1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/thread.h> 29 #include <sys/cpuvar.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/proc.h> 33 #include <sys/disp.h> 34 #include <sys/class.h> 35 #include <sys/cmn_err.h> 36 #include <sys/debug.h> 37 #include <sys/asm_linkage.h> 38 #include <sys/x_call.h> 39 #include <sys/systm.h> 40 #include <sys/var.h> 41 #include <sys/vtrace.h> 42 #include <vm/hat.h> 43 #include <vm/as.h> 44 #include <vm/seg_kmem.h> 45 #include <vm/seg_kp.h> 46 #include <sys/segments.h> 47 #include <sys/kmem.h> 48 #include <sys/stack.h> 49 #include <sys/smp_impldefs.h> 50 #include <sys/x86_archext.h> 51 #include <sys/machsystm.h> 52 #include <sys/traptrace.h> 53 #include <sys/clock.h> 54 #include <sys/cpc_impl.h> 55 #include <sys/pg.h> 56 #include <sys/cmt.h> 57 #include <sys/dtrace.h> 58 #include <sys/archsystm.h> 59 #include <sys/fp.h> 60 #include <sys/reboot.h> 61 #include <sys/kdi_machimpl.h> 62 #include <vm/hat_i86.h> 63 #include <sys/memnode.h> 64 #include <sys/pci_cfgspace.h> 65 #include <sys/mach_mmu.h> 66 #include <sys/sysmacros.h> 67 #if defined(__xpv) 68 #include <sys/hypervisor.h> 69 #endif 70 #include <sys/cpu_module.h> 71 72 struct cpu cpus[1]; /* CPU data */ 73 struct cpu *cpu[NCPU] = {&cpus[0]}; /* pointers to all CPUs */ 74 cpu_core_t cpu_core[NCPU]; /* cpu_core structures */ 75 76 /* 77 * Useful for disabling MP bring-up on a MP capable system. 78 */ 79 int use_mp = 1; 80 81 /* 82 * to be set by a PSM to indicate what cpus 83 * are sitting around on the system. 84 */ 85 cpuset_t mp_cpus; 86 87 /* 88 * This variable is used by the hat layer to decide whether or not 89 * critical sections are needed to prevent race conditions. For sun4m, 90 * this variable is set once enough MP initialization has been done in 91 * order to allow cross calls. 92 */ 93 int flushes_require_xcalls; 94 95 cpuset_t cpu_ready_set; /* initialized in startup() */ 96 97 static void mp_startup(void); 98 99 static void cpu_sep_enable(void); 100 static void cpu_sep_disable(void); 101 static void cpu_asysc_enable(void); 102 static void cpu_asysc_disable(void); 103 104 /* 105 * Init CPU info - get CPU type info for processor_info system call. 106 */ 107 void 108 init_cpu_info(struct cpu *cp) 109 { 110 processor_info_t *pi = &cp->cpu_type_info; 111 char buf[CPU_IDSTRLEN]; 112 113 /* 114 * Get clock-frequency property for the CPU. 115 */ 116 pi->pi_clock = cpu_freq; 117 118 /* 119 * Current frequency in Hz. 120 */ 121 cp->cpu_curr_clock = cpu_freq_hz; 122 123 /* 124 * Supported frequencies. 125 */ 126 cpu_set_supp_freqs(cp, NULL); 127 128 (void) strcpy(pi->pi_processor_type, "i386"); 129 if (fpu_exists) 130 (void) strcpy(pi->pi_fputypes, "i387 compatible"); 131 132 (void) cpuid_getidstr(cp, buf, sizeof (buf)); 133 134 cp->cpu_idstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP); 135 (void) strcpy(cp->cpu_idstr, buf); 136 137 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr); 138 139 (void) cpuid_getbrandstr(cp, buf, sizeof (buf)); 140 cp->cpu_brandstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP); 141 (void) strcpy(cp->cpu_brandstr, buf); 142 143 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr); 144 } 145 146 /* 147 * Configure syscall support on this CPU. 148 */ 149 /*ARGSUSED*/ 150 void 151 init_cpu_syscall(struct cpu *cp) 152 { 153 kpreempt_disable(); 154 155 #if defined(__amd64) 156 if ((x86_feature & (X86_MSR | X86_ASYSC)) == (X86_MSR | X86_ASYSC)) { 157 158 #if !defined(__lint) 159 /* 160 * The syscall instruction imposes a certain ordering on 161 * segment selectors, so we double-check that ordering 162 * here. 163 */ 164 ASSERT(KDS_SEL == KCS_SEL + 8); 165 ASSERT(UDS_SEL == U32CS_SEL + 8); 166 ASSERT(UCS_SEL == U32CS_SEL + 16); 167 #endif 168 /* 169 * Turn syscall/sysret extensions on. 170 */ 171 cpu_asysc_enable(); 172 173 /* 174 * Program the magic registers .. 175 */ 176 wrmsr(MSR_AMD_STAR, 177 ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) << 32); 178 wrmsr(MSR_AMD_LSTAR, (uint64_t)(uintptr_t)sys_syscall); 179 wrmsr(MSR_AMD_CSTAR, (uint64_t)(uintptr_t)sys_syscall32); 180 181 /* 182 * This list of flags is masked off the incoming 183 * %rfl when we enter the kernel. 184 */ 185 wrmsr(MSR_AMD_SFMASK, (uint64_t)(uintptr_t)(PS_IE | PS_T)); 186 } 187 #endif 188 189 /* 190 * On 32-bit kernels, we use sysenter/sysexit because it's too 191 * hard to use syscall/sysret, and it is more portable anyway. 192 * 193 * On 64-bit kernels on Nocona machines, the 32-bit syscall 194 * variant isn't available to 32-bit applications, but sysenter is. 195 */ 196 if ((x86_feature & (X86_MSR | X86_SEP)) == (X86_MSR | X86_SEP)) { 197 198 #if !defined(__lint) 199 /* 200 * The sysenter instruction imposes a certain ordering on 201 * segment selectors, so we double-check that ordering 202 * here. See "sysenter" in Intel document 245471-012, "IA-32 203 * Intel Architecture Software Developer's Manual Volume 2: 204 * Instruction Set Reference" 205 */ 206 ASSERT(KDS_SEL == KCS_SEL + 8); 207 208 ASSERT32(UCS_SEL == ((KCS_SEL + 16) | 3)); 209 ASSERT32(UDS_SEL == UCS_SEL + 8); 210 211 ASSERT64(U32CS_SEL == ((KCS_SEL + 16) | 3)); 212 ASSERT64(UDS_SEL == U32CS_SEL + 8); 213 #endif 214 215 cpu_sep_enable(); 216 217 /* 218 * resume() sets this value to the base of the threads stack 219 * via a context handler. 220 */ 221 wrmsr(MSR_INTC_SEP_ESP, 0); 222 wrmsr(MSR_INTC_SEP_EIP, (uint64_t)(uintptr_t)sys_sysenter); 223 } 224 225 kpreempt_enable(); 226 } 227 228 /* 229 * Multiprocessor initialization. 230 * 231 * Allocate and initialize the cpu structure, TRAPTRACE buffer, and the 232 * startup and idle threads for the specified CPU. 233 */ 234 struct cpu * 235 mp_startup_init(int cpun) 236 { 237 struct cpu *cp; 238 kthread_id_t tp; 239 caddr_t sp; 240 proc_t *procp; 241 #if !defined(__xpv) 242 extern int idle_cpu_prefer_mwait; 243 #endif 244 extern void idle(); 245 246 #ifdef TRAPTRACE 247 trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun]; 248 #endif 249 250 ASSERT(cpun < NCPU && cpu[cpun] == NULL); 251 252 cp = kmem_zalloc(sizeof (*cp), KM_SLEEP); 253 #if !defined(__xpv) 254 if ((x86_feature & X86_MWAIT) && idle_cpu_prefer_mwait) 255 cp->cpu_m.mcpu_mwait = cpuid_mwait_alloc(CPU); 256 #endif 257 258 procp = curthread->t_procp; 259 260 mutex_enter(&cpu_lock); 261 /* 262 * Initialize the dispatcher first. 263 */ 264 disp_cpu_init(cp); 265 mutex_exit(&cpu_lock); 266 267 cpu_vm_data_init(cp); 268 269 /* 270 * Allocate and initialize the startup thread for this CPU. 271 * Interrupt and process switch stacks get allocated later 272 * when the CPU starts running. 273 */ 274 tp = thread_create(NULL, 0, NULL, NULL, 0, procp, 275 TS_STOPPED, maxclsyspri); 276 277 /* 278 * Set state to TS_ONPROC since this thread will start running 279 * as soon as the CPU comes online. 280 * 281 * All the other fields of the thread structure are setup by 282 * thread_create(). 283 */ 284 THREAD_ONPROC(tp, cp); 285 tp->t_preempt = 1; 286 tp->t_bound_cpu = cp; 287 tp->t_affinitycnt = 1; 288 tp->t_cpu = cp; 289 tp->t_disp_queue = cp->cpu_disp; 290 291 /* 292 * Setup thread to start in mp_startup. 293 */ 294 sp = tp->t_stk; 295 tp->t_pc = (uintptr_t)mp_startup; 296 tp->t_sp = (uintptr_t)(sp - MINFRAME); 297 #if defined(__amd64) 298 tp->t_sp -= STACK_ENTRY_ALIGN; /* fake a call */ 299 #endif 300 301 cp->cpu_id = cpun; 302 cp->cpu_self = cp; 303 cp->cpu_thread = tp; 304 cp->cpu_lwp = NULL; 305 cp->cpu_dispthread = tp; 306 cp->cpu_dispatch_pri = DISP_PRIO(tp); 307 308 /* 309 * cpu_base_spl must be set explicitly here to prevent any blocking 310 * operations in mp_startup from causing the spl of the cpu to drop 311 * to 0 (allowing device interrupts before we're ready) in resume(). 312 * cpu_base_spl MUST remain at LOCK_LEVEL until the cpu is CPU_READY. 313 * As an extra bit of security on DEBUG kernels, this is enforced with 314 * an assertion in mp_startup() -- before cpu_base_spl is set to its 315 * proper value. 316 */ 317 cp->cpu_base_spl = ipltospl(LOCK_LEVEL); 318 319 /* 320 * Now, initialize per-CPU idle thread for this CPU. 321 */ 322 tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1); 323 324 cp->cpu_idle_thread = tp; 325 326 tp->t_preempt = 1; 327 tp->t_bound_cpu = cp; 328 tp->t_affinitycnt = 1; 329 tp->t_cpu = cp; 330 tp->t_disp_queue = cp->cpu_disp; 331 332 /* 333 * Bootstrap the CPU's PG data 334 */ 335 pg_cpu_bootstrap(cp); 336 337 /* 338 * Perform CPC initialization on the new CPU. 339 */ 340 kcpc_hw_init(cp); 341 342 /* 343 * Allocate virtual addresses for cpu_caddr1 and cpu_caddr2 344 * for each CPU. 345 */ 346 setup_vaddr_for_ppcopy(cp); 347 348 /* 349 * Allocate page for new GDT and initialize from current GDT. 350 */ 351 #if !defined(__lint) 352 ASSERT((sizeof (*cp->cpu_gdt) * NGDT) <= PAGESIZE); 353 #endif 354 cp->cpu_gdt = kmem_zalloc(PAGESIZE, KM_SLEEP); 355 bcopy(CPU->cpu_gdt, cp->cpu_gdt, (sizeof (*cp->cpu_gdt) * NGDT)); 356 357 #if defined(__i386) 358 /* 359 * setup kernel %gs. 360 */ 361 set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA, 362 SEL_KPL, 0, 1); 363 #endif 364 365 /* 366 * If we have more than one node, each cpu gets a copy of IDT 367 * local to its node. If this is a Pentium box, we use cpu 0's 368 * IDT. cpu 0's IDT has been made read-only to workaround the 369 * cmpxchgl register bug 370 */ 371 if (system_hardware.hd_nodes && x86_type != X86_TYPE_P5) { 372 #if !defined(__lint) 373 ASSERT((sizeof (*CPU->cpu_idt) * NIDT) <= PAGESIZE); 374 #endif 375 cp->cpu_idt = kmem_zalloc(PAGESIZE, KM_SLEEP); 376 bcopy(CPU->cpu_idt, cp->cpu_idt, PAGESIZE); 377 } else { 378 cp->cpu_idt = CPU->cpu_idt; 379 } 380 381 /* 382 * Get interrupt priority data from cpu 0. 383 */ 384 cp->cpu_pri_data = CPU->cpu_pri_data; 385 386 /* 387 * alloc space for cpuid info 388 */ 389 cpuid_alloc_space(cp); 390 391 /* 392 * alloc space for ucode_info 393 */ 394 ucode_alloc_space(cp); 395 396 hat_cpu_online(cp); 397 398 #ifdef TRAPTRACE 399 /* 400 * If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers 401 */ 402 ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP); 403 ttc->ttc_next = ttc->ttc_first; 404 ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize; 405 #endif 406 /* 407 * Record that we have another CPU. 408 */ 409 mutex_enter(&cpu_lock); 410 /* 411 * Initialize the interrupt threads for this CPU 412 */ 413 cpu_intr_alloc(cp, NINTR_THREADS); 414 /* 415 * Add CPU to list of available CPUs. It'll be on the active list 416 * after mp_startup(). 417 */ 418 cpu_add_unit(cp); 419 mutex_exit(&cpu_lock); 420 421 return (cp); 422 } 423 424 /* 425 * Undo what was done in mp_startup_init 426 */ 427 static void 428 mp_startup_fini(struct cpu *cp, int error) 429 { 430 mutex_enter(&cpu_lock); 431 432 /* 433 * Remove the CPU from the list of available CPUs. 434 */ 435 cpu_del_unit(cp->cpu_id); 436 437 if (error == ETIMEDOUT) { 438 /* 439 * The cpu was started, but never *seemed* to run any 440 * code in the kernel; it's probably off spinning in its 441 * own private world, though with potential references to 442 * our kmem-allocated IDTs and GDTs (for example). 443 * 444 * Worse still, it may actually wake up some time later, 445 * so rather than guess what it might or might not do, we 446 * leave the fundamental data structures intact. 447 */ 448 cp->cpu_flags = 0; 449 mutex_exit(&cpu_lock); 450 return; 451 } 452 453 /* 454 * At this point, the only threads bound to this CPU should 455 * special per-cpu threads: it's idle thread, it's pause threads, 456 * and it's interrupt threads. Clean these up. 457 */ 458 cpu_destroy_bound_threads(cp); 459 cp->cpu_idle_thread = NULL; 460 461 /* 462 * Free the interrupt stack. 463 */ 464 segkp_release(segkp, 465 cp->cpu_intr_stack - (INTR_STACK_SIZE - SA(MINFRAME))); 466 467 mutex_exit(&cpu_lock); 468 469 #ifdef TRAPTRACE 470 /* 471 * Discard the trap trace buffer 472 */ 473 { 474 trap_trace_ctl_t *ttc = &trap_trace_ctl[cp->cpu_id]; 475 476 kmem_free((void *)ttc->ttc_first, trap_trace_bufsize); 477 ttc->ttc_first = NULL; 478 } 479 #endif 480 481 hat_cpu_offline(cp); 482 483 cpuid_free_space(cp); 484 485 ucode_free_space(cp); 486 487 if (cp->cpu_idt != CPU->cpu_idt) 488 kmem_free(cp->cpu_idt, PAGESIZE); 489 cp->cpu_idt = NULL; 490 491 kmem_free(cp->cpu_gdt, PAGESIZE); 492 cp->cpu_gdt = NULL; 493 494 teardown_vaddr_for_ppcopy(cp); 495 496 kcpc_hw_fini(cp); 497 498 cp->cpu_dispthread = NULL; 499 cp->cpu_thread = NULL; /* discarded by cpu_destroy_bound_threads() */ 500 501 cpu_vm_data_destroy(cp); 502 503 mutex_enter(&cpu_lock); 504 disp_cpu_fini(cp); 505 mutex_exit(&cpu_lock); 506 507 #if !defined(__xpv) 508 if (cp->cpu_m.mcpu_mwait != NULL) 509 cpuid_mwait_free(cp); 510 #endif 511 kmem_free(cp, sizeof (*cp)); 512 } 513 514 /* 515 * Apply workarounds for known errata, and warn about those that are absent. 516 * 517 * System vendors occasionally create configurations which contain different 518 * revisions of the CPUs that are almost but not exactly the same. At the 519 * time of writing, this meant that their clock rates were the same, their 520 * feature sets were the same, but the required workaround were -not- 521 * necessarily the same. So, this routine is invoked on -every- CPU soon 522 * after starting to make sure that the resulting system contains the most 523 * pessimal set of workarounds needed to cope with *any* of the CPUs in the 524 * system. 525 * 526 * workaround_errata is invoked early in mlsetup() for CPU 0, and in 527 * mp_startup() for all slave CPUs. Slaves process workaround_errata prior 528 * to acknowledging their readiness to the master, so this routine will 529 * never be executed by multiple CPUs in parallel, thus making updates to 530 * global data safe. 531 * 532 * These workarounds are based on Rev 3.57 of the Revision Guide for 533 * AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005. 534 */ 535 536 #if defined(OPTERON_ERRATUM_88) 537 int opteron_erratum_88; /* if non-zero -> at least one cpu has it */ 538 #endif 539 540 #if defined(OPTERON_ERRATUM_91) 541 int opteron_erratum_91; /* if non-zero -> at least one cpu has it */ 542 #endif 543 544 #if defined(OPTERON_ERRATUM_93) 545 int opteron_erratum_93; /* if non-zero -> at least one cpu has it */ 546 #endif 547 548 #if defined(OPTERON_ERRATUM_95) 549 int opteron_erratum_95; /* if non-zero -> at least one cpu has it */ 550 #endif 551 552 #if defined(OPTERON_ERRATUM_100) 553 int opteron_erratum_100; /* if non-zero -> at least one cpu has it */ 554 #endif 555 556 #if defined(OPTERON_ERRATUM_108) 557 int opteron_erratum_108; /* if non-zero -> at least one cpu has it */ 558 #endif 559 560 #if defined(OPTERON_ERRATUM_109) 561 int opteron_erratum_109; /* if non-zero -> at least one cpu has it */ 562 #endif 563 564 #if defined(OPTERON_ERRATUM_121) 565 int opteron_erratum_121; /* if non-zero -> at least one cpu has it */ 566 #endif 567 568 #if defined(OPTERON_ERRATUM_122) 569 int opteron_erratum_122; /* if non-zero -> at least one cpu has it */ 570 #endif 571 572 #if defined(OPTERON_ERRATUM_123) 573 int opteron_erratum_123; /* if non-zero -> at least one cpu has it */ 574 #endif 575 576 #if defined(OPTERON_ERRATUM_131) 577 int opteron_erratum_131; /* if non-zero -> at least one cpu has it */ 578 #endif 579 580 #if defined(OPTERON_WORKAROUND_6336786) 581 int opteron_workaround_6336786; /* non-zero -> WA relevant and applied */ 582 int opteron_workaround_6336786_UP = 0; /* Not needed for UP */ 583 #endif 584 585 #if defined(OPTERON_WORKAROUND_6323525) 586 int opteron_workaround_6323525; /* if non-zero -> at least one cpu has it */ 587 #endif 588 589 #if defined(OPTERON_ERRATUM_298) 590 int opteron_erratum_298; 591 #endif 592 593 static void 594 workaround_warning(cpu_t *cp, uint_t erratum) 595 { 596 cmn_err(CE_WARN, "cpu%d: no workaround for erratum %u", 597 cp->cpu_id, erratum); 598 } 599 600 static void 601 workaround_applied(uint_t erratum) 602 { 603 if (erratum > 1000000) 604 cmn_err(CE_CONT, "?workaround applied for cpu issue #%d\n", 605 erratum); 606 else 607 cmn_err(CE_CONT, "?workaround applied for cpu erratum #%d\n", 608 erratum); 609 } 610 611 static void 612 msr_warning(cpu_t *cp, const char *rw, uint_t msr, int error) 613 { 614 cmn_err(CE_WARN, "cpu%d: couldn't %smsr 0x%x, error %d", 615 cp->cpu_id, rw, msr, error); 616 } 617 618 /* 619 * Determine the number of nodes in an Opteron / Greyhound family system. 620 */ 621 static uint_t 622 opteron_get_nnodes(void) 623 { 624 static uint_t nnodes = 0; 625 626 #ifdef DEBUG 627 uint_t family; 628 629 family = cpuid_getfamily(CPU); 630 ASSERT(family == 0xf || family == 0x10); 631 #endif /* DEBUG */ 632 633 if (nnodes == 0) { 634 /* 635 * Obtain the number of nodes in the system from 636 * bits [6:4] of the Node ID register on node 0. 637 * 638 * The actual node count is NodeID[6:4] + 1 639 * 640 * The Node ID register is accessed via function 0, 641 * offset 0x60. Node 0 is device 24. 642 */ 643 nnodes = ((pci_getl_func(0, 24, 0, 0x60) & 0x70) >> 4) + 1; 644 } 645 return (nnodes); 646 } 647 648 #if defined(__xpv) 649 650 /* 651 * On dom0, we can determine the number of physical cpus on the machine. 652 * This number is important when figuring out what workarounds are 653 * appropriate, so compute it now. 654 */ 655 uint_t 656 xen_get_nphyscpus(void) 657 { 658 static uint_t nphyscpus = 0; 659 660 ASSERT(DOMAIN_IS_INITDOMAIN(xen_info)); 661 662 if (nphyscpus == 0) { 663 xen_sysctl_t op; 664 xen_sysctl_physinfo_t *pi = &op.u.physinfo; 665 666 op.cmd = XEN_SYSCTL_physinfo; 667 op.interface_version = XEN_SYSCTL_INTERFACE_VERSION; 668 if (HYPERVISOR_sysctl(&op) == 0) 669 nphyscpus = pi->threads_per_core * 670 pi->cores_per_socket * pi->sockets_per_node * 671 pi->nr_nodes; 672 } 673 return (nphyscpus); 674 } 675 #endif 676 677 uint_t 678 do_erratum_298(struct cpu *cpu) 679 { 680 static int osvwrc = -3; 681 extern int osvw_opteron_erratum(cpu_t *, uint_t); 682 683 /* 684 * L2 Eviction May Occur During Processor Operation To Set 685 * Accessed or Dirty Bit. 686 */ 687 if (osvwrc == -3) { 688 osvwrc = osvw_opteron_erratum(cpu, 298); 689 } else { 690 /* osvw return codes should be consistent for all cpus */ 691 ASSERT(osvwrc == osvw_opteron_erratum(cpu, 298)); 692 } 693 694 switch (osvwrc) { 695 case 0: /* erratum is not present: do nothing */ 696 break; 697 case 1: /* erratum is present: BIOS workaround applied */ 698 /* 699 * check if workaround is actually in place and issue warning 700 * if not. 701 */ 702 if (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) || 703 ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0)) { 704 #if defined(OPTERON_ERRATUM_298) 705 opteron_erratum_298++; 706 #else 707 workaround_warning(cpu, 298); 708 return (1); 709 #endif 710 } 711 break; 712 case -1: /* cannot determine via osvw: check cpuid */ 713 if ((cpuid_opteron_erratum(cpu, 298) > 0) && 714 (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) || 715 ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0))) { 716 #if defined(OPTERON_ERRATUM_298) 717 opteron_erratum_298++; 718 #else 719 workaround_warning(cpu, 298); 720 return (1); 721 #endif 722 } 723 break; 724 } 725 return (0); 726 } 727 728 uint_t 729 workaround_errata(struct cpu *cpu) 730 { 731 uint_t missing = 0; 732 733 ASSERT(cpu == CPU); 734 735 /*LINTED*/ 736 if (cpuid_opteron_erratum(cpu, 88) > 0) { 737 /* 738 * SWAPGS May Fail To Read Correct GS Base 739 */ 740 #if defined(OPTERON_ERRATUM_88) 741 /* 742 * The workaround is an mfence in the relevant assembler code 743 */ 744 opteron_erratum_88++; 745 #else 746 workaround_warning(cpu, 88); 747 missing++; 748 #endif 749 } 750 751 if (cpuid_opteron_erratum(cpu, 91) > 0) { 752 /* 753 * Software Prefetches May Report A Page Fault 754 */ 755 #if defined(OPTERON_ERRATUM_91) 756 /* 757 * fix is in trap.c 758 */ 759 opteron_erratum_91++; 760 #else 761 workaround_warning(cpu, 91); 762 missing++; 763 #endif 764 } 765 766 if (cpuid_opteron_erratum(cpu, 93) > 0) { 767 /* 768 * RSM Auto-Halt Restart Returns to Incorrect RIP 769 */ 770 #if defined(OPTERON_ERRATUM_93) 771 /* 772 * fix is in trap.c 773 */ 774 opteron_erratum_93++; 775 #else 776 workaround_warning(cpu, 93); 777 missing++; 778 #endif 779 } 780 781 /*LINTED*/ 782 if (cpuid_opteron_erratum(cpu, 95) > 0) { 783 /* 784 * RET Instruction May Return to Incorrect EIP 785 */ 786 #if defined(OPTERON_ERRATUM_95) 787 #if defined(_LP64) 788 /* 789 * Workaround this by ensuring that 32-bit user code and 790 * 64-bit kernel code never occupy the same address 791 * range mod 4G. 792 */ 793 if (_userlimit32 > 0xc0000000ul) 794 *(uintptr_t *)&_userlimit32 = 0xc0000000ul; 795 796 /*LINTED*/ 797 ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u); 798 opteron_erratum_95++; 799 #endif /* _LP64 */ 800 #else 801 workaround_warning(cpu, 95); 802 missing++; 803 #endif 804 } 805 806 if (cpuid_opteron_erratum(cpu, 100) > 0) { 807 /* 808 * Compatibility Mode Branches Transfer to Illegal Address 809 */ 810 #if defined(OPTERON_ERRATUM_100) 811 /* 812 * fix is in trap.c 813 */ 814 opteron_erratum_100++; 815 #else 816 workaround_warning(cpu, 100); 817 missing++; 818 #endif 819 } 820 821 /*LINTED*/ 822 if (cpuid_opteron_erratum(cpu, 108) > 0) { 823 /* 824 * CPUID Instruction May Return Incorrect Model Number In 825 * Some Processors 826 */ 827 #if defined(OPTERON_ERRATUM_108) 828 /* 829 * (Our cpuid-handling code corrects the model number on 830 * those processors) 831 */ 832 #else 833 workaround_warning(cpu, 108); 834 missing++; 835 #endif 836 } 837 838 /*LINTED*/ 839 if (cpuid_opteron_erratum(cpu, 109) > 0) do { 840 /* 841 * Certain Reverse REP MOVS May Produce Unpredictable Behaviour 842 */ 843 #if defined(OPTERON_ERRATUM_109) 844 /* 845 * The "workaround" is to print a warning to upgrade the BIOS 846 */ 847 uint64_t value; 848 const uint_t msr = MSR_AMD_PATCHLEVEL; 849 int err; 850 851 if ((err = checked_rdmsr(msr, &value)) != 0) { 852 msr_warning(cpu, "rd", msr, err); 853 workaround_warning(cpu, 109); 854 missing++; 855 } 856 if (value == 0) 857 opteron_erratum_109++; 858 #else 859 workaround_warning(cpu, 109); 860 missing++; 861 #endif 862 /*CONSTANTCONDITION*/ 863 } while (0); 864 865 /*LINTED*/ 866 if (cpuid_opteron_erratum(cpu, 121) > 0) { 867 /* 868 * Sequential Execution Across Non_Canonical Boundary Caused 869 * Processor Hang 870 */ 871 #if defined(OPTERON_ERRATUM_121) 872 #if defined(_LP64) 873 /* 874 * Erratum 121 is only present in long (64 bit) mode. 875 * Workaround is to include the page immediately before the 876 * va hole to eliminate the possibility of system hangs due to 877 * sequential execution across the va hole boundary. 878 */ 879 if (opteron_erratum_121) 880 opteron_erratum_121++; 881 else { 882 if (hole_start) { 883 hole_start -= PAGESIZE; 884 } else { 885 /* 886 * hole_start not yet initialized by 887 * mmu_init. Initialize hole_start 888 * with value to be subtracted. 889 */ 890 hole_start = PAGESIZE; 891 } 892 opteron_erratum_121++; 893 } 894 #endif /* _LP64 */ 895 #else 896 workaround_warning(cpu, 121); 897 missing++; 898 #endif 899 } 900 901 /*LINTED*/ 902 if (cpuid_opteron_erratum(cpu, 122) > 0) do { 903 /* 904 * TLB Flush Filter May Cause Coherency Problem in 905 * Multiprocessor Systems 906 */ 907 #if defined(OPTERON_ERRATUM_122) 908 uint64_t value; 909 const uint_t msr = MSR_AMD_HWCR; 910 int error; 911 912 /* 913 * Erratum 122 is only present in MP configurations (multi-core 914 * or multi-processor). 915 */ 916 #if defined(__xpv) 917 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 918 break; 919 if (!opteron_erratum_122 && xen_get_nphyscpus() == 1) 920 break; 921 #else 922 if (!opteron_erratum_122 && opteron_get_nnodes() == 1 && 923 cpuid_get_ncpu_per_chip(cpu) == 1) 924 break; 925 #endif 926 /* disable TLB Flush Filter */ 927 928 if ((error = checked_rdmsr(msr, &value)) != 0) { 929 msr_warning(cpu, "rd", msr, error); 930 workaround_warning(cpu, 122); 931 missing++; 932 } else { 933 value |= (uint64_t)AMD_HWCR_FFDIS; 934 if ((error = checked_wrmsr(msr, value)) != 0) { 935 msr_warning(cpu, "wr", msr, error); 936 workaround_warning(cpu, 122); 937 missing++; 938 } 939 } 940 opteron_erratum_122++; 941 #else 942 workaround_warning(cpu, 122); 943 missing++; 944 #endif 945 /*CONSTANTCONDITION*/ 946 } while (0); 947 948 /*LINTED*/ 949 if (cpuid_opteron_erratum(cpu, 123) > 0) do { 950 /* 951 * Bypassed Reads May Cause Data Corruption of System Hang in 952 * Dual Core Processors 953 */ 954 #if defined(OPTERON_ERRATUM_123) 955 uint64_t value; 956 const uint_t msr = MSR_AMD_PATCHLEVEL; 957 int err; 958 959 /* 960 * Erratum 123 applies only to multi-core cpus. 961 */ 962 if (cpuid_get_ncpu_per_chip(cpu) < 2) 963 break; 964 #if defined(__xpv) 965 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 966 break; 967 #endif 968 /* 969 * The "workaround" is to print a warning to upgrade the BIOS 970 */ 971 if ((err = checked_rdmsr(msr, &value)) != 0) { 972 msr_warning(cpu, "rd", msr, err); 973 workaround_warning(cpu, 123); 974 missing++; 975 } 976 if (value == 0) 977 opteron_erratum_123++; 978 #else 979 workaround_warning(cpu, 123); 980 missing++; 981 982 #endif 983 /*CONSTANTCONDITION*/ 984 } while (0); 985 986 /*LINTED*/ 987 if (cpuid_opteron_erratum(cpu, 131) > 0) do { 988 /* 989 * Multiprocessor Systems with Four or More Cores May Deadlock 990 * Waiting for a Probe Response 991 */ 992 #if defined(OPTERON_ERRATUM_131) 993 uint64_t nbcfg; 994 const uint_t msr = MSR_AMD_NB_CFG; 995 const uint64_t wabits = 996 AMD_NB_CFG_SRQ_HEARTBEAT | AMD_NB_CFG_SRQ_SPR; 997 int error; 998 999 /* 1000 * Erratum 131 applies to any system with four or more cores. 1001 */ 1002 if (opteron_erratum_131) 1003 break; 1004 #if defined(__xpv) 1005 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 1006 break; 1007 if (xen_get_nphyscpus() < 4) 1008 break; 1009 #else 1010 if (opteron_get_nnodes() * cpuid_get_ncpu_per_chip(cpu) < 4) 1011 break; 1012 #endif 1013 /* 1014 * Print a warning if neither of the workarounds for 1015 * erratum 131 is present. 1016 */ 1017 if ((error = checked_rdmsr(msr, &nbcfg)) != 0) { 1018 msr_warning(cpu, "rd", msr, error); 1019 workaround_warning(cpu, 131); 1020 missing++; 1021 } else if ((nbcfg & wabits) == 0) { 1022 opteron_erratum_131++; 1023 } else { 1024 /* cannot have both workarounds set */ 1025 ASSERT((nbcfg & wabits) != wabits); 1026 } 1027 #else 1028 workaround_warning(cpu, 131); 1029 missing++; 1030 #endif 1031 /*CONSTANTCONDITION*/ 1032 } while (0); 1033 1034 /* 1035 * This isn't really an erratum, but for convenience the 1036 * detection/workaround code lives here and in cpuid_opteron_erratum. 1037 */ 1038 if (cpuid_opteron_erratum(cpu, 6336786) > 0) { 1039 #if defined(OPTERON_WORKAROUND_6336786) 1040 /* 1041 * Disable C1-Clock ramping on multi-core/multi-processor 1042 * K8 platforms to guard against TSC drift. 1043 */ 1044 if (opteron_workaround_6336786) { 1045 opteron_workaround_6336786++; 1046 #if defined(__xpv) 1047 } else if ((DOMAIN_IS_INITDOMAIN(xen_info) && 1048 xen_get_nphyscpus() > 1) || 1049 opteron_workaround_6336786_UP) { 1050 /* 1051 * XXPV Hmm. We can't walk the Northbridges on 1052 * the hypervisor; so just complain and drive 1053 * on. This probably needs to be fixed in 1054 * the hypervisor itself. 1055 */ 1056 opteron_workaround_6336786++; 1057 workaround_warning(cpu, 6336786); 1058 #else /* __xpv */ 1059 } else if ((opteron_get_nnodes() * 1060 cpuid_get_ncpu_per_chip(cpu) > 1) || 1061 opteron_workaround_6336786_UP) { 1062 1063 uint_t node, nnodes; 1064 uint8_t data; 1065 1066 nnodes = opteron_get_nnodes(); 1067 for (node = 0; node < nnodes; node++) { 1068 /* 1069 * Clear PMM7[1:0] (function 3, offset 0x87) 1070 * Northbridge device is the node id + 24. 1071 */ 1072 data = pci_getb_func(0, node + 24, 3, 0x87); 1073 data &= 0xFC; 1074 pci_putb_func(0, node + 24, 3, 0x87, data); 1075 } 1076 opteron_workaround_6336786++; 1077 #endif /* __xpv */ 1078 } 1079 #else 1080 workaround_warning(cpu, 6336786); 1081 missing++; 1082 #endif 1083 } 1084 1085 /*LINTED*/ 1086 /* 1087 * Mutex primitives don't work as expected. 1088 */ 1089 if (cpuid_opteron_erratum(cpu, 6323525) > 0) { 1090 #if defined(OPTERON_WORKAROUND_6323525) 1091 /* 1092 * This problem only occurs with 2 or more cores. If bit in 1093 * MSR_AMD_BU_CFG set, then not applicable. The workaround 1094 * is to patch the semaphone routines with the lfence 1095 * instruction to provide necessary load memory barrier with 1096 * possible subsequent read-modify-write ops. 1097 * 1098 * It is too early in boot to call the patch routine so 1099 * set erratum variable to be done in startup_end(). 1100 */ 1101 if (opteron_workaround_6323525) { 1102 opteron_workaround_6323525++; 1103 #if defined(__xpv) 1104 } else if (x86_feature & X86_SSE2) { 1105 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1106 /* 1107 * XXPV Use dom0_msr here when extended 1108 * operations are supported? 1109 */ 1110 if (xen_get_nphyscpus() > 1) 1111 opteron_workaround_6323525++; 1112 } else { 1113 /* 1114 * We have no way to tell how many physical 1115 * cpus there are, or even if this processor 1116 * has the problem, so enable the workaround 1117 * unconditionally (at some performance cost). 1118 */ 1119 opteron_workaround_6323525++; 1120 } 1121 #else /* __xpv */ 1122 } else if ((x86_feature & X86_SSE2) && ((opteron_get_nnodes() * 1123 cpuid_get_ncpu_per_chip(cpu)) > 1)) { 1124 if ((xrdmsr(MSR_AMD_BU_CFG) & 0x02) == 0) 1125 opteron_workaround_6323525++; 1126 #endif /* __xpv */ 1127 } 1128 #else 1129 workaround_warning(cpu, 6323525); 1130 missing++; 1131 #endif 1132 } 1133 1134 missing += do_erratum_298(cpu); 1135 1136 #ifdef __xpv 1137 return (0); 1138 #else 1139 return (missing); 1140 #endif 1141 } 1142 1143 void 1144 workaround_errata_end() 1145 { 1146 #if defined(OPTERON_ERRATUM_88) 1147 if (opteron_erratum_88) 1148 workaround_applied(88); 1149 #endif 1150 #if defined(OPTERON_ERRATUM_91) 1151 if (opteron_erratum_91) 1152 workaround_applied(91); 1153 #endif 1154 #if defined(OPTERON_ERRATUM_93) 1155 if (opteron_erratum_93) 1156 workaround_applied(93); 1157 #endif 1158 #if defined(OPTERON_ERRATUM_95) 1159 if (opteron_erratum_95) 1160 workaround_applied(95); 1161 #endif 1162 #if defined(OPTERON_ERRATUM_100) 1163 if (opteron_erratum_100) 1164 workaround_applied(100); 1165 #endif 1166 #if defined(OPTERON_ERRATUM_108) 1167 if (opteron_erratum_108) 1168 workaround_applied(108); 1169 #endif 1170 #if defined(OPTERON_ERRATUM_109) 1171 if (opteron_erratum_109) { 1172 cmn_err(CE_WARN, 1173 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 1174 " processor\nerratum 109 was not detected; updating your" 1175 " system's BIOS to a version\ncontaining this" 1176 " microcode patch is HIGHLY recommended or erroneous" 1177 " system\noperation may occur.\n"); 1178 } 1179 #endif 1180 #if defined(OPTERON_ERRATUM_121) 1181 if (opteron_erratum_121) 1182 workaround_applied(121); 1183 #endif 1184 #if defined(OPTERON_ERRATUM_122) 1185 if (opteron_erratum_122) 1186 workaround_applied(122); 1187 #endif 1188 #if defined(OPTERON_ERRATUM_123) 1189 if (opteron_erratum_123) { 1190 cmn_err(CE_WARN, 1191 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 1192 " processor\nerratum 123 was not detected; updating your" 1193 " system's BIOS to a version\ncontaining this" 1194 " microcode patch is HIGHLY recommended or erroneous" 1195 " system\noperation may occur.\n"); 1196 } 1197 #endif 1198 #if defined(OPTERON_ERRATUM_131) 1199 if (opteron_erratum_131) { 1200 cmn_err(CE_WARN, 1201 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 1202 " processor\nerratum 131 was not detected; updating your" 1203 " system's BIOS to a version\ncontaining this" 1204 " microcode patch is HIGHLY recommended or erroneous" 1205 " system\noperation may occur.\n"); 1206 } 1207 #endif 1208 #if defined(OPTERON_WORKAROUND_6336786) 1209 if (opteron_workaround_6336786) 1210 workaround_applied(6336786); 1211 #endif 1212 #if defined(OPTERON_WORKAROUND_6323525) 1213 if (opteron_workaround_6323525) 1214 workaround_applied(6323525); 1215 #endif 1216 #if defined(OPTERON_ERRATUM_298) 1217 if (opteron_erratum_298) { 1218 cmn_err(CE_WARN, 1219 "BIOS microcode patch for AMD 64/Opteron(tm)" 1220 " processor\nerratum 298 was not detected; updating your" 1221 " system's BIOS to a version\ncontaining this" 1222 " microcode patch is HIGHLY recommended or erroneous" 1223 " system\noperation may occur.\n"); 1224 } 1225 #endif 1226 } 1227 1228 static cpuset_t procset; 1229 1230 /* 1231 * Start a single cpu, assuming that the kernel context is available 1232 * to successfully start another cpu. 1233 * 1234 * (For example, real mode code is mapped into the right place 1235 * in memory and is ready to be run.) 1236 */ 1237 int 1238 start_cpu(processorid_t who) 1239 { 1240 void *ctx; 1241 cpu_t *cp; 1242 int delays; 1243 int error = 0; 1244 1245 ASSERT(who != 0); 1246 1247 /* 1248 * Check if there's at least a Mbyte of kmem available 1249 * before attempting to start the cpu. 1250 */ 1251 if (kmem_avail() < 1024 * 1024) { 1252 /* 1253 * Kick off a reap in case that helps us with 1254 * later attempts .. 1255 */ 1256 kmem_reap(); 1257 return (ENOMEM); 1258 } 1259 1260 cp = mp_startup_init(who); 1261 if ((ctx = mach_cpucontext_alloc(cp)) == NULL || 1262 (error = mach_cpu_start(cp, ctx)) != 0) { 1263 1264 /* 1265 * Something went wrong before we even started it 1266 */ 1267 if (ctx) 1268 cmn_err(CE_WARN, 1269 "cpu%d: failed to start error %d", 1270 cp->cpu_id, error); 1271 else 1272 cmn_err(CE_WARN, 1273 "cpu%d: failed to allocate context", cp->cpu_id); 1274 1275 if (ctx) 1276 mach_cpucontext_free(cp, ctx, error); 1277 else 1278 error = EAGAIN; /* hmm. */ 1279 mp_startup_fini(cp, error); 1280 return (error); 1281 } 1282 1283 for (delays = 0; !CPU_IN_SET(procset, who); delays++) { 1284 if (delays == 500) { 1285 /* 1286 * After five seconds, things are probably looking 1287 * a bit bleak - explain the hang. 1288 */ 1289 cmn_err(CE_NOTE, "cpu%d: started, " 1290 "but not running in the kernel yet", who); 1291 } else if (delays > 2000) { 1292 /* 1293 * We waited at least 20 seconds, bail .. 1294 */ 1295 error = ETIMEDOUT; 1296 cmn_err(CE_WARN, "cpu%d: timed out", who); 1297 mach_cpucontext_free(cp, ctx, error); 1298 mp_startup_fini(cp, error); 1299 return (error); 1300 } 1301 1302 /* 1303 * wait at least 10ms, then check again.. 1304 */ 1305 delay(USEC_TO_TICK_ROUNDUP(10000)); 1306 } 1307 1308 mach_cpucontext_free(cp, ctx, 0); 1309 1310 #ifndef __xpv 1311 if (tsc_gethrtime_enable) 1312 tsc_sync_master(who); 1313 #endif 1314 1315 if (dtrace_cpu_init != NULL) { 1316 /* 1317 * DTrace CPU initialization expects cpu_lock to be held. 1318 */ 1319 mutex_enter(&cpu_lock); 1320 (*dtrace_cpu_init)(who); 1321 mutex_exit(&cpu_lock); 1322 } 1323 1324 while (!CPU_IN_SET(cpu_ready_set, who)) 1325 delay(1); 1326 1327 return (0); 1328 } 1329 1330 1331 /*ARGSUSED*/ 1332 void 1333 start_other_cpus(int cprboot) 1334 { 1335 uint_t who; 1336 uint_t skipped = 0; 1337 uint_t bootcpuid = 0; 1338 1339 /* 1340 * Initialize our own cpu_info. 1341 */ 1342 init_cpu_info(CPU); 1343 1344 /* 1345 * Initialize our syscall handlers 1346 */ 1347 init_cpu_syscall(CPU); 1348 1349 /* 1350 * Take the boot cpu out of the mp_cpus set because we know 1351 * it's already running. Add it to the cpu_ready_set for 1352 * precisely the same reason. 1353 */ 1354 CPUSET_DEL(mp_cpus, bootcpuid); 1355 CPUSET_ADD(cpu_ready_set, bootcpuid); 1356 1357 /* 1358 * if only 1 cpu or not using MP, skip the rest of this 1359 */ 1360 if (CPUSET_ISNULL(mp_cpus) || use_mp == 0) { 1361 if (use_mp == 0) 1362 cmn_err(CE_CONT, "?***** Not in MP mode\n"); 1363 goto done; 1364 } 1365 1366 /* 1367 * perform such initialization as is needed 1368 * to be able to take CPUs on- and off-line. 1369 */ 1370 cpu_pause_init(); 1371 1372 xc_init(); /* initialize processor crosscalls */ 1373 1374 if (mach_cpucontext_init() != 0) 1375 goto done; 1376 1377 flushes_require_xcalls = 1; 1378 1379 /* 1380 * We lock our affinity to the master CPU to ensure that all slave CPUs 1381 * do their TSC syncs with the same CPU. 1382 */ 1383 affinity_set(CPU_CURRENT); 1384 1385 for (who = 0; who < NCPU; who++) { 1386 1387 if (!CPU_IN_SET(mp_cpus, who)) 1388 continue; 1389 ASSERT(who != bootcpuid); 1390 if (ncpus >= max_ncpus) { 1391 skipped = who; 1392 continue; 1393 } 1394 if (start_cpu(who) != 0) 1395 CPUSET_DEL(mp_cpus, who); 1396 } 1397 1398 /* Free the space allocated to hold the microcode file */ 1399 ucode_free(); 1400 1401 affinity_clear(); 1402 1403 if (skipped) { 1404 cmn_err(CE_NOTE, 1405 "System detected %d cpus, but " 1406 "only %d cpu(s) were enabled during boot.", 1407 skipped + 1, ncpus); 1408 cmn_err(CE_NOTE, 1409 "Use \"boot-ncpus\" parameter to enable more CPU(s). " 1410 "See eeprom(1M)."); 1411 } 1412 1413 done: 1414 workaround_errata_end(); 1415 mach_cpucontext_fini(); 1416 1417 cmi_post_mpstartup(); 1418 } 1419 1420 /* 1421 * Dummy functions - no i86pc platforms support dynamic cpu allocation. 1422 */ 1423 /*ARGSUSED*/ 1424 int 1425 mp_cpu_configure(int cpuid) 1426 { 1427 return (ENOTSUP); /* not supported */ 1428 } 1429 1430 /*ARGSUSED*/ 1431 int 1432 mp_cpu_unconfigure(int cpuid) 1433 { 1434 return (ENOTSUP); /* not supported */ 1435 } 1436 1437 /* 1438 * Startup function for 'other' CPUs (besides boot cpu). 1439 * Called from real_mode_start. 1440 * 1441 * WARNING: until CPU_READY is set, mp_startup and routines called by 1442 * mp_startup should not call routines (e.g. kmem_free) that could call 1443 * hat_unload which requires CPU_READY to be set. 1444 */ 1445 void 1446 mp_startup(void) 1447 { 1448 struct cpu *cp = CPU; 1449 uint_t new_x86_feature; 1450 1451 /* 1452 * We need to get TSC on this proc synced (i.e., any delta 1453 * from cpu0 accounted for) as soon as we can, because many 1454 * many things use gethrtime/pc_gethrestime, including 1455 * interrupts, cmn_err, etc. 1456 */ 1457 1458 /* Let cpu0 continue into tsc_sync_master() */ 1459 CPUSET_ATOMIC_ADD(procset, cp->cpu_id); 1460 1461 #ifndef __xpv 1462 if (tsc_gethrtime_enable) 1463 tsc_sync_slave(); 1464 #endif 1465 1466 /* 1467 * Once this was done from assembly, but it's safer here; if 1468 * it blocks, we need to be able to swtch() to and from, and 1469 * since we get here by calling t_pc, we need to do that call 1470 * before swtch() overwrites it. 1471 */ 1472 (void) (*ap_mlsetup)(); 1473 1474 new_x86_feature = cpuid_pass1(cp); 1475 1476 #ifndef __xpv 1477 /* 1478 * Program this cpu's PAT 1479 */ 1480 if (x86_feature & X86_PAT) 1481 pat_sync(); 1482 #endif 1483 1484 /* 1485 * Set up TSC_AUX to contain the cpuid for this processor 1486 * for the rdtscp instruction. 1487 */ 1488 if (x86_feature & X86_TSCP) 1489 (void) wrmsr(MSR_AMD_TSCAUX, cp->cpu_id); 1490 1491 /* 1492 * Initialize this CPU's syscall handlers 1493 */ 1494 init_cpu_syscall(cp); 1495 1496 /* 1497 * Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the 1498 * highest level at which a routine is permitted to block on 1499 * an adaptive mutex (allows for cpu poke interrupt in case 1500 * the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks 1501 * device interrupts that may end up in the hat layer issuing cross 1502 * calls before CPU_READY is set. 1503 */ 1504 splx(ipltospl(LOCK_LEVEL)); 1505 sti(); 1506 1507 /* 1508 * Do a sanity check to make sure this new CPU is a sane thing 1509 * to add to the collection of processors running this system. 1510 * 1511 * XXX Clearly this needs to get more sophisticated, if x86 1512 * systems start to get built out of heterogenous CPUs; as is 1513 * likely to happen once the number of processors in a configuration 1514 * gets large enough. 1515 */ 1516 if ((x86_feature & new_x86_feature) != x86_feature) { 1517 cmn_err(CE_CONT, "?cpu%d: %b\n", 1518 cp->cpu_id, new_x86_feature, FMT_X86_FEATURE); 1519 cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id); 1520 } 1521 1522 /* 1523 * We do not support cpus with mixed monitor/mwait support if the 1524 * boot cpu supports monitor/mwait. 1525 */ 1526 if ((x86_feature & ~new_x86_feature) & X86_MWAIT) 1527 panic("unsupported mixed cpu monitor/mwait support detected"); 1528 1529 /* 1530 * We could be more sophisticated here, and just mark the CPU 1531 * as "faulted" but at this point we'll opt for the easier 1532 * answer of dieing horribly. Provided the boot cpu is ok, 1533 * the system can be recovered by booting with use_mp set to zero. 1534 */ 1535 if (workaround_errata(cp) != 0) 1536 panic("critical workaround(s) missing for cpu%d", cp->cpu_id); 1537 1538 cpuid_pass2(cp); 1539 cpuid_pass3(cp); 1540 (void) cpuid_pass4(cp); 1541 1542 init_cpu_info(cp); 1543 1544 mutex_enter(&cpu_lock); 1545 /* 1546 * Processor group initialization for this CPU is dependent on the 1547 * cpuid probing, which must be done in the context of the current 1548 * CPU. 1549 */ 1550 pghw_physid_create(cp); 1551 pg_cpu_init(cp); 1552 pg_cmt_cpu_startup(cp); 1553 1554 cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_EXISTS; 1555 1556 if (dtrace_cpu_init != NULL) { 1557 (*dtrace_cpu_init)(cp->cpu_id); 1558 } 1559 1560 /* 1561 * Fill out cpu_ucode_info. Update microcode if necessary. 1562 */ 1563 ucode_check(cp); 1564 1565 mutex_exit(&cpu_lock); 1566 1567 /* 1568 * Enable preemption here so that contention for any locks acquired 1569 * later in mp_startup may be preempted if the thread owning those 1570 * locks is continously executing on other CPUs (for example, this 1571 * CPU must be preemptible to allow other CPUs to pause it during their 1572 * startup phases). It's safe to enable preemption here because the 1573 * CPU state is pretty-much fully constructed. 1574 */ 1575 curthread->t_preempt = 0; 1576 1577 /* The base spl should still be at LOCK LEVEL here */ 1578 ASSERT(cp->cpu_base_spl == ipltospl(LOCK_LEVEL)); 1579 set_base_spl(); /* Restore the spl to its proper value */ 1580 1581 /* Enable interrupts */ 1582 (void) spl0(); 1583 mutex_enter(&cpu_lock); 1584 cpu_enable_intr(cp); 1585 cpu_add_active(cp); 1586 mutex_exit(&cpu_lock); 1587 1588 add_cpunode2devtree(cp->cpu_id, cp->cpu_m.mcpu_cpi); 1589 1590 #ifndef __xpv 1591 { 1592 /* 1593 * Set up the CPU module for this CPU. This can't be done 1594 * before this CPU is made CPU_READY, because we may (in 1595 * heterogeneous systems) need to go load another CPU module. 1596 * The act of attempting to load a module may trigger a 1597 * cross-call, which will ASSERT unless this cpu is CPU_READY. 1598 */ 1599 cmi_hdl_t hdl; 1600 1601 if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1602 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU), 1603 cmi_ntv_hwmstrand(CPU))) != NULL) { 1604 if (x86_feature & X86_MCA) 1605 cmi_mca_init(hdl); 1606 } 1607 } 1608 #endif /* __xpv */ 1609 1610 if (boothowto & RB_DEBUG) 1611 kdi_cpu_init(); 1612 1613 /* 1614 * Setting the bit in cpu_ready_set must be the last operation in 1615 * processor initialization; the boot CPU will continue to boot once 1616 * it sees this bit set for all active CPUs. 1617 */ 1618 CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id); 1619 1620 /* 1621 * Because mp_startup() gets fired off after init() starts, we 1622 * can't use the '?' trick to do 'boot -v' printing - so we 1623 * always direct the 'cpu .. online' messages to the log. 1624 */ 1625 cmn_err(CE_CONT, "!cpu%d initialization complete - online\n", 1626 cp->cpu_id); 1627 1628 /* 1629 * Now we are done with the startup thread, so free it up. 1630 */ 1631 thread_exit(); 1632 panic("mp_startup: cannot return"); 1633 /*NOTREACHED*/ 1634 } 1635 1636 1637 /* 1638 * Start CPU on user request. 1639 */ 1640 /* ARGSUSED */ 1641 int 1642 mp_cpu_start(struct cpu *cp) 1643 { 1644 ASSERT(MUTEX_HELD(&cpu_lock)); 1645 return (0); 1646 } 1647 1648 /* 1649 * Stop CPU on user request. 1650 */ 1651 /* ARGSUSED */ 1652 int 1653 mp_cpu_stop(struct cpu *cp) 1654 { 1655 extern int cbe_psm_timer_mode; 1656 ASSERT(MUTEX_HELD(&cpu_lock)); 1657 1658 #ifdef __xpv 1659 /* 1660 * We can't offline vcpu0. 1661 */ 1662 if (cp->cpu_id == 0) 1663 return (EBUSY); 1664 #endif 1665 1666 /* 1667 * If TIMER_PERIODIC mode is used, CPU0 is the one running it; 1668 * can't stop it. (This is true only for machines with no TSC.) 1669 */ 1670 1671 if ((cbe_psm_timer_mode == TIMER_PERIODIC) && (cp->cpu_id == 0)) 1672 return (EBUSY); 1673 1674 return (0); 1675 } 1676 1677 /* 1678 * Take the specified CPU out of participation in interrupts. 1679 */ 1680 int 1681 cpu_disable_intr(struct cpu *cp) 1682 { 1683 if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS) 1684 return (EBUSY); 1685 1686 cp->cpu_flags &= ~CPU_ENABLE; 1687 return (0); 1688 } 1689 1690 /* 1691 * Allow the specified CPU to participate in interrupts. 1692 */ 1693 void 1694 cpu_enable_intr(struct cpu *cp) 1695 { 1696 ASSERT(MUTEX_HELD(&cpu_lock)); 1697 cp->cpu_flags |= CPU_ENABLE; 1698 psm_enable_intr(cp->cpu_id); 1699 } 1700 1701 1702 /*ARGSUSED*/ 1703 void 1704 mp_cpu_faulted_enter(struct cpu *cp) 1705 { 1706 #ifndef __xpv 1707 cmi_hdl_t hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp), 1708 cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp)); 1709 1710 if (hdl != NULL) { 1711 cmi_faulted_enter(hdl); 1712 cmi_hdl_rele(hdl); 1713 } 1714 #endif 1715 } 1716 1717 /*ARGSUSED*/ 1718 void 1719 mp_cpu_faulted_exit(struct cpu *cp) 1720 { 1721 #ifndef __xpv 1722 cmi_hdl_t hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp), 1723 cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp)); 1724 1725 if (hdl != NULL) { 1726 cmi_faulted_exit(hdl); 1727 cmi_hdl_rele(hdl); 1728 } 1729 #endif 1730 } 1731 1732 /* 1733 * The following two routines are used as context operators on threads belonging 1734 * to processes with a private LDT (see sysi86). Due to the rarity of such 1735 * processes, these routines are currently written for best code readability and 1736 * organization rather than speed. We could avoid checking x86_feature at every 1737 * context switch by installing different context ops, depending on the 1738 * x86_feature flags, at LDT creation time -- one for each combination of fast 1739 * syscall feature flags. 1740 */ 1741 1742 /*ARGSUSED*/ 1743 void 1744 cpu_fast_syscall_disable(void *arg) 1745 { 1746 if ((x86_feature & (X86_MSR | X86_SEP)) == (X86_MSR | X86_SEP)) 1747 cpu_sep_disable(); 1748 if ((x86_feature & (X86_MSR | X86_ASYSC)) == (X86_MSR | X86_ASYSC)) 1749 cpu_asysc_disable(); 1750 } 1751 1752 /*ARGSUSED*/ 1753 void 1754 cpu_fast_syscall_enable(void *arg) 1755 { 1756 if ((x86_feature & (X86_MSR | X86_SEP)) == (X86_MSR | X86_SEP)) 1757 cpu_sep_enable(); 1758 if ((x86_feature & (X86_MSR | X86_ASYSC)) == (X86_MSR | X86_ASYSC)) 1759 cpu_asysc_enable(); 1760 } 1761 1762 static void 1763 cpu_sep_enable(void) 1764 { 1765 ASSERT(x86_feature & X86_SEP); 1766 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 1767 1768 wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL); 1769 } 1770 1771 static void 1772 cpu_sep_disable(void) 1773 { 1774 ASSERT(x86_feature & X86_SEP); 1775 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 1776 1777 /* 1778 * Setting the SYSENTER_CS_MSR register to 0 causes software executing 1779 * the sysenter or sysexit instruction to trigger a #gp fault. 1780 */ 1781 wrmsr(MSR_INTC_SEP_CS, 0); 1782 } 1783 1784 static void 1785 cpu_asysc_enable(void) 1786 { 1787 ASSERT(x86_feature & X86_ASYSC); 1788 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 1789 1790 wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) | 1791 (uint64_t)(uintptr_t)AMD_EFER_SCE); 1792 } 1793 1794 static void 1795 cpu_asysc_disable(void) 1796 { 1797 ASSERT(x86_feature & X86_ASYSC); 1798 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 1799 1800 /* 1801 * Turn off the SCE (syscall enable) bit in the EFER register. Software 1802 * executing syscall or sysret with this bit off will incur a #ud trap. 1803 */ 1804 wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) & 1805 ~((uint64_t)(uintptr_t)AMD_EFER_SCE)); 1806 } 1807