xref: /titanic_50/usr/src/uts/i86pc/os/startup.c (revision 1d03c31e0733adea0edef54f0d5d2ea9639ecd2a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/t_lock.h>
30 #include <sys/param.h>
31 #include <sys/sysmacros.h>
32 #include <sys/signal.h>
33 #include <sys/systm.h>
34 #include <sys/user.h>
35 #include <sys/mman.h>
36 #include <sys/vm.h>
37 #include <sys/conf.h>
38 #include <sys/avintr.h>
39 #include <sys/autoconf.h>
40 #include <sys/disp.h>
41 #include <sys/class.h>
42 #include <sys/bitmap.h>
43 
44 #include <sys/privregs.h>
45 
46 #include <sys/proc.h>
47 #include <sys/buf.h>
48 #include <sys/kmem.h>
49 #include <sys/mem.h>
50 #include <sys/kstat.h>
51 
52 #include <sys/reboot.h>
53 
54 #include <sys/cred.h>
55 #include <sys/vnode.h>
56 #include <sys/file.h>
57 
58 #include <sys/procfs.h>
59 
60 #include <sys/vfs.h>
61 #include <sys/cmn_err.h>
62 #include <sys/utsname.h>
63 #include <sys/debug.h>
64 #include <sys/kdi.h>
65 
66 #include <sys/dumphdr.h>
67 #include <sys/bootconf.h>
68 #include <sys/varargs.h>
69 #include <sys/promif.h>
70 #include <sys/modctl.h>
71 
72 #include <sys/sunddi.h>
73 #include <sys/sunndi.h>
74 #include <sys/ndi_impldefs.h>
75 #include <sys/ddidmareq.h>
76 #include <sys/psw.h>
77 #include <sys/regset.h>
78 #include <sys/clock.h>
79 #include <sys/pte.h>
80 #include <sys/tss.h>
81 #include <sys/stack.h>
82 #include <sys/trap.h>
83 #include <sys/fp.h>
84 #include <vm/kboot_mmu.h>
85 #include <vm/anon.h>
86 #include <vm/as.h>
87 #include <vm/page.h>
88 #include <vm/seg.h>
89 #include <vm/seg_dev.h>
90 #include <vm/seg_kmem.h>
91 #include <vm/seg_kpm.h>
92 #include <vm/seg_map.h>
93 #include <vm/seg_vn.h>
94 #include <vm/seg_kp.h>
95 #include <sys/memnode.h>
96 #include <vm/vm_dep.h>
97 #include <sys/thread.h>
98 #include <sys/sysconf.h>
99 #include <sys/vm_machparam.h>
100 #include <sys/archsystm.h>
101 #include <sys/machsystm.h>
102 #include <vm/hat.h>
103 #include <vm/hat_i86.h>
104 #include <sys/pmem.h>
105 #include <sys/smp_impldefs.h>
106 #include <sys/x86_archext.h>
107 #include <sys/segments.h>
108 #include <sys/clconf.h>
109 #include <sys/kobj.h>
110 #include <sys/kobj_lex.h>
111 #include <sys/cpc_impl.h>
112 #include <sys/x86_archext.h>
113 #include <sys/cpu_module.h>
114 #include <sys/smbios.h>
115 #include <sys/debug_info.h>
116 #include <sys/bootinfo.h>
117 #include <sys/ddi_timer.h>
118 
119 #ifdef __xpv
120 
121 #include <sys/hypervisor.h>
122 #include <sys/xen_mmu.h>
123 #include <sys/evtchn_impl.h>
124 #include <sys/gnttab.h>
125 #include <sys/xpv_panic.h>
126 #include <xen/sys/xenbus_comms.h>
127 #include <xen/public/physdev.h>
128 
129 extern void xen_late_startup(void);
130 
131 struct xen_evt_data cpu0_evt_data;
132 
133 #endif /* __xpv */
134 
135 extern void progressbar_init(void);
136 extern void progressbar_start(void);
137 extern void brand_init(void);
138 
139 extern int size_pse_array(pgcnt_t, int);
140 
141 /*
142  * XXX make declaration below "static" when drivers no longer use this
143  * interface.
144  */
145 extern caddr_t p0_va;	/* Virtual address for accessing physical page 0 */
146 
147 /*
148  * segkp
149  */
150 extern int segkp_fromheap;
151 
152 static void kvm_init(void);
153 static void startup_init(void);
154 static void startup_memlist(void);
155 static void startup_kmem(void);
156 static void startup_modules(void);
157 static void startup_vm(void);
158 static void startup_end(void);
159 static void layout_kernel_va(void);
160 
161 /*
162  * Declare these as initialized data so we can patch them.
163  */
164 #ifdef __i386
165 
166 /*
167  * Due to virtual address space limitations running in 32 bit mode, restrict
168  * the amount of physical memory configured to a max of PHYSMEM pages (16g).
169  *
170  * If the physical max memory size of 64g were allowed to be configured, the
171  * size of user virtual address space will be less than 1g. A limited user
172  * address space greatly reduces the range of applications that can run.
173  *
174  * If more physical memory than PHYSMEM is required, users should preferably
175  * run in 64 bit mode which has far looser virtual address space limitations.
176  *
177  * If 64 bit mode is not available (as in IA32) and/or more physical memory
178  * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired
179  * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase
180  * should also be carefully tuned to balance out the need of the user
181  * application while minimizing the risk of kernel heap exhaustion due to
182  * kernelbase being set too high.
183  */
184 #define	PHYSMEM	0x400000
185 
186 #else /* __amd64 */
187 
188 /*
189  * For now we can handle memory with physical addresses up to about
190  * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly
191  * half the VA space for seg_kpm. When systems get bigger than 64TB this
192  * code will need revisiting. There is an implicit assumption that there
193  * are no *huge* holes in the physical address space too.
194  */
195 #define	TERABYTE		(1ul << 40)
196 #define	PHYSMEM_MAX64		mmu_btop(64 * TERABYTE)
197 #define	PHYSMEM			PHYSMEM_MAX64
198 #define	AMD64_VA_HOLE_END	0xFFFF800000000000ul
199 
200 #endif /* __amd64 */
201 
202 pgcnt_t physmem = PHYSMEM;
203 pgcnt_t obp_pages;	/* Memory used by PROM for its text and data */
204 
205 char *kobj_file_buf;
206 int kobj_file_bufsize;	/* set in /etc/system */
207 
208 /* Global variables for MP support. Used in mp_startup */
209 caddr_t	rm_platter_va;
210 uint32_t rm_platter_pa;
211 
212 int	auto_lpg_disable = 1;
213 
214 /*
215  * Some CPUs have holes in the middle of the 64-bit virtual address range.
216  */
217 uintptr_t hole_start, hole_end;
218 
219 /*
220  * kpm mapping window
221  */
222 caddr_t kpm_vbase;
223 size_t  kpm_size;
224 static int kpm_desired;
225 #ifdef __amd64
226 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE;
227 #endif
228 
229 /*
230  * Configuration parameters set at boot time.
231  */
232 
233 caddr_t econtig;		/* end of first block of contiguous kernel */
234 
235 struct bootops		*bootops = 0;	/* passed in from boot */
236 struct bootops		**bootopsp;
237 struct boot_syscalls	*sysp;		/* passed in from boot */
238 
239 char bootblock_fstype[16];
240 
241 char kern_bootargs[OBP_MAXPATHLEN];
242 
243 /*
244  * ZFS zio segment.  This allows us to exclude large portions of ZFS data that
245  * gets cached in kmem caches on the heap.  If this is set to zero, we allocate
246  * zio buffers from their own segment, otherwise they are allocated from the
247  * heap.  The optimization of allocating zio buffers from their own segment is
248  * only valid on 64-bit kernels.
249  */
250 #if defined(__amd64)
251 int segzio_fromheap = 0;
252 #else
253 int segzio_fromheap = 1;
254 #endif
255 
256 /*
257  * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
258  * depends on number of BOP_ALLOC calls made and requested size, memory size
259  * combination and whether boot.bin memory needs to be freed.
260  */
261 #define	POSS_NEW_FRAGMENTS	12
262 
263 /*
264  * VM data structures
265  */
266 long page_hashsz;		/* Size of page hash table (power of two) */
267 struct page *pp_base;		/* Base of initial system page struct array */
268 struct page **page_hash;	/* Page hash table */
269 pad_mutex_t *pse_mutex;		/* Locks protecting pp->p_selock */
270 size_t pse_table_size;		/* Number of mutexes in pse_mutex[] */
271 int pse_shift;			/* log2(pse_table_size) */
272 struct seg ktextseg;		/* Segment used for kernel executable image */
273 struct seg kvalloc;		/* Segment used for "valloc" mapping */
274 struct seg kpseg;		/* Segment used for pageable kernel virt mem */
275 struct seg kmapseg;		/* Segment used for generic kernel mappings */
276 struct seg kdebugseg;		/* Segment used for the kernel debugger */
277 
278 struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
279 static struct seg *segmap = &kmapseg;	/* easier to use name for in here */
280 
281 struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
282 
283 #if defined(__amd64)
284 struct seg kvseg_core;		/* Segment used for the core heap */
285 struct seg kpmseg;		/* Segment used for physical mapping */
286 struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
287 #else
288 struct seg *segkpm = NULL;	/* Unused on IA32 */
289 #endif
290 
291 caddr_t segkp_base;		/* Base address of segkp */
292 caddr_t segzio_base;		/* Base address of segzio */
293 #if defined(__amd64)
294 pgcnt_t segkpsize = btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
295 #else
296 pgcnt_t segkpsize = 0;
297 #endif
298 pgcnt_t segziosize = 0;		/* size of zio segment in pages */
299 
300 /*
301  * VA range available to the debugger
302  */
303 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
304 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
305 
306 struct memseg *memseg_base;
307 struct vnode unused_pages_vp;
308 
309 #define	FOURGB	0x100000000LL
310 
311 struct memlist *memlist;
312 
313 caddr_t s_text;		/* start of kernel text segment */
314 caddr_t e_text;		/* end of kernel text segment */
315 caddr_t s_data;		/* start of kernel data segment */
316 caddr_t e_data;		/* end of kernel data segment */
317 caddr_t modtext;	/* start of loadable module text reserved */
318 caddr_t e_modtext;	/* end of loadable module text reserved */
319 caddr_t moddata;	/* start of loadable module data reserved */
320 caddr_t e_moddata;	/* end of loadable module data reserved */
321 
322 struct memlist *phys_install;	/* Total installed physical memory */
323 struct memlist *phys_avail;	/* Total available physical memory */
324 
325 /*
326  * kphysm_init returns the number of pages that were processed
327  */
328 static pgcnt_t kphysm_init(page_t *, pgcnt_t);
329 
330 #define	IO_PROP_SIZE	64	/* device property size */
331 
332 /*
333  * a couple useful roundup macros
334  */
335 #define	ROUND_UP_PAGE(x)	\
336 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
337 #define	ROUND_UP_LPAGE(x)	\
338 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
339 #define	ROUND_UP_4MEG(x)	\
340 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG))
341 #define	ROUND_UP_TOPLEVEL(x)	\
342 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
343 
344 /*
345  *	32-bit Kernel's Virtual memory layout.
346  *		+-----------------------+
347  *		|			|
348  * 0xFFC00000  -|-----------------------|- ARGSBASE
349  *		|	debugger	|
350  * 0xFF800000  -|-----------------------|- SEGDEBUGBASE
351  *		|      Kernel Data	|
352  * 0xFEC00000  -|-----------------------|
353  *              |      Kernel Text	|
354  * 0xFE800000  -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen)
355  *		|---       GDT       ---|- GDT page (GDT_VA)
356  *		|---    debug info   ---|- debug info (DEBUG_INFO_VA)
357  *		|			|
358  * 		|   page_t structures	|
359  * 		|   memsegs, memlists, 	|
360  * 		|   page hash, etc.	|
361  * ---	       -|-----------------------|- ekernelheap, valloc_base (floating)
362  *		|			|  (segkp is just an arena in the heap)
363  *		|			|
364  *		|	kvseg		|
365  *		|			|
366  *		|			|
367  * ---         -|-----------------------|- kernelheap (floating)
368  * 		|        Segkmap	|
369  * 0xC3002000  -|-----------------------|- segmap_start (floating)
370  *		|	Red Zone	|
371  * 0xC3000000  -|-----------------------|- kernelbase / userlimit (floating)
372  *		|			|			||
373  *		|     Shared objects	|			\/
374  *		|			|
375  *		:			:
376  *		|	user data	|
377  *		|-----------------------|
378  *		|	user text	|
379  * 0x08048000  -|-----------------------|
380  *		|	user stack	|
381  *		:			:
382  *		|	invalid		|
383  * 0x00000000	+-----------------------+
384  *
385  *
386  *		64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
387  *			+-----------------------+
388  *			|			|
389  * 0xFFFFFFFF.FFC00000  |-----------------------|- ARGSBASE
390  *			|	debugger (?)	|
391  * 0xFFFFFFFF.FF800000  |-----------------------|- SEGDEBUGBASE
392  *			|      unused    	|
393  *			+-----------------------+
394  *			|      Kernel Data	|
395  * 0xFFFFFFFF.FBC00000  |-----------------------|
396  *			|      Kernel Text	|
397  * 0xFFFFFFFF.FB800000  |-----------------------|- KERNEL_TEXT
398  *			|---       GDT       ---|- GDT page (GDT_VA)
399  *			|---    debug info   ---|- debug info (DEBUG_INFO_VA)
400  *			|			|
401  * 			|      Core heap	| (used for loadable modules)
402  * 0xFFFFFFFF.C0000000  |-----------------------|- core_base / ekernelheap
403  *			|	 Kernel		|
404  *			|	  heap		|
405  * 0xFFFFFXXX.XXX00000  |-----------------------|- kernelheap (floating)
406  *			|	 segmap		|
407  * 0xFFFFFXXX.XXX00000  |-----------------------|- segmap_start (floating)
408  *			|    device mappings	|
409  * 0xFFFFFXXX.XXX00000  |-----------------------|- toxic_addr (floating)
410  *			|	  segzio	|
411  * 0xFFFFFXXX.XXX00000  |-----------------------|- segzio_base (floating)
412  *			|	  segkp		|
413  * ---                  |-----------------------|- segkp_base (floating)
414  * 			|   page_t structures	|  valloc_base + valloc_sz
415  * 			|   memsegs, memlists, 	|
416  * 			|   page hash, etc.	|
417  * 0xFFFFFF00.00000000  |-----------------------|- valloc_base (lower if > 1TB)
418  *			|	 segkpm		|
419  * 0xFFFFFE00.00000000  |-----------------------|
420  *			|	Red Zone	|
421  * 0xFFFFFD80.00000000  |-----------------------|- KERNELBASE (lower if > 1TB)
422  *			|     User stack	|- User space memory
423  * 			|			|
424  * 			| shared objects, etc	|	(grows downwards)
425  *			:			:
426  * 			|			|
427  * 0xFFFF8000.00000000  |-----------------------|
428  * 			|			|
429  * 			| VA Hole / unused	|
430  * 			|			|
431  * 0x00008000.00000000  |-----------------------|
432  *			|			|
433  *			|			|
434  *			:			:
435  *			|	user heap	|	(grows upwards)
436  *			|			|
437  *			|	user data	|
438  *			|-----------------------|
439  *			|	user text	|
440  * 0x00000000.04000000  |-----------------------|
441  *			|	invalid		|
442  * 0x00000000.00000000	+-----------------------+
443  *
444  * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
445  * kernel, except that userlimit is raised to 0xfe000000
446  *
447  * Floating values:
448  *
449  * valloc_base: start of the kernel's memory management/tracking data
450  * structures.  This region contains page_t structures for
451  * physical memory, memsegs, memlists, and the page hash.
452  *
453  * core_base: start of the kernel's "core" heap area on 64-bit systems.
454  * This area is intended to be used for global data as well as for module
455  * text/data that does not fit into the nucleus pages.  The core heap is
456  * restricted to a 2GB range, allowing every address within it to be
457  * accessed using rip-relative addressing
458  *
459  * ekernelheap: end of kernelheap and start of segmap.
460  *
461  * kernelheap: start of kernel heap.  On 32-bit systems, this starts right
462  * above a red zone that separates the user's address space from the
463  * kernel's.  On 64-bit systems, it sits above segkp and segkpm.
464  *
465  * segmap_start: start of segmap. The length of segmap can be modified
466  * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated).
467  * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems.
468  *
469  * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
470  * decreased by 2X the size required for page_t.  This allows the kernel
471  * heap to grow in size with physical memory.  With sizeof(page_t) == 80
472  * bytes, the following shows the values of kernelbase and kernel heap
473  * sizes for different memory configurations (assuming default segmap and
474  * segkp sizes).
475  *
476  *	mem	size for	kernelbase	kernel heap
477  *	size	page_t's			size
478  *	----	---------	----------	-----------
479  *	1gb	0x01400000	0xd1800000	684MB
480  *	2gb	0x02800000	0xcf000000	704MB
481  *	4gb	0x05000000	0xca000000	744MB
482  *	6gb	0x07800000	0xc5000000	784MB
483  *	8gb	0x0a000000	0xc0000000	824MB
484  *	16gb	0x14000000	0xac000000	984MB
485  *	32gb	0x28000000	0x84000000	1304MB
486  *	64gb	0x50000000	0x34000000	1944MB (*)
487  *
488  * kernelbase is less than the abi minimum of 0xc0000000 for memory
489  * configurations above 8gb.
490  *
491  * (*) support for memory configurations above 32gb will require manual tuning
492  * of kernelbase to balance out the need of user applications.
493  */
494 
495 /* real-time-clock initialization parameters */
496 extern time_t process_rtc_config_file(void);
497 
498 uintptr_t	kernelbase;
499 uintptr_t	postbootkernelbase;	/* not set till boot loader is gone */
500 uintptr_t	eprom_kernelbase;
501 size_t		segmapsize;
502 uintptr_t	segmap_start;
503 int		segmapfreelists;
504 pgcnt_t		npages;
505 pgcnt_t		orig_npages;
506 size_t		core_size;		/* size of "core" heap */
507 uintptr_t	core_base;		/* base address of "core" heap */
508 
509 /*
510  * List of bootstrap pages. We mark these as allocated in startup.
511  * release_bootstrap() will free them when we're completely done with
512  * the bootstrap.
513  */
514 static page_t *bootpages;
515 
516 /*
517  * boot time pages that have a vnode from the ramdisk will keep that forever.
518  */
519 static page_t *rd_pages;
520 
521 struct system_hardware system_hardware;
522 
523 /*
524  * Enable some debugging messages concerning memory usage...
525  */
526 static void
527 print_memlist(char *title, struct memlist *mp)
528 {
529 	prom_printf("MEMLIST: %s:\n", title);
530 	while (mp != NULL)  {
531 		prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
532 		    mp->address, mp->size);
533 		mp = mp->next;
534 	}
535 }
536 
537 /*
538  * XX64 need a comment here.. are these just default values, surely
539  * we read the "cpuid" type information to figure this out.
540  */
541 int	l2cache_sz = 0x80000;
542 int	l2cache_linesz = 0x40;
543 int	l2cache_assoc = 1;
544 
545 static size_t	textrepl_min_gb = 10;
546 
547 /*
548  * on 64 bit we use a predifined VA range for mapping devices in the kernel
549  * on 32 bit the mappings are intermixed in the heap, so we use a bit map
550  */
551 #ifdef __amd64
552 
553 vmem_t		*device_arena;
554 uintptr_t	toxic_addr = (uintptr_t)NULL;
555 size_t		toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
556 
557 #else	/* __i386 */
558 
559 ulong_t		*toxic_bit_map;	/* one bit for each 4k of VA in heap_arena */
560 size_t		toxic_bit_map_len = 0;	/* in bits */
561 
562 #endif	/* __i386 */
563 
564 /*
565  * Simple boot time debug facilities
566  */
567 static char *prm_dbg_str[] = {
568 	"%s:%d: '%s' is 0x%x\n",
569 	"%s:%d: '%s' is 0x%llx\n"
570 };
571 
572 int prom_debug;
573 
574 #define	PRM_DEBUG(q)	if (prom_debug) 	\
575 	prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q);
576 #define	PRM_POINT(q)	if (prom_debug) 	\
577 	prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q);
578 
579 /*
580  * This structure is used to keep track of the intial allocations
581  * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
582  * be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
583  */
584 #define	NUM_ALLOCATIONS 7
585 int num_allocations = 0;
586 struct {
587 	void **al_ptr;
588 	size_t al_size;
589 } allocations[NUM_ALLOCATIONS];
590 size_t valloc_sz = 0;
591 uintptr_t valloc_base;
592 
593 #define	ADD_TO_ALLOCATIONS(ptr, size) {					\
594 		size = ROUND_UP_PAGE(size);		 		\
595 		if (num_allocations == NUM_ALLOCATIONS)			\
596 			panic("too many ADD_TO_ALLOCATIONS()");		\
597 		allocations[num_allocations].al_ptr = (void**)&ptr;	\
598 		allocations[num_allocations].al_size = size;		\
599 		valloc_sz += size;					\
600 		++num_allocations;				 	\
601 	}
602 
603 /*
604  * Allocate all the initial memory needed by the page allocator.
605  */
606 static void
607 perform_allocations(void)
608 {
609 	caddr_t mem;
610 	int i;
611 	int valloc_align;
612 
613 	PRM_DEBUG(valloc_base);
614 	PRM_DEBUG(valloc_sz);
615 	valloc_align = mmu.level_size[mmu.max_page_level > 0];
616 	mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align);
617 	if (mem != (caddr_t)valloc_base)
618 		panic("BOP_ALLOC() failed");
619 	bzero(mem, valloc_sz);
620 	for (i = 0; i < num_allocations; ++i) {
621 		*allocations[i].al_ptr = (void *)mem;
622 		mem += allocations[i].al_size;
623 	}
624 }
625 
626 /*
627  * Our world looks like this at startup time.
628  *
629  * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
630  * at 0xfec00000.  On a 64-bit OS, kernel text and data are loaded at
631  * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively.  Those
632  * addresses are fixed in the binary at link time.
633  *
634  * On the text page:
635  * unix/genunix/krtld/module text loads.
636  *
637  * On the data page:
638  * unix/genunix/krtld/module data loads.
639  *
640  * Machine-dependent startup code
641  */
642 void
643 startup(void)
644 {
645 #if !defined(__xpv)
646 	extern void startup_bios_disk(void);
647 	extern void startup_pci_bios(void);
648 #endif
649 	/*
650 	 * Make sure that nobody tries to use sekpm until we have
651 	 * initialized it properly.
652 	 */
653 #if defined(__amd64)
654 	kpm_desired = 1;
655 #endif
656 	kpm_enable = 0;
657 
658 #if defined(__xpv)	/* XXPV fix me! */
659 	{
660 		extern int segvn_use_regions;
661 		segvn_use_regions = 0;
662 	}
663 #endif
664 	progressbar_init();
665 	startup_init();
666 	startup_memlist();
667 	startup_kmem();
668 	startup_vm();
669 #if !defined(__xpv)
670 	startup_pci_bios();
671 #endif
672 	startup_modules();
673 #if !defined(__xpv)
674 	startup_bios_disk();
675 #endif
676 	startup_end();
677 	progressbar_start();
678 }
679 
680 static void
681 startup_init()
682 {
683 	PRM_POINT("startup_init() starting...");
684 
685 	/*
686 	 * Complete the extraction of cpuid data
687 	 */
688 	cpuid_pass2(CPU);
689 
690 	(void) check_boot_version(BOP_GETVERSION(bootops));
691 
692 	/*
693 	 * Check for prom_debug in boot environment
694 	 */
695 	if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
696 		++prom_debug;
697 		PRM_POINT("prom_debug found in boot enviroment");
698 	}
699 
700 	/*
701 	 * Collect node, cpu and memory configuration information.
702 	 */
703 	get_system_configuration();
704 
705 	/*
706 	 * Halt if this is an unsupported processor.
707 	 */
708 	if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
709 		printf("\n486 processor (\"%s\") detected.\n",
710 		    CPU->cpu_brandstr);
711 		halt("This processor is not supported by this release "
712 		    "of Solaris.");
713 	}
714 
715 	PRM_POINT("startup_init() done");
716 }
717 
718 /*
719  * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
720  * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
721  * also filters out physical page zero.  There is some reliance on the
722  * boot loader allocating only a few contiguous physical memory chunks.
723  */
724 static void
725 avail_filter(uint64_t *addr, uint64_t *size)
726 {
727 	uintptr_t va;
728 	uintptr_t next_va;
729 	pfn_t pfn;
730 	uint64_t pfn_addr;
731 	uint64_t pfn_eaddr;
732 	uint_t prot;
733 	size_t len;
734 	uint_t change;
735 
736 	if (prom_debug)
737 		prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
738 		    *addr, *size);
739 
740 	/*
741 	 * page zero is required for BIOS.. never make it available
742 	 */
743 	if (*addr == 0) {
744 		*addr += MMU_PAGESIZE;
745 		*size -= MMU_PAGESIZE;
746 	}
747 
748 	/*
749 	 * First we trim from the front of the range. Since kbm_probe()
750 	 * walks ranges in virtual order, but addr/size are physical, we need
751 	 * to the list until no changes are seen.  This deals with the case
752 	 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
753 	 * but w < v.
754 	 */
755 	do {
756 		change = 0;
757 		for (va = KERNEL_TEXT;
758 		    *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
759 		    va = next_va) {
760 
761 			next_va = va + len;
762 			pfn_addr = pfn_to_pa(pfn);
763 			pfn_eaddr = pfn_addr + len;
764 
765 			if (pfn_addr <= *addr && pfn_eaddr > *addr) {
766 				change = 1;
767 				while (*size > 0 && len > 0) {
768 					*addr += MMU_PAGESIZE;
769 					*size -= MMU_PAGESIZE;
770 					len -= MMU_PAGESIZE;
771 				}
772 			}
773 		}
774 		if (change && prom_debug)
775 			prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
776 			    *addr, *size);
777 	} while (change);
778 
779 	/*
780 	 * Trim pages from the end of the range.
781 	 */
782 	for (va = KERNEL_TEXT;
783 	    *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
784 	    va = next_va) {
785 
786 		next_va = va + len;
787 		pfn_addr = pfn_to_pa(pfn);
788 
789 		if (pfn_addr >= *addr && pfn_addr < *addr + *size)
790 			*size = pfn_addr - *addr;
791 	}
792 
793 	if (prom_debug)
794 		prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
795 		    *addr, *size);
796 }
797 
798 static void
799 kpm_init()
800 {
801 	struct segkpm_crargs b;
802 
803 	/*
804 	 * These variables were all designed for sfmmu in which segkpm is
805 	 * mapped using a single pagesize - either 8KB or 4MB.  On x86, we
806 	 * might use 2+ page sizes on a single machine, so none of these
807 	 * variables have a single correct value.  They are set up as if we
808 	 * always use a 4KB pagesize, which should do no harm.  In the long
809 	 * run, we should get rid of KPM's assumption that only a single
810 	 * pagesize is used.
811 	 */
812 	kpm_pgshft = MMU_PAGESHIFT;
813 	kpm_pgsz =  MMU_PAGESIZE;
814 	kpm_pgoff = MMU_PAGEOFFSET;
815 	kpmp2pshft = 0;
816 	kpmpnpgs = 1;
817 	ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
818 
819 	PRM_POINT("about to create segkpm");
820 	rw_enter(&kas.a_lock, RW_WRITER);
821 
822 	if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
823 		panic("cannot attach segkpm");
824 
825 	b.prot = PROT_READ | PROT_WRITE;
826 	b.nvcolors = 1;
827 
828 	if (segkpm_create(segkpm, (caddr_t)&b) != 0)
829 		panic("segkpm_create segkpm");
830 
831 	rw_exit(&kas.a_lock);
832 }
833 
834 /*
835  * The debug info page provides enough information to allow external
836  * inspectors (e.g. when running under a hypervisor) to bootstrap
837  * themselves into allowing full-blown kernel debugging.
838  */
839 static void
840 init_debug_info(void)
841 {
842 	caddr_t mem;
843 	debug_info_t *di;
844 
845 #ifndef __lint
846 	ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE);
847 #endif
848 
849 	mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE,
850 	    MMU_PAGESIZE);
851 
852 	if (mem != (caddr_t)DEBUG_INFO_VA)
853 		panic("BOP_ALLOC() failed");
854 	bzero(mem, MMU_PAGESIZE);
855 
856 	di = (debug_info_t *)mem;
857 
858 	di->di_magic = DEBUG_INFO_MAGIC;
859 	di->di_version = DEBUG_INFO_VERSION;
860 	di->di_modules = (uintptr_t)&modules;
861 	di->di_s_text = (uintptr_t)s_text;
862 	di->di_e_text = (uintptr_t)e_text;
863 	di->di_s_data = (uintptr_t)s_data;
864 	di->di_e_data = (uintptr_t)e_data;
865 	di->di_hat_htable_off = offsetof(hat_t, hat_htable);
866 	di->di_ht_pfn_off = offsetof(htable_t, ht_pfn);
867 }
868 
869 /*
870  * Build the memlists and other kernel essential memory system data structures.
871  * This is everything at valloc_base.
872  */
873 static void
874 startup_memlist(void)
875 {
876 	size_t memlist_sz;
877 	size_t memseg_sz;
878 	size_t pagehash_sz;
879 	size_t pp_sz;
880 	uintptr_t va;
881 	size_t len;
882 	uint_t prot;
883 	pfn_t pfn;
884 	int memblocks;
885 	caddr_t pagecolor_mem;
886 	size_t pagecolor_memsz;
887 	caddr_t page_ctrs_mem;
888 	size_t page_ctrs_size;
889 	size_t pse_table_alloc_size;
890 	struct memlist *current;
891 	extern void startup_build_mem_nodes(struct memlist *);
892 
893 	/* XX64 fix these - they should be in include files */
894 	extern size_t page_coloring_init(uint_t, int, int);
895 	extern void page_coloring_setup(caddr_t);
896 
897 	PRM_POINT("startup_memlist() starting...");
898 
899 	/*
900 	 * Use leftover large page nucleus text/data space for loadable modules.
901 	 * Use at most MODTEXT/MODDATA.
902 	 */
903 	len = kbm_nucleus_size;
904 	ASSERT(len > MMU_PAGESIZE);
905 
906 	moddata = (caddr_t)ROUND_UP_PAGE(e_data);
907 	e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len);
908 	if (e_moddata - moddata > MODDATA)
909 		e_moddata = moddata + MODDATA;
910 
911 	modtext = (caddr_t)ROUND_UP_PAGE(e_text);
912 	e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len);
913 	if (e_modtext - modtext > MODTEXT)
914 		e_modtext = modtext + MODTEXT;
915 
916 	econtig = e_moddata;
917 
918 	PRM_DEBUG(modtext);
919 	PRM_DEBUG(e_modtext);
920 	PRM_DEBUG(moddata);
921 	PRM_DEBUG(e_moddata);
922 	PRM_DEBUG(econtig);
923 
924 	/*
925 	 * Examine the boot loader physical memory map to find out:
926 	 * - total memory in system - physinstalled
927 	 * - the max physical address - physmax
928 	 * - the number of discontiguous segments of memory.
929 	 */
930 	if (prom_debug)
931 		print_memlist("boot physinstalled",
932 		    bootops->boot_mem->physinstalled);
933 	installed_top_size(bootops->boot_mem->physinstalled, &physmax,
934 	    &physinstalled, &memblocks);
935 	PRM_DEBUG(physmax);
936 	PRM_DEBUG(physinstalled);
937 	PRM_DEBUG(memblocks);
938 
939 	/*
940 	 * Initialize hat's mmu parameters.
941 	 * Check for enforce-prot-exec in boot environment. It's used to
942 	 * enable/disable support for the page table entry NX bit.
943 	 * The default is to enforce PROT_EXEC on processors that support NX.
944 	 * Boot seems to round up the "len", but 8 seems to be big enough.
945 	 */
946 	mmu_init();
947 
948 #ifdef	__i386
949 	/*
950 	 * physmax is lowered if there is more memory than can be
951 	 * physically addressed in 32 bit (PAE/non-PAE) modes.
952 	 */
953 	if (mmu.pae_hat) {
954 		if (PFN_ABOVE64G(physmax)) {
955 			physinstalled -= (physmax - (PFN_64G - 1));
956 			physmax = PFN_64G - 1;
957 		}
958 	} else {
959 		if (PFN_ABOVE4G(physmax)) {
960 			physinstalled -= (physmax - (PFN_4G - 1));
961 			physmax = PFN_4G - 1;
962 		}
963 	}
964 #endif
965 
966 	startup_build_mem_nodes(bootops->boot_mem->physinstalled);
967 
968 	if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
969 		int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
970 		char value[8];
971 
972 		if (len < 8)
973 			(void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
974 		else
975 			(void) strcpy(value, "");
976 		if (strcmp(value, "off") == 0)
977 			mmu.pt_nx = 0;
978 	}
979 	PRM_DEBUG(mmu.pt_nx);
980 
981 	/*
982 	 * We will need page_t's for every page in the system, except for
983 	 * memory mapped at or above above the start of the kernel text segment.
984 	 *
985 	 * pages above e_modtext are attributed to kernel debugger (obp_pages)
986 	 */
987 	npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
988 	obp_pages = 0;
989 	va = KERNEL_TEXT;
990 	while (kbm_probe(&va, &len, &pfn, &prot) != 0) {
991 		npages -= len >> MMU_PAGESHIFT;
992 		if (va >= (uintptr_t)e_moddata)
993 			obp_pages += len >> MMU_PAGESHIFT;
994 		va += len;
995 	}
996 	PRM_DEBUG(npages);
997 	PRM_DEBUG(obp_pages);
998 
999 	/*
1000 	 * If physmem is patched to be non-zero, use it instead of the computed
1001 	 * value unless it is larger than the actual amount of memory on hand.
1002 	 */
1003 	if (physmem == 0 || physmem > npages) {
1004 		physmem = npages;
1005 	} else if (physmem < npages) {
1006 		orig_npages = npages;
1007 		npages = physmem;
1008 	}
1009 	PRM_DEBUG(physmem);
1010 
1011 	/*
1012 	 * We now compute the sizes of all the  initial allocations for
1013 	 * structures the kernel needs in order do kmem_alloc(). These
1014 	 * include:
1015 	 *	memsegs
1016 	 *	memlists
1017 	 *	page hash table
1018 	 *	page_t's
1019 	 *	page coloring data structs
1020 	 */
1021 	memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
1022 	ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
1023 	PRM_DEBUG(memseg_sz);
1024 
1025 	/*
1026 	 * Reserve space for memlists. There's no real good way to know exactly
1027 	 * how much room we'll need, but this should be a good upper bound.
1028 	 */
1029 	memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1030 	    (memblocks + POSS_NEW_FRAGMENTS));
1031 	ADD_TO_ALLOCATIONS(memlist, memlist_sz);
1032 	PRM_DEBUG(memlist_sz);
1033 
1034 	/*
1035 	 * The page structure hash table size is a power of 2
1036 	 * such that the average hash chain length is PAGE_HASHAVELEN.
1037 	 */
1038 	page_hashsz = npages / PAGE_HASHAVELEN;
1039 	page_hashsz = 1 << highbit(page_hashsz);
1040 	pagehash_sz = sizeof (struct page *) * page_hashsz;
1041 	ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
1042 	PRM_DEBUG(pagehash_sz);
1043 
1044 	/*
1045 	 * Set aside room for the page structures themselves.
1046 	 */
1047 	PRM_DEBUG(npages);
1048 	pp_sz = sizeof (struct page) * npages;
1049 	ADD_TO_ALLOCATIONS(pp_base, pp_sz);
1050 	PRM_DEBUG(pp_sz);
1051 
1052 	/*
1053 	 * determine l2 cache info and memory size for page coloring
1054 	 */
1055 	(void) getl2cacheinfo(CPU,
1056 	    &l2cache_sz, &l2cache_linesz, &l2cache_assoc);
1057 	pagecolor_memsz =
1058 	    page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
1059 	ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
1060 	PRM_DEBUG(pagecolor_memsz);
1061 
1062 	page_ctrs_size = page_ctrs_sz();
1063 	ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
1064 	PRM_DEBUG(page_ctrs_size);
1065 
1066 	/*
1067 	 * Allocate the array that protects pp->p_selock.
1068 	 */
1069 	pse_shift = size_pse_array(physmem, max_ncpus);
1070 	pse_table_size = 1 << pse_shift;
1071 	pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t);
1072 	ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size);
1073 
1074 #if defined(__amd64)
1075 	valloc_sz = ROUND_UP_LPAGE(valloc_sz);
1076 	valloc_base = VALLOC_BASE;
1077 
1078 	/*
1079 	 * The default values of VALLOC_BASE and SEGKPM_BASE should work
1080 	 * for values of physmax up to 1 Terabyte. They need adjusting when
1081 	 * memory is at addresses above 1 TB.
1082 	 */
1083 	if (physmax + 1 > mmu_btop(TERABYTE)) {
1084 		uint64_t kpm_resv_amount = mmu_ptob(physmax + 1);
1085 
1086 		/* Round to largest possible pagesize for now */
1087 		kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG);
1088 
1089 		segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */
1090 
1091 		/* make sure we leave some space for user apps above hole */
1092 		segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE);
1093 		if (segkpm_base > SEGKPM_BASE)
1094 			segkpm_base = SEGKPM_BASE;
1095 		PRM_DEBUG(segkpm_base);
1096 
1097 		valloc_base = segkpm_base + kpm_resv_amount;
1098 		PRM_DEBUG(valloc_base);
1099 	}
1100 #else	/* __i386 */
1101 	valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz);
1102 	valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]);
1103 	PRM_DEBUG(valloc_base);
1104 #endif	/* __i386 */
1105 
1106 	/*
1107 	 * do all the initial allocations
1108 	 */
1109 	perform_allocations();
1110 
1111 	/*
1112 	 * Build phys_install and phys_avail in kernel memspace.
1113 	 * - phys_install should be all memory in the system.
1114 	 * - phys_avail is phys_install minus any memory mapped before this
1115 	 *    point above KERNEL_TEXT.
1116 	 */
1117 	current = phys_install = memlist;
1118 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current, NULL);
1119 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1120 		panic("physinstalled was too big!");
1121 	if (prom_debug)
1122 		print_memlist("phys_install", phys_install);
1123 
1124 	phys_avail = current;
1125 	PRM_POINT("Building phys_avail:\n");
1126 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current,
1127 	    avail_filter);
1128 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1129 		panic("physavail was too big!");
1130 	if (prom_debug)
1131 		print_memlist("phys_avail", phys_avail);
1132 
1133 	/*
1134 	 * setup page coloring
1135 	 */
1136 	page_coloring_setup(pagecolor_mem);
1137 	page_lock_init();	/* currently a no-op */
1138 
1139 	/*
1140 	 * free page list counters
1141 	 */
1142 	(void) page_ctrs_alloc(page_ctrs_mem);
1143 
1144 	/*
1145 	 * Initialize the page structures from the memory lists.
1146 	 */
1147 	availrmem_initial = availrmem = freemem = 0;
1148 	PRM_POINT("Calling kphysm_init()...");
1149 	npages = kphysm_init(pp_base, npages);
1150 	PRM_POINT("kphysm_init() done");
1151 	PRM_DEBUG(npages);
1152 
1153 	init_debug_info();
1154 
1155 	/*
1156 	 * Now that page_t's have been initialized, remove all the
1157 	 * initial allocation pages from the kernel free page lists.
1158 	 */
1159 	boot_mapin((caddr_t)valloc_base, valloc_sz);
1160 	boot_mapin((caddr_t)GDT_VA, MMU_PAGESIZE);
1161 	boot_mapin((caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE);
1162 	PRM_POINT("startup_memlist() done");
1163 
1164 	PRM_DEBUG(valloc_sz);
1165 
1166 #if defined(__amd64)
1167 	if ((availrmem >> (30 - MMU_PAGESHIFT)) >=
1168 	    textrepl_min_gb && l2cache_sz <= 2 << 20) {
1169 		extern size_t textrepl_size_thresh;
1170 		textrepl_size_thresh = (16 << 20) - 1;
1171 	}
1172 #endif
1173 }
1174 
1175 /*
1176  * Layout the kernel's part of address space and initialize kmem allocator.
1177  */
1178 static void
1179 startup_kmem(void)
1180 {
1181 	extern void page_set_colorequiv_arr(void);
1182 
1183 	PRM_POINT("startup_kmem() starting...");
1184 
1185 #if defined(__amd64)
1186 	if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
1187 		cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
1188 		    "systems.");
1189 	kernelbase = segkpm_base - KERNEL_REDZONE_SIZE;
1190 	core_base = (uintptr_t)COREHEAP_BASE;
1191 	core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE;
1192 #else	/* __i386 */
1193 	/*
1194 	 * We configure kernelbase based on:
1195 	 *
1196 	 * 1. user specified kernelbase via eeprom command. Value cannot exceed
1197 	 *    KERNELBASE_MAX. we large page align eprom_kernelbase
1198 	 *
1199 	 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t.
1200 	 *    On large memory systems we must lower kernelbase to allow
1201 	 *    enough room for page_t's for all of memory.
1202 	 *
1203 	 * The value set here, might be changed a little later.
1204 	 */
1205 	if (eprom_kernelbase) {
1206 		kernelbase = eprom_kernelbase & mmu.level_mask[1];
1207 		if (kernelbase > KERNELBASE_MAX)
1208 			kernelbase = KERNELBASE_MAX;
1209 	} else {
1210 		kernelbase = (uintptr_t)KERNELBASE;
1211 		kernelbase -= ROUND_UP_4MEG(2 * valloc_sz);
1212 	}
1213 	ASSERT((kernelbase & mmu.level_offset[1]) == 0);
1214 	core_base = valloc_base;
1215 	core_size = 0;
1216 #endif	/* __i386 */
1217 
1218 	PRM_DEBUG(core_base);
1219 	PRM_DEBUG(core_size);
1220 	PRM_DEBUG(kernelbase);
1221 
1222 #if defined(__i386)
1223 	segkp_fromheap = 1;
1224 #endif	/* __i386 */
1225 
1226 	ekernelheap = (char *)core_base;
1227 	PRM_DEBUG(ekernelheap);
1228 
1229 	/*
1230 	 * Now that we know the real value of kernelbase,
1231 	 * update variables that were initialized with a value of
1232 	 * KERNELBASE (in common/conf/param.c).
1233 	 *
1234 	 * XXX	The problem with this sort of hackery is that the
1235 	 *	compiler just may feel like putting the const declarations
1236 	 *	(in param.c) into the .text section.  Perhaps they should
1237 	 *	just be declared as variables there?
1238 	 */
1239 
1240 	*(uintptr_t *)&_kernelbase = kernelbase;
1241 	*(uintptr_t *)&_userlimit = kernelbase;
1242 #if defined(__amd64)
1243 	*(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT;
1244 #else
1245 	*(uintptr_t *)&_userlimit32 = _userlimit;
1246 #endif
1247 	PRM_DEBUG(_kernelbase);
1248 	PRM_DEBUG(_userlimit);
1249 	PRM_DEBUG(_userlimit32);
1250 
1251 	layout_kernel_va();
1252 
1253 #if defined(__i386)
1254 	/*
1255 	 * If segmap is too large we can push the bottom of the kernel heap
1256 	 * higher than the base.  Or worse, it could exceed the top of the
1257 	 * VA space entirely, causing it to wrap around.
1258 	 */
1259 	if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase)
1260 		panic("too little address space available for kernelheap,"
1261 		    " use eeprom for lower kernelbase or smaller segmapsize");
1262 #endif	/* __i386 */
1263 
1264 	/*
1265 	 * Initialize the kernel heap. Note 3rd argument must be > 1st.
1266 	 */
1267 	kernelheap_init(kernelheap, ekernelheap,
1268 	    kernelheap + MMU_PAGESIZE,
1269 	    (void *)core_base, (void *)(core_base + core_size));
1270 
1271 #if defined(__xpv)
1272 	/*
1273 	 * Link pending events struct into cpu struct
1274 	 */
1275 	CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data;
1276 #endif
1277 	/*
1278 	 * Initialize kernel memory allocator.
1279 	 */
1280 	kmem_init();
1281 
1282 	/*
1283 	 * Factor in colorequiv to check additional 'equivalent' bins
1284 	 */
1285 	page_set_colorequiv_arr();
1286 
1287 #if defined(__xpv)
1288 	xen_version();
1289 #endif
1290 
1291 	/*
1292 	 * print this out early so that we know what's going on
1293 	 */
1294 	cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE);
1295 
1296 	/*
1297 	 * Initialize bp_mapin().
1298 	 */
1299 	bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
1300 
1301 	/*
1302 	 * orig_npages is non-zero if physmem has been configured for less
1303 	 * than the available memory.
1304 	 */
1305 	if (orig_npages) {
1306 		cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages",
1307 		    (npages == PHYSMEM ? "Due to virtual address space " : ""),
1308 		    npages, orig_npages);
1309 	}
1310 #if defined(__i386)
1311 	if (eprom_kernelbase && (eprom_kernelbase != kernelbase))
1312 		cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, "
1313 		    "System using 0x%lx",
1314 		    (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase);
1315 #endif
1316 
1317 #ifdef	KERNELBASE_ABI_MIN
1318 	if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
1319 		cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
1320 		    "i386 ABI compliant.", (uintptr_t)kernelbase);
1321 	}
1322 #endif
1323 
1324 #ifdef __xpv
1325 	/*
1326 	 * Some of the xen start information has to be relocated up
1327 	 * into the kernel's permanent address space.
1328 	 */
1329 	PRM_POINT("calling xen_relocate_start_info()");
1330 	xen_relocate_start_info();
1331 	PRM_POINT("xen_relocate_start_info() done");
1332 
1333 	/*
1334 	 * (Update the vcpu pointer in our cpu structure to point into
1335 	 * the relocated shared info.)
1336 	 */
1337 	CPU->cpu_m.mcpu_vcpu_info =
1338 	    &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id];
1339 #endif
1340 
1341 	PRM_POINT("startup_kmem() done");
1342 }
1343 
1344 static void
1345 startup_modules(void)
1346 {
1347 	unsigned int i;
1348 	extern void prom_setup(void);
1349 
1350 	PRM_POINT("startup_modules() starting...");
1351 
1352 #ifndef __xpv
1353 	/*
1354 	 * Initialize ten-micro second timer so that drivers will
1355 	 * not get short changed in their init phase. This was
1356 	 * not getting called until clkinit which, on fast cpu's
1357 	 * caused the drv_usecwait to be way too short.
1358 	 */
1359 	microfind();
1360 #endif
1361 
1362 	/*
1363 	 * Read the GMT lag from /etc/rtc_config.
1364 	 */
1365 	sgmtl(process_rtc_config_file());
1366 
1367 	/*
1368 	 * Calculate default settings of system parameters based upon
1369 	 * maxusers, yet allow to be overridden via the /etc/system file.
1370 	 */
1371 	param_calc(0);
1372 
1373 	mod_setup();
1374 
1375 	/*
1376 	 * Initialize system parameters.
1377 	 */
1378 	param_init();
1379 
1380 	/*
1381 	 * Initialize the default brands
1382 	 */
1383 	brand_init();
1384 
1385 	/*
1386 	 * maxmem is the amount of physical memory we're playing with.
1387 	 */
1388 	maxmem = physmem;
1389 
1390 	/*
1391 	 * Initialize segment management stuff.
1392 	 */
1393 	seg_init();
1394 
1395 	if (modload("fs", "specfs") == -1)
1396 		halt("Can't load specfs");
1397 
1398 	if (modload("fs", "devfs") == -1)
1399 		halt("Can't load devfs");
1400 
1401 	if (modload("fs", "dev") == -1)
1402 		halt("Can't load dev");
1403 
1404 	(void) modloadonly("sys", "lbl_edition");
1405 
1406 	dispinit();
1407 
1408 	/*
1409 	 * This is needed here to initialize hw_serial[] for cluster booting.
1410 	 */
1411 	if ((i = modload("misc", "sysinit")) != (unsigned int)-1)
1412 		(void) modunload(i);
1413 	else
1414 		cmn_err(CE_CONT, "sysinit load failed");
1415 
1416 	/* Read cluster configuration data. */
1417 	clconf_init();
1418 
1419 #if defined(__xpv)
1420 	ec_init();
1421 	gnttab_init();
1422 	(void) xs_early_init();
1423 #endif /* __xpv */
1424 
1425 	/*
1426 	 * Create a kernel device tree. First, create rootnex and
1427 	 * then invoke bus specific code to probe devices.
1428 	 */
1429 	setup_ddi();
1430 
1431 	/*
1432 	 * Set up the CPU module subsystem.  Modifies the device tree, so it
1433 	 * must be done after setup_ddi().
1434 	 */
1435 	cmi_init();
1436 
1437 	/*
1438 	 * Initialize the MCA handlers
1439 	 */
1440 	if (x86_feature & X86_MCA)
1441 		cmi_mca_init();
1442 
1443 	/*
1444 	 * Fake a prom tree such that /dev/openprom continues to work
1445 	 */
1446 	PRM_POINT("startup_modules: calling prom_setup...");
1447 	prom_setup();
1448 	PRM_POINT("startup_modules: done");
1449 
1450 	/*
1451 	 * Load all platform specific modules
1452 	 */
1453 	PRM_POINT("startup_modules: calling psm_modload...");
1454 	psm_modload();
1455 
1456 	PRM_POINT("startup_modules() done");
1457 }
1458 
1459 /*
1460  * claim a "setaside" boot page for use in the kernel
1461  */
1462 page_t *
1463 boot_claim_page(pfn_t pfn)
1464 {
1465 	page_t *pp;
1466 
1467 	pp = page_numtopp_nolock(pfn);
1468 	ASSERT(pp != NULL);
1469 
1470 	if (PP_ISBOOTPAGES(pp)) {
1471 		if (pp->p_next != NULL)
1472 			pp->p_next->p_prev = pp->p_prev;
1473 		if (pp->p_prev == NULL)
1474 			bootpages = pp->p_next;
1475 		else
1476 			pp->p_prev->p_next = pp->p_next;
1477 	} else {
1478 		/*
1479 		 * htable_attach() expects a base pagesize page
1480 		 */
1481 		if (pp->p_szc != 0)
1482 			page_boot_demote(pp);
1483 		pp = page_numtopp(pfn, SE_EXCL);
1484 	}
1485 	return (pp);
1486 }
1487 
1488 /*
1489  * Walk through the pagetables looking for pages mapped in by boot.  If the
1490  * setaside flag is set the pages are expected to be returned to the
1491  * kernel later in boot, so we add them to the bootpages list.
1492  */
1493 static void
1494 protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
1495 {
1496 	uintptr_t va = low;
1497 	size_t len;
1498 	uint_t prot;
1499 	pfn_t pfn;
1500 	page_t *pp;
1501 	pgcnt_t boot_protect_cnt = 0;
1502 
1503 	while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
1504 		if (va + len >= high)
1505 			panic("0x%lx byte mapping at 0x%p exceeds boot's "
1506 			    "legal range.", len, (void *)va);
1507 
1508 		while (len > 0) {
1509 			pp = page_numtopp_alloc(pfn);
1510 			if (pp != NULL) {
1511 				if (setaside == 0)
1512 					panic("Unexpected mapping by boot.  "
1513 					    "addr=%p pfn=%lx\n",
1514 					    (void *)va, pfn);
1515 
1516 				pp->p_next = bootpages;
1517 				pp->p_prev = NULL;
1518 				PP_SETBOOTPAGES(pp);
1519 				if (bootpages != NULL) {
1520 					bootpages->p_prev = pp;
1521 				}
1522 				bootpages = pp;
1523 				++boot_protect_cnt;
1524 			}
1525 
1526 			++pfn;
1527 			len -= MMU_PAGESIZE;
1528 			va += MMU_PAGESIZE;
1529 		}
1530 	}
1531 	PRM_DEBUG(boot_protect_cnt);
1532 }
1533 
1534 /*
1535  *
1536  */
1537 static void
1538 layout_kernel_va(void)
1539 {
1540 	PRM_POINT("layout_kernel_va() starting...");
1541 	/*
1542 	 * Establish the final size of the kernel's heap, size of segmap,
1543 	 * segkp, etc.
1544 	 */
1545 
1546 #if defined(__amd64)
1547 
1548 	kpm_vbase = (caddr_t)segkpm_base;
1549 	kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1));
1550 	if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base)
1551 		panic("not enough room for kpm!");
1552 	PRM_DEBUG(kpm_size);
1553 	PRM_DEBUG(kpm_vbase);
1554 
1555 	/*
1556 	 * By default we create a seg_kp in 64 bit kernels, it's a little
1557 	 * faster to access than embedding it in the heap.
1558 	 */
1559 	segkp_base = (caddr_t)valloc_base + valloc_sz;
1560 	if (!segkp_fromheap) {
1561 		size_t sz = mmu_ptob(segkpsize);
1562 
1563 		/*
1564 		 * determine size of segkp
1565 		 */
1566 		if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) {
1567 			sz = SEGKPDEFSIZE;
1568 			cmn_err(CE_WARN, "!Illegal value for segkpsize. "
1569 			    "segkpsize has been reset to %ld pages",
1570 			    mmu_btop(sz));
1571 		}
1572 		sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem)));
1573 
1574 		segkpsize = mmu_btop(ROUND_UP_LPAGE(sz));
1575 	}
1576 	PRM_DEBUG(segkp_base);
1577 	PRM_DEBUG(segkpsize);
1578 
1579 	/*
1580 	 * segzio is used for ZFS cached data. It uses a distinct VA
1581 	 * segment (from kernel heap) so that we can easily tell not to
1582 	 * include it in kernel crash dumps on 64 bit kernels. The trick is
1583 	 * to give it lots of VA, but not constrain the kernel heap.
1584 	 * We scale the size of segzio linearly with physmem up to
1585 	 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem.
1586 	 */
1587 	segzio_base = segkp_base + mmu_ptob(segkpsize);
1588 	if (segzio_fromheap) {
1589 		segziosize = 0;
1590 	} else {
1591 		size_t physmem_size = mmu_ptob(physmem);
1592 		size_t size = (segziosize == 0) ?
1593 		    physmem_size : mmu_ptob(segziosize);
1594 
1595 		if (size < SEGZIOMINSIZE)
1596 			size = SEGZIOMINSIZE;
1597 		if (size > SEGZIOMAXSIZE) {
1598 			size = SEGZIOMAXSIZE;
1599 			if (physmem_size > size)
1600 				size += (physmem_size - size) / 2;
1601 		}
1602 		segziosize = mmu_btop(ROUND_UP_LPAGE(size));
1603 	}
1604 	PRM_DEBUG(segziosize);
1605 	PRM_DEBUG(segzio_base);
1606 
1607 	/*
1608 	 * Put the range of VA for device mappings next, kmdb knows to not
1609 	 * grep in this range of addresses.
1610 	 */
1611 	toxic_addr =
1612 	    ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize));
1613 	PRM_DEBUG(toxic_addr);
1614 	segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size);
1615 #else /* __i386 */
1616 	segmap_start = ROUND_UP_LPAGE(kernelbase);
1617 #endif /* __i386 */
1618 	PRM_DEBUG(segmap_start);
1619 
1620 	/*
1621 	 * Users can change segmapsize through eeprom or /etc/system.
1622 	 * If the variable is tuned through eeprom, there is no upper
1623 	 * bound on the size of segmap.  If it is tuned through
1624 	 * /etc/system on 32-bit systems, it must be no larger than we
1625 	 * planned for in startup_memlist().
1626 	 */
1627 	segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
1628 
1629 #if defined(__i386)
1630 	/*
1631 	 * 32-bit systems don't have segkpm or segkp, so segmap appears at
1632 	 * the bottom of the kernel's address range.  Set aside space for a
1633 	 * small red zone just below the start of segmap.
1634 	 */
1635 	segmap_start += KERNEL_REDZONE_SIZE;
1636 	segmapsize -= KERNEL_REDZONE_SIZE;
1637 #endif
1638 
1639 	PRM_DEBUG(segmap_start);
1640 	PRM_DEBUG(segmapsize);
1641 	kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize);
1642 	PRM_DEBUG(kernelheap);
1643 	PRM_POINT("layout_kernel_va() done...");
1644 }
1645 
1646 /*
1647  * Finish initializing the VM system, now that we are no longer
1648  * relying on the boot time memory allocators.
1649  */
1650 static void
1651 startup_vm(void)
1652 {
1653 	struct segmap_crargs a;
1654 
1655 	extern int use_brk_lpg, use_stk_lpg;
1656 
1657 	PRM_POINT("startup_vm() starting...");
1658 
1659 	/*
1660 	 * Initialize the hat layer.
1661 	 */
1662 	hat_init();
1663 
1664 	/*
1665 	 * Do final allocations of HAT data structures that need to
1666 	 * be allocated before quiescing the boot loader.
1667 	 */
1668 	PRM_POINT("Calling hat_kern_alloc()...");
1669 	hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap);
1670 	PRM_POINT("hat_kern_alloc() done");
1671 
1672 #ifndef __xpv
1673 	/*
1674 	 * Setup Page Attribute Table
1675 	 */
1676 	pat_sync();
1677 #endif
1678 
1679 	/*
1680 	 * The next two loops are done in distinct steps in order
1681 	 * to be sure that any page that is doubly mapped (both above
1682 	 * KERNEL_TEXT and below kernelbase) is dealt with correctly.
1683 	 * Note this may never happen, but it might someday.
1684 	 */
1685 	bootpages = NULL;
1686 	PRM_POINT("Protecting boot pages");
1687 
1688 	/*
1689 	 * Protect any pages mapped above KERNEL_TEXT that somehow have
1690 	 * page_t's. This can only happen if something weird allocated
1691 	 * in this range (like kadb/kmdb).
1692 	 */
1693 	protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
1694 
1695 	/*
1696 	 * Before we can take over memory allocation/mapping from the boot
1697 	 * loader we must remove from our free page lists any boot allocated
1698 	 * pages that stay mapped until release_bootstrap().
1699 	 */
1700 	protect_boot_range(0, kernelbase, 1);
1701 
1702 
1703 	/*
1704 	 * Switch to running on regular HAT (not boot_mmu)
1705 	 */
1706 	PRM_POINT("Calling hat_kern_setup()...");
1707 	hat_kern_setup();
1708 
1709 	/*
1710 	 * It is no longer safe to call BOP_ALLOC(), so make sure we don't.
1711 	 */
1712 	bop_no_more_mem();
1713 
1714 	PRM_POINT("hat_kern_setup() done");
1715 
1716 	hat_cpu_online(CPU);
1717 
1718 	/*
1719 	 * Initialize VM system
1720 	 */
1721 	PRM_POINT("Calling kvm_init()...");
1722 	kvm_init();
1723 	PRM_POINT("kvm_init() done");
1724 
1725 	/*
1726 	 * Tell kmdb that the VM system is now working
1727 	 */
1728 	if (boothowto & RB_DEBUG)
1729 		kdi_dvec_vmready();
1730 
1731 #if defined(__xpv)
1732 	/*
1733 	 * Populate the I/O pool on domain 0
1734 	 */
1735 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1736 		extern long populate_io_pool(void);
1737 		long init_io_pool_cnt;
1738 
1739 		PRM_POINT("Populating reserve I/O page pool");
1740 		init_io_pool_cnt = populate_io_pool();
1741 		PRM_DEBUG(init_io_pool_cnt);
1742 	}
1743 #endif
1744 	/*
1745 	 * Mangle the brand string etc.
1746 	 */
1747 	cpuid_pass3(CPU);
1748 
1749 #if defined(__amd64)
1750 
1751 	/*
1752 	 * Create the device arena for toxic (to dtrace/kmdb) mappings.
1753 	 */
1754 	device_arena = vmem_create("device", (void *)toxic_addr,
1755 	    toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
1756 
1757 #else	/* __i386 */
1758 
1759 	/*
1760 	 * allocate the bit map that tracks toxic pages
1761 	 */
1762 	toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase));
1763 	PRM_DEBUG(toxic_bit_map_len);
1764 	toxic_bit_map =
1765 	    kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP);
1766 	ASSERT(toxic_bit_map != NULL);
1767 	PRM_DEBUG(toxic_bit_map);
1768 
1769 #endif	/* __i386 */
1770 
1771 
1772 	/*
1773 	 * Now that we've got more VA, as well as the ability to allocate from
1774 	 * it, tell the debugger.
1775 	 */
1776 	if (boothowto & RB_DEBUG)
1777 		kdi_dvec_memavail();
1778 
1779 	/*
1780 	 * The following code installs a special page fault handler (#pf)
1781 	 * to work around a pentium bug.
1782 	 */
1783 #if !defined(__amd64) && !defined(__xpv)
1784 	if (x86_type == X86_TYPE_P5) {
1785 		desctbr_t idtr;
1786 		gate_desc_t *newidt;
1787 		struct machcpu *mcpu = &CPU->cpu_m;
1788 
1789 		if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL)
1790 			panic("failed to install pentium_pftrap");
1791 
1792 		bcopy(idt0, newidt, sizeof (idt0));
1793 		set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap,
1794 		    KCS_SEL, SDT_SYSIGT, TRP_KPL);
1795 
1796 		(void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE,
1797 		    PROT_READ|PROT_EXEC);
1798 
1799 		mcpu->mcpu_idt = newidt;
1800 		idtr.dtr_base = (uintptr_t)mcpu->mcpu_idt;
1801 		idtr.dtr_limit = sizeof (idt0) - 1;
1802 		wr_idtr(&idtr);
1803 	}
1804 #endif	/* !__amd64 */
1805 
1806 #if !defined(__xpv)
1807 	/*
1808 	 * Map page pfn=0 for drivers, such as kd, that need to pick up
1809 	 * parameters left there by controllers/BIOS.
1810 	 */
1811 	PRM_POINT("setup up p0_va");
1812 	p0_va = i86devmap(0, 1, PROT_READ);
1813 	PRM_DEBUG(p0_va);
1814 #endif
1815 
1816 	cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
1817 	    physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
1818 
1819 	/*
1820 	 * disable automatic large pages for small memory systems or
1821 	 * when the disable flag is set.
1822 	 */
1823 	if (!auto_lpg_disable && mmu.max_page_level > 0) {
1824 		max_uheap_lpsize = LEVEL_SIZE(1);
1825 		max_ustack_lpsize = LEVEL_SIZE(1);
1826 		max_privmap_lpsize = LEVEL_SIZE(1);
1827 		max_uidata_lpsize = LEVEL_SIZE(1);
1828 		max_utext_lpsize = LEVEL_SIZE(1);
1829 		max_shm_lpsize = LEVEL_SIZE(1);
1830 	}
1831 	if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 ||
1832 	    auto_lpg_disable) {
1833 		use_brk_lpg = 0;
1834 		use_stk_lpg = 0;
1835 	}
1836 	if (mmu.max_page_level > 0) {
1837 		mcntl0_lpsize = LEVEL_SIZE(1);
1838 	}
1839 
1840 	PRM_POINT("Calling hat_init_finish()...");
1841 	hat_init_finish();
1842 	PRM_POINT("hat_init_finish() done");
1843 
1844 	/*
1845 	 * Initialize the segkp segment type.
1846 	 */
1847 	rw_enter(&kas.a_lock, RW_WRITER);
1848 	PRM_POINT("Attaching segkp");
1849 	if (segkp_fromheap) {
1850 		segkp->s_as = &kas;
1851 	} else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
1852 	    segkp) < 0) {
1853 		panic("startup: cannot attach segkp");
1854 		/*NOTREACHED*/
1855 	}
1856 	PRM_POINT("Doing segkp_create()");
1857 	if (segkp_create(segkp) != 0) {
1858 		panic("startup: segkp_create failed");
1859 		/*NOTREACHED*/
1860 	}
1861 	PRM_DEBUG(segkp);
1862 	rw_exit(&kas.a_lock);
1863 
1864 	/*
1865 	 * kpm segment
1866 	 */
1867 	segmap_kpm = 0;
1868 	if (kpm_desired) {
1869 		kpm_init();
1870 		kpm_enable = 1;
1871 		vpm_enable = 1;
1872 	}
1873 
1874 	/*
1875 	 * Now create segmap segment.
1876 	 */
1877 	rw_enter(&kas.a_lock, RW_WRITER);
1878 	if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) {
1879 		panic("cannot attach segmap");
1880 		/*NOTREACHED*/
1881 	}
1882 	PRM_DEBUG(segmap);
1883 
1884 	a.prot = PROT_READ | PROT_WRITE;
1885 	a.shmsize = 0;
1886 	a.nfreelist = segmapfreelists;
1887 
1888 	if (segmap_create(segmap, (caddr_t)&a) != 0)
1889 		panic("segmap_create segmap");
1890 	rw_exit(&kas.a_lock);
1891 
1892 	setup_vaddr_for_ppcopy(CPU);
1893 
1894 	segdev_init();
1895 #if defined(__xpv)
1896 	if (DOMAIN_IS_INITDOMAIN(xen_info))
1897 #endif
1898 		pmem_init();
1899 
1900 	PRM_POINT("startup_vm() done");
1901 }
1902 
1903 /*
1904  * Load a tod module for the non-standard tod part found on this system.
1905  */
1906 static void
1907 load_tod_module(char *todmod)
1908 {
1909 	if (modload("tod", todmod) == -1)
1910 		halt("Can't load TOD module");
1911 }
1912 
1913 static void
1914 startup_end(void)
1915 {
1916 	int i;
1917 	extern void setx86isalist(void);
1918 
1919 	PRM_POINT("startup_end() starting...");
1920 
1921 	/*
1922 	 * Perform tasks that get done after most of the VM
1923 	 * initialization has been done but before the clock
1924 	 * and other devices get started.
1925 	 */
1926 	kern_setup1();
1927 
1928 	/*
1929 	 * Perform CPC initialization for this CPU.
1930 	 */
1931 	kcpc_hw_init(CPU);
1932 
1933 #if defined(OPTERON_WORKAROUND_6323525)
1934 	if (opteron_workaround_6323525)
1935 		patch_workaround_6323525();
1936 #endif
1937 	/*
1938 	 * If needed, load TOD module now so that ddi_get_time(9F) etc. work
1939 	 * (For now, "needed" is defined as set tod_module_name in /etc/system)
1940 	 */
1941 	if (tod_module_name != NULL) {
1942 		PRM_POINT("load_tod_module()");
1943 		load_tod_module(tod_module_name);
1944 	}
1945 
1946 #if defined(__xpv)
1947 	/*
1948 	 * Forceload interposing TOD module for the hypervisor.
1949 	 */
1950 	PRM_POINT("load_tod_module()");
1951 	load_tod_module("xpvtod");
1952 #endif
1953 
1954 	/*
1955 	 * Configure the system.
1956 	 */
1957 	PRM_POINT("Calling configure()...");
1958 	configure();		/* set up devices */
1959 	PRM_POINT("configure() done");
1960 
1961 	/*
1962 	 * Set the isa_list string to the defined instruction sets we
1963 	 * support.
1964 	 */
1965 	setx86isalist();
1966 	cpu_intr_alloc(CPU, NINTR_THREADS);
1967 	psm_install();
1968 
1969 	/*
1970 	 * We're done with bootops.  We don't unmap the bootstrap yet because
1971 	 * we're still using bootsvcs.
1972 	 */
1973 	PRM_POINT("NULLing out bootops");
1974 	*bootopsp = (struct bootops *)NULL;
1975 	bootops = (struct bootops *)NULL;
1976 
1977 #if defined(__xpv)
1978 	ec_init_debug_irq();
1979 	xs_domu_init();
1980 #endif
1981 	PRM_POINT("Enabling interrupts");
1982 	(*picinitf)();
1983 	sti();
1984 #if defined(__xpv)
1985 	ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0);
1986 	xen_late_startup();
1987 #endif
1988 
1989 	(void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
1990 	    "softlevel1", NULL, NULL); /* XXX to be moved later */
1991 
1992 	/*
1993 	 * Register these software interrupts for ddi timer.
1994 	 * Software interrupts up to the level 10 are supported.
1995 	 */
1996 	for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
1997 		char name[sizeof ("timer_softintr") + 2];
1998 		(void) sprintf(name, "timer_softintr%02d", i);
1999 		(void) add_avsoftintr((void *)&softlevel_hdl[i-1], i,
2000 		    (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL);
2001 	}
2002 
2003 	PRM_POINT("startup_end() done");
2004 }
2005 
2006 extern char hw_serial[];
2007 char *_hs1107 = hw_serial;
2008 ulong_t  _bdhs34;
2009 
2010 void
2011 post_startup(void)
2012 {
2013 	/*
2014 	 * Set the system wide, processor-specific flags to be passed
2015 	 * to userland via the aux vector for performance hints and
2016 	 * instruction set extensions.
2017 	 */
2018 	bind_hwcap();
2019 
2020 #ifdef __xpv
2021 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2022 #endif
2023 	{
2024 		/*
2025 		 * Load the System Management BIOS into the global ksmbios
2026 		 * handle, if an SMBIOS is present on this system.
2027 		 */
2028 		ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL);
2029 
2030 #if defined(__xpv)
2031 		xpv_panic_init();
2032 #else
2033 		/*
2034 		 * Startup the memory scrubber.
2035 		 * XXPV	This should be running somewhere ..
2036 		 */
2037 		memscrub_init();
2038 #endif
2039 	}
2040 
2041 	/*
2042 	 * Complete CPU module initialization
2043 	 */
2044 	cmi_post_init();
2045 
2046 	/*
2047 	 * Perform forceloading tasks for /etc/system.
2048 	 */
2049 	(void) mod_sysctl(SYS_FORCELOAD, NULL);
2050 
2051 	/*
2052 	 * ON4.0: Force /proc module in until clock interrupt handle fixed
2053 	 * ON4.0: This must be fixed or restated in /etc/systems.
2054 	 */
2055 	(void) modload("fs", "procfs");
2056 
2057 	(void) i_ddi_attach_hw_nodes("pit_beep");
2058 
2059 #if defined(__i386)
2060 	/*
2061 	 * Check for required functional Floating Point hardware,
2062 	 * unless FP hardware explicitly disabled.
2063 	 */
2064 	if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO))
2065 		halt("No working FP hardware found");
2066 #endif
2067 
2068 	maxmem = freemem;
2069 
2070 	add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi);
2071 }
2072 
2073 static int
2074 pp_in_ramdisk(page_t *pp)
2075 {
2076 	extern uint64_t ramdisk_start, ramdisk_end;
2077 
2078 	return ((pp->p_pagenum >= btop(ramdisk_start)) &&
2079 	    (pp->p_pagenum < btopr(ramdisk_end)));
2080 }
2081 
2082 void
2083 release_bootstrap(void)
2084 {
2085 	int root_is_ramdisk;
2086 	page_t *pp;
2087 	extern void kobj_boot_unmountroot(void);
2088 	extern dev_t rootdev;
2089 
2090 	/* unmount boot ramdisk and release kmem usage */
2091 	kobj_boot_unmountroot();
2092 
2093 	/*
2094 	 * We're finished using the boot loader so free its pages.
2095 	 */
2096 	PRM_POINT("Unmapping lower boot pages");
2097 	clear_boot_mappings(0, _userlimit);
2098 	postbootkernelbase = kernelbase;
2099 
2100 	/*
2101 	 * If root isn't on ramdisk, destroy the hardcoded
2102 	 * ramdisk node now and release the memory. Else,
2103 	 * ramdisk memory is kept in rd_pages.
2104 	 */
2105 	root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
2106 	if (!root_is_ramdisk) {
2107 		dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
2108 		ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
2109 		ndi_rele_devi(dip);	/* held from ddi_find_devinfo */
2110 		(void) ddi_remove_child(dip, 0);
2111 	}
2112 
2113 	PRM_POINT("Releasing boot pages");
2114 	while (bootpages) {
2115 		pp = bootpages;
2116 		bootpages = pp->p_next;
2117 		if (root_is_ramdisk && pp_in_ramdisk(pp)) {
2118 			pp->p_next = rd_pages;
2119 			rd_pages = pp;
2120 			continue;
2121 		}
2122 		pp->p_next = (struct page *)0;
2123 		pp->p_prev = (struct page *)0;
2124 		PP_CLRBOOTPAGES(pp);
2125 		page_free(pp, 1);
2126 	}
2127 	PRM_POINT("Boot pages released");
2128 
2129 #if !defined(__xpv)
2130 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */
2131 	/*
2132 	 * Find 1 page below 1 MB so that other processors can boot up.
2133 	 * Make sure it has a kernel VA as well as a 1:1 mapping.
2134 	 * We should have just free'd one up.
2135 	 */
2136 	if (use_mp) {
2137 		pfn_t pfn;
2138 
2139 		for (pfn = 1; pfn < btop(1*1024*1024); pfn++) {
2140 			if (page_numtopp_alloc(pfn) == NULL)
2141 				continue;
2142 			rm_platter_va = i86devmap(pfn, 1,
2143 			    PROT_READ | PROT_WRITE | PROT_EXEC);
2144 			rm_platter_pa = ptob(pfn);
2145 			hat_devload(kas.a_hat,
2146 			    (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
2147 			    pfn, PROT_READ | PROT_WRITE | PROT_EXEC,
2148 			    HAT_LOAD_NOCONSIST);
2149 			break;
2150 		}
2151 		if (pfn == btop(1*1024*1024))
2152 			panic("No page available for starting "
2153 			    "other processors");
2154 	}
2155 #endif	/* !__xpv */
2156 }
2157 
2158 /*
2159  * Initialize the platform-specific parts of a page_t.
2160  */
2161 void
2162 add_physmem_cb(page_t *pp, pfn_t pnum)
2163 {
2164 	pp->p_pagenum = pnum;
2165 	pp->p_mapping = NULL;
2166 	pp->p_embed = 0;
2167 	pp->p_share = 0;
2168 	pp->p_mlentry = 0;
2169 }
2170 
2171 /*
2172  * kphysm_init() initializes physical memory.
2173  */
2174 static pgcnt_t
2175 kphysm_init(
2176 	page_t *pp,
2177 	pgcnt_t npages)
2178 {
2179 	struct memlist	*pmem;
2180 	struct memseg	*cur_memseg;
2181 	pfn_t		base_pfn;
2182 	pgcnt_t		num;
2183 	pgcnt_t		pages_done = 0;
2184 	uint64_t	addr;
2185 	uint64_t	size;
2186 	extern pfn_t	ddiphysmin;
2187 
2188 	ASSERT(page_hash != NULL && page_hashsz != 0);
2189 
2190 	cur_memseg = memseg_base;
2191 	for (pmem = phys_avail; pmem && npages; pmem = pmem->next) {
2192 		/*
2193 		 * In a 32 bit kernel can't use higher memory if we're
2194 		 * not booting in PAE mode. This check takes care of that.
2195 		 */
2196 		addr = pmem->address;
2197 		size = pmem->size;
2198 		if (btop(addr) > physmax)
2199 			continue;
2200 
2201 		/*
2202 		 * align addr and size - they may not be at page boundaries
2203 		 */
2204 		if ((addr & MMU_PAGEOFFSET) != 0) {
2205 			addr += MMU_PAGEOFFSET;
2206 			addr &= ~(uint64_t)MMU_PAGEOFFSET;
2207 			size -= addr - pmem->address;
2208 		}
2209 
2210 		/* only process pages below or equal to physmax */
2211 		if ((btop(addr + size) - 1) > physmax)
2212 			size = ptob(physmax - btop(addr) + 1);
2213 
2214 		num = btop(size);
2215 		if (num == 0)
2216 			continue;
2217 
2218 		if (num > npages)
2219 			num = npages;
2220 
2221 		npages -= num;
2222 		pages_done += num;
2223 		base_pfn = btop(addr);
2224 
2225 		if (prom_debug)
2226 			prom_printf("MEMSEG addr=0x%" PRIx64
2227 			    " pgs=0x%lx pfn 0x%lx-0x%lx\n",
2228 			    addr, num, base_pfn, base_pfn + num);
2229 
2230 		/*
2231 		 * Ignore pages below ddiphysmin to simplify ddi memory
2232 		 * allocation with non-zero addr_lo requests.
2233 		 */
2234 		if (base_pfn < ddiphysmin) {
2235 			if (base_pfn + num <= ddiphysmin)
2236 				continue;
2237 			pp += (ddiphysmin - base_pfn);
2238 			num -= (ddiphysmin - base_pfn);
2239 			base_pfn = ddiphysmin;
2240 		}
2241 
2242 		/*
2243 		 * Build the memsegs entry
2244 		 */
2245 		cur_memseg->pages = pp;
2246 		cur_memseg->epages = pp + num;
2247 		cur_memseg->pages_base = base_pfn;
2248 		cur_memseg->pages_end = base_pfn + num;
2249 
2250 		/*
2251 		 * Insert into memseg list in decreasing pfn range order.
2252 		 * Low memory is typically more fragmented such that this
2253 		 * ordering keeps the larger ranges at the front of the list
2254 		 * for code that searches memseg.
2255 		 * This ASSERTS that the memsegs coming in from boot are in
2256 		 * increasing physical address order and not contiguous.
2257 		 */
2258 		if (memsegs != NULL) {
2259 			ASSERT(cur_memseg->pages_base >= memsegs->pages_end);
2260 			cur_memseg->next = memsegs;
2261 		}
2262 		memsegs = cur_memseg;
2263 
2264 		/*
2265 		 * add_physmem() initializes the PSM part of the page
2266 		 * struct by calling the PSM back with add_physmem_cb().
2267 		 * In addition it coalesces pages into larger pages as
2268 		 * it initializes them.
2269 		 */
2270 		add_physmem(pp, num, base_pfn);
2271 		cur_memseg++;
2272 		availrmem_initial += num;
2273 		availrmem += num;
2274 
2275 		pp += num;
2276 	}
2277 
2278 	PRM_DEBUG(availrmem_initial);
2279 	PRM_DEBUG(availrmem);
2280 	PRM_DEBUG(freemem);
2281 	build_pfn_hash();
2282 	return (pages_done);
2283 }
2284 
2285 /*
2286  * Kernel VM initialization.
2287  */
2288 static void
2289 kvm_init(void)
2290 {
2291 	ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
2292 
2293 	/*
2294 	 * Put the kernel segments in kernel address space.
2295 	 */
2296 	rw_enter(&kas.a_lock, RW_WRITER);
2297 	as_avlinit(&kas);
2298 
2299 	(void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
2300 	(void) segkmem_create(&ktextseg);
2301 
2302 	(void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
2303 	(void) segkmem_create(&kvalloc);
2304 
2305 	(void) seg_attach(&kas, kernelheap,
2306 	    ekernelheap - kernelheap, &kvseg);
2307 	(void) segkmem_create(&kvseg);
2308 
2309 	if (core_size > 0) {
2310 		PRM_POINT("attaching kvseg_core");
2311 		(void) seg_attach(&kas, (caddr_t)core_base, core_size,
2312 		    &kvseg_core);
2313 		(void) segkmem_create(&kvseg_core);
2314 	}
2315 
2316 	if (segziosize > 0) {
2317 		PRM_POINT("attaching segzio");
2318 		(void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2319 		    &kzioseg);
2320 		(void) segkmem_zio_create(&kzioseg);
2321 
2322 		/* create zio area covering new segment */
2323 		segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2324 	}
2325 
2326 	(void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2327 	(void) segkmem_create(&kdebugseg);
2328 
2329 	rw_exit(&kas.a_lock);
2330 
2331 	/*
2332 	 * Ensure that the red zone at kernelbase is never accessible.
2333 	 */
2334 	PRM_POINT("protecting redzone");
2335 	(void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
2336 
2337 	/*
2338 	 * Make the text writable so that it can be hot patched by DTrace.
2339 	 */
2340 	(void) as_setprot(&kas, s_text, e_modtext - s_text,
2341 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2342 
2343 	/*
2344 	 * Make data writable until end.
2345 	 */
2346 	(void) as_setprot(&kas, s_data, e_moddata - s_data,
2347 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2348 }
2349 
2350 #ifndef __xpv
2351 /*
2352  * Solaris adds an entry for Write Combining caching to the PAT
2353  */
2354 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
2355 
2356 void
2357 pat_sync(void)
2358 {
2359 	ulong_t	cr0, cr0_orig, cr4;
2360 
2361 	if (!(x86_feature & X86_PAT))
2362 		return;
2363 	cr0_orig = cr0 = getcr0();
2364 	cr4 = getcr4();
2365 
2366 	/* disable caching and flush all caches and TLBs */
2367 	cr0 |= CR0_CD;
2368 	cr0 &= ~CR0_NW;
2369 	setcr0(cr0);
2370 	invalidate_cache();
2371 	if (cr4 & CR4_PGE) {
2372 		setcr4(cr4 & ~(ulong_t)CR4_PGE);
2373 		setcr4(cr4);
2374 	} else {
2375 		reload_cr3();
2376 	}
2377 
2378 	/* add our entry to the PAT */
2379 	wrmsr(REG_PAT, pat_attr_reg);
2380 
2381 	/* flush TLBs and cache again, then reenable cr0 caching */
2382 	if (cr4 & CR4_PGE) {
2383 		setcr4(cr4 & ~(ulong_t)CR4_PGE);
2384 		setcr4(cr4);
2385 	} else {
2386 		reload_cr3();
2387 	}
2388 	invalidate_cache();
2389 	setcr0(cr0_orig);
2390 }
2391 
2392 #endif /* !__xpv */
2393 
2394 void
2395 get_system_configuration(void)
2396 {
2397 	char	prop[32];
2398 	u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
2399 
2400 	if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) ||
2401 	    BOP_GETPROP(bootops, "nodes", prop) < 0 ||
2402 	    kobj_getvalue(prop, &nodes_ll) == -1 ||
2403 	    nodes_ll > MAXNODES ||
2404 	    BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) ||
2405 	    BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 ||
2406 	    kobj_getvalue(prop, &cpus_pernode_ll) == -1) {
2407 		system_hardware.hd_nodes = 1;
2408 		system_hardware.hd_cpus_per_node = 0;
2409 	} else {
2410 		system_hardware.hd_nodes = (int)nodes_ll;
2411 		system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
2412 	}
2413 
2414 	if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) ||
2415 	    BOP_GETPROP(bootops, "kernelbase", prop) < 0 ||
2416 	    kobj_getvalue(prop, &lvalue) == -1)
2417 		eprom_kernelbase = NULL;
2418 	else
2419 		eprom_kernelbase = (uintptr_t)lvalue;
2420 
2421 	if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) ||
2422 	    BOP_GETPROP(bootops, "segmapsize", prop) < 0 ||
2423 	    kobj_getvalue(prop, &lvalue) == -1)
2424 		segmapsize = SEGMAPDEFAULT;
2425 	else
2426 		segmapsize = (uintptr_t)lvalue;
2427 
2428 	if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) ||
2429 	    BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 ||
2430 	    kobj_getvalue(prop, &lvalue) == -1)
2431 		segmapfreelists = 0;	/* use segmap driver default */
2432 	else
2433 		segmapfreelists = (int)lvalue;
2434 
2435 	/* physmem used to be here, but moved much earlier to fakebop.c */
2436 }
2437 
2438 /*
2439  * Add to a memory list.
2440  * start = start of new memory segment
2441  * len = length of new memory segment in bytes
2442  * new = pointer to a new struct memlist
2443  * memlistp = memory list to which to add segment.
2444  */
2445 void
2446 memlist_add(
2447 	uint64_t start,
2448 	uint64_t len,
2449 	struct memlist *new,
2450 	struct memlist **memlistp)
2451 {
2452 	struct memlist *cur;
2453 	uint64_t end = start + len;
2454 
2455 	new->address = start;
2456 	new->size = len;
2457 
2458 	cur = *memlistp;
2459 
2460 	while (cur) {
2461 		if (cur->address >= end) {
2462 			new->next = cur;
2463 			*memlistp = new;
2464 			new->prev = cur->prev;
2465 			cur->prev = new;
2466 			return;
2467 		}
2468 		ASSERT(cur->address + cur->size <= start);
2469 		if (cur->next == NULL) {
2470 			cur->next = new;
2471 			new->prev = cur;
2472 			new->next = NULL;
2473 			return;
2474 		}
2475 		memlistp = &cur->next;
2476 		cur = cur->next;
2477 	}
2478 }
2479 
2480 void
2481 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
2482 {
2483 	size_t tsize = e_modtext - modtext;
2484 	size_t dsize = e_moddata - moddata;
2485 
2486 	*text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
2487 	    1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
2488 	*data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
2489 	    1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
2490 }
2491 
2492 caddr_t
2493 kobj_text_alloc(vmem_t *arena, size_t size)
2494 {
2495 	return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
2496 }
2497 
2498 /*ARGSUSED*/
2499 caddr_t
2500 kobj_texthole_alloc(caddr_t addr, size_t size)
2501 {
2502 	panic("unexpected call to kobj_texthole_alloc()");
2503 	/*NOTREACHED*/
2504 	return (0);
2505 }
2506 
2507 /*ARGSUSED*/
2508 void
2509 kobj_texthole_free(caddr_t addr, size_t size)
2510 {
2511 	panic("unexpected call to kobj_texthole_free()");
2512 }
2513 
2514 /*
2515  * This is called just after configure() in startup().
2516  *
2517  * The ISALIST concept is a bit hopeless on Intel, because
2518  * there's no guarantee of an ever-more-capable processor
2519  * given that various parts of the instruction set may appear
2520  * and disappear between different implementations.
2521  *
2522  * While it would be possible to correct it and even enhance
2523  * it somewhat, the explicit hardware capability bitmask allows
2524  * more flexibility.
2525  *
2526  * So, we just leave this alone.
2527  */
2528 void
2529 setx86isalist(void)
2530 {
2531 	char *tp;
2532 	size_t len;
2533 	extern char *isa_list;
2534 
2535 #define	TBUFSIZE	1024
2536 
2537 	tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
2538 	*tp = '\0';
2539 
2540 #if defined(__amd64)
2541 	(void) strcpy(tp, "amd64 ");
2542 #endif
2543 
2544 	switch (x86_vendor) {
2545 	case X86_VENDOR_Intel:
2546 	case X86_VENDOR_AMD:
2547 	case X86_VENDOR_TM:
2548 		if (x86_feature & X86_CMOV) {
2549 			/*
2550 			 * Pentium Pro or later
2551 			 */
2552 			(void) strcat(tp, "pentium_pro");
2553 			(void) strcat(tp, x86_feature & X86_MMX ?
2554 			    "+mmx pentium_pro " : " ");
2555 		}
2556 		/*FALLTHROUGH*/
2557 	case X86_VENDOR_Cyrix:
2558 		/*
2559 		 * The Cyrix 6x86 does not have any Pentium features
2560 		 * accessible while not at privilege level 0.
2561 		 */
2562 		if (x86_feature & X86_CPUID) {
2563 			(void) strcat(tp, "pentium");
2564 			(void) strcat(tp, x86_feature & X86_MMX ?
2565 			    "+mmx pentium " : " ");
2566 		}
2567 		break;
2568 	default:
2569 		break;
2570 	}
2571 	(void) strcat(tp, "i486 i386 i86");
2572 	len = strlen(tp) + 1;   /* account for NULL at end of string */
2573 	isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
2574 	kmem_free(tp, TBUFSIZE);
2575 
2576 #undef TBUFSIZE
2577 }
2578 
2579 
2580 #ifdef __amd64
2581 
2582 void *
2583 device_arena_alloc(size_t size, int vm_flag)
2584 {
2585 	return (vmem_alloc(device_arena, size, vm_flag));
2586 }
2587 
2588 void
2589 device_arena_free(void *vaddr, size_t size)
2590 {
2591 	vmem_free(device_arena, vaddr, size);
2592 }
2593 
2594 #else /* __i386 */
2595 
2596 void *
2597 device_arena_alloc(size_t size, int vm_flag)
2598 {
2599 	caddr_t	vaddr;
2600 	uintptr_t v;
2601 	size_t	start;
2602 	size_t	end;
2603 
2604 	vaddr = vmem_alloc(heap_arena, size, vm_flag);
2605 	if (vaddr == NULL)
2606 		return (NULL);
2607 
2608 	v = (uintptr_t)vaddr;
2609 	ASSERT(v >= kernelbase);
2610 	ASSERT(v + size <= valloc_base);
2611 
2612 	start = btop(v - kernelbase);
2613 	end = btop(v + size - 1 - kernelbase);
2614 	ASSERT(start < toxic_bit_map_len);
2615 	ASSERT(end < toxic_bit_map_len);
2616 
2617 	while (start <= end) {
2618 		BT_ATOMIC_SET(toxic_bit_map, start);
2619 		++start;
2620 	}
2621 	return (vaddr);
2622 }
2623 
2624 void
2625 device_arena_free(void *vaddr, size_t size)
2626 {
2627 	uintptr_t v = (uintptr_t)vaddr;
2628 	size_t	start;
2629 	size_t	end;
2630 
2631 	ASSERT(v >= kernelbase);
2632 	ASSERT(v + size <= valloc_base);
2633 
2634 	start = btop(v - kernelbase);
2635 	end = btop(v + size - 1 - kernelbase);
2636 	ASSERT(start < toxic_bit_map_len);
2637 	ASSERT(end < toxic_bit_map_len);
2638 
2639 	while (start <= end) {
2640 		ASSERT(BT_TEST(toxic_bit_map, start) != 0);
2641 		BT_ATOMIC_CLEAR(toxic_bit_map, start);
2642 		++start;
2643 	}
2644 	vmem_free(heap_arena, vaddr, size);
2645 }
2646 
2647 /*
2648  * returns 1st address in range that is in device arena, or NULL
2649  * if len is not NULL it returns the length of the toxic range
2650  */
2651 void *
2652 device_arena_contains(void *vaddr, size_t size, size_t *len)
2653 {
2654 	uintptr_t v = (uintptr_t)vaddr;
2655 	uintptr_t eaddr = v + size;
2656 	size_t start;
2657 	size_t end;
2658 
2659 	/*
2660 	 * if called very early by kmdb, just return NULL
2661 	 */
2662 	if (toxic_bit_map == NULL)
2663 		return (NULL);
2664 
2665 	/*
2666 	 * First check if we're completely outside the bitmap range.
2667 	 */
2668 	if (v >= valloc_base || eaddr < kernelbase)
2669 		return (NULL);
2670 
2671 	/*
2672 	 * Trim ends of search to look at only what the bitmap covers.
2673 	 */
2674 	if (v < kernelbase)
2675 		v = kernelbase;
2676 	start = btop(v - kernelbase);
2677 	end = btop(eaddr - kernelbase);
2678 	if (end >= toxic_bit_map_len)
2679 		end = toxic_bit_map_len;
2680 
2681 	if (bt_range(toxic_bit_map, &start, &end, end) == 0)
2682 		return (NULL);
2683 
2684 	v = kernelbase + ptob(start);
2685 	if (len != NULL)
2686 		*len = ptob(end - start);
2687 	return ((void *)v);
2688 }
2689 
2690 #endif	/* __i386 */
2691