xref: /titanic_50/usr/src/uts/i86pc/os/mp_machdep.c (revision 9760e1c48d45ca95f530c947bf07c62061b86c18)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #define	PSMI_1_5
29 #include <sys/smp_impldefs.h>
30 #include <sys/psm.h>
31 #include <sys/psm_modctl.h>
32 #include <sys/pit.h>
33 #include <sys/cmn_err.h>
34 #include <sys/strlog.h>
35 #include <sys/clock.h>
36 #include <sys/debug.h>
37 #include <sys/rtc.h>
38 #include <sys/x86_archext.h>
39 #include <sys/cpupart.h>
40 #include <sys/cpuvar.h>
41 #include <sys/chip.h>
42 #include <sys/disp.h>
43 #include <sys/cpu.h>
44 #include <sys/archsystm.h>
45 #include <sys/mach_intr.h>
46 
47 #define	OFFSETOF(s, m)		(size_t)(&(((s *)0)->m))
48 
49 /*
50  *	Local function prototypes
51  */
52 static int mp_disable_intr(processorid_t cpun);
53 static void mp_enable_intr(processorid_t cpun);
54 static void mach_init();
55 static void mach_picinit();
56 static uint64_t mach_calchz(uint32_t pit_counter, uint64_t *processor_clks);
57 static int machhztomhz(uint64_t cpu_freq_hz);
58 static uint64_t mach_getcpufreq(void);
59 static void mach_fixcpufreq(void);
60 static int mach_clkinit(int, int *);
61 static void mach_smpinit(void);
62 static void mach_set_softintr(int ipl, struct av_softinfo *);
63 static void mach_cpu_start(int cpun);
64 static int mach_softlvl_to_vect(int ipl);
65 static void mach_get_platform(int owner);
66 static void mach_construct_info();
67 static int mach_translate_irq(dev_info_t *dip, int irqno);
68 static int mach_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
69     psm_intr_op_t, int *);
70 static timestruc_t mach_tod_get(void);
71 static void mach_tod_set(timestruc_t ts);
72 static void mach_notify_error(int level, char *errmsg);
73 static hrtime_t dummy_hrtime(void);
74 static void dummy_scalehrtime(hrtime_t *);
75 static void cpu_halt(void);
76 static void cpu_wakeup(cpu_t *, int);
77 /*
78  *	External reference functions
79  */
80 extern void return_instr();
81 extern timestruc_t (*todgetf)(void);
82 extern void (*todsetf)(timestruc_t);
83 extern long gmt_lag;
84 extern uint64_t freq_tsc(uint32_t *);
85 #if defined(__i386)
86 extern uint64_t freq_notsc(uint32_t *);
87 #endif
88 extern void pc_gethrestime(timestruc_t *);
89 
90 /*
91  *	PSM functions initialization
92  */
93 void (*psm_shutdownf)(int, int)	= return_instr;
94 void (*psm_preshutdownf)(int, int) = return_instr;
95 void (*psm_notifyf)(int)	= return_instr;
96 void (*psm_set_idle_cpuf)(int)	= return_instr;
97 void (*psm_unset_idle_cpuf)(int) = return_instr;
98 void (*psminitf)()		= mach_init;
99 void (*picinitf)() 		= return_instr;
100 int (*clkinitf)(int, int *) 	= (int (*)(int, int *))return_instr;
101 void (*cpu_startf)() 		= return_instr;
102 int (*ap_mlsetup)() 		= (int (*)(void))return_instr;
103 void (*send_dirintf)() 		= return_instr;
104 void (*setspl)(int)		= return_instr;
105 int (*addspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
106 int (*delspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
107 void (*setsoftint)(int, struct av_softinfo *)=
108 	(void (*)(int, struct av_softinfo *))return_instr;
109 int (*slvltovect)(int)		= (int (*)(int))return_instr;
110 int (*setlvl)(int, int *)	= (int (*)(int, int *))return_instr;
111 void (*setlvlx)(int, int)	= (void (*)(int, int))return_instr;
112 int (*psm_disable_intr)(int)	= mp_disable_intr;
113 void (*psm_enable_intr)(int)	= mp_enable_intr;
114 hrtime_t (*gethrtimef)(void)	= dummy_hrtime;
115 hrtime_t (*gethrtimeunscaledf)(void)	= dummy_hrtime;
116 void (*scalehrtimef)(hrtime_t *)	= dummy_scalehrtime;
117 int (*psm_translate_irq)(dev_info_t *, int) = mach_translate_irq;
118 void (*gethrestimef)(timestruc_t *) = pc_gethrestime;
119 int (*psm_todgetf)(todinfo_t *) = (int (*)(todinfo_t *))return_instr;
120 int (*psm_todsetf)(todinfo_t *) = (int (*)(todinfo_t *))return_instr;
121 void (*psm_notify_error)(int, char *) = (void (*)(int, char *))NULL;
122 int (*psm_get_clockirq)(int) = NULL;
123 int (*psm_get_ipivect)(int, int) = NULL;
124 
125 int (*psm_clkinit)(int) = NULL;
126 void (*psm_timer_reprogram)(hrtime_t) = NULL;
127 void (*psm_timer_enable)(void) = NULL;
128 void (*psm_timer_disable)(void) = NULL;
129 void (*psm_post_cyclic_setup)(void *arg) = NULL;
130 int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t,
131     int *) = mach_intr_ops;
132 
133 void (*notify_error)(int, char *) = (void (*)(int, char *))return_instr;
134 void (*hrtime_tick)(void)	= return_instr;
135 
136 int tsc_gethrtime_enable = 1;
137 int tsc_gethrtime_initted = 0;
138 
139 /*
140  * Local Static Data
141  */
142 static struct psm_ops mach_ops;
143 static struct psm_ops *mach_set[4] = {&mach_ops, NULL, NULL, NULL};
144 static ushort_t mach_ver[4] = {0, 0, 0, 0};
145 
146 /*
147  * If non-zero, idle cpus will "halted" when there's
148  * no work to do.
149  */
150 int	halt_idle_cpus = 1;
151 
152 #if defined(__amd64)
153 /*
154  * If non-zero, will use cr8 for interrupt priority masking
155  * We declare this here since install_spl is called from here
156  * (where this is checked).
157  */
158 int	intpri_use_cr8 = 0;
159 #endif	/* __amd64 */
160 
161 #ifdef	_SIMULATOR_SUPPORT
162 
163 int simulator_run = 0;	/* patch to non-zero if running under simics */
164 
165 #endif	/* _SIMULATOR_SUPPORT */
166 
167 /* ARGSUSED */
168 void
169 chip_plat_define_chip(cpu_t *cp, chip_def_t *cd)
170 {
171 	if ((x86_feature & (X86_HTT|X86_CMP)) == X86_HTT) {
172 		/*
173 		 * Single-core Pentiums with Hyper-Threading enabled.
174 		 */
175 		cd->chipd_type = CHIP_SMT;
176 	} else if ((x86_feature & (X86_HTT|X86_CMP)) == X86_CMP) {
177 		/*
178 		 * Multi-core Opterons or Multi-core Pentiums with
179 		 * Hyper-Threading disabled.
180 		 */
181 		cd->chipd_type = CHIP_CMP_SPLIT_CACHE;
182 	} else if ((x86_feature & (X86_HTT|X86_CMP)) == (X86_HTT|X86_CMP)) {
183 		/*
184 		 * Multi-core Pentiums with Hyper-Threading enabled.
185 		 */
186 		cd->chipd_type = CHIP_CMT;
187 	} else {
188 		/*
189 		 * Single-core/single-threaded chips.
190 		 */
191 		cd->chipd_type = CHIP_DEFAULT;
192 	}
193 
194 	cd->chipd_rechoose_adj = 0;
195 }
196 
197 /*
198  * Routine to ensure initial callers to hrtime gets 0 as return
199  */
200 static hrtime_t
201 dummy_hrtime(void)
202 {
203 	return (0);
204 }
205 
206 /* ARGSUSED */
207 static void
208 dummy_scalehrtime(hrtime_t *ticks)
209 {}
210 
211 /*
212  * Halt the present CPU until awoken via an interrupt
213  */
214 static void
215 cpu_halt(void)
216 {
217 	cpu_t		*cpup = CPU;
218 	processorid_t	cpun = cpup->cpu_id;
219 	cpupart_t	*cp = cpup->cpu_part;
220 	int		hset_update = 1;
221 
222 	/*
223 	 * If this CPU is online, and there's multiple CPUs
224 	 * in the system, then we should notate our halting
225 	 * by adding ourselves to the partition's halted CPU
226 	 * bitmap. This allows other CPUs to find/awaken us when
227 	 * work becomes available.
228 	 */
229 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
230 		hset_update = 0;
231 
232 	/*
233 	 * Add ourselves to the partition's halted CPUs bitmask
234 	 * and set our HALTED flag, if necessary.
235 	 *
236 	 * When a thread becomes runnable, it is placed on the queue
237 	 * and then the halted cpuset is checked to determine who
238 	 * (if anyone) should be awoken. We therefore need to first
239 	 * add ourselves to the halted cpuset, and and then check if there
240 	 * is any work available.
241 	 *
242 	 * Note that memory barriers after updating the HALTED flag
243 	 * are not necessary since an atomic operation (updating the bitmap)
244 	 * immediately follows. On x86 the atomic operation acts as a
245 	 * memory barrier for the update of cpu_disp_flags.
246 	 */
247 	if (hset_update) {
248 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
249 		CPUSET_ATOMIC_ADD(cp->cp_haltset, cpun);
250 	}
251 
252 	/*
253 	 * Check to make sure there's really nothing to do.
254 	 * Work destined for this CPU may become available after
255 	 * this check. We'll be notified through the clearing of our
256 	 * bit in the halted CPU bitmask, and a poke.
257 	 */
258 	if (disp_anywork()) {
259 		if (hset_update) {
260 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
261 			CPUSET_ATOMIC_DEL(cp->cp_haltset, cpun);
262 		}
263 		return;
264 	}
265 
266 	/*
267 	 * We're on our way to being halted.
268 	 *
269 	 * Disable interrupts now, so that we'll awaken immediately
270 	 * after halting if someone tries to poke us between now and
271 	 * the time we actually halt.
272 	 *
273 	 * We check for the presence of our bit after disabling interrupts.
274 	 * If it's cleared, we'll return. If the bit is cleared after
275 	 * we check then the poke will pop us out of the halted state.
276 	 *
277 	 * This means that the ordering of the poke and the clearing
278 	 * of the bit by cpu_wakeup is important.
279 	 * cpu_wakeup() must clear, then poke.
280 	 * cpu_halt() must disable interrupts, then check for the bit.
281 	 */
282 	cli();
283 
284 	if (hset_update && !CPU_IN_SET(cp->cp_haltset, cpun)) {
285 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
286 		sti();
287 		return;
288 	}
289 
290 	/*
291 	 * The check for anything locally runnable is here for performance
292 	 * and isn't needed for correctness. disp_nrunnable ought to be
293 	 * in our cache still, so it's inexpensive to check, and if there
294 	 * is anything runnable we won't have to wait for the poke.
295 	 */
296 	if (cpup->cpu_disp->disp_nrunnable != 0) {
297 		if (hset_update) {
298 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
299 			CPUSET_ATOMIC_DEL(cp->cp_haltset, cpun);
300 		}
301 		sti();
302 		return;
303 	}
304 
305 	/*
306 	 * Call the halt sequence:
307 	 * sti
308 	 * hlt
309 	 */
310 	i86_halt();
311 
312 	/*
313 	 * We're no longer halted
314 	 */
315 	if (hset_update) {
316 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
317 		CPUSET_ATOMIC_DEL(cp->cp_haltset, cpun);
318 	}
319 }
320 
321 
322 /*
323  * If "cpu" is halted, then wake it up clearing its halted bit in advance.
324  * Otherwise, see if other CPUs in the cpu partition are halted and need to
325  * be woken up so that they can steal the thread we placed on this CPU.
326  * This function is only used on MP systems.
327  */
328 static void
329 cpu_wakeup(cpu_t *cpu, int bound)
330 {
331 	uint_t		cpu_found;
332 	int		result;
333 	cpupart_t	*cp;
334 
335 	cp = cpu->cpu_part;
336 	if (CPU_IN_SET(cp->cp_haltset, cpu->cpu_id)) {
337 		/*
338 		 * Clear the halted bit for that CPU since it will be
339 		 * poked in a moment.
340 		 */
341 		CPUSET_ATOMIC_DEL(cp->cp_haltset, cpu->cpu_id);
342 		/*
343 		 * We may find the current CPU present in the halted cpuset
344 		 * if we're in the context of an interrupt that occurred
345 		 * before we had a chance to clear our bit in cpu_halt().
346 		 * Poking ourself is obviously unnecessary, since if
347 		 * we're here, we're not halted.
348 		 */
349 		if (cpu != CPU)
350 			poke_cpu(cpu->cpu_id);
351 		return;
352 	} else {
353 		/*
354 		 * This cpu isn't halted, but it's idle or undergoing a
355 		 * context switch. No need to awaken anyone else.
356 		 */
357 		if (cpu->cpu_thread == cpu->cpu_idle_thread ||
358 		    cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL)
359 			return;
360 	}
361 
362 	/*
363 	 * No need to wake up other CPUs if the thread we just enqueued
364 	 * is bound.
365 	 */
366 	if (bound)
367 		return;
368 
369 
370 	/*
371 	 * See if there's any other halted CPUs. If there are, then
372 	 * select one, and awaken it.
373 	 * It's possible that after we find a CPU, somebody else
374 	 * will awaken it before we get the chance.
375 	 * In that case, look again.
376 	 */
377 	do {
378 		CPUSET_FIND(cp->cp_haltset, cpu_found);
379 		if (cpu_found == CPUSET_NOTINSET)
380 			return;
381 
382 		ASSERT(cpu_found >= 0 && cpu_found < NCPU);
383 		CPUSET_ATOMIC_XDEL(cp->cp_haltset, cpu_found, result);
384 	} while (result < 0);
385 
386 	if (cpu_found != CPU->cpu_id)
387 		poke_cpu(cpu_found);
388 }
389 
390 static int
391 mp_disable_intr(int cpun)
392 {
393 	/*
394 	 * switch to the offline cpu
395 	 */
396 	affinity_set(cpun);
397 	/*
398 	 * raise ipl to just below cross call
399 	 */
400 	splx(XC_MED_PIL-1);
401 	/*
402 	 *	set base spl to prevent the next swtch to idle from
403 	 *	lowering back to ipl 0
404 	 */
405 	CPU->cpu_intr_actv |= (1 << (XC_MED_PIL-1));
406 	set_base_spl();
407 	affinity_clear();
408 	return (DDI_SUCCESS);
409 }
410 
411 static void
412 mp_enable_intr(int cpun)
413 {
414 	/*
415 	 * switch to the online cpu
416 	 */
417 	affinity_set(cpun);
418 	/*
419 	 * clear the interrupt active mask
420 	 */
421 	CPU->cpu_intr_actv &= ~(1 << (XC_MED_PIL-1));
422 	set_base_spl();
423 	(void) spl0();
424 	affinity_clear();
425 }
426 
427 static void
428 mach_get_platform(int owner)
429 {
430 	void		**srv_opsp;
431 	void		**clt_opsp;
432 	int		i;
433 	int		total_ops;
434 
435 	/* fix up psm ops */
436 	srv_opsp = (void **)mach_set[0];
437 	clt_opsp = (void **)mach_set[owner];
438 	if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01)
439 		total_ops = sizeof (struct psm_ops_ver01) /
440 				sizeof (void (*)(void));
441 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_1)
442 		/* no psm_notify_func */
443 		total_ops = OFFSETOF(struct psm_ops, psm_notify_func) /
444 		    sizeof (void (*)(void));
445 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_2)
446 		/* no psm_timer funcs */
447 		total_ops = OFFSETOF(struct psm_ops, psm_timer_reprogram) /
448 		    sizeof (void (*)(void));
449 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_3)
450 		/* no psm_preshutdown function */
451 		total_ops = OFFSETOF(struct psm_ops, psm_preshutdown) /
452 		    sizeof (void (*)(void));
453 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_4)
454 		/* no psm_preshutdown function */
455 		total_ops = OFFSETOF(struct psm_ops, psm_intr_ops) /
456 		    sizeof (void (*)(void));
457 	else
458 		total_ops = sizeof (struct psm_ops) / sizeof (void (*)(void));
459 
460 	/*
461 	 * Save the version of the PSM module, in case we need to
462 	 * bahave differently based on version.
463 	 */
464 	mach_ver[0] = mach_ver[owner];
465 
466 	for (i = 0; i < total_ops; i++)
467 		if (clt_opsp[i] != NULL)
468 			srv_opsp[i] = clt_opsp[i];
469 }
470 
471 static void
472 mach_construct_info()
473 {
474 	register struct psm_sw *swp;
475 	int	mach_cnt[PSM_OWN_OVERRIDE+1] = {0};
476 	int	conflict_owner = 0;
477 
478 	if (psmsw->psw_forw == psmsw)
479 		panic("No valid PSM modules found");
480 	mutex_enter(&psmsw_lock);
481 	for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
482 		if (!(swp->psw_flag & PSM_MOD_IDENTIFY))
483 			continue;
484 		mach_set[swp->psw_infop->p_owner] = swp->psw_infop->p_ops;
485 		mach_ver[swp->psw_infop->p_owner] = swp->psw_infop->p_version;
486 		mach_cnt[swp->psw_infop->p_owner]++;
487 	}
488 	mutex_exit(&psmsw_lock);
489 
490 	mach_get_platform(PSM_OWN_SYS_DEFAULT);
491 
492 	/* check to see are there any conflicts */
493 	if (mach_cnt[PSM_OWN_EXCLUSIVE] > 1)
494 		conflict_owner = PSM_OWN_EXCLUSIVE;
495 	if (mach_cnt[PSM_OWN_OVERRIDE] > 1)
496 		conflict_owner = PSM_OWN_OVERRIDE;
497 	if (conflict_owner) {
498 		/* remove all psm modules except uppc */
499 		cmn_err(CE_WARN,
500 			"Conflicts detected on the following PSM modules:");
501 		mutex_enter(&psmsw_lock);
502 		for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
503 			if (swp->psw_infop->p_owner == conflict_owner)
504 				cmn_err(CE_WARN, "%s ",
505 					swp->psw_infop->p_mach_idstring);
506 		}
507 		mutex_exit(&psmsw_lock);
508 		cmn_err(CE_WARN,
509 			"Setting the system back to SINGLE processor mode!");
510 		cmn_err(CE_WARN,
511 		    "Please edit /etc/mach to remove the invalid PSM module.");
512 		return;
513 	}
514 
515 	if (mach_set[PSM_OWN_EXCLUSIVE])
516 		mach_get_platform(PSM_OWN_EXCLUSIVE);
517 
518 	if (mach_set[PSM_OWN_OVERRIDE])
519 		mach_get_platform(PSM_OWN_OVERRIDE);
520 }
521 
522 static void
523 mach_init()
524 {
525 	register struct psm_ops  *pops;
526 
527 	mach_construct_info();
528 
529 	pops = mach_set[0];
530 
531 	/* register the interrupt and clock initialization rotuines */
532 	picinitf = mach_picinit;
533 	clkinitf = mach_clkinit;
534 	psm_get_clockirq = pops->psm_get_clockirq;
535 
536 	/* register the interrupt setup code */
537 	slvltovect = mach_softlvl_to_vect;
538 	addspl	= pops->psm_addspl;
539 	delspl	= pops->psm_delspl;
540 
541 	if (pops->psm_translate_irq)
542 		psm_translate_irq = pops->psm_translate_irq;
543 	if (pops->psm_intr_ops)
544 		psm_intr_ops = pops->psm_intr_ops;
545 	if (pops->psm_tod_get) {
546 		todgetf = mach_tod_get;
547 		psm_todgetf = pops->psm_tod_get;
548 	}
549 	if (pops->psm_tod_set) {
550 		todsetf = mach_tod_set;
551 		psm_todsetf = pops->psm_tod_set;
552 	}
553 	if (pops->psm_notify_error) {
554 		psm_notify_error = mach_notify_error;
555 		notify_error = pops->psm_notify_error;
556 	}
557 
558 	(*pops->psm_softinit)();
559 
560 	/*
561 	 * Initialize the dispatcher's function hooks
562 	 * to enable CPU halting when idle
563 	 */
564 #if defined(_SIMULATOR_SUPPORT)
565 	if (halt_idle_cpus && !simulator_run)
566 		idle_cpu = cpu_halt;
567 #else
568 	if (halt_idle_cpus)
569 		idle_cpu = cpu_halt;
570 #endif	/* _SIMULATOR_SUPPORT */
571 
572 	mach_smpinit();
573 }
574 
575 static void
576 mach_smpinit(void)
577 {
578 	struct psm_ops  *pops;
579 	processorid_t cpu_id;
580 	int cnt;
581 	cpuset_t cpumask;
582 
583 	pops = mach_set[0];
584 
585 	cpu_id = -1;
586 	cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
587 	for (cnt = 0, CPUSET_ZERO(cpumask); cpu_id != -1; cnt++) {
588 		CPUSET_ADD(cpumask, cpu_id);
589 		cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
590 	}
591 
592 	mp_cpus = cpumask;
593 
594 	/* MP related routines */
595 	cpu_startf = mach_cpu_start;
596 	ap_mlsetup = pops->psm_post_cpu_start;
597 	send_dirintf = pops->psm_send_ipi;
598 
599 	/* optional MP related routines */
600 	if (pops->psm_shutdown)
601 		psm_shutdownf = pops->psm_shutdown;
602 	if (pops->psm_preshutdown)
603 		psm_preshutdownf = pops->psm_preshutdown;
604 	if (pops->psm_notify_func)
605 		psm_notifyf = pops->psm_notify_func;
606 	if (pops->psm_set_idlecpu)
607 		psm_set_idle_cpuf = pops->psm_set_idlecpu;
608 	if (pops->psm_unset_idlecpu)
609 		psm_unset_idle_cpuf = pops->psm_unset_idlecpu;
610 
611 	psm_clkinit = pops->psm_clkinit;
612 
613 	if (pops->psm_timer_reprogram)
614 		psm_timer_reprogram = pops->psm_timer_reprogram;
615 
616 	if (pops->psm_timer_enable)
617 		psm_timer_enable = pops->psm_timer_enable;
618 
619 	if (pops->psm_timer_disable)
620 		psm_timer_disable = pops->psm_timer_disable;
621 
622 	if (pops->psm_post_cyclic_setup)
623 		psm_post_cyclic_setup = pops->psm_post_cyclic_setup;
624 
625 	/* check for multiple cpu's */
626 	if (cnt < 2)
627 		return;
628 
629 	/* check for MP platforms */
630 	if (pops->psm_cpu_start == NULL)
631 		return;
632 
633 	/*
634 	 * Set the dispatcher hook to enable cpu "wake up"
635 	 * when a thread becomes runnable.
636 	 */
637 #if defined(_SIMULATOR_SUPPORT)
638 	if (halt_idle_cpus && !simulator_run) {
639 		disp_enq_thread = cpu_wakeup;
640 	}
641 #else
642 	if (halt_idle_cpus) {
643 		disp_enq_thread = cpu_wakeup;
644 	}
645 #endif	/* _SIMULATOR_SUPPORT */
646 
647 	if (pops->psm_disable_intr)
648 		psm_disable_intr = pops->psm_disable_intr;
649 	if (pops->psm_enable_intr)
650 		psm_enable_intr  = pops->psm_enable_intr;
651 
652 	psm_get_ipivect = pops->psm_get_ipivect;
653 
654 	(void) add_avintr((void *)NULL, XC_HI_PIL, xc_serv, "xc_hi_intr",
655 		(*pops->psm_get_ipivect)(XC_HI_PIL, PSM_INTR_IPI_HI),
656 		(caddr_t)X_CALL_HIPRI, NULL, NULL, NULL);
657 	(void) add_avintr((void *)NULL, XC_MED_PIL, xc_serv, "xc_med_intr",
658 		(*pops->psm_get_ipivect)(XC_MED_PIL, PSM_INTR_IPI_LO),
659 		(caddr_t)X_CALL_MEDPRI, NULL, NULL, NULL);
660 
661 	(void) (*pops->psm_get_ipivect)(XC_CPUPOKE_PIL, PSM_INTR_POKE);
662 }
663 
664 static void
665 mach_picinit()
666 {
667 	struct psm_ops  *pops;
668 	extern void install_spl(void);	/* XXX: belongs in a header file */
669 #if defined(__amd64) && defined(DEBUG)
670 	extern void *spl_patch, *slow_spl, *setsplhi_patch, *slow_setsplhi;
671 #endif
672 
673 	pops = mach_set[0];
674 
675 	/* register the interrupt handlers */
676 	setlvl = pops->psm_intr_enter;
677 	setlvlx = pops->psm_intr_exit;
678 
679 	/* initialize the interrupt hardware */
680 	(*pops->psm_picinit)();
681 
682 	/* set interrupt mask for current ipl */
683 	setspl = pops->psm_setspl;
684 	setspl(CPU->cpu_pri);
685 
686 	/* Install proper spl routine now that we can Program the PIC   */
687 #if defined(__amd64)
688 	/*
689 	 * It would be better if we could check this at compile time
690 	 */
691 	ASSERT(((uintptr_t)&slow_setsplhi - (uintptr_t)&setsplhi_patch < 128) &&
692 		((uintptr_t)&slow_spl - (uintptr_t)&spl_patch < 128));
693 #endif
694 	install_spl();
695 }
696 
697 uint_t	cpu_freq;	/* MHz */
698 uint64_t cpu_freq_hz;	/* measured (in hertz) */
699 
700 #define	MEGA_HZ		1000000
701 
702 static uint64_t
703 mach_calchz(uint32_t pit_counter, uint64_t *processor_clks)
704 {
705 	uint64_t cpu_hz;
706 
707 	if ((pit_counter == 0) || (*processor_clks == 0) ||
708 	    (*processor_clks > (((uint64_t)-1) / PIT_HZ)))
709 		return (0);
710 
711 	cpu_hz = ((uint64_t)PIT_HZ * *processor_clks) / pit_counter;
712 
713 	return (cpu_hz);
714 }
715 
716 static uint64_t
717 mach_getcpufreq(void)
718 {
719 	uint32_t pit_counter;
720 	uint64_t processor_clks;
721 
722 	if (x86_feature & X86_TSC) {
723 		/*
724 		 * We have a TSC. freq_tsc() knows how to measure the number
725 		 * of clock cycles sampled against the PIT.
726 		 */
727 		processor_clks = freq_tsc(&pit_counter);
728 		return (mach_calchz(pit_counter, &processor_clks));
729 	} else if (x86_vendor == X86_VENDOR_Cyrix || x86_type == X86_TYPE_P5) {
730 #if defined(__amd64)
731 		panic("mach_getcpufreq: no TSC!");
732 #elif defined(__i386)
733 		/*
734 		 * We are a Cyrix based on a 6x86 core or an Intel Pentium
735 		 * for which freq_notsc() knows how to measure the number of
736 		 * elapsed clock cycles sampled against the PIT
737 		 */
738 		processor_clks = freq_notsc(&pit_counter);
739 		return (mach_calchz(pit_counter, &processor_clks));
740 #endif	/* __i386 */
741 	}
742 
743 	/* We do not know how to calculate cpu frequency for this cpu. */
744 	return (0);
745 }
746 
747 /*
748  * If the clock speed of a cpu is found to be reported incorrectly, do not add
749  * to this array, instead improve the accuracy of the algorithm that determines
750  * the clock speed of the processor or extend the implementation to support the
751  * vendor as appropriate. This is here only to support adjusting the speed on
752  * older slower processors that mach_fixcpufreq() would not be able to account
753  * for otherwise.
754  */
755 static int x86_cpu_freq[] = { 60, 75, 80, 90, 120, 160, 166, 175, 180, 233 };
756 
757 /*
758  * On fast processors the clock frequency that is measured may be off by
759  * a few MHz from the value printed on the part. This is a combination of
760  * the factors that for such fast parts being off by this much is within
761  * the tolerances for manufacture and because of the difficulties in the
762  * measurement that can lead to small error. This function uses some
763  * heuristics in order to tweak the value that was measured to match what
764  * is most likely printed on the part.
765  *
766  * Some examples:
767  * 	AMD Athlon 1000 mhz measured as 998 mhz
768  * 	Intel Pentium III Xeon 733 mhz measured as 731 mhz
769  * 	Intel Pentium IV 1500 mhz measured as 1495mhz
770  *
771  * If in the future this function is no longer sufficient to correct
772  * for the error in the measurement, then the algorithm used to perform
773  * the measurement will have to be improved in order to increase accuracy
774  * rather than adding horrible and questionable kludges here.
775  *
776  * This is called after the cyclics subsystem because of the potential
777  * that the heuristics within may give a worse estimate of the clock
778  * frequency than the value that was measured.
779  */
780 static void
781 mach_fixcpufreq(void)
782 {
783 	uint32_t freq, mul, near66, delta66, near50, delta50, fixed, delta, i;
784 
785 	freq = (uint32_t)cpu_freq;
786 
787 	/*
788 	 * Find the nearest integer multiple of 200/3 (about 66) MHz to the
789 	 * measured speed taking into account that the 667 MHz parts were
790 	 * the first to round-up.
791 	 */
792 	mul = (uint32_t)((3 * (uint64_t)freq + 100) / 200);
793 	near66 = (uint32_t)((200 * (uint64_t)mul + ((mul >= 10) ? 1 : 0)) / 3);
794 	delta66 = (near66 > freq) ? (near66 - freq) : (freq - near66);
795 
796 	/* Find the nearest integer multiple of 50 MHz to the measured speed */
797 	mul = (freq + 25) / 50;
798 	near50 = mul * 50;
799 	delta50 = (near50 > freq) ? (near50 - freq) : (freq - near50);
800 
801 	/* Find the closer of the two */
802 	if (delta66 < delta50) {
803 		fixed = near66;
804 		delta = delta66;
805 	} else {
806 		fixed = near50;
807 		delta = delta50;
808 	}
809 
810 	if (fixed > INT_MAX)
811 		return;
812 
813 	/*
814 	 * Some older parts have a core clock frequency that is not an
815 	 * integral multiple of 50 or 66 MHz. Check if one of the old
816 	 * clock frequencies is closer to the measured value than any
817 	 * of the integral multiples of 50 an 66, and if so set fixed
818 	 * and delta appropriately to represent the closest value.
819 	 */
820 	i = sizeof (x86_cpu_freq) / sizeof (int);
821 	while (i > 0) {
822 		i--;
823 
824 		if (x86_cpu_freq[i] <= freq) {
825 			mul = freq - x86_cpu_freq[i];
826 
827 			if (mul < delta) {
828 				fixed = x86_cpu_freq[i];
829 				delta = mul;
830 			}
831 
832 			break;
833 		}
834 
835 		mul = x86_cpu_freq[i] - freq;
836 
837 		if (mul < delta) {
838 			fixed = x86_cpu_freq[i];
839 			delta = mul;
840 		}
841 	}
842 
843 	/*
844 	 * Set a reasonable maximum for how much to correct the measured
845 	 * result by. This check is here to prevent the adjustment made
846 	 * by this function from being more harm than good. It is entirely
847 	 * possible that in the future parts will be made that are not
848 	 * integral multiples of 66 or 50 in clock frequency or that
849 	 * someone may overclock a part to some odd frequency. If the
850 	 * measured value is farther from the corrected value than
851 	 * allowed, then assume the corrected value is in error and use
852 	 * the measured value.
853 	 */
854 	if (6 < delta)
855 		return;
856 
857 	cpu_freq = (int)fixed;
858 }
859 
860 
861 static int
862 machhztomhz(uint64_t cpu_freq_hz)
863 {
864 	uint64_t cpu_mhz;
865 
866 	/* Round to nearest MHZ */
867 	cpu_mhz = (cpu_freq_hz + (MEGA_HZ / 2)) / MEGA_HZ;
868 
869 	if (cpu_mhz > INT_MAX)
870 		return (0);
871 
872 	return ((int)cpu_mhz);
873 
874 }
875 
876 
877 static int
878 mach_clkinit(int preferred_mode, int *set_mode)
879 {
880 	register struct psm_ops  *pops;
881 	int resolution;
882 
883 	pops = mach_set[0];
884 
885 #ifdef	_SIMULATOR_SUPPORT
886 	if (!simulator_run)
887 		cpu_freq_hz = mach_getcpufreq();
888 	else
889 		cpu_freq_hz = 40000000; /* use 40 Mhz (hack for simulator) */
890 #else
891 	cpu_freq_hz = mach_getcpufreq();
892 #endif	/* _SIMULATOR_SUPPORT */
893 
894 	cpu_freq = machhztomhz(cpu_freq_hz);
895 
896 	if (!(x86_feature & X86_TSC) || (cpu_freq == 0))
897 		tsc_gethrtime_enable = 0;
898 
899 	if (tsc_gethrtime_enable) {
900 		tsc_hrtimeinit(cpu_freq_hz);
901 		gethrtimef = tsc_gethrtime;
902 		gethrtimeunscaledf = tsc_gethrtimeunscaled;
903 		scalehrtimef = tsc_scalehrtime;
904 		hrtime_tick = tsc_tick;
905 		tsc_gethrtime_initted = 1;
906 	} else {
907 		if (pops->psm_hrtimeinit)
908 			(*pops->psm_hrtimeinit)();
909 		gethrtimef = pops->psm_gethrtime;
910 		gethrtimeunscaledf = gethrtimef;
911 		/* scalehrtimef will remain dummy */
912 	}
913 
914 	mach_fixcpufreq();
915 
916 	if (mach_ver[0] >= PSM_INFO_VER01_3) {
917 		if ((preferred_mode == TIMER_ONESHOT) &&
918 		    (tsc_gethrtime_enable)) {
919 
920 			resolution = (*pops->psm_clkinit)(0);
921 			if (resolution != 0)  {
922 				*set_mode = TIMER_ONESHOT;
923 				return (resolution);
924 			}
925 
926 		}
927 
928 		/*
929 		 * either periodic mode was requested or could not set to
930 		 * one-shot mode
931 		 */
932 		resolution = (*pops->psm_clkinit)(hz);
933 		/*
934 		 * psm should be able to do periodic, so we do not check
935 		 * for return value of psm_clkinit here.
936 		 */
937 		*set_mode = TIMER_PERIODIC;
938 		return (resolution);
939 	} else {
940 		/*
941 		 * PSMI interface prior to PSMI_3 does not define a return
942 		 * value for psm_clkinit, so the return value is ignored.
943 		 */
944 		(void) (*pops->psm_clkinit)(hz);
945 		*set_mode = TIMER_PERIODIC;
946 		return (nsec_per_tick);
947 	}
948 }
949 
950 /*ARGSUSED*/
951 static void
952 mach_psm_set_softintr(int ipl, struct av_softinfo *pending)
953 {
954 	register struct psm_ops  *pops;
955 
956 	/* invoke hardware interrupt					*/
957 	pops = mach_set[0];
958 	(*pops->psm_set_softintr)(ipl);
959 }
960 
961 static int
962 mach_softlvl_to_vect(register int ipl)
963 {
964 	register int softvect;
965 	register struct psm_ops  *pops;
966 
967 	pops = mach_set[0];
968 
969 	/* check for null handler for set soft interrupt call		*/
970 	if (pops->psm_set_softintr == NULL) {
971 		setsoftint = av_set_softint_pending;
972 		return (PSM_SV_SOFTWARE);
973 	}
974 
975 	softvect = (*pops->psm_softlvl_to_irq)(ipl);
976 	/* check for hardware scheme					*/
977 	if (softvect > PSM_SV_SOFTWARE) {
978 		setsoftint = mach_psm_set_softintr;
979 		return (softvect);
980 	}
981 
982 	if (softvect == PSM_SV_SOFTWARE)
983 		setsoftint = av_set_softint_pending;
984 	else	/* hardware and software mixed scheme			*/
985 		setsoftint = mach_set_softintr;
986 
987 	return (PSM_SV_SOFTWARE);
988 }
989 
990 static void
991 mach_set_softintr(register int ipl, struct av_softinfo *pending)
992 {
993 	register struct psm_ops  *pops;
994 
995 	/* set software pending bits					*/
996 	av_set_softint_pending(ipl, pending);
997 
998 	/*	check if dosoftint will be called at the end of intr	*/
999 	if (CPU_ON_INTR(CPU) || (curthread->t_intr))
1000 		return;
1001 
1002 	/* invoke hardware interrupt					*/
1003 	pops = mach_set[0];
1004 	(*pops->psm_set_softintr)(ipl);
1005 }
1006 
1007 static void
1008 mach_cpu_start(register int cpun)
1009 {
1010 	register struct psm_ops  *pops;
1011 	int	i;
1012 
1013 	pops = mach_set[0];
1014 
1015 	(*pops->psm_cpu_start)(cpun, rm_platter_va);
1016 
1017 	/* wait for the auxillary cpu to be ready			*/
1018 	for (i = 20000; i; i--) {
1019 		if (cpu[cpun]->cpu_flags & CPU_READY)
1020 			return;
1021 		drv_usecwait(100);
1022 	}
1023 }
1024 
1025 /*ARGSUSED*/
1026 static int
1027 mach_translate_irq(dev_info_t *dip, int irqno)
1028 {
1029 	return (irqno);	/* default to NO translation */
1030 }
1031 
1032 static timestruc_t
1033 mach_tod_get(void)
1034 {
1035 	timestruc_t ts;
1036 	todinfo_t tod;
1037 	static int mach_range_warn = 1;	/* warn only once */
1038 
1039 	ASSERT(MUTEX_HELD(&tod_lock));
1040 
1041 	/* The year returned from is the last 2 digit only */
1042 	if ((*psm_todgetf)(&tod)) {
1043 		ts.tv_sec = 0;
1044 		ts.tv_nsec = 0;
1045 		tod_fault_reset();
1046 		return (ts);
1047 	}
1048 
1049 	/* assume that we wrap the rtc year back to zero at 2000 */
1050 	if (tod.tod_year < 69) {
1051 		if (mach_range_warn && tod.tod_year > 38) {
1052 			cmn_err(CE_WARN, "hardware real-time clock is out "
1053 				"of range -- time needs to be reset");
1054 			mach_range_warn = 0;
1055 		}
1056 		tod.tod_year += 100;
1057 	}
1058 
1059 	/* tod_to_utc uses 1900 as base for the year */
1060 	ts.tv_sec = tod_to_utc(tod) + gmt_lag;
1061 	ts.tv_nsec = 0;
1062 
1063 	return (ts);
1064 }
1065 
1066 static void
1067 mach_tod_set(timestruc_t ts)
1068 {
1069 	todinfo_t tod = utc_to_tod(ts.tv_sec - gmt_lag);
1070 
1071 	ASSERT(MUTEX_HELD(&tod_lock));
1072 
1073 	if (tod.tod_year >= 100)
1074 		tod.tod_year -= 100;
1075 
1076 	(*psm_todsetf)(&tod);
1077 }
1078 
1079 static void
1080 mach_notify_error(int level, char *errmsg)
1081 {
1082 	/*
1083 	 * SL_FATAL is pass in once panicstr is set, deliver it
1084 	 * as CE_PANIC.  Also, translate SL_ codes back to CE_
1085 	 * codes for the psmi handler
1086 	 */
1087 	if (level & SL_FATAL)
1088 		(*notify_error)(CE_PANIC, errmsg);
1089 	else if (level & SL_WARN)
1090 		(*notify_error)(CE_WARN, errmsg);
1091 	else if (level & SL_NOTE)
1092 		(*notify_error)(CE_NOTE, errmsg);
1093 	else if (level & SL_CONSOLE)
1094 		(*notify_error)(CE_CONT, errmsg);
1095 }
1096 
1097 /*
1098  * It provides the default basic intr_ops interface for the new DDI
1099  * interrupt framework if the PSM doesn't have one.
1100  *
1101  * Input:
1102  * dip     - pointer to the dev_info structure of the requested device
1103  * hdlp    - pointer to the internal interrupt handle structure for the
1104  *	     requested interrupt
1105  * intr_op - opcode for this call
1106  * result  - pointer to the integer that will hold the result to be
1107  *	     passed back if return value is PSM_SUCCESS
1108  *
1109  * Output:
1110  * return value is either PSM_SUCCESS or PSM_FAILURE
1111  */
1112 static int
1113 mach_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
1114     psm_intr_op_t intr_op, int *result)
1115 {
1116 	struct intrspec *ispec;
1117 
1118 	switch (intr_op) {
1119 	case PSM_INTR_OP_CHECK_MSI:
1120 		*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
1121 			    DDI_INTR_TYPE_MSIX);
1122 		break;
1123 	case PSM_INTR_OP_ALLOC_VECTORS:
1124 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1125 			*result = 1;
1126 		else
1127 			*result = 0;
1128 		break;
1129 	case PSM_INTR_OP_FREE_VECTORS:
1130 		break;
1131 	case PSM_INTR_OP_NAVAIL_VECTORS:
1132 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1133 			*result = 1;
1134 		else
1135 			*result = 0;
1136 		break;
1137 	case PSM_INTR_OP_XLATE_VECTOR:
1138 		ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
1139 		*result = psm_translate_irq(dip, ispec->intrspec_vec);
1140 		break;
1141 	case PSM_INTR_OP_GET_CAP:
1142 		*result = 0;
1143 		break;
1144 	case PSM_INTR_OP_GET_PENDING:
1145 	case PSM_INTR_OP_CLEAR_MASK:
1146 	case PSM_INTR_OP_SET_MASK:
1147 	case PSM_INTR_OP_GET_SHARED:
1148 	case PSM_INTR_OP_SET_PRI:
1149 	case PSM_INTR_OP_SET_CAP:
1150 	case PSM_INTR_OP_SET_CPU:
1151 	case PSM_INTR_OP_GET_INTR:
1152 	default:
1153 		return (PSM_FAILURE);
1154 	}
1155 	return (PSM_SUCCESS);
1156 }
1157