xref: /titanic_50/usr/src/uts/i86pc/os/mp_machdep.c (revision 5878c602b2d040000355d54d766aac95446139a9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #define	PSMI_1_5
29 #include <sys/smp_impldefs.h>
30 #include <sys/psm.h>
31 #include <sys/psm_modctl.h>
32 #include <sys/pit.h>
33 #include <sys/cmn_err.h>
34 #include <sys/strlog.h>
35 #include <sys/clock.h>
36 #include <sys/debug.h>
37 #include <sys/rtc.h>
38 #include <sys/x86_archext.h>
39 #include <sys/cpupart.h>
40 #include <sys/cpuvar.h>
41 #include <sys/cmt.h>
42 #include <sys/cpu.h>
43 #include <sys/disp.h>
44 #include <sys/archsystm.h>
45 #include <sys/machsystm.h>
46 #include <sys/sysmacros.h>
47 #include <sys/param.h>
48 #include <sys/promif.h>
49 #include <sys/mach_intr.h>
50 #include <vm/hat_i86.h>
51 
52 #define	OFFSETOF(s, m)		(size_t)(&(((s *)0)->m))
53 
54 /*
55  *	Local function prototypes
56  */
57 static int mp_disable_intr(processorid_t cpun);
58 static void mp_enable_intr(processorid_t cpun);
59 static void mach_init();
60 static void mach_picinit();
61 static uint64_t mach_calchz(uint32_t pit_counter, uint64_t *processor_clks);
62 static int machhztomhz(uint64_t cpu_freq_hz);
63 static uint64_t mach_getcpufreq(void);
64 static void mach_fixcpufreq(void);
65 static int mach_clkinit(int, int *);
66 static void mach_smpinit(void);
67 static void mach_set_softintr(int ipl, struct av_softinfo *);
68 static int mach_softlvl_to_vect(int ipl);
69 static void mach_get_platform(int owner);
70 static void mach_construct_info();
71 static int mach_translate_irq(dev_info_t *dip, int irqno);
72 static int mach_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
73     psm_intr_op_t, int *);
74 static void mach_notify_error(int level, char *errmsg);
75 static hrtime_t dummy_hrtime(void);
76 static void dummy_scalehrtime(hrtime_t *);
77 static void cpu_idle(void);
78 static void cpu_wakeup(cpu_t *, int);
79 static void cpu_idle_mwait(void);
80 static void cpu_wakeup_mwait(cpu_t *, int);
81 /*
82  *	External reference functions
83  */
84 extern void return_instr();
85 extern uint64_t freq_tsc(uint32_t *);
86 #if defined(__i386)
87 extern uint64_t freq_notsc(uint32_t *);
88 #endif
89 extern void pc_gethrestime(timestruc_t *);
90 extern int cpuid_get_coreid(cpu_t *);
91 extern int cpuid_get_chipid(cpu_t *);
92 
93 /*
94  *	PSM functions initialization
95  */
96 void (*psm_shutdownf)(int, int)	= (void (*)(int, int))return_instr;
97 void (*psm_preshutdownf)(int, int) = (void (*)(int, int))return_instr;
98 void (*psm_notifyf)(int)	= (void (*)(int))return_instr;
99 void (*psm_set_idle_cpuf)(int)	= (void (*)(int))return_instr;
100 void (*psm_unset_idle_cpuf)(int) = (void (*)(int))return_instr;
101 void (*psminitf)()		= mach_init;
102 void (*picinitf)() 		= return_instr;
103 int (*clkinitf)(int, int *) 	= (int (*)(int, int *))return_instr;
104 int (*ap_mlsetup)() 		= (int (*)(void))return_instr;
105 void (*send_dirintf)() 		= return_instr;
106 void (*setspl)(int)		= (void (*)(int))return_instr;
107 int (*addspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
108 int (*delspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
109 void (*setsoftint)(int, struct av_softinfo *)=
110 	(void (*)(int, struct av_softinfo *))return_instr;
111 int (*slvltovect)(int)		= (int (*)(int))return_instr;
112 int (*setlvl)(int, int *)	= (int (*)(int, int *))return_instr;
113 void (*setlvlx)(int, int)	= (void (*)(int, int))return_instr;
114 int (*psm_disable_intr)(int)	= mp_disable_intr;
115 void (*psm_enable_intr)(int)	= mp_enable_intr;
116 hrtime_t (*gethrtimef)(void)	= dummy_hrtime;
117 hrtime_t (*gethrtimeunscaledf)(void)	= dummy_hrtime;
118 void (*scalehrtimef)(hrtime_t *)	= dummy_scalehrtime;
119 int (*psm_translate_irq)(dev_info_t *, int) = mach_translate_irq;
120 void (*gethrestimef)(timestruc_t *) = pc_gethrestime;
121 void (*psm_notify_error)(int, char *) = (void (*)(int, char *))NULL;
122 int (*psm_get_clockirq)(int) = NULL;
123 int (*psm_get_ipivect)(int, int) = NULL;
124 
125 int (*psm_clkinit)(int) = NULL;
126 void (*psm_timer_reprogram)(hrtime_t) = NULL;
127 void (*psm_timer_enable)(void) = NULL;
128 void (*psm_timer_disable)(void) = NULL;
129 void (*psm_post_cyclic_setup)(void *arg) = NULL;
130 int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t,
131     int *) = mach_intr_ops;
132 
133 void (*notify_error)(int, char *) = (void (*)(int, char *))return_instr;
134 void (*hrtime_tick)(void)	= return_instr;
135 
136 int tsc_gethrtime_enable = 1;
137 int tsc_gethrtime_initted = 0;
138 
139 /*
140  * Local Static Data
141  */
142 static struct psm_ops mach_ops;
143 static struct psm_ops *mach_set[4] = {&mach_ops, NULL, NULL, NULL};
144 static ushort_t mach_ver[4] = {0, 0, 0, 0};
145 
146 /*
147  * If non-zero, idle cpus will become "halted" when there's
148  * no work to do.
149  */
150 int	idle_cpu_use_hlt = 1;
151 
152 /*
153  * If non-zero, idle cpus will use mwait if available to halt instead of hlt.
154  */
155 int	idle_cpu_prefer_mwait = 1;
156 
157 
158 /*ARGSUSED*/
159 int
160 pg_plat_hw_shared(cpu_t *cp, pghw_type_t hw)
161 {
162 	switch (hw) {
163 	case PGHW_IPIPE:
164 		if (x86_feature & (X86_HTT)) {
165 			/*
166 			 * Hyper-threading is SMT
167 			 */
168 			return (1);
169 		} else {
170 			return (0);
171 		}
172 	case PGHW_CHIP:
173 		if (x86_feature & (X86_CMP|X86_HTT))
174 			return (1);
175 		else
176 			return (0);
177 	case PGHW_CACHE:
178 		if (cpuid_get_ncpu_sharing_last_cache(cp) > 1)
179 			return (1);
180 		else
181 			return (0);
182 	default:
183 		return (0);
184 	}
185 }
186 
187 /*
188  * Compare two CPUs and see if they have a pghw_type_t sharing relationship
189  * If pghw_type_t is an unsupported hardware type, then return -1
190  */
191 int
192 pg_plat_cpus_share(cpu_t *cpu_a, cpu_t *cpu_b, pghw_type_t hw)
193 {
194 	id_t pgp_a, pgp_b;
195 
196 	pgp_a = pg_plat_hw_instance_id(cpu_a, hw);
197 	pgp_b = pg_plat_hw_instance_id(cpu_b, hw);
198 
199 	if (pgp_a == -1 || pgp_b == -1)
200 		return (-1);
201 
202 	return (pgp_a == pgp_b);
203 }
204 
205 /*
206  * Return a physical instance identifier for known hardware sharing
207  * relationships
208  */
209 id_t
210 pg_plat_hw_instance_id(cpu_t *cpu, pghw_type_t hw)
211 {
212 	switch (hw) {
213 	case PGHW_IPIPE:
214 		return (cpuid_get_coreid(cpu));
215 	case PGHW_CACHE:
216 		return (cpuid_get_last_lvl_cacheid(cpu));
217 	case PGHW_CHIP:
218 		return (cpuid_get_chipid(cpu));
219 	default:
220 		return (-1);
221 	}
222 }
223 
224 int
225 pg_plat_hw_level(pghw_type_t hw)
226 {
227 	int i;
228 	static pghw_type_t hw_hier[] = {
229 		PGHW_IPIPE,
230 		PGHW_CACHE,
231 		PGHW_CHIP,
232 		PGHW_NUM_COMPONENTS
233 	};
234 
235 	for (i = 0; hw_hier[i] != PGHW_NUM_COMPONENTS; i++) {
236 		if (hw_hier[i] == hw)
237 			return (i);
238 	}
239 	return (-1);
240 }
241 
242 /*
243  * Return 1 if CMT load balancing policies should be
244  * implemented across instances of the specified hardware
245  * sharing relationship.
246  */
247 int
248 pg_plat_cmt_load_bal_hw(pghw_type_t hw)
249 {
250 	if (hw == PGHW_IPIPE ||
251 	    hw == PGHW_FPU ||
252 	    hw == PGHW_CHIP ||
253 	    hw == PGHW_CACHE)
254 		return (1);
255 	else
256 		return (0);
257 }
258 
259 
260 /*
261  * Return 1 if thread affinity polices should be implemented
262  * for instances of the specifed hardware sharing relationship.
263  */
264 int
265 pg_plat_cmt_affinity_hw(pghw_type_t hw)
266 {
267 	if (hw == PGHW_CACHE)
268 		return (1);
269 	else
270 		return (0);
271 }
272 
273 id_t
274 pg_plat_get_core_id(cpu_t *cpu)
275 {
276 	return ((id_t)cpuid_get_coreid(cpu));
277 }
278 
279 void
280 cmp_set_nosteal_interval(void)
281 {
282 	/* Set the nosteal interval (used by disp_getbest()) to 100us */
283 	nosteal_nsec = 100000UL;
284 }
285 
286 /*
287  * Routine to ensure initial callers to hrtime gets 0 as return
288  */
289 static hrtime_t
290 dummy_hrtime(void)
291 {
292 	return (0);
293 }
294 
295 /* ARGSUSED */
296 static void
297 dummy_scalehrtime(hrtime_t *ticks)
298 {}
299 
300 /*
301  * Idle the present CPU until awoken via an interrupt
302  */
303 static void
304 cpu_idle(void)
305 {
306 	cpu_t		*cpup = CPU;
307 	processorid_t	cpun = cpup->cpu_id;
308 	cpupart_t	*cp = cpup->cpu_part;
309 	int		hset_update = 1;
310 
311 	/*
312 	 * If this CPU is online, and there's multiple CPUs
313 	 * in the system, then we should notate our halting
314 	 * by adding ourselves to the partition's halted CPU
315 	 * bitmap. This allows other CPUs to find/awaken us when
316 	 * work becomes available.
317 	 */
318 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
319 		hset_update = 0;
320 
321 	/*
322 	 * Add ourselves to the partition's halted CPUs bitmask
323 	 * and set our HALTED flag, if necessary.
324 	 *
325 	 * When a thread becomes runnable, it is placed on the queue
326 	 * and then the halted cpuset is checked to determine who
327 	 * (if anyone) should be awoken. We therefore need to first
328 	 * add ourselves to the halted cpuset, and and then check if there
329 	 * is any work available.
330 	 *
331 	 * Note that memory barriers after updating the HALTED flag
332 	 * are not necessary since an atomic operation (updating the bitmap)
333 	 * immediately follows. On x86 the atomic operation acts as a
334 	 * memory barrier for the update of cpu_disp_flags.
335 	 */
336 	if (hset_update) {
337 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
338 		CPUSET_ATOMIC_ADD(cp->cp_mach->mc_haltset, cpun);
339 	}
340 
341 	/*
342 	 * Check to make sure there's really nothing to do.
343 	 * Work destined for this CPU may become available after
344 	 * this check. We'll be notified through the clearing of our
345 	 * bit in the halted CPU bitmask, and a poke.
346 	 */
347 	if (disp_anywork()) {
348 		if (hset_update) {
349 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
350 			CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun);
351 		}
352 		return;
353 	}
354 
355 	/*
356 	 * We're on our way to being halted.
357 	 *
358 	 * Disable interrupts now, so that we'll awaken immediately
359 	 * after halting if someone tries to poke us between now and
360 	 * the time we actually halt.
361 	 *
362 	 * We check for the presence of our bit after disabling interrupts.
363 	 * If it's cleared, we'll return. If the bit is cleared after
364 	 * we check then the poke will pop us out of the halted state.
365 	 *
366 	 * This means that the ordering of the poke and the clearing
367 	 * of the bit by cpu_wakeup is important.
368 	 * cpu_wakeup() must clear, then poke.
369 	 * cpu_idle() must disable interrupts, then check for the bit.
370 	 */
371 	cli();
372 
373 	if (hset_update && !CPU_IN_SET(cp->cp_mach->mc_haltset, cpun)) {
374 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
375 		sti();
376 		return;
377 	}
378 
379 	/*
380 	 * The check for anything locally runnable is here for performance
381 	 * and isn't needed for correctness. disp_nrunnable ought to be
382 	 * in our cache still, so it's inexpensive to check, and if there
383 	 * is anything runnable we won't have to wait for the poke.
384 	 */
385 	if (cpup->cpu_disp->disp_nrunnable != 0) {
386 		if (hset_update) {
387 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
388 			CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun);
389 		}
390 		sti();
391 		return;
392 	}
393 
394 	mach_cpu_idle();
395 
396 	/*
397 	 * We're no longer halted
398 	 */
399 	if (hset_update) {
400 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
401 		CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun);
402 	}
403 }
404 
405 
406 /*
407  * If "cpu" is halted, then wake it up clearing its halted bit in advance.
408  * Otherwise, see if other CPUs in the cpu partition are halted and need to
409  * be woken up so that they can steal the thread we placed on this CPU.
410  * This function is only used on MP systems.
411  */
412 static void
413 cpu_wakeup(cpu_t *cpu, int bound)
414 {
415 	uint_t		cpu_found;
416 	int		result;
417 	cpupart_t	*cp;
418 
419 	cp = cpu->cpu_part;
420 	if (CPU_IN_SET(cp->cp_mach->mc_haltset, cpu->cpu_id)) {
421 		/*
422 		 * Clear the halted bit for that CPU since it will be
423 		 * poked in a moment.
424 		 */
425 		CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpu->cpu_id);
426 		/*
427 		 * We may find the current CPU present in the halted cpuset
428 		 * if we're in the context of an interrupt that occurred
429 		 * before we had a chance to clear our bit in cpu_idle().
430 		 * Poking ourself is obviously unnecessary, since if
431 		 * we're here, we're not halted.
432 		 */
433 		if (cpu != CPU)
434 			poke_cpu(cpu->cpu_id);
435 		return;
436 	} else {
437 		/*
438 		 * This cpu isn't halted, but it's idle or undergoing a
439 		 * context switch. No need to awaken anyone else.
440 		 */
441 		if (cpu->cpu_thread == cpu->cpu_idle_thread ||
442 		    cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL)
443 			return;
444 	}
445 
446 	/*
447 	 * No need to wake up other CPUs if the thread we just enqueued
448 	 * is bound.
449 	 */
450 	if (bound)
451 		return;
452 
453 
454 	/*
455 	 * See if there's any other halted CPUs. If there are, then
456 	 * select one, and awaken it.
457 	 * It's possible that after we find a CPU, somebody else
458 	 * will awaken it before we get the chance.
459 	 * In that case, look again.
460 	 */
461 	do {
462 		CPUSET_FIND(cp->cp_mach->mc_haltset, cpu_found);
463 		if (cpu_found == CPUSET_NOTINSET)
464 			return;
465 
466 		ASSERT(cpu_found >= 0 && cpu_found < NCPU);
467 		CPUSET_ATOMIC_XDEL(cp->cp_mach->mc_haltset, cpu_found, result);
468 	} while (result < 0);
469 
470 	if (cpu_found != CPU->cpu_id)
471 		poke_cpu(cpu_found);
472 }
473 
474 /*
475  * Idle the present CPU until awoken via touching its monitored line
476  */
477 static void
478 cpu_idle_mwait(void)
479 {
480 	volatile uint32_t	*mcpu_mwait = CPU->cpu_m.mcpu_mwait;
481 	cpu_t			*cpup = CPU;
482 	processorid_t		cpun = cpup->cpu_id;
483 	cpupart_t		*cp = cpup->cpu_part;
484 	int			hset_update = 1;
485 
486 	/*
487 	 * Set our mcpu_mwait here, so we can tell if anyone trys to
488 	 * wake us between now and when we call mwait.  No other cpu will
489 	 * attempt to set our mcpu_mwait until we add ourself to the haltset.
490 	 */
491 	*mcpu_mwait = MWAIT_HALTED;
492 
493 	/*
494 	 * If this CPU is online, and there's multiple CPUs
495 	 * in the system, then we should notate our halting
496 	 * by adding ourselves to the partition's halted CPU
497 	 * bitmap. This allows other CPUs to find/awaken us when
498 	 * work becomes available.
499 	 */
500 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
501 		hset_update = 0;
502 
503 	/*
504 	 * Add ourselves to the partition's halted CPUs bitmask
505 	 * and set our HALTED flag, if necessary.
506 	 *
507 	 * When a thread becomes runnable, it is placed on the queue
508 	 * and then the halted cpuset is checked to determine who
509 	 * (if anyone) should be awoken. We therefore need to first
510 	 * add ourselves to the halted cpuset, and and then check if there
511 	 * is any work available.
512 	 *
513 	 * Note that memory barriers after updating the HALTED flag
514 	 * are not necessary since an atomic operation (updating the bitmap)
515 	 * immediately follows. On x86 the atomic operation acts as a
516 	 * memory barrier for the update of cpu_disp_flags.
517 	 */
518 	if (hset_update) {
519 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
520 		CPUSET_ATOMIC_ADD(cp->cp_mach->mc_haltset, cpun);
521 	}
522 
523 	/*
524 	 * Check to make sure there's really nothing to do.
525 	 * Work destined for this CPU may become available after
526 	 * this check. We'll be notified through the clearing of our
527 	 * bit in the halted CPU bitmask, and a write to our mcpu_mwait.
528 	 *
529 	 * disp_anywork() checks disp_nrunnable, so we do not have to later.
530 	 */
531 	if (disp_anywork()) {
532 		if (hset_update) {
533 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
534 			CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun);
535 		}
536 		return;
537 	}
538 
539 	/*
540 	 * We're on our way to being halted.
541 	 * To avoid a lost wakeup, arm the monitor before checking if another
542 	 * cpu wrote to mcpu_mwait to wake us up.
543 	 */
544 	i86_monitor(mcpu_mwait, 0, 0);
545 	if (*mcpu_mwait == MWAIT_HALTED) {
546 		tlb_going_idle();
547 		i86_mwait(0, 0);
548 		tlb_service();
549 	}
550 
551 	/*
552 	 * We're no longer halted
553 	 */
554 	if (hset_update) {
555 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
556 		CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun);
557 	}
558 }
559 
560 /*
561  * If "cpu" is halted in mwait, then wake it up clearing its halted bit in
562  * advance.  Otherwise, see if other CPUs in the cpu partition are halted and
563  * need to be woken up so that they can steal the thread we placed on this CPU.
564  * This function is only used on MP systems.
565  */
566 static void
567 cpu_wakeup_mwait(cpu_t *cp, int bound)
568 {
569 	cpupart_t	*cpu_part;
570 	uint_t		cpu_found;
571 	int		result;
572 
573 	cpu_part = cp->cpu_part;
574 
575 	/*
576 	 * Clear the halted bit for that CPU since it will be woken up
577 	 * in a moment.
578 	 */
579 	if (CPU_IN_SET(cpu_part->cp_mach->mc_haltset, cp->cpu_id)) {
580 		/*
581 		 * Clear the halted bit for that CPU since it will be
582 		 * poked in a moment.
583 		 */
584 		CPUSET_ATOMIC_DEL(cpu_part->cp_mach->mc_haltset, cp->cpu_id);
585 		/*
586 		 * We may find the current CPU present in the halted cpuset
587 		 * if we're in the context of an interrupt that occurred
588 		 * before we had a chance to clear our bit in cpu_idle().
589 		 * Waking ourself is obviously unnecessary, since if
590 		 * we're here, we're not halted.
591 		 *
592 		 * monitor/mwait wakeup via writing to our cache line is
593 		 * harmless and less expensive than always checking if we
594 		 * are waking ourself which is an uncommon case.
595 		 */
596 		MWAIT_WAKEUP(cp);	/* write to monitored line */
597 		return;
598 	} else {
599 		/*
600 		 * This cpu isn't halted, but it's idle or undergoing a
601 		 * context switch. No need to awaken anyone else.
602 		 */
603 		if (cp->cpu_thread == cp->cpu_idle_thread ||
604 		    cp->cpu_disp_flags & CPU_DISP_DONTSTEAL)
605 			return;
606 	}
607 
608 	/*
609 	 * No need to wake up other CPUs if the thread we just enqueued
610 	 * is bound.
611 	 */
612 	if (bound)
613 		return;
614 
615 
616 	/*
617 	 * See if there's any other halted CPUs. If there are, then
618 	 * select one, and awaken it.
619 	 * It's possible that after we find a CPU, somebody else
620 	 * will awaken it before we get the chance.
621 	 * In that case, look again.
622 	 */
623 	do {
624 		CPUSET_FIND(cpu_part->cp_mach->mc_haltset, cpu_found);
625 		if (cpu_found == CPUSET_NOTINSET)
626 			return;
627 
628 		ASSERT(cpu_found >= 0 && cpu_found < NCPU);
629 		CPUSET_ATOMIC_XDEL(cpu_part->cp_mach->mc_haltset, cpu_found,
630 		    result);
631 	} while (result < 0);
632 
633 	/*
634 	 * Do not check if cpu_found is ourself as monitor/mwait wakeup is
635 	 * cheap.
636 	 */
637 	MWAIT_WAKEUP(cpu[cpu_found]);	/* write to monitored line */
638 }
639 
640 void (*cpu_pause_handler)(volatile char *) = NULL;
641 
642 static int
643 mp_disable_intr(int cpun)
644 {
645 	/*
646 	 * switch to the offline cpu
647 	 */
648 	affinity_set(cpun);
649 	/*
650 	 * raise ipl to just below cross call
651 	 */
652 	splx(XC_MED_PIL-1);
653 	/*
654 	 *	set base spl to prevent the next swtch to idle from
655 	 *	lowering back to ipl 0
656 	 */
657 	CPU->cpu_intr_actv |= (1 << (XC_MED_PIL-1));
658 	set_base_spl();
659 	affinity_clear();
660 	return (DDI_SUCCESS);
661 }
662 
663 static void
664 mp_enable_intr(int cpun)
665 {
666 	/*
667 	 * switch to the online cpu
668 	 */
669 	affinity_set(cpun);
670 	/*
671 	 * clear the interrupt active mask
672 	 */
673 	CPU->cpu_intr_actv &= ~(1 << (XC_MED_PIL-1));
674 	set_base_spl();
675 	(void) spl0();
676 	affinity_clear();
677 }
678 
679 static void
680 mach_get_platform(int owner)
681 {
682 	void		**srv_opsp;
683 	void		**clt_opsp;
684 	int		i;
685 	int		total_ops;
686 
687 	/* fix up psm ops */
688 	srv_opsp = (void **)mach_set[0];
689 	clt_opsp = (void **)mach_set[owner];
690 	if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01)
691 		total_ops = sizeof (struct psm_ops_ver01) /
692 		    sizeof (void (*)(void));
693 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_1)
694 		/* no psm_notify_func */
695 		total_ops = OFFSETOF(struct psm_ops, psm_notify_func) /
696 		    sizeof (void (*)(void));
697 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_2)
698 		/* no psm_timer funcs */
699 		total_ops = OFFSETOF(struct psm_ops, psm_timer_reprogram) /
700 		    sizeof (void (*)(void));
701 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_3)
702 		/* no psm_preshutdown function */
703 		total_ops = OFFSETOF(struct psm_ops, psm_preshutdown) /
704 		    sizeof (void (*)(void));
705 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_4)
706 		/* no psm_preshutdown function */
707 		total_ops = OFFSETOF(struct psm_ops, psm_intr_ops) /
708 		    sizeof (void (*)(void));
709 	else
710 		total_ops = sizeof (struct psm_ops) / sizeof (void (*)(void));
711 
712 	/*
713 	 * Save the version of the PSM module, in case we need to
714 	 * bahave differently based on version.
715 	 */
716 	mach_ver[0] = mach_ver[owner];
717 
718 	for (i = 0; i < total_ops; i++)
719 		if (clt_opsp[i] != NULL)
720 			srv_opsp[i] = clt_opsp[i];
721 }
722 
723 static void
724 mach_construct_info()
725 {
726 	struct psm_sw *swp;
727 	int	mach_cnt[PSM_OWN_OVERRIDE+1] = {0};
728 	int	conflict_owner = 0;
729 
730 	if (psmsw->psw_forw == psmsw)
731 		panic("No valid PSM modules found");
732 	mutex_enter(&psmsw_lock);
733 	for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
734 		if (!(swp->psw_flag & PSM_MOD_IDENTIFY))
735 			continue;
736 		mach_set[swp->psw_infop->p_owner] = swp->psw_infop->p_ops;
737 		mach_ver[swp->psw_infop->p_owner] = swp->psw_infop->p_version;
738 		mach_cnt[swp->psw_infop->p_owner]++;
739 	}
740 	mutex_exit(&psmsw_lock);
741 
742 	mach_get_platform(PSM_OWN_SYS_DEFAULT);
743 
744 	/* check to see are there any conflicts */
745 	if (mach_cnt[PSM_OWN_EXCLUSIVE] > 1)
746 		conflict_owner = PSM_OWN_EXCLUSIVE;
747 	if (mach_cnt[PSM_OWN_OVERRIDE] > 1)
748 		conflict_owner = PSM_OWN_OVERRIDE;
749 	if (conflict_owner) {
750 		/* remove all psm modules except uppc */
751 		cmn_err(CE_WARN,
752 		    "Conflicts detected on the following PSM modules:");
753 		mutex_enter(&psmsw_lock);
754 		for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
755 			if (swp->psw_infop->p_owner == conflict_owner)
756 				cmn_err(CE_WARN, "%s ",
757 				    swp->psw_infop->p_mach_idstring);
758 		}
759 		mutex_exit(&psmsw_lock);
760 		cmn_err(CE_WARN,
761 		    "Setting the system back to SINGLE processor mode!");
762 		cmn_err(CE_WARN,
763 		    "Please edit /etc/mach to remove the invalid PSM module.");
764 		return;
765 	}
766 
767 	if (mach_set[PSM_OWN_EXCLUSIVE])
768 		mach_get_platform(PSM_OWN_EXCLUSIVE);
769 
770 	if (mach_set[PSM_OWN_OVERRIDE])
771 		mach_get_platform(PSM_OWN_OVERRIDE);
772 }
773 
774 static void
775 mach_init()
776 {
777 	struct psm_ops  *pops;
778 
779 	mach_construct_info();
780 
781 	pops = mach_set[0];
782 
783 	/* register the interrupt and clock initialization rotuines */
784 	picinitf = mach_picinit;
785 	clkinitf = mach_clkinit;
786 	psm_get_clockirq = pops->psm_get_clockirq;
787 
788 	/* register the interrupt setup code */
789 	slvltovect = mach_softlvl_to_vect;
790 	addspl	= pops->psm_addspl;
791 	delspl	= pops->psm_delspl;
792 
793 	if (pops->psm_translate_irq)
794 		psm_translate_irq = pops->psm_translate_irq;
795 	if (pops->psm_intr_ops)
796 		psm_intr_ops = pops->psm_intr_ops;
797 
798 #if defined(PSMI_1_2) || defined(PSMI_1_3) || defined(PSMI_1_4)
799 	/*
800 	 * Time-of-day functionality now handled in TOD modules.
801 	 * (Warn about PSM modules that think that we're going to use
802 	 * their ops vectors.)
803 	 */
804 	if (pops->psm_tod_get)
805 		cmn_err(CE_WARN, "obsolete psm_tod_get op %p",
806 		    (void *)pops->psm_tod_get);
807 
808 	if (pops->psm_tod_set)
809 		cmn_err(CE_WARN, "obsolete psm_tod_set op %p",
810 		    (void *)pops->psm_tod_set);
811 #endif
812 
813 	if (pops->psm_notify_error) {
814 		psm_notify_error = mach_notify_error;
815 		notify_error = pops->psm_notify_error;
816 	}
817 
818 	(*pops->psm_softinit)();
819 
820 	/*
821 	 * Initialize the dispatcher's function hooks
822 	 * to enable CPU halting when idle.
823 	 * Do not use monitor/mwait if idle_cpu_use_hlt is not set(spin idle).
824 	 * Allocate monitor/mwait buffer for cpu0.
825 	 */
826 	if (idle_cpu_use_hlt) {
827 		if ((x86_feature & X86_MWAIT) && idle_cpu_prefer_mwait) {
828 			CPU->cpu_m.mcpu_mwait = mach_alloc_mwait(CPU);
829 			idle_cpu = cpu_idle_mwait;
830 		} else {
831 			idle_cpu = cpu_idle;
832 		}
833 	}
834 
835 	mach_smpinit();
836 }
837 
838 /*
839  * Return a pointer to memory suitable for monitor/mwait use.  Memory must be
840  * aligned as specified by cpuid (a cache line size).
841  */
842 uint32_t *
843 mach_alloc_mwait(cpu_t *cp)
844 {
845 	size_t		mwait_size = cpuid_get_mwait_size(cp);
846 	uint32_t	*ret;
847 
848 	if (mwait_size < sizeof (uint32_t) || !ISP2(mwait_size))
849 		panic("Can't handle mwait size %ld", (long)mwait_size);
850 
851 	/*
852 	 * kmem_alloc() returns cache line size aligned data for mwait_size
853 	 * allocations.  mwait_size is currently cache line sized.  Neither
854 	 * of these implementation details are guarantied to be true in the
855 	 * future.
856 	 *
857 	 * First try allocating mwait_size as kmem_alloc() currently returns
858 	 * correctly aligned memory.  If kmem_alloc() does not return
859 	 * mwait_size aligned memory, then use mwait_size ROUNDUP.
860 	 */
861 	ret = kmem_zalloc(mwait_size, KM_SLEEP);
862 	if (ret == (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size)) {
863 		*ret = MWAIT_RUNNING;
864 		return (ret);
865 	} else {
866 		kmem_free(ret, mwait_size);
867 		ret = kmem_zalloc(mwait_size * 2, KM_SLEEP);
868 		ret = (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size);
869 		*ret = MWAIT_RUNNING;
870 		return (ret);
871 	}
872 }
873 
874 static void
875 mach_smpinit(void)
876 {
877 	struct psm_ops  *pops;
878 	processorid_t cpu_id;
879 	int cnt;
880 	cpuset_t cpumask;
881 
882 	pops = mach_set[0];
883 
884 	cpu_id = -1;
885 	cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
886 	for (cnt = 0, CPUSET_ZERO(cpumask); cpu_id != -1; cnt++) {
887 		CPUSET_ADD(cpumask, cpu_id);
888 		cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
889 	}
890 
891 	mp_cpus = cpumask;
892 
893 	/* MP related routines */
894 	ap_mlsetup = pops->psm_post_cpu_start;
895 	send_dirintf = pops->psm_send_ipi;
896 
897 	/* optional MP related routines */
898 	if (pops->psm_shutdown)
899 		psm_shutdownf = pops->psm_shutdown;
900 	if (pops->psm_preshutdown)
901 		psm_preshutdownf = pops->psm_preshutdown;
902 	if (pops->psm_notify_func)
903 		psm_notifyf = pops->psm_notify_func;
904 	if (pops->psm_set_idlecpu)
905 		psm_set_idle_cpuf = pops->psm_set_idlecpu;
906 	if (pops->psm_unset_idlecpu)
907 		psm_unset_idle_cpuf = pops->psm_unset_idlecpu;
908 
909 	psm_clkinit = pops->psm_clkinit;
910 
911 	if (pops->psm_timer_reprogram)
912 		psm_timer_reprogram = pops->psm_timer_reprogram;
913 
914 	if (pops->psm_timer_enable)
915 		psm_timer_enable = pops->psm_timer_enable;
916 
917 	if (pops->psm_timer_disable)
918 		psm_timer_disable = pops->psm_timer_disable;
919 
920 	if (pops->psm_post_cyclic_setup)
921 		psm_post_cyclic_setup = pops->psm_post_cyclic_setup;
922 
923 	/* check for multiple cpu's */
924 	if (cnt < 2)
925 		return;
926 
927 	/* check for MP platforms */
928 	if (pops->psm_cpu_start == NULL)
929 		return;
930 
931 	/*
932 	 * Set the dispatcher hook to enable cpu "wake up"
933 	 * when a thread becomes runnable.
934 	 */
935 	if (idle_cpu_use_hlt)
936 		if ((x86_feature & X86_MWAIT) && idle_cpu_prefer_mwait)
937 			disp_enq_thread = cpu_wakeup_mwait;
938 		else
939 			disp_enq_thread = cpu_wakeup;
940 
941 	if (pops->psm_disable_intr)
942 		psm_disable_intr = pops->psm_disable_intr;
943 	if (pops->psm_enable_intr)
944 		psm_enable_intr  = pops->psm_enable_intr;
945 
946 	psm_get_ipivect = pops->psm_get_ipivect;
947 
948 	(void) add_avintr((void *)NULL, XC_HI_PIL, xc_serv, "xc_hi_intr",
949 	    (*pops->psm_get_ipivect)(XC_HI_PIL, PSM_INTR_IPI_HI),
950 	    (caddr_t)X_CALL_HIPRI, NULL, NULL, NULL);
951 	(void) add_avintr((void *)NULL, XC_MED_PIL, xc_serv, "xc_med_intr",
952 	    (*pops->psm_get_ipivect)(XC_MED_PIL, PSM_INTR_IPI_LO),
953 	    (caddr_t)X_CALL_MEDPRI, NULL, NULL, NULL);
954 
955 	(void) (*pops->psm_get_ipivect)(XC_CPUPOKE_PIL, PSM_INTR_POKE);
956 }
957 
958 static void
959 mach_picinit()
960 {
961 	struct psm_ops  *pops;
962 
963 	pops = mach_set[0];
964 
965 	/* register the interrupt handlers */
966 	setlvl = pops->psm_intr_enter;
967 	setlvlx = pops->psm_intr_exit;
968 
969 	/* initialize the interrupt hardware */
970 	(*pops->psm_picinit)();
971 
972 	/* set interrupt mask for current ipl */
973 	setspl = pops->psm_setspl;
974 	cli();
975 	setspl(CPU->cpu_pri);
976 }
977 
978 uint_t	cpu_freq;	/* MHz */
979 uint64_t cpu_freq_hz;	/* measured (in hertz) */
980 
981 #define	MEGA_HZ		1000000
982 
983 static uint64_t
984 mach_calchz(uint32_t pit_counter, uint64_t *processor_clks)
985 {
986 	uint64_t cpu_hz;
987 
988 	if ((pit_counter == 0) || (*processor_clks == 0) ||
989 	    (*processor_clks > (((uint64_t)-1) / PIT_HZ)))
990 		return (0);
991 
992 	cpu_hz = ((uint64_t)PIT_HZ * *processor_clks) / pit_counter;
993 
994 	return (cpu_hz);
995 }
996 
997 static uint64_t
998 mach_getcpufreq(void)
999 {
1000 	uint32_t pit_counter;
1001 	uint64_t processor_clks;
1002 
1003 	if (x86_feature & X86_TSC) {
1004 		/*
1005 		 * We have a TSC. freq_tsc() knows how to measure the number
1006 		 * of clock cycles sampled against the PIT.
1007 		 */
1008 		ulong_t flags = clear_int_flag();
1009 		processor_clks = freq_tsc(&pit_counter);
1010 		restore_int_flag(flags);
1011 		return (mach_calchz(pit_counter, &processor_clks));
1012 	} else if (x86_vendor == X86_VENDOR_Cyrix || x86_type == X86_TYPE_P5) {
1013 #if defined(__amd64)
1014 		panic("mach_getcpufreq: no TSC!");
1015 #elif defined(__i386)
1016 		/*
1017 		 * We are a Cyrix based on a 6x86 core or an Intel Pentium
1018 		 * for which freq_notsc() knows how to measure the number of
1019 		 * elapsed clock cycles sampled against the PIT
1020 		 */
1021 		ulong_t flags = clear_int_flag();
1022 		processor_clks = freq_notsc(&pit_counter);
1023 		restore_int_flag(flags);
1024 		return (mach_calchz(pit_counter, &processor_clks));
1025 #endif	/* __i386 */
1026 	}
1027 
1028 	/* We do not know how to calculate cpu frequency for this cpu. */
1029 	return (0);
1030 }
1031 
1032 /*
1033  * If the clock speed of a cpu is found to be reported incorrectly, do not add
1034  * to this array, instead improve the accuracy of the algorithm that determines
1035  * the clock speed of the processor or extend the implementation to support the
1036  * vendor as appropriate. This is here only to support adjusting the speed on
1037  * older slower processors that mach_fixcpufreq() would not be able to account
1038  * for otherwise.
1039  */
1040 static int x86_cpu_freq[] = { 60, 75, 80, 90, 120, 160, 166, 175, 180, 233 };
1041 
1042 /*
1043  * On fast processors the clock frequency that is measured may be off by
1044  * a few MHz from the value printed on the part. This is a combination of
1045  * the factors that for such fast parts being off by this much is within
1046  * the tolerances for manufacture and because of the difficulties in the
1047  * measurement that can lead to small error. This function uses some
1048  * heuristics in order to tweak the value that was measured to match what
1049  * is most likely printed on the part.
1050  *
1051  * Some examples:
1052  * 	AMD Athlon 1000 mhz measured as 998 mhz
1053  * 	Intel Pentium III Xeon 733 mhz measured as 731 mhz
1054  * 	Intel Pentium IV 1500 mhz measured as 1495mhz
1055  *
1056  * If in the future this function is no longer sufficient to correct
1057  * for the error in the measurement, then the algorithm used to perform
1058  * the measurement will have to be improved in order to increase accuracy
1059  * rather than adding horrible and questionable kludges here.
1060  *
1061  * This is called after the cyclics subsystem because of the potential
1062  * that the heuristics within may give a worse estimate of the clock
1063  * frequency than the value that was measured.
1064  */
1065 static void
1066 mach_fixcpufreq(void)
1067 {
1068 	uint32_t freq, mul, near66, delta66, near50, delta50, fixed, delta, i;
1069 
1070 	freq = (uint32_t)cpu_freq;
1071 
1072 	/*
1073 	 * Find the nearest integer multiple of 200/3 (about 66) MHz to the
1074 	 * measured speed taking into account that the 667 MHz parts were
1075 	 * the first to round-up.
1076 	 */
1077 	mul = (uint32_t)((3 * (uint64_t)freq + 100) / 200);
1078 	near66 = (uint32_t)((200 * (uint64_t)mul + ((mul >= 10) ? 1 : 0)) / 3);
1079 	delta66 = (near66 > freq) ? (near66 - freq) : (freq - near66);
1080 
1081 	/* Find the nearest integer multiple of 50 MHz to the measured speed */
1082 	mul = (freq + 25) / 50;
1083 	near50 = mul * 50;
1084 	delta50 = (near50 > freq) ? (near50 - freq) : (freq - near50);
1085 
1086 	/* Find the closer of the two */
1087 	if (delta66 < delta50) {
1088 		fixed = near66;
1089 		delta = delta66;
1090 	} else {
1091 		fixed = near50;
1092 		delta = delta50;
1093 	}
1094 
1095 	if (fixed > INT_MAX)
1096 		return;
1097 
1098 	/*
1099 	 * Some older parts have a core clock frequency that is not an
1100 	 * integral multiple of 50 or 66 MHz. Check if one of the old
1101 	 * clock frequencies is closer to the measured value than any
1102 	 * of the integral multiples of 50 an 66, and if so set fixed
1103 	 * and delta appropriately to represent the closest value.
1104 	 */
1105 	i = sizeof (x86_cpu_freq) / sizeof (int);
1106 	while (i > 0) {
1107 		i--;
1108 
1109 		if (x86_cpu_freq[i] <= freq) {
1110 			mul = freq - x86_cpu_freq[i];
1111 
1112 			if (mul < delta) {
1113 				fixed = x86_cpu_freq[i];
1114 				delta = mul;
1115 			}
1116 
1117 			break;
1118 		}
1119 
1120 		mul = x86_cpu_freq[i] - freq;
1121 
1122 		if (mul < delta) {
1123 			fixed = x86_cpu_freq[i];
1124 			delta = mul;
1125 		}
1126 	}
1127 
1128 	/*
1129 	 * Set a reasonable maximum for how much to correct the measured
1130 	 * result by. This check is here to prevent the adjustment made
1131 	 * by this function from being more harm than good. It is entirely
1132 	 * possible that in the future parts will be made that are not
1133 	 * integral multiples of 66 or 50 in clock frequency or that
1134 	 * someone may overclock a part to some odd frequency. If the
1135 	 * measured value is farther from the corrected value than
1136 	 * allowed, then assume the corrected value is in error and use
1137 	 * the measured value.
1138 	 */
1139 	if (6 < delta)
1140 		return;
1141 
1142 	cpu_freq = (int)fixed;
1143 }
1144 
1145 
1146 static int
1147 machhztomhz(uint64_t cpu_freq_hz)
1148 {
1149 	uint64_t cpu_mhz;
1150 
1151 	/* Round to nearest MHZ */
1152 	cpu_mhz = (cpu_freq_hz + (MEGA_HZ / 2)) / MEGA_HZ;
1153 
1154 	if (cpu_mhz > INT_MAX)
1155 		return (0);
1156 
1157 	return ((int)cpu_mhz);
1158 
1159 }
1160 
1161 
1162 static int
1163 mach_clkinit(int preferred_mode, int *set_mode)
1164 {
1165 	struct psm_ops  *pops;
1166 	int resolution;
1167 
1168 	pops = mach_set[0];
1169 
1170 	cpu_freq_hz = mach_getcpufreq();
1171 
1172 	cpu_freq = machhztomhz(cpu_freq_hz);
1173 
1174 	if (!(x86_feature & X86_TSC) || (cpu_freq == 0))
1175 		tsc_gethrtime_enable = 0;
1176 
1177 	if (tsc_gethrtime_enable) {
1178 		tsc_hrtimeinit(cpu_freq_hz);
1179 		gethrtimef = tsc_gethrtime;
1180 		gethrtimeunscaledf = tsc_gethrtimeunscaled;
1181 		scalehrtimef = tsc_scalehrtime;
1182 		hrtime_tick = tsc_tick;
1183 		tsc_gethrtime_initted = 1;
1184 	} else {
1185 		if (pops->psm_hrtimeinit)
1186 			(*pops->psm_hrtimeinit)();
1187 		gethrtimef = pops->psm_gethrtime;
1188 		gethrtimeunscaledf = gethrtimef;
1189 		/* scalehrtimef will remain dummy */
1190 	}
1191 
1192 	mach_fixcpufreq();
1193 
1194 	if (mach_ver[0] >= PSM_INFO_VER01_3) {
1195 		if ((preferred_mode == TIMER_ONESHOT) &&
1196 		    (tsc_gethrtime_enable)) {
1197 
1198 			resolution = (*pops->psm_clkinit)(0);
1199 			if (resolution != 0)  {
1200 				*set_mode = TIMER_ONESHOT;
1201 				return (resolution);
1202 			}
1203 
1204 		}
1205 
1206 		/*
1207 		 * either periodic mode was requested or could not set to
1208 		 * one-shot mode
1209 		 */
1210 		resolution = (*pops->psm_clkinit)(hz);
1211 		/*
1212 		 * psm should be able to do periodic, so we do not check
1213 		 * for return value of psm_clkinit here.
1214 		 */
1215 		*set_mode = TIMER_PERIODIC;
1216 		return (resolution);
1217 	} else {
1218 		/*
1219 		 * PSMI interface prior to PSMI_3 does not define a return
1220 		 * value for psm_clkinit, so the return value is ignored.
1221 		 */
1222 		(void) (*pops->psm_clkinit)(hz);
1223 		*set_mode = TIMER_PERIODIC;
1224 		return (nsec_per_tick);
1225 	}
1226 }
1227 
1228 /*ARGSUSED*/
1229 static void
1230 mach_psm_set_softintr(int ipl, struct av_softinfo *pending)
1231 {
1232 	struct psm_ops  *pops;
1233 
1234 	/* invoke hardware interrupt					*/
1235 	pops = mach_set[0];
1236 	(*pops->psm_set_softintr)(ipl);
1237 }
1238 
1239 static int
1240 mach_softlvl_to_vect(int ipl)
1241 {
1242 	int softvect;
1243 	struct psm_ops  *pops;
1244 
1245 	pops = mach_set[0];
1246 
1247 	/* check for null handler for set soft interrupt call		*/
1248 	if (pops->psm_set_softintr == NULL) {
1249 		setsoftint = av_set_softint_pending;
1250 		return (PSM_SV_SOFTWARE);
1251 	}
1252 
1253 	softvect = (*pops->psm_softlvl_to_irq)(ipl);
1254 	/* check for hardware scheme					*/
1255 	if (softvect > PSM_SV_SOFTWARE) {
1256 		setsoftint = mach_psm_set_softintr;
1257 		return (softvect);
1258 	}
1259 
1260 	if (softvect == PSM_SV_SOFTWARE)
1261 		setsoftint = av_set_softint_pending;
1262 	else	/* hardware and software mixed scheme			*/
1263 		setsoftint = mach_set_softintr;
1264 
1265 	return (PSM_SV_SOFTWARE);
1266 }
1267 
1268 static void
1269 mach_set_softintr(int ipl, struct av_softinfo *pending)
1270 {
1271 	struct psm_ops  *pops;
1272 
1273 	/* set software pending bits					*/
1274 	av_set_softint_pending(ipl, pending);
1275 
1276 	/*	check if dosoftint will be called at the end of intr	*/
1277 	if (CPU_ON_INTR(CPU) || (curthread->t_intr))
1278 		return;
1279 
1280 	/* invoke hardware interrupt					*/
1281 	pops = mach_set[0];
1282 	(*pops->psm_set_softintr)(ipl);
1283 }
1284 
1285 #ifdef DEBUG
1286 /*
1287  * This is here to allow us to simulate cpus that refuse to start.
1288  */
1289 cpuset_t cpufailset;
1290 #endif
1291 
1292 int
1293 mach_cpu_start(struct cpu *cp, void *ctx)
1294 {
1295 	struct psm_ops *pops = mach_set[0];
1296 	processorid_t id = cp->cpu_id;
1297 
1298 #ifdef DEBUG
1299 	if (CPU_IN_SET(cpufailset, id))
1300 		return (0);
1301 #endif
1302 	return ((*pops->psm_cpu_start)(id, ctx));
1303 }
1304 
1305 /*ARGSUSED*/
1306 static int
1307 mach_translate_irq(dev_info_t *dip, int irqno)
1308 {
1309 	return (irqno);	/* default to NO translation */
1310 }
1311 
1312 static void
1313 mach_notify_error(int level, char *errmsg)
1314 {
1315 	/*
1316 	 * SL_FATAL is pass in once panicstr is set, deliver it
1317 	 * as CE_PANIC.  Also, translate SL_ codes back to CE_
1318 	 * codes for the psmi handler
1319 	 */
1320 	if (level & SL_FATAL)
1321 		(*notify_error)(CE_PANIC, errmsg);
1322 	else if (level & SL_WARN)
1323 		(*notify_error)(CE_WARN, errmsg);
1324 	else if (level & SL_NOTE)
1325 		(*notify_error)(CE_NOTE, errmsg);
1326 	else if (level & SL_CONSOLE)
1327 		(*notify_error)(CE_CONT, errmsg);
1328 }
1329 
1330 /*
1331  * It provides the default basic intr_ops interface for the new DDI
1332  * interrupt framework if the PSM doesn't have one.
1333  *
1334  * Input:
1335  * dip     - pointer to the dev_info structure of the requested device
1336  * hdlp    - pointer to the internal interrupt handle structure for the
1337  *	     requested interrupt
1338  * intr_op - opcode for this call
1339  * result  - pointer to the integer that will hold the result to be
1340  *	     passed back if return value is PSM_SUCCESS
1341  *
1342  * Output:
1343  * return value is either PSM_SUCCESS or PSM_FAILURE
1344  */
1345 static int
1346 mach_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
1347     psm_intr_op_t intr_op, int *result)
1348 {
1349 	struct intrspec *ispec;
1350 
1351 	switch (intr_op) {
1352 	case PSM_INTR_OP_CHECK_MSI:
1353 		*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
1354 		    DDI_INTR_TYPE_MSIX);
1355 		break;
1356 	case PSM_INTR_OP_ALLOC_VECTORS:
1357 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1358 			*result = 1;
1359 		else
1360 			*result = 0;
1361 		break;
1362 	case PSM_INTR_OP_FREE_VECTORS:
1363 		break;
1364 	case PSM_INTR_OP_NAVAIL_VECTORS:
1365 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1366 			*result = 1;
1367 		else
1368 			*result = 0;
1369 		break;
1370 	case PSM_INTR_OP_XLATE_VECTOR:
1371 		ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
1372 		*result = psm_translate_irq(dip, ispec->intrspec_vec);
1373 		break;
1374 	case PSM_INTR_OP_GET_CAP:
1375 		*result = 0;
1376 		break;
1377 	case PSM_INTR_OP_GET_PENDING:
1378 	case PSM_INTR_OP_CLEAR_MASK:
1379 	case PSM_INTR_OP_SET_MASK:
1380 	case PSM_INTR_OP_GET_SHARED:
1381 	case PSM_INTR_OP_SET_PRI:
1382 	case PSM_INTR_OP_SET_CAP:
1383 	case PSM_INTR_OP_SET_CPU:
1384 	case PSM_INTR_OP_GET_INTR:
1385 	default:
1386 		return (PSM_FAILURE);
1387 	}
1388 	return (PSM_SUCCESS);
1389 }
1390