1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/t_lock.h> 29 #include <sys/param.h> 30 #include <sys/segments.h> 31 #include <sys/sysmacros.h> 32 #include <sys/signal.h> 33 #include <sys/systm.h> 34 #include <sys/user.h> 35 #include <sys/mman.h> 36 #include <sys/vm.h> 37 38 #include <sys/disp.h> 39 #include <sys/class.h> 40 41 #include <sys/proc.h> 42 #include <sys/buf.h> 43 #include <sys/kmem.h> 44 45 #include <sys/reboot.h> 46 #include <sys/uadmin.h> 47 #include <sys/callb.h> 48 49 #include <sys/cred.h> 50 #include <sys/vnode.h> 51 #include <sys/file.h> 52 53 #include <sys/procfs.h> 54 #include <sys/acct.h> 55 56 #include <sys/vfs.h> 57 #include <sys/dnlc.h> 58 #include <sys/var.h> 59 #include <sys/cmn_err.h> 60 #include <sys/utsname.h> 61 #include <sys/debug.h> 62 63 #include <sys/dumphdr.h> 64 #include <sys/bootconf.h> 65 #include <sys/varargs.h> 66 #include <sys/promif.h> 67 #include <sys/modctl.h> 68 69 #include <sys/consdev.h> 70 #include <sys/frame.h> 71 72 #include <sys/sunddi.h> 73 #include <sys/ddidmareq.h> 74 #include <sys/psw.h> 75 #include <sys/regset.h> 76 #include <sys/privregs.h> 77 #include <sys/clock.h> 78 #include <sys/tss.h> 79 #include <sys/cpu.h> 80 #include <sys/stack.h> 81 #include <sys/trap.h> 82 #include <sys/pic.h> 83 #include <vm/hat.h> 84 #include <vm/anon.h> 85 #include <vm/as.h> 86 #include <vm/page.h> 87 #include <vm/seg.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_map.h> 90 #include <vm/seg_vn.h> 91 #include <vm/seg_kp.h> 92 #include <vm/hat_i86.h> 93 #include <sys/swap.h> 94 #include <sys/thread.h> 95 #include <sys/sysconf.h> 96 #include <sys/vm_machparam.h> 97 #include <sys/archsystm.h> 98 #include <sys/machsystm.h> 99 #include <sys/machlock.h> 100 #include <sys/x_call.h> 101 #include <sys/instance.h> 102 103 #include <sys/time.h> 104 #include <sys/smp_impldefs.h> 105 #include <sys/psm_types.h> 106 #include <sys/atomic.h> 107 #include <sys/panic.h> 108 #include <sys/cpuvar.h> 109 #include <sys/dtrace.h> 110 #include <sys/bl.h> 111 #include <sys/nvpair.h> 112 #include <sys/x86_archext.h> 113 #include <sys/pool_pset.h> 114 #include <sys/autoconf.h> 115 #include <sys/mem.h> 116 #include <sys/dumphdr.h> 117 #include <sys/compress.h> 118 #include <sys/cpu_module.h> 119 #if defined(__xpv) 120 #include <sys/hypervisor.h> 121 #include <sys/xpv_panic.h> 122 #endif 123 124 #include <sys/fastboot.h> 125 #include <sys/machelf.h> 126 #include <sys/kobj.h> 127 #include <sys/multiboot.h> 128 129 #ifdef TRAPTRACE 130 #include <sys/traptrace.h> 131 #endif /* TRAPTRACE */ 132 133 extern void audit_enterprom(int); 134 extern void audit_exitprom(int); 135 136 /* 137 * Occassionally the kernel knows better whether to power-off or reboot. 138 */ 139 int force_shutdown_method = AD_UNKNOWN; 140 141 /* 142 * The panicbuf array is used to record messages and state: 143 */ 144 char panicbuf[PANICBUFSIZE]; 145 146 /* 147 * maxphys - used during physio 148 * klustsize - used for klustering by swapfs and specfs 149 */ 150 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ 151 int klustsize = 56 * 1024; 152 153 caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 154 155 /* 156 * defined here, though unused on x86, 157 * to make kstat_fr.c happy. 158 */ 159 int vac; 160 161 void stop_other_cpus(); 162 void debug_enter(char *); 163 164 extern void pm_cfb_check_and_powerup(void); 165 extern void pm_cfb_rele(void); 166 167 extern fastboot_info_t newkernel; 168 169 int quiesce_active = 0; 170 171 /* 172 * Machine dependent code to reboot. 173 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer 174 * to a string to be used as the argument string when rebooting. 175 * 176 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 177 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 178 * we are in a normal shutdown sequence (interrupts are not blocked, the 179 * system is not panic'ing or being suspended). 180 */ 181 /*ARGSUSED*/ 182 void 183 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) 184 { 185 processorid_t bootcpuid = 0; 186 187 if (fcn == AD_FASTREBOOT && !newkernel.fi_valid) 188 fcn = AD_BOOT; 189 190 if (!panicstr) { 191 kpreempt_disable(); 192 if (fcn == AD_FASTREBOOT) { 193 mutex_enter(&cpu_lock); 194 if (CPU_ACTIVE(cpu_get(bootcpuid))) { 195 affinity_set(bootcpuid); 196 } 197 mutex_exit(&cpu_lock); 198 } else { 199 affinity_set(CPU_CURRENT); 200 } 201 } 202 203 if (force_shutdown_method != AD_UNKNOWN) 204 fcn = force_shutdown_method; 205 206 /* 207 * XXX - rconsvp is set to NULL to ensure that output messages 208 * are sent to the underlying "hardware" device using the 209 * monitor's printf routine since we are in the process of 210 * either rebooting or halting the machine. 211 */ 212 rconsvp = NULL; 213 214 /* 215 * Print the reboot message now, before pausing other cpus. 216 * There is a race condition in the printing support that 217 * can deadlock multiprocessor machines. 218 */ 219 if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) 220 prom_printf("rebooting...\n"); 221 222 if (IN_XPV_PANIC()) 223 reset(); 224 225 /* 226 * We can't bring up the console from above lock level, so do it now 227 */ 228 pm_cfb_check_and_powerup(); 229 230 /* make sure there are no more changes to the device tree */ 231 devtree_freeze(); 232 233 if (invoke_cb) 234 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 235 236 /* 237 * Clear any unresolved UEs from memory. 238 */ 239 page_retire_mdboot(); 240 241 #if defined(__xpv) 242 /* 243 * XXPV Should probably think some more about how we deal 244 * with panicing before it's really safe to panic. 245 * On hypervisors, we reboot very quickly.. Perhaps panic 246 * should only attempt to recover by rebooting if, 247 * say, we were able to mount the root filesystem, 248 * or if we successfully launched init(1m). 249 */ 250 if (panicstr && proc_init == NULL) 251 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff); 252 #endif 253 /* 254 * stop other cpus and raise our priority. since there is only 255 * one active cpu after this, and our priority will be too high 256 * for us to be preempted, we're essentially single threaded 257 * from here on out. 258 */ 259 (void) spl6(); 260 if (!panicstr) { 261 mutex_enter(&cpu_lock); 262 pause_cpus(NULL); 263 mutex_exit(&cpu_lock); 264 } 265 266 /* 267 * Try to quiesce devices. 268 */ 269 if (!panicstr) { 270 int reset_status = 0; 271 272 quiesce_active = 1; 273 274 quiesce_devices(ddi_root_node(), &reset_status); 275 if (fcn == AD_FASTREBOOT && reset_status == -1 && 276 !force_fastreboot) { 277 prom_printf("Driver(s) not capable of fast reboot. " 278 "Fall back to regular reboot.\n"); 279 fastreboot_capable = 0; 280 } 281 282 quiesce_active = 0; 283 } 284 285 /* 286 * try to reset devices. reset_leaves() should only be called when 287 * there are no other threads that could be accessing devices 288 */ 289 if (!panicstr && !fastreboot_capable) { 290 reset_leaves(); 291 } 292 293 (void) spl8(); 294 (*psm_shutdownf)(cmd, fcn); 295 296 if (fcn == AD_FASTREBOOT && !panicstr && fastreboot_capable) 297 fast_reboot(); 298 else if (fcn == AD_HALT || fcn == AD_POWEROFF) 299 halt((char *)NULL); 300 else 301 prom_reboot(""); 302 /*NOTREACHED*/ 303 } 304 305 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 306 /*ARGSUSED*/ 307 void 308 mdpreboot(int cmd, int fcn, char *mdep) 309 { 310 if (fcn == AD_FASTREBOOT && !fastreboot_capable) { 311 fcn = AD_BOOT; 312 #ifdef __xpv 313 cmn_err(CE_WARN, "Fast reboot not supported on xVM"); 314 #else 315 cmn_err(CE_WARN, "Fast reboot not supported on this platform"); 316 #endif 317 } 318 319 if (fcn == AD_FASTREBOOT) { 320 load_kernel(mdep); 321 if (!newkernel.fi_valid) 322 fcn = AD_BOOT; 323 } 324 325 (*psm_preshutdownf)(cmd, fcn); 326 } 327 328 void 329 idle_other_cpus() 330 { 331 int cpuid = CPU->cpu_id; 332 cpuset_t xcset; 333 334 ASSERT(cpuid < NCPU); 335 CPUSET_ALL_BUT(xcset, cpuid); 336 xc_capture_cpus(xcset); 337 } 338 339 void 340 resume_other_cpus() 341 { 342 ASSERT(CPU->cpu_id < NCPU); 343 344 xc_release_cpus(); 345 } 346 347 void 348 stop_other_cpus() 349 { 350 int cpuid = CPU->cpu_id; 351 cpuset_t xcset; 352 353 ASSERT(cpuid < NCPU); 354 355 /* 356 * xc_trycall will attempt to make all other CPUs execute mach_cpu_halt, 357 * and will return immediately regardless of whether or not it was 358 * able to make them do it. 359 */ 360 CPUSET_ALL_BUT(xcset, cpuid); 361 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())mach_cpu_halt); 362 } 363 364 /* 365 * Machine dependent abort sequence handling 366 */ 367 void 368 abort_sequence_enter(char *msg) 369 { 370 if (abort_enable == 0) { 371 if (audit_active) 372 audit_enterprom(0); 373 return; 374 } 375 if (audit_active) 376 audit_enterprom(1); 377 debug_enter(msg); 378 if (audit_active) 379 audit_exitprom(1); 380 } 381 382 /* 383 * Enter debugger. Called when the user types ctrl-alt-d or whenever 384 * code wants to enter the debugger and possibly resume later. 385 */ 386 void 387 debug_enter( 388 char *msg) /* message to print, possibly NULL */ 389 { 390 if (dtrace_debugger_init != NULL) 391 (*dtrace_debugger_init)(); 392 393 if (msg) 394 prom_printf("%s\n", msg); 395 396 if (boothowto & RB_DEBUG) 397 kmdb_enter(); 398 399 if (dtrace_debugger_fini != NULL) 400 (*dtrace_debugger_fini)(); 401 } 402 403 void 404 reset(void) 405 { 406 #if !defined(__xpv) 407 ushort_t *bios_memchk; 408 409 /* 410 * Can't use psm_map_phys before the hat is initialized. 411 */ 412 if (khat_running) { 413 bios_memchk = (ushort_t *)psm_map_phys(0x472, 414 sizeof (ushort_t), PROT_READ | PROT_WRITE); 415 if (bios_memchk) 416 *bios_memchk = 0x1234; /* bios memory check disable */ 417 } 418 419 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0, "efi-systab")) 420 efi_reset(); 421 pc_reset(); 422 #else 423 if (IN_XPV_PANIC()) 424 pc_reset(); 425 (void) HYPERVISOR_shutdown(SHUTDOWN_reboot); 426 panic("HYPERVISOR_shutdown() failed"); 427 #endif 428 /*NOTREACHED*/ 429 } 430 431 /* 432 * Halt the machine and return to the monitor 433 */ 434 void 435 halt(char *s) 436 { 437 stop_other_cpus(); /* send stop signal to other CPUs */ 438 if (s) 439 prom_printf("(%s) \n", s); 440 prom_exit_to_mon(); 441 /*NOTREACHED*/ 442 } 443 444 /* 445 * Initiate interrupt redistribution. 446 */ 447 void 448 i_ddi_intr_redist_all_cpus() 449 { 450 } 451 452 /* 453 * XXX These probably ought to live somewhere else 454 * XXX They are called from mem.c 455 */ 456 457 /* 458 * Convert page frame number to an OBMEM page frame number 459 * (i.e. put in the type bits -- zero for this implementation) 460 */ 461 pfn_t 462 impl_obmem_pfnum(pfn_t pf) 463 { 464 return (pf); 465 } 466 467 #ifdef NM_DEBUG 468 int nmi_test = 0; /* checked in intentry.s during clock int */ 469 int nmtest = -1; 470 nmfunc1(arg, rp) 471 int arg; 472 struct regs *rp; 473 { 474 printf("nmi called with arg = %x, regs = %x\n", arg, rp); 475 nmtest += 50; 476 if (arg == nmtest) { 477 printf("ip = %x\n", rp->r_pc); 478 return (1); 479 } 480 return (0); 481 } 482 483 #endif 484 485 #include <sys/bootsvcs.h> 486 487 /* Hacked up initialization for initial kernel check out is HERE. */ 488 /* The basic steps are: */ 489 /* kernel bootfuncs definition/initialization for KADB */ 490 /* kadb bootfuncs pointer initialization */ 491 /* putchar/getchar (interrupts disabled) */ 492 493 /* kadb bootfuncs pointer initialization */ 494 495 int 496 sysp_getchar() 497 { 498 int i; 499 ulong_t s; 500 501 if (cons_polledio == NULL) { 502 /* Uh oh */ 503 prom_printf("getchar called with no console\n"); 504 for (;;) 505 /* LOOP FOREVER */; 506 } 507 508 s = clear_int_flag(); 509 i = cons_polledio->cons_polledio_getchar( 510 cons_polledio->cons_polledio_argument); 511 restore_int_flag(s); 512 return (i); 513 } 514 515 void 516 sysp_putchar(int c) 517 { 518 ulong_t s; 519 520 /* 521 * We have no alternative but to drop the output on the floor. 522 */ 523 if (cons_polledio == NULL || 524 cons_polledio->cons_polledio_putchar == NULL) 525 return; 526 527 s = clear_int_flag(); 528 cons_polledio->cons_polledio_putchar( 529 cons_polledio->cons_polledio_argument, c); 530 restore_int_flag(s); 531 } 532 533 int 534 sysp_ischar() 535 { 536 int i; 537 ulong_t s; 538 539 if (cons_polledio == NULL || 540 cons_polledio->cons_polledio_ischar == NULL) 541 return (0); 542 543 s = clear_int_flag(); 544 i = cons_polledio->cons_polledio_ischar( 545 cons_polledio->cons_polledio_argument); 546 restore_int_flag(s); 547 return (i); 548 } 549 550 int 551 goany(void) 552 { 553 prom_printf("Type any key to continue "); 554 (void) prom_getchar(); 555 prom_printf("\n"); 556 return (1); 557 } 558 559 static struct boot_syscalls kern_sysp = { 560 sysp_getchar, /* unchar (*getchar)(); 7 */ 561 sysp_putchar, /* int (*putchar)(); 8 */ 562 sysp_ischar, /* int (*ischar)(); 9 */ 563 }; 564 565 #if defined(__xpv) 566 int using_kern_polledio; 567 #endif 568 569 void 570 kadb_uses_kernel() 571 { 572 /* 573 * This routine is now totally misnamed, since it does not in fact 574 * control kadb's I/O; it only controls the kernel's prom_* I/O. 575 */ 576 sysp = &kern_sysp; 577 #if defined(__xpv) 578 using_kern_polledio = 1; 579 #endif 580 } 581 582 /* 583 * the interface to the outside world 584 */ 585 586 /* 587 * poll_port -- wait for a register to achieve a 588 * specific state. Arguments are a mask of bits we care about, 589 * and two sub-masks. To return normally, all the bits in the 590 * first sub-mask must be ON, all the bits in the second sub- 591 * mask must be OFF. If about seconds pass without the register 592 * achieving the desired bit configuration, we return 1, else 593 * 0. 594 */ 595 int 596 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) 597 { 598 int i; 599 ushort_t maskval; 600 601 for (i = 500000; i; i--) { 602 maskval = inb(port) & mask; 603 if (((maskval & onbits) == onbits) && 604 ((maskval & offbits) == 0)) 605 return (0); 606 drv_usecwait(10); 607 } 608 return (1); 609 } 610 611 /* 612 * set_idle_cpu is called from idle() when a CPU becomes idle. 613 */ 614 /*LINTED: static unused */ 615 static uint_t last_idle_cpu; 616 617 /*ARGSUSED*/ 618 void 619 set_idle_cpu(int cpun) 620 { 621 last_idle_cpu = cpun; 622 (*psm_set_idle_cpuf)(cpun); 623 } 624 625 /* 626 * unset_idle_cpu is called from idle() when a CPU is no longer idle. 627 */ 628 /*ARGSUSED*/ 629 void 630 unset_idle_cpu(int cpun) 631 { 632 (*psm_unset_idle_cpuf)(cpun); 633 } 634 635 /* 636 * This routine is almost correct now, but not quite. It still needs the 637 * equivalent concept of "hres_last_tick", just like on the sparc side. 638 * The idea is to take a snapshot of the hi-res timer while doing the 639 * hrestime_adj updates under hres_lock in locore, so that the small 640 * interval between interrupt assertion and interrupt processing is 641 * accounted for correctly. Once we have this, the code below should 642 * be modified to subtract off hres_last_tick rather than hrtime_base. 643 * 644 * I'd have done this myself, but I don't have source to all of the 645 * vendor-specific hi-res timer routines (grrr...). The generic hook I 646 * need is something like "gethrtime_unlocked()", which would be just like 647 * gethrtime() but would assume that you're already holding CLOCK_LOCK(). 648 * This is what the GET_HRTIME() macro is for on sparc (although it also 649 * serves the function of making time available without a function call 650 * so you don't take a register window overflow while traps are disabled). 651 */ 652 void 653 pc_gethrestime(timestruc_t *tp) 654 { 655 int lock_prev; 656 timestruc_t now; 657 int nslt; /* nsec since last tick */ 658 int adj; /* amount of adjustment to apply */ 659 660 loop: 661 lock_prev = hres_lock; 662 now = hrestime; 663 nslt = (int)(gethrtime() - hres_last_tick); 664 if (nslt < 0) { 665 /* 666 * nslt < 0 means a tick came between sampling 667 * gethrtime() and hres_last_tick; restart the loop 668 */ 669 670 goto loop; 671 } 672 now.tv_nsec += nslt; 673 if (hrestime_adj != 0) { 674 if (hrestime_adj > 0) { 675 adj = (nslt >> ADJ_SHIFT); 676 if (adj > hrestime_adj) 677 adj = (int)hrestime_adj; 678 } else { 679 adj = -(nslt >> ADJ_SHIFT); 680 if (adj < hrestime_adj) 681 adj = (int)hrestime_adj; 682 } 683 now.tv_nsec += adj; 684 } 685 while ((unsigned long)now.tv_nsec >= NANOSEC) { 686 687 /* 688 * We might have a large adjustment or have been in the 689 * debugger for a long time; take care of (at most) four 690 * of those missed seconds (tv_nsec is 32 bits, so 691 * anything >4s will be wrapping around). However, 692 * anything more than 2 seconds out of sync will trigger 693 * timedelta from clock() to go correct the time anyway, 694 * so do what we can, and let the big crowbar do the 695 * rest. A similar correction while loop exists inside 696 * hres_tick(); in all cases we'd like tv_nsec to 697 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing 698 * user processes, but if tv_sec's a little behind for a 699 * little while, that's OK; time still monotonically 700 * increases. 701 */ 702 703 now.tv_nsec -= NANOSEC; 704 now.tv_sec++; 705 } 706 if ((hres_lock & ~1) != lock_prev) 707 goto loop; 708 709 *tp = now; 710 } 711 712 void 713 gethrestime_lasttick(timespec_t *tp) 714 { 715 int s; 716 717 s = hr_clock_lock(); 718 *tp = hrestime; 719 hr_clock_unlock(s); 720 } 721 722 time_t 723 gethrestime_sec(void) 724 { 725 timestruc_t now; 726 727 gethrestime(&now); 728 return (now.tv_sec); 729 } 730 731 /* 732 * Initialize a kernel thread's stack 733 */ 734 735 caddr_t 736 thread_stk_init(caddr_t stk) 737 { 738 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); 739 return (stk - SA(MINFRAME)); 740 } 741 742 /* 743 * Initialize lwp's kernel stack. 744 */ 745 746 #ifdef TRAPTRACE 747 /* 748 * There's a tricky interdependency here between use of sysenter and 749 * TRAPTRACE which needs recording to avoid future confusion (this is 750 * about the third time I've re-figured this out ..) 751 * 752 * Here's how debugging lcall works with TRAPTRACE. 753 * 754 * 1 We're in userland with a breakpoint on the lcall instruction. 755 * 2 We execute the instruction - the instruction pushes the userland 756 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel 757 * via the call gate. 758 * 3 The hardware raises a debug trap in kernel mode, the hardware 759 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. 760 * 4 dbgtrap pushes the error code and trapno and calls cmntrap 761 * 5 cmntrap finishes building a trap frame 762 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk 763 * off the stack into the traptrace buffer. 764 * 765 * This means that the traptrace buffer contains the wrong values in 766 * %esp and %ss, but everything else in there is correct. 767 * 768 * Here's how debugging sysenter works with TRAPTRACE. 769 * 770 * a We're in userland with a breakpoint on the sysenter instruction. 771 * b We execute the instruction - the instruction pushes -nothing- 772 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged 773 * values to take us to sys_sysenter, at the top of the lwp's 774 * stack. 775 * c goto 3 776 * 777 * At this point, because we got into the kernel without the requisite 778 * five pushes on the stack, if we didn't make extra room, we'd 779 * end up with the TRACE_REGS macro fetching the saved %ss and %esp 780 * values from negative (unmapped) stack addresses -- which really bites. 781 * That's why we do the '-= 8' below. 782 * 783 * XXX Note that reading "up" lwp0's stack works because t0 is declared 784 * right next to t0stack in locore.s 785 */ 786 #endif 787 788 caddr_t 789 lwp_stk_init(klwp_t *lwp, caddr_t stk) 790 { 791 caddr_t oldstk; 792 struct pcb *pcb = &lwp->lwp_pcb; 793 794 oldstk = stk; 795 stk -= SA(sizeof (struct regs) + SA(MINFRAME)); 796 #ifdef TRAPTRACE 797 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ 798 #endif 799 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); 800 bzero(stk, oldstk - stk); 801 lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); 802 803 /* 804 * Arrange that the virtualized %fs and %gs GDT descriptors 805 * have a well-defined initial state (present, ring 3 806 * and of type data). 807 */ 808 #if defined(__amd64) 809 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) 810 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 811 else 812 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 813 #elif defined(__i386) 814 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 815 #endif /* __i386 */ 816 lwp_installctx(lwp); 817 return (stk); 818 } 819 820 /*ARGSUSED*/ 821 void 822 lwp_stk_fini(klwp_t *lwp) 823 {} 824 825 /* 826 * If we're not the panic CPU, we wait in panic_idle for reboot. 827 */ 828 static void 829 panic_idle(void) 830 { 831 splx(ipltospl(CLOCK_LEVEL)); 832 (void) setjmp(&curthread->t_pcb); 833 834 for (;;) 835 ; 836 } 837 838 /* 839 * Stop the other CPUs by cross-calling them and forcing them to enter 840 * the panic_idle() loop above. 841 */ 842 /*ARGSUSED*/ 843 void 844 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 845 { 846 processorid_t i; 847 cpuset_t xcset; 848 849 /* 850 * In the case of a Xen panic, the hypervisor has already stopped 851 * all of the CPUs. 852 */ 853 if (!IN_XPV_PANIC()) { 854 (void) splzs(); 855 856 CPUSET_ALL_BUT(xcset, cp->cpu_id); 857 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())panic_idle); 858 } 859 860 for (i = 0; i < NCPU; i++) { 861 if (i != cp->cpu_id && cpu[i] != NULL && 862 (cpu[i]->cpu_flags & CPU_EXISTS)) 863 cpu[i]->cpu_flags |= CPU_QUIESCED; 864 } 865 } 866 867 /* 868 * Platform callback following each entry to panicsys(). 869 */ 870 /*ARGSUSED*/ 871 void 872 panic_enter_hw(int spl) 873 { 874 /* Nothing to do here */ 875 } 876 877 /* 878 * Platform-specific code to execute after panicstr is set: we invoke 879 * the PSM entry point to indicate that a panic has occurred. 880 */ 881 /*ARGSUSED*/ 882 void 883 panic_quiesce_hw(panic_data_t *pdp) 884 { 885 psm_notifyf(PSM_PANIC_ENTER); 886 887 cmi_panic_callback(); 888 889 #ifdef TRAPTRACE 890 /* 891 * Turn off TRAPTRACE 892 */ 893 TRAPTRACE_FREEZE; 894 #endif /* TRAPTRACE */ 895 } 896 897 /* 898 * Platform callback prior to writing crash dump. 899 */ 900 /*ARGSUSED*/ 901 void 902 panic_dump_hw(int spl) 903 { 904 /* Nothing to do here */ 905 } 906 907 void * 908 plat_traceback(void *fpreg) 909 { 910 #ifdef __xpv 911 if (IN_XPV_PANIC()) 912 return (xpv_traceback(fpreg)); 913 #endif 914 return (fpreg); 915 } 916 917 /*ARGSUSED*/ 918 void 919 plat_tod_fault(enum tod_fault_type tod_bad) 920 {} 921 922 /*ARGSUSED*/ 923 int 924 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 925 { 926 return (ENOTSUP); 927 } 928 929 /* 930 * The underlying console output routines are protected by raising IPL in case 931 * we are still calling into the early boot services. Once we start calling 932 * the kernel console emulator, it will disable interrupts completely during 933 * character rendering (see sysp_putchar, for example). Refer to the comments 934 * and code in common/os/console.c for more information on these callbacks. 935 */ 936 /*ARGSUSED*/ 937 int 938 console_enter(int busy) 939 { 940 return (splzs()); 941 } 942 943 /*ARGSUSED*/ 944 void 945 console_exit(int busy, int spl) 946 { 947 splx(spl); 948 } 949 950 /* 951 * Allocate a region of virtual address space, unmapped. 952 * Stubbed out except on sparc, at least for now. 953 */ 954 /*ARGSUSED*/ 955 void * 956 boot_virt_alloc(void *addr, size_t size) 957 { 958 return (addr); 959 } 960 961 volatile unsigned long tenmicrodata; 962 963 void 964 tenmicrosec(void) 965 { 966 extern int gethrtime_hires; 967 968 if (gethrtime_hires) { 969 hrtime_t start, end; 970 start = end = gethrtime(); 971 while ((end - start) < (10 * (NANOSEC / MICROSEC))) { 972 SMT_PAUSE(); 973 end = gethrtime(); 974 } 975 } else { 976 #if defined(__xpv) 977 hrtime_t newtime; 978 979 newtime = xpv_gethrtime() + 10000; /* now + 10 us */ 980 while (xpv_gethrtime() < newtime) 981 SMT_PAUSE(); 982 #else /* __xpv */ 983 int i; 984 985 /* 986 * Artificial loop to induce delay. 987 */ 988 for (i = 0; i < microdata; i++) 989 tenmicrodata = microdata; 990 #endif /* __xpv */ 991 } 992 } 993 994 /* 995 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 996 * long, and it fills in the array with the time spent on cpu in 997 * each of the mstates, where time is returned in nsec. 998 * 999 * No guarantee is made that the returned values in times[] will 1000 * monotonically increase on sequential calls, although this will 1001 * be true in the long run. Any such guarantee must be handled by 1002 * the caller, if needed. This can happen if we fail to account 1003 * for elapsed time due to a generation counter conflict, yet we 1004 * did account for it on a prior call (see below). 1005 * 1006 * The complication is that the cpu in question may be updating 1007 * its microstate at the same time that we are reading it. 1008 * Because the microstate is only updated when the CPU's state 1009 * changes, the values in cpu_intracct[] can be indefinitely out 1010 * of date. To determine true current values, it is necessary to 1011 * compare the current time with cpu_mstate_start, and add the 1012 * difference to times[cpu_mstate]. 1013 * 1014 * This can be a problem if those values are changing out from 1015 * under us. Because the code path in new_cpu_mstate() is 1016 * performance critical, we have not added a lock to it. Instead, 1017 * we have added a generation counter. Before beginning 1018 * modifications, the counter is set to 0. After modifications, 1019 * it is set to the old value plus one. 1020 * 1021 * get_cpu_mstate() will not consider the values of cpu_mstate 1022 * and cpu_mstate_start to be usable unless the value of 1023 * cpu_mstate_gen is both non-zero and unchanged, both before and 1024 * after reading the mstate information. Note that we must 1025 * protect against out-of-order loads around accesses to the 1026 * generation counter. Also, this is a best effort approach in 1027 * that we do not retry should the counter be found to have 1028 * changed. 1029 * 1030 * cpu_intracct[] is used to identify time spent in each CPU 1031 * mstate while handling interrupts. Such time should be reported 1032 * against system time, and so is subtracted out from its 1033 * corresponding cpu_acct[] time and added to 1034 * cpu_acct[CMS_SYSTEM]. 1035 */ 1036 1037 void 1038 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 1039 { 1040 int i; 1041 hrtime_t now, start; 1042 uint16_t gen; 1043 uint16_t state; 1044 hrtime_t intracct[NCMSTATES]; 1045 1046 /* 1047 * Load all volatile state under the protection of membar. 1048 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 1049 * of (now - cpu_mstate_start) by a change in CPU mstate that 1050 * arrives after we make our last check of cpu_mstate_gen. 1051 */ 1052 1053 now = gethrtime_unscaled(); 1054 gen = cpu->cpu_mstate_gen; 1055 1056 membar_consumer(); /* guarantee load ordering */ 1057 start = cpu->cpu_mstate_start; 1058 state = cpu->cpu_mstate; 1059 for (i = 0; i < NCMSTATES; i++) { 1060 intracct[i] = cpu->cpu_intracct[i]; 1061 times[i] = cpu->cpu_acct[i]; 1062 } 1063 membar_consumer(); /* guarantee load ordering */ 1064 1065 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 1066 times[state] += now - start; 1067 1068 for (i = 0; i < NCMSTATES; i++) { 1069 if (i == CMS_SYSTEM) 1070 continue; 1071 times[i] -= intracct[i]; 1072 if (times[i] < 0) { 1073 intracct[i] += times[i]; 1074 times[i] = 0; 1075 } 1076 times[CMS_SYSTEM] += intracct[i]; 1077 scalehrtime(×[i]); 1078 } 1079 scalehrtime(×[CMS_SYSTEM]); 1080 } 1081 1082 /* 1083 * This is a version of the rdmsr instruction that allows 1084 * an error code to be returned in the case of failure. 1085 */ 1086 int 1087 checked_rdmsr(uint_t msr, uint64_t *value) 1088 { 1089 if ((x86_feature & X86_MSR) == 0) 1090 return (ENOTSUP); 1091 *value = rdmsr(msr); 1092 return (0); 1093 } 1094 1095 /* 1096 * This is a version of the wrmsr instruction that allows 1097 * an error code to be returned in the case of failure. 1098 */ 1099 int 1100 checked_wrmsr(uint_t msr, uint64_t value) 1101 { 1102 if ((x86_feature & X86_MSR) == 0) 1103 return (ENOTSUP); 1104 wrmsr(msr, value); 1105 return (0); 1106 } 1107 1108 /* 1109 * The mem driver's usual method of using hat_devload() to establish a 1110 * temporary mapping will not work for foreign pages mapped into this 1111 * domain or for the special hypervisor-provided pages. For the foreign 1112 * pages, we often don't know which domain owns them, so we can't ask the 1113 * hypervisor to set up a new mapping. For the other pages, we don't have 1114 * a pfn, so we can't create a new PTE. For these special cases, we do a 1115 * direct uiomove() from the existing kernel virtual address. 1116 */ 1117 /*ARGSUSED*/ 1118 int 1119 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw) 1120 { 1121 #if defined(__xpv) 1122 void *va = (void *)(uintptr_t)uio->uio_loffset; 1123 off_t pageoff = uio->uio_loffset & PAGEOFFSET; 1124 size_t nbytes = MIN((size_t)(PAGESIZE - pageoff), 1125 (size_t)uio->uio_iov->iov_len); 1126 1127 if ((rw == UIO_READ && 1128 (va == HYPERVISOR_shared_info || va == xen_info)) || 1129 (pfn_is_foreign(hat_getpfnum(kas.a_hat, va)))) 1130 return (uiomove(va, nbytes, rw, uio)); 1131 #endif 1132 return (ENOTSUP); 1133 } 1134 1135 pgcnt_t 1136 num_phys_pages() 1137 { 1138 pgcnt_t npages = 0; 1139 struct memlist *mp; 1140 1141 #if defined(__xpv) 1142 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1143 xen_sysctl_t op; 1144 1145 op.cmd = XEN_SYSCTL_physinfo; 1146 op.interface_version = XEN_SYSCTL_INTERFACE_VERSION; 1147 if (HYPERVISOR_sysctl(&op) != 0) 1148 panic("physinfo op refused"); 1149 1150 return ((pgcnt_t)op.u.physinfo.total_pages); 1151 } 1152 #endif /* __xpv */ 1153 1154 for (mp = phys_install; mp != NULL; mp = mp->next) 1155 npages += mp->size >> PAGESHIFT; 1156 1157 return (npages); 1158 } 1159 1160 int 1161 dump_plat_addr() 1162 { 1163 #ifdef __xpv 1164 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1165 mem_vtop_t mem_vtop; 1166 int cnt; 1167 1168 /* 1169 * On the hypervisor, we want to dump the page with shared_info on it. 1170 */ 1171 if (!IN_XPV_PANIC()) { 1172 mem_vtop.m_as = &kas; 1173 mem_vtop.m_va = HYPERVISOR_shared_info; 1174 mem_vtop.m_pfn = pfn; 1175 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 1176 cnt = 1; 1177 } else { 1178 cnt = dump_xpv_addr(); 1179 } 1180 return (cnt); 1181 #else 1182 return (0); 1183 #endif 1184 } 1185 1186 void 1187 dump_plat_pfn() 1188 { 1189 #ifdef __xpv 1190 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1191 1192 if (!IN_XPV_PANIC()) 1193 dumpvp_write(&pfn, sizeof (pfn)); 1194 else 1195 dump_xpv_pfn(); 1196 #endif 1197 } 1198 1199 /*ARGSUSED*/ 1200 int 1201 dump_plat_data(void *dump_cbuf) 1202 { 1203 #ifdef __xpv 1204 uint32_t csize; 1205 int cnt; 1206 1207 if (!IN_XPV_PANIC()) { 1208 csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf, 1209 PAGESIZE); 1210 dumpvp_write(&csize, sizeof (uint32_t)); 1211 dumpvp_write(dump_cbuf, csize); 1212 cnt = 1; 1213 } else { 1214 cnt = dump_xpv_data(dump_cbuf); 1215 } 1216 return (cnt); 1217 #else 1218 return (0); 1219 #endif 1220 } 1221 1222 /* 1223 * Calculates a linear address, given the CS selector and PC values 1224 * by looking up the %cs selector process's LDT or the CPU's GDT. 1225 * proc->p_ldtlock must be held across this call. 1226 */ 1227 int 1228 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1229 { 1230 user_desc_t *descrp; 1231 caddr_t baseaddr; 1232 uint16_t idx = SELTOIDX(rp->r_cs); 1233 1234 ASSERT(rp->r_cs <= 0xFFFF); 1235 ASSERT(MUTEX_HELD(&p->p_ldtlock)); 1236 1237 if (SELISLDT(rp->r_cs)) { 1238 /* 1239 * Currently 64 bit processes cannot have private LDTs. 1240 */ 1241 ASSERT(p->p_model != DATAMODEL_LP64); 1242 1243 if (p->p_ldt == NULL) 1244 return (-1); 1245 1246 descrp = &p->p_ldt[idx]; 1247 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1248 1249 /* 1250 * Calculate the linear address (wraparound is not only ok, 1251 * it's expected behavior). The cast to uint32_t is because 1252 * LDT selectors are only allowed in 32-bit processes. 1253 */ 1254 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1255 rp->r_pc); 1256 } else { 1257 #ifdef DEBUG 1258 descrp = &CPU->cpu_gdt[idx]; 1259 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1260 /* GDT-based descriptors' base addresses should always be 0 */ 1261 ASSERT(baseaddr == 0); 1262 #endif 1263 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1264 } 1265 1266 return (0); 1267 } 1268 1269 /* 1270 * The implementation of dtrace_linear_pc is similar to the that of 1271 * linear_pc, above, but here we acquire p_ldtlock before accessing 1272 * p_ldt. This implementation is used by the pid provider; we prefix 1273 * it with "dtrace_" to avoid inducing spurious tracing events. 1274 */ 1275 int 1276 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1277 { 1278 user_desc_t *descrp; 1279 caddr_t baseaddr; 1280 uint16_t idx = SELTOIDX(rp->r_cs); 1281 1282 ASSERT(rp->r_cs <= 0xFFFF); 1283 1284 if (SELISLDT(rp->r_cs)) { 1285 /* 1286 * Currently 64 bit processes cannot have private LDTs. 1287 */ 1288 ASSERT(p->p_model != DATAMODEL_LP64); 1289 1290 mutex_enter(&p->p_ldtlock); 1291 if (p->p_ldt == NULL) { 1292 mutex_exit(&p->p_ldtlock); 1293 return (-1); 1294 } 1295 descrp = &p->p_ldt[idx]; 1296 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1297 mutex_exit(&p->p_ldtlock); 1298 1299 /* 1300 * Calculate the linear address (wraparound is not only ok, 1301 * it's expected behavior). The cast to uint32_t is because 1302 * LDT selectors are only allowed in 32-bit processes. 1303 */ 1304 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1305 rp->r_pc); 1306 } else { 1307 #ifdef DEBUG 1308 descrp = &CPU->cpu_gdt[idx]; 1309 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1310 /* GDT-based descriptors' base addresses should always be 0 */ 1311 ASSERT(baseaddr == 0); 1312 #endif 1313 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1314 } 1315 1316 return (0); 1317 } 1318