xref: /titanic_50/usr/src/uts/i86pc/os/mp_machdep.c (revision fdea908e419c50bb9207dfd6dee8556aa6e39cf3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #define	PSMI_1_5
29 #include <sys/smp_impldefs.h>
30 #include <sys/psm.h>
31 #include <sys/psm_modctl.h>
32 #include <sys/pit.h>
33 #include <sys/cmn_err.h>
34 #include <sys/strlog.h>
35 #include <sys/clock.h>
36 #include <sys/debug.h>
37 #include <sys/rtc.h>
38 #include <sys/x86_archext.h>
39 #include <sys/cpupart.h>
40 #include <sys/cpuvar.h>
41 #include <sys/cmt.h>
42 #include <sys/cpu.h>
43 #include <sys/disp.h>
44 #include <sys/archsystm.h>
45 #include <sys/machsystm.h>
46 #include <sys/sysmacros.h>
47 #include <sys/param.h>
48 #include <sys/promif.h>
49 #include <sys/mach_intr.h>
50 #include <vm/hat_i86.h>
51 #include <sys/kdi_machimpl.h>
52 
53 #define	OFFSETOF(s, m)		(size_t)(&(((s *)0)->m))
54 
55 /*
56  *	Local function prototypes
57  */
58 static int mp_disable_intr(processorid_t cpun);
59 static void mp_enable_intr(processorid_t cpun);
60 static void mach_init();
61 static void mach_picinit();
62 static uint64_t mach_calchz(uint32_t pit_counter, uint64_t *processor_clks);
63 static int machhztomhz(uint64_t cpu_freq_hz);
64 static uint64_t mach_getcpufreq(void);
65 static void mach_fixcpufreq(void);
66 static int mach_clkinit(int, int *);
67 static void mach_smpinit(void);
68 static int mach_softlvl_to_vect(int ipl);
69 static void mach_get_platform(int owner);
70 static void mach_construct_info();
71 static int mach_translate_irq(dev_info_t *dip, int irqno);
72 static int mach_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
73     psm_intr_op_t, int *);
74 static void mach_notify_error(int level, char *errmsg);
75 static hrtime_t dummy_hrtime(void);
76 static void dummy_scalehrtime(hrtime_t *);
77 static void cpu_idle(void);
78 static void cpu_wakeup(cpu_t *, int);
79 static void cpu_idle_mwait(void);
80 static void cpu_wakeup_mwait(cpu_t *, int);
81 /*
82  *	External reference functions
83  */
84 extern void return_instr();
85 extern uint64_t freq_tsc(uint32_t *);
86 #if defined(__i386)
87 extern uint64_t freq_notsc(uint32_t *);
88 #endif
89 extern void pc_gethrestime(timestruc_t *);
90 extern int cpuid_get_coreid(cpu_t *);
91 extern int cpuid_get_chipid(cpu_t *);
92 
93 /*
94  *	PSM functions initialization
95  */
96 void (*psm_shutdownf)(int, int)	= (void (*)(int, int))return_instr;
97 void (*psm_preshutdownf)(int, int) = (void (*)(int, int))return_instr;
98 void (*psm_notifyf)(int)	= (void (*)(int))return_instr;
99 void (*psm_set_idle_cpuf)(int)	= (void (*)(int))return_instr;
100 void (*psm_unset_idle_cpuf)(int) = (void (*)(int))return_instr;
101 void (*psminitf)()		= mach_init;
102 void (*picinitf)() 		= return_instr;
103 int (*clkinitf)(int, int *) 	= (int (*)(int, int *))return_instr;
104 int (*ap_mlsetup)() 		= (int (*)(void))return_instr;
105 void (*send_dirintf)() 		= return_instr;
106 void (*setspl)(int)		= (void (*)(int))return_instr;
107 int (*addspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
108 int (*delspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
109 void (*kdisetsoftint)(int, struct av_softinfo *)=
110 	(void (*)(int, struct av_softinfo *))return_instr;
111 void (*setsoftint)(int, struct av_softinfo *)=
112 	(void (*)(int, struct av_softinfo *))return_instr;
113 int (*slvltovect)(int)		= (int (*)(int))return_instr;
114 int (*setlvl)(int, int *)	= (int (*)(int, int *))return_instr;
115 void (*setlvlx)(int, int)	= (void (*)(int, int))return_instr;
116 int (*psm_disable_intr)(int)	= mp_disable_intr;
117 void (*psm_enable_intr)(int)	= mp_enable_intr;
118 hrtime_t (*gethrtimef)(void)	= dummy_hrtime;
119 hrtime_t (*gethrtimeunscaledf)(void)	= dummy_hrtime;
120 void (*scalehrtimef)(hrtime_t *)	= dummy_scalehrtime;
121 int (*psm_translate_irq)(dev_info_t *, int) = mach_translate_irq;
122 void (*gethrestimef)(timestruc_t *) = pc_gethrestime;
123 void (*psm_notify_error)(int, char *) = (void (*)(int, char *))NULL;
124 int (*psm_get_clockirq)(int) = NULL;
125 int (*psm_get_ipivect)(int, int) = NULL;
126 
127 int (*psm_clkinit)(int) = NULL;
128 void (*psm_timer_reprogram)(hrtime_t) = NULL;
129 void (*psm_timer_enable)(void) = NULL;
130 void (*psm_timer_disable)(void) = NULL;
131 void (*psm_post_cyclic_setup)(void *arg) = NULL;
132 int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t,
133     int *) = mach_intr_ops;
134 
135 void (*notify_error)(int, char *) = (void (*)(int, char *))return_instr;
136 void (*hrtime_tick)(void)	= return_instr;
137 
138 int tsc_gethrtime_enable = 1;
139 int tsc_gethrtime_initted = 0;
140 
141 /*
142  * Local Static Data
143  */
144 static struct psm_ops mach_ops;
145 static struct psm_ops *mach_set[4] = {&mach_ops, NULL, NULL, NULL};
146 static ushort_t mach_ver[4] = {0, 0, 0, 0};
147 
148 /*
149  * If non-zero, idle cpus will become "halted" when there's
150  * no work to do.
151  */
152 int	idle_cpu_use_hlt = 1;
153 
154 /*
155  * If non-zero, idle cpus will use mwait if available to halt instead of hlt.
156  */
157 int	idle_cpu_prefer_mwait = 1;
158 
159 
160 /*ARGSUSED*/
161 int
162 pg_plat_hw_shared(cpu_t *cp, pghw_type_t hw)
163 {
164 	switch (hw) {
165 	case PGHW_IPIPE:
166 		if (x86_feature & (X86_HTT)) {
167 			/*
168 			 * Hyper-threading is SMT
169 			 */
170 			return (1);
171 		} else {
172 			return (0);
173 		}
174 	case PGHW_CHIP:
175 		if (x86_feature & (X86_CMP|X86_HTT))
176 			return (1);
177 		else
178 			return (0);
179 	case PGHW_CACHE:
180 		if (cpuid_get_ncpu_sharing_last_cache(cp) > 1)
181 			return (1);
182 		else
183 			return (0);
184 	default:
185 		return (0);
186 	}
187 }
188 
189 /*
190  * Compare two CPUs and see if they have a pghw_type_t sharing relationship
191  * If pghw_type_t is an unsupported hardware type, then return -1
192  */
193 int
194 pg_plat_cpus_share(cpu_t *cpu_a, cpu_t *cpu_b, pghw_type_t hw)
195 {
196 	id_t pgp_a, pgp_b;
197 
198 	pgp_a = pg_plat_hw_instance_id(cpu_a, hw);
199 	pgp_b = pg_plat_hw_instance_id(cpu_b, hw);
200 
201 	if (pgp_a == -1 || pgp_b == -1)
202 		return (-1);
203 
204 	return (pgp_a == pgp_b);
205 }
206 
207 /*
208  * Return a physical instance identifier for known hardware sharing
209  * relationships
210  */
211 id_t
212 pg_plat_hw_instance_id(cpu_t *cpu, pghw_type_t hw)
213 {
214 	switch (hw) {
215 	case PGHW_IPIPE:
216 		return (cpuid_get_coreid(cpu));
217 	case PGHW_CACHE:
218 		return (cpuid_get_last_lvl_cacheid(cpu));
219 	case PGHW_CHIP:
220 		return (cpuid_get_chipid(cpu));
221 	default:
222 		return (-1);
223 	}
224 }
225 
226 int
227 pg_plat_hw_level(pghw_type_t hw)
228 {
229 	int i;
230 	static pghw_type_t hw_hier[] = {
231 		PGHW_IPIPE,
232 		PGHW_CACHE,
233 		PGHW_CHIP,
234 		PGHW_NUM_COMPONENTS
235 	};
236 
237 	for (i = 0; hw_hier[i] != PGHW_NUM_COMPONENTS; i++) {
238 		if (hw_hier[i] == hw)
239 			return (i);
240 	}
241 	return (-1);
242 }
243 
244 /*
245  * Return 1 if CMT load balancing policies should be
246  * implemented across instances of the specified hardware
247  * sharing relationship.
248  */
249 int
250 pg_plat_cmt_load_bal_hw(pghw_type_t hw)
251 {
252 	if (hw == PGHW_IPIPE ||
253 	    hw == PGHW_FPU ||
254 	    hw == PGHW_CHIP ||
255 	    hw == PGHW_CACHE)
256 		return (1);
257 	else
258 		return (0);
259 }
260 
261 
262 /*
263  * Return 1 if thread affinity polices should be implemented
264  * for instances of the specifed hardware sharing relationship.
265  */
266 int
267 pg_plat_cmt_affinity_hw(pghw_type_t hw)
268 {
269 	if (hw == PGHW_CACHE)
270 		return (1);
271 	else
272 		return (0);
273 }
274 
275 id_t
276 pg_plat_get_core_id(cpu_t *cpu)
277 {
278 	return ((id_t)cpuid_get_coreid(cpu));
279 }
280 
281 void
282 cmp_set_nosteal_interval(void)
283 {
284 	/* Set the nosteal interval (used by disp_getbest()) to 100us */
285 	nosteal_nsec = 100000UL;
286 }
287 
288 /*
289  * Routine to ensure initial callers to hrtime gets 0 as return
290  */
291 static hrtime_t
292 dummy_hrtime(void)
293 {
294 	return (0);
295 }
296 
297 /* ARGSUSED */
298 static void
299 dummy_scalehrtime(hrtime_t *ticks)
300 {}
301 
302 /*
303  * Idle the present CPU until awoken via an interrupt
304  */
305 static void
306 cpu_idle(void)
307 {
308 	cpu_t		*cpup = CPU;
309 	processorid_t	cpun = cpup->cpu_id;
310 	cpupart_t	*cp = cpup->cpu_part;
311 	int		hset_update = 1;
312 
313 	/*
314 	 * If this CPU is online, and there's multiple CPUs
315 	 * in the system, then we should notate our halting
316 	 * by adding ourselves to the partition's halted CPU
317 	 * bitmap. This allows other CPUs to find/awaken us when
318 	 * work becomes available.
319 	 */
320 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
321 		hset_update = 0;
322 
323 	/*
324 	 * Add ourselves to the partition's halted CPUs bitmask
325 	 * and set our HALTED flag, if necessary.
326 	 *
327 	 * When a thread becomes runnable, it is placed on the queue
328 	 * and then the halted cpuset is checked to determine who
329 	 * (if anyone) should be awoken. We therefore need to first
330 	 * add ourselves to the halted cpuset, and and then check if there
331 	 * is any work available.
332 	 *
333 	 * Note that memory barriers after updating the HALTED flag
334 	 * are not necessary since an atomic operation (updating the bitmap)
335 	 * immediately follows. On x86 the atomic operation acts as a
336 	 * memory barrier for the update of cpu_disp_flags.
337 	 */
338 	if (hset_update) {
339 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
340 		CPUSET_ATOMIC_ADD(cp->cp_mach->mc_haltset, cpun);
341 	}
342 
343 	/*
344 	 * Check to make sure there's really nothing to do.
345 	 * Work destined for this CPU may become available after
346 	 * this check. We'll be notified through the clearing of our
347 	 * bit in the halted CPU bitmask, and a poke.
348 	 */
349 	if (disp_anywork()) {
350 		if (hset_update) {
351 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
352 			CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun);
353 		}
354 		return;
355 	}
356 
357 	/*
358 	 * We're on our way to being halted.
359 	 *
360 	 * Disable interrupts now, so that we'll awaken immediately
361 	 * after halting if someone tries to poke us between now and
362 	 * the time we actually halt.
363 	 *
364 	 * We check for the presence of our bit after disabling interrupts.
365 	 * If it's cleared, we'll return. If the bit is cleared after
366 	 * we check then the poke will pop us out of the halted state.
367 	 *
368 	 * This means that the ordering of the poke and the clearing
369 	 * of the bit by cpu_wakeup is important.
370 	 * cpu_wakeup() must clear, then poke.
371 	 * cpu_idle() must disable interrupts, then check for the bit.
372 	 */
373 	cli();
374 
375 	if (hset_update && !CPU_IN_SET(cp->cp_mach->mc_haltset, cpun)) {
376 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
377 		sti();
378 		return;
379 	}
380 
381 	/*
382 	 * The check for anything locally runnable is here for performance
383 	 * and isn't needed for correctness. disp_nrunnable ought to be
384 	 * in our cache still, so it's inexpensive to check, and if there
385 	 * is anything runnable we won't have to wait for the poke.
386 	 */
387 	if (cpup->cpu_disp->disp_nrunnable != 0) {
388 		if (hset_update) {
389 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
390 			CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun);
391 		}
392 		sti();
393 		return;
394 	}
395 
396 	mach_cpu_idle();
397 
398 	/*
399 	 * We're no longer halted
400 	 */
401 	if (hset_update) {
402 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
403 		CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun);
404 	}
405 }
406 
407 
408 /*
409  * If "cpu" is halted, then wake it up clearing its halted bit in advance.
410  * Otherwise, see if other CPUs in the cpu partition are halted and need to
411  * be woken up so that they can steal the thread we placed on this CPU.
412  * This function is only used on MP systems.
413  */
414 static void
415 cpu_wakeup(cpu_t *cpu, int bound)
416 {
417 	uint_t		cpu_found;
418 	int		result;
419 	cpupart_t	*cp;
420 
421 	cp = cpu->cpu_part;
422 	if (CPU_IN_SET(cp->cp_mach->mc_haltset, cpu->cpu_id)) {
423 		/*
424 		 * Clear the halted bit for that CPU since it will be
425 		 * poked in a moment.
426 		 */
427 		CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpu->cpu_id);
428 		/*
429 		 * We may find the current CPU present in the halted cpuset
430 		 * if we're in the context of an interrupt that occurred
431 		 * before we had a chance to clear our bit in cpu_idle().
432 		 * Poking ourself is obviously unnecessary, since if
433 		 * we're here, we're not halted.
434 		 */
435 		if (cpu != CPU)
436 			poke_cpu(cpu->cpu_id);
437 		return;
438 	} else {
439 		/*
440 		 * This cpu isn't halted, but it's idle or undergoing a
441 		 * context switch. No need to awaken anyone else.
442 		 */
443 		if (cpu->cpu_thread == cpu->cpu_idle_thread ||
444 		    cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL)
445 			return;
446 	}
447 
448 	/*
449 	 * No need to wake up other CPUs if the thread we just enqueued
450 	 * is bound.
451 	 */
452 	if (bound)
453 		return;
454 
455 
456 	/*
457 	 * See if there's any other halted CPUs. If there are, then
458 	 * select one, and awaken it.
459 	 * It's possible that after we find a CPU, somebody else
460 	 * will awaken it before we get the chance.
461 	 * In that case, look again.
462 	 */
463 	do {
464 		CPUSET_FIND(cp->cp_mach->mc_haltset, cpu_found);
465 		if (cpu_found == CPUSET_NOTINSET)
466 			return;
467 
468 		ASSERT(cpu_found >= 0 && cpu_found < NCPU);
469 		CPUSET_ATOMIC_XDEL(cp->cp_mach->mc_haltset, cpu_found, result);
470 	} while (result < 0);
471 
472 	if (cpu_found != CPU->cpu_id)
473 		poke_cpu(cpu_found);
474 }
475 
476 /*
477  * Idle the present CPU until awoken via touching its monitored line
478  */
479 static void
480 cpu_idle_mwait(void)
481 {
482 	volatile uint32_t	*mcpu_mwait = CPU->cpu_m.mcpu_mwait;
483 	cpu_t			*cpup = CPU;
484 	processorid_t		cpun = cpup->cpu_id;
485 	cpupart_t		*cp = cpup->cpu_part;
486 	int			hset_update = 1;
487 
488 	/*
489 	 * Set our mcpu_mwait here, so we can tell if anyone trys to
490 	 * wake us between now and when we call mwait.  No other cpu will
491 	 * attempt to set our mcpu_mwait until we add ourself to the haltset.
492 	 */
493 	*mcpu_mwait = MWAIT_HALTED;
494 
495 	/*
496 	 * If this CPU is online, and there's multiple CPUs
497 	 * in the system, then we should notate our halting
498 	 * by adding ourselves to the partition's halted CPU
499 	 * bitmap. This allows other CPUs to find/awaken us when
500 	 * work becomes available.
501 	 */
502 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
503 		hset_update = 0;
504 
505 	/*
506 	 * Add ourselves to the partition's halted CPUs bitmask
507 	 * and set our HALTED flag, if necessary.
508 	 *
509 	 * When a thread becomes runnable, it is placed on the queue
510 	 * and then the halted cpuset is checked to determine who
511 	 * (if anyone) should be awoken. We therefore need to first
512 	 * add ourselves to the halted cpuset, and and then check if there
513 	 * is any work available.
514 	 *
515 	 * Note that memory barriers after updating the HALTED flag
516 	 * are not necessary since an atomic operation (updating the bitmap)
517 	 * immediately follows. On x86 the atomic operation acts as a
518 	 * memory barrier for the update of cpu_disp_flags.
519 	 */
520 	if (hset_update) {
521 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
522 		CPUSET_ATOMIC_ADD(cp->cp_mach->mc_haltset, cpun);
523 	}
524 
525 	/*
526 	 * Check to make sure there's really nothing to do.
527 	 * Work destined for this CPU may become available after
528 	 * this check. We'll be notified through the clearing of our
529 	 * bit in the halted CPU bitmask, and a write to our mcpu_mwait.
530 	 *
531 	 * disp_anywork() checks disp_nrunnable, so we do not have to later.
532 	 */
533 	if (disp_anywork()) {
534 		if (hset_update) {
535 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
536 			CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun);
537 		}
538 		return;
539 	}
540 
541 	/*
542 	 * We're on our way to being halted.
543 	 * To avoid a lost wakeup, arm the monitor before checking if another
544 	 * cpu wrote to mcpu_mwait to wake us up.
545 	 */
546 	i86_monitor(mcpu_mwait, 0, 0);
547 	if (*mcpu_mwait == MWAIT_HALTED) {
548 		tlb_going_idle();
549 		i86_mwait(0, 0);
550 		tlb_service();
551 	}
552 
553 	/*
554 	 * We're no longer halted
555 	 */
556 	if (hset_update) {
557 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
558 		CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun);
559 	}
560 }
561 
562 /*
563  * If "cpu" is halted in mwait, then wake it up clearing its halted bit in
564  * advance.  Otherwise, see if other CPUs in the cpu partition are halted and
565  * need to be woken up so that they can steal the thread we placed on this CPU.
566  * This function is only used on MP systems.
567  */
568 static void
569 cpu_wakeup_mwait(cpu_t *cp, int bound)
570 {
571 	cpupart_t	*cpu_part;
572 	uint_t		cpu_found;
573 	int		result;
574 
575 	cpu_part = cp->cpu_part;
576 
577 	/*
578 	 * Clear the halted bit for that CPU since it will be woken up
579 	 * in a moment.
580 	 */
581 	if (CPU_IN_SET(cpu_part->cp_mach->mc_haltset, cp->cpu_id)) {
582 		/*
583 		 * Clear the halted bit for that CPU since it will be
584 		 * poked in a moment.
585 		 */
586 		CPUSET_ATOMIC_DEL(cpu_part->cp_mach->mc_haltset, cp->cpu_id);
587 		/*
588 		 * We may find the current CPU present in the halted cpuset
589 		 * if we're in the context of an interrupt that occurred
590 		 * before we had a chance to clear our bit in cpu_idle().
591 		 * Waking ourself is obviously unnecessary, since if
592 		 * we're here, we're not halted.
593 		 *
594 		 * monitor/mwait wakeup via writing to our cache line is
595 		 * harmless and less expensive than always checking if we
596 		 * are waking ourself which is an uncommon case.
597 		 */
598 		MWAIT_WAKEUP(cp);	/* write to monitored line */
599 		return;
600 	} else {
601 		/*
602 		 * This cpu isn't halted, but it's idle or undergoing a
603 		 * context switch. No need to awaken anyone else.
604 		 */
605 		if (cp->cpu_thread == cp->cpu_idle_thread ||
606 		    cp->cpu_disp_flags & CPU_DISP_DONTSTEAL)
607 			return;
608 	}
609 
610 	/*
611 	 * No need to wake up other CPUs if the thread we just enqueued
612 	 * is bound.
613 	 */
614 	if (bound)
615 		return;
616 
617 
618 	/*
619 	 * See if there's any other halted CPUs. If there are, then
620 	 * select one, and awaken it.
621 	 * It's possible that after we find a CPU, somebody else
622 	 * will awaken it before we get the chance.
623 	 * In that case, look again.
624 	 */
625 	do {
626 		CPUSET_FIND(cpu_part->cp_mach->mc_haltset, cpu_found);
627 		if (cpu_found == CPUSET_NOTINSET)
628 			return;
629 
630 		ASSERT(cpu_found >= 0 && cpu_found < NCPU);
631 		CPUSET_ATOMIC_XDEL(cpu_part->cp_mach->mc_haltset, cpu_found,
632 		    result);
633 	} while (result < 0);
634 
635 	/*
636 	 * Do not check if cpu_found is ourself as monitor/mwait wakeup is
637 	 * cheap.
638 	 */
639 	MWAIT_WAKEUP(cpu[cpu_found]);	/* write to monitored line */
640 }
641 
642 void (*cpu_pause_handler)(volatile char *) = NULL;
643 
644 static int
645 mp_disable_intr(int cpun)
646 {
647 	/*
648 	 * switch to the offline cpu
649 	 */
650 	affinity_set(cpun);
651 	/*
652 	 * raise ipl to just below cross call
653 	 */
654 	splx(XC_MED_PIL-1);
655 	/*
656 	 *	set base spl to prevent the next swtch to idle from
657 	 *	lowering back to ipl 0
658 	 */
659 	CPU->cpu_intr_actv |= (1 << (XC_MED_PIL-1));
660 	set_base_spl();
661 	affinity_clear();
662 	return (DDI_SUCCESS);
663 }
664 
665 static void
666 mp_enable_intr(int cpun)
667 {
668 	/*
669 	 * switch to the online cpu
670 	 */
671 	affinity_set(cpun);
672 	/*
673 	 * clear the interrupt active mask
674 	 */
675 	CPU->cpu_intr_actv &= ~(1 << (XC_MED_PIL-1));
676 	set_base_spl();
677 	(void) spl0();
678 	affinity_clear();
679 }
680 
681 static void
682 mach_get_platform(int owner)
683 {
684 	void		**srv_opsp;
685 	void		**clt_opsp;
686 	int		i;
687 	int		total_ops;
688 
689 	/* fix up psm ops */
690 	srv_opsp = (void **)mach_set[0];
691 	clt_opsp = (void **)mach_set[owner];
692 	if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01)
693 		total_ops = sizeof (struct psm_ops_ver01) /
694 		    sizeof (void (*)(void));
695 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_1)
696 		/* no psm_notify_func */
697 		total_ops = OFFSETOF(struct psm_ops, psm_notify_func) /
698 		    sizeof (void (*)(void));
699 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_2)
700 		/* no psm_timer funcs */
701 		total_ops = OFFSETOF(struct psm_ops, psm_timer_reprogram) /
702 		    sizeof (void (*)(void));
703 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_3)
704 		/* no psm_preshutdown function */
705 		total_ops = OFFSETOF(struct psm_ops, psm_preshutdown) /
706 		    sizeof (void (*)(void));
707 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_4)
708 		/* no psm_preshutdown function */
709 		total_ops = OFFSETOF(struct psm_ops, psm_intr_ops) /
710 		    sizeof (void (*)(void));
711 	else
712 		total_ops = sizeof (struct psm_ops) / sizeof (void (*)(void));
713 
714 	/*
715 	 * Save the version of the PSM module, in case we need to
716 	 * bahave differently based on version.
717 	 */
718 	mach_ver[0] = mach_ver[owner];
719 
720 	for (i = 0; i < total_ops; i++)
721 		if (clt_opsp[i] != NULL)
722 			srv_opsp[i] = clt_opsp[i];
723 }
724 
725 static void
726 mach_construct_info()
727 {
728 	struct psm_sw *swp;
729 	int	mach_cnt[PSM_OWN_OVERRIDE+1] = {0};
730 	int	conflict_owner = 0;
731 
732 	if (psmsw->psw_forw == psmsw)
733 		panic("No valid PSM modules found");
734 	mutex_enter(&psmsw_lock);
735 	for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
736 		if (!(swp->psw_flag & PSM_MOD_IDENTIFY))
737 			continue;
738 		mach_set[swp->psw_infop->p_owner] = swp->psw_infop->p_ops;
739 		mach_ver[swp->psw_infop->p_owner] = swp->psw_infop->p_version;
740 		mach_cnt[swp->psw_infop->p_owner]++;
741 	}
742 	mutex_exit(&psmsw_lock);
743 
744 	mach_get_platform(PSM_OWN_SYS_DEFAULT);
745 
746 	/* check to see are there any conflicts */
747 	if (mach_cnt[PSM_OWN_EXCLUSIVE] > 1)
748 		conflict_owner = PSM_OWN_EXCLUSIVE;
749 	if (mach_cnt[PSM_OWN_OVERRIDE] > 1)
750 		conflict_owner = PSM_OWN_OVERRIDE;
751 	if (conflict_owner) {
752 		/* remove all psm modules except uppc */
753 		cmn_err(CE_WARN,
754 		    "Conflicts detected on the following PSM modules:");
755 		mutex_enter(&psmsw_lock);
756 		for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
757 			if (swp->psw_infop->p_owner == conflict_owner)
758 				cmn_err(CE_WARN, "%s ",
759 				    swp->psw_infop->p_mach_idstring);
760 		}
761 		mutex_exit(&psmsw_lock);
762 		cmn_err(CE_WARN,
763 		    "Setting the system back to SINGLE processor mode!");
764 		cmn_err(CE_WARN,
765 		    "Please edit /etc/mach to remove the invalid PSM module.");
766 		return;
767 	}
768 
769 	if (mach_set[PSM_OWN_EXCLUSIVE])
770 		mach_get_platform(PSM_OWN_EXCLUSIVE);
771 
772 	if (mach_set[PSM_OWN_OVERRIDE])
773 		mach_get_platform(PSM_OWN_OVERRIDE);
774 }
775 
776 static void
777 mach_init()
778 {
779 	struct psm_ops  *pops;
780 
781 	mach_construct_info();
782 
783 	pops = mach_set[0];
784 
785 	/* register the interrupt and clock initialization rotuines */
786 	picinitf = mach_picinit;
787 	clkinitf = mach_clkinit;
788 	psm_get_clockirq = pops->psm_get_clockirq;
789 
790 	/* register the interrupt setup code */
791 	slvltovect = mach_softlvl_to_vect;
792 	addspl	= pops->psm_addspl;
793 	delspl	= pops->psm_delspl;
794 
795 	if (pops->psm_translate_irq)
796 		psm_translate_irq = pops->psm_translate_irq;
797 	if (pops->psm_intr_ops)
798 		psm_intr_ops = pops->psm_intr_ops;
799 
800 #if defined(PSMI_1_2) || defined(PSMI_1_3) || defined(PSMI_1_4)
801 	/*
802 	 * Time-of-day functionality now handled in TOD modules.
803 	 * (Warn about PSM modules that think that we're going to use
804 	 * their ops vectors.)
805 	 */
806 	if (pops->psm_tod_get)
807 		cmn_err(CE_WARN, "obsolete psm_tod_get op %p",
808 		    (void *)pops->psm_tod_get);
809 
810 	if (pops->psm_tod_set)
811 		cmn_err(CE_WARN, "obsolete psm_tod_set op %p",
812 		    (void *)pops->psm_tod_set);
813 #endif
814 
815 	if (pops->psm_notify_error) {
816 		psm_notify_error = mach_notify_error;
817 		notify_error = pops->psm_notify_error;
818 	}
819 
820 	(*pops->psm_softinit)();
821 
822 	/*
823 	 * Initialize the dispatcher's function hooks
824 	 * to enable CPU halting when idle.
825 	 * Do not use monitor/mwait if idle_cpu_use_hlt is not set(spin idle).
826 	 * Allocate monitor/mwait buffer for cpu0.
827 	 */
828 	if (idle_cpu_use_hlt) {
829 		if ((x86_feature & X86_MWAIT) && idle_cpu_prefer_mwait) {
830 			CPU->cpu_m.mcpu_mwait = mach_alloc_mwait(CPU);
831 			idle_cpu = cpu_idle_mwait;
832 		} else {
833 			idle_cpu = cpu_idle;
834 		}
835 	}
836 
837 	mach_smpinit();
838 }
839 
840 /*
841  * Return a pointer to memory suitable for monitor/mwait use.  Memory must be
842  * aligned as specified by cpuid (a cache line size).
843  */
844 uint32_t *
845 mach_alloc_mwait(cpu_t *cp)
846 {
847 	size_t		mwait_size = cpuid_get_mwait_size(cp);
848 	uint32_t	*ret;
849 
850 	if (mwait_size < sizeof (uint32_t) || !ISP2(mwait_size))
851 		panic("Can't handle mwait size %ld", (long)mwait_size);
852 
853 	/*
854 	 * kmem_alloc() returns cache line size aligned data for mwait_size
855 	 * allocations.  mwait_size is currently cache line sized.  Neither
856 	 * of these implementation details are guarantied to be true in the
857 	 * future.
858 	 *
859 	 * First try allocating mwait_size as kmem_alloc() currently returns
860 	 * correctly aligned memory.  If kmem_alloc() does not return
861 	 * mwait_size aligned memory, then use mwait_size ROUNDUP.
862 	 */
863 	ret = kmem_zalloc(mwait_size, KM_SLEEP);
864 	if (ret == (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size)) {
865 		*ret = MWAIT_RUNNING;
866 		return (ret);
867 	} else {
868 		kmem_free(ret, mwait_size);
869 		ret = kmem_zalloc(mwait_size * 2, KM_SLEEP);
870 		ret = (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size);
871 		*ret = MWAIT_RUNNING;
872 		return (ret);
873 	}
874 }
875 
876 static void
877 mach_smpinit(void)
878 {
879 	struct psm_ops  *pops;
880 	processorid_t cpu_id;
881 	int cnt;
882 	cpuset_t cpumask;
883 
884 	pops = mach_set[0];
885 
886 	cpu_id = -1;
887 	cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
888 	for (cnt = 0, CPUSET_ZERO(cpumask); cpu_id != -1; cnt++) {
889 		CPUSET_ADD(cpumask, cpu_id);
890 		cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
891 	}
892 
893 	mp_cpus = cpumask;
894 
895 	/* MP related routines */
896 	ap_mlsetup = pops->psm_post_cpu_start;
897 	send_dirintf = pops->psm_send_ipi;
898 
899 	/* optional MP related routines */
900 	if (pops->psm_shutdown)
901 		psm_shutdownf = pops->psm_shutdown;
902 	if (pops->psm_preshutdown)
903 		psm_preshutdownf = pops->psm_preshutdown;
904 	if (pops->psm_notify_func)
905 		psm_notifyf = pops->psm_notify_func;
906 	if (pops->psm_set_idlecpu)
907 		psm_set_idle_cpuf = pops->psm_set_idlecpu;
908 	if (pops->psm_unset_idlecpu)
909 		psm_unset_idle_cpuf = pops->psm_unset_idlecpu;
910 
911 	psm_clkinit = pops->psm_clkinit;
912 
913 	if (pops->psm_timer_reprogram)
914 		psm_timer_reprogram = pops->psm_timer_reprogram;
915 
916 	if (pops->psm_timer_enable)
917 		psm_timer_enable = pops->psm_timer_enable;
918 
919 	if (pops->psm_timer_disable)
920 		psm_timer_disable = pops->psm_timer_disable;
921 
922 	if (pops->psm_post_cyclic_setup)
923 		psm_post_cyclic_setup = pops->psm_post_cyclic_setup;
924 
925 	/* check for multiple cpu's */
926 	if (cnt < 2)
927 		return;
928 
929 	/* check for MP platforms */
930 	if (pops->psm_cpu_start == NULL)
931 		return;
932 
933 	/*
934 	 * Set the dispatcher hook to enable cpu "wake up"
935 	 * when a thread becomes runnable.
936 	 */
937 	if (idle_cpu_use_hlt)
938 		if ((x86_feature & X86_MWAIT) && idle_cpu_prefer_mwait)
939 			disp_enq_thread = cpu_wakeup_mwait;
940 		else
941 			disp_enq_thread = cpu_wakeup;
942 
943 	if (pops->psm_disable_intr)
944 		psm_disable_intr = pops->psm_disable_intr;
945 	if (pops->psm_enable_intr)
946 		psm_enable_intr  = pops->psm_enable_intr;
947 
948 	psm_get_ipivect = pops->psm_get_ipivect;
949 
950 	(void) add_avintr((void *)NULL, XC_HI_PIL, xc_serv, "xc_hi_intr",
951 	    (*pops->psm_get_ipivect)(XC_HI_PIL, PSM_INTR_IPI_HI),
952 	    (caddr_t)X_CALL_HIPRI, NULL, NULL, NULL);
953 	(void) add_avintr((void *)NULL, XC_MED_PIL, xc_serv, "xc_med_intr",
954 	    (*pops->psm_get_ipivect)(XC_MED_PIL, PSM_INTR_IPI_LO),
955 	    (caddr_t)X_CALL_MEDPRI, NULL, NULL, NULL);
956 
957 	(void) (*pops->psm_get_ipivect)(XC_CPUPOKE_PIL, PSM_INTR_POKE);
958 }
959 
960 static void
961 mach_picinit()
962 {
963 	struct psm_ops  *pops;
964 
965 	pops = mach_set[0];
966 
967 	/* register the interrupt handlers */
968 	setlvl = pops->psm_intr_enter;
969 	setlvlx = pops->psm_intr_exit;
970 
971 	/* initialize the interrupt hardware */
972 	(*pops->psm_picinit)();
973 
974 	/* set interrupt mask for current ipl */
975 	setspl = pops->psm_setspl;
976 	cli();
977 	setspl(CPU->cpu_pri);
978 }
979 
980 uint_t	cpu_freq;	/* MHz */
981 uint64_t cpu_freq_hz;	/* measured (in hertz) */
982 
983 #define	MEGA_HZ		1000000
984 
985 static uint64_t
986 mach_calchz(uint32_t pit_counter, uint64_t *processor_clks)
987 {
988 	uint64_t cpu_hz;
989 
990 	if ((pit_counter == 0) || (*processor_clks == 0) ||
991 	    (*processor_clks > (((uint64_t)-1) / PIT_HZ)))
992 		return (0);
993 
994 	cpu_hz = ((uint64_t)PIT_HZ * *processor_clks) / pit_counter;
995 
996 	return (cpu_hz);
997 }
998 
999 static uint64_t
1000 mach_getcpufreq(void)
1001 {
1002 	uint32_t pit_counter;
1003 	uint64_t processor_clks;
1004 
1005 	if (x86_feature & X86_TSC) {
1006 		/*
1007 		 * We have a TSC. freq_tsc() knows how to measure the number
1008 		 * of clock cycles sampled against the PIT.
1009 		 */
1010 		ulong_t flags = clear_int_flag();
1011 		processor_clks = freq_tsc(&pit_counter);
1012 		restore_int_flag(flags);
1013 		return (mach_calchz(pit_counter, &processor_clks));
1014 	} else if (x86_vendor == X86_VENDOR_Cyrix || x86_type == X86_TYPE_P5) {
1015 #if defined(__amd64)
1016 		panic("mach_getcpufreq: no TSC!");
1017 #elif defined(__i386)
1018 		/*
1019 		 * We are a Cyrix based on a 6x86 core or an Intel Pentium
1020 		 * for which freq_notsc() knows how to measure the number of
1021 		 * elapsed clock cycles sampled against the PIT
1022 		 */
1023 		ulong_t flags = clear_int_flag();
1024 		processor_clks = freq_notsc(&pit_counter);
1025 		restore_int_flag(flags);
1026 		return (mach_calchz(pit_counter, &processor_clks));
1027 #endif	/* __i386 */
1028 	}
1029 
1030 	/* We do not know how to calculate cpu frequency for this cpu. */
1031 	return (0);
1032 }
1033 
1034 /*
1035  * If the clock speed of a cpu is found to be reported incorrectly, do not add
1036  * to this array, instead improve the accuracy of the algorithm that determines
1037  * the clock speed of the processor or extend the implementation to support the
1038  * vendor as appropriate. This is here only to support adjusting the speed on
1039  * older slower processors that mach_fixcpufreq() would not be able to account
1040  * for otherwise.
1041  */
1042 static int x86_cpu_freq[] = { 60, 75, 80, 90, 120, 160, 166, 175, 180, 233 };
1043 
1044 /*
1045  * On fast processors the clock frequency that is measured may be off by
1046  * a few MHz from the value printed on the part. This is a combination of
1047  * the factors that for such fast parts being off by this much is within
1048  * the tolerances for manufacture and because of the difficulties in the
1049  * measurement that can lead to small error. This function uses some
1050  * heuristics in order to tweak the value that was measured to match what
1051  * is most likely printed on the part.
1052  *
1053  * Some examples:
1054  * 	AMD Athlon 1000 mhz measured as 998 mhz
1055  * 	Intel Pentium III Xeon 733 mhz measured as 731 mhz
1056  * 	Intel Pentium IV 1500 mhz measured as 1495mhz
1057  *
1058  * If in the future this function is no longer sufficient to correct
1059  * for the error in the measurement, then the algorithm used to perform
1060  * the measurement will have to be improved in order to increase accuracy
1061  * rather than adding horrible and questionable kludges here.
1062  *
1063  * This is called after the cyclics subsystem because of the potential
1064  * that the heuristics within may give a worse estimate of the clock
1065  * frequency than the value that was measured.
1066  */
1067 static void
1068 mach_fixcpufreq(void)
1069 {
1070 	uint32_t freq, mul, near66, delta66, near50, delta50, fixed, delta, i;
1071 
1072 	freq = (uint32_t)cpu_freq;
1073 
1074 	/*
1075 	 * Find the nearest integer multiple of 200/3 (about 66) MHz to the
1076 	 * measured speed taking into account that the 667 MHz parts were
1077 	 * the first to round-up.
1078 	 */
1079 	mul = (uint32_t)((3 * (uint64_t)freq + 100) / 200);
1080 	near66 = (uint32_t)((200 * (uint64_t)mul + ((mul >= 10) ? 1 : 0)) / 3);
1081 	delta66 = (near66 > freq) ? (near66 - freq) : (freq - near66);
1082 
1083 	/* Find the nearest integer multiple of 50 MHz to the measured speed */
1084 	mul = (freq + 25) / 50;
1085 	near50 = mul * 50;
1086 	delta50 = (near50 > freq) ? (near50 - freq) : (freq - near50);
1087 
1088 	/* Find the closer of the two */
1089 	if (delta66 < delta50) {
1090 		fixed = near66;
1091 		delta = delta66;
1092 	} else {
1093 		fixed = near50;
1094 		delta = delta50;
1095 	}
1096 
1097 	if (fixed > INT_MAX)
1098 		return;
1099 
1100 	/*
1101 	 * Some older parts have a core clock frequency that is not an
1102 	 * integral multiple of 50 or 66 MHz. Check if one of the old
1103 	 * clock frequencies is closer to the measured value than any
1104 	 * of the integral multiples of 50 an 66, and if so set fixed
1105 	 * and delta appropriately to represent the closest value.
1106 	 */
1107 	i = sizeof (x86_cpu_freq) / sizeof (int);
1108 	while (i > 0) {
1109 		i--;
1110 
1111 		if (x86_cpu_freq[i] <= freq) {
1112 			mul = freq - x86_cpu_freq[i];
1113 
1114 			if (mul < delta) {
1115 				fixed = x86_cpu_freq[i];
1116 				delta = mul;
1117 			}
1118 
1119 			break;
1120 		}
1121 
1122 		mul = x86_cpu_freq[i] - freq;
1123 
1124 		if (mul < delta) {
1125 			fixed = x86_cpu_freq[i];
1126 			delta = mul;
1127 		}
1128 	}
1129 
1130 	/*
1131 	 * Set a reasonable maximum for how much to correct the measured
1132 	 * result by. This check is here to prevent the adjustment made
1133 	 * by this function from being more harm than good. It is entirely
1134 	 * possible that in the future parts will be made that are not
1135 	 * integral multiples of 66 or 50 in clock frequency or that
1136 	 * someone may overclock a part to some odd frequency. If the
1137 	 * measured value is farther from the corrected value than
1138 	 * allowed, then assume the corrected value is in error and use
1139 	 * the measured value.
1140 	 */
1141 	if (6 < delta)
1142 		return;
1143 
1144 	cpu_freq = (int)fixed;
1145 }
1146 
1147 
1148 static int
1149 machhztomhz(uint64_t cpu_freq_hz)
1150 {
1151 	uint64_t cpu_mhz;
1152 
1153 	/* Round to nearest MHZ */
1154 	cpu_mhz = (cpu_freq_hz + (MEGA_HZ / 2)) / MEGA_HZ;
1155 
1156 	if (cpu_mhz > INT_MAX)
1157 		return (0);
1158 
1159 	return ((int)cpu_mhz);
1160 
1161 }
1162 
1163 
1164 static int
1165 mach_clkinit(int preferred_mode, int *set_mode)
1166 {
1167 	struct psm_ops  *pops;
1168 	int resolution;
1169 
1170 	pops = mach_set[0];
1171 
1172 	cpu_freq_hz = mach_getcpufreq();
1173 
1174 	cpu_freq = machhztomhz(cpu_freq_hz);
1175 
1176 	if (!(x86_feature & X86_TSC) || (cpu_freq == 0))
1177 		tsc_gethrtime_enable = 0;
1178 
1179 	if (tsc_gethrtime_enable) {
1180 		tsc_hrtimeinit(cpu_freq_hz);
1181 		gethrtimef = tsc_gethrtime;
1182 		gethrtimeunscaledf = tsc_gethrtimeunscaled;
1183 		scalehrtimef = tsc_scalehrtime;
1184 		hrtime_tick = tsc_tick;
1185 		tsc_gethrtime_initted = 1;
1186 	} else {
1187 		if (pops->psm_hrtimeinit)
1188 			(*pops->psm_hrtimeinit)();
1189 		gethrtimef = pops->psm_gethrtime;
1190 		gethrtimeunscaledf = gethrtimef;
1191 		/* scalehrtimef will remain dummy */
1192 	}
1193 
1194 	mach_fixcpufreq();
1195 
1196 	if (mach_ver[0] >= PSM_INFO_VER01_3) {
1197 		if ((preferred_mode == TIMER_ONESHOT) &&
1198 		    (tsc_gethrtime_enable)) {
1199 
1200 			resolution = (*pops->psm_clkinit)(0);
1201 			if (resolution != 0)  {
1202 				*set_mode = TIMER_ONESHOT;
1203 				return (resolution);
1204 			}
1205 
1206 		}
1207 
1208 		/*
1209 		 * either periodic mode was requested or could not set to
1210 		 * one-shot mode
1211 		 */
1212 		resolution = (*pops->psm_clkinit)(hz);
1213 		/*
1214 		 * psm should be able to do periodic, so we do not check
1215 		 * for return value of psm_clkinit here.
1216 		 */
1217 		*set_mode = TIMER_PERIODIC;
1218 		return (resolution);
1219 	} else {
1220 		/*
1221 		 * PSMI interface prior to PSMI_3 does not define a return
1222 		 * value for psm_clkinit, so the return value is ignored.
1223 		 */
1224 		(void) (*pops->psm_clkinit)(hz);
1225 		*set_mode = TIMER_PERIODIC;
1226 		return (nsec_per_tick);
1227 	}
1228 }
1229 
1230 
1231 /*ARGSUSED*/
1232 static int
1233 mach_softlvl_to_vect(int ipl)
1234 {
1235 	setsoftint = av_set_softint_pending;
1236 	kdisetsoftint = kdi_av_set_softint_pending;
1237 
1238 	return (PSM_SV_SOFTWARE);
1239 }
1240 
1241 #ifdef DEBUG
1242 /*
1243  * This is here to allow us to simulate cpus that refuse to start.
1244  */
1245 cpuset_t cpufailset;
1246 #endif
1247 
1248 int
1249 mach_cpu_start(struct cpu *cp, void *ctx)
1250 {
1251 	struct psm_ops *pops = mach_set[0];
1252 	processorid_t id = cp->cpu_id;
1253 
1254 #ifdef DEBUG
1255 	if (CPU_IN_SET(cpufailset, id))
1256 		return (0);
1257 #endif
1258 	return ((*pops->psm_cpu_start)(id, ctx));
1259 }
1260 
1261 /*ARGSUSED*/
1262 static int
1263 mach_translate_irq(dev_info_t *dip, int irqno)
1264 {
1265 	return (irqno);	/* default to NO translation */
1266 }
1267 
1268 static void
1269 mach_notify_error(int level, char *errmsg)
1270 {
1271 	/*
1272 	 * SL_FATAL is pass in once panicstr is set, deliver it
1273 	 * as CE_PANIC.  Also, translate SL_ codes back to CE_
1274 	 * codes for the psmi handler
1275 	 */
1276 	if (level & SL_FATAL)
1277 		(*notify_error)(CE_PANIC, errmsg);
1278 	else if (level & SL_WARN)
1279 		(*notify_error)(CE_WARN, errmsg);
1280 	else if (level & SL_NOTE)
1281 		(*notify_error)(CE_NOTE, errmsg);
1282 	else if (level & SL_CONSOLE)
1283 		(*notify_error)(CE_CONT, errmsg);
1284 }
1285 
1286 /*
1287  * It provides the default basic intr_ops interface for the new DDI
1288  * interrupt framework if the PSM doesn't have one.
1289  *
1290  * Input:
1291  * dip     - pointer to the dev_info structure of the requested device
1292  * hdlp    - pointer to the internal interrupt handle structure for the
1293  *	     requested interrupt
1294  * intr_op - opcode for this call
1295  * result  - pointer to the integer that will hold the result to be
1296  *	     passed back if return value is PSM_SUCCESS
1297  *
1298  * Output:
1299  * return value is either PSM_SUCCESS or PSM_FAILURE
1300  */
1301 static int
1302 mach_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
1303     psm_intr_op_t intr_op, int *result)
1304 {
1305 	struct intrspec *ispec;
1306 
1307 	switch (intr_op) {
1308 	case PSM_INTR_OP_CHECK_MSI:
1309 		*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
1310 		    DDI_INTR_TYPE_MSIX);
1311 		break;
1312 	case PSM_INTR_OP_ALLOC_VECTORS:
1313 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1314 			*result = 1;
1315 		else
1316 			*result = 0;
1317 		break;
1318 	case PSM_INTR_OP_FREE_VECTORS:
1319 		break;
1320 	case PSM_INTR_OP_NAVAIL_VECTORS:
1321 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1322 			*result = 1;
1323 		else
1324 			*result = 0;
1325 		break;
1326 	case PSM_INTR_OP_XLATE_VECTOR:
1327 		ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
1328 		*result = psm_translate_irq(dip, ispec->intrspec_vec);
1329 		break;
1330 	case PSM_INTR_OP_GET_CAP:
1331 		*result = 0;
1332 		break;
1333 	case PSM_INTR_OP_GET_PENDING:
1334 	case PSM_INTR_OP_CLEAR_MASK:
1335 	case PSM_INTR_OP_SET_MASK:
1336 	case PSM_INTR_OP_GET_SHARED:
1337 	case PSM_INTR_OP_SET_PRI:
1338 	case PSM_INTR_OP_SET_CAP:
1339 	case PSM_INTR_OP_SET_CPU:
1340 	case PSM_INTR_OP_GET_INTR:
1341 	default:
1342 		return (PSM_FAILURE);
1343 	}
1344 	return (PSM_SUCCESS);
1345 }
1346 /*
1347  * Return 1 if CMT load balancing policies should be
1348  * implemented across instances of the specified hardware
1349  * sharing relationship.
1350  */
1351 int
1352 pg_cmt_load_bal_hw(pghw_type_t hw)
1353 {
1354 	if (hw == PGHW_IPIPE ||
1355 	    hw == PGHW_FPU ||
1356 	    hw == PGHW_CHIP)
1357 		return (1);
1358 	else
1359 		return (0);
1360 }
1361 /*
1362  * Return 1 if thread affinity polices should be implemented
1363  * for instances of the specifed hardware sharing relationship.
1364  */
1365 int
1366 pg_cmt_affinity_hw(pghw_type_t hw)
1367 {
1368 	if (hw == PGHW_CACHE)
1369 		return (1);
1370 	else
1371 		return (0);
1372 }
1373