(segkpsize);
1719 
1720 		/*
1721 		 * determine size of segkp
1722 		 */
1723 		if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) {
1724 			sz = SEGKPDEFSIZE;
1725 			cmn_err(CE_WARN, "!Illegal value for segkpsize. "
1726 			    "segkpsize has been reset to %ld pages",
1727 			    mmu_btop(sz));
1728 		}
1729 		sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem)));
1730 
1731 		segkpsize = mmu_btop(ROUND_UP_LPAGE(sz));
1732 	}
1733 	PRM_DEBUG(segkp_base);
1734 	PRM_DEBUG(segkpsize);
1735 
1736 	/*
1737 	 * segzio is used for ZFS cached data. It uses a distinct VA
1738 	 * segment (from kernel heap) so that we can easily tell not to
1739 	 * include it in kernel crash dumps on 64 bit kernels. The trick is
1740 	 * to give it lots of VA, but not constrain the kernel heap.
1741 	 * We scale the size of segzio linearly with physmem up to
1742 	 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem.
1743 	 */
1744 	segzio_base = segkp_base + mmu_ptob(segkpsize);
1745 	if (segzio_fromheap) {
1746 		segziosize = 0;
1747 	} else {
1748 		size_t physmem_size = mmu_ptob(physmem);
1749 		size_t size = (segziosize == 0) ?
1750 		    physmem_size : mmu_ptob(segziosize);
1751 
1752 		if (size < SEGZIOMINSIZE)
1753 			size = SEGZIOMINSIZE;
1754 		if (size > SEGZIOMAXSIZE) {
1755 			size = SEGZIOMAXSIZE;
1756 			if (physmem_size > size)
1757 				size += (physmem_size - size) / 2;
1758 		}
1759 		segziosize = mmu_btop(ROUND_UP_LPAGE(size));
1760 	}
1761 	PRM_DEBUG(segziosize);
1762 	PRM_DEBUG(segzio_base);
1763 
1764 	/*
1765 	 * Put the range of VA for device mappings next, kmdb knows to not
1766 	 * grep in this range of addresses.
1767 	 */
1768 	toxic_addr =
1769 	    ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize));
1770 	PRM_DEBUG(toxic_addr);
1771 	segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size);
1772 #else /* __i386 */
1773 	segmap_start = ROUND_UP_LPAGE(kernelbase);
1774 #endif /* __i386 */
1775 	PRM_DEBUG(segmap_start);
1776 
1777 	/*
1778 	 * Users can change segmapsize through eeprom. If the variable
1779 	 * is tuned through eeprom, there is no upper bound on the
1780 	 * size of segmap.
1781 	 */
1782 	segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
1783 
1784 #if defined(__i386)
1785 	/*
1786 	 * 32-bit systems don't have segkpm or segkp, so segmap appears at
1787 	 * the bottom of the kernel's address range.  Set aside space for a
1788 	 * small red zone just below the start of segmap.
1789 	 */
1790 	segmap_start += KERNEL_REDZONE_SIZE;
1791 	segmapsize -= KERNEL_REDZONE_SIZE;
1792 #endif
1793 
1794 	PRM_DEBUG(segmap_start);
1795 	PRM_DEBUG(segmapsize);
1796 	kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize);
1797 	PRM_DEBUG(kernelheap);
1798 	PRM_POINT("layout_kernel_va() done...");
1799 }
1800 
1801 /*
1802  * Finish initializing the VM system, now that we are no longer
1803  * relying on the boot time memory allocators.
1804  */
1805 static void
1806 startup_vm(void)
1807 {
1808 	struct segmap_crargs a;
1809 
1810 	extern int use_brk_lpg, use_stk_lpg;
1811 
1812 	PRM_POINT("startup_vm() starting...");
1813 
1814 	/*
1815 	 * Initialize the hat layer.
1816 	 */
1817 	hat_init();
1818 
1819 	/*
1820 	 * Do final allocations of HAT data structures that need to
1821 	 * be allocated before quiescing the boot loader.
1822 	 */
1823 	PRM_POINT("Calling hat_kern_alloc()...");
1824 	hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap);
1825 	PRM_POINT("hat_kern_alloc() done");
1826 
1827 #ifndef __xpv
1828 	/*
1829 	 * Setup Page Attribute Table
1830 	 */
1831 	pat_sync();
1832 #endif
1833 
1834 	/*
1835 	 * The next two loops are done in distinct steps in order
1836 	 * to be sure that any page that is doubly mapped (both above
1837 	 * KERNEL_TEXT and below kernelbase) is dealt with correctly.
1838 	 * Note this may never happen, but it might someday.
1839 	 */
1840 	bootpages = NULL;
1841 	PRM_POINT("Protecting boot pages");
1842 
1843 	/*
1844 	 * Protect any pages mapped above KERNEL_TEXT that somehow have
1845 	 * page_t's. This can only happen if something weird allocated
1846 	 * in this range (like kadb/kmdb).
1847 	 */
1848 	protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
1849 
1850 	/*
1851 	 * Before we can take over memory allocation/mapping from the boot
1852 	 * loader we must remove from our free page lists any boot allocated
1853 	 * pages that stay mapped until release_bootstrap().
1854 	 */
1855 	protect_boot_range(0, kernelbase, 1);
1856 
1857 
1858 	/*
1859 	 * Switch to running on regular HAT (not boot_mmu)
1860 	 */
1861 	PRM_POINT("Calling hat_kern_setup()...");
1862 	hat_kern_setup();
1863 
1864 	/*
1865 	 * It is no longer safe to call BOP_ALLOC(), so make sure we don't.
1866 	 */
1867 	bop_no_more_mem();
1868 
1869 	PRM_POINT("hat_kern_setup() done");
1870 
1871 	hat_cpu_online(CPU);
1872 
1873 	/*
1874 	 * Initialize VM system
1875 	 */
1876 	PRM_POINT("Calling kvm_init()...");
1877 	kvm_init();
1878 	PRM_POINT("kvm_init() done");
1879 
1880 	/*
1881 	 * Tell kmdb that the VM system is now working
1882 	 */
1883 	if (boothowto & RB_DEBUG)
1884 		kdi_dvec_vmready();
1885 
1886 #if defined(__xpv)
1887 	/*
1888 	 * Populate the I/O pool on domain 0
1889 	 */
1890 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1891 		extern long populate_io_pool(void);
1892 		long init_io_pool_cnt;
1893 
1894 		PRM_POINT("Populating reserve I/O page pool");
1895 		init_io_pool_cnt = populate_io_pool();
1896 		PRM_DEBUG(init_io_pool_cnt);
1897 	}
1898 #endif
1899 	/*
1900 	 * Mangle the brand string etc.
1901 	 */
1902 	cpuid_pass3(CPU);
1903 
1904 #if defined(__amd64)
1905 
1906 	/*
1907 	 * Create the device arena for toxic (to dtrace/kmdb) mappings.
1908 	 */
1909 	device_arena = vmem_create("device", (void *)toxic_addr,
1910 	    toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
1911 
1912 #else	/* __i386 */
1913 
1914 	/*
1915 	 * allocate the bit map that tracks toxic pages
1916 	 */
1917 	toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase));
1918 	PRM_DEBUG(toxic_bit_map_len);
1919 	toxic_bit_map =
1920 	    kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP);
1921 	ASSERT(toxic_bit_map != NULL);
1922 	PRM_DEBUG(toxic_bit_map);
1923 
1924 #endif	/* __i386 */
1925 
1926 
1927 	/*
1928 	 * Now that we've got more VA, as well as the ability to allocate from
1929 	 * it, tell the debugger.
1930 	 */
1931 	if (boothowto & RB_DEBUG)
1932 		kdi_dvec_memavail();
1933 
1934 	/*
1935 	 * The following code installs a special page fault handler (#pf)
1936 	 * to work around a pentium bug.
1937 	 */
1938 #if !defined(__amd64) && !defined(__xpv)
1939 	if (x86_type == X86_TYPE_P5) {
1940 		desctbr_t idtr;
1941 		gate_desc_t *newidt;
1942 
1943 		if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL)
1944 			panic("failed to install pentium_pftrap");
1945 
1946 		bcopy(idt0, newidt, NIDT * sizeof (*idt0));
1947 		set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap,
1948 		    KCS_SEL, SDT_SYSIGT, TRP_KPL, 0);
1949 
1950 		(void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE,
1951 		    PROT_READ | PROT_EXEC);
1952 
1953 		CPU->cpu_idt = newidt;
1954 		idtr.dtr_base = (uintptr_t)CPU->cpu_idt;
1955 		idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1;
1956 		wr_idtr(&idtr);
1957 	}
1958 #endif	/* !__amd64 */
1959 
1960 #if !defined(__xpv)
1961 	/*
1962 	 * Map page pfn=0 for drivers, such as kd, that need to pick up
1963 	 * parameters left there by controllers/BIOS.
1964 	 */
1965 	PRM_POINT("setup up p0_va");
1966 	p0_va = i86devmap(0, 1, PROT_READ);
1967 	PRM_DEBUG(p0_va);
1968 #endif
1969 
1970 	cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
1971 	    physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
1972 
1973 	/*
1974 	 * disable automatic large pages for small memory systems or
1975 	 * when the disable flag is set.
1976 	 *
1977 	 * Do not yet consider page sizes larger than 2m/4m.
1978 	 */
1979 	if (!auto_lpg_disable && mmu.max_page_level > 0) {
1980 		max_uheap_lpsize = LEVEL_SIZE(1);
1981 		max_ustack_lpsize = LEVEL_SIZE(1);
1982 		max_privmap_lpsize = LEVEL_SIZE(1);
1983 		max_uidata_lpsize = LEVEL_SIZE(1);
1984 		max_utext_lpsize = LEVEL_SIZE(1);
1985 		max_shm_lpsize = LEVEL_SIZE(1);
1986 	}
1987 	if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 ||
1988 	    auto_lpg_disable) {
1989 		use_brk_lpg = 0;
1990 		use_stk_lpg = 0;
1991 	}
1992 	mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level);
1993 
1994 	PRM_POINT("Calling hat_init_finish()...");
1995 	hat_init_finish();
1996 	PRM_POINT("hat_init_finish() done");
1997 
1998 	/*
1999 	 * Initialize the segkp segment type.
2000 	 */
2001 	rw_enter(&kas.a_lock, RW_WRITER);
2002 	PRM_POINT("Attaching segkp");
2003 	if (segkp_fromheap) {
2004 		segkp->s_as = &kas;
2005 	} else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
2006 	    segkp) < 0) {
2007 		panic("startup: cannot attach segkp");
2008 		/*NOTREACHED*/
2009 	}
2010 	PRM_POINT("Doing segkp_create()");
2011 	if (segkp_create(segkp) != 0) {
2012 		panic("startup: segkp_create failed");
2013 		/*NOTREACHED*/
2014 	}
2015 	PRM_DEBUG(segkp);
2016 	rw_exit(&kas.a_lock);
2017 
2018 	/*
2019 	 * kpm segment
2020 	 */
2021 	segmap_kpm = 0;
2022 	if (kpm_desired) {
2023 		kpm_init();
2024 		kpm_enable = 1;
2025 	}
2026 
2027 	/*
2028 	 * Now create segmap segment.
2029 	 */
2030 	rw_enter(&kas.a_lock, RW_WRITER);
2031 	if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) {
2032 		panic("cannot attach segmap");
2033 		/*NOTREACHED*/
2034 	}
2035 	PRM_DEBUG(segmap);
2036 
2037 	a.prot = PROT_READ | PROT_WRITE;
2038 	a.shmsize = 0;
2039 	a.nfreelist = segmapfreelists;
2040 
2041 	if (segmap_create(segmap, (caddr_t)&a) != 0)
2042 		panic("segmap_create segmap");
2043 	rw_exit(&kas.a_lock);
2044 
2045 	setup_vaddr_for_ppcopy(CPU);
2046 
2047 	segdev_init();
2048 #if defined(__xpv)
2049 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2050 #endif
2051 		pmem_init();
2052 
2053 	PRM_POINT("startup_vm() done");
2054 }
2055 
2056 /*
2057  * Load a tod module for the non-standard tod part found on this system.
2058  */
2059 static void
2060 load_tod_module(char *todmod)
2061 {
2062 	if (modload("tod", todmod) == -1)
2063 		halt("Can't load TOD module");
2064 }
2065 
2066 static void
2067 startup_end(void)
2068 {
2069 	int i;
2070 	extern void setx86isalist(void);
2071 	extern void cpu_event_init(void);
2072 
2073 	PRM_POINT("startup_end() starting...");
2074 
2075 	/*
2076 	 * Perform tasks that get done after most of the VM
2077 	 * initialization has been done but before the clock
2078 	 * and other devices get started.
2079 	 */
2080 	kern_setup1();
2081 
2082 	/*
2083 	 * Perform CPC initialization for this CPU.
2084 	 */
2085 	kcpc_hw_init(CPU);
2086 
2087 	/*
2088 	 * Initialize cpu event framework.
2089 	 */
2090 	cpu_event_init();
2091 
2092 #if defined(OPTERON_WORKAROUND_6323525)
2093 	if (opteron_workaround_6323525)
2094 		patch_workaround_6323525();
2095 #endif
2096 	/*
2097 	 * If needed, load TOD module now so that ddi_get_time(9F) etc. work
2098 	 * (For now, "needed" is defined as set tod_module_name in /etc/system)
2099 	 */
2100 	if (tod_module_name != NULL) {
2101 		PRM_POINT("load_tod_module()");
2102 		load_tod_module(tod_module_name);
2103 	}
2104 
2105 #if defined(__xpv)
2106 	/*
2107 	 * Forceload interposing TOD module for the hypervisor.
2108 	 */
2109 	PRM_POINT("load_tod_module()");
2110 	load_tod_module("xpvtod");
2111 #endif
2112 
2113 	/*
2114 	 * Configure the system.
2115 	 */
2116 	PRM_POINT("Calling configure()...");
2117 	configure();		/* set up devices */
2118 	PRM_POINT("configure() done");
2119 
2120 	/*
2121 	 * Set the isa_list string to the defined instruction sets we
2122 	 * support.
2123 	 */
2124 	setx86isalist();
2125 	cpu_intr_alloc(CPU, NINTR_THREADS);
2126 	psm_install();
2127 
2128 	/*
2129 	 * We're done with bootops.  We don't unmap the bootstrap yet because
2130 	 * we're still using bootsvcs.
2131 	 */
2132 	PRM_POINT("NULLing out bootops");
2133 	*bootopsp = (struct bootops *)NULL;
2134 	bootops = (struct bootops *)NULL;
2135 
2136 #if defined(__xpv)
2137 	ec_init_debug_irq();
2138 	xs_domu_init();
2139 #endif
2140 
2141 #if defined(__amd64) && !defined(__xpv)
2142 	/*
2143 	 * Intel IOMMU has been setup/initialized in ddi_impl.c
2144 	 * Start it up now.
2145 	 */
2146 	immu_startup();
2147 #endif
2148 
2149 	PRM_POINT("Enabling interrupts");
2150 	(*picinitf)();
2151 	sti();
2152 #if defined(__xpv)
2153 	ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0);
2154 	xen_late_startup();
2155 #endif
2156 
2157 	(void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
2158 	    "softlevel1", NULL, NULL); /* XXX to be moved later */
2159 
2160 	/*
2161 	 * Register these software interrupts for ddi timer.
2162 	 * Software interrupts up to the level 10 are supported.
2163 	 */
2164 	for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
2165 		char name[sizeof ("timer_softintr") + 2];
2166 		(void) sprintf(name, "timer_softintr%02d", i);
2167 		(void) add_avsoftintr((void *)&softlevel_hdl[i-1], i,
2168 		    (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL);
2169 	}
2170 
2171 #if !defined(__xpv)
2172 	if (modload("drv", "amd_iommu") < 0) {
2173 		PRM_POINT("No AMD IOMMU present\n");
2174 	} else if (ddi_hold_installed_driver(ddi_name_to_major(
2175 	    "amd_iommu")) == NULL) {
2176 		prom_printf("ERROR: failed to attach AMD IOMMU\n");
2177 	}
2178 #endif
2179 	post_startup_cpu_fixups();
2180 
2181 	PRM_POINT("startup_end() done");
2182 }
2183 
2184 /*
2185  * Don't remove the following 2 variables.  They are necessary
2186  * for reading the hostid from the legacy file (/kernel/misc/sysinit).
2187  */
2188 char *_hs1107 = hw_serial;
2189 ulong_t  _bdhs34;
2190 
2191 void
2192 post_startup(void)
2193 {
2194 	extern void cpupm_init(cpu_t *);
2195 	extern void cpu_event_init_cpu(cpu_t *);
2196 
2197 	/*
2198 	 * Set the system wide, processor-specific flags to be passed
2199 	 * to userland via the aux vector for performance hints and
2200 	 * instruction set extensions.
2201 	 */
2202 	bind_hwcap();
2203 
2204 #ifdef __xpv
2205 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2206 #endif
2207 	{
2208 #if defined(__xpv)
2209 		xpv_panic_init();
2210 #else
2211 		/*
2212 		 * Startup the memory scrubber.
2213 		 * XXPV	This should be running somewhere ..
2214 		 */
2215 		if (get_hwenv() != HW_XEN_HVM)
2216 			memscrub_init();
2217 #endif
2218 	}
2219 
2220 	/*
2221 	 * Complete CPU module initialization
2222 	 */
2223 	cmi_post_startup();
2224 
2225 	/*
2226 	 * Perform forceloading tasks for /etc/system.
2227 	 */
2228 	(void) mod_sysctl(SYS_FORCELOAD, NULL);
2229 
2230 	/*
2231 	 * ON4.0: Force /proc module in until clock interrupt handle fixed
2232 	 * ON4.0: This must be fixed or restated in /etc/systems.
2233 	 */
2234 	(void) modload("fs", "procfs");
2235 
2236 	(void) i_ddi_attach_hw_nodes("pit_beep");
2237 
2238 #if defined(__i386)
2239 	/*
2240 	 * Check for required functional Floating Point hardware,
2241 	 * unless FP hardware explicitly disabled.
2242 	 */
2243 	if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO))
2244 		halt("No working FP hardware found");
2245 #endif
2246 
2247 	maxmem = freemem;
2248 
2249 	cpu_event_init_cpu(CPU);
2250 	cpupm_init(CPU);
2251 	(void) mach_cpu_create_device_node(CPU, NULL);
2252 
2253 	pg_init();
2254 }
2255 
2256 static int
2257 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr)
2258 {
2259 	return ((pp->p_pagenum >= btop(low_addr)) &&
2260 	    (pp->p_pagenum < btopr(high_addr)));
2261 }
2262 
2263 void
2264 release_bootstrap(void)
2265 {
2266 	int root_is_ramdisk;
2267 	page_t *pp;
2268 	extern void kobj_boot_unmountroot(void);
2269 	extern dev_t rootdev;
2270 #if !defined(__xpv)
2271 	pfn_t	pfn;
2272 #endif
2273 
2274 	/* unmount boot ramdisk and release kmem usage */
2275 	kobj_boot_unmountroot();
2276 
2277 	/*
2278 	 * We're finished using the boot loader so free its pages.
2279 	 */
2280 	PRM_POINT("Unmapping lower boot pages");
2281 
2282 	clear_boot_mappings(0, _userlimit);
2283 
2284 	postbootkernelbase = kernelbase;
2285 
2286 	/*
2287 	 * If root isn't on ramdisk, destroy the hardcoded
2288 	 * ramdisk node now and release the memory. Else,
2289 	 * ramdisk memory is kept in rd_pages.
2290 	 */
2291 	root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
2292 	if (!root_is_ramdisk) {
2293 		dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
2294 		ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
2295 		ndi_rele_devi(dip);	/* held from ddi_find_devinfo */
2296 		(void) ddi_remove_child(dip, 0);
2297 	}
2298 
2299 	PRM_POINT("Releasing boot pages");
2300 	while (bootpages) {
2301 		extern uint64_t ramdisk_start, ramdisk_end;
2302 		pp = bootpages;
2303 		bootpages = pp->p_next;
2304 
2305 
2306 		/* Keep pages for the lower 64K */
2307 		if (pp_in_range(pp, 0, 0x40000)) {
2308 			pp->p_next = lower_pages;
2309 			lower_pages = pp;
2310 			lower_pages_count++;
2311 			continue;
2312 		}
2313 
2314 
2315 		if (root_is_ramdisk && pp_in_range(pp, ramdisk_start,
2316 		    ramdisk_end)) {
2317 			pp->p_next = rd_pages;
2318 			rd_pages = pp;
2319 			continue;
2320 		}
2321 		pp->p_next = (struct page *)0;
2322 		pp->p_prev = (struct page *)0;
2323 		PP_CLRBOOTPAGES(pp);
2324 		page_free(pp, 1);
2325 	}
2326 	PRM_POINT("Boot pages released");
2327 
2328 #if !defined(__xpv)
2329 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */
2330 	/*
2331 	 * Find 1 page below 1 MB so that other processors can boot up or
2332 	 * so that any processor can resume.
2333 	 * Make sure it has a kernel VA as well as a 1:1 mapping.
2334 	 * We should have just free'd one up.
2335 	 */
2336 
2337 	/*
2338 	 * 0x10 pages is 64K.  Leave the bottom 64K alone
2339 	 * for BIOS.
2340 	 */
2341 	for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) {
2342 		if (page_numtopp_alloc(pfn) == NULL)
2343 			continue;
2344 		rm_platter_va = i86devmap(pfn, 1,
2345 		    PROT_READ | PROT_WRITE | PROT_EXEC);
2346 		rm_platter_pa = ptob(pfn);
2347 		hat_devload(kas.a_hat,
2348 		    (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
2349 		    pfn, PROT_READ | PROT_WRITE | PROT_EXEC,
2350 		    HAT_LOAD_NOCONSIST);
2351 		break;
2352 	}
2353 	if (pfn == btop(1*1024*1024) && use_mp)
2354 		panic("No page below 1M available for starting "
2355 		    "other processors or for resuming from system-suspend");
2356 #endif	/* !__xpv */
2357 }
2358 
2359 /*
2360  * Initialize the platform-specific parts of a page_t.
2361  */
2362 void
2363 add_physmem_cb(page_t *pp, pfn_t pnum)
2364 {
2365 	pp->p_pagenum = pnum;
2366 	pp->p_mapping = NULL;
2367 	pp->p_embed = 0;
2368 	pp->p_share = 0;
2369 	pp->p_mlentry = 0;
2370 }
2371 
2372 /*
2373  * kphysm_init() initializes physical memory.
2374  */
2375 static pgcnt_t
2376 kphysm_init(
2377 	page_t *pp,
2378 	pgcnt_t npages)
2379 {
2380 	struct memlist	*pmem;
2381 	struct memseg	*cur_memseg;
2382 	pfn_t		base_pfn;
2383 	pfn_t		end_pfn;
2384 	pgcnt_t		num;
2385 	pgcnt_t		pages_done = 0;
2386 	uint64_t	addr;
2387 	uint64_t	size;
2388 	extern pfn_t	ddiphysmin;
2389 	extern int	mnode_xwa;
2390 	int		ms = 0, me = 0;
2391 
2392 	ASSERT(page_hash != NULL && page_hashsz != 0);
2393 
2394 	cur_memseg = memseg_base;
2395 	for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) {
2396 		/*
2397 		 * In a 32 bit kernel can't use higher memory if we're
2398 		 * not booting in PAE mode. This check takes care of that.
2399 		 */
2400 		addr = pmem->ml_address;
2401 		size = pmem->ml_size;
2402 		if (btop(addr) > physmax)
2403 			continue;
2404 
2405 		/*
2406 		 * align addr and size - they may not be at page boundaries
2407 		 */
2408 		if ((addr & MMU_PAGEOFFSET) != 0) {
2409 			addr += MMU_PAGEOFFSET;
2410 			addr &= ~(uint64_t)MMU_PAGEOFFSET;
2411 			size -= addr - pmem->ml_address;
2412 		}
2413 
2414 		/* only process pages below or equal to physmax */
2415 		if ((btop(addr + size) - 1) > physmax)
2416 			size = ptob(physmax - btop(addr) + 1);
2417 
2418 		num = btop(size);
2419 		if (num == 0)
2420 			continue;
2421 
2422 		if (num > npages)
2423 			num = npages;
2424 
2425 		npages -= num;
2426 		pages_done += num;
2427 		base_pfn = btop(addr);
2428 
2429 		if (prom_debug)
2430 			prom_printf("MEMSEG addr=0x%" PRIx64
2431 			    " pgs=0x%lx pfn 0x%lx-0x%lx\n",
2432 			    addr, num, base_pfn, base_pfn + num);
2433 
2434 		/*
2435 		 * Ignore pages below ddiphysmin to simplify ddi memory
2436 		 * allocation with non-zero addr_lo requests.
2437 		 */
2438 		if (base_pfn < ddiphysmin) {
2439 			if (base_pfn + num <= ddiphysmin)
2440 				continue;
2441 			pp += (ddiphysmin - base_pfn);
2442 			num -= (ddiphysmin - base_pfn);
2443 			base_pfn = ddiphysmin;
2444 		}
2445 
2446 		/*
2447 		 * mnode_xwa is greater than 1 when large pages regions can
2448 		 * cross memory node boundaries. To prevent the formation
2449 		 * of these large pages, configure the memsegs based on the
2450 		 * memory node ranges which had been made non-contiguous.
2451 		 */
2452 		if (mnode_xwa > 1) {
2453 
2454 			end_pfn = base_pfn + num - 1;
2455 			ms = PFN_2_MEM_NODE(base_pfn);
2456 			me = PFN_2_MEM_NODE(end_pfn);
2457 
2458 			if (ms != me) {
2459 				/*
2460 				 * current range spans more than 1 memory node.
2461 				 * Set num to only the pfn range in the start
2462 				 * memory node.
2463 				 */
2464 				num = mem_node_config[ms].physmax - base_pfn
2465 				    + 1;
2466 				ASSERT(end_pfn > mem_node_config[ms].physmax);
2467 			}
2468 		}
2469 
2470 		for (;;) {
2471 			/*
2472 			 * Build the memsegs entry
2473 			 */
2474 			cur_memseg->pages = pp;
2475 			cur_memseg->epages = pp + num;
2476 			cur_memseg->pages_base = base_pfn;
2477 			cur_memseg->pages_end = base_pfn + num;
2478 
2479 			/*
2480 			 * Insert into memseg list in decreasing pfn range
2481 			 * order. Low memory is typically more fragmented such
2482 			 * that this ordering keeps the larger ranges at the
2483 			 * front of the list for code that searches memseg.
2484 			 * This ASSERTS that the memsegs coming in from boot
2485 			 * are in increasing physical address order and not
2486 			 * contiguous.
2487 			 */
2488 			if (memsegs != NULL) {
2489 				ASSERT(cur_memseg->pages_base >=
2490 				    memsegs->pages_end);
2491 				cur_memseg->next = memsegs;
2492 			}
2493 			memsegs = cur_memseg;
2494 
2495 			/*
2496 			 * add_physmem() initializes the PSM part of the page
2497 			 * struct by calling the PSM back with add_physmem_cb().
2498 			 * In addition it coalesces pages into larger pages as
2499 			 * it initializes them.
2500 			 */
2501 			add_physmem(pp, num, base_pfn);
2502 			cur_memseg++;
2503 			availrmem_initial += num;
2504 			availrmem += num;
2505 
2506 			pp += num;
2507 			if (ms >= me)
2508 				break;
2509 
2510 			/* process next memory node range */
2511 			ms++;
2512 			base_pfn = mem_node_config[ms].physbase;
2513 			num = MIN(mem_node_config[ms].physmax,
2514 			    end_pfn) - base_pfn + 1;
2515 		}
2516 	}
2517 
2518 	PRM_DEBUG(availrmem_initial);
2519 	PRM_DEBUG(availrmem);
2520 	PRM_DEBUG(freemem);
2521 	build_pfn_hash();
2522 	return (pages_done);
2523 }
2524 
2525 /*
2526  * Kernel VM initialization.
2527  */
2528 static void
2529 kvm_init(void)
2530 {
2531 	ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
2532 
2533 	/*
2534 	 * Put the kernel segments in kernel address space.
2535 	 */
2536 	rw_enter(&kas.a_lock, RW_WRITER);
2537 	as_avlinit(&kas);
2538 
2539 	(void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
2540 	(void) segkmem_create(&ktextseg);
2541 
2542 	(void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
2543 	(void) segkmem_create(&kvalloc);
2544 
2545 	(void) seg_attach(&kas, kernelheap,
2546 	    ekernelheap - kernelheap, &kvseg);
2547 	(void) segkmem_create(&kvseg);
2548 
2549 	if (core_size > 0) {
2550 		PRM_POINT("attaching kvseg_core");
2551 		(void) seg_attach(&kas, (caddr_t)core_base, core_size,
2552 		    &kvseg_core);
2553 		(void) segkmem_create(&kvseg_core);
2554 	}
2555 
2556 	if (segziosize > 0) {
2557 		PRM_POINT("attaching segzio");
2558 		(void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2559 		    &kzioseg);
2560 		(void) segkmem_zio_create(&kzioseg);
2561 
2562 		/* create zio area covering new segment */
2563 		segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2564 	}
2565 
2566 	(void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2567 	(void) segkmem_create(&kdebugseg);
2568 
2569 	rw_exit(&kas.a_lock);
2570 
2571 	/*
2572 	 * Ensure that the red zone at kernelbase is never accessible.
2573 	 */
2574 	PRM_POINT("protecting redzone");
2575 	(void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
2576 
2577 	/*
2578 	 * Make the text writable so that it can be hot patched by DTrace.
2579 	 */
2580 	(void) as_setprot(&kas, s_text, e_modtext - s_text,
2581 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2582 
2583 	/*
2584 	 * Make data writable until end.
2585 	 */
2586 	(void) as_setprot(&kas, s_data, e_moddata - s_data,
2587 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2588 }
2589 
2590 #ifndef __xpv
2591 /*
2592  * Solaris adds an entry for Write Combining caching to the PAT
2593  */
2594 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
2595 
2596 void
2597 pat_sync(void)
2598 {
2599 	ulong_t	cr0, cr0_orig, cr4;
2600 
2601 	if (!(x86_feature & X86_PAT))
2602 		return;
2603 	cr0_orig = cr0 = getcr0();
2604 	cr4 = getcr4();
2605 
2606 	/* disable caching and flush all caches and TLBs */
2607 	cr0 |= CR0_CD;
2608 	cr0 &= ~CR0_NW;
2609 	setcr0(cr0);
2610 	invalidate_cache();
2611 	if (cr4 & CR4_PGE) {
2612 		setcr4(cr4 & ~(ulong_t)CR4_PGE);
2613 		setcr4(cr4);
2614 	} else {
2615 		reload_cr3();
2616 	}
2617 
2618 	/* add our entry to the PAT */
2619 	wrmsr(REG_PAT, pat_attr_reg);
2620 
2621 	/* flush TLBs and cache again, then reenable cr0 caching */
2622 	if (cr4 & CR4_PGE) {
2623 		setcr4(cr4 & ~(ulong_t)CR4_PGE);
2624 		setcr4(cr4);
2625 	} else {
2626 		reload_cr3();
2627 	}
2628 	invalidate_cache();
2629 	setcr0(cr0_orig);
2630 }
2631 
2632 #endif /* !__xpv */
2633 
2634 #if defined(_SOFT_HOSTID)
2635 /*
2636  * On platforms that do not have a hardware serial number, attempt
2637  * to set one based on the contents of /etc/hostid.  If this file does
2638  * not exist, assume that we are to generate a new hostid and set
2639  * it in the kernel, for subsequent saving by a userland process
2640  * once the system is up and the root filesystem is mounted r/w.
2641  *
2642  * In order to gracefully support upgrade on OpenSolaris, if
2643  * /etc/hostid does not exist, we will attempt to get a serial number
2644  * using the legacy method (/kernel/misc/sysinit).
2645  *
2646  * In an attempt to make the hostid less prone to abuse
2647  * (for license circumvention, etc), we store it in /etc/hostid
2648  * in rot47 format.
2649  */
2650 extern volatile unsigned long tenmicrodata;
2651 static int atoi(char *);
2652 
2653 static int32_t
2654 set_soft_hostid(void)
2655 {
2656 	struct _buf *file;
2657 	char tokbuf[MAXNAMELEN];
2658 	token_t token;
2659 	int done = 0;
2660 	u_longlong_t tmp;
2661 	int i;
2662 	int32_t hostid = (int32_t)HW_INVALID_HOSTID;
2663 	unsigned char *c;
2664 	hrtime_t tsc;
2665 
2666 	/*
2667 	 * If /etc/hostid file not found, we'd like to get a pseudo
2668 	 * random number to use at the hostid.  A nice way to do this
2669 	 * is to read the real time clock.  To remain xen-compatible,
2670 	 * we can't poke the real hardware, so we use tsc_read() to
2671 	 * read the real time clock.  However, there is an ominous
2672 	 * warning in tsc_read that says it can return zero, so we
2673 	 * deal with that possibility by falling back to using the
2674 	 * (hopefully random enough) value in tenmicrodata.
2675 	 */
2676 
2677 	if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) {
2678 		/*
2679 		 * hostid file not found - try to load sysinit module
2680 		 * and see if it has a nonzero hostid value...use that
2681 		 * instead of generating a new hostid here if so.
2682 		 */
2683 		if ((i = modload("misc", "sysinit")) != -1) {
2684 			if (strlen(hw_serial) > 0)
2685 				hostid = (int32_t)atoi(hw_serial);
2686 			(void) modunload(i);
2687 		}
2688 		if (hostid == HW_INVALID_HOSTID) {
2689 			tsc = tsc_read();
2690 			if (tsc == 0)	/* tsc_read can return zero sometimes */
2691 				hostid = (int32_t)tenmicrodata & 0x0CFFFFF;
2692 			else
2693 				hostid = (int32_t)tsc & 0x0CFFFFF;
2694 		}
2695 	} else {
2696 		/* hostid file found */
2697 		while (!done) {
2698 			token = kobj_lex(file, tokbuf, sizeof (tokbuf));
2699 
2700 			switch (token) {
2701 			case POUND:
2702 				/*
2703 				 * skip comments
2704 				 */
2705 				kobj_find_eol(file);
2706 				break;
2707 			case STRING:
2708 				/*
2709 				 * un-rot47 - obviously this
2710 				 * nonsense is ascii-specific
2711 				 */
2712 				for (c = (unsigned char *)tokbuf;
2713 				    *c != '\0'; c++) {
2714 					*c += 47;
2715 					if (*c > '~')
2716 						*c -= 94;
2717 					else if (*c < '!')
2718 						*c += 94;
2719 				}
2720 				/*
2721 				 * now we should have a real number
2722 				 */
2723 
2724 				if (kobj_getvalue(tokbuf, &tmp) != 0)
2725 					kobj_file_err(CE_WARN, file,
2726 					    "Bad value %s for hostid",
2727 					    tokbuf);
2728 				else
2729 					hostid = (int32_t)tmp;
2730 
2731 				break;
2732 			case EOF:
2733 				done = 1;
2734 				/* FALLTHROUGH */
2735 			case NEWLINE:
2736 				kobj_newline(file);
2737 				break;
2738 			default:
2739 				break;
2740 
2741 			}
2742 		}
2743 		if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */
2744 			kobj_file_err(CE_WARN, file,
2745 			    "hostid missing or corrupt");
2746 
2747 		kobj_close_file(file);
2748 	}
2749 	/*
2750 	 * hostid is now the value read from /etc/hostid, or the
2751 	 * new hostid we generated in this routine or HW_INVALID_HOSTID if not
2752 	 * set.
2753 	 */
2754 	return (hostid);
2755 }
2756 
2757 static int
2758 atoi(char *p)
2759 {
2760 	int i = 0;
2761 
2762 	while (*p != '\0')
2763 		i = 10 * i + (*p++ - '0');
2764 
2765 	return (i);
2766 }
2767 
2768 #endif /* _SOFT_HOSTID */
2769 
2770 void
2771 get_system_configuration(void)
2772 {
2773 	char	prop[32];
2774 	u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
2775 
2776 	if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) ||
2777 	    BOP_GETPROP(bootops, "nodes", prop) < 0 ||
2778 	    kobj_getvalue(prop, &nodes_ll) == -1 ||
2779 	    nodes_ll > MAXNODES ||
2780 	    BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) ||
2781 	    BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 ||
2782 	    kobj_getvalue(prop, &cpus_pernode_ll) == -1) {
2783 		system_hardware.hd_nodes = 1;
2784 		system_hardware.hd_cpus_per_node = 0;
2785 	} else {
2786 		system_hardware.hd_nodes = (int)nodes_ll;
2787 		system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
2788 	}
2789 
2790 	if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) ||
2791 	    BOP_GETPROP(bootops, "kernelbase", prop) < 0 ||
2792 	    kobj_getvalue(prop, &lvalue) == -1)
2793 		eprom_kernelbase = NULL;
2794 	else
2795 		eprom_kernelbase = (uintptr_t)lvalue;
2796 
2797 	if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) ||
2798 	    BOP_GETPROP(bootops, "segmapsize", prop) < 0 ||
2799 	    kobj_getvalue(prop, &lvalue) == -1)
2800 		segmapsize = SEGMAPDEFAULT;
2801 	else
2802 		segmapsize = (uintptr_t)lvalue;
2803 
2804 	if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) ||
2805 	    BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 ||
2806 	    kobj_getvalue(prop, &lvalue) == -1)
2807 		segmapfreelists = 0;	/* use segmap driver default */
2808 	else
2809 		segmapfreelists = (int)lvalue;
2810 
2811 	/* physmem used to be here, but moved much earlier to fakebop.c */
2812 }
2813 
2814 /*
2815  * Add to a memory list.
2816  * start = start of new memory segment
2817  * len = length of new memory segment in bytes
2818  * new = pointer to a new struct memlist
2819  * memlistp = memory list to which to add segment.
2820  */
2821 void
2822 memlist_add(
2823 	uint64_t start,
2824 	uint64_t len,
2825 	struct memlist *new,
2826 	struct memlist **memlistp)
2827 {
2828 	struct memlist *cur;
2829 	uint64_t end = start + len;
2830 
2831 	new->ml_address = start;
2832 	new->ml_size = len;
2833 
2834 	cur = *memlistp;
2835 
2836 	while (cur) {
2837 		if (cur->ml_address >= end) {
2838 			new->ml_next = cur;
2839 			*memlistp = new;
2840 			new->ml_prev = cur->ml_prev;
2841 			cur->ml_prev = new;
2842 			return;
2843 		}
2844 		ASSERT(cur->ml_address + cur->ml_size <= start);
2845 		if (cur->ml_next == NULL) {
2846 			cur->ml_next = new;
2847 			new->ml_prev = cur;
2848 			new->ml_next = NULL;
2849 			return;
2850 		}
2851 		memlistp = &cur->ml_next;
2852 		cur = cur->ml_next;
2853 	}
2854 }
2855 
2856 void
2857 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
2858 {
2859 	size_t tsize = e_modtext - modtext;
2860 	size_t dsize = e_moddata - moddata;
2861 
2862 	*text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
2863 	    1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
2864 	*data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
2865 	    1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
2866 }
2867 
2868 caddr_t
2869 kobj_text_alloc(vmem_t *arena, size_t size)
2870 {
2871 	return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
2872 }
2873 
2874 /*ARGSUSED*/
2875 caddr_t
2876 kobj_texthole_alloc(caddr_t addr, size_t size)
2877 {
2878 	panic("unexpected call to kobj_texthole_alloc()");
2879 	/*NOTREACHED*/
2880 	return (0);
2881 }
2882 
2883 /*ARGSUSED*/
2884 void
2885 kobj_texthole_free(caddr_t addr, size_t size)
2886 {
2887 	panic("unexpected call to kobj_texthole_free()");
2888 }
2889 
2890 /*
2891  * This is called just after configure() in startup().
2892  *
2893  * The ISALIST concept is a bit hopeless on Intel, because
2894  * there's no guarantee of an ever-more-capable processor
2895  * given that various parts of the instruction set may appear
2896  * and disappear between different implementations.
2897  *
2898  * While it would be possible to correct it and even enhance
2899  * it somewhat, the explicit hardware capability bitmask allows
2900  * more flexibility.
2901  *
2902  * So, we just leave this alone.
2903  */
2904 void
2905 setx86isalist(void)
2906 {
2907 	char *tp;
2908 	size_t len;
2909 	extern char *isa_list;
2910 
2911 #define	TBUFSIZE	1024
2912 
2913 	tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
2914 	*tp = '\0';
2915 
2916 #if defined(__amd64)
2917 	(void) strcpy(tp, "amd64 ");
2918 #endif
2919 
2920 	switch (x86_vendor) {
2921 	case X86_VENDOR_Intel:
2922 	case X86_VENDOR_AMD:
2923 	case X86_VENDOR_TM:
2924 		if (x86_feature & X86_CMOV) {
2925 			/*
2926 			 * Pentium Pro or later
2927 			 */
2928 			(void) strcat(tp, "pentium_pro");
2929 			(void) strcat(tp, x86_feature & X86_MMX ?
2930 			    "+mmx pentium_pro " : " ");
2931 		}
2932 		/*FALLTHROUGH*/
2933 	case X86_VENDOR_Cyrix:
2934 		/*
2935 		 * The Cyrix 6x86 does not have any Pentium features
2936 		 * accessible while not at privilege level 0.
2937 		 */
2938 		if (x86_feature & X86_CPUID) {
2939 			(void) strcat(tp, "pentium");
2940 			(void) strcat(tp, x86_feature & X86_MMX ?
2941 			    "+mmx pentium " : " ");
2942 		}
2943 		break;
2944 	default:
2945 		break;
2946 	}
2947 	(void) strcat(tp, "i486 i386 i86");
2948 	len = strlen(tp) + 1;   /* account for NULL at end of string */
2949 	isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
2950 	kmem_free(tp, TBUFSIZE);
2951 
2952 #undef TBUFSIZE
2953 }
2954 
2955 
2956 #ifdef __amd64
2957 
2958 void *
2959 device_arena_alloc(size_t size, int vm_flag)
2960 {
2961 	return (vmem_alloc(device_arena, size, vm_flag));
2962 }
2963 
2964 void
2965 device_arena_free(void *vaddr, size_t size)
2966 {
2967 	vmem_free(device_arena, vaddr, size);
2968 }
2969 
2970 #else /* __i386 */
2971 
2972 void *
2973 device_arena_alloc(size_t size, int vm_flag)
2974 {
2975 	caddr_t	vaddr;
2976 	uintptr_t v;
2977 	size_t	start;
2978 	size_t	end;
2979 
2980 	vaddr = vmem_alloc(heap_arena, size, vm_flag);
2981 	if (vaddr == NULL)
2982 		return (NULL);
2983 
2984 	v = (uintptr_t)vaddr;
2985 	ASSERT(v >= kernelbase);
2986 	ASSERT(v + size <= valloc_base);
2987 
2988 	start = btop(v - kernelbase);
2989 	end = btop(v + size - 1 - kernelbase);
2990 	ASSERT(start < toxic_bit_map_len);
2991 	ASSERT(end < toxic_bit_map_len);
2992 
2993 	while (start <= end) {
2994 		BT_ATOMIC_SET(toxic_bit_map, start);
2995 		++start;
2996 	}
2997 	return (vaddr);
2998 }
2999 
3000 void
3001 device_arena_free(void *vaddr, size_t size)
3002 {
3003 	uintptr_t v = (uintptr_t)vaddr;
3004 	size_t	start;
3005 	size_t	end;
3006 
3007 	ASSERT(v >= kernelbase);
3008 	ASSERT(v + size <= valloc_base);
3009 
3010 	start = btop(v - kernelbase);
3011 	end = btop(v + size - 1 - kernelbase);
3012 	ASSERT(start < toxic_bit_map_len);
3013 	ASSERT(end < toxic_bit_map_len);
3014 
3015 	while (start <= end) {
3016 		ASSERT(BT_TEST(toxic_bit_map, start) != 0);
3017 		BT_ATOMIC_CLEAR(toxic_bit_map, start);
3018 		++start;
3019 	}
3020 	vmem_free(heap_arena, vaddr, size);
3021 }
3022 
3023 /*
3024  * returns 1st address in range that is in device arena, or NULL
3025  * if len is not NULL it returns the length of the toxic range
3026  */
3027 void *
3028 device_arena_contains(void *vaddr, size_t size, size_t *len)
3029 {
3030 	uintptr_t v = (uintptr_t)vaddr;
3031 	uintptr_t eaddr = v + size;
3032 	size_t start;
3033 	size_t end;
3034 
3035 	/*
3036 	 * if called very early by kmdb, just return NULL
3037 	 */
3038 	if (toxic_bit_map == NULL)
3039 		return (NULL);
3040 
3041 	/*
3042 	 * First check if we're completely outside the bitmap range.
3043 	 */
3044 	if (v >= valloc_base || eaddr < kernelbase)
3045 		return (NULL);
3046 
3047 	/*
3048 	 * Trim ends of search to look at only what the bitmap covers.
3049 	 */
3050 	if (v < kernelbase)
3051 		v = kernelbase;
3052 	start = btop(v - kernelbase);
3053 	end = btop(eaddr - kernelbase);
3054 	if (end >= toxic_bit_map_len)
3055 		end = toxic_bit_map_len;
3056 
3057 	if (bt_range(toxic_bit_map, &start, &end, end) == 0)
3058 		return (NULL);
3059 
3060 	v = kernelbase + ptob(start);
3061 	if (len != NULL)
3062 		*len = ptob(end - start);
3063 	return ((void *)v);
3064 }
3065 
3066 #endif	/* __i386 */
3067