xref: /titanic_50/usr/src/uts/i86pc/os/mp_machdep.c (revision 3cb69f734bc60bbb4d56a28c83706db862bec082)
1 
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2009-2010, Intel Corporation.
27  * All rights reserved.
28  */
29 
30 #define	PSMI_1_7
31 #include <sys/smp_impldefs.h>
32 #include <sys/psm.h>
33 #include <sys/psm_modctl.h>
34 #include <sys/pit.h>
35 #include <sys/cmn_err.h>
36 #include <sys/strlog.h>
37 #include <sys/clock.h>
38 #include <sys/debug.h>
39 #include <sys/rtc.h>
40 #include <sys/x86_archext.h>
41 #include <sys/cpupart.h>
42 #include <sys/cpuvar.h>
43 #include <sys/cpu_event.h>
44 #include <sys/cmt.h>
45 #include <sys/cpu.h>
46 #include <sys/disp.h>
47 #include <sys/archsystm.h>
48 #include <sys/machsystm.h>
49 #include <sys/sysmacros.h>
50 #include <sys/memlist.h>
51 #include <sys/param.h>
52 #include <sys/promif.h>
53 #include <sys/cpu_pm.h>
54 #if defined(__xpv)
55 #include <sys/hypervisor.h>
56 #endif
57 #include <sys/mach_intr.h>
58 #include <vm/hat_i86.h>
59 #include <sys/kdi_machimpl.h>
60 #include <sys/sdt.h>
61 #include <sys/hpet.h>
62 #include <sys/sunddi.h>
63 #include <sys/sunndi.h>
64 #include <sys/cpc_pcbe.h>
65 
66 #define	OFFSETOF(s, m)		(size_t)(&(((s *)0)->m))
67 
68 /*
69  *	Local function prototypes
70  */
71 static int mp_disable_intr(processorid_t cpun);
72 static void mp_enable_intr(processorid_t cpun);
73 static void mach_init();
74 static void mach_picinit();
75 static int machhztomhz(uint64_t cpu_freq_hz);
76 static uint64_t mach_getcpufreq(void);
77 static void mach_fixcpufreq(void);
78 static int mach_clkinit(int, int *);
79 static void mach_smpinit(void);
80 static int mach_softlvl_to_vect(int ipl);
81 static void mach_get_platform(int owner);
82 static void mach_construct_info();
83 static int mach_translate_irq(dev_info_t *dip, int irqno);
84 static int mach_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
85     psm_intr_op_t, int *);
86 static void mach_notify_error(int level, char *errmsg);
87 static hrtime_t dummy_hrtime(void);
88 static void dummy_scalehrtime(hrtime_t *);
89 static uint64_t dummy_unscalehrtime(hrtime_t);
90 void cpu_idle(void);
91 static void cpu_wakeup(cpu_t *, int);
92 #ifndef __xpv
93 void cpu_idle_mwait(void);
94 static void cpu_wakeup_mwait(cpu_t *, int);
95 #endif
96 static int mach_cpu_create_devinfo(cpu_t *cp, dev_info_t **dipp);
97 
98 /*
99  *	External reference functions
100  */
101 extern void return_instr();
102 extern uint64_t freq_tsc(uint32_t *);
103 #if defined(__i386)
104 extern uint64_t freq_notsc(uint32_t *);
105 #endif
106 extern void pc_gethrestime(timestruc_t *);
107 extern int cpuid_get_coreid(cpu_t *);
108 extern int cpuid_get_chipid(cpu_t *);
109 
110 /*
111  *	PSM functions initialization
112  */
113 void (*psm_shutdownf)(int, int)	= (void (*)(int, int))return_instr;
114 void (*psm_preshutdownf)(int, int) = (void (*)(int, int))return_instr;
115 void (*psm_notifyf)(int)	= (void (*)(int))return_instr;
116 void (*psm_set_idle_cpuf)(int)	= (void (*)(int))return_instr;
117 void (*psm_unset_idle_cpuf)(int) = (void (*)(int))return_instr;
118 void (*psminitf)()		= mach_init;
119 void (*picinitf)() 		= return_instr;
120 int (*clkinitf)(int, int *) 	= (int (*)(int, int *))return_instr;
121 int (*ap_mlsetup)() 		= (int (*)(void))return_instr;
122 void (*send_dirintf)() 		= return_instr;
123 void (*setspl)(int)		= (void (*)(int))return_instr;
124 int (*addspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
125 int (*delspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
126 int (*get_pending_spl)(void)	= (int (*)(void))return_instr;
127 int (*addintr)(void *, int, avfunc, char *, int, caddr_t, caddr_t,
128     uint64_t *, dev_info_t *) = NULL;
129 void (*remintr)(void *, int, avfunc, int) = NULL;
130 void (*kdisetsoftint)(int, struct av_softinfo *)=
131 	(void (*)(int, struct av_softinfo *))return_instr;
132 void (*setsoftint)(int, struct av_softinfo *)=
133 	(void (*)(int, struct av_softinfo *))return_instr;
134 int (*slvltovect)(int)		= (int (*)(int))return_instr;
135 int (*setlvl)(int, int *)	= (int (*)(int, int *))return_instr;
136 void (*setlvlx)(int, int)	= (void (*)(int, int))return_instr;
137 int (*psm_disable_intr)(int)	= mp_disable_intr;
138 void (*psm_enable_intr)(int)	= mp_enable_intr;
139 hrtime_t (*gethrtimef)(void)	= dummy_hrtime;
140 hrtime_t (*gethrtimeunscaledf)(void)	= dummy_hrtime;
141 void (*scalehrtimef)(hrtime_t *)	= dummy_scalehrtime;
142 uint64_t (*unscalehrtimef)(hrtime_t)	= dummy_unscalehrtime;
143 int (*psm_translate_irq)(dev_info_t *, int) = mach_translate_irq;
144 void (*gethrestimef)(timestruc_t *) = pc_gethrestime;
145 void (*psm_notify_error)(int, char *) = (void (*)(int, char *))NULL;
146 int (*psm_get_clockirq)(int) = NULL;
147 int (*psm_get_ipivect)(int, int) = NULL;
148 uchar_t (*psm_get_ioapicid)(uchar_t) = NULL;
149 uint32_t (*psm_get_localapicid)(uint32_t) = NULL;
150 uchar_t (*psm_xlate_vector_by_irq)(uchar_t) = NULL;
151 
152 int (*psm_clkinit)(int) = NULL;
153 void (*psm_timer_reprogram)(hrtime_t) = NULL;
154 void (*psm_timer_enable)(void) = NULL;
155 void (*psm_timer_disable)(void) = NULL;
156 void (*psm_post_cyclic_setup)(void *arg) = NULL;
157 int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t,
158     int *) = mach_intr_ops;
159 int (*psm_state)(psm_state_request_t *) = (int (*)(psm_state_request_t *))
160     return_instr;
161 
162 void (*notify_error)(int, char *) = (void (*)(int, char *))return_instr;
163 void (*hrtime_tick)(void)	= return_instr;
164 
165 int (*psm_cpu_create_devinfo)(cpu_t *, dev_info_t **) = mach_cpu_create_devinfo;
166 int (*psm_cpu_get_devinfo)(cpu_t *, dev_info_t **) = NULL;
167 
168 /* global IRM pool for APIX (PSM) module */
169 ddi_irm_pool_t *apix_irm_pool_p = NULL;
170 
171 /*
172  * True if the generic TSC code is our source of hrtime, rather than whatever
173  * the PSM can provide.
174  */
175 #ifdef __xpv
176 int tsc_gethrtime_enable = 0;
177 #else
178 int tsc_gethrtime_enable = 1;
179 #endif
180 int tsc_gethrtime_initted = 0;
181 
182 /*
183  * True if the hrtime implementation is "hires"; namely, better than microdata.
184  */
185 int gethrtime_hires = 0;
186 
187 /*
188  * Local Static Data
189  */
190 static struct psm_ops mach_ops;
191 static struct psm_ops *mach_set[4] = {&mach_ops, NULL, NULL, NULL};
192 static ushort_t mach_ver[4] = {0, 0, 0, 0};
193 
194 /*
195  * virtualization support for psm
196  */
197 void *psm_vt_ops = NULL;
198 /*
199  * If non-zero, idle cpus will become "halted" when there's
200  * no work to do.
201  */
202 int	idle_cpu_use_hlt = 1;
203 
204 #ifndef __xpv
205 /*
206  * If non-zero, idle cpus will use mwait if available to halt instead of hlt.
207  */
208 int	idle_cpu_prefer_mwait = 1;
209 /*
210  * Set to 0 to avoid MONITOR+CLFLUSH assertion.
211  */
212 int	idle_cpu_assert_cflush_monitor = 1;
213 
214 /*
215  * If non-zero, idle cpus will not use power saving Deep C-States idle loop.
216  */
217 int	idle_cpu_no_deep_c = 0;
218 /*
219  * Non-power saving idle loop and wakeup pointers.
220  * Allows user to toggle Deep Idle power saving feature on/off.
221  */
222 void	(*non_deep_idle_cpu)() = cpu_idle;
223 void	(*non_deep_idle_disp_enq_thread)(cpu_t *, int);
224 
225 /*
226  * Object for the kernel to access the HPET.
227  */
228 hpet_t hpet;
229 
230 #endif	/* ifndef __xpv */
231 
232 uint_t cp_haltset_fanout = 0;
233 
234 /*ARGSUSED*/
235 int
236 pg_plat_hw_shared(cpu_t *cp, pghw_type_t hw)
237 {
238 	switch (hw) {
239 	case PGHW_IPIPE:
240 		if (is_x86_feature(x86_featureset, X86FSET_HTT)) {
241 			/*
242 			 * Hyper-threading is SMT
243 			 */
244 			return (1);
245 		} else {
246 			return (0);
247 		}
248 	case PGHW_FPU:
249 		if (cpuid_get_cores_per_compunit(cp) > 1)
250 			return (1);
251 		else
252 			return (0);
253 	case PGHW_PROCNODE:
254 		if (cpuid_get_procnodes_per_pkg(cp) > 1)
255 			return (1);
256 		else
257 			return (0);
258 	case PGHW_CHIP:
259 		if (is_x86_feature(x86_featureset, X86FSET_CMP) ||
260 		    is_x86_feature(x86_featureset, X86FSET_HTT))
261 			return (1);
262 		else
263 			return (0);
264 	case PGHW_CACHE:
265 		if (cpuid_get_ncpu_sharing_last_cache(cp) > 1)
266 			return (1);
267 		else
268 			return (0);
269 	case PGHW_POW_ACTIVE:
270 		if (cpupm_domain_id(cp, CPUPM_DTYPE_ACTIVE) != (id_t)-1)
271 			return (1);
272 		else
273 			return (0);
274 	case PGHW_POW_IDLE:
275 		if (cpupm_domain_id(cp, CPUPM_DTYPE_IDLE) != (id_t)-1)
276 			return (1);
277 		else
278 			return (0);
279 	default:
280 		return (0);
281 	}
282 }
283 
284 /*
285  * Compare two CPUs and see if they have a pghw_type_t sharing relationship
286  * If pghw_type_t is an unsupported hardware type, then return -1
287  */
288 int
289 pg_plat_cpus_share(cpu_t *cpu_a, cpu_t *cpu_b, pghw_type_t hw)
290 {
291 	id_t pgp_a, pgp_b;
292 
293 	pgp_a = pg_plat_hw_instance_id(cpu_a, hw);
294 	pgp_b = pg_plat_hw_instance_id(cpu_b, hw);
295 
296 	if (pgp_a == -1 || pgp_b == -1)
297 		return (-1);
298 
299 	return (pgp_a == pgp_b);
300 }
301 
302 /*
303  * Return a physical instance identifier for known hardware sharing
304  * relationships
305  */
306 id_t
307 pg_plat_hw_instance_id(cpu_t *cpu, pghw_type_t hw)
308 {
309 	switch (hw) {
310 	case PGHW_IPIPE:
311 		return (cpuid_get_coreid(cpu));
312 	case PGHW_CACHE:
313 		return (cpuid_get_last_lvl_cacheid(cpu));
314 	case PGHW_FPU:
315 		return (cpuid_get_compunitid(cpu));
316 	case PGHW_PROCNODE:
317 		return (cpuid_get_procnodeid(cpu));
318 	case PGHW_CHIP:
319 		return (cpuid_get_chipid(cpu));
320 	case PGHW_POW_ACTIVE:
321 		return (cpupm_domain_id(cpu, CPUPM_DTYPE_ACTIVE));
322 	case PGHW_POW_IDLE:
323 		return (cpupm_domain_id(cpu, CPUPM_DTYPE_IDLE));
324 	default:
325 		return (-1);
326 	}
327 }
328 
329 /*
330  * Express preference for optimizing for sharing relationship
331  * hw1 vs hw2
332  */
333 pghw_type_t
334 pg_plat_hw_rank(pghw_type_t hw1, pghw_type_t hw2)
335 {
336 	int i, rank1, rank2;
337 
338 	static pghw_type_t hw_hier[] = {
339 		PGHW_IPIPE,
340 		PGHW_CACHE,
341 		PGHW_FPU,
342 		PGHW_PROCNODE,
343 		PGHW_CHIP,
344 		PGHW_POW_IDLE,
345 		PGHW_POW_ACTIVE,
346 		PGHW_NUM_COMPONENTS
347 	};
348 
349 	for (i = 0; hw_hier[i] != PGHW_NUM_COMPONENTS; i++) {
350 		if (hw_hier[i] == hw1)
351 			rank1 = i;
352 		if (hw_hier[i] == hw2)
353 			rank2 = i;
354 	}
355 
356 	if (rank1 > rank2)
357 		return (hw1);
358 	else
359 		return (hw2);
360 }
361 
362 /*
363  * Override the default CMT dispatcher policy for the specified
364  * hardware sharing relationship
365  */
366 pg_cmt_policy_t
367 pg_plat_cmt_policy(pghw_type_t hw)
368 {
369 	/*
370 	 * For shared caches, also load balance across them to
371 	 * maximize aggregate cache capacity
372 	 *
373 	 * On AMD family 0x15 CPUs, cores come in pairs called
374 	 * compute units, sharing the FPU and the I$ and L2
375 	 * caches. Use balancing and cache affinity.
376 	 */
377 	switch (hw) {
378 	case PGHW_FPU:
379 	case PGHW_CACHE:
380 		return (CMT_BALANCE|CMT_AFFINITY);
381 	default:
382 		return (CMT_NO_POLICY);
383 	}
384 }
385 
386 id_t
387 pg_plat_get_core_id(cpu_t *cpu)
388 {
389 	return ((id_t)cpuid_get_coreid(cpu));
390 }
391 
392 void
393 cmp_set_nosteal_interval(void)
394 {
395 	/* Set the nosteal interval (used by disp_getbest()) to 100us */
396 	nosteal_nsec = 100000UL;
397 }
398 
399 /*
400  * Routine to ensure initial callers to hrtime gets 0 as return
401  */
402 static hrtime_t
403 dummy_hrtime(void)
404 {
405 	return (0);
406 }
407 
408 /* ARGSUSED */
409 static void
410 dummy_scalehrtime(hrtime_t *ticks)
411 {}
412 
413 static uint64_t
414 dummy_unscalehrtime(hrtime_t nsecs)
415 {
416 	return ((uint64_t)nsecs);
417 }
418 
419 /*
420  * Supports Deep C-State power saving idle loop.
421  */
422 void
423 cpu_idle_adaptive(void)
424 {
425 	(*CPU->cpu_m.mcpu_idle_cpu)();
426 }
427 
428 /*
429  * Function called by CPU idle notification framework to check whether CPU
430  * has been awakened. It will be called with interrupt disabled.
431  * If CPU has been awakened, call cpu_idle_exit() to notify CPU idle
432  * notification framework.
433  */
434 /*ARGSUSED*/
435 static void
436 cpu_idle_check_wakeup(void *arg)
437 {
438 	/*
439 	 * Toggle interrupt flag to detect pending interrupts.
440 	 * If interrupt happened, do_interrupt() will notify CPU idle
441 	 * notification framework so no need to call cpu_idle_exit() here.
442 	 */
443 	sti();
444 	SMT_PAUSE();
445 	cli();
446 }
447 
448 /*
449  * Idle the present CPU until wakened via an interrupt
450  */
451 void
452 cpu_idle(void)
453 {
454 	cpu_t		*cpup = CPU;
455 	processorid_t	cpu_sid = cpup->cpu_seqid;
456 	cpupart_t	*cp = cpup->cpu_part;
457 	int		hset_update = 1;
458 
459 	/*
460 	 * If this CPU is online, and there's multiple CPUs
461 	 * in the system, then we should notate our halting
462 	 * by adding ourselves to the partition's halted CPU
463 	 * bitmap. This allows other CPUs to find/awaken us when
464 	 * work becomes available.
465 	 */
466 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
467 		hset_update = 0;
468 
469 	/*
470 	 * Add ourselves to the partition's halted CPUs bitmap
471 	 * and set our HALTED flag, if necessary.
472 	 *
473 	 * When a thread becomes runnable, it is placed on the queue
474 	 * and then the halted CPU bitmap is checked to determine who
475 	 * (if anyone) should be awakened. We therefore need to first
476 	 * add ourselves to the bitmap, and and then check if there
477 	 * is any work available. The order is important to prevent a race
478 	 * that can lead to work languishing on a run queue somewhere while
479 	 * this CPU remains halted.
480 	 *
481 	 * Either the producing CPU will see we're halted and will awaken us,
482 	 * or this CPU will see the work available in disp_anywork().
483 	 *
484 	 * Note that memory barriers after updating the HALTED flag
485 	 * are not necessary since an atomic operation (updating the bitset)
486 	 * immediately follows. On x86 the atomic operation acts as a
487 	 * memory barrier for the update of cpu_disp_flags.
488 	 */
489 	if (hset_update) {
490 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
491 		bitset_atomic_add(&cp->cp_haltset, cpu_sid);
492 	}
493 
494 	/*
495 	 * Check to make sure there's really nothing to do.
496 	 * Work destined for this CPU may become available after
497 	 * this check. We'll be notified through the clearing of our
498 	 * bit in the halted CPU bitmap, and a poke.
499 	 */
500 	if (disp_anywork()) {
501 		if (hset_update) {
502 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
503 			bitset_atomic_del(&cp->cp_haltset, cpu_sid);
504 		}
505 		return;
506 	}
507 
508 	/*
509 	 * We're on our way to being halted.
510 	 *
511 	 * Disable interrupts now, so that we'll awaken immediately
512 	 * after halting if someone tries to poke us between now and
513 	 * the time we actually halt.
514 	 *
515 	 * We check for the presence of our bit after disabling interrupts.
516 	 * If it's cleared, we'll return. If the bit is cleared after
517 	 * we check then the poke will pop us out of the halted state.
518 	 *
519 	 * This means that the ordering of the poke and the clearing
520 	 * of the bit by cpu_wakeup is important.
521 	 * cpu_wakeup() must clear, then poke.
522 	 * cpu_idle() must disable interrupts, then check for the bit.
523 	 */
524 	cli();
525 
526 	if (hset_update && bitset_in_set(&cp->cp_haltset, cpu_sid) == 0) {
527 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
528 		sti();
529 		return;
530 	}
531 
532 	/*
533 	 * The check for anything locally runnable is here for performance
534 	 * and isn't needed for correctness. disp_nrunnable ought to be
535 	 * in our cache still, so it's inexpensive to check, and if there
536 	 * is anything runnable we won't have to wait for the poke.
537 	 */
538 	if (cpup->cpu_disp->disp_nrunnable != 0) {
539 		if (hset_update) {
540 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
541 			bitset_atomic_del(&cp->cp_haltset, cpu_sid);
542 		}
543 		sti();
544 		return;
545 	}
546 
547 	if (cpu_idle_enter(IDLE_STATE_C1, 0,
548 	    cpu_idle_check_wakeup, NULL) == 0) {
549 		mach_cpu_idle();
550 		cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
551 	}
552 
553 	/*
554 	 * We're no longer halted
555 	 */
556 	if (hset_update) {
557 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
558 		bitset_atomic_del(&cp->cp_haltset, cpu_sid);
559 	}
560 }
561 
562 
563 /*
564  * If "cpu" is halted, then wake it up clearing its halted bit in advance.
565  * Otherwise, see if other CPUs in the cpu partition are halted and need to
566  * be woken up so that they can steal the thread we placed on this CPU.
567  * This function is only used on MP systems.
568  */
569 static void
570 cpu_wakeup(cpu_t *cpu, int bound)
571 {
572 	uint_t		cpu_found;
573 	processorid_t	cpu_sid;
574 	cpupart_t	*cp;
575 
576 	cp = cpu->cpu_part;
577 	cpu_sid = cpu->cpu_seqid;
578 	if (bitset_in_set(&cp->cp_haltset, cpu_sid)) {
579 		/*
580 		 * Clear the halted bit for that CPU since it will be
581 		 * poked in a moment.
582 		 */
583 		bitset_atomic_del(&cp->cp_haltset, cpu_sid);
584 		/*
585 		 * We may find the current CPU present in the halted cpuset
586 		 * if we're in the context of an interrupt that occurred
587 		 * before we had a chance to clear our bit in cpu_idle().
588 		 * Poking ourself is obviously unnecessary, since if
589 		 * we're here, we're not halted.
590 		 */
591 		if (cpu != CPU)
592 			poke_cpu(cpu->cpu_id);
593 		return;
594 	} else {
595 		/*
596 		 * This cpu isn't halted, but it's idle or undergoing a
597 		 * context switch. No need to awaken anyone else.
598 		 */
599 		if (cpu->cpu_thread == cpu->cpu_idle_thread ||
600 		    cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL)
601 			return;
602 	}
603 
604 	/*
605 	 * No need to wake up other CPUs if this is for a bound thread.
606 	 */
607 	if (bound)
608 		return;
609 
610 	/*
611 	 * The CPU specified for wakeup isn't currently halted, so check
612 	 * to see if there are any other halted CPUs in the partition,
613 	 * and if there are then awaken one.
614 	 */
615 	do {
616 		cpu_found = bitset_find(&cp->cp_haltset);
617 		if (cpu_found == (uint_t)-1)
618 			return;
619 	} while (bitset_atomic_test_and_del(&cp->cp_haltset, cpu_found) < 0);
620 
621 	if (cpu_found != CPU->cpu_seqid) {
622 		poke_cpu(cpu_seq[cpu_found]->cpu_id);
623 	}
624 }
625 
626 #ifndef __xpv
627 /*
628  * Function called by CPU idle notification framework to check whether CPU
629  * has been awakened. It will be called with interrupt disabled.
630  * If CPU has been awakened, call cpu_idle_exit() to notify CPU idle
631  * notification framework.
632  */
633 static void
634 cpu_idle_mwait_check_wakeup(void *arg)
635 {
636 	volatile uint32_t *mcpu_mwait = (volatile uint32_t *)arg;
637 
638 	ASSERT(arg != NULL);
639 	if (*mcpu_mwait != MWAIT_HALTED) {
640 		/*
641 		 * CPU has been awakened, notify CPU idle notification system.
642 		 */
643 		cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
644 	} else {
645 		/*
646 		 * Toggle interrupt flag to detect pending interrupts.
647 		 * If interrupt happened, do_interrupt() will notify CPU idle
648 		 * notification framework so no need to call cpu_idle_exit()
649 		 * here.
650 		 */
651 		sti();
652 		SMT_PAUSE();
653 		cli();
654 	}
655 }
656 
657 /*
658  * Idle the present CPU until awakened via touching its monitored line
659  */
660 void
661 cpu_idle_mwait(void)
662 {
663 	volatile uint32_t	*mcpu_mwait = CPU->cpu_m.mcpu_mwait;
664 	cpu_t			*cpup = CPU;
665 	processorid_t		cpu_sid = cpup->cpu_seqid;
666 	cpupart_t		*cp = cpup->cpu_part;
667 	int			hset_update = 1;
668 
669 	/*
670 	 * Set our mcpu_mwait here, so we can tell if anyone tries to
671 	 * wake us between now and when we call mwait.  No other cpu will
672 	 * attempt to set our mcpu_mwait until we add ourself to the halted
673 	 * CPU bitmap.
674 	 */
675 	*mcpu_mwait = MWAIT_HALTED;
676 
677 	/*
678 	 * If this CPU is online, and there's multiple CPUs
679 	 * in the system, then we should note our halting
680 	 * by adding ourselves to the partition's halted CPU
681 	 * bitmap. This allows other CPUs to find/awaken us when
682 	 * work becomes available.
683 	 */
684 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
685 		hset_update = 0;
686 
687 	/*
688 	 * Add ourselves to the partition's halted CPUs bitmap
689 	 * and set our HALTED flag, if necessary.
690 	 *
691 	 * When a thread becomes runnable, it is placed on the queue
692 	 * and then the halted CPU bitmap is checked to determine who
693 	 * (if anyone) should be awakened. We therefore need to first
694 	 * add ourselves to the bitmap, and and then check if there
695 	 * is any work available.
696 	 *
697 	 * Note that memory barriers after updating the HALTED flag
698 	 * are not necessary since an atomic operation (updating the bitmap)
699 	 * immediately follows. On x86 the atomic operation acts as a
700 	 * memory barrier for the update of cpu_disp_flags.
701 	 */
702 	if (hset_update) {
703 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
704 		bitset_atomic_add(&cp->cp_haltset, cpu_sid);
705 	}
706 
707 	/*
708 	 * Check to make sure there's really nothing to do.
709 	 * Work destined for this CPU may become available after
710 	 * this check. We'll be notified through the clearing of our
711 	 * bit in the halted CPU bitmap, and a write to our mcpu_mwait.
712 	 *
713 	 * disp_anywork() checks disp_nrunnable, so we do not have to later.
714 	 */
715 	if (disp_anywork()) {
716 		if (hset_update) {
717 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
718 			bitset_atomic_del(&cp->cp_haltset, cpu_sid);
719 		}
720 		return;
721 	}
722 
723 	/*
724 	 * We're on our way to being halted.
725 	 * To avoid a lost wakeup, arm the monitor before checking if another
726 	 * cpu wrote to mcpu_mwait to wake us up.
727 	 */
728 	i86_monitor(mcpu_mwait, 0, 0);
729 	if (*mcpu_mwait == MWAIT_HALTED) {
730 		if (cpu_idle_enter(IDLE_STATE_C1, 0,
731 		    cpu_idle_mwait_check_wakeup, (void *)mcpu_mwait) == 0) {
732 			if (*mcpu_mwait == MWAIT_HALTED) {
733 				i86_mwait(0, 0);
734 			}
735 			cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
736 		}
737 	}
738 
739 	/*
740 	 * We're no longer halted
741 	 */
742 	if (hset_update) {
743 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
744 		bitset_atomic_del(&cp->cp_haltset, cpu_sid);
745 	}
746 }
747 
748 /*
749  * If "cpu" is halted in mwait, then wake it up clearing its halted bit in
750  * advance.  Otherwise, see if other CPUs in the cpu partition are halted and
751  * need to be woken up so that they can steal the thread we placed on this CPU.
752  * This function is only used on MP systems.
753  */
754 static void
755 cpu_wakeup_mwait(cpu_t *cp, int bound)
756 {
757 	cpupart_t	*cpu_part;
758 	uint_t		cpu_found;
759 	processorid_t	cpu_sid;
760 
761 	cpu_part = cp->cpu_part;
762 	cpu_sid = cp->cpu_seqid;
763 
764 	/*
765 	 * Clear the halted bit for that CPU since it will be woken up
766 	 * in a moment.
767 	 */
768 	if (bitset_in_set(&cpu_part->cp_haltset, cpu_sid)) {
769 		/*
770 		 * Clear the halted bit for that CPU since it will be
771 		 * poked in a moment.
772 		 */
773 		bitset_atomic_del(&cpu_part->cp_haltset, cpu_sid);
774 		/*
775 		 * We may find the current CPU present in the halted cpuset
776 		 * if we're in the context of an interrupt that occurred
777 		 * before we had a chance to clear our bit in cpu_idle().
778 		 * Waking ourself is obviously unnecessary, since if
779 		 * we're here, we're not halted.
780 		 *
781 		 * monitor/mwait wakeup via writing to our cache line is
782 		 * harmless and less expensive than always checking if we
783 		 * are waking ourself which is an uncommon case.
784 		 */
785 		MWAIT_WAKEUP(cp);	/* write to monitored line */
786 		return;
787 	} else {
788 		/*
789 		 * This cpu isn't halted, but it's idle or undergoing a
790 		 * context switch. No need to awaken anyone else.
791 		 */
792 		if (cp->cpu_thread == cp->cpu_idle_thread ||
793 		    cp->cpu_disp_flags & CPU_DISP_DONTSTEAL)
794 			return;
795 	}
796 
797 	/*
798 	 * No need to wake up other CPUs if the thread we just enqueued
799 	 * is bound.
800 	 */
801 	if (bound || ncpus == 1)
802 		return;
803 
804 	/*
805 	 * See if there's any other halted CPUs. If there are, then
806 	 * select one, and awaken it.
807 	 * It's possible that after we find a CPU, somebody else
808 	 * will awaken it before we get the chance.
809 	 * In that case, look again.
810 	 */
811 	do {
812 		cpu_found = bitset_find(&cpu_part->cp_haltset);
813 		if (cpu_found == (uint_t)-1)
814 			return;
815 	} while (bitset_atomic_test_and_del(&cpu_part->cp_haltset,
816 	    cpu_found) < 0);
817 
818 	/*
819 	 * Do not check if cpu_found is ourself as monitor/mwait
820 	 * wakeup is cheap.
821 	 */
822 	MWAIT_WAKEUP(cpu_seq[cpu_found]); /* write to monitored line */
823 }
824 
825 #endif
826 
827 void (*cpu_pause_handler)(volatile char *) = NULL;
828 
829 static int
830 mp_disable_intr(int cpun)
831 {
832 	/*
833 	 * switch to the offline cpu
834 	 */
835 	affinity_set(cpun);
836 	/*
837 	 * raise ipl to just below cross call
838 	 */
839 	splx(XC_SYS_PIL - 1);
840 	/*
841 	 *	set base spl to prevent the next swtch to idle from
842 	 *	lowering back to ipl 0
843 	 */
844 	CPU->cpu_intr_actv |= (1 << (XC_SYS_PIL - 1));
845 	set_base_spl();
846 	affinity_clear();
847 	return (DDI_SUCCESS);
848 }
849 
850 static void
851 mp_enable_intr(int cpun)
852 {
853 	/*
854 	 * switch to the online cpu
855 	 */
856 	affinity_set(cpun);
857 	/*
858 	 * clear the interrupt active mask
859 	 */
860 	CPU->cpu_intr_actv &= ~(1 << (XC_SYS_PIL - 1));
861 	set_base_spl();
862 	(void) spl0();
863 	affinity_clear();
864 }
865 
866 static void
867 mach_get_platform(int owner)
868 {
869 	void		**srv_opsp;
870 	void		**clt_opsp;
871 	int		i;
872 	int		total_ops;
873 
874 	/* fix up psm ops */
875 	srv_opsp = (void **)mach_set[0];
876 	clt_opsp = (void **)mach_set[owner];
877 	if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01)
878 		total_ops = sizeof (struct psm_ops_ver01) /
879 		    sizeof (void (*)(void));
880 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_1)
881 		/* no psm_notify_func */
882 		total_ops = OFFSETOF(struct psm_ops, psm_notify_func) /
883 		    sizeof (void (*)(void));
884 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_2)
885 		/* no psm_timer funcs */
886 		total_ops = OFFSETOF(struct psm_ops, psm_timer_reprogram) /
887 		    sizeof (void (*)(void));
888 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_3)
889 		/* no psm_preshutdown function */
890 		total_ops = OFFSETOF(struct psm_ops, psm_preshutdown) /
891 		    sizeof (void (*)(void));
892 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_4)
893 		/* no psm_intr_ops function */
894 		total_ops = OFFSETOF(struct psm_ops, psm_intr_ops) /
895 		    sizeof (void (*)(void));
896 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_5)
897 		/* no psm_state function */
898 		total_ops = OFFSETOF(struct psm_ops, psm_state) /
899 		    sizeof (void (*)(void));
900 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_6)
901 		/* no psm_cpu_ops function */
902 		total_ops = OFFSETOF(struct psm_ops, psm_cpu_ops) /
903 		    sizeof (void (*)(void));
904 	else
905 		total_ops = sizeof (struct psm_ops) / sizeof (void (*)(void));
906 
907 	/*
908 	 * Save the version of the PSM module, in case we need to
909 	 * behave differently based on version.
910 	 */
911 	mach_ver[0] = mach_ver[owner];
912 
913 	for (i = 0; i < total_ops; i++)
914 		if (clt_opsp[i] != NULL)
915 			srv_opsp[i] = clt_opsp[i];
916 }
917 
918 static void
919 mach_construct_info()
920 {
921 	struct psm_sw *swp;
922 	int	mach_cnt[PSM_OWN_OVERRIDE+1] = {0};
923 	int	conflict_owner = 0;
924 
925 	if (psmsw->psw_forw == psmsw)
926 		panic("No valid PSM modules found");
927 	mutex_enter(&psmsw_lock);
928 	for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
929 		if (!(swp->psw_flag & PSM_MOD_IDENTIFY))
930 			continue;
931 		mach_set[swp->psw_infop->p_owner] = swp->psw_infop->p_ops;
932 		mach_ver[swp->psw_infop->p_owner] = swp->psw_infop->p_version;
933 		mach_cnt[swp->psw_infop->p_owner]++;
934 	}
935 	mutex_exit(&psmsw_lock);
936 
937 	mach_get_platform(PSM_OWN_SYS_DEFAULT);
938 
939 	/* check to see are there any conflicts */
940 	if (mach_cnt[PSM_OWN_EXCLUSIVE] > 1)
941 		conflict_owner = PSM_OWN_EXCLUSIVE;
942 	if (mach_cnt[PSM_OWN_OVERRIDE] > 1)
943 		conflict_owner = PSM_OWN_OVERRIDE;
944 	if (conflict_owner) {
945 		/* remove all psm modules except uppc */
946 		cmn_err(CE_WARN,
947 		    "Conflicts detected on the following PSM modules:");
948 		mutex_enter(&psmsw_lock);
949 		for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
950 			if (swp->psw_infop->p_owner == conflict_owner)
951 				cmn_err(CE_WARN, "%s ",
952 				    swp->psw_infop->p_mach_idstring);
953 		}
954 		mutex_exit(&psmsw_lock);
955 		cmn_err(CE_WARN,
956 		    "Setting the system back to SINGLE processor mode!");
957 		cmn_err(CE_WARN,
958 		    "Please edit /etc/mach to remove the invalid PSM module.");
959 		return;
960 	}
961 
962 	if (mach_set[PSM_OWN_EXCLUSIVE])
963 		mach_get_platform(PSM_OWN_EXCLUSIVE);
964 
965 	if (mach_set[PSM_OWN_OVERRIDE])
966 		mach_get_platform(PSM_OWN_OVERRIDE);
967 }
968 
969 static void
970 mach_init()
971 {
972 	struct psm_ops  *pops;
973 
974 	mach_construct_info();
975 
976 	pops = mach_set[0];
977 
978 	/* register the interrupt and clock initialization rotuines */
979 	picinitf = mach_picinit;
980 	clkinitf = mach_clkinit;
981 	psm_get_clockirq = pops->psm_get_clockirq;
982 
983 	/* register the interrupt setup code */
984 	slvltovect = mach_softlvl_to_vect;
985 	addspl	= pops->psm_addspl;
986 	delspl	= pops->psm_delspl;
987 
988 	if (pops->psm_translate_irq)
989 		psm_translate_irq = pops->psm_translate_irq;
990 	if (pops->psm_intr_ops)
991 		psm_intr_ops = pops->psm_intr_ops;
992 
993 #if defined(PSMI_1_2) || defined(PSMI_1_3) || defined(PSMI_1_4)
994 	/*
995 	 * Time-of-day functionality now handled in TOD modules.
996 	 * (Warn about PSM modules that think that we're going to use
997 	 * their ops vectors.)
998 	 */
999 	if (pops->psm_tod_get)
1000 		cmn_err(CE_WARN, "obsolete psm_tod_get op %p",
1001 		    (void *)pops->psm_tod_get);
1002 
1003 	if (pops->psm_tod_set)
1004 		cmn_err(CE_WARN, "obsolete psm_tod_set op %p",
1005 		    (void *)pops->psm_tod_set);
1006 #endif
1007 
1008 	if (pops->psm_notify_error) {
1009 		psm_notify_error = mach_notify_error;
1010 		notify_error = pops->psm_notify_error;
1011 	}
1012 
1013 	(*pops->psm_softinit)();
1014 
1015 	/*
1016 	 * Initialize the dispatcher's function hooks to enable CPU halting
1017 	 * when idle.  Set both the deep-idle and non-deep-idle hooks.
1018 	 *
1019 	 * Assume we can use power saving deep-idle loop cpu_idle_adaptive.
1020 	 * Platform deep-idle driver will reset our idle loop to
1021 	 * non_deep_idle_cpu if power saving deep-idle feature is not available.
1022 	 *
1023 	 * Do not use monitor/mwait if idle_cpu_use_hlt is not set(spin idle)
1024 	 * or idle_cpu_prefer_mwait is not set.
1025 	 * Allocate monitor/mwait buffer for cpu0.
1026 	 */
1027 #ifndef __xpv
1028 	non_deep_idle_disp_enq_thread = disp_enq_thread;
1029 #endif
1030 	if (idle_cpu_use_hlt) {
1031 		idle_cpu = cpu_idle_adaptive;
1032 		CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
1033 #ifndef __xpv
1034 		if (is_x86_feature(x86_featureset, X86FSET_MWAIT) &&
1035 		    idle_cpu_prefer_mwait) {
1036 			CPU->cpu_m.mcpu_mwait = cpuid_mwait_alloc(CPU);
1037 			/*
1038 			 * Protect ourself from insane mwait size.
1039 			 */
1040 			if (CPU->cpu_m.mcpu_mwait == NULL) {
1041 #ifdef DEBUG
1042 				cmn_err(CE_NOTE, "Using hlt idle.  Cannot "
1043 				    "handle cpu 0 mwait size.");
1044 #endif
1045 				idle_cpu_prefer_mwait = 0;
1046 				CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
1047 			} else {
1048 				CPU->cpu_m.mcpu_idle_cpu = cpu_idle_mwait;
1049 			}
1050 		} else {
1051 			CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
1052 		}
1053 		non_deep_idle_cpu = CPU->cpu_m.mcpu_idle_cpu;
1054 
1055 		/*
1056 		 * Disable power saving deep idle loop?
1057 		 */
1058 		if (idle_cpu_no_deep_c) {
1059 			idle_cpu = non_deep_idle_cpu;
1060 		}
1061 #endif
1062 	}
1063 
1064 	mach_smpinit();
1065 }
1066 
1067 static void
1068 mach_smpinit(void)
1069 {
1070 	struct psm_ops  *pops;
1071 	processorid_t cpu_id;
1072 	int cnt;
1073 	cpuset_t cpumask;
1074 
1075 	pops = mach_set[0];
1076 	CPUSET_ZERO(cpumask);
1077 
1078 	cpu_id = -1;
1079 	cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
1080 	/*
1081 	 * Only add boot_ncpus CPUs to mp_cpus. Other CPUs will be handled
1082 	 * by CPU DR driver at runtime.
1083 	 */
1084 	for (cnt = 0; cpu_id != -1 && cnt < boot_ncpus; cnt++) {
1085 		CPUSET_ADD(cpumask, cpu_id);
1086 		cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
1087 	}
1088 
1089 	mp_cpus = cpumask;
1090 
1091 	/* MP related routines */
1092 	ap_mlsetup = pops->psm_post_cpu_start;
1093 	send_dirintf = pops->psm_send_ipi;
1094 
1095 	/* optional MP related routines */
1096 	if (pops->psm_shutdown)
1097 		psm_shutdownf = pops->psm_shutdown;
1098 	if (pops->psm_preshutdown)
1099 		psm_preshutdownf = pops->psm_preshutdown;
1100 	if (pops->psm_notify_func)
1101 		psm_notifyf = pops->psm_notify_func;
1102 	if (pops->psm_set_idlecpu)
1103 		psm_set_idle_cpuf = pops->psm_set_idlecpu;
1104 	if (pops->psm_unset_idlecpu)
1105 		psm_unset_idle_cpuf = pops->psm_unset_idlecpu;
1106 
1107 	psm_clkinit = pops->psm_clkinit;
1108 
1109 	if (pops->psm_timer_reprogram)
1110 		psm_timer_reprogram = pops->psm_timer_reprogram;
1111 
1112 	if (pops->psm_timer_enable)
1113 		psm_timer_enable = pops->psm_timer_enable;
1114 
1115 	if (pops->psm_timer_disable)
1116 		psm_timer_disable = pops->psm_timer_disable;
1117 
1118 	if (pops->psm_post_cyclic_setup)
1119 		psm_post_cyclic_setup = pops->psm_post_cyclic_setup;
1120 
1121 	if (pops->psm_state)
1122 		psm_state = pops->psm_state;
1123 
1124 	/*
1125 	 * Set these vectors here so they can be used by Suspend/Resume
1126 	 * on UP machines.
1127 	 */
1128 	if (pops->psm_disable_intr)
1129 		psm_disable_intr = pops->psm_disable_intr;
1130 	if (pops->psm_enable_intr)
1131 		psm_enable_intr  = pops->psm_enable_intr;
1132 
1133 	/* check for multiple CPUs */
1134 	if (cnt < 2 && plat_dr_support_cpu() == B_FALSE)
1135 		return;
1136 
1137 	/* check for MP platforms */
1138 	if (pops->psm_cpu_start == NULL)
1139 		return;
1140 
1141 	/*
1142 	 * Set the dispatcher hook to enable cpu "wake up"
1143 	 * when a thread becomes runnable.
1144 	 */
1145 	if (idle_cpu_use_hlt) {
1146 		disp_enq_thread = cpu_wakeup;
1147 #ifndef __xpv
1148 		if (is_x86_feature(x86_featureset, X86FSET_MWAIT) &&
1149 		    idle_cpu_prefer_mwait)
1150 			disp_enq_thread = cpu_wakeup_mwait;
1151 		non_deep_idle_disp_enq_thread = disp_enq_thread;
1152 #endif
1153 	}
1154 
1155 	psm_get_ipivect = pops->psm_get_ipivect;
1156 
1157 	(void) add_avintr((void *)NULL, XC_HI_PIL, xc_serv, "xc_intr",
1158 	    (*pops->psm_get_ipivect)(XC_HI_PIL, PSM_INTR_IPI_HI),
1159 	    NULL, NULL, NULL, NULL);
1160 
1161 	(void) (*pops->psm_get_ipivect)(XC_CPUPOKE_PIL, PSM_INTR_POKE);
1162 }
1163 
1164 static void
1165 mach_picinit()
1166 {
1167 	struct psm_ops  *pops;
1168 
1169 	pops = mach_set[0];
1170 
1171 	/* register the interrupt handlers */
1172 	setlvl = pops->psm_intr_enter;
1173 	setlvlx = pops->psm_intr_exit;
1174 
1175 	/* initialize the interrupt hardware */
1176 	(*pops->psm_picinit)();
1177 
1178 	/* set interrupt mask for current ipl */
1179 	setspl = pops->psm_setspl;
1180 	cli();
1181 	setspl(CPU->cpu_pri);
1182 }
1183 
1184 uint_t	cpu_freq;	/* MHz */
1185 uint64_t cpu_freq_hz;	/* measured (in hertz) */
1186 
1187 #define	MEGA_HZ		1000000
1188 
1189 #ifdef __xpv
1190 
1191 int xpv_cpufreq_workaround = 1;
1192 int xpv_cpufreq_verbose = 0;
1193 
1194 #else	/* __xpv */
1195 
1196 static uint64_t
1197 mach_calchz(uint32_t pit_counter, uint64_t *processor_clks)
1198 {
1199 	uint64_t cpu_hz;
1200 
1201 	if ((pit_counter == 0) || (*processor_clks == 0) ||
1202 	    (*processor_clks > (((uint64_t)-1) / PIT_HZ)))
1203 		return (0);
1204 
1205 	cpu_hz = ((uint64_t)PIT_HZ * *processor_clks) / pit_counter;
1206 
1207 	return (cpu_hz);
1208 }
1209 
1210 #endif	/* __xpv */
1211 
1212 static uint64_t
1213 mach_getcpufreq(void)
1214 {
1215 #if defined(__xpv)
1216 	vcpu_time_info_t *vti = &CPU->cpu_m.mcpu_vcpu_info->time;
1217 	uint64_t cpu_hz;
1218 
1219 	/*
1220 	 * During dom0 bringup, it was noted that on at least one older
1221 	 * Intel HT machine, the hypervisor initially gives a tsc_to_system_mul
1222 	 * value that is quite wrong (the 3.06GHz clock was reported
1223 	 * as 4.77GHz)
1224 	 *
1225 	 * The curious thing is, that if you stop the kernel at entry,
1226 	 * breakpoint here and inspect the value with kmdb, the value
1227 	 * is correct - but if you don't stop and simply enable the
1228 	 * printf statement (below), you can see the bad value printed
1229 	 * here.  Almost as if something kmdb did caused the hypervisor to
1230 	 * figure it out correctly.  And, note that the hypervisor
1231 	 * eventually -does- figure it out correctly ... if you look at
1232 	 * the field later in the life of dom0, it is correct.
1233 	 *
1234 	 * For now, on dom0, we employ a slightly cheesy workaround of
1235 	 * using the DOM0_PHYSINFO hypercall.
1236 	 */
1237 	if (DOMAIN_IS_INITDOMAIN(xen_info) && xpv_cpufreq_workaround) {
1238 		cpu_hz = 1000 * xpv_cpu_khz();
1239 	} else {
1240 		cpu_hz = (UINT64_C(1000000000) << 32) / vti->tsc_to_system_mul;
1241 
1242 		if (vti->tsc_shift < 0)
1243 			cpu_hz <<= -vti->tsc_shift;
1244 		else
1245 			cpu_hz >>= vti->tsc_shift;
1246 	}
1247 
1248 	if (xpv_cpufreq_verbose)
1249 		printf("mach_getcpufreq: system_mul 0x%x, shift %d, "
1250 		    "cpu_hz %" PRId64 "Hz\n",
1251 		    vti->tsc_to_system_mul, vti->tsc_shift, cpu_hz);
1252 
1253 	return (cpu_hz);
1254 #else	/* __xpv */
1255 	uint32_t pit_counter;
1256 	uint64_t processor_clks;
1257 
1258 	if (is_x86_feature(x86_featureset, X86FSET_TSC)) {
1259 		/*
1260 		 * We have a TSC. freq_tsc() knows how to measure the number
1261 		 * of clock cycles sampled against the PIT.
1262 		 */
1263 		ulong_t flags = clear_int_flag();
1264 		processor_clks = freq_tsc(&pit_counter);
1265 		restore_int_flag(flags);
1266 		return (mach_calchz(pit_counter, &processor_clks));
1267 	} else if (x86_vendor == X86_VENDOR_Cyrix || x86_type == X86_TYPE_P5) {
1268 #if defined(__amd64)
1269 		panic("mach_getcpufreq: no TSC!");
1270 #elif defined(__i386)
1271 		/*
1272 		 * We are a Cyrix based on a 6x86 core or an Intel Pentium
1273 		 * for which freq_notsc() knows how to measure the number of
1274 		 * elapsed clock cycles sampled against the PIT
1275 		 */
1276 		ulong_t flags = clear_int_flag();
1277 		processor_clks = freq_notsc(&pit_counter);
1278 		restore_int_flag(flags);
1279 		return (mach_calchz(pit_counter, &processor_clks));
1280 #endif	/* __i386 */
1281 	}
1282 
1283 	/* We do not know how to calculate cpu frequency for this cpu. */
1284 	return (0);
1285 #endif	/* __xpv */
1286 }
1287 
1288 /*
1289  * If the clock speed of a cpu is found to be reported incorrectly, do not add
1290  * to this array, instead improve the accuracy of the algorithm that determines
1291  * the clock speed of the processor or extend the implementation to support the
1292  * vendor as appropriate. This is here only to support adjusting the speed on
1293  * older slower processors that mach_fixcpufreq() would not be able to account
1294  * for otherwise.
1295  */
1296 static int x86_cpu_freq[] = { 60, 75, 80, 90, 120, 160, 166, 175, 180, 233 };
1297 
1298 /*
1299  * On fast processors the clock frequency that is measured may be off by
1300  * a few MHz from the value printed on the part. This is a combination of
1301  * the factors that for such fast parts being off by this much is within
1302  * the tolerances for manufacture and because of the difficulties in the
1303  * measurement that can lead to small error. This function uses some
1304  * heuristics in order to tweak the value that was measured to match what
1305  * is most likely printed on the part.
1306  *
1307  * Some examples:
1308  * 	AMD Athlon 1000 mhz measured as 998 mhz
1309  * 	Intel Pentium III Xeon 733 mhz measured as 731 mhz
1310  * 	Intel Pentium IV 1500 mhz measured as 1495mhz
1311  *
1312  * If in the future this function is no longer sufficient to correct
1313  * for the error in the measurement, then the algorithm used to perform
1314  * the measurement will have to be improved in order to increase accuracy
1315  * rather than adding horrible and questionable kludges here.
1316  *
1317  * This is called after the cyclics subsystem because of the potential
1318  * that the heuristics within may give a worse estimate of the clock
1319  * frequency than the value that was measured.
1320  */
1321 static void
1322 mach_fixcpufreq(void)
1323 {
1324 	uint32_t freq, mul, near66, delta66, near50, delta50, fixed, delta, i;
1325 
1326 	freq = (uint32_t)cpu_freq;
1327 
1328 	/*
1329 	 * Find the nearest integer multiple of 200/3 (about 66) MHz to the
1330 	 * measured speed taking into account that the 667 MHz parts were
1331 	 * the first to round-up.
1332 	 */
1333 	mul = (uint32_t)((3 * (uint64_t)freq + 100) / 200);
1334 	near66 = (uint32_t)((200 * (uint64_t)mul + ((mul >= 10) ? 1 : 0)) / 3);
1335 	delta66 = (near66 > freq) ? (near66 - freq) : (freq - near66);
1336 
1337 	/* Find the nearest integer multiple of 50 MHz to the measured speed */
1338 	mul = (freq + 25) / 50;
1339 	near50 = mul * 50;
1340 	delta50 = (near50 > freq) ? (near50 - freq) : (freq - near50);
1341 
1342 	/* Find the closer of the two */
1343 	if (delta66 < delta50) {
1344 		fixed = near66;
1345 		delta = delta66;
1346 	} else {
1347 		fixed = near50;
1348 		delta = delta50;
1349 	}
1350 
1351 	if (fixed > INT_MAX)
1352 		return;
1353 
1354 	/*
1355 	 * Some older parts have a core clock frequency that is not an
1356 	 * integral multiple of 50 or 66 MHz. Check if one of the old
1357 	 * clock frequencies is closer to the measured value than any
1358 	 * of the integral multiples of 50 an 66, and if so set fixed
1359 	 * and delta appropriately to represent the closest value.
1360 	 */
1361 	i = sizeof (x86_cpu_freq) / sizeof (int);
1362 	while (i > 0) {
1363 		i--;
1364 
1365 		if (x86_cpu_freq[i] <= freq) {
1366 			mul = freq - x86_cpu_freq[i];
1367 
1368 			if (mul < delta) {
1369 				fixed = x86_cpu_freq[i];
1370 				delta = mul;
1371 			}
1372 
1373 			break;
1374 		}
1375 
1376 		mul = x86_cpu_freq[i] - freq;
1377 
1378 		if (mul < delta) {
1379 			fixed = x86_cpu_freq[i];
1380 			delta = mul;
1381 		}
1382 	}
1383 
1384 	/*
1385 	 * Set a reasonable maximum for how much to correct the measured
1386 	 * result by. This check is here to prevent the adjustment made
1387 	 * by this function from being more harm than good. It is entirely
1388 	 * possible that in the future parts will be made that are not
1389 	 * integral multiples of 66 or 50 in clock frequency or that
1390 	 * someone may overclock a part to some odd frequency. If the
1391 	 * measured value is farther from the corrected value than
1392 	 * allowed, then assume the corrected value is in error and use
1393 	 * the measured value.
1394 	 */
1395 	if (6 < delta)
1396 		return;
1397 
1398 	cpu_freq = (int)fixed;
1399 }
1400 
1401 
1402 static int
1403 machhztomhz(uint64_t cpu_freq_hz)
1404 {
1405 	uint64_t cpu_mhz;
1406 
1407 	/* Round to nearest MHZ */
1408 	cpu_mhz = (cpu_freq_hz + (MEGA_HZ / 2)) / MEGA_HZ;
1409 
1410 	if (cpu_mhz > INT_MAX)
1411 		return (0);
1412 
1413 	return ((int)cpu_mhz);
1414 
1415 }
1416 
1417 
1418 static int
1419 mach_clkinit(int preferred_mode, int *set_mode)
1420 {
1421 	struct psm_ops  *pops;
1422 	int resolution;
1423 
1424 	pops = mach_set[0];
1425 
1426 	cpu_freq_hz = mach_getcpufreq();
1427 
1428 	cpu_freq = machhztomhz(cpu_freq_hz);
1429 
1430 	if (!is_x86_feature(x86_featureset, X86FSET_TSC) || (cpu_freq == 0))
1431 		tsc_gethrtime_enable = 0;
1432 
1433 #ifndef __xpv
1434 	if (tsc_gethrtime_enable) {
1435 		tsc_hrtimeinit(cpu_freq_hz);
1436 	} else
1437 #endif
1438 	{
1439 		if (pops->psm_hrtimeinit)
1440 			(*pops->psm_hrtimeinit)();
1441 		gethrtimef = pops->psm_gethrtime;
1442 		gethrtimeunscaledf = gethrtimef;
1443 		/* scalehrtimef will remain dummy */
1444 	}
1445 
1446 	mach_fixcpufreq();
1447 
1448 	if (mach_ver[0] >= PSM_INFO_VER01_3) {
1449 		if (preferred_mode == TIMER_ONESHOT) {
1450 
1451 			resolution = (*pops->psm_clkinit)(0);
1452 			if (resolution != 0)  {
1453 				*set_mode = TIMER_ONESHOT;
1454 				return (resolution);
1455 			}
1456 		}
1457 
1458 		/*
1459 		 * either periodic mode was requested or could not set to
1460 		 * one-shot mode
1461 		 */
1462 		resolution = (*pops->psm_clkinit)(hz);
1463 		/*
1464 		 * psm should be able to do periodic, so we do not check
1465 		 * for return value of psm_clkinit here.
1466 		 */
1467 		*set_mode = TIMER_PERIODIC;
1468 		return (resolution);
1469 	} else {
1470 		/*
1471 		 * PSMI interface prior to PSMI_3 does not define a return
1472 		 * value for psm_clkinit, so the return value is ignored.
1473 		 */
1474 		(void) (*pops->psm_clkinit)(hz);
1475 		*set_mode = TIMER_PERIODIC;
1476 		return (nsec_per_tick);
1477 	}
1478 }
1479 
1480 
1481 /*ARGSUSED*/
1482 static int
1483 mach_softlvl_to_vect(int ipl)
1484 {
1485 	setsoftint = av_set_softint_pending;
1486 	kdisetsoftint = kdi_av_set_softint_pending;
1487 
1488 	return (PSM_SV_SOFTWARE);
1489 }
1490 
1491 #ifdef DEBUG
1492 /*
1493  * This is here to allow us to simulate cpus that refuse to start.
1494  */
1495 cpuset_t cpufailset;
1496 #endif
1497 
1498 int
1499 mach_cpu_start(struct cpu *cp, void *ctx)
1500 {
1501 	struct psm_ops *pops = mach_set[0];
1502 	processorid_t id = cp->cpu_id;
1503 
1504 #ifdef DEBUG
1505 	if (CPU_IN_SET(cpufailset, id))
1506 		return (0);
1507 #endif
1508 	return ((*pops->psm_cpu_start)(id, ctx));
1509 }
1510 
1511 int
1512 mach_cpuid_start(processorid_t id, void *ctx)
1513 {
1514 	struct psm_ops *pops = mach_set[0];
1515 
1516 #ifdef DEBUG
1517 	if (CPU_IN_SET(cpufailset, id))
1518 		return (0);
1519 #endif
1520 	return ((*pops->psm_cpu_start)(id, ctx));
1521 }
1522 
1523 int
1524 mach_cpu_stop(cpu_t *cp, void *ctx)
1525 {
1526 	struct psm_ops *pops = mach_set[0];
1527 	psm_cpu_request_t request;
1528 
1529 	if (pops->psm_cpu_ops == NULL) {
1530 		return (ENOTSUP);
1531 	}
1532 
1533 	ASSERT(cp->cpu_id != -1);
1534 	request.pcr_cmd = PSM_CPU_STOP;
1535 	request.req.cpu_stop.cpuid = cp->cpu_id;
1536 	request.req.cpu_stop.ctx = ctx;
1537 
1538 	return ((*pops->psm_cpu_ops)(&request));
1539 }
1540 
1541 int
1542 mach_cpu_add(mach_cpu_add_arg_t *argp, processorid_t *cpuidp)
1543 {
1544 	int rc;
1545 	struct psm_ops *pops = mach_set[0];
1546 	psm_cpu_request_t request;
1547 
1548 	if (pops->psm_cpu_ops == NULL) {
1549 		return (ENOTSUP);
1550 	}
1551 
1552 	request.pcr_cmd = PSM_CPU_ADD;
1553 	request.req.cpu_add.argp = argp;
1554 	request.req.cpu_add.cpuid = -1;
1555 	rc = (*pops->psm_cpu_ops)(&request);
1556 	if (rc == 0) {
1557 		ASSERT(request.req.cpu_add.cpuid != -1);
1558 		*cpuidp = request.req.cpu_add.cpuid;
1559 	}
1560 
1561 	return (rc);
1562 }
1563 
1564 int
1565 mach_cpu_remove(processorid_t cpuid)
1566 {
1567 	struct psm_ops *pops = mach_set[0];
1568 	psm_cpu_request_t request;
1569 
1570 	if (pops->psm_cpu_ops == NULL) {
1571 		return (ENOTSUP);
1572 	}
1573 
1574 	request.pcr_cmd = PSM_CPU_REMOVE;
1575 	request.req.cpu_remove.cpuid = cpuid;
1576 
1577 	return ((*pops->psm_cpu_ops)(&request));
1578 }
1579 
1580 /*
1581  * Default handler to create device node for CPU.
1582  * One reference count will be held on created device node.
1583  */
1584 static int
1585 mach_cpu_create_devinfo(cpu_t *cp, dev_info_t **dipp)
1586 {
1587 	int rv, circ;
1588 	dev_info_t *dip;
1589 	static kmutex_t cpu_node_lock;
1590 	static dev_info_t *cpu_nex_devi = NULL;
1591 
1592 	ASSERT(cp != NULL);
1593 	ASSERT(dipp != NULL);
1594 	*dipp = NULL;
1595 
1596 	if (cpu_nex_devi == NULL) {
1597 		mutex_enter(&cpu_node_lock);
1598 		/* First check whether cpus exists. */
1599 		cpu_nex_devi = ddi_find_devinfo("cpus", -1, 0);
1600 		/* Create cpus if it doesn't exist. */
1601 		if (cpu_nex_devi == NULL) {
1602 			ndi_devi_enter(ddi_root_node(), &circ);
1603 			rv = ndi_devi_alloc(ddi_root_node(), "cpus",
1604 			    (pnode_t)DEVI_SID_NODEID, &dip);
1605 			if (rv != NDI_SUCCESS) {
1606 				mutex_exit(&cpu_node_lock);
1607 				cmn_err(CE_CONT,
1608 				    "?failed to create cpu nexus device.\n");
1609 				return (PSM_FAILURE);
1610 			}
1611 			ASSERT(dip != NULL);
1612 			(void) ndi_devi_online(dip, 0);
1613 			ndi_devi_exit(ddi_root_node(), circ);
1614 			cpu_nex_devi = dip;
1615 		}
1616 		mutex_exit(&cpu_node_lock);
1617 	}
1618 
1619 	/*
1620 	 * create a child node for cpu identified as 'cpu_id'
1621 	 */
1622 	ndi_devi_enter(cpu_nex_devi, &circ);
1623 	dip = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID, -1);
1624 	if (dip == NULL) {
1625 		cmn_err(CE_CONT,
1626 		    "?failed to create device node for cpu%d.\n", cp->cpu_id);
1627 		rv = PSM_FAILURE;
1628 	} else {
1629 		*dipp = dip;
1630 		(void) ndi_hold_devi(dip);
1631 		rv = PSM_SUCCESS;
1632 	}
1633 	ndi_devi_exit(cpu_nex_devi, circ);
1634 
1635 	return (rv);
1636 }
1637 
1638 /*
1639  * Create cpu device node in device tree and online it.
1640  * Return created dip with reference count held if requested.
1641  */
1642 int
1643 mach_cpu_create_device_node(struct cpu *cp, dev_info_t **dipp)
1644 {
1645 	int rv;
1646 	dev_info_t *dip = NULL;
1647 
1648 	ASSERT(psm_cpu_create_devinfo != NULL);
1649 	rv = psm_cpu_create_devinfo(cp, &dip);
1650 	if (rv == PSM_SUCCESS) {
1651 		cpuid_set_cpu_properties(dip, cp->cpu_id, cp->cpu_m.mcpu_cpi);
1652 		/* Recursively attach driver for parent nexus device. */
1653 		if (i_ddi_attach_node_hierarchy(ddi_get_parent(dip)) ==
1654 		    DDI_SUCCESS) {
1655 			/* Configure cpu itself and descendants. */
1656 			(void) ndi_devi_online(dip,
1657 			    NDI_ONLINE_ATTACH | NDI_CONFIG);
1658 		}
1659 		if (dipp != NULL) {
1660 			*dipp = dip;
1661 		} else {
1662 			(void) ndi_rele_devi(dip);
1663 		}
1664 	}
1665 
1666 	return (rv);
1667 }
1668 
1669 /*
1670  * The dipp contains one of following values on return:
1671  * - NULL if no device node found
1672  * - pointer to device node if found
1673  */
1674 int
1675 mach_cpu_get_device_node(struct cpu *cp, dev_info_t **dipp)
1676 {
1677 	*dipp = NULL;
1678 	if (psm_cpu_get_devinfo != NULL) {
1679 		if (psm_cpu_get_devinfo(cp, dipp) == PSM_SUCCESS) {
1680 			return (PSM_SUCCESS);
1681 		}
1682 	}
1683 
1684 	return (PSM_FAILURE);
1685 }
1686 
1687 /*ARGSUSED*/
1688 static int
1689 mach_translate_irq(dev_info_t *dip, int irqno)
1690 {
1691 	return (irqno);	/* default to NO translation */
1692 }
1693 
1694 static void
1695 mach_notify_error(int level, char *errmsg)
1696 {
1697 	/*
1698 	 * SL_FATAL is pass in once panicstr is set, deliver it
1699 	 * as CE_PANIC.  Also, translate SL_ codes back to CE_
1700 	 * codes for the psmi handler
1701 	 */
1702 	if (level & SL_FATAL)
1703 		(*notify_error)(CE_PANIC, errmsg);
1704 	else if (level & SL_WARN)
1705 		(*notify_error)(CE_WARN, errmsg);
1706 	else if (level & SL_NOTE)
1707 		(*notify_error)(CE_NOTE, errmsg);
1708 	else if (level & SL_CONSOLE)
1709 		(*notify_error)(CE_CONT, errmsg);
1710 }
1711 
1712 /*
1713  * It provides the default basic intr_ops interface for the new DDI
1714  * interrupt framework if the PSM doesn't have one.
1715  *
1716  * Input:
1717  * dip     - pointer to the dev_info structure of the requested device
1718  * hdlp    - pointer to the internal interrupt handle structure for the
1719  *	     requested interrupt
1720  * intr_op - opcode for this call
1721  * result  - pointer to the integer that will hold the result to be
1722  *	     passed back if return value is PSM_SUCCESS
1723  *
1724  * Output:
1725  * return value is either PSM_SUCCESS or PSM_FAILURE
1726  */
1727 static int
1728 mach_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
1729     psm_intr_op_t intr_op, int *result)
1730 {
1731 	struct intrspec *ispec;
1732 
1733 	switch (intr_op) {
1734 	case PSM_INTR_OP_CHECK_MSI:
1735 		*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
1736 		    DDI_INTR_TYPE_MSIX);
1737 		break;
1738 	case PSM_INTR_OP_ALLOC_VECTORS:
1739 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1740 			*result = 1;
1741 		else
1742 			*result = 0;
1743 		break;
1744 	case PSM_INTR_OP_FREE_VECTORS:
1745 		break;
1746 	case PSM_INTR_OP_NAVAIL_VECTORS:
1747 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1748 			*result = 1;
1749 		else
1750 			*result = 0;
1751 		break;
1752 	case PSM_INTR_OP_XLATE_VECTOR:
1753 		ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
1754 		*result = psm_translate_irq(dip, ispec->intrspec_vec);
1755 		break;
1756 	case PSM_INTR_OP_GET_CAP:
1757 		*result = 0;
1758 		break;
1759 	case PSM_INTR_OP_GET_PENDING:
1760 	case PSM_INTR_OP_CLEAR_MASK:
1761 	case PSM_INTR_OP_SET_MASK:
1762 	case PSM_INTR_OP_GET_SHARED:
1763 	case PSM_INTR_OP_SET_PRI:
1764 	case PSM_INTR_OP_SET_CAP:
1765 	case PSM_INTR_OP_SET_CPU:
1766 	case PSM_INTR_OP_GET_INTR:
1767 	default:
1768 		return (PSM_FAILURE);
1769 	}
1770 	return (PSM_SUCCESS);
1771 }
1772 /*
1773  * Return 1 if CMT load balancing policies should be
1774  * implemented across instances of the specified hardware
1775  * sharing relationship.
1776  */
1777 int
1778 pg_cmt_load_bal_hw(pghw_type_t hw)
1779 {
1780 	if (hw == PGHW_IPIPE ||
1781 	    hw == PGHW_FPU ||
1782 	    hw == PGHW_PROCNODE ||
1783 	    hw == PGHW_CHIP)
1784 		return (1);
1785 	else
1786 		return (0);
1787 }
1788 /*
1789  * Return 1 if thread affinity polices should be implemented
1790  * for instances of the specifed hardware sharing relationship.
1791  */
1792 int
1793 pg_cmt_affinity_hw(pghw_type_t hw)
1794 {
1795 	if (hw == PGHW_CACHE)
1796 		return (1);
1797 	else
1798 		return (0);
1799 }
1800 
1801 /*
1802  * Return number of counter events requested to measure hardware capacity and
1803  * utilization and setup CPC requests for specified CPU as needed
1804  *
1805  * May return 0 when platform or processor specific code knows that no CPC
1806  * events should be programmed on this CPU or -1 when platform or processor
1807  * specific code doesn't know which counter events are best to use and common
1808  * code should decide for itself
1809  */
1810 int
1811 /* LINTED E_FUNC_ARG_UNUSED */
1812 cu_plat_cpc_init(cpu_t *cp, kcpc_request_list_t *reqs, int nreqs)
1813 {
1814 	const char	*impl_name;
1815 
1816 	/*
1817 	 * Return error if pcbe_ops not set
1818 	 */
1819 	if (pcbe_ops == NULL)
1820 		return (-1);
1821 
1822 	/*
1823 	 * Return that no CPC events should be programmed on hyperthreaded
1824 	 * Pentium 4 and return error for all other x86 processors to tell
1825 	 * common code to decide what counter events to program on those CPUs
1826 	 * for measuring hardware capacity and utilization
1827 	 */
1828 	impl_name = pcbe_ops->pcbe_impl_name();
1829 	if (impl_name != NULL && strcmp(impl_name, PCBE_IMPL_NAME_P4HT) == 0)
1830 		return (0);
1831 	else
1832 		return (-1);
1833 }
1834