xref: /titanic_50/usr/src/uts/i86pc/os/mp_machdep.c (revision 82722020b3918ce4d9594e3c6e0462bab345d102)
1 
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2009-2010, Intel Corporation.
27  * All rights reserved.
28  */
29 
30 #define	PSMI_1_7
31 #include <sys/smp_impldefs.h>
32 #include <sys/psm.h>
33 #include <sys/psm_modctl.h>
34 #include <sys/pit.h>
35 #include <sys/cmn_err.h>
36 #include <sys/strlog.h>
37 #include <sys/clock.h>
38 #include <sys/debug.h>
39 #include <sys/rtc.h>
40 #include <sys/x86_archext.h>
41 #include <sys/cpupart.h>
42 #include <sys/cpuvar.h>
43 #include <sys/cpu_event.h>
44 #include <sys/cmt.h>
45 #include <sys/cpu.h>
46 #include <sys/disp.h>
47 #include <sys/archsystm.h>
48 #include <sys/machsystm.h>
49 #include <sys/sysmacros.h>
50 #include <sys/memlist.h>
51 #include <sys/param.h>
52 #include <sys/promif.h>
53 #include <sys/cpu_pm.h>
54 #if defined(__xpv)
55 #include <sys/hypervisor.h>
56 #endif
57 #include <sys/mach_intr.h>
58 #include <vm/hat_i86.h>
59 #include <sys/kdi_machimpl.h>
60 #include <sys/sdt.h>
61 #include <sys/hpet.h>
62 #include <sys/sunddi.h>
63 #include <sys/sunndi.h>
64 #include <sys/cpc_pcbe.h>
65 
66 #define	OFFSETOF(s, m)		(size_t)(&(((s *)0)->m))
67 
68 /*
69  *	Local function prototypes
70  */
71 static int mp_disable_intr(processorid_t cpun);
72 static void mp_enable_intr(processorid_t cpun);
73 static void mach_init();
74 static void mach_picinit();
75 static int machhztomhz(uint64_t cpu_freq_hz);
76 static uint64_t mach_getcpufreq(void);
77 static void mach_fixcpufreq(void);
78 static int mach_clkinit(int, int *);
79 static void mach_smpinit(void);
80 static int mach_softlvl_to_vect(int ipl);
81 static void mach_get_platform(int owner);
82 static void mach_construct_info();
83 static int mach_translate_irq(dev_info_t *dip, int irqno);
84 static int mach_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
85     psm_intr_op_t, int *);
86 static void mach_notify_error(int level, char *errmsg);
87 static hrtime_t dummy_hrtime(void);
88 static void dummy_scalehrtime(hrtime_t *);
89 static uint64_t dummy_unscalehrtime(hrtime_t);
90 void cpu_idle(void);
91 static void cpu_wakeup(cpu_t *, int);
92 #ifndef __xpv
93 void cpu_idle_mwait(void);
94 static void cpu_wakeup_mwait(cpu_t *, int);
95 #endif
96 static int mach_cpu_create_devinfo(cpu_t *cp, dev_info_t **dipp);
97 
98 /*
99  *	External reference functions
100  */
101 extern void return_instr();
102 extern uint64_t freq_tsc(uint32_t *);
103 #if defined(__i386)
104 extern uint64_t freq_notsc(uint32_t *);
105 #endif
106 extern void pc_gethrestime(timestruc_t *);
107 extern int cpuid_get_coreid(cpu_t *);
108 extern int cpuid_get_chipid(cpu_t *);
109 
110 /*
111  *	PSM functions initialization
112  */
113 void (*psm_shutdownf)(int, int)	= (void (*)(int, int))return_instr;
114 void (*psm_preshutdownf)(int, int) = (void (*)(int, int))return_instr;
115 void (*psm_notifyf)(int)	= (void (*)(int))return_instr;
116 void (*psm_set_idle_cpuf)(int)	= (void (*)(int))return_instr;
117 void (*psm_unset_idle_cpuf)(int) = (void (*)(int))return_instr;
118 void (*psminitf)()		= mach_init;
119 void (*picinitf)() 		= return_instr;
120 int (*clkinitf)(int, int *) 	= (int (*)(int, int *))return_instr;
121 int (*ap_mlsetup)() 		= (int (*)(void))return_instr;
122 void (*send_dirintf)() 		= return_instr;
123 void (*setspl)(int)		= (void (*)(int))return_instr;
124 int (*addspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
125 int (*delspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
126 int (*get_pending_spl)(void)	= (int (*)(void))return_instr;
127 int (*addintr)(void *, int, avfunc, char *, int, caddr_t, caddr_t,
128     uint64_t *, dev_info_t *) = NULL;
129 void (*remintr)(void *, int, avfunc, int) = NULL;
130 void (*kdisetsoftint)(int, struct av_softinfo *)=
131 	(void (*)(int, struct av_softinfo *))return_instr;
132 void (*setsoftint)(int, struct av_softinfo *)=
133 	(void (*)(int, struct av_softinfo *))return_instr;
134 int (*slvltovect)(int)		= (int (*)(int))return_instr;
135 int (*setlvl)(int, int *)	= (int (*)(int, int *))return_instr;
136 void (*setlvlx)(int, int)	= (void (*)(int, int))return_instr;
137 int (*psm_disable_intr)(int)	= mp_disable_intr;
138 void (*psm_enable_intr)(int)	= mp_enable_intr;
139 hrtime_t (*gethrtimef)(void)	= dummy_hrtime;
140 hrtime_t (*gethrtimeunscaledf)(void)	= dummy_hrtime;
141 void (*scalehrtimef)(hrtime_t *)	= dummy_scalehrtime;
142 uint64_t (*unscalehrtimef)(hrtime_t)	= dummy_unscalehrtime;
143 int (*psm_translate_irq)(dev_info_t *, int) = mach_translate_irq;
144 void (*gethrestimef)(timestruc_t *) = pc_gethrestime;
145 void (*psm_notify_error)(int, char *) = (void (*)(int, char *))NULL;
146 int (*psm_get_clockirq)(int) = NULL;
147 int (*psm_get_ipivect)(int, int) = NULL;
148 uchar_t (*psm_get_ioapicid)(uchar_t) = NULL;
149 uint32_t (*psm_get_localapicid)(uint32_t) = NULL;
150 uchar_t (*psm_xlate_vector_by_irq)(uchar_t) = NULL;
151 
152 int (*psm_clkinit)(int) = NULL;
153 void (*psm_timer_reprogram)(hrtime_t) = NULL;
154 void (*psm_timer_enable)(void) = NULL;
155 void (*psm_timer_disable)(void) = NULL;
156 void (*psm_post_cyclic_setup)(void *arg) = NULL;
157 int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t,
158     int *) = mach_intr_ops;
159 int (*psm_state)(psm_state_request_t *) = (int (*)(psm_state_request_t *))
160     return_instr;
161 
162 void (*notify_error)(int, char *) = (void (*)(int, char *))return_instr;
163 void (*hrtime_tick)(void)	= return_instr;
164 
165 int (*psm_cpu_create_devinfo)(cpu_t *, dev_info_t **) = mach_cpu_create_devinfo;
166 int (*psm_cpu_get_devinfo)(cpu_t *, dev_info_t **) = NULL;
167 
168 /* global IRM pool for APIX (PSM) module */
169 ddi_irm_pool_t *apix_irm_pool_p = NULL;
170 
171 /*
172  * True if the generic TSC code is our source of hrtime, rather than whatever
173  * the PSM can provide.
174  */
175 #ifdef __xpv
176 int tsc_gethrtime_enable = 0;
177 #else
178 int tsc_gethrtime_enable = 1;
179 #endif
180 int tsc_gethrtime_initted = 0;
181 
182 /*
183  * True if the hrtime implementation is "hires"; namely, better than microdata.
184  */
185 int gethrtime_hires = 0;
186 
187 /*
188  * Local Static Data
189  */
190 static struct psm_ops mach_ops;
191 static struct psm_ops *mach_set[4] = {&mach_ops, NULL, NULL, NULL};
192 static ushort_t mach_ver[4] = {0, 0, 0, 0};
193 
194 /*
195  * virtualization support for psm
196  */
197 void *psm_vt_ops = NULL;
198 /*
199  * If non-zero, idle cpus will become "halted" when there's
200  * no work to do.
201  */
202 int	idle_cpu_use_hlt = 1;
203 
204 #ifndef __xpv
205 /*
206  * If non-zero, idle cpus will use mwait if available to halt instead of hlt.
207  */
208 int	idle_cpu_prefer_mwait = 1;
209 /*
210  * Set to 0 to avoid MONITOR+CLFLUSH assertion.
211  */
212 int	idle_cpu_assert_cflush_monitor = 1;
213 
214 /*
215  * If non-zero, idle cpus will not use power saving Deep C-States idle loop.
216  */
217 int	idle_cpu_no_deep_c = 0;
218 /*
219  * Non-power saving idle loop and wakeup pointers.
220  * Allows user to toggle Deep Idle power saving feature on/off.
221  */
222 void	(*non_deep_idle_cpu)() = cpu_idle;
223 void	(*non_deep_idle_disp_enq_thread)(cpu_t *, int);
224 
225 /*
226  * Object for the kernel to access the HPET.
227  */
228 hpet_t hpet;
229 
230 #endif	/* ifndef __xpv */
231 
232 uint_t cp_haltset_fanout = 0;
233 
234 /*ARGSUSED*/
235 int
236 pg_plat_hw_shared(cpu_t *cp, pghw_type_t hw)
237 {
238 	switch (hw) {
239 	case PGHW_IPIPE:
240 		if (x86_feature & (X86_HTT)) {
241 			/*
242 			 * Hyper-threading is SMT
243 			 */
244 			return (1);
245 		} else {
246 			return (0);
247 		}
248 	case PGHW_PROCNODE:
249 		if (cpuid_get_procnodes_per_pkg(cp) > 1)
250 			return (1);
251 		else
252 			return (0);
253 	case PGHW_CHIP:
254 		if (x86_feature & (X86_CMP|X86_HTT))
255 			return (1);
256 		else
257 			return (0);
258 	case PGHW_CACHE:
259 		if (cpuid_get_ncpu_sharing_last_cache(cp) > 1)
260 			return (1);
261 		else
262 			return (0);
263 	case PGHW_POW_ACTIVE:
264 		if (cpupm_domain_id(cp, CPUPM_DTYPE_ACTIVE) != (id_t)-1)
265 			return (1);
266 		else
267 			return (0);
268 	case PGHW_POW_IDLE:
269 		if (cpupm_domain_id(cp, CPUPM_DTYPE_IDLE) != (id_t)-1)
270 			return (1);
271 		else
272 			return (0);
273 	default:
274 		return (0);
275 	}
276 }
277 
278 /*
279  * Compare two CPUs and see if they have a pghw_type_t sharing relationship
280  * If pghw_type_t is an unsupported hardware type, then return -1
281  */
282 int
283 pg_plat_cpus_share(cpu_t *cpu_a, cpu_t *cpu_b, pghw_type_t hw)
284 {
285 	id_t pgp_a, pgp_b;
286 
287 	pgp_a = pg_plat_hw_instance_id(cpu_a, hw);
288 	pgp_b = pg_plat_hw_instance_id(cpu_b, hw);
289 
290 	if (pgp_a == -1 || pgp_b == -1)
291 		return (-1);
292 
293 	return (pgp_a == pgp_b);
294 }
295 
296 /*
297  * Return a physical instance identifier for known hardware sharing
298  * relationships
299  */
300 id_t
301 pg_plat_hw_instance_id(cpu_t *cpu, pghw_type_t hw)
302 {
303 	switch (hw) {
304 	case PGHW_IPIPE:
305 		return (cpuid_get_coreid(cpu));
306 	case PGHW_CACHE:
307 		return (cpuid_get_last_lvl_cacheid(cpu));
308 	case PGHW_PROCNODE:
309 		return (cpuid_get_procnodeid(cpu));
310 	case PGHW_CHIP:
311 		return (cpuid_get_chipid(cpu));
312 	case PGHW_POW_ACTIVE:
313 		return (cpupm_domain_id(cpu, CPUPM_DTYPE_ACTIVE));
314 	case PGHW_POW_IDLE:
315 		return (cpupm_domain_id(cpu, CPUPM_DTYPE_IDLE));
316 	default:
317 		return (-1);
318 	}
319 }
320 
321 /*
322  * Express preference for optimizing for sharing relationship
323  * hw1 vs hw2
324  */
325 pghw_type_t
326 pg_plat_hw_rank(pghw_type_t hw1, pghw_type_t hw2)
327 {
328 	int i, rank1, rank2;
329 
330 	static pghw_type_t hw_hier[] = {
331 		PGHW_IPIPE,
332 		PGHW_CACHE,
333 		PGHW_PROCNODE,
334 		PGHW_CHIP,
335 		PGHW_POW_IDLE,
336 		PGHW_POW_ACTIVE,
337 		PGHW_NUM_COMPONENTS
338 	};
339 
340 	for (i = 0; hw_hier[i] != PGHW_NUM_COMPONENTS; i++) {
341 		if (hw_hier[i] == hw1)
342 			rank1 = i;
343 		if (hw_hier[i] == hw2)
344 			rank2 = i;
345 	}
346 
347 	if (rank1 > rank2)
348 		return (hw1);
349 	else
350 		return (hw2);
351 }
352 
353 /*
354  * Override the default CMT dispatcher policy for the specified
355  * hardware sharing relationship
356  */
357 pg_cmt_policy_t
358 pg_plat_cmt_policy(pghw_type_t hw)
359 {
360 	/*
361 	 * For shared caches, also load balance across them to
362 	 * maximize aggregate cache capacity
363 	 */
364 	switch (hw) {
365 	case PGHW_CACHE:
366 		return (CMT_BALANCE|CMT_AFFINITY);
367 	default:
368 		return (CMT_NO_POLICY);
369 	}
370 }
371 
372 id_t
373 pg_plat_get_core_id(cpu_t *cpu)
374 {
375 	return ((id_t)cpuid_get_coreid(cpu));
376 }
377 
378 void
379 cmp_set_nosteal_interval(void)
380 {
381 	/* Set the nosteal interval (used by disp_getbest()) to 100us */
382 	nosteal_nsec = 100000UL;
383 }
384 
385 /*
386  * Routine to ensure initial callers to hrtime gets 0 as return
387  */
388 static hrtime_t
389 dummy_hrtime(void)
390 {
391 	return (0);
392 }
393 
394 /* ARGSUSED */
395 static void
396 dummy_scalehrtime(hrtime_t *ticks)
397 {}
398 
399 static uint64_t
400 dummy_unscalehrtime(hrtime_t nsecs)
401 {
402 	return ((uint64_t)nsecs);
403 }
404 
405 /*
406  * Supports Deep C-State power saving idle loop.
407  */
408 void
409 cpu_idle_adaptive(void)
410 {
411 	(*CPU->cpu_m.mcpu_idle_cpu)();
412 }
413 
414 /*
415  * Function called by CPU idle notification framework to check whether CPU
416  * has been awakened. It will be called with interrupt disabled.
417  * If CPU has been awakened, call cpu_idle_exit() to notify CPU idle
418  * notification framework.
419  */
420 /*ARGSUSED*/
421 static void
422 cpu_idle_check_wakeup(void *arg)
423 {
424 	/*
425 	 * Toggle interrupt flag to detect pending interrupts.
426 	 * If interrupt happened, do_interrupt() will notify CPU idle
427 	 * notification framework so no need to call cpu_idle_exit() here.
428 	 */
429 	sti();
430 	SMT_PAUSE();
431 	cli();
432 }
433 
434 /*
435  * Idle the present CPU until wakened via an interrupt
436  */
437 void
438 cpu_idle(void)
439 {
440 	cpu_t		*cpup = CPU;
441 	processorid_t	cpu_sid = cpup->cpu_seqid;
442 	cpupart_t	*cp = cpup->cpu_part;
443 	int		hset_update = 1;
444 
445 	/*
446 	 * If this CPU is online, and there's multiple CPUs
447 	 * in the system, then we should notate our halting
448 	 * by adding ourselves to the partition's halted CPU
449 	 * bitmap. This allows other CPUs to find/awaken us when
450 	 * work becomes available.
451 	 */
452 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
453 		hset_update = 0;
454 
455 	/*
456 	 * Add ourselves to the partition's halted CPUs bitmap
457 	 * and set our HALTED flag, if necessary.
458 	 *
459 	 * When a thread becomes runnable, it is placed on the queue
460 	 * and then the halted CPU bitmap is checked to determine who
461 	 * (if anyone) should be awakened. We therefore need to first
462 	 * add ourselves to the bitmap, and and then check if there
463 	 * is any work available. The order is important to prevent a race
464 	 * that can lead to work languishing on a run queue somewhere while
465 	 * this CPU remains halted.
466 	 *
467 	 * Either the producing CPU will see we're halted and will awaken us,
468 	 * or this CPU will see the work available in disp_anywork().
469 	 *
470 	 * Note that memory barriers after updating the HALTED flag
471 	 * are not necessary since an atomic operation (updating the bitset)
472 	 * immediately follows. On x86 the atomic operation acts as a
473 	 * memory barrier for the update of cpu_disp_flags.
474 	 */
475 	if (hset_update) {
476 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
477 		bitset_atomic_add(&cp->cp_haltset, cpu_sid);
478 	}
479 
480 	/*
481 	 * Check to make sure there's really nothing to do.
482 	 * Work destined for this CPU may become available after
483 	 * this check. We'll be notified through the clearing of our
484 	 * bit in the halted CPU bitmap, and a poke.
485 	 */
486 	if (disp_anywork()) {
487 		if (hset_update) {
488 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
489 			bitset_atomic_del(&cp->cp_haltset, cpu_sid);
490 		}
491 		return;
492 	}
493 
494 	/*
495 	 * We're on our way to being halted.
496 	 *
497 	 * Disable interrupts now, so that we'll awaken immediately
498 	 * after halting if someone tries to poke us between now and
499 	 * the time we actually halt.
500 	 *
501 	 * We check for the presence of our bit after disabling interrupts.
502 	 * If it's cleared, we'll return. If the bit is cleared after
503 	 * we check then the poke will pop us out of the halted state.
504 	 *
505 	 * This means that the ordering of the poke and the clearing
506 	 * of the bit by cpu_wakeup is important.
507 	 * cpu_wakeup() must clear, then poke.
508 	 * cpu_idle() must disable interrupts, then check for the bit.
509 	 */
510 	cli();
511 
512 	if (hset_update && bitset_in_set(&cp->cp_haltset, cpu_sid) == 0) {
513 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
514 		sti();
515 		return;
516 	}
517 
518 	/*
519 	 * The check for anything locally runnable is here for performance
520 	 * and isn't needed for correctness. disp_nrunnable ought to be
521 	 * in our cache still, so it's inexpensive to check, and if there
522 	 * is anything runnable we won't have to wait for the poke.
523 	 */
524 	if (cpup->cpu_disp->disp_nrunnable != 0) {
525 		if (hset_update) {
526 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
527 			bitset_atomic_del(&cp->cp_haltset, cpu_sid);
528 		}
529 		sti();
530 		return;
531 	}
532 
533 	if (cpu_idle_enter(IDLE_STATE_C1, 0,
534 	    cpu_idle_check_wakeup, NULL) == 0) {
535 		mach_cpu_idle();
536 		cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
537 	}
538 
539 	/*
540 	 * We're no longer halted
541 	 */
542 	if (hset_update) {
543 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
544 		bitset_atomic_del(&cp->cp_haltset, cpu_sid);
545 	}
546 }
547 
548 
549 /*
550  * If "cpu" is halted, then wake it up clearing its halted bit in advance.
551  * Otherwise, see if other CPUs in the cpu partition are halted and need to
552  * be woken up so that they can steal the thread we placed on this CPU.
553  * This function is only used on MP systems.
554  */
555 static void
556 cpu_wakeup(cpu_t *cpu, int bound)
557 {
558 	uint_t		cpu_found;
559 	processorid_t	cpu_sid;
560 	cpupart_t	*cp;
561 
562 	cp = cpu->cpu_part;
563 	cpu_sid = cpu->cpu_seqid;
564 	if (bitset_in_set(&cp->cp_haltset, cpu_sid)) {
565 		/*
566 		 * Clear the halted bit for that CPU since it will be
567 		 * poked in a moment.
568 		 */
569 		bitset_atomic_del(&cp->cp_haltset, cpu_sid);
570 		/*
571 		 * We may find the current CPU present in the halted cpuset
572 		 * if we're in the context of an interrupt that occurred
573 		 * before we had a chance to clear our bit in cpu_idle().
574 		 * Poking ourself is obviously unnecessary, since if
575 		 * we're here, we're not halted.
576 		 */
577 		if (cpu != CPU)
578 			poke_cpu(cpu->cpu_id);
579 		return;
580 	} else {
581 		/*
582 		 * This cpu isn't halted, but it's idle or undergoing a
583 		 * context switch. No need to awaken anyone else.
584 		 */
585 		if (cpu->cpu_thread == cpu->cpu_idle_thread ||
586 		    cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL)
587 			return;
588 	}
589 
590 	/*
591 	 * No need to wake up other CPUs if this is for a bound thread.
592 	 */
593 	if (bound)
594 		return;
595 
596 	/*
597 	 * The CPU specified for wakeup isn't currently halted, so check
598 	 * to see if there are any other halted CPUs in the partition,
599 	 * and if there are then awaken one.
600 	 */
601 	do {
602 		cpu_found = bitset_find(&cp->cp_haltset);
603 		if (cpu_found == (uint_t)-1)
604 			return;
605 	} while (bitset_atomic_test_and_del(&cp->cp_haltset, cpu_found) < 0);
606 
607 	if (cpu_found != CPU->cpu_seqid) {
608 		poke_cpu(cpu_seq[cpu_found]->cpu_id);
609 	}
610 }
611 
612 #ifndef __xpv
613 /*
614  * Function called by CPU idle notification framework to check whether CPU
615  * has been awakened. It will be called with interrupt disabled.
616  * If CPU has been awakened, call cpu_idle_exit() to notify CPU idle
617  * notification framework.
618  */
619 static void
620 cpu_idle_mwait_check_wakeup(void *arg)
621 {
622 	volatile uint32_t *mcpu_mwait = (volatile uint32_t *)arg;
623 
624 	ASSERT(arg != NULL);
625 	if (*mcpu_mwait != MWAIT_HALTED) {
626 		/*
627 		 * CPU has been awakened, notify CPU idle notification system.
628 		 */
629 		cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
630 	} else {
631 		/*
632 		 * Toggle interrupt flag to detect pending interrupts.
633 		 * If interrupt happened, do_interrupt() will notify CPU idle
634 		 * notification framework so no need to call cpu_idle_exit()
635 		 * here.
636 		 */
637 		sti();
638 		SMT_PAUSE();
639 		cli();
640 	}
641 }
642 
643 /*
644  * Idle the present CPU until awakened via touching its monitored line
645  */
646 void
647 cpu_idle_mwait(void)
648 {
649 	volatile uint32_t	*mcpu_mwait = CPU->cpu_m.mcpu_mwait;
650 	cpu_t			*cpup = CPU;
651 	processorid_t		cpu_sid = cpup->cpu_seqid;
652 	cpupart_t		*cp = cpup->cpu_part;
653 	int			hset_update = 1;
654 
655 	/*
656 	 * Set our mcpu_mwait here, so we can tell if anyone tries to
657 	 * wake us between now and when we call mwait.  No other cpu will
658 	 * attempt to set our mcpu_mwait until we add ourself to the halted
659 	 * CPU bitmap.
660 	 */
661 	*mcpu_mwait = MWAIT_HALTED;
662 
663 	/*
664 	 * If this CPU is online, and there's multiple CPUs
665 	 * in the system, then we should note our halting
666 	 * by adding ourselves to the partition's halted CPU
667 	 * bitmap. This allows other CPUs to find/awaken us when
668 	 * work becomes available.
669 	 */
670 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
671 		hset_update = 0;
672 
673 	/*
674 	 * Add ourselves to the partition's halted CPUs bitmap
675 	 * and set our HALTED flag, if necessary.
676 	 *
677 	 * When a thread becomes runnable, it is placed on the queue
678 	 * and then the halted CPU bitmap is checked to determine who
679 	 * (if anyone) should be awakened. We therefore need to first
680 	 * add ourselves to the bitmap, and and then check if there
681 	 * is any work available.
682 	 *
683 	 * Note that memory barriers after updating the HALTED flag
684 	 * are not necessary since an atomic operation (updating the bitmap)
685 	 * immediately follows. On x86 the atomic operation acts as a
686 	 * memory barrier for the update of cpu_disp_flags.
687 	 */
688 	if (hset_update) {
689 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
690 		bitset_atomic_add(&cp->cp_haltset, cpu_sid);
691 	}
692 
693 	/*
694 	 * Check to make sure there's really nothing to do.
695 	 * Work destined for this CPU may become available after
696 	 * this check. We'll be notified through the clearing of our
697 	 * bit in the halted CPU bitmap, and a write to our mcpu_mwait.
698 	 *
699 	 * disp_anywork() checks disp_nrunnable, so we do not have to later.
700 	 */
701 	if (disp_anywork()) {
702 		if (hset_update) {
703 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
704 			bitset_atomic_del(&cp->cp_haltset, cpu_sid);
705 		}
706 		return;
707 	}
708 
709 	/*
710 	 * We're on our way to being halted.
711 	 * To avoid a lost wakeup, arm the monitor before checking if another
712 	 * cpu wrote to mcpu_mwait to wake us up.
713 	 */
714 	i86_monitor(mcpu_mwait, 0, 0);
715 	if (*mcpu_mwait == MWAIT_HALTED) {
716 		if (cpu_idle_enter(IDLE_STATE_C1, 0,
717 		    cpu_idle_mwait_check_wakeup, (void *)mcpu_mwait) == 0) {
718 			if (*mcpu_mwait == MWAIT_HALTED) {
719 				i86_mwait(0, 0);
720 			}
721 			cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
722 		}
723 	}
724 
725 	/*
726 	 * We're no longer halted
727 	 */
728 	if (hset_update) {
729 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
730 		bitset_atomic_del(&cp->cp_haltset, cpu_sid);
731 	}
732 }
733 
734 /*
735  * If "cpu" is halted in mwait, then wake it up clearing its halted bit in
736  * advance.  Otherwise, see if other CPUs in the cpu partition are halted and
737  * need to be woken up so that they can steal the thread we placed on this CPU.
738  * This function is only used on MP systems.
739  */
740 static void
741 cpu_wakeup_mwait(cpu_t *cp, int bound)
742 {
743 	cpupart_t	*cpu_part;
744 	uint_t		cpu_found;
745 	processorid_t	cpu_sid;
746 
747 	cpu_part = cp->cpu_part;
748 	cpu_sid = cp->cpu_seqid;
749 
750 	/*
751 	 * Clear the halted bit for that CPU since it will be woken up
752 	 * in a moment.
753 	 */
754 	if (bitset_in_set(&cpu_part->cp_haltset, cpu_sid)) {
755 		/*
756 		 * Clear the halted bit for that CPU since it will be
757 		 * poked in a moment.
758 		 */
759 		bitset_atomic_del(&cpu_part->cp_haltset, cpu_sid);
760 		/*
761 		 * We may find the current CPU present in the halted cpuset
762 		 * if we're in the context of an interrupt that occurred
763 		 * before we had a chance to clear our bit in cpu_idle().
764 		 * Waking ourself is obviously unnecessary, since if
765 		 * we're here, we're not halted.
766 		 *
767 		 * monitor/mwait wakeup via writing to our cache line is
768 		 * harmless and less expensive than always checking if we
769 		 * are waking ourself which is an uncommon case.
770 		 */
771 		MWAIT_WAKEUP(cp);	/* write to monitored line */
772 		return;
773 	} else {
774 		/*
775 		 * This cpu isn't halted, but it's idle or undergoing a
776 		 * context switch. No need to awaken anyone else.
777 		 */
778 		if (cp->cpu_thread == cp->cpu_idle_thread ||
779 		    cp->cpu_disp_flags & CPU_DISP_DONTSTEAL)
780 			return;
781 	}
782 
783 	/*
784 	 * No need to wake up other CPUs if the thread we just enqueued
785 	 * is bound.
786 	 */
787 	if (bound || ncpus == 1)
788 		return;
789 
790 	/*
791 	 * See if there's any other halted CPUs. If there are, then
792 	 * select one, and awaken it.
793 	 * It's possible that after we find a CPU, somebody else
794 	 * will awaken it before we get the chance.
795 	 * In that case, look again.
796 	 */
797 	do {
798 		cpu_found = bitset_find(&cpu_part->cp_haltset);
799 		if (cpu_found == (uint_t)-1)
800 			return;
801 	} while (bitset_atomic_test_and_del(&cpu_part->cp_haltset,
802 	    cpu_found) < 0);
803 
804 	/*
805 	 * Do not check if cpu_found is ourself as monitor/mwait
806 	 * wakeup is cheap.
807 	 */
808 	MWAIT_WAKEUP(cpu_seq[cpu_found]); /* write to monitored line */
809 }
810 
811 #endif
812 
813 void (*cpu_pause_handler)(volatile char *) = NULL;
814 
815 static int
816 mp_disable_intr(int cpun)
817 {
818 	/*
819 	 * switch to the offline cpu
820 	 */
821 	affinity_set(cpun);
822 	/*
823 	 * raise ipl to just below cross call
824 	 */
825 	splx(XC_SYS_PIL - 1);
826 	/*
827 	 *	set base spl to prevent the next swtch to idle from
828 	 *	lowering back to ipl 0
829 	 */
830 	CPU->cpu_intr_actv |= (1 << (XC_SYS_PIL - 1));
831 	set_base_spl();
832 	affinity_clear();
833 	return (DDI_SUCCESS);
834 }
835 
836 static void
837 mp_enable_intr(int cpun)
838 {
839 	/*
840 	 * switch to the online cpu
841 	 */
842 	affinity_set(cpun);
843 	/*
844 	 * clear the interrupt active mask
845 	 */
846 	CPU->cpu_intr_actv &= ~(1 << (XC_SYS_PIL - 1));
847 	set_base_spl();
848 	(void) spl0();
849 	affinity_clear();
850 }
851 
852 static void
853 mach_get_platform(int owner)
854 {
855 	void		**srv_opsp;
856 	void		**clt_opsp;
857 	int		i;
858 	int		total_ops;
859 
860 	/* fix up psm ops */
861 	srv_opsp = (void **)mach_set[0];
862 	clt_opsp = (void **)mach_set[owner];
863 	if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01)
864 		total_ops = sizeof (struct psm_ops_ver01) /
865 		    sizeof (void (*)(void));
866 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_1)
867 		/* no psm_notify_func */
868 		total_ops = OFFSETOF(struct psm_ops, psm_notify_func) /
869 		    sizeof (void (*)(void));
870 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_2)
871 		/* no psm_timer funcs */
872 		total_ops = OFFSETOF(struct psm_ops, psm_timer_reprogram) /
873 		    sizeof (void (*)(void));
874 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_3)
875 		/* no psm_preshutdown function */
876 		total_ops = OFFSETOF(struct psm_ops, psm_preshutdown) /
877 		    sizeof (void (*)(void));
878 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_4)
879 		/* no psm_intr_ops function */
880 		total_ops = OFFSETOF(struct psm_ops, psm_intr_ops) /
881 		    sizeof (void (*)(void));
882 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_5)
883 		/* no psm_state function */
884 		total_ops = OFFSETOF(struct psm_ops, psm_state) /
885 		    sizeof (void (*)(void));
886 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_6)
887 		/* no psm_cpu_ops function */
888 		total_ops = OFFSETOF(struct psm_ops, psm_cpu_ops) /
889 		    sizeof (void (*)(void));
890 	else
891 		total_ops = sizeof (struct psm_ops) / sizeof (void (*)(void));
892 
893 	/*
894 	 * Save the version of the PSM module, in case we need to
895 	 * behave differently based on version.
896 	 */
897 	mach_ver[0] = mach_ver[owner];
898 
899 	for (i = 0; i < total_ops; i++)
900 		if (clt_opsp[i] != NULL)
901 			srv_opsp[i] = clt_opsp[i];
902 }
903 
904 static void
905 mach_construct_info()
906 {
907 	struct psm_sw *swp;
908 	int	mach_cnt[PSM_OWN_OVERRIDE+1] = {0};
909 	int	conflict_owner = 0;
910 
911 	if (psmsw->psw_forw == psmsw)
912 		panic("No valid PSM modules found");
913 	mutex_enter(&psmsw_lock);
914 	for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
915 		if (!(swp->psw_flag & PSM_MOD_IDENTIFY))
916 			continue;
917 		mach_set[swp->psw_infop->p_owner] = swp->psw_infop->p_ops;
918 		mach_ver[swp->psw_infop->p_owner] = swp->psw_infop->p_version;
919 		mach_cnt[swp->psw_infop->p_owner]++;
920 	}
921 	mutex_exit(&psmsw_lock);
922 
923 	mach_get_platform(PSM_OWN_SYS_DEFAULT);
924 
925 	/* check to see are there any conflicts */
926 	if (mach_cnt[PSM_OWN_EXCLUSIVE] > 1)
927 		conflict_owner = PSM_OWN_EXCLUSIVE;
928 	if (mach_cnt[PSM_OWN_OVERRIDE] > 1)
929 		conflict_owner = PSM_OWN_OVERRIDE;
930 	if (conflict_owner) {
931 		/* remove all psm modules except uppc */
932 		cmn_err(CE_WARN,
933 		    "Conflicts detected on the following PSM modules:");
934 		mutex_enter(&psmsw_lock);
935 		for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
936 			if (swp->psw_infop->p_owner == conflict_owner)
937 				cmn_err(CE_WARN, "%s ",
938 				    swp->psw_infop->p_mach_idstring);
939 		}
940 		mutex_exit(&psmsw_lock);
941 		cmn_err(CE_WARN,
942 		    "Setting the system back to SINGLE processor mode!");
943 		cmn_err(CE_WARN,
944 		    "Please edit /etc/mach to remove the invalid PSM module.");
945 		return;
946 	}
947 
948 	if (mach_set[PSM_OWN_EXCLUSIVE])
949 		mach_get_platform(PSM_OWN_EXCLUSIVE);
950 
951 	if (mach_set[PSM_OWN_OVERRIDE])
952 		mach_get_platform(PSM_OWN_OVERRIDE);
953 }
954 
955 static void
956 mach_init()
957 {
958 	struct psm_ops  *pops;
959 
960 	mach_construct_info();
961 
962 	pops = mach_set[0];
963 
964 	/* register the interrupt and clock initialization rotuines */
965 	picinitf = mach_picinit;
966 	clkinitf = mach_clkinit;
967 	psm_get_clockirq = pops->psm_get_clockirq;
968 
969 	/* register the interrupt setup code */
970 	slvltovect = mach_softlvl_to_vect;
971 	addspl	= pops->psm_addspl;
972 	delspl	= pops->psm_delspl;
973 
974 	if (pops->psm_translate_irq)
975 		psm_translate_irq = pops->psm_translate_irq;
976 	if (pops->psm_intr_ops)
977 		psm_intr_ops = pops->psm_intr_ops;
978 
979 #if defined(PSMI_1_2) || defined(PSMI_1_3) || defined(PSMI_1_4)
980 	/*
981 	 * Time-of-day functionality now handled in TOD modules.
982 	 * (Warn about PSM modules that think that we're going to use
983 	 * their ops vectors.)
984 	 */
985 	if (pops->psm_tod_get)
986 		cmn_err(CE_WARN, "obsolete psm_tod_get op %p",
987 		    (void *)pops->psm_tod_get);
988 
989 	if (pops->psm_tod_set)
990 		cmn_err(CE_WARN, "obsolete psm_tod_set op %p",
991 		    (void *)pops->psm_tod_set);
992 #endif
993 
994 	if (pops->psm_notify_error) {
995 		psm_notify_error = mach_notify_error;
996 		notify_error = pops->psm_notify_error;
997 	}
998 
999 	(*pops->psm_softinit)();
1000 
1001 	/*
1002 	 * Initialize the dispatcher's function hooks to enable CPU halting
1003 	 * when idle.  Set both the deep-idle and non-deep-idle hooks.
1004 	 *
1005 	 * Assume we can use power saving deep-idle loop cpu_idle_adaptive.
1006 	 * Platform deep-idle driver will reset our idle loop to
1007 	 * non_deep_idle_cpu if power saving deep-idle feature is not available.
1008 	 *
1009 	 * Do not use monitor/mwait if idle_cpu_use_hlt is not set(spin idle)
1010 	 * or idle_cpu_prefer_mwait is not set.
1011 	 * Allocate monitor/mwait buffer for cpu0.
1012 	 */
1013 #ifndef __xpv
1014 	non_deep_idle_disp_enq_thread = disp_enq_thread;
1015 #endif
1016 	if (idle_cpu_use_hlt) {
1017 		idle_cpu = cpu_idle_adaptive;
1018 		CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
1019 #ifndef __xpv
1020 		if ((x86_feature & X86_MWAIT) && idle_cpu_prefer_mwait) {
1021 			CPU->cpu_m.mcpu_mwait = cpuid_mwait_alloc(CPU);
1022 			/*
1023 			 * Protect ourself from insane mwait size.
1024 			 */
1025 			if (CPU->cpu_m.mcpu_mwait == NULL) {
1026 #ifdef DEBUG
1027 				cmn_err(CE_NOTE, "Using hlt idle.  Cannot "
1028 				    "handle cpu 0 mwait size.");
1029 #endif
1030 				idle_cpu_prefer_mwait = 0;
1031 				CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
1032 			} else {
1033 				CPU->cpu_m.mcpu_idle_cpu = cpu_idle_mwait;
1034 			}
1035 		} else {
1036 			CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
1037 		}
1038 		non_deep_idle_cpu = CPU->cpu_m.mcpu_idle_cpu;
1039 
1040 		/*
1041 		 * Disable power saving deep idle loop?
1042 		 */
1043 		if (idle_cpu_no_deep_c) {
1044 			idle_cpu = non_deep_idle_cpu;
1045 		}
1046 #endif
1047 	}
1048 
1049 	mach_smpinit();
1050 }
1051 
1052 static void
1053 mach_smpinit(void)
1054 {
1055 	struct psm_ops  *pops;
1056 	processorid_t cpu_id;
1057 	int cnt;
1058 	cpuset_t cpumask;
1059 
1060 	pops = mach_set[0];
1061 	CPUSET_ZERO(cpumask);
1062 
1063 	cpu_id = -1;
1064 	cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
1065 	/*
1066 	 * Only add boot_ncpus CPUs to mp_cpus. Other CPUs will be handled
1067 	 * by CPU DR driver at runtime.
1068 	 */
1069 	for (cnt = 0; cpu_id != -1 && cnt < boot_ncpus; cnt++) {
1070 		CPUSET_ADD(cpumask, cpu_id);
1071 		cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
1072 	}
1073 
1074 	mp_cpus = cpumask;
1075 
1076 	/* MP related routines */
1077 	ap_mlsetup = pops->psm_post_cpu_start;
1078 	send_dirintf = pops->psm_send_ipi;
1079 
1080 	/* optional MP related routines */
1081 	if (pops->psm_shutdown)
1082 		psm_shutdownf = pops->psm_shutdown;
1083 	if (pops->psm_preshutdown)
1084 		psm_preshutdownf = pops->psm_preshutdown;
1085 	if (pops->psm_notify_func)
1086 		psm_notifyf = pops->psm_notify_func;
1087 	if (pops->psm_set_idlecpu)
1088 		psm_set_idle_cpuf = pops->psm_set_idlecpu;
1089 	if (pops->psm_unset_idlecpu)
1090 		psm_unset_idle_cpuf = pops->psm_unset_idlecpu;
1091 
1092 	psm_clkinit = pops->psm_clkinit;
1093 
1094 	if (pops->psm_timer_reprogram)
1095 		psm_timer_reprogram = pops->psm_timer_reprogram;
1096 
1097 	if (pops->psm_timer_enable)
1098 		psm_timer_enable = pops->psm_timer_enable;
1099 
1100 	if (pops->psm_timer_disable)
1101 		psm_timer_disable = pops->psm_timer_disable;
1102 
1103 	if (pops->psm_post_cyclic_setup)
1104 		psm_post_cyclic_setup = pops->psm_post_cyclic_setup;
1105 
1106 	if (pops->psm_state)
1107 		psm_state = pops->psm_state;
1108 
1109 	/*
1110 	 * Set these vectors here so they can be used by Suspend/Resume
1111 	 * on UP machines.
1112 	 */
1113 	if (pops->psm_disable_intr)
1114 		psm_disable_intr = pops->psm_disable_intr;
1115 	if (pops->psm_enable_intr)
1116 		psm_enable_intr  = pops->psm_enable_intr;
1117 
1118 	/* check for multiple CPUs */
1119 	if (cnt < 2 && plat_dr_support_cpu() == B_FALSE)
1120 		return;
1121 
1122 	/* check for MP platforms */
1123 	if (pops->psm_cpu_start == NULL)
1124 		return;
1125 
1126 	/*
1127 	 * Set the dispatcher hook to enable cpu "wake up"
1128 	 * when a thread becomes runnable.
1129 	 */
1130 	if (idle_cpu_use_hlt) {
1131 		disp_enq_thread = cpu_wakeup;
1132 #ifndef __xpv
1133 		if ((x86_feature & X86_MWAIT) && idle_cpu_prefer_mwait)
1134 			disp_enq_thread = cpu_wakeup_mwait;
1135 		non_deep_idle_disp_enq_thread = disp_enq_thread;
1136 #endif
1137 	}
1138 
1139 	psm_get_ipivect = pops->psm_get_ipivect;
1140 
1141 	(void) add_avintr((void *)NULL, XC_HI_PIL, xc_serv, "xc_intr",
1142 	    (*pops->psm_get_ipivect)(XC_HI_PIL, PSM_INTR_IPI_HI),
1143 	    NULL, NULL, NULL, NULL);
1144 
1145 	(void) (*pops->psm_get_ipivect)(XC_CPUPOKE_PIL, PSM_INTR_POKE);
1146 }
1147 
1148 static void
1149 mach_picinit()
1150 {
1151 	struct psm_ops  *pops;
1152 
1153 	pops = mach_set[0];
1154 
1155 	/* register the interrupt handlers */
1156 	setlvl = pops->psm_intr_enter;
1157 	setlvlx = pops->psm_intr_exit;
1158 
1159 	/* initialize the interrupt hardware */
1160 	(*pops->psm_picinit)();
1161 
1162 	/* set interrupt mask for current ipl */
1163 	setspl = pops->psm_setspl;
1164 	cli();
1165 	setspl(CPU->cpu_pri);
1166 }
1167 
1168 uint_t	cpu_freq;	/* MHz */
1169 uint64_t cpu_freq_hz;	/* measured (in hertz) */
1170 
1171 #define	MEGA_HZ		1000000
1172 
1173 #ifdef __xpv
1174 
1175 int xpv_cpufreq_workaround = 1;
1176 int xpv_cpufreq_verbose = 0;
1177 
1178 #else	/* __xpv */
1179 
1180 static uint64_t
1181 mach_calchz(uint32_t pit_counter, uint64_t *processor_clks)
1182 {
1183 	uint64_t cpu_hz;
1184 
1185 	if ((pit_counter == 0) || (*processor_clks == 0) ||
1186 	    (*processor_clks > (((uint64_t)-1) / PIT_HZ)))
1187 		return (0);
1188 
1189 	cpu_hz = ((uint64_t)PIT_HZ * *processor_clks) / pit_counter;
1190 
1191 	return (cpu_hz);
1192 }
1193 
1194 #endif	/* __xpv */
1195 
1196 static uint64_t
1197 mach_getcpufreq(void)
1198 {
1199 #if defined(__xpv)
1200 	vcpu_time_info_t *vti = &CPU->cpu_m.mcpu_vcpu_info->time;
1201 	uint64_t cpu_hz;
1202 
1203 	/*
1204 	 * During dom0 bringup, it was noted that on at least one older
1205 	 * Intel HT machine, the hypervisor initially gives a tsc_to_system_mul
1206 	 * value that is quite wrong (the 3.06GHz clock was reported
1207 	 * as 4.77GHz)
1208 	 *
1209 	 * The curious thing is, that if you stop the kernel at entry,
1210 	 * breakpoint here and inspect the value with kmdb, the value
1211 	 * is correct - but if you don't stop and simply enable the
1212 	 * printf statement (below), you can see the bad value printed
1213 	 * here.  Almost as if something kmdb did caused the hypervisor to
1214 	 * figure it out correctly.  And, note that the hypervisor
1215 	 * eventually -does- figure it out correctly ... if you look at
1216 	 * the field later in the life of dom0, it is correct.
1217 	 *
1218 	 * For now, on dom0, we employ a slightly cheesy workaround of
1219 	 * using the DOM0_PHYSINFO hypercall.
1220 	 */
1221 	if (DOMAIN_IS_INITDOMAIN(xen_info) && xpv_cpufreq_workaround) {
1222 		cpu_hz = 1000 * xpv_cpu_khz();
1223 	} else {
1224 		cpu_hz = (UINT64_C(1000000000) << 32) / vti->tsc_to_system_mul;
1225 
1226 		if (vti->tsc_shift < 0)
1227 			cpu_hz <<= -vti->tsc_shift;
1228 		else
1229 			cpu_hz >>= vti->tsc_shift;
1230 	}
1231 
1232 	if (xpv_cpufreq_verbose)
1233 		printf("mach_getcpufreq: system_mul 0x%x, shift %d, "
1234 		    "cpu_hz %" PRId64 "Hz\n",
1235 		    vti->tsc_to_system_mul, vti->tsc_shift, cpu_hz);
1236 
1237 	return (cpu_hz);
1238 #else	/* __xpv */
1239 	uint32_t pit_counter;
1240 	uint64_t processor_clks;
1241 
1242 	if (x86_feature & X86_TSC) {
1243 		/*
1244 		 * We have a TSC. freq_tsc() knows how to measure the number
1245 		 * of clock cycles sampled against the PIT.
1246 		 */
1247 		ulong_t flags = clear_int_flag();
1248 		processor_clks = freq_tsc(&pit_counter);
1249 		restore_int_flag(flags);
1250 		return (mach_calchz(pit_counter, &processor_clks));
1251 	} else if (x86_vendor == X86_VENDOR_Cyrix || x86_type == X86_TYPE_P5) {
1252 #if defined(__amd64)
1253 		panic("mach_getcpufreq: no TSC!");
1254 #elif defined(__i386)
1255 		/*
1256 		 * We are a Cyrix based on a 6x86 core or an Intel Pentium
1257 		 * for which freq_notsc() knows how to measure the number of
1258 		 * elapsed clock cycles sampled against the PIT
1259 		 */
1260 		ulong_t flags = clear_int_flag();
1261 		processor_clks = freq_notsc(&pit_counter);
1262 		restore_int_flag(flags);
1263 		return (mach_calchz(pit_counter, &processor_clks));
1264 #endif	/* __i386 */
1265 	}
1266 
1267 	/* We do not know how to calculate cpu frequency for this cpu. */
1268 	return (0);
1269 #endif	/* __xpv */
1270 }
1271 
1272 /*
1273  * If the clock speed of a cpu is found to be reported incorrectly, do not add
1274  * to this array, instead improve the accuracy of the algorithm that determines
1275  * the clock speed of the processor or extend the implementation to support the
1276  * vendor as appropriate. This is here only to support adjusting the speed on
1277  * older slower processors that mach_fixcpufreq() would not be able to account
1278  * for otherwise.
1279  */
1280 static int x86_cpu_freq[] = { 60, 75, 80, 90, 120, 160, 166, 175, 180, 233 };
1281 
1282 /*
1283  * On fast processors the clock frequency that is measured may be off by
1284  * a few MHz from the value printed on the part. This is a combination of
1285  * the factors that for such fast parts being off by this much is within
1286  * the tolerances for manufacture and because of the difficulties in the
1287  * measurement that can lead to small error. This function uses some
1288  * heuristics in order to tweak the value that was measured to match what
1289  * is most likely printed on the part.
1290  *
1291  * Some examples:
1292  * 	AMD Athlon 1000 mhz measured as 998 mhz
1293  * 	Intel Pentium III Xeon 733 mhz measured as 731 mhz
1294  * 	Intel Pentium IV 1500 mhz measured as 1495mhz
1295  *
1296  * If in the future this function is no longer sufficient to correct
1297  * for the error in the measurement, then the algorithm used to perform
1298  * the measurement will have to be improved in order to increase accuracy
1299  * rather than adding horrible and questionable kludges here.
1300  *
1301  * This is called after the cyclics subsystem because of the potential
1302  * that the heuristics within may give a worse estimate of the clock
1303  * frequency than the value that was measured.
1304  */
1305 static void
1306 mach_fixcpufreq(void)
1307 {
1308 	uint32_t freq, mul, near66, delta66, near50, delta50, fixed, delta, i;
1309 
1310 	freq = (uint32_t)cpu_freq;
1311 
1312 	/*
1313 	 * Find the nearest integer multiple of 200/3 (about 66) MHz to the
1314 	 * measured speed taking into account that the 667 MHz parts were
1315 	 * the first to round-up.
1316 	 */
1317 	mul = (uint32_t)((3 * (uint64_t)freq + 100) / 200);
1318 	near66 = (uint32_t)((200 * (uint64_t)mul + ((mul >= 10) ? 1 : 0)) / 3);
1319 	delta66 = (near66 > freq) ? (near66 - freq) : (freq - near66);
1320 
1321 	/* Find the nearest integer multiple of 50 MHz to the measured speed */
1322 	mul = (freq + 25) / 50;
1323 	near50 = mul * 50;
1324 	delta50 = (near50 > freq) ? (near50 - freq) : (freq - near50);
1325 
1326 	/* Find the closer of the two */
1327 	if (delta66 < delta50) {
1328 		fixed = near66;
1329 		delta = delta66;
1330 	} else {
1331 		fixed = near50;
1332 		delta = delta50;
1333 	}
1334 
1335 	if (fixed > INT_MAX)
1336 		return;
1337 
1338 	/*
1339 	 * Some older parts have a core clock frequency that is not an
1340 	 * integral multiple of 50 or 66 MHz. Check if one of the old
1341 	 * clock frequencies is closer to the measured value than any
1342 	 * of the integral multiples of 50 an 66, and if so set fixed
1343 	 * and delta appropriately to represent the closest value.
1344 	 */
1345 	i = sizeof (x86_cpu_freq) / sizeof (int);
1346 	while (i > 0) {
1347 		i--;
1348 
1349 		if (x86_cpu_freq[i] <= freq) {
1350 			mul = freq - x86_cpu_freq[i];
1351 
1352 			if (mul < delta) {
1353 				fixed = x86_cpu_freq[i];
1354 				delta = mul;
1355 			}
1356 
1357 			break;
1358 		}
1359 
1360 		mul = x86_cpu_freq[i] - freq;
1361 
1362 		if (mul < delta) {
1363 			fixed = x86_cpu_freq[i];
1364 			delta = mul;
1365 		}
1366 	}
1367 
1368 	/*
1369 	 * Set a reasonable maximum for how much to correct the measured
1370 	 * result by. This check is here to prevent the adjustment made
1371 	 * by this function from being more harm than good. It is entirely
1372 	 * possible that in the future parts will be made that are not
1373 	 * integral multiples of 66 or 50 in clock frequency or that
1374 	 * someone may overclock a part to some odd frequency. If the
1375 	 * measured value is farther from the corrected value than
1376 	 * allowed, then assume the corrected value is in error and use
1377 	 * the measured value.
1378 	 */
1379 	if (6 < delta)
1380 		return;
1381 
1382 	cpu_freq = (int)fixed;
1383 }
1384 
1385 
1386 static int
1387 machhztomhz(uint64_t cpu_freq_hz)
1388 {
1389 	uint64_t cpu_mhz;
1390 
1391 	/* Round to nearest MHZ */
1392 	cpu_mhz = (cpu_freq_hz + (MEGA_HZ / 2)) / MEGA_HZ;
1393 
1394 	if (cpu_mhz > INT_MAX)
1395 		return (0);
1396 
1397 	return ((int)cpu_mhz);
1398 
1399 }
1400 
1401 
1402 static int
1403 mach_clkinit(int preferred_mode, int *set_mode)
1404 {
1405 	struct psm_ops  *pops;
1406 	int resolution;
1407 
1408 	pops = mach_set[0];
1409 
1410 	cpu_freq_hz = mach_getcpufreq();
1411 
1412 	cpu_freq = machhztomhz(cpu_freq_hz);
1413 
1414 	if (!(x86_feature & X86_TSC) || (cpu_freq == 0))
1415 		tsc_gethrtime_enable = 0;
1416 
1417 #ifndef __xpv
1418 	if (tsc_gethrtime_enable) {
1419 		tsc_hrtimeinit(cpu_freq_hz);
1420 	} else
1421 #endif
1422 	{
1423 		if (pops->psm_hrtimeinit)
1424 			(*pops->psm_hrtimeinit)();
1425 		gethrtimef = pops->psm_gethrtime;
1426 		gethrtimeunscaledf = gethrtimef;
1427 		/* scalehrtimef will remain dummy */
1428 	}
1429 
1430 	mach_fixcpufreq();
1431 
1432 	if (mach_ver[0] >= PSM_INFO_VER01_3) {
1433 		if (preferred_mode == TIMER_ONESHOT) {
1434 
1435 			resolution = (*pops->psm_clkinit)(0);
1436 			if (resolution != 0)  {
1437 				*set_mode = TIMER_ONESHOT;
1438 				return (resolution);
1439 			}
1440 		}
1441 
1442 		/*
1443 		 * either periodic mode was requested or could not set to
1444 		 * one-shot mode
1445 		 */
1446 		resolution = (*pops->psm_clkinit)(hz);
1447 		/*
1448 		 * psm should be able to do periodic, so we do not check
1449 		 * for return value of psm_clkinit here.
1450 		 */
1451 		*set_mode = TIMER_PERIODIC;
1452 		return (resolution);
1453 	} else {
1454 		/*
1455 		 * PSMI interface prior to PSMI_3 does not define a return
1456 		 * value for psm_clkinit, so the return value is ignored.
1457 		 */
1458 		(void) (*pops->psm_clkinit)(hz);
1459 		*set_mode = TIMER_PERIODIC;
1460 		return (nsec_per_tick);
1461 	}
1462 }
1463 
1464 
1465 /*ARGSUSED*/
1466 static int
1467 mach_softlvl_to_vect(int ipl)
1468 {
1469 	setsoftint = av_set_softint_pending;
1470 	kdisetsoftint = kdi_av_set_softint_pending;
1471 
1472 	return (PSM_SV_SOFTWARE);
1473 }
1474 
1475 #ifdef DEBUG
1476 /*
1477  * This is here to allow us to simulate cpus that refuse to start.
1478  */
1479 cpuset_t cpufailset;
1480 #endif
1481 
1482 int
1483 mach_cpu_start(struct cpu *cp, void *ctx)
1484 {
1485 	struct psm_ops *pops = mach_set[0];
1486 	processorid_t id = cp->cpu_id;
1487 
1488 #ifdef DEBUG
1489 	if (CPU_IN_SET(cpufailset, id))
1490 		return (0);
1491 #endif
1492 	return ((*pops->psm_cpu_start)(id, ctx));
1493 }
1494 
1495 int
1496 mach_cpuid_start(processorid_t id, void *ctx)
1497 {
1498 	struct psm_ops *pops = mach_set[0];
1499 
1500 #ifdef DEBUG
1501 	if (CPU_IN_SET(cpufailset, id))
1502 		return (0);
1503 #endif
1504 	return ((*pops->psm_cpu_start)(id, ctx));
1505 }
1506 
1507 int
1508 mach_cpu_stop(cpu_t *cp, void *ctx)
1509 {
1510 	struct psm_ops *pops = mach_set[0];
1511 	psm_cpu_request_t request;
1512 
1513 	if (pops->psm_cpu_ops == NULL) {
1514 		return (ENOTSUP);
1515 	}
1516 
1517 	ASSERT(cp->cpu_id != -1);
1518 	request.pcr_cmd = PSM_CPU_STOP;
1519 	request.req.cpu_stop.cpuid = cp->cpu_id;
1520 	request.req.cpu_stop.ctx = ctx;
1521 
1522 	return ((*pops->psm_cpu_ops)(&request));
1523 }
1524 
1525 int
1526 mach_cpu_add(mach_cpu_add_arg_t *argp, processorid_t *cpuidp)
1527 {
1528 	int rc;
1529 	struct psm_ops *pops = mach_set[0];
1530 	psm_cpu_request_t request;
1531 
1532 	if (pops->psm_cpu_ops == NULL) {
1533 		return (ENOTSUP);
1534 	}
1535 
1536 	request.pcr_cmd = PSM_CPU_ADD;
1537 	request.req.cpu_add.argp = argp;
1538 	request.req.cpu_add.cpuid = -1;
1539 	rc = (*pops->psm_cpu_ops)(&request);
1540 	if (rc == 0) {
1541 		ASSERT(request.req.cpu_add.cpuid != -1);
1542 		*cpuidp = request.req.cpu_add.cpuid;
1543 	}
1544 
1545 	return (rc);
1546 }
1547 
1548 int
1549 mach_cpu_remove(processorid_t cpuid)
1550 {
1551 	struct psm_ops *pops = mach_set[0];
1552 	psm_cpu_request_t request;
1553 
1554 	if (pops->psm_cpu_ops == NULL) {
1555 		return (ENOTSUP);
1556 	}
1557 
1558 	request.pcr_cmd = PSM_CPU_REMOVE;
1559 	request.req.cpu_remove.cpuid = cpuid;
1560 
1561 	return ((*pops->psm_cpu_ops)(&request));
1562 }
1563 
1564 /*
1565  * Default handler to create device node for CPU.
1566  * One reference count will be held on created device node.
1567  */
1568 static int
1569 mach_cpu_create_devinfo(cpu_t *cp, dev_info_t **dipp)
1570 {
1571 	int rv, circ;
1572 	dev_info_t *dip;
1573 	static kmutex_t cpu_node_lock;
1574 	static dev_info_t *cpu_nex_devi = NULL;
1575 
1576 	ASSERT(cp != NULL);
1577 	ASSERT(dipp != NULL);
1578 	*dipp = NULL;
1579 
1580 	if (cpu_nex_devi == NULL) {
1581 		mutex_enter(&cpu_node_lock);
1582 		/* First check whether cpus exists. */
1583 		cpu_nex_devi = ddi_find_devinfo("cpus", -1, 0);
1584 		/* Create cpus if it doesn't exist. */
1585 		if (cpu_nex_devi == NULL) {
1586 			ndi_devi_enter(ddi_root_node(), &circ);
1587 			rv = ndi_devi_alloc(ddi_root_node(), "cpus",
1588 			    (pnode_t)DEVI_SID_NODEID, &dip);
1589 			if (rv != NDI_SUCCESS) {
1590 				mutex_exit(&cpu_node_lock);
1591 				cmn_err(CE_CONT,
1592 				    "?failed to create cpu nexus device.\n");
1593 				return (PSM_FAILURE);
1594 			}
1595 			ASSERT(dip != NULL);
1596 			(void) ndi_devi_online(dip, 0);
1597 			ndi_devi_exit(ddi_root_node(), circ);
1598 			cpu_nex_devi = dip;
1599 		}
1600 		mutex_exit(&cpu_node_lock);
1601 	}
1602 
1603 	/*
1604 	 * create a child node for cpu identified as 'cpu_id'
1605 	 */
1606 	ndi_devi_enter(cpu_nex_devi, &circ);
1607 	dip = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID, -1);
1608 	if (dip == NULL) {
1609 		cmn_err(CE_CONT,
1610 		    "?failed to create device node for cpu%d.\n", cp->cpu_id);
1611 		rv = PSM_FAILURE;
1612 	} else {
1613 		*dipp = dip;
1614 		(void) ndi_hold_devi(dip);
1615 		rv = PSM_SUCCESS;
1616 	}
1617 	ndi_devi_exit(cpu_nex_devi, circ);
1618 
1619 	return (rv);
1620 }
1621 
1622 /*
1623  * Create cpu device node in device tree and online it.
1624  * Return created dip with reference count held if requested.
1625  */
1626 int
1627 mach_cpu_create_device_node(struct cpu *cp, dev_info_t **dipp)
1628 {
1629 	int rv;
1630 	dev_info_t *dip = NULL;
1631 
1632 	ASSERT(psm_cpu_create_devinfo != NULL);
1633 	rv = psm_cpu_create_devinfo(cp, &dip);
1634 	if (rv == PSM_SUCCESS) {
1635 		cpuid_set_cpu_properties(dip, cp->cpu_id, cp->cpu_m.mcpu_cpi);
1636 		/* Recursively attach driver for parent nexus device. */
1637 		if (i_ddi_attach_node_hierarchy(ddi_get_parent(dip)) ==
1638 		    DDI_SUCCESS) {
1639 			/* Configure cpu itself and descendants. */
1640 			(void) ndi_devi_online(dip,
1641 			    NDI_ONLINE_ATTACH | NDI_CONFIG);
1642 		}
1643 		if (dipp != NULL) {
1644 			*dipp = dip;
1645 		} else {
1646 			(void) ndi_rele_devi(dip);
1647 		}
1648 	}
1649 
1650 	return (rv);
1651 }
1652 
1653 /*
1654  * The dipp contains one of following values on return:
1655  * - NULL if no device node found
1656  * - pointer to device node if found
1657  */
1658 int
1659 mach_cpu_get_device_node(struct cpu *cp, dev_info_t **dipp)
1660 {
1661 	*dipp = NULL;
1662 	if (psm_cpu_get_devinfo != NULL) {
1663 		if (psm_cpu_get_devinfo(cp, dipp) == PSM_SUCCESS) {
1664 			return (PSM_SUCCESS);
1665 		}
1666 	}
1667 
1668 	return (PSM_FAILURE);
1669 }
1670 
1671 /*ARGSUSED*/
1672 static int
1673 mach_translate_irq(dev_info_t *dip, int irqno)
1674 {
1675 	return (irqno);	/* default to NO translation */
1676 }
1677 
1678 static void
1679 mach_notify_error(int level, char *errmsg)
1680 {
1681 	/*
1682 	 * SL_FATAL is pass in once panicstr is set, deliver it
1683 	 * as CE_PANIC.  Also, translate SL_ codes back to CE_
1684 	 * codes for the psmi handler
1685 	 */
1686 	if (level & SL_FATAL)
1687 		(*notify_error)(CE_PANIC, errmsg);
1688 	else if (level & SL_WARN)
1689 		(*notify_error)(CE_WARN, errmsg);
1690 	else if (level & SL_NOTE)
1691 		(*notify_error)(CE_NOTE, errmsg);
1692 	else if (level & SL_CONSOLE)
1693 		(*notify_error)(CE_CONT, errmsg);
1694 }
1695 
1696 /*
1697  * It provides the default basic intr_ops interface for the new DDI
1698  * interrupt framework if the PSM doesn't have one.
1699  *
1700  * Input:
1701  * dip     - pointer to the dev_info structure of the requested device
1702  * hdlp    - pointer to the internal interrupt handle structure for the
1703  *	     requested interrupt
1704  * intr_op - opcode for this call
1705  * result  - pointer to the integer that will hold the result to be
1706  *	     passed back if return value is PSM_SUCCESS
1707  *
1708  * Output:
1709  * return value is either PSM_SUCCESS or PSM_FAILURE
1710  */
1711 static int
1712 mach_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
1713     psm_intr_op_t intr_op, int *result)
1714 {
1715 	struct intrspec *ispec;
1716 
1717 	switch (intr_op) {
1718 	case PSM_INTR_OP_CHECK_MSI:
1719 		*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
1720 		    DDI_INTR_TYPE_MSIX);
1721 		break;
1722 	case PSM_INTR_OP_ALLOC_VECTORS:
1723 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1724 			*result = 1;
1725 		else
1726 			*result = 0;
1727 		break;
1728 	case PSM_INTR_OP_FREE_VECTORS:
1729 		break;
1730 	case PSM_INTR_OP_NAVAIL_VECTORS:
1731 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1732 			*result = 1;
1733 		else
1734 			*result = 0;
1735 		break;
1736 	case PSM_INTR_OP_XLATE_VECTOR:
1737 		ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
1738 		*result = psm_translate_irq(dip, ispec->intrspec_vec);
1739 		break;
1740 	case PSM_INTR_OP_GET_CAP:
1741 		*result = 0;
1742 		break;
1743 	case PSM_INTR_OP_GET_PENDING:
1744 	case PSM_INTR_OP_CLEAR_MASK:
1745 	case PSM_INTR_OP_SET_MASK:
1746 	case PSM_INTR_OP_GET_SHARED:
1747 	case PSM_INTR_OP_SET_PRI:
1748 	case PSM_INTR_OP_SET_CAP:
1749 	case PSM_INTR_OP_SET_CPU:
1750 	case PSM_INTR_OP_GET_INTR:
1751 	default:
1752 		return (PSM_FAILURE);
1753 	}
1754 	return (PSM_SUCCESS);
1755 }
1756 /*
1757  * Return 1 if CMT load balancing policies should be
1758  * implemented across instances of the specified hardware
1759  * sharing relationship.
1760  */
1761 int
1762 pg_cmt_load_bal_hw(pghw_type_t hw)
1763 {
1764 	if (hw == PGHW_IPIPE ||
1765 	    hw == PGHW_FPU ||
1766 	    hw == PGHW_PROCNODE ||
1767 	    hw == PGHW_CHIP)
1768 		return (1);
1769 	else
1770 		return (0);
1771 }
1772 /*
1773  * Return 1 if thread affinity polices should be implemented
1774  * for instances of the specifed hardware sharing relationship.
1775  */
1776 int
1777 pg_cmt_affinity_hw(pghw_type_t hw)
1778 {
1779 	if (hw == PGHW_CACHE)
1780 		return (1);
1781 	else
1782 		return (0);
1783 }
1784 
1785 /*
1786  * Return number of counter events requested to measure hardware capacity and
1787  * utilization and setup CPC requests for specified CPU as needed
1788  *
1789  * May return 0 when platform or processor specific code knows that no CPC
1790  * events should be programmed on this CPU or -1 when platform or processor
1791  * specific code doesn't know which counter events are best to use and common
1792  * code should decide for itself
1793  */
1794 int
1795 /* LINTED E_FUNC_ARG_UNUSED */
1796 cu_plat_cpc_init(cpu_t *cp, kcpc_request_list_t *reqs, int nreqs)
1797 {
1798 	const char	*impl_name;
1799 
1800 	/*
1801 	 * Return error if pcbe_ops not set
1802 	 */
1803 	if (pcbe_ops == NULL)
1804 		return (-1);
1805 
1806 	/*
1807 	 * Return that no CPC events should be programmed on hyperthreaded
1808 	 * Pentium 4 and return error for all other x86 processors to tell
1809 	 * common code to decide what counter events to program on those CPUs
1810 	 * for measuring hardware capacity and utilization
1811 	 */
1812 	impl_name = pcbe_ops->pcbe_impl_name();
1813 	if (impl_name != NULL && strcmp(impl_name, PCBE_IMPL_NAME_P4HT) == 0)
1814 		return (0);
1815 	else
1816 		return (-1);
1817 }
1818