xref: /titanic_50/usr/src/uts/i86pc/os/mp_machdep.c (revision 8461248208fabd3a8230615f8615e5bf1b4dcdcb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #define	PSMI_1_5
30 #include <sys/smp_impldefs.h>
31 #include <sys/psm.h>
32 #include <sys/psm_modctl.h>
33 #include <sys/pit.h>
34 #include <sys/cmn_err.h>
35 #include <sys/strlog.h>
36 #include <sys/clock.h>
37 #include <sys/debug.h>
38 #include <sys/rtc.h>
39 #include <sys/x86_archext.h>
40 #include <sys/cpupart.h>
41 #include <sys/cpuvar.h>
42 #include <sys/chip.h>
43 #include <sys/disp.h>
44 #include <sys/cpu.h>
45 #include <sys/archsystm.h>
46 
47 #define	OFFSETOF(s, m)		(size_t)(&(((s *)0)->m))
48 
49 /*
50  *	Local function prototypes
51  */
52 static int mp_disable_intr(processorid_t cpun);
53 static void mp_enable_intr(processorid_t cpun);
54 static void mach_init();
55 static void mach_picinit();
56 static uint64_t mach_calchz(uint32_t pit_counter, uint64_t *processor_clks);
57 static int machhztomhz(uint64_t cpu_freq_hz);
58 static uint64_t mach_getcpufreq(void);
59 static void mach_fixcpufreq(void);
60 static int mach_clkinit(int, int *);
61 static void mach_smpinit(void);
62 static void mach_set_softintr(int ipl);
63 static void mach_cpu_start(int cpun);
64 static int mach_softlvl_to_vect(int ipl);
65 static void mach_get_platform(int owner);
66 static void mach_construct_info();
67 static int mach_translate_irq(dev_info_t *dip, int irqno);
68 static int mach_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
69     psm_intr_op_t, int *);
70 static timestruc_t mach_tod_get(void);
71 static void mach_tod_set(timestruc_t ts);
72 static void mach_notify_error(int level, char *errmsg);
73 static hrtime_t dummy_hrtime(void);
74 static void dummy_scalehrtime(hrtime_t *);
75 static void cpu_halt(void);
76 static void cpu_wakeup(cpu_t *, int);
77 /*
78  *	External reference functions
79  */
80 extern void return_instr();
81 extern timestruc_t (*todgetf)(void);
82 extern void (*todsetf)(timestruc_t);
83 extern long gmt_lag;
84 extern uint64_t freq_tsc(uint32_t *);
85 #if defined(__i386)
86 extern uint64_t freq_notsc(uint32_t *);
87 #endif
88 extern void pc_gethrestime(timestruc_t *);
89 
90 /*
91  *	PSM functions initialization
92  */
93 void (*psm_shutdownf)(int, int)	= return_instr;
94 void (*psm_preshutdownf)(int, int) = return_instr;
95 void (*psm_notifyf)(int)	= return_instr;
96 void (*psm_set_idle_cpuf)(int)	= return_instr;
97 void (*psm_unset_idle_cpuf)(int) = return_instr;
98 void (*psminitf)()		= mach_init;
99 void (*picinitf)() 		= return_instr;
100 int (*clkinitf)(int, int *) 	= (int (*)(int, int *))return_instr;
101 void (*cpu_startf)() 		= return_instr;
102 int (*ap_mlsetup)() 		= (int (*)(void))return_instr;
103 void (*send_dirintf)() 		= return_instr;
104 void (*setspl)(int)		= return_instr;
105 int (*addspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
106 int (*delspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
107 void (*setsoftint)(int)		= (void (*)(int))return_instr;
108 int (*slvltovect)(int)		= (int (*)(int))return_instr;
109 int (*setlvl)(int, int *)	= (int (*)(int, int *))return_instr;
110 void (*setlvlx)(int, int)	= (void (*)(int, int))return_instr;
111 int (*psm_disable_intr)(int)	= mp_disable_intr;
112 void (*psm_enable_intr)(int)	= mp_enable_intr;
113 hrtime_t (*gethrtimef)(void)	= dummy_hrtime;
114 hrtime_t (*gethrtimeunscaledf)(void)	= dummy_hrtime;
115 void (*scalehrtimef)(hrtime_t *)	= dummy_scalehrtime;
116 int (*psm_translate_irq)(dev_info_t *, int) = mach_translate_irq;
117 void (*gethrestimef)(timestruc_t *) = pc_gethrestime;
118 int (*psm_todgetf)(todinfo_t *) = (int (*)(todinfo_t *))return_instr;
119 int (*psm_todsetf)(todinfo_t *) = (int (*)(todinfo_t *))return_instr;
120 void (*psm_notify_error)(int, char *) = (void (*)(int, char *))NULL;
121 int (*psm_get_clockirq)(int) = NULL;
122 int (*psm_get_ipivect)(int, int) = NULL;
123 
124 int (*psm_clkinit)(int) = NULL;
125 void (*psm_timer_reprogram)(hrtime_t) = NULL;
126 void (*psm_timer_enable)(void) = NULL;
127 void (*psm_timer_disable)(void) = NULL;
128 void (*psm_post_cyclic_setup)(void *arg) = NULL;
129 int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t,
130     int *) = mach_intr_ops;
131 
132 void (*notify_error)(int, char *) = (void (*)(int, char *))return_instr;
133 void (*hrtime_tick)(void)	= return_instr;
134 
135 int tsc_gethrtime_enable = 1;
136 int tsc_gethrtime_initted = 0;
137 
138 /*
139  * Local Static Data
140  */
141 static struct psm_ops mach_ops;
142 static struct psm_ops *mach_set[4] = {&mach_ops, NULL, NULL, NULL};
143 static ushort_t mach_ver[4] = {0, 0, 0, 0};
144 
145 /*
146  * If non-zero, idle cpus will "halted" when there's
147  * no work to do.
148  */
149 int	halt_idle_cpus = 1;
150 
151 #if defined(__amd64)
152 /*
153  * If non-zero, will use cr8 for interrupt priority masking
154  * We declare this here since install_spl is called from here
155  * (where this is checked).
156  */
157 int	intpri_use_cr8 = 0;
158 #endif	/* __amd64 */
159 
160 #ifdef	_SIMULATOR_SUPPORT
161 
162 int simulator_run = 0;	/* patch to non-zero if running under simics */
163 
164 #endif	/* _SIMULATOR_SUPPORT */
165 
166 /* ARGSUSED */
167 void
168 chip_plat_define_chip(cpu_t *cp, chip_def_t *cd)
169 {
170 	if (x86_feature & (X86_HTT|X86_CMP))
171 		/*
172 		 * Hyperthreading is SMT
173 		 */
174 		cd->chipd_type = CHIP_SMT;
175 	else
176 		cd->chipd_type = CHIP_DEFAULT;
177 
178 	cd->chipd_rechoose_adj = 0;
179 }
180 
181 /*
182  * Routine to ensure initial callers to hrtime gets 0 as return
183  */
184 static hrtime_t
185 dummy_hrtime(void)
186 {
187 	return (0);
188 }
189 
190 /* ARGSUSED */
191 static void
192 dummy_scalehrtime(hrtime_t *ticks)
193 {}
194 
195 /*
196  * Halt the present CPU until awoken via an interrupt
197  */
198 static void
199 cpu_halt(void)
200 {
201 	cpu_t		*cpup = CPU;
202 	processorid_t	cpun = cpup->cpu_id;
203 	cpupart_t	*cp;
204 	int		hset_update = 1;
205 
206 	/*
207 	 * If this CPU is online, and there's multiple CPUs
208 	 * in the system, then we should notate our halting
209 	 * by adding ourselves to the partition's halted CPU
210 	 * bitmap. This allows other CPUs to find/awaken us when
211 	 * work becomes available.
212 	 */
213 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
214 		hset_update = 0;
215 	/*
216 	 * We're on our way to being halted.
217 	 * Disable interrupts now, so that we'll awaken immediately
218 	 * after halting if someone tries to poke us between now and
219 	 * the time we actually halt.
220 	 */
221 	cli();
222 
223 	/*
224 	 * Add ourselves to the partition's halted CPUs bitmask
225 	 * and set our HALTED flag, if necessary.
226 	 *
227 	 * Note that memory barriers after updating the HALTED flag
228 	 * are not necessary since an atomic operation (updating the bitmap)
229 	 * immediately follows. On x86 the atomic operation acts as a
230 	 * memory barrier for the update of cpu_disp_flags.
231 	 * If and when this code is made common (running on SPARC),
232 	 * membar_producer()s will be needed after the update of
233 	 * cpu_disp_flags to propagate the HALTED flag to global visibility.
234 	 */
235 	if (hset_update) {
236 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
237 		cp = cpup->cpu_part;
238 		CPUSET_ATOMIC_ADD(cp->cp_haltset, cpun);
239 	}
240 
241 	/*
242 	 * Check to make sure there's really nothing to do.
243 	 * If work becomes available *after* we do this check
244 	 * and it's determined that the work should be ours,
245 	 * we won't miss it since we'll be notified with a "poke"
246 	 * ...which will pop us right back out of the halted state.
247 	 */
248 	if (disp_anywork()) {
249 		if (hset_update) {
250 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
251 			CPUSET_ATOMIC_DEL(cp->cp_haltset, cpun);
252 		}
253 		sti();
254 		return;
255 	}
256 
257 	/*
258 	 * Call the halt sequence:
259 	 * sti
260 	 * hlt
261 	 */
262 	i86_halt();
263 
264 	/*
265 	 * We're no longer halted
266 	 */
267 	if (hset_update) {
268 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
269 		CPUSET_ATOMIC_DEL(cp->cp_haltset, cpun);
270 	}
271 }
272 
273 
274 /*
275  * If "cpu" is halted, then wake it up clearing its halted bit in advance.
276  * Otherwise, see if other CPUs in the cpu partition are halted and need to
277  * be woken up so that they can steal the thread we placed on this CPU.
278  * This function is only used on MP systems.
279  */
280 static void
281 cpu_wakeup(cpu_t *cpu, int bound)
282 {
283 	uint_t		cpu_found;
284 	int		result;
285 	cpupart_t	*cp;
286 
287 	cp = cpu->cpu_part;
288 	if (CPU_IN_SET(cp->cp_haltset, cpu->cpu_id)) {
289 		/*
290 		 * Clear the halted bit for that CPU since it will be
291 		 * poked in a moment.
292 		 */
293 		CPUSET_ATOMIC_DEL(cp->cp_haltset, cpu->cpu_id);
294 		/*
295 		 * We may find the current CPU present in the halted cpuset
296 		 * if we're in the context of an interrupt that occurred
297 		 * before we had a chance to clear our bit in cpu_halt().
298 		 * Poking ourself is obviously unnecessary, since if
299 		 * we're here, we're not halted.
300 		 */
301 		if (cpu != CPU)
302 			poke_cpu(cpu->cpu_id);
303 		return;
304 	} else {
305 		/*
306 		 * This cpu isn't halted, but it's idle or undergoing a
307 		 * context switch. No need to awaken anyone else.
308 		 */
309 		if (cpu->cpu_thread == cpu->cpu_idle_thread ||
310 		    cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL)
311 			return;
312 	}
313 
314 	/*
315 	 * No need to wake up other CPUs if the thread we just enqueued
316 	 * is bound.
317 	 */
318 	if (bound)
319 		return;
320 
321 
322 	/*
323 	 * See if there's any other halted CPUs. If there are, then
324 	 * select one, and awaken it.
325 	 * It's possible that after we find a CPU, somebody else
326 	 * will awaken it before we get the chance.
327 	 * In that case, look again.
328 	 */
329 	do {
330 		CPUSET_FIND(cp->cp_haltset, cpu_found);
331 		if (cpu_found == CPUSET_NOTINSET)
332 			return;
333 
334 		ASSERT(cpu_found >= 0 && cpu_found < NCPU);
335 		CPUSET_ATOMIC_XDEL(cp->cp_haltset, cpu_found, result);
336 	} while (result < 0);
337 
338 	if (cpu_found != CPU->cpu_id)
339 		poke_cpu(cpu_found);
340 }
341 
342 static int
343 mp_disable_intr(int cpun)
344 {
345 	/*
346 	 * switch to the offline cpu
347 	 */
348 	affinity_set(cpun);
349 	/*
350 	 * raise ipl to just below cross call
351 	 */
352 	splx(XC_MED_PIL-1);
353 	/*
354 	 *	set base spl to prevent the next swtch to idle from
355 	 *	lowering back to ipl 0
356 	 */
357 	CPU->cpu_intr_actv |= (1 << (XC_MED_PIL-1));
358 	set_base_spl();
359 	affinity_clear();
360 	return (DDI_SUCCESS);
361 }
362 
363 static void
364 mp_enable_intr(int cpun)
365 {
366 	/*
367 	 * switch to the online cpu
368 	 */
369 	affinity_set(cpun);
370 	/*
371 	 * clear the interrupt active mask
372 	 */
373 	CPU->cpu_intr_actv &= ~(1 << (XC_MED_PIL-1));
374 	set_base_spl();
375 	(void) spl0();
376 	affinity_clear();
377 }
378 
379 static void
380 mach_get_platform(int owner)
381 {
382 	void		**srv_opsp;
383 	void		**clt_opsp;
384 	int		i;
385 	int		total_ops;
386 
387 	/* fix up psm ops */
388 	srv_opsp = (void **)mach_set[0];
389 	clt_opsp = (void **)mach_set[owner];
390 	if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01)
391 		total_ops = sizeof (struct psm_ops_ver01) /
392 				sizeof (void (*)(void));
393 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_1)
394 		/* no psm_notify_func */
395 		total_ops = OFFSETOF(struct psm_ops, psm_notify_func) /
396 		    sizeof (void (*)(void));
397 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_2)
398 		/* no psm_timer funcs */
399 		total_ops = OFFSETOF(struct psm_ops, psm_timer_reprogram) /
400 		    sizeof (void (*)(void));
401 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_3)
402 		/* no psm_preshutdown function */
403 		total_ops = OFFSETOF(struct psm_ops, psm_preshutdown) /
404 		    sizeof (void (*)(void));
405 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_4)
406 		/* no psm_preshutdown function */
407 		total_ops = OFFSETOF(struct psm_ops, psm_intr_ops) /
408 		    sizeof (void (*)(void));
409 	else
410 		total_ops = sizeof (struct psm_ops) / sizeof (void (*)(void));
411 
412 	/*
413 	 * Save the version of the PSM module, in case we need to
414 	 * bahave differently based on version.
415 	 */
416 	mach_ver[0] = mach_ver[owner];
417 
418 	for (i = 0; i < total_ops; i++)
419 		if (clt_opsp[i] != NULL)
420 			srv_opsp[i] = clt_opsp[i];
421 }
422 
423 static void
424 mach_construct_info()
425 {
426 	register struct psm_sw *swp;
427 	int	mach_cnt[PSM_OWN_OVERRIDE+1] = {0};
428 	int	conflict_owner = 0;
429 
430 	if (psmsw->psw_forw == psmsw)
431 		panic("No valid PSM modules found");
432 	mutex_enter(&psmsw_lock);
433 	for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
434 		if (!(swp->psw_flag & PSM_MOD_IDENTIFY))
435 			continue;
436 		mach_set[swp->psw_infop->p_owner] = swp->psw_infop->p_ops;
437 		mach_ver[swp->psw_infop->p_owner] = swp->psw_infop->p_version;
438 		mach_cnt[swp->psw_infop->p_owner]++;
439 	}
440 	mutex_exit(&psmsw_lock);
441 
442 	mach_get_platform(PSM_OWN_SYS_DEFAULT);
443 
444 	/* check to see are there any conflicts */
445 	if (mach_cnt[PSM_OWN_EXCLUSIVE] > 1)
446 		conflict_owner = PSM_OWN_EXCLUSIVE;
447 	if (mach_cnt[PSM_OWN_OVERRIDE] > 1)
448 		conflict_owner = PSM_OWN_OVERRIDE;
449 	if (conflict_owner) {
450 		/* remove all psm modules except uppc */
451 		cmn_err(CE_WARN,
452 			"Conflicts detected on the following PSM modules:");
453 		mutex_enter(&psmsw_lock);
454 		for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
455 			if (swp->psw_infop->p_owner == conflict_owner)
456 				cmn_err(CE_WARN, "%s ",
457 					swp->psw_infop->p_mach_idstring);
458 		}
459 		mutex_exit(&psmsw_lock);
460 		cmn_err(CE_WARN,
461 			"Setting the system back to SINGLE processor mode!");
462 		cmn_err(CE_WARN,
463 		    "Please edit /etc/mach to remove the invalid PSM module.");
464 		return;
465 	}
466 
467 	if (mach_set[PSM_OWN_EXCLUSIVE])
468 		mach_get_platform(PSM_OWN_EXCLUSIVE);
469 
470 	if (mach_set[PSM_OWN_OVERRIDE])
471 		mach_get_platform(PSM_OWN_OVERRIDE);
472 }
473 
474 static void
475 mach_init()
476 {
477 	register struct psm_ops  *pops;
478 
479 	mach_construct_info();
480 
481 	pops = mach_set[0];
482 
483 	/* register the interrupt and clock initialization rotuines */
484 	picinitf = mach_picinit;
485 	clkinitf = mach_clkinit;
486 	psm_get_clockirq = pops->psm_get_clockirq;
487 
488 	/* register the interrupt setup code */
489 	slvltovect = mach_softlvl_to_vect;
490 	addspl	= pops->psm_addspl;
491 	delspl	= pops->psm_delspl;
492 
493 	if (pops->psm_translate_irq)
494 		psm_translate_irq = pops->psm_translate_irq;
495 	if (pops->psm_intr_ops)
496 		psm_intr_ops = pops->psm_intr_ops;
497 	if (pops->psm_tod_get) {
498 		todgetf = mach_tod_get;
499 		psm_todgetf = pops->psm_tod_get;
500 	}
501 	if (pops->psm_tod_set) {
502 		todsetf = mach_tod_set;
503 		psm_todsetf = pops->psm_tod_set;
504 	}
505 	if (pops->psm_notify_error) {
506 		psm_notify_error = mach_notify_error;
507 		notify_error = pops->psm_notify_error;
508 	}
509 
510 	(*pops->psm_softinit)();
511 
512 	/*
513 	 * Initialize the dispatcher's function hooks
514 	 * to enable CPU halting when idle
515 	 */
516 #if defined(_SIMULATOR_SUPPORT)
517 	if (halt_idle_cpus && !simulator_run)
518 		idle_cpu = cpu_halt;
519 #else
520 	if (halt_idle_cpus)
521 		idle_cpu = cpu_halt;
522 #endif	/* _SIMULATOR_SUPPORT */
523 
524 	mach_smpinit();
525 }
526 
527 static void
528 mach_smpinit(void)
529 {
530 	register struct psm_ops  *pops;
531 	register processorid_t cpu_id;
532 	int	 cnt;
533 	int	 cpumask;
534 
535 	pops = mach_set[0];
536 
537 	cpu_id = -1;
538 	cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
539 	for (cnt = 0, cpumask = 0; cpu_id != -1; cnt++) {
540 		cpumask |= 1 << cpu_id;
541 		cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
542 	}
543 
544 	mp_cpus = cpumask;
545 
546 	/* MP related routines */
547 	cpu_startf = mach_cpu_start;
548 	ap_mlsetup = pops->psm_post_cpu_start;
549 	send_dirintf = pops->psm_send_ipi;
550 
551 	/* optional MP related routines */
552 	if (pops->psm_shutdown)
553 		psm_shutdownf = pops->psm_shutdown;
554 	if (pops->psm_preshutdown)
555 		psm_preshutdownf = pops->psm_preshutdown;
556 	if (pops->psm_notify_func)
557 		psm_notifyf = pops->psm_notify_func;
558 	if (pops->psm_set_idlecpu)
559 		psm_set_idle_cpuf = pops->psm_set_idlecpu;
560 	if (pops->psm_unset_idlecpu)
561 		psm_unset_idle_cpuf = pops->psm_unset_idlecpu;
562 
563 	psm_clkinit = pops->psm_clkinit;
564 
565 	if (pops->psm_timer_reprogram)
566 		psm_timer_reprogram = pops->psm_timer_reprogram;
567 
568 	if (pops->psm_timer_enable)
569 		psm_timer_enable = pops->psm_timer_enable;
570 
571 	if (pops->psm_timer_disable)
572 		psm_timer_disable = pops->psm_timer_disable;
573 
574 	if (pops->psm_post_cyclic_setup)
575 		psm_post_cyclic_setup = pops->psm_post_cyclic_setup;
576 
577 	/* check for multiple cpu's */
578 	if (cnt < 2)
579 		return;
580 
581 	/* check for MP platforms */
582 	if (pops->psm_cpu_start == NULL)
583 		return;
584 
585 	/*
586 	 * Set the dispatcher hook to enable cpu "wake up"
587 	 * when a thread becomes runnable.
588 	 */
589 #if defined(_SIMULATOR_SUPPORT)
590 	if (halt_idle_cpus && !simulator_run) {
591 		disp_enq_thread = cpu_wakeup;
592 	}
593 #else
594 	if (halt_idle_cpus) {
595 		disp_enq_thread = cpu_wakeup;
596 	}
597 #endif	/* _SIMULATOR_SUPPORT */
598 
599 	if (pops->psm_disable_intr)
600 		psm_disable_intr = pops->psm_disable_intr;
601 	if (pops->psm_enable_intr)
602 		psm_enable_intr  = pops->psm_enable_intr;
603 
604 	psm_get_ipivect = pops->psm_get_ipivect;
605 
606 	(void) add_avintr((void *)NULL, XC_HI_PIL, xc_serv, "xc_hi_intr",
607 		(*pops->psm_get_ipivect)(XC_HI_PIL, PSM_INTR_IPI_HI),
608 		(caddr_t)X_CALL_HIPRI, NULL, NULL);
609 	(void) add_avintr((void *)NULL, XC_MED_PIL, xc_serv, "xc_med_intr",
610 		(*pops->psm_get_ipivect)(XC_MED_PIL, PSM_INTR_IPI_LO),
611 		(caddr_t)X_CALL_MEDPRI, NULL, NULL);
612 
613 	(void) (*pops->psm_get_ipivect)(XC_CPUPOKE_PIL, PSM_INTR_POKE);
614 }
615 
616 static void
617 mach_picinit()
618 {
619 	register struct psm_ops  *pops;
620 	extern void install_spl(void);	/* XXX: belongs in a header file */
621 #if defined(__amd64) && defined(DEBUG)
622 	extern void *spl_patch, *slow_spl, *setsplhi_patch, *slow_setsplhi;
623 #endif
624 
625 	pops = mach_set[0];
626 
627 	/* register the interrupt handlers */
628 	setlvl = pops->psm_intr_enter;
629 	setlvlx = pops->psm_intr_exit;
630 
631 	/* initialize the interrupt hardware */
632 	(*pops->psm_picinit)();
633 
634 	/* set interrupt mask for current ipl */
635 	setspl = pops->psm_setspl;
636 	setspl(CPU->cpu_pri);
637 
638 	/* Install proper spl routine now that we can Program the PIC   */
639 #if defined(__amd64)
640 	/*
641 	 * It would be better if we could check this at compile time
642 	 */
643 	ASSERT(((uintptr_t)&slow_setsplhi - (uintptr_t)&setsplhi_patch < 128) &&
644 		((uintptr_t)&slow_spl - (uintptr_t)&spl_patch < 128));
645 #endif
646 	install_spl();
647 }
648 
649 uint_t	cpu_freq;	/* MHz */
650 uint64_t cpu_freq_hz;	/* measured (in hertz) */
651 
652 #define	MEGA_HZ		1000000
653 
654 static uint64_t
655 mach_calchz(uint32_t pit_counter, uint64_t *processor_clks)
656 {
657 	uint64_t cpu_hz;
658 
659 	if ((pit_counter == 0) || (*processor_clks == 0) ||
660 	    (*processor_clks > (((uint64_t)-1) / PIT_HZ)))
661 		return (0);
662 
663 	cpu_hz = ((uint64_t)PIT_HZ * *processor_clks) / pit_counter;
664 
665 	return (cpu_hz);
666 }
667 
668 static uint64_t
669 mach_getcpufreq(void)
670 {
671 	uint32_t pit_counter;
672 	uint64_t processor_clks;
673 
674 	if (x86_feature & X86_TSC) {
675 		/*
676 		 * We have a TSC. freq_tsc() knows how to measure the number
677 		 * of clock cycles sampled against the PIT.
678 		 */
679 		processor_clks = freq_tsc(&pit_counter);
680 		return (mach_calchz(pit_counter, &processor_clks));
681 	} else if (x86_vendor == X86_VENDOR_Cyrix || x86_type == X86_TYPE_P5) {
682 #if defined(__amd64)
683 		panic("mach_getcpufreq: no TSC!");
684 #elif defined(__i386)
685 		/*
686 		 * We are a Cyrix based on a 6x86 core or an Intel Pentium
687 		 * for which freq_notsc() knows how to measure the number of
688 		 * elapsed clock cycles sampled against the PIT
689 		 */
690 		processor_clks = freq_notsc(&pit_counter);
691 		return (mach_calchz(pit_counter, &processor_clks));
692 #endif	/* __i386 */
693 	}
694 
695 	/* We do not know how to calculate cpu frequency for this cpu. */
696 	return (0);
697 }
698 
699 /*
700  * If the clock speed of a cpu is found to be reported incorrectly, do not add
701  * to this array, instead improve the accuracy of the algorithm that determines
702  * the clock speed of the processor or extend the implementation to support the
703  * vendor as appropriate. This is here only to support adjusting the speed on
704  * older slower processors that mach_fixcpufreq() would not be able to account
705  * for otherwise.
706  */
707 static int x86_cpu_freq[] = { 60, 75, 80, 90, 120, 160, 166, 175, 180, 233 };
708 
709 /*
710  * On fast processors the clock frequency that is measured may be off by
711  * a few MHz from the value printed on the part. This is a combination of
712  * the factors that for such fast parts being off by this much is within
713  * the tolerances for manufacture and because of the difficulties in the
714  * measurement that can lead to small error. This function uses some
715  * heuristics in order to tweak the value that was measured to match what
716  * is most likely printed on the part.
717  *
718  * Some examples:
719  * 	AMD Athlon 1000 mhz measured as 998 mhz
720  * 	Intel Pentium III Xeon 733 mhz measured as 731 mhz
721  * 	Intel Pentium IV 1500 mhz measured as 1495mhz
722  *
723  * If in the future this function is no longer sufficient to correct
724  * for the error in the measurement, then the algorithm used to perform
725  * the measurement will have to be improved in order to increase accuracy
726  * rather than adding horrible and questionable kludges here.
727  *
728  * This is called after the cyclics subsystem because of the potential
729  * that the heuristics within may give a worse estimate of the clock
730  * frequency than the value that was measured.
731  */
732 static void
733 mach_fixcpufreq(void)
734 {
735 	uint32_t freq, mul, near66, delta66, near50, delta50, fixed, delta, i;
736 
737 	freq = (uint32_t)cpu_freq;
738 
739 	/*
740 	 * Find the nearest integer multiple of 200/3 (about 66) MHz to the
741 	 * measured speed taking into account that the 667 MHz parts were
742 	 * the first to round-up.
743 	 */
744 	mul = (uint32_t)((3 * (uint64_t)freq + 100) / 200);
745 	near66 = (uint32_t)((200 * (uint64_t)mul + ((mul >= 10) ? 1 : 0)) / 3);
746 	delta66 = (near66 > freq) ? (near66 - freq) : (freq - near66);
747 
748 	/* Find the nearest integer multiple of 50 MHz to the measured speed */
749 	mul = (freq + 25) / 50;
750 	near50 = mul * 50;
751 	delta50 = (near50 > freq) ? (near50 - freq) : (freq - near50);
752 
753 	/* Find the closer of the two */
754 	if (delta66 < delta50) {
755 		fixed = near66;
756 		delta = delta66;
757 	} else {
758 		fixed = near50;
759 		delta = delta50;
760 	}
761 
762 	if (fixed > INT_MAX)
763 		return;
764 
765 	/*
766 	 * Some older parts have a core clock frequency that is not an
767 	 * integral multiple of 50 or 66 MHz. Check if one of the old
768 	 * clock frequencies is closer to the measured value than any
769 	 * of the integral multiples of 50 an 66, and if so set fixed
770 	 * and delta appropriately to represent the closest value.
771 	 */
772 	i = sizeof (x86_cpu_freq) / sizeof (int);
773 	while (i > 0) {
774 		i--;
775 
776 		if (x86_cpu_freq[i] <= freq) {
777 			mul = freq - x86_cpu_freq[i];
778 
779 			if (mul < delta) {
780 				fixed = x86_cpu_freq[i];
781 				delta = mul;
782 			}
783 
784 			break;
785 		}
786 
787 		mul = x86_cpu_freq[i] - freq;
788 
789 		if (mul < delta) {
790 			fixed = x86_cpu_freq[i];
791 			delta = mul;
792 		}
793 	}
794 
795 	/*
796 	 * Set a reasonable maximum for how much to correct the measured
797 	 * result by. This check is here to prevent the adjustment made
798 	 * by this function from being more harm than good. It is entirely
799 	 * possible that in the future parts will be made that are not
800 	 * integral multiples of 66 or 50 in clock frequency or that
801 	 * someone may overclock a part to some odd frequency. If the
802 	 * measured value is farther from the corrected value than
803 	 * allowed, then assume the corrected value is in error and use
804 	 * the measured value.
805 	 */
806 	if (6 < delta)
807 		return;
808 
809 	cpu_freq = (int)fixed;
810 }
811 
812 
813 static int
814 machhztomhz(uint64_t cpu_freq_hz)
815 {
816 	uint64_t cpu_mhz;
817 
818 	/* Round to nearest MHZ */
819 	cpu_mhz = (cpu_freq_hz + (MEGA_HZ / 2)) / MEGA_HZ;
820 
821 	if (cpu_mhz > INT_MAX)
822 		return (0);
823 
824 	return ((int)cpu_mhz);
825 
826 }
827 
828 
829 static int
830 mach_clkinit(int preferred_mode, int *set_mode)
831 {
832 	register struct psm_ops  *pops;
833 	int resolution;
834 
835 	pops = mach_set[0];
836 
837 #ifdef	_SIMULATOR_SUPPORT
838 	if (!simulator_run)
839 		cpu_freq_hz = mach_getcpufreq();
840 	else
841 		cpu_freq_hz = 40000000; /* use 40 Mhz (hack for simulator) */
842 #else
843 	cpu_freq_hz = mach_getcpufreq();
844 #endif	/* _SIMULATOR_SUPPORT */
845 
846 	cpu_freq = machhztomhz(cpu_freq_hz);
847 
848 	if (!(x86_feature & X86_TSC) || (cpu_freq == 0))
849 		tsc_gethrtime_enable = 0;
850 
851 	if (tsc_gethrtime_enable) {
852 		tsc_hrtimeinit(cpu_freq_hz);
853 		gethrtimef = tsc_gethrtime;
854 		gethrtimeunscaledf = tsc_gethrtimeunscaled;
855 		scalehrtimef = tsc_scalehrtime;
856 		hrtime_tick = tsc_tick;
857 		tsc_gethrtime_initted = 1;
858 	} else {
859 		if (pops->psm_hrtimeinit)
860 			(*pops->psm_hrtimeinit)();
861 		gethrtimef = pops->psm_gethrtime;
862 		gethrtimeunscaledf = gethrtimef;
863 		/* scalehrtimef will remain dummy */
864 	}
865 
866 	mach_fixcpufreq();
867 
868 	if (mach_ver[0] >= PSM_INFO_VER01_3) {
869 		if ((preferred_mode == TIMER_ONESHOT) &&
870 		    (tsc_gethrtime_enable)) {
871 
872 			resolution = (*pops->psm_clkinit)(0);
873 			if (resolution != 0)  {
874 				*set_mode = TIMER_ONESHOT;
875 				return (resolution);
876 			}
877 
878 		}
879 
880 		/*
881 		 * either periodic mode was requested or could not set to
882 		 * one-shot mode
883 		 */
884 		resolution = (*pops->psm_clkinit)(hz);
885 		/*
886 		 * psm should be able to do periodic, so we do not check
887 		 * for return value of psm_clkinit here.
888 		 */
889 		*set_mode = TIMER_PERIODIC;
890 		return (resolution);
891 	} else {
892 		/*
893 		 * PSMI interface prior to PSMI_3 does not define a return
894 		 * value for psm_clkinit, so the return value is ignored.
895 		 */
896 		(void) (*pops->psm_clkinit)(hz);
897 		*set_mode = TIMER_PERIODIC;
898 		return (nsec_per_tick);
899 	}
900 }
901 
902 static int
903 mach_softlvl_to_vect(register int ipl)
904 {
905 	register int softvect;
906 	register struct psm_ops  *pops;
907 
908 	pops = mach_set[0];
909 
910 	/* check for null handler for set soft interrupt call		*/
911 	if (pops->psm_set_softintr == NULL) {
912 		setsoftint = set_pending;
913 		return (PSM_SV_SOFTWARE);
914 	}
915 
916 	softvect = (*pops->psm_softlvl_to_irq)(ipl);
917 	/* check for hardware scheme					*/
918 	if (softvect > PSM_SV_SOFTWARE) {
919 		setsoftint = pops->psm_set_softintr;
920 		return (softvect);
921 	}
922 
923 	if (softvect == PSM_SV_SOFTWARE)
924 		setsoftint = set_pending;
925 	else	/* hardware and software mixed scheme			*/
926 		setsoftint = mach_set_softintr;
927 
928 	return (PSM_SV_SOFTWARE);
929 }
930 
931 static void
932 mach_set_softintr(register int ipl)
933 {
934 	register struct psm_ops  *pops;
935 
936 	/* set software pending bits					*/
937 	set_pending(ipl);
938 
939 	/*	check if dosoftint will be called at the end of intr	*/
940 	if (CPU_ON_INTR(CPU) || (curthread->t_intr))
941 		return;
942 
943 	/* invoke hardware interrupt					*/
944 	pops = mach_set[0];
945 	(*pops->psm_set_softintr)(ipl);
946 }
947 
948 static void
949 mach_cpu_start(register int cpun)
950 {
951 	register struct psm_ops  *pops;
952 	int	i;
953 
954 	pops = mach_set[0];
955 
956 	(*pops->psm_cpu_start)(cpun, rm_platter_va);
957 
958 	/* wait for the auxillary cpu to be ready			*/
959 	for (i = 20000; i; i--) {
960 		if (cpu[cpun]->cpu_flags & CPU_READY)
961 			return;
962 		drv_usecwait(100);
963 	}
964 }
965 
966 /*ARGSUSED*/
967 static int
968 mach_translate_irq(dev_info_t *dip, int irqno)
969 {
970 	return (irqno);	/* default to NO translation */
971 }
972 
973 static timestruc_t
974 mach_tod_get(void)
975 {
976 	timestruc_t ts;
977 	todinfo_t tod;
978 	static int mach_range_warn = 1;	/* warn only once */
979 
980 	ASSERT(MUTEX_HELD(&tod_lock));
981 
982 	/* The year returned from is the last 2 digit only */
983 	if ((*psm_todgetf)(&tod)) {
984 		ts.tv_sec = 0;
985 		ts.tv_nsec = 0;
986 		tod_fault_reset();
987 		return (ts);
988 	}
989 
990 	/* assume that we wrap the rtc year back to zero at 2000 */
991 	if (tod.tod_year < 69) {
992 		if (mach_range_warn && tod.tod_year > 38) {
993 			cmn_err(CE_WARN, "hardware real-time clock is out "
994 				"of range -- time needs to be reset");
995 			mach_range_warn = 0;
996 		}
997 		tod.tod_year += 100;
998 	}
999 
1000 	/* tod_to_utc uses 1900 as base for the year */
1001 	ts.tv_sec = tod_to_utc(tod) + gmt_lag;
1002 	ts.tv_nsec = 0;
1003 
1004 	return (ts);
1005 }
1006 
1007 static void
1008 mach_tod_set(timestruc_t ts)
1009 {
1010 	todinfo_t tod = utc_to_tod(ts.tv_sec - gmt_lag);
1011 
1012 	ASSERT(MUTEX_HELD(&tod_lock));
1013 
1014 	if (tod.tod_year >= 100)
1015 		tod.tod_year -= 100;
1016 
1017 	(*psm_todsetf)(&tod);
1018 }
1019 
1020 static void
1021 mach_notify_error(int level, char *errmsg)
1022 {
1023 	/*
1024 	 * SL_FATAL is pass in once panicstr is set, deliver it
1025 	 * as CE_PANIC.  Also, translate SL_ codes back to CE_
1026 	 * codes for the psmi handler
1027 	 */
1028 	if (level & SL_FATAL)
1029 		(*notify_error)(CE_PANIC, errmsg);
1030 	else if (level & SL_WARN)
1031 		(*notify_error)(CE_WARN, errmsg);
1032 	else if (level & SL_NOTE)
1033 		(*notify_error)(CE_NOTE, errmsg);
1034 	else if (level & SL_CONSOLE)
1035 		(*notify_error)(CE_CONT, errmsg);
1036 }
1037 
1038 /*
1039  * It provides the default basic intr_ops interface for the new DDI
1040  * interrupt framework if the PSM doesn't have one.
1041  *
1042  * Input:
1043  * dip     - pointer to the dev_info structure of the requested device
1044  * hdlp    - pointer to the internal interrupt handle structure for the
1045  *	     requested interrupt
1046  * intr_op - opcode for this call
1047  * result  - pointer to the integer that will hold the result to be
1048  *	     passed back if return value is PSM_SUCCESS
1049  *
1050  * Output:
1051  * return value is either PSM_SUCCESS or PSM_FAILURE
1052  */
1053 static int
1054 mach_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
1055     psm_intr_op_t intr_op, int *result)
1056 {
1057 	struct intrspec *ispec;
1058 
1059 	switch (intr_op) {
1060 	case PSM_INTR_OP_CHECK_MSI:
1061 		*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
1062 			    DDI_INTR_TYPE_MSIX);
1063 		break;
1064 	case PSM_INTR_OP_ALLOC_VECTORS:
1065 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1066 			*result = 1;
1067 		else
1068 			*result = 0;
1069 		break;
1070 	case PSM_INTR_OP_FREE_VECTORS:
1071 		break;
1072 	case PSM_INTR_OP_NAVAIL_VECTORS:
1073 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1074 			*result = 1;
1075 		else
1076 			*result = 0;
1077 		break;
1078 	case PSM_INTR_OP_XLATE_VECTOR:
1079 		ispec = (struct intrspec *)hdlp->ih_private;
1080 		*result = psm_translate_irq(dip, ispec->intrspec_vec);
1081 		break;
1082 	case PSM_INTR_OP_GET_CAP:
1083 		*result = 0;
1084 		break;
1085 	case PSM_INTR_OP_GET_PENDING:
1086 	case PSM_INTR_OP_CLEAR_MASK:
1087 	case PSM_INTR_OP_SET_MASK:
1088 	case PSM_INTR_OP_GET_SHARED:
1089 	case PSM_INTR_OP_SET_PRI:
1090 	case PSM_INTR_OP_SET_CAP:
1091 	default:
1092 		return (PSM_FAILURE);
1093 	}
1094 	return (PSM_SUCCESS);
1095 }
1096