xref: /titanic_50/usr/src/uts/i86pc/os/mp_startup.c (revision f79b63829052fcaae660db7f78ce17efd13e15bc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/thread.h>
29 #include <sys/cpuvar.h>
30 #include <sys/t_lock.h>
31 #include <sys/param.h>
32 #include <sys/proc.h>
33 #include <sys/disp.h>
34 #include <sys/class.h>
35 #include <sys/cmn_err.h>
36 #include <sys/debug.h>
37 #include <sys/asm_linkage.h>
38 #include <sys/x_call.h>
39 #include <sys/systm.h>
40 #include <sys/var.h>
41 #include <sys/vtrace.h>
42 #include <vm/hat.h>
43 #include <vm/as.h>
44 #include <vm/seg_kmem.h>
45 #include <vm/seg_kp.h>
46 #include <sys/segments.h>
47 #include <sys/kmem.h>
48 #include <sys/stack.h>
49 #include <sys/smp_impldefs.h>
50 #include <sys/x86_archext.h>
51 #include <sys/machsystm.h>
52 #include <sys/traptrace.h>
53 #include <sys/clock.h>
54 #include <sys/cpc_impl.h>
55 #include <sys/pg.h>
56 #include <sys/cmt.h>
57 #include <sys/dtrace.h>
58 #include <sys/archsystm.h>
59 #include <sys/fp.h>
60 #include <sys/reboot.h>
61 #include <sys/kdi_machimpl.h>
62 #include <vm/hat_i86.h>
63 #include <sys/memnode.h>
64 #include <sys/pci_cfgspace.h>
65 #include <sys/mach_mmu.h>
66 #include <sys/sysmacros.h>
67 #if defined(__xpv)
68 #include <sys/hypervisor.h>
69 #endif
70 #include <sys/cpu_module.h>
71 
72 struct cpu	cpus[1];			/* CPU data */
73 struct cpu	*cpu[NCPU] = {&cpus[0]};	/* pointers to all CPUs */
74 cpu_core_t	cpu_core[NCPU];			/* cpu_core structures */
75 
76 /*
77  * Useful for disabling MP bring-up on a MP capable system.
78  */
79 int use_mp = 1;
80 
81 /*
82  * to be set by a PSM to indicate what cpus
83  * are sitting around on the system.
84  */
85 cpuset_t mp_cpus;
86 
87 /*
88  * This variable is used by the hat layer to decide whether or not
89  * critical sections are needed to prevent race conditions.  For sun4m,
90  * this variable is set once enough MP initialization has been done in
91  * order to allow cross calls.
92  */
93 int flushes_require_xcalls;
94 
95 cpuset_t cpu_ready_set;		/* initialized in startup() */
96 
97 static 	void	mp_startup(void);
98 
99 static void cpu_sep_enable(void);
100 static void cpu_sep_disable(void);
101 static void cpu_asysc_enable(void);
102 static void cpu_asysc_disable(void);
103 
104 /*
105  * Init CPU info - get CPU type info for processor_info system call.
106  */
107 void
108 init_cpu_info(struct cpu *cp)
109 {
110 	processor_info_t *pi = &cp->cpu_type_info;
111 	char buf[CPU_IDSTRLEN];
112 
113 	/*
114 	 * Get clock-frequency property for the CPU.
115 	 */
116 	pi->pi_clock = cpu_freq;
117 
118 	/*
119 	 * Current frequency in Hz.
120 	 */
121 	cp->cpu_curr_clock = cpu_freq_hz;
122 
123 	/*
124 	 * Supported frequencies.
125 	 */
126 	if (cp->cpu_supp_freqs == NULL) {
127 		cpu_set_supp_freqs(cp, NULL);
128 	}
129 
130 	(void) strcpy(pi->pi_processor_type, "i386");
131 	if (fpu_exists)
132 		(void) strcpy(pi->pi_fputypes, "i387 compatible");
133 
134 	(void) cpuid_getidstr(cp, buf, sizeof (buf));
135 
136 	cp->cpu_idstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP);
137 	(void) strcpy(cp->cpu_idstr, buf);
138 
139 	(void) cpuid_getbrandstr(cp, buf, sizeof (buf));
140 	cp->cpu_brandstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP);
141 	(void) strcpy(cp->cpu_brandstr, buf);
142 }
143 
144 /*
145  * Configure syscall support on this CPU.
146  */
147 /*ARGSUSED*/
148 void
149 init_cpu_syscall(struct cpu *cp)
150 {
151 	kpreempt_disable();
152 
153 #if defined(__amd64)
154 	if ((x86_feature & (X86_MSR | X86_ASYSC)) == (X86_MSR | X86_ASYSC)) {
155 
156 #if !defined(__lint)
157 		/*
158 		 * The syscall instruction imposes a certain ordering on
159 		 * segment selectors, so we double-check that ordering
160 		 * here.
161 		 */
162 		ASSERT(KDS_SEL == KCS_SEL + 8);
163 		ASSERT(UDS_SEL == U32CS_SEL + 8);
164 		ASSERT(UCS_SEL == U32CS_SEL + 16);
165 #endif
166 		/*
167 		 * Turn syscall/sysret extensions on.
168 		 */
169 		cpu_asysc_enable();
170 
171 		/*
172 		 * Program the magic registers ..
173 		 */
174 		wrmsr(MSR_AMD_STAR,
175 		    ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) << 32);
176 		wrmsr(MSR_AMD_LSTAR, (uint64_t)(uintptr_t)sys_syscall);
177 		wrmsr(MSR_AMD_CSTAR, (uint64_t)(uintptr_t)sys_syscall32);
178 
179 		/*
180 		 * This list of flags is masked off the incoming
181 		 * %rfl when we enter the kernel.
182 		 */
183 		wrmsr(MSR_AMD_SFMASK, (uint64_t)(uintptr_t)(PS_IE | PS_T));
184 	}
185 #endif
186 
187 	/*
188 	 * On 32-bit kernels, we use sysenter/sysexit because it's too
189 	 * hard to use syscall/sysret, and it is more portable anyway.
190 	 *
191 	 * On 64-bit kernels on Nocona machines, the 32-bit syscall
192 	 * variant isn't available to 32-bit applications, but sysenter is.
193 	 */
194 	if ((x86_feature & (X86_MSR | X86_SEP)) == (X86_MSR | X86_SEP)) {
195 
196 #if !defined(__lint)
197 		/*
198 		 * The sysenter instruction imposes a certain ordering on
199 		 * segment selectors, so we double-check that ordering
200 		 * here. See "sysenter" in Intel document 245471-012, "IA-32
201 		 * Intel Architecture Software Developer's Manual Volume 2:
202 		 * Instruction Set Reference"
203 		 */
204 		ASSERT(KDS_SEL == KCS_SEL + 8);
205 
206 		ASSERT32(UCS_SEL == ((KCS_SEL + 16) | 3));
207 		ASSERT32(UDS_SEL == UCS_SEL + 8);
208 
209 		ASSERT64(U32CS_SEL == ((KCS_SEL + 16) | 3));
210 		ASSERT64(UDS_SEL == U32CS_SEL + 8);
211 #endif
212 
213 		cpu_sep_enable();
214 
215 		/*
216 		 * resume() sets this value to the base of the threads stack
217 		 * via a context handler.
218 		 */
219 		wrmsr(MSR_INTC_SEP_ESP, 0);
220 		wrmsr(MSR_INTC_SEP_EIP, (uint64_t)(uintptr_t)sys_sysenter);
221 	}
222 
223 	kpreempt_enable();
224 }
225 
226 /*
227  * Multiprocessor initialization.
228  *
229  * Allocate and initialize the cpu structure, TRAPTRACE buffer, and the
230  * startup and idle threads for the specified CPU.
231  */
232 struct cpu *
233 mp_startup_init(int cpun)
234 {
235 	struct cpu *cp;
236 	kthread_id_t tp;
237 	caddr_t	sp;
238 	proc_t *procp;
239 #if !defined(__xpv)
240 	extern int idle_cpu_prefer_mwait;
241 	extern void cpu_idle_mwait();
242 #endif
243 	extern void idle();
244 	extern void cpu_idle();
245 
246 #ifdef TRAPTRACE
247 	trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun];
248 #endif
249 
250 	ASSERT(cpun < NCPU && cpu[cpun] == NULL);
251 
252 	cp = kmem_zalloc(sizeof (*cp), KM_SLEEP);
253 #if !defined(__xpv)
254 	if ((x86_feature & X86_MWAIT) && idle_cpu_prefer_mwait) {
255 		cp->cpu_m.mcpu_mwait = cpuid_mwait_alloc(CPU);
256 		cp->cpu_m.mcpu_idle_cpu = cpu_idle_mwait;
257 	} else
258 #endif
259 		cp->cpu_m.mcpu_idle_cpu = cpu_idle;
260 
261 	cp->cpu_m.mcpu_istamp = cpun << 16;
262 
263 	procp = curthread->t_procp;
264 
265 	mutex_enter(&cpu_lock);
266 	/*
267 	 * Initialize the dispatcher first.
268 	 */
269 	disp_cpu_init(cp);
270 	mutex_exit(&cpu_lock);
271 
272 	cpu_vm_data_init(cp);
273 
274 	/*
275 	 * Allocate and initialize the startup thread for this CPU.
276 	 * Interrupt and process switch stacks get allocated later
277 	 * when the CPU starts running.
278 	 */
279 	tp = thread_create(NULL, 0, NULL, NULL, 0, procp,
280 	    TS_STOPPED, maxclsyspri);
281 
282 	/*
283 	 * Set state to TS_ONPROC since this thread will start running
284 	 * as soon as the CPU comes online.
285 	 *
286 	 * All the other fields of the thread structure are setup by
287 	 * thread_create().
288 	 */
289 	THREAD_ONPROC(tp, cp);
290 	tp->t_preempt = 1;
291 	tp->t_bound_cpu = cp;
292 	tp->t_affinitycnt = 1;
293 	tp->t_cpu = cp;
294 	tp->t_disp_queue = cp->cpu_disp;
295 
296 	/*
297 	 * Setup thread to start in mp_startup.
298 	 */
299 	sp = tp->t_stk;
300 	tp->t_pc = (uintptr_t)mp_startup;
301 	tp->t_sp = (uintptr_t)(sp - MINFRAME);
302 #if defined(__amd64)
303 	tp->t_sp -= STACK_ENTRY_ALIGN;		/* fake a call */
304 #endif
305 
306 	cp->cpu_id = cpun;
307 	cp->cpu_self = cp;
308 	cp->cpu_thread = tp;
309 	cp->cpu_lwp = NULL;
310 	cp->cpu_dispthread = tp;
311 	cp->cpu_dispatch_pri = DISP_PRIO(tp);
312 
313 	/*
314 	 * cpu_base_spl must be set explicitly here to prevent any blocking
315 	 * operations in mp_startup from causing the spl of the cpu to drop
316 	 * to 0 (allowing device interrupts before we're ready) in resume().
317 	 * cpu_base_spl MUST remain at LOCK_LEVEL until the cpu is CPU_READY.
318 	 * As an extra bit of security on DEBUG kernels, this is enforced with
319 	 * an assertion in mp_startup() -- before cpu_base_spl is set to its
320 	 * proper value.
321 	 */
322 	cp->cpu_base_spl = ipltospl(LOCK_LEVEL);
323 
324 	/*
325 	 * Now, initialize per-CPU idle thread for this CPU.
326 	 */
327 	tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1);
328 
329 	cp->cpu_idle_thread = tp;
330 
331 	tp->t_preempt = 1;
332 	tp->t_bound_cpu = cp;
333 	tp->t_affinitycnt = 1;
334 	tp->t_cpu = cp;
335 	tp->t_disp_queue = cp->cpu_disp;
336 
337 	/*
338 	 * Bootstrap the CPU's PG data
339 	 */
340 	pg_cpu_bootstrap(cp);
341 
342 	/*
343 	 * Perform CPC initialization on the new CPU.
344 	 */
345 	kcpc_hw_init(cp);
346 
347 	/*
348 	 * Allocate virtual addresses for cpu_caddr1 and cpu_caddr2
349 	 * for each CPU.
350 	 */
351 	setup_vaddr_for_ppcopy(cp);
352 
353 	/*
354 	 * Allocate page for new GDT and initialize from current GDT.
355 	 */
356 #if !defined(__lint)
357 	ASSERT((sizeof (*cp->cpu_gdt) * NGDT) <= PAGESIZE);
358 #endif
359 	cp->cpu_gdt = kmem_zalloc(PAGESIZE, KM_SLEEP);
360 	bcopy(CPU->cpu_gdt, cp->cpu_gdt, (sizeof (*cp->cpu_gdt) * NGDT));
361 
362 #if defined(__i386)
363 	/*
364 	 * setup kernel %gs.
365 	 */
366 	set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA,
367 	    SEL_KPL, 0, 1);
368 #endif
369 
370 	/*
371 	 * If we have more than one node, each cpu gets a copy of IDT
372 	 * local to its node. If this is a Pentium box, we use cpu 0's
373 	 * IDT. cpu 0's IDT has been made read-only to workaround the
374 	 * cmpxchgl register bug
375 	 */
376 	if (system_hardware.hd_nodes && x86_type != X86_TYPE_P5) {
377 #if !defined(__lint)
378 		ASSERT((sizeof (*CPU->cpu_idt) * NIDT) <= PAGESIZE);
379 #endif
380 		cp->cpu_idt = kmem_zalloc(PAGESIZE, KM_SLEEP);
381 		bcopy(CPU->cpu_idt, cp->cpu_idt, PAGESIZE);
382 	} else {
383 		cp->cpu_idt = CPU->cpu_idt;
384 	}
385 
386 	/*
387 	 * Get interrupt priority data from cpu 0.
388 	 */
389 	cp->cpu_pri_data = CPU->cpu_pri_data;
390 
391 	/*
392 	 * alloc space for cpuid info
393 	 */
394 	cpuid_alloc_space(cp);
395 
396 	/*
397 	 * alloc space for ucode_info
398 	 */
399 	ucode_alloc_space(cp);
400 	xc_init_cpu(cp);
401 	hat_cpu_online(cp);
402 
403 #ifdef TRAPTRACE
404 	/*
405 	 * If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers
406 	 */
407 	ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP);
408 	ttc->ttc_next = ttc->ttc_first;
409 	ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize;
410 #endif
411 	/*
412 	 * Record that we have another CPU.
413 	 */
414 	mutex_enter(&cpu_lock);
415 	/*
416 	 * Initialize the interrupt threads for this CPU
417 	 */
418 	cpu_intr_alloc(cp, NINTR_THREADS);
419 	/*
420 	 * Add CPU to list of available CPUs.  It'll be on the active list
421 	 * after mp_startup().
422 	 */
423 	cpu_add_unit(cp);
424 	mutex_exit(&cpu_lock);
425 
426 	return (cp);
427 }
428 
429 /*
430  * Undo what was done in mp_startup_init
431  */
432 static void
433 mp_startup_fini(struct cpu *cp, int error)
434 {
435 	mutex_enter(&cpu_lock);
436 
437 	/*
438 	 * Remove the CPU from the list of available CPUs.
439 	 */
440 	cpu_del_unit(cp->cpu_id);
441 
442 	if (error == ETIMEDOUT) {
443 		/*
444 		 * The cpu was started, but never *seemed* to run any
445 		 * code in the kernel; it's probably off spinning in its
446 		 * own private world, though with potential references to
447 		 * our kmem-allocated IDTs and GDTs (for example).
448 		 *
449 		 * Worse still, it may actually wake up some time later,
450 		 * so rather than guess what it might or might not do, we
451 		 * leave the fundamental data structures intact.
452 		 */
453 		cp->cpu_flags = 0;
454 		mutex_exit(&cpu_lock);
455 		return;
456 	}
457 
458 	/*
459 	 * At this point, the only threads bound to this CPU should
460 	 * special per-cpu threads: it's idle thread, it's pause threads,
461 	 * and it's interrupt threads.  Clean these up.
462 	 */
463 	cpu_destroy_bound_threads(cp);
464 	cp->cpu_idle_thread = NULL;
465 
466 	/*
467 	 * Free the interrupt stack.
468 	 */
469 	segkp_release(segkp,
470 	    cp->cpu_intr_stack - (INTR_STACK_SIZE - SA(MINFRAME)));
471 
472 	mutex_exit(&cpu_lock);
473 
474 #ifdef TRAPTRACE
475 	/*
476 	 * Discard the trap trace buffer
477 	 */
478 	{
479 		trap_trace_ctl_t *ttc = &trap_trace_ctl[cp->cpu_id];
480 
481 		kmem_free((void *)ttc->ttc_first, trap_trace_bufsize);
482 		ttc->ttc_first = NULL;
483 	}
484 #endif
485 
486 	hat_cpu_offline(cp);
487 
488 	cpuid_free_space(cp);
489 
490 	ucode_free_space(cp);
491 
492 	if (cp->cpu_idt != CPU->cpu_idt)
493 		kmem_free(cp->cpu_idt, PAGESIZE);
494 	cp->cpu_idt = NULL;
495 
496 	kmem_free(cp->cpu_gdt, PAGESIZE);
497 	cp->cpu_gdt = NULL;
498 
499 	teardown_vaddr_for_ppcopy(cp);
500 
501 	kcpc_hw_fini(cp);
502 
503 	cp->cpu_dispthread = NULL;
504 	cp->cpu_thread = NULL;	/* discarded by cpu_destroy_bound_threads() */
505 
506 	cpu_vm_data_destroy(cp);
507 
508 	mutex_enter(&cpu_lock);
509 	disp_cpu_fini(cp);
510 	mutex_exit(&cpu_lock);
511 
512 #if !defined(__xpv)
513 	if (cp->cpu_m.mcpu_mwait != NULL)
514 		cpuid_mwait_free(cp);
515 #endif
516 	kmem_free(cp, sizeof (*cp));
517 }
518 
519 /*
520  * Apply workarounds for known errata, and warn about those that are absent.
521  *
522  * System vendors occasionally create configurations which contain different
523  * revisions of the CPUs that are almost but not exactly the same.  At the
524  * time of writing, this meant that their clock rates were the same, their
525  * feature sets were the same, but the required workaround were -not-
526  * necessarily the same.  So, this routine is invoked on -every- CPU soon
527  * after starting to make sure that the resulting system contains the most
528  * pessimal set of workarounds needed to cope with *any* of the CPUs in the
529  * system.
530  *
531  * workaround_errata is invoked early in mlsetup() for CPU 0, and in
532  * mp_startup() for all slave CPUs. Slaves process workaround_errata prior
533  * to acknowledging their readiness to the master, so this routine will
534  * never be executed by multiple CPUs in parallel, thus making updates to
535  * global data safe.
536  *
537  * These workarounds are based on Rev 3.57 of the Revision Guide for
538  * AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005.
539  */
540 
541 #if defined(OPTERON_ERRATUM_88)
542 int opteron_erratum_88;		/* if non-zero -> at least one cpu has it */
543 #endif
544 
545 #if defined(OPTERON_ERRATUM_91)
546 int opteron_erratum_91;		/* if non-zero -> at least one cpu has it */
547 #endif
548 
549 #if defined(OPTERON_ERRATUM_93)
550 int opteron_erratum_93;		/* if non-zero -> at least one cpu has it */
551 #endif
552 
553 #if defined(OPTERON_ERRATUM_95)
554 int opteron_erratum_95;		/* if non-zero -> at least one cpu has it */
555 #endif
556 
557 #if defined(OPTERON_ERRATUM_100)
558 int opteron_erratum_100;	/* if non-zero -> at least one cpu has it */
559 #endif
560 
561 #if defined(OPTERON_ERRATUM_108)
562 int opteron_erratum_108;	/* if non-zero -> at least one cpu has it */
563 #endif
564 
565 #if defined(OPTERON_ERRATUM_109)
566 int opteron_erratum_109;	/* if non-zero -> at least one cpu has it */
567 #endif
568 
569 #if defined(OPTERON_ERRATUM_121)
570 int opteron_erratum_121;	/* if non-zero -> at least one cpu has it */
571 #endif
572 
573 #if defined(OPTERON_ERRATUM_122)
574 int opteron_erratum_122;	/* if non-zero -> at least one cpu has it */
575 #endif
576 
577 #if defined(OPTERON_ERRATUM_123)
578 int opteron_erratum_123;	/* if non-zero -> at least one cpu has it */
579 #endif
580 
581 #if defined(OPTERON_ERRATUM_131)
582 int opteron_erratum_131;	/* if non-zero -> at least one cpu has it */
583 #endif
584 
585 #if defined(OPTERON_WORKAROUND_6336786)
586 int opteron_workaround_6336786;	/* non-zero -> WA relevant and applied */
587 int opteron_workaround_6336786_UP = 0;	/* Not needed for UP */
588 #endif
589 
590 #if defined(OPTERON_WORKAROUND_6323525)
591 int opteron_workaround_6323525;	/* if non-zero -> at least one cpu has it */
592 #endif
593 
594 #if defined(OPTERON_ERRATUM_298)
595 int opteron_erratum_298;
596 #endif
597 
598 static void
599 workaround_warning(cpu_t *cp, uint_t erratum)
600 {
601 	cmn_err(CE_WARN, "cpu%d: no workaround for erratum %u",
602 	    cp->cpu_id, erratum);
603 }
604 
605 static void
606 workaround_applied(uint_t erratum)
607 {
608 	if (erratum > 1000000)
609 		cmn_err(CE_CONT, "?workaround applied for cpu issue #%d\n",
610 		    erratum);
611 	else
612 		cmn_err(CE_CONT, "?workaround applied for cpu erratum #%d\n",
613 		    erratum);
614 }
615 
616 static void
617 msr_warning(cpu_t *cp, const char *rw, uint_t msr, int error)
618 {
619 	cmn_err(CE_WARN, "cpu%d: couldn't %smsr 0x%x, error %d",
620 	    cp->cpu_id, rw, msr, error);
621 }
622 
623 /*
624  * Determine the number of nodes in a Hammer / Greyhound / Griffin family
625  * system.
626  */
627 static uint_t
628 opteron_get_nnodes(void)
629 {
630 	static uint_t nnodes = 0;
631 
632 	if (nnodes == 0) {
633 #ifdef	DEBUG
634 		uint_t family;
635 
636 		/*
637 		 * This routine uses a PCI config space based mechanism
638 		 * for retrieving the number of nodes in the system.
639 		 * Device 24, function 0, offset 0x60 as used here is not
640 		 * AMD processor architectural, and may not work on processor
641 		 * families other than those listed below.
642 		 *
643 		 * Callers of this routine must ensure that we're running on
644 		 * a processor which supports this mechanism.
645 		 * The assertion below is meant to catch calls on unsupported
646 		 * processors.
647 		 */
648 		family = cpuid_getfamily(CPU);
649 		ASSERT(family == 0xf || family == 0x10 || family == 0x11);
650 #endif	/* DEBUG */
651 
652 		/*
653 		 * Obtain the number of nodes in the system from
654 		 * bits [6:4] of the Node ID register on node 0.
655 		 *
656 		 * The actual node count is NodeID[6:4] + 1
657 		 *
658 		 * The Node ID register is accessed via function 0,
659 		 * offset 0x60. Node 0 is device 24.
660 		 */
661 		nnodes = ((pci_getl_func(0, 24, 0, 0x60) & 0x70) >> 4) + 1;
662 	}
663 	return (nnodes);
664 }
665 
666 uint_t
667 do_erratum_298(struct cpu *cpu)
668 {
669 	static int	osvwrc = -3;
670 	extern int	osvw_opteron_erratum(cpu_t *, uint_t);
671 
672 	/*
673 	 * L2 Eviction May Occur During Processor Operation To Set
674 	 * Accessed or Dirty Bit.
675 	 */
676 	if (osvwrc == -3) {
677 		osvwrc = osvw_opteron_erratum(cpu, 298);
678 	} else {
679 		/* osvw return codes should be consistent for all cpus */
680 		ASSERT(osvwrc == osvw_opteron_erratum(cpu, 298));
681 	}
682 
683 	switch (osvwrc) {
684 	case 0:		/* erratum is not present: do nothing */
685 		break;
686 	case 1:		/* erratum is present: BIOS workaround applied */
687 		/*
688 		 * check if workaround is actually in place and issue warning
689 		 * if not.
690 		 */
691 		if (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) ||
692 		    ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0)) {
693 #if defined(OPTERON_ERRATUM_298)
694 			opteron_erratum_298++;
695 #else
696 			workaround_warning(cpu, 298);
697 			return (1);
698 #endif
699 		}
700 		break;
701 	case -1:	/* cannot determine via osvw: check cpuid */
702 		if ((cpuid_opteron_erratum(cpu, 298) > 0) &&
703 		    (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) ||
704 		    ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0))) {
705 #if defined(OPTERON_ERRATUM_298)
706 			opteron_erratum_298++;
707 #else
708 			workaround_warning(cpu, 298);
709 			return (1);
710 #endif
711 		}
712 		break;
713 	}
714 	return (0);
715 }
716 
717 uint_t
718 workaround_errata(struct cpu *cpu)
719 {
720 	uint_t missing = 0;
721 
722 	ASSERT(cpu == CPU);
723 
724 	/*LINTED*/
725 	if (cpuid_opteron_erratum(cpu, 88) > 0) {
726 		/*
727 		 * SWAPGS May Fail To Read Correct GS Base
728 		 */
729 #if defined(OPTERON_ERRATUM_88)
730 		/*
731 		 * The workaround is an mfence in the relevant assembler code
732 		 */
733 		opteron_erratum_88++;
734 #else
735 		workaround_warning(cpu, 88);
736 		missing++;
737 #endif
738 	}
739 
740 	if (cpuid_opteron_erratum(cpu, 91) > 0) {
741 		/*
742 		 * Software Prefetches May Report A Page Fault
743 		 */
744 #if defined(OPTERON_ERRATUM_91)
745 		/*
746 		 * fix is in trap.c
747 		 */
748 		opteron_erratum_91++;
749 #else
750 		workaround_warning(cpu, 91);
751 		missing++;
752 #endif
753 	}
754 
755 	if (cpuid_opteron_erratum(cpu, 93) > 0) {
756 		/*
757 		 * RSM Auto-Halt Restart Returns to Incorrect RIP
758 		 */
759 #if defined(OPTERON_ERRATUM_93)
760 		/*
761 		 * fix is in trap.c
762 		 */
763 		opteron_erratum_93++;
764 #else
765 		workaround_warning(cpu, 93);
766 		missing++;
767 #endif
768 	}
769 
770 	/*LINTED*/
771 	if (cpuid_opteron_erratum(cpu, 95) > 0) {
772 		/*
773 		 * RET Instruction May Return to Incorrect EIP
774 		 */
775 #if defined(OPTERON_ERRATUM_95)
776 #if defined(_LP64)
777 		/*
778 		 * Workaround this by ensuring that 32-bit user code and
779 		 * 64-bit kernel code never occupy the same address
780 		 * range mod 4G.
781 		 */
782 		if (_userlimit32 > 0xc0000000ul)
783 			*(uintptr_t *)&_userlimit32 = 0xc0000000ul;
784 
785 		/*LINTED*/
786 		ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u);
787 		opteron_erratum_95++;
788 #endif	/* _LP64 */
789 #else
790 		workaround_warning(cpu, 95);
791 		missing++;
792 #endif
793 	}
794 
795 	if (cpuid_opteron_erratum(cpu, 100) > 0) {
796 		/*
797 		 * Compatibility Mode Branches Transfer to Illegal Address
798 		 */
799 #if defined(OPTERON_ERRATUM_100)
800 		/*
801 		 * fix is in trap.c
802 		 */
803 		opteron_erratum_100++;
804 #else
805 		workaround_warning(cpu, 100);
806 		missing++;
807 #endif
808 	}
809 
810 	/*LINTED*/
811 	if (cpuid_opteron_erratum(cpu, 108) > 0) {
812 		/*
813 		 * CPUID Instruction May Return Incorrect Model Number In
814 		 * Some Processors
815 		 */
816 #if defined(OPTERON_ERRATUM_108)
817 		/*
818 		 * (Our cpuid-handling code corrects the model number on
819 		 * those processors)
820 		 */
821 #else
822 		workaround_warning(cpu, 108);
823 		missing++;
824 #endif
825 	}
826 
827 	/*LINTED*/
828 	if (cpuid_opteron_erratum(cpu, 109) > 0) do {
829 		/*
830 		 * Certain Reverse REP MOVS May Produce Unpredictable Behavior
831 		 */
832 #if defined(OPTERON_ERRATUM_109)
833 		/*
834 		 * The "workaround" is to print a warning to upgrade the BIOS
835 		 */
836 		uint64_t value;
837 		const uint_t msr = MSR_AMD_PATCHLEVEL;
838 		int err;
839 
840 		if ((err = checked_rdmsr(msr, &value)) != 0) {
841 			msr_warning(cpu, "rd", msr, err);
842 			workaround_warning(cpu, 109);
843 			missing++;
844 		}
845 		if (value == 0)
846 			opteron_erratum_109++;
847 #else
848 		workaround_warning(cpu, 109);
849 		missing++;
850 #endif
851 	/*CONSTANTCONDITION*/
852 	} while (0);
853 
854 	/*LINTED*/
855 	if (cpuid_opteron_erratum(cpu, 121) > 0) {
856 		/*
857 		 * Sequential Execution Across Non_Canonical Boundary Caused
858 		 * Processor Hang
859 		 */
860 #if defined(OPTERON_ERRATUM_121)
861 #if defined(_LP64)
862 		/*
863 		 * Erratum 121 is only present in long (64 bit) mode.
864 		 * Workaround is to include the page immediately before the
865 		 * va hole to eliminate the possibility of system hangs due to
866 		 * sequential execution across the va hole boundary.
867 		 */
868 		if (opteron_erratum_121)
869 			opteron_erratum_121++;
870 		else {
871 			if (hole_start) {
872 				hole_start -= PAGESIZE;
873 			} else {
874 				/*
875 				 * hole_start not yet initialized by
876 				 * mmu_init. Initialize hole_start
877 				 * with value to be subtracted.
878 				 */
879 				hole_start = PAGESIZE;
880 			}
881 			opteron_erratum_121++;
882 		}
883 #endif	/* _LP64 */
884 #else
885 		workaround_warning(cpu, 121);
886 		missing++;
887 #endif
888 	}
889 
890 	/*LINTED*/
891 	if (cpuid_opteron_erratum(cpu, 122) > 0) do {
892 		/*
893 		 * TLB Flush Filter May Cause Coherency Problem in
894 		 * Multiprocessor Systems
895 		 */
896 #if defined(OPTERON_ERRATUM_122)
897 		uint64_t value;
898 		const uint_t msr = MSR_AMD_HWCR;
899 		int error;
900 
901 		/*
902 		 * Erratum 122 is only present in MP configurations (multi-core
903 		 * or multi-processor).
904 		 */
905 #if defined(__xpv)
906 		if (!DOMAIN_IS_INITDOMAIN(xen_info))
907 			break;
908 		if (!opteron_erratum_122 && xpv_nr_phys_cpus() == 1)
909 			break;
910 #else
911 		if (!opteron_erratum_122 && opteron_get_nnodes() == 1 &&
912 		    cpuid_get_ncpu_per_chip(cpu) == 1)
913 			break;
914 #endif
915 		/* disable TLB Flush Filter */
916 
917 		if ((error = checked_rdmsr(msr, &value)) != 0) {
918 			msr_warning(cpu, "rd", msr, error);
919 			workaround_warning(cpu, 122);
920 			missing++;
921 		} else {
922 			value |= (uint64_t)AMD_HWCR_FFDIS;
923 			if ((error = checked_wrmsr(msr, value)) != 0) {
924 				msr_warning(cpu, "wr", msr, error);
925 				workaround_warning(cpu, 122);
926 				missing++;
927 			}
928 		}
929 		opteron_erratum_122++;
930 #else
931 		workaround_warning(cpu, 122);
932 		missing++;
933 #endif
934 	/*CONSTANTCONDITION*/
935 	} while (0);
936 
937 	/*LINTED*/
938 	if (cpuid_opteron_erratum(cpu, 123) > 0) do {
939 		/*
940 		 * Bypassed Reads May Cause Data Corruption of System Hang in
941 		 * Dual Core Processors
942 		 */
943 #if defined(OPTERON_ERRATUM_123)
944 		uint64_t value;
945 		const uint_t msr = MSR_AMD_PATCHLEVEL;
946 		int err;
947 
948 		/*
949 		 * Erratum 123 applies only to multi-core cpus.
950 		 */
951 		if (cpuid_get_ncpu_per_chip(cpu) < 2)
952 			break;
953 #if defined(__xpv)
954 		if (!DOMAIN_IS_INITDOMAIN(xen_info))
955 			break;
956 #endif
957 		/*
958 		 * The "workaround" is to print a warning to upgrade the BIOS
959 		 */
960 		if ((err = checked_rdmsr(msr, &value)) != 0) {
961 			msr_warning(cpu, "rd", msr, err);
962 			workaround_warning(cpu, 123);
963 			missing++;
964 		}
965 		if (value == 0)
966 			opteron_erratum_123++;
967 #else
968 		workaround_warning(cpu, 123);
969 		missing++;
970 
971 #endif
972 	/*CONSTANTCONDITION*/
973 	} while (0);
974 
975 	/*LINTED*/
976 	if (cpuid_opteron_erratum(cpu, 131) > 0) do {
977 		/*
978 		 * Multiprocessor Systems with Four or More Cores May Deadlock
979 		 * Waiting for a Probe Response
980 		 */
981 #if defined(OPTERON_ERRATUM_131)
982 		uint64_t nbcfg;
983 		const uint_t msr = MSR_AMD_NB_CFG;
984 		const uint64_t wabits =
985 		    AMD_NB_CFG_SRQ_HEARTBEAT | AMD_NB_CFG_SRQ_SPR;
986 		int error;
987 
988 		/*
989 		 * Erratum 131 applies to any system with four or more cores.
990 		 */
991 		if (opteron_erratum_131)
992 			break;
993 #if defined(__xpv)
994 		if (!DOMAIN_IS_INITDOMAIN(xen_info))
995 			break;
996 		if (xpv_nr_phys_cpus() < 4)
997 			break;
998 #else
999 		if (opteron_get_nnodes() * cpuid_get_ncpu_per_chip(cpu) < 4)
1000 			break;
1001 #endif
1002 		/*
1003 		 * Print a warning if neither of the workarounds for
1004 		 * erratum 131 is present.
1005 		 */
1006 		if ((error = checked_rdmsr(msr, &nbcfg)) != 0) {
1007 			msr_warning(cpu, "rd", msr, error);
1008 			workaround_warning(cpu, 131);
1009 			missing++;
1010 		} else if ((nbcfg & wabits) == 0) {
1011 			opteron_erratum_131++;
1012 		} else {
1013 			/* cannot have both workarounds set */
1014 			ASSERT((nbcfg & wabits) != wabits);
1015 		}
1016 #else
1017 		workaround_warning(cpu, 131);
1018 		missing++;
1019 #endif
1020 	/*CONSTANTCONDITION*/
1021 	} while (0);
1022 
1023 	/*
1024 	 * This isn't really an erratum, but for convenience the
1025 	 * detection/workaround code lives here and in cpuid_opteron_erratum.
1026 	 */
1027 	if (cpuid_opteron_erratum(cpu, 6336786) > 0) {
1028 #if defined(OPTERON_WORKAROUND_6336786)
1029 		/*
1030 		 * Disable C1-Clock ramping on multi-core/multi-processor
1031 		 * K8 platforms to guard against TSC drift.
1032 		 */
1033 		if (opteron_workaround_6336786) {
1034 			opteron_workaround_6336786++;
1035 #if defined(__xpv)
1036 		} else if ((DOMAIN_IS_INITDOMAIN(xen_info) &&
1037 		    xpv_nr_phys_cpus() > 1) ||
1038 		    opteron_workaround_6336786_UP) {
1039 			/*
1040 			 * XXPV	Hmm.  We can't walk the Northbridges on
1041 			 *	the hypervisor; so just complain and drive
1042 			 *	on.  This probably needs to be fixed in
1043 			 *	the hypervisor itself.
1044 			 */
1045 			opteron_workaround_6336786++;
1046 			workaround_warning(cpu, 6336786);
1047 #else	/* __xpv */
1048 		} else if ((opteron_get_nnodes() *
1049 		    cpuid_get_ncpu_per_chip(cpu) > 1) ||
1050 		    opteron_workaround_6336786_UP) {
1051 
1052 			uint_t	node, nnodes;
1053 			uint8_t data;
1054 
1055 			nnodes = opteron_get_nnodes();
1056 			for (node = 0; node < nnodes; node++) {
1057 				/*
1058 				 * Clear PMM7[1:0] (function 3, offset 0x87)
1059 				 * Northbridge device is the node id + 24.
1060 				 */
1061 				data = pci_getb_func(0, node + 24, 3, 0x87);
1062 				data &= 0xFC;
1063 				pci_putb_func(0, node + 24, 3, 0x87, data);
1064 			}
1065 			opteron_workaround_6336786++;
1066 #endif	/* __xpv */
1067 		}
1068 #else
1069 		workaround_warning(cpu, 6336786);
1070 		missing++;
1071 #endif
1072 	}
1073 
1074 	/*LINTED*/
1075 	/*
1076 	 * Mutex primitives don't work as expected.
1077 	 */
1078 	if (cpuid_opteron_erratum(cpu, 6323525) > 0) {
1079 #if defined(OPTERON_WORKAROUND_6323525)
1080 		/*
1081 		 * This problem only occurs with 2 or more cores. If bit in
1082 		 * MSR_AMD_BU_CFG set, then not applicable. The workaround
1083 		 * is to patch the semaphone routines with the lfence
1084 		 * instruction to provide necessary load memory barrier with
1085 		 * possible subsequent read-modify-write ops.
1086 		 *
1087 		 * It is too early in boot to call the patch routine so
1088 		 * set erratum variable to be done in startup_end().
1089 		 */
1090 		if (opteron_workaround_6323525) {
1091 			opteron_workaround_6323525++;
1092 #if defined(__xpv)
1093 		} else if (x86_feature & X86_SSE2) {
1094 			if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1095 				/*
1096 				 * XXPV	Use dom0_msr here when extended
1097 				 *	operations are supported?
1098 				 */
1099 				if (xpv_nr_phys_cpus() > 1)
1100 					opteron_workaround_6323525++;
1101 			} else {
1102 				/*
1103 				 * We have no way to tell how many physical
1104 				 * cpus there are, or even if this processor
1105 				 * has the problem, so enable the workaround
1106 				 * unconditionally (at some performance cost).
1107 				 */
1108 				opteron_workaround_6323525++;
1109 			}
1110 #else	/* __xpv */
1111 		} else if ((x86_feature & X86_SSE2) && ((opteron_get_nnodes() *
1112 		    cpuid_get_ncpu_per_chip(cpu)) > 1)) {
1113 			if ((xrdmsr(MSR_AMD_BU_CFG) & (UINT64_C(1) << 33)) == 0)
1114 				opteron_workaround_6323525++;
1115 #endif	/* __xpv */
1116 		}
1117 #else
1118 		workaround_warning(cpu, 6323525);
1119 		missing++;
1120 #endif
1121 	}
1122 
1123 	missing += do_erratum_298(cpu);
1124 
1125 #ifdef __xpv
1126 	return (0);
1127 #else
1128 	return (missing);
1129 #endif
1130 }
1131 
1132 void
1133 workaround_errata_end()
1134 {
1135 #if defined(OPTERON_ERRATUM_88)
1136 	if (opteron_erratum_88)
1137 		workaround_applied(88);
1138 #endif
1139 #if defined(OPTERON_ERRATUM_91)
1140 	if (opteron_erratum_91)
1141 		workaround_applied(91);
1142 #endif
1143 #if defined(OPTERON_ERRATUM_93)
1144 	if (opteron_erratum_93)
1145 		workaround_applied(93);
1146 #endif
1147 #if defined(OPTERON_ERRATUM_95)
1148 	if (opteron_erratum_95)
1149 		workaround_applied(95);
1150 #endif
1151 #if defined(OPTERON_ERRATUM_100)
1152 	if (opteron_erratum_100)
1153 		workaround_applied(100);
1154 #endif
1155 #if defined(OPTERON_ERRATUM_108)
1156 	if (opteron_erratum_108)
1157 		workaround_applied(108);
1158 #endif
1159 #if defined(OPTERON_ERRATUM_109)
1160 	if (opteron_erratum_109) {
1161 		cmn_err(CE_WARN,
1162 		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
1163 		    " processor\nerratum 109 was not detected; updating your"
1164 		    " system's BIOS to a version\ncontaining this"
1165 		    " microcode patch is HIGHLY recommended or erroneous"
1166 		    " system\noperation may occur.\n");
1167 	}
1168 #endif
1169 #if defined(OPTERON_ERRATUM_121)
1170 	if (opteron_erratum_121)
1171 		workaround_applied(121);
1172 #endif
1173 #if defined(OPTERON_ERRATUM_122)
1174 	if (opteron_erratum_122)
1175 		workaround_applied(122);
1176 #endif
1177 #if defined(OPTERON_ERRATUM_123)
1178 	if (opteron_erratum_123) {
1179 		cmn_err(CE_WARN,
1180 		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
1181 		    " processor\nerratum 123 was not detected; updating your"
1182 		    " system's BIOS to a version\ncontaining this"
1183 		    " microcode patch is HIGHLY recommended or erroneous"
1184 		    " system\noperation may occur.\n");
1185 	}
1186 #endif
1187 #if defined(OPTERON_ERRATUM_131)
1188 	if (opteron_erratum_131) {
1189 		cmn_err(CE_WARN,
1190 		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
1191 		    " processor\nerratum 131 was not detected; updating your"
1192 		    " system's BIOS to a version\ncontaining this"
1193 		    " microcode patch is HIGHLY recommended or erroneous"
1194 		    " system\noperation may occur.\n");
1195 	}
1196 #endif
1197 #if defined(OPTERON_WORKAROUND_6336786)
1198 	if (opteron_workaround_6336786)
1199 		workaround_applied(6336786);
1200 #endif
1201 #if defined(OPTERON_WORKAROUND_6323525)
1202 	if (opteron_workaround_6323525)
1203 		workaround_applied(6323525);
1204 #endif
1205 #if defined(OPTERON_ERRATUM_298)
1206 	if (opteron_erratum_298) {
1207 		cmn_err(CE_WARN,
1208 		    "BIOS microcode patch for AMD 64/Opteron(tm)"
1209 		    " processor\nerratum 298 was not detected; updating your"
1210 		    " system's BIOS to a version\ncontaining this"
1211 		    " microcode patch is HIGHLY recommended or erroneous"
1212 		    " system\noperation may occur.\n");
1213 	}
1214 #endif
1215 }
1216 
1217 static cpuset_t procset;
1218 
1219 /*
1220  * Start a single cpu, assuming that the kernel context is available
1221  * to successfully start another cpu.
1222  *
1223  * (For example, real mode code is mapped into the right place
1224  * in memory and is ready to be run.)
1225  */
1226 int
1227 start_cpu(processorid_t who)
1228 {
1229 	void *ctx;
1230 	cpu_t *cp;
1231 	int delays;
1232 	int error = 0;
1233 
1234 	ASSERT(who != 0);
1235 
1236 	/*
1237 	 * Check if there's at least a Mbyte of kmem available
1238 	 * before attempting to start the cpu.
1239 	 */
1240 	if (kmem_avail() < 1024 * 1024) {
1241 		/*
1242 		 * Kick off a reap in case that helps us with
1243 		 * later attempts ..
1244 		 */
1245 		kmem_reap();
1246 		return (ENOMEM);
1247 	}
1248 
1249 	cp = mp_startup_init(who);
1250 	if ((ctx = mach_cpucontext_alloc(cp)) == NULL ||
1251 	    (error = mach_cpu_start(cp, ctx)) != 0) {
1252 
1253 		/*
1254 		 * Something went wrong before we even started it
1255 		 */
1256 		if (ctx)
1257 			cmn_err(CE_WARN,
1258 			    "cpu%d: failed to start error %d",
1259 			    cp->cpu_id, error);
1260 		else
1261 			cmn_err(CE_WARN,
1262 			    "cpu%d: failed to allocate context", cp->cpu_id);
1263 
1264 		if (ctx)
1265 			mach_cpucontext_free(cp, ctx, error);
1266 		else
1267 			error = EAGAIN;		/* hmm. */
1268 		mp_startup_fini(cp, error);
1269 		return (error);
1270 	}
1271 
1272 	for (delays = 0; !CPU_IN_SET(procset, who); delays++) {
1273 		if (delays == 500) {
1274 			/*
1275 			 * After five seconds, things are probably looking
1276 			 * a bit bleak - explain the hang.
1277 			 */
1278 			cmn_err(CE_NOTE, "cpu%d: started, "
1279 			    "but not running in the kernel yet", who);
1280 		} else if (delays > 2000) {
1281 			/*
1282 			 * We waited at least 20 seconds, bail ..
1283 			 */
1284 			error = ETIMEDOUT;
1285 			cmn_err(CE_WARN, "cpu%d: timed out", who);
1286 			mach_cpucontext_free(cp, ctx, error);
1287 			mp_startup_fini(cp, error);
1288 			return (error);
1289 		}
1290 
1291 		/*
1292 		 * wait at least 10ms, then check again..
1293 		 */
1294 		delay(USEC_TO_TICK_ROUNDUP(10000));
1295 	}
1296 
1297 	mach_cpucontext_free(cp, ctx, 0);
1298 
1299 #ifndef __xpv
1300 	if (tsc_gethrtime_enable)
1301 		tsc_sync_master(who);
1302 #endif
1303 
1304 	if (dtrace_cpu_init != NULL) {
1305 		/*
1306 		 * DTrace CPU initialization expects cpu_lock to be held.
1307 		 */
1308 		mutex_enter(&cpu_lock);
1309 		(*dtrace_cpu_init)(who);
1310 		mutex_exit(&cpu_lock);
1311 	}
1312 
1313 	while (!CPU_IN_SET(cpu_ready_set, who))
1314 		delay(1);
1315 
1316 	return (0);
1317 }
1318 
1319 
1320 /*ARGSUSED*/
1321 void
1322 start_other_cpus(int cprboot)
1323 {
1324 	uint_t who;
1325 	uint_t skipped = 0;
1326 	uint_t bootcpuid = 0;
1327 
1328 	/*
1329 	 * Initialize our own cpu_info.
1330 	 */
1331 	init_cpu_info(CPU);
1332 
1333 	cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_idstr);
1334 	cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_brandstr);
1335 
1336 	/*
1337 	 * Initialize our syscall handlers
1338 	 */
1339 	init_cpu_syscall(CPU);
1340 
1341 	/*
1342 	 * Take the boot cpu out of the mp_cpus set because we know
1343 	 * it's already running.  Add it to the cpu_ready_set for
1344 	 * precisely the same reason.
1345 	 */
1346 	CPUSET_DEL(mp_cpus, bootcpuid);
1347 	CPUSET_ADD(cpu_ready_set, bootcpuid);
1348 
1349 	/*
1350 	 * if only 1 cpu or not using MP, skip the rest of this
1351 	 */
1352 	if (CPUSET_ISNULL(mp_cpus) || use_mp == 0) {
1353 		if (use_mp == 0)
1354 			cmn_err(CE_CONT, "?***** Not in MP mode\n");
1355 		goto done;
1356 	}
1357 
1358 	/*
1359 	 * perform such initialization as is needed
1360 	 * to be able to take CPUs on- and off-line.
1361 	 */
1362 	cpu_pause_init();
1363 
1364 	xc_init_cpu(CPU);		/* initialize processor crosscalls */
1365 
1366 	if (mach_cpucontext_init() != 0)
1367 		goto done;
1368 
1369 	flushes_require_xcalls = 1;
1370 
1371 	/*
1372 	 * We lock our affinity to the master CPU to ensure that all slave CPUs
1373 	 * do their TSC syncs with the same CPU.
1374 	 */
1375 	affinity_set(CPU_CURRENT);
1376 
1377 	for (who = 0; who < NCPU; who++) {
1378 
1379 		if (!CPU_IN_SET(mp_cpus, who))
1380 			continue;
1381 		ASSERT(who != bootcpuid);
1382 		if (ncpus >= max_ncpus) {
1383 			skipped = who;
1384 			continue;
1385 		}
1386 		if (start_cpu(who) != 0)
1387 			CPUSET_DEL(mp_cpus, who);
1388 
1389 		mutex_enter(&cpu_lock);
1390 		cpu_state_change_notify(who, CPU_SETUP);
1391 		mutex_exit(&cpu_lock);
1392 	}
1393 
1394 	/* Free the space allocated to hold the microcode file */
1395 	ucode_cleanup();
1396 
1397 	affinity_clear();
1398 
1399 	if (skipped) {
1400 		cmn_err(CE_NOTE,
1401 		    "System detected %d cpus, but "
1402 		    "only %d cpu(s) were enabled during boot.",
1403 		    skipped + 1, ncpus);
1404 		cmn_err(CE_NOTE,
1405 		    "Use \"boot-ncpus\" parameter to enable more CPU(s). "
1406 		    "See eeprom(1M).");
1407 	}
1408 
1409 done:
1410 	if (get_hwenv() == HW_NATIVE)
1411 		workaround_errata_end();
1412 	mach_cpucontext_fini();
1413 
1414 	cmi_post_mpstartup();
1415 }
1416 
1417 /*
1418  * Dummy functions - no i86pc platforms support dynamic cpu allocation.
1419  */
1420 /*ARGSUSED*/
1421 int
1422 mp_cpu_configure(int cpuid)
1423 {
1424 	return (ENOTSUP);		/* not supported */
1425 }
1426 
1427 /*ARGSUSED*/
1428 int
1429 mp_cpu_unconfigure(int cpuid)
1430 {
1431 	return (ENOTSUP);		/* not supported */
1432 }
1433 
1434 /*
1435  * Startup function for 'other' CPUs (besides boot cpu).
1436  * Called from real_mode_start.
1437  *
1438  * WARNING: until CPU_READY is set, mp_startup and routines called by
1439  * mp_startup should not call routines (e.g. kmem_free) that could call
1440  * hat_unload which requires CPU_READY to be set.
1441  */
1442 void
1443 mp_startup(void)
1444 {
1445 	struct cpu *cp = CPU;
1446 	uint_t new_x86_feature;
1447 	extern void cpu_event_init_cpu(cpu_t *);
1448 #ifndef __xpv
1449 	extern void cpupm_init(cpu_t *);
1450 #endif
1451 	const char *fmt = "?cpu%d: %b\n";
1452 
1453 	/*
1454 	 * We need to get TSC on this proc synced (i.e., any delta
1455 	 * from cpu0 accounted for) as soon as we can, because many
1456 	 * many things use gethrtime/pc_gethrestime, including
1457 	 * interrupts, cmn_err, etc.
1458 	 */
1459 
1460 	/* Let cpu0 continue into tsc_sync_master() */
1461 	CPUSET_ATOMIC_ADD(procset, cp->cpu_id);
1462 
1463 #ifndef __xpv
1464 	if (tsc_gethrtime_enable)
1465 		tsc_sync_slave();
1466 #endif
1467 
1468 	/*
1469 	 * Once this was done from assembly, but it's safer here; if
1470 	 * it blocks, we need to be able to swtch() to and from, and
1471 	 * since we get here by calling t_pc, we need to do that call
1472 	 * before swtch() overwrites it.
1473 	 */
1474 	(void) (*ap_mlsetup)();
1475 
1476 	new_x86_feature = cpuid_pass1(cp);
1477 
1478 #ifndef __xpv
1479 	/*
1480 	 * Program this cpu's PAT
1481 	 */
1482 	if (x86_feature & X86_PAT)
1483 		pat_sync();
1484 #endif
1485 
1486 	/*
1487 	 * Set up TSC_AUX to contain the cpuid for this processor
1488 	 * for the rdtscp instruction.
1489 	 */
1490 	if (x86_feature & X86_TSCP)
1491 		(void) wrmsr(MSR_AMD_TSCAUX, cp->cpu_id);
1492 
1493 	/*
1494 	 * Initialize this CPU's syscall handlers
1495 	 */
1496 	init_cpu_syscall(cp);
1497 
1498 	/*
1499 	 * Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the
1500 	 * highest level at which a routine is permitted to block on
1501 	 * an adaptive mutex (allows for cpu poke interrupt in case
1502 	 * the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks
1503 	 * device interrupts that may end up in the hat layer issuing cross
1504 	 * calls before CPU_READY is set.
1505 	 */
1506 	splx(ipltospl(LOCK_LEVEL));
1507 	sti();
1508 
1509 	/*
1510 	 * Do a sanity check to make sure this new CPU is a sane thing
1511 	 * to add to the collection of processors running this system.
1512 	 *
1513 	 * XXX	Clearly this needs to get more sophisticated, if x86
1514 	 * systems start to get built out of heterogenous CPUs; as is
1515 	 * likely to happen once the number of processors in a configuration
1516 	 * gets large enough.
1517 	 */
1518 	if ((x86_feature & new_x86_feature) != x86_feature) {
1519 		cmn_err(CE_CONT, fmt, cp->cpu_id, new_x86_feature,
1520 		    FMT_X86_FEATURE);
1521 		cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id);
1522 	}
1523 
1524 	/*
1525 	 * We do not support cpus with mixed monitor/mwait support if the
1526 	 * boot cpu supports monitor/mwait.
1527 	 */
1528 	if ((x86_feature & ~new_x86_feature) & X86_MWAIT)
1529 		panic("unsupported mixed cpu monitor/mwait support detected");
1530 
1531 	/*
1532 	 * We could be more sophisticated here, and just mark the CPU
1533 	 * as "faulted" but at this point we'll opt for the easier
1534 	 * answer of dying horribly.  Provided the boot cpu is ok,
1535 	 * the system can be recovered by booting with use_mp set to zero.
1536 	 */
1537 	if (workaround_errata(cp) != 0)
1538 		panic("critical workaround(s) missing for cpu%d", cp->cpu_id);
1539 
1540 	cpuid_pass2(cp);
1541 	cpuid_pass3(cp);
1542 	(void) cpuid_pass4(cp);
1543 
1544 	init_cpu_info(cp);
1545 
1546 	mutex_enter(&cpu_lock);
1547 
1548 	cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_EXISTS;
1549 
1550 	cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr);
1551 	cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr);
1552 
1553 	if (dtrace_cpu_init != NULL) {
1554 		(*dtrace_cpu_init)(cp->cpu_id);
1555 	}
1556 
1557 	/*
1558 	 * Fill out cpu_ucode_info.  Update microcode if necessary.
1559 	 */
1560 	ucode_check(cp);
1561 
1562 	mutex_exit(&cpu_lock);
1563 
1564 	post_startup_cpu_fixups();
1565 
1566 	/*
1567 	 * Enable preemption here so that contention for any locks acquired
1568 	 * later in mp_startup may be preempted if the thread owning those
1569 	 * locks is continuously executing on other CPUs (for example, this
1570 	 * CPU must be preemptible to allow other CPUs to pause it during their
1571 	 * startup phases).  It's safe to enable preemption here because the
1572 	 * CPU state is pretty-much fully constructed.
1573 	 */
1574 	curthread->t_preempt = 0;
1575 
1576 	/* The base spl should still be at LOCK LEVEL here */
1577 	ASSERT(cp->cpu_base_spl == ipltospl(LOCK_LEVEL));
1578 	set_base_spl();		/* Restore the spl to its proper value */
1579 
1580 	cpu_event_init_cpu(cp);
1581 #ifndef __xpv
1582 	cpupm_init(cp);
1583 #endif
1584 
1585 	/*
1586 	 * Processor group initialization for this CPU is dependent on the
1587 	 * cpuid probing, which must be done in the context of the current
1588 	 * CPU, as well as the CPU's device node initialization (for ACPI).
1589 	 */
1590 	mutex_enter(&cpu_lock);
1591 	pghw_physid_create(cp);
1592 	(void) pg_cpu_init(cp, B_FALSE);
1593 	pg_cmt_cpu_startup(cp);
1594 	mutex_exit(&cpu_lock);
1595 
1596 	/* Enable interrupts */
1597 	(void) spl0();
1598 
1599 	mutex_enter(&cpu_lock);
1600 	cpu_enable_intr(cp);
1601 	cpu_add_active(cp);
1602 	mutex_exit(&cpu_lock);
1603 
1604 #ifndef __xpv
1605 	{
1606 		/*
1607 		 * Set up the CPU module for this CPU.  This can't be done
1608 		 * before this CPU is made CPU_READY, because we may (in
1609 		 * heterogeneous systems) need to go load another CPU module.
1610 		 * The act of attempting to load a module may trigger a
1611 		 * cross-call, which will ASSERT unless this cpu is CPU_READY.
1612 		 */
1613 		cmi_hdl_t hdl;
1614 
1615 		if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1616 		    cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) {
1617 			if (x86_feature & X86_MCA)
1618 				cmi_mca_init(hdl);
1619 		}
1620 	}
1621 #endif /* __xpv */
1622 
1623 	if (boothowto & RB_DEBUG)
1624 		kdi_cpu_init();
1625 
1626 	/*
1627 	 * Setting the bit in cpu_ready_set must be the last operation in
1628 	 * processor initialization; the boot CPU will continue to boot once
1629 	 * it sees this bit set for all active CPUs.
1630 	 */
1631 	CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id);
1632 
1633 	/*
1634 	 * Because mp_startup() gets fired off after init() starts, we
1635 	 * can't use the '?' trick to do 'boot -v' printing - so we
1636 	 * always direct the 'cpu .. online' messages to the log.
1637 	 */
1638 	cmn_err(CE_CONT, "!cpu%d initialization complete - online\n",
1639 	    cp->cpu_id);
1640 
1641 	(void) mach_cpu_create_device_node(cp, NULL);
1642 
1643 	/*
1644 	 * Now we are done with the startup thread, so free it up.
1645 	 */
1646 	thread_exit();
1647 	panic("mp_startup: cannot return");
1648 	/*NOTREACHED*/
1649 }
1650 
1651 
1652 /*
1653  * Start CPU on user request.
1654  */
1655 /* ARGSUSED */
1656 int
1657 mp_cpu_start(struct cpu *cp)
1658 {
1659 	ASSERT(MUTEX_HELD(&cpu_lock));
1660 	return (0);
1661 }
1662 
1663 /*
1664  * Stop CPU on user request.
1665  */
1666 /* ARGSUSED */
1667 int
1668 mp_cpu_stop(struct cpu *cp)
1669 {
1670 	extern int cbe_psm_timer_mode;
1671 	ASSERT(MUTEX_HELD(&cpu_lock));
1672 
1673 #ifdef __xpv
1674 	/*
1675 	 * We can't offline vcpu0.
1676 	 */
1677 	if (cp->cpu_id == 0)
1678 		return (EBUSY);
1679 #endif
1680 
1681 	/*
1682 	 * If TIMER_PERIODIC mode is used, CPU0 is the one running it;
1683 	 * can't stop it.  (This is true only for machines with no TSC.)
1684 	 */
1685 
1686 	if ((cbe_psm_timer_mode == TIMER_PERIODIC) && (cp->cpu_id == 0))
1687 		return (EBUSY);
1688 
1689 	return (0);
1690 }
1691 
1692 /*
1693  * Take the specified CPU out of participation in interrupts.
1694  */
1695 int
1696 cpu_disable_intr(struct cpu *cp)
1697 {
1698 	if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS)
1699 		return (EBUSY);
1700 
1701 	cp->cpu_flags &= ~CPU_ENABLE;
1702 	return (0);
1703 }
1704 
1705 /*
1706  * Allow the specified CPU to participate in interrupts.
1707  */
1708 void
1709 cpu_enable_intr(struct cpu *cp)
1710 {
1711 	ASSERT(MUTEX_HELD(&cpu_lock));
1712 	cp->cpu_flags |= CPU_ENABLE;
1713 	psm_enable_intr(cp->cpu_id);
1714 }
1715 
1716 
1717 /*ARGSUSED*/
1718 void
1719 mp_cpu_faulted_enter(struct cpu *cp)
1720 {
1721 #ifndef __xpv
1722 	cmi_hdl_t hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp),
1723 	    cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp));
1724 
1725 	if (hdl != NULL) {
1726 		cmi_faulted_enter(hdl);
1727 		cmi_hdl_rele(hdl);
1728 	}
1729 #endif
1730 }
1731 
1732 /*ARGSUSED*/
1733 void
1734 mp_cpu_faulted_exit(struct cpu *cp)
1735 {
1736 #ifndef __xpv
1737 	cmi_hdl_t hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp),
1738 	    cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp));
1739 
1740 	if (hdl != NULL) {
1741 		cmi_faulted_exit(hdl);
1742 		cmi_hdl_rele(hdl);
1743 	}
1744 #endif
1745 }
1746 
1747 /*
1748  * The following two routines are used as context operators on threads belonging
1749  * to processes with a private LDT (see sysi86).  Due to the rarity of such
1750  * processes, these routines are currently written for best code readability and
1751  * organization rather than speed.  We could avoid checking x86_feature at every
1752  * context switch by installing different context ops, depending on the
1753  * x86_feature flags, at LDT creation time -- one for each combination of fast
1754  * syscall feature flags.
1755  */
1756 
1757 /*ARGSUSED*/
1758 void
1759 cpu_fast_syscall_disable(void *arg)
1760 {
1761 	if ((x86_feature & (X86_MSR | X86_SEP)) == (X86_MSR | X86_SEP))
1762 		cpu_sep_disable();
1763 	if ((x86_feature & (X86_MSR | X86_ASYSC)) == (X86_MSR | X86_ASYSC))
1764 		cpu_asysc_disable();
1765 }
1766 
1767 /*ARGSUSED*/
1768 void
1769 cpu_fast_syscall_enable(void *arg)
1770 {
1771 	if ((x86_feature & (X86_MSR | X86_SEP)) == (X86_MSR | X86_SEP))
1772 		cpu_sep_enable();
1773 	if ((x86_feature & (X86_MSR | X86_ASYSC)) == (X86_MSR | X86_ASYSC))
1774 		cpu_asysc_enable();
1775 }
1776 
1777 static void
1778 cpu_sep_enable(void)
1779 {
1780 	ASSERT(x86_feature & X86_SEP);
1781 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1782 
1783 	wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL);
1784 }
1785 
1786 static void
1787 cpu_sep_disable(void)
1788 {
1789 	ASSERT(x86_feature & X86_SEP);
1790 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1791 
1792 	/*
1793 	 * Setting the SYSENTER_CS_MSR register to 0 causes software executing
1794 	 * the sysenter or sysexit instruction to trigger a #gp fault.
1795 	 */
1796 	wrmsr(MSR_INTC_SEP_CS, 0);
1797 }
1798 
1799 static void
1800 cpu_asysc_enable(void)
1801 {
1802 	ASSERT(x86_feature & X86_ASYSC);
1803 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1804 
1805 	wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) |
1806 	    (uint64_t)(uintptr_t)AMD_EFER_SCE);
1807 }
1808 
1809 static void
1810 cpu_asysc_disable(void)
1811 {
1812 	ASSERT(x86_feature & X86_ASYSC);
1813 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1814 
1815 	/*
1816 	 * Turn off the SCE (syscall enable) bit in the EFER register. Software
1817 	 * executing syscall or sysret with this bit off will incur a #ud trap.
1818 	 */
1819 	wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) &
1820 	    ~((uint64_t)(uintptr_t)AMD_EFER_SCE));
1821 }
1822