1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/t_lock.h> 29 #include <sys/param.h> 30 #include <sys/segments.h> 31 #include <sys/sysmacros.h> 32 #include <sys/signal.h> 33 #include <sys/systm.h> 34 #include <sys/user.h> 35 #include <sys/mman.h> 36 #include <sys/vm.h> 37 38 #include <sys/disp.h> 39 #include <sys/class.h> 40 41 #include <sys/proc.h> 42 #include <sys/buf.h> 43 #include <sys/kmem.h> 44 45 #include <sys/reboot.h> 46 #include <sys/uadmin.h> 47 #include <sys/callb.h> 48 49 #include <sys/cred.h> 50 #include <sys/vnode.h> 51 #include <sys/file.h> 52 53 #include <sys/procfs.h> 54 #include <sys/acct.h> 55 56 #include <sys/vfs.h> 57 #include <sys/dnlc.h> 58 #include <sys/var.h> 59 #include <sys/cmn_err.h> 60 #include <sys/utsname.h> 61 #include <sys/debug.h> 62 63 #include <sys/dumphdr.h> 64 #include <sys/bootconf.h> 65 #include <sys/varargs.h> 66 #include <sys/promif.h> 67 #include <sys/modctl.h> 68 69 #include <sys/consdev.h> 70 #include <sys/frame.h> 71 72 #include <sys/sunddi.h> 73 #include <sys/ddidmareq.h> 74 #include <sys/psw.h> 75 #include <sys/regset.h> 76 #include <sys/privregs.h> 77 #include <sys/clock.h> 78 #include <sys/tss.h> 79 #include <sys/cpu.h> 80 #include <sys/stack.h> 81 #include <sys/trap.h> 82 #include <sys/pic.h> 83 #include <vm/hat.h> 84 #include <vm/anon.h> 85 #include <vm/as.h> 86 #include <vm/page.h> 87 #include <vm/seg.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_map.h> 90 #include <vm/seg_vn.h> 91 #include <vm/seg_kp.h> 92 #include <vm/hat_i86.h> 93 #include <sys/swap.h> 94 #include <sys/thread.h> 95 #include <sys/sysconf.h> 96 #include <sys/vm_machparam.h> 97 #include <sys/archsystm.h> 98 #include <sys/machsystm.h> 99 #include <sys/machlock.h> 100 #include <sys/x_call.h> 101 #include <sys/instance.h> 102 103 #include <sys/time.h> 104 #include <sys/smp_impldefs.h> 105 #include <sys/psm_types.h> 106 #include <sys/atomic.h> 107 #include <sys/panic.h> 108 #include <sys/cpuvar.h> 109 #include <sys/dtrace.h> 110 #include <sys/bl.h> 111 #include <sys/nvpair.h> 112 #include <sys/x86_archext.h> 113 #include <sys/pool_pset.h> 114 #include <sys/autoconf.h> 115 #include <sys/mem.h> 116 #include <sys/dumphdr.h> 117 #include <sys/compress.h> 118 #include <sys/cpu_module.h> 119 #if defined(__xpv) 120 #include <sys/hypervisor.h> 121 #include <sys/xpv_panic.h> 122 #endif 123 124 #include <sys/fastboot.h> 125 #include <sys/machelf.h> 126 #include <sys/kobj.h> 127 #include <sys/multiboot.h> 128 129 #ifdef TRAPTRACE 130 #include <sys/traptrace.h> 131 #endif /* TRAPTRACE */ 132 133 extern void audit_enterprom(int); 134 extern void audit_exitprom(int); 135 136 /* 137 * Occassionally the kernel knows better whether to power-off or reboot. 138 */ 139 int force_shutdown_method = AD_UNKNOWN; 140 141 /* 142 * The panicbuf array is used to record messages and state: 143 */ 144 char panicbuf[PANICBUFSIZE]; 145 146 /* 147 * maxphys - used during physio 148 * klustsize - used for klustering by swapfs and specfs 149 */ 150 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ 151 int klustsize = 56 * 1024; 152 153 caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 154 155 /* 156 * defined here, though unused on x86, 157 * to make kstat_fr.c happy. 158 */ 159 int vac; 160 161 void debug_enter(char *); 162 163 extern void pm_cfb_check_and_powerup(void); 164 extern void pm_cfb_rele(void); 165 166 extern fastboot_info_t newkernel; 167 168 /* 169 * Machine dependent code to reboot. 170 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer 171 * to a string to be used as the argument string when rebooting. 172 * 173 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 174 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 175 * we are in a normal shutdown sequence (interrupts are not blocked, the 176 * system is not panic'ing or being suspended). 177 */ 178 /*ARGSUSED*/ 179 void 180 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) 181 { 182 processorid_t bootcpuid = 0; 183 static int is_first_quiesce = 1; 184 static int is_first_reset = 1; 185 int reset_status = 0; 186 static char fallback_str[] = "Falling back to regular reboot.\n"; 187 188 if (fcn == AD_FASTREBOOT && !newkernel.fi_valid) 189 fcn = AD_BOOT; 190 191 if (!panicstr) { 192 kpreempt_disable(); 193 if (fcn == AD_FASTREBOOT) { 194 mutex_enter(&cpu_lock); 195 if (CPU_ACTIVE(cpu_get(bootcpuid))) { 196 affinity_set(bootcpuid); 197 } 198 mutex_exit(&cpu_lock); 199 } else { 200 affinity_set(CPU_CURRENT); 201 } 202 } 203 204 if (force_shutdown_method != AD_UNKNOWN) 205 fcn = force_shutdown_method; 206 207 /* 208 * XXX - rconsvp is set to NULL to ensure that output messages 209 * are sent to the underlying "hardware" device using the 210 * monitor's printf routine since we are in the process of 211 * either rebooting or halting the machine. 212 */ 213 rconsvp = NULL; 214 215 /* 216 * Print the reboot message now, before pausing other cpus. 217 * There is a race condition in the printing support that 218 * can deadlock multiprocessor machines. 219 */ 220 if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) 221 prom_printf("rebooting...\n"); 222 223 if (IN_XPV_PANIC()) 224 reset(); 225 226 /* 227 * We can't bring up the console from above lock level, so do it now 228 */ 229 pm_cfb_check_and_powerup(); 230 231 /* make sure there are no more changes to the device tree */ 232 devtree_freeze(); 233 234 if (invoke_cb) 235 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 236 237 /* 238 * Clear any unresolved UEs from memory. 239 */ 240 page_retire_mdboot(); 241 242 #if defined(__xpv) 243 /* 244 * XXPV Should probably think some more about how we deal 245 * with panicing before it's really safe to panic. 246 * On hypervisors, we reboot very quickly.. Perhaps panic 247 * should only attempt to recover by rebooting if, 248 * say, we were able to mount the root filesystem, 249 * or if we successfully launched init(1m). 250 */ 251 if (panicstr && proc_init == NULL) 252 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff); 253 #endif 254 /* 255 * stop other cpus and raise our priority. since there is only 256 * one active cpu after this, and our priority will be too high 257 * for us to be preempted, we're essentially single threaded 258 * from here on out. 259 */ 260 (void) spl6(); 261 if (!panicstr) { 262 mutex_enter(&cpu_lock); 263 pause_cpus(NULL); 264 mutex_exit(&cpu_lock); 265 } 266 267 /* 268 * If the system is panicking, the preloaded kernel is valid, 269 * and fastreboot_onpanic has been set, choose Fast Reboot. 270 */ 271 if (fcn == AD_BOOT && panicstr && newkernel.fi_valid && 272 fastreboot_onpanic) 273 fcn = AD_FASTREBOOT; 274 275 /* 276 * Try to quiesce devices. 277 */ 278 if (is_first_quiesce) { 279 /* 280 * Clear is_first_quiesce before calling quiesce_devices() 281 * so that if quiesce_devices() causes panics, it will not 282 * be invoked again. 283 */ 284 is_first_quiesce = 0; 285 286 quiesce_active = 1; 287 quiesce_devices(ddi_root_node(), &reset_status); 288 if (reset_status == -1) { 289 if (fcn == AD_FASTREBOOT && !force_fastreboot) { 290 prom_printf("Driver(s) not capable of fast " 291 "reboot.\n"); 292 prom_printf(fallback_str); 293 fastreboot_capable = 0; 294 fcn = AD_BOOT; 295 } else if (fcn != AD_FASTREBOOT) 296 fastreboot_capable = 0; 297 } 298 quiesce_active = 0; 299 } 300 301 /* 302 * Try to reset devices. reset_leaves() should only be called 303 * a) when there are no other threads that could be accessing devices, 304 * and 305 * b) on a system that's not capable of fast reboot (fastreboot_capable 306 * being 0), or on a system where quiesce_devices() failed to 307 * complete (quiesce_active being 1). 308 */ 309 if (is_first_reset && (!fastreboot_capable || quiesce_active)) { 310 /* 311 * Clear is_first_reset before calling reset_devices() 312 * so that if reset_devices() causes panics, it will not 313 * be invoked again. 314 */ 315 is_first_reset = 0; 316 reset_leaves(); 317 } 318 319 /* Verify newkernel checksum */ 320 if (fastreboot_capable && fcn == AD_FASTREBOOT && 321 fastboot_cksum_verify(&newkernel) != 0) { 322 fastreboot_capable = 0; 323 prom_printf("Fast reboot: checksum failed for the new " 324 "kernel.\n"); 325 prom_printf(fallback_str); 326 } 327 328 (void) spl8(); 329 330 if (fastreboot_capable && fcn == AD_FASTREBOOT) { 331 /* 332 * psm_shutdown is called within fast_reboot() 333 */ 334 fast_reboot(); 335 } else { 336 (*psm_shutdownf)(cmd, fcn); 337 338 if (fcn == AD_HALT || fcn == AD_POWEROFF) 339 halt((char *)NULL); 340 else 341 prom_reboot(""); 342 } 343 /*NOTREACHED*/ 344 } 345 346 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 347 /*ARGSUSED*/ 348 void 349 mdpreboot(int cmd, int fcn, char *mdep) 350 { 351 if (fcn == AD_FASTREBOOT && !fastreboot_capable) { 352 fcn = AD_BOOT; 353 #ifdef __xpv 354 cmn_err(CE_WARN, "Fast reboot is not supported on xVM"); 355 #else 356 cmn_err(CE_WARN, 357 "Fast reboot is not supported on this platform"); 358 #endif 359 } 360 361 if (fcn == AD_FASTREBOOT) { 362 fastboot_load_kernel(mdep); 363 if (!newkernel.fi_valid) 364 fcn = AD_BOOT; 365 } 366 367 (*psm_preshutdownf)(cmd, fcn); 368 } 369 370 static void 371 stop_other_cpus(void) 372 { 373 ulong_t s = clear_int_flag(); /* fast way to keep CPU from changing */ 374 cpuset_t xcset; 375 376 CPUSET_ALL_BUT(xcset, CPU->cpu_id); 377 xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)mach_cpu_halt); 378 restore_int_flag(s); 379 } 380 381 /* 382 * Machine dependent abort sequence handling 383 */ 384 void 385 abort_sequence_enter(char *msg) 386 { 387 if (abort_enable == 0) { 388 if (audit_active) 389 audit_enterprom(0); 390 return; 391 } 392 if (audit_active) 393 audit_enterprom(1); 394 debug_enter(msg); 395 if (audit_active) 396 audit_exitprom(1); 397 } 398 399 /* 400 * Enter debugger. Called when the user types ctrl-alt-d or whenever 401 * code wants to enter the debugger and possibly resume later. 402 */ 403 void 404 debug_enter( 405 char *msg) /* message to print, possibly NULL */ 406 { 407 if (dtrace_debugger_init != NULL) 408 (*dtrace_debugger_init)(); 409 410 if (msg) 411 prom_printf("%s\n", msg); 412 413 if (boothowto & RB_DEBUG) 414 kmdb_enter(); 415 416 if (dtrace_debugger_fini != NULL) 417 (*dtrace_debugger_fini)(); 418 } 419 420 void 421 reset(void) 422 { 423 extern void acpi_reset_system(); 424 #if !defined(__xpv) 425 ushort_t *bios_memchk; 426 427 /* 428 * Can't use psm_map_phys or acpi_reset_system before the hat is 429 * initialized. 430 */ 431 if (khat_running) { 432 bios_memchk = (ushort_t *)psm_map_phys(0x472, 433 sizeof (ushort_t), PROT_READ | PROT_WRITE); 434 if (bios_memchk) 435 *bios_memchk = 0x1234; /* bios memory check disable */ 436 437 if (options_dip != NULL && 438 ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0, 439 "efi-systab")) { 440 efi_reset(); 441 } 442 443 /* 444 * The problem with using stubs is that we can call 445 * acpi_reset_system only after the kernel is up and running. 446 * 447 * We should create a global state to keep track of how far 448 * up the kernel is but for the time being we will depend on 449 * bootops. bootops cleared in startup_end(). 450 */ 451 if (bootops == NULL) 452 acpi_reset_system(); 453 } 454 455 pc_reset(); 456 #else 457 if (IN_XPV_PANIC()) { 458 if (khat_running && bootops == NULL) { 459 acpi_reset_system(); 460 } 461 462 pc_reset(); 463 } 464 465 (void) HYPERVISOR_shutdown(SHUTDOWN_reboot); 466 panic("HYPERVISOR_shutdown() failed"); 467 #endif 468 /*NOTREACHED*/ 469 } 470 471 /* 472 * Halt the machine and return to the monitor 473 */ 474 void 475 halt(char *s) 476 { 477 stop_other_cpus(); /* send stop signal to other CPUs */ 478 if (s) 479 prom_printf("(%s) \n", s); 480 prom_exit_to_mon(); 481 /*NOTREACHED*/ 482 } 483 484 /* 485 * Initiate interrupt redistribution. 486 */ 487 void 488 i_ddi_intr_redist_all_cpus() 489 { 490 } 491 492 /* 493 * XXX These probably ought to live somewhere else 494 * XXX They are called from mem.c 495 */ 496 497 /* 498 * Convert page frame number to an OBMEM page frame number 499 * (i.e. put in the type bits -- zero for this implementation) 500 */ 501 pfn_t 502 impl_obmem_pfnum(pfn_t pf) 503 { 504 return (pf); 505 } 506 507 #ifdef NM_DEBUG 508 int nmi_test = 0; /* checked in intentry.s during clock int */ 509 int nmtest = -1; 510 nmfunc1(arg, rp) 511 int arg; 512 struct regs *rp; 513 { 514 printf("nmi called with arg = %x, regs = %x\n", arg, rp); 515 nmtest += 50; 516 if (arg == nmtest) { 517 printf("ip = %x\n", rp->r_pc); 518 return (1); 519 } 520 return (0); 521 } 522 523 #endif 524 525 #include <sys/bootsvcs.h> 526 527 /* Hacked up initialization for initial kernel check out is HERE. */ 528 /* The basic steps are: */ 529 /* kernel bootfuncs definition/initialization for KADB */ 530 /* kadb bootfuncs pointer initialization */ 531 /* putchar/getchar (interrupts disabled) */ 532 533 /* kadb bootfuncs pointer initialization */ 534 535 int 536 sysp_getchar() 537 { 538 int i; 539 ulong_t s; 540 541 if (cons_polledio == NULL) { 542 /* Uh oh */ 543 prom_printf("getchar called with no console\n"); 544 for (;;) 545 /* LOOP FOREVER */; 546 } 547 548 s = clear_int_flag(); 549 i = cons_polledio->cons_polledio_getchar( 550 cons_polledio->cons_polledio_argument); 551 restore_int_flag(s); 552 return (i); 553 } 554 555 void 556 sysp_putchar(int c) 557 { 558 ulong_t s; 559 560 /* 561 * We have no alternative but to drop the output on the floor. 562 */ 563 if (cons_polledio == NULL || 564 cons_polledio->cons_polledio_putchar == NULL) 565 return; 566 567 s = clear_int_flag(); 568 cons_polledio->cons_polledio_putchar( 569 cons_polledio->cons_polledio_argument, c); 570 restore_int_flag(s); 571 } 572 573 int 574 sysp_ischar() 575 { 576 int i; 577 ulong_t s; 578 579 if (cons_polledio == NULL || 580 cons_polledio->cons_polledio_ischar == NULL) 581 return (0); 582 583 s = clear_int_flag(); 584 i = cons_polledio->cons_polledio_ischar( 585 cons_polledio->cons_polledio_argument); 586 restore_int_flag(s); 587 return (i); 588 } 589 590 int 591 goany(void) 592 { 593 prom_printf("Type any key to continue "); 594 (void) prom_getchar(); 595 prom_printf("\n"); 596 return (1); 597 } 598 599 static struct boot_syscalls kern_sysp = { 600 sysp_getchar, /* unchar (*getchar)(); 7 */ 601 sysp_putchar, /* int (*putchar)(); 8 */ 602 sysp_ischar, /* int (*ischar)(); 9 */ 603 }; 604 605 #if defined(__xpv) 606 int using_kern_polledio; 607 #endif 608 609 void 610 kadb_uses_kernel() 611 { 612 /* 613 * This routine is now totally misnamed, since it does not in fact 614 * control kadb's I/O; it only controls the kernel's prom_* I/O. 615 */ 616 sysp = &kern_sysp; 617 #if defined(__xpv) 618 using_kern_polledio = 1; 619 #endif 620 } 621 622 /* 623 * the interface to the outside world 624 */ 625 626 /* 627 * poll_port -- wait for a register to achieve a 628 * specific state. Arguments are a mask of bits we care about, 629 * and two sub-masks. To return normally, all the bits in the 630 * first sub-mask must be ON, all the bits in the second sub- 631 * mask must be OFF. If about seconds pass without the register 632 * achieving the desired bit configuration, we return 1, else 633 * 0. 634 */ 635 int 636 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) 637 { 638 int i; 639 ushort_t maskval; 640 641 for (i = 500000; i; i--) { 642 maskval = inb(port) & mask; 643 if (((maskval & onbits) == onbits) && 644 ((maskval & offbits) == 0)) 645 return (0); 646 drv_usecwait(10); 647 } 648 return (1); 649 } 650 651 /* 652 * set_idle_cpu is called from idle() when a CPU becomes idle. 653 */ 654 /*LINTED: static unused */ 655 static uint_t last_idle_cpu; 656 657 /*ARGSUSED*/ 658 void 659 set_idle_cpu(int cpun) 660 { 661 last_idle_cpu = cpun; 662 (*psm_set_idle_cpuf)(cpun); 663 } 664 665 /* 666 * unset_idle_cpu is called from idle() when a CPU is no longer idle. 667 */ 668 /*ARGSUSED*/ 669 void 670 unset_idle_cpu(int cpun) 671 { 672 (*psm_unset_idle_cpuf)(cpun); 673 } 674 675 /* 676 * This routine is almost correct now, but not quite. It still needs the 677 * equivalent concept of "hres_last_tick", just like on the sparc side. 678 * The idea is to take a snapshot of the hi-res timer while doing the 679 * hrestime_adj updates under hres_lock in locore, so that the small 680 * interval between interrupt assertion and interrupt processing is 681 * accounted for correctly. Once we have this, the code below should 682 * be modified to subtract off hres_last_tick rather than hrtime_base. 683 * 684 * I'd have done this myself, but I don't have source to all of the 685 * vendor-specific hi-res timer routines (grrr...). The generic hook I 686 * need is something like "gethrtime_unlocked()", which would be just like 687 * gethrtime() but would assume that you're already holding CLOCK_LOCK(). 688 * This is what the GET_HRTIME() macro is for on sparc (although it also 689 * serves the function of making time available without a function call 690 * so you don't take a register window overflow while traps are disabled). 691 */ 692 void 693 pc_gethrestime(timestruc_t *tp) 694 { 695 int lock_prev; 696 timestruc_t now; 697 int nslt; /* nsec since last tick */ 698 int adj; /* amount of adjustment to apply */ 699 700 loop: 701 lock_prev = hres_lock; 702 now = hrestime; 703 nslt = (int)(gethrtime() - hres_last_tick); 704 if (nslt < 0) { 705 /* 706 * nslt < 0 means a tick came between sampling 707 * gethrtime() and hres_last_tick; restart the loop 708 */ 709 710 goto loop; 711 } 712 now.tv_nsec += nslt; 713 if (hrestime_adj != 0) { 714 if (hrestime_adj > 0) { 715 adj = (nslt >> ADJ_SHIFT); 716 if (adj > hrestime_adj) 717 adj = (int)hrestime_adj; 718 } else { 719 adj = -(nslt >> ADJ_SHIFT); 720 if (adj < hrestime_adj) 721 adj = (int)hrestime_adj; 722 } 723 now.tv_nsec += adj; 724 } 725 while ((unsigned long)now.tv_nsec >= NANOSEC) { 726 727 /* 728 * We might have a large adjustment or have been in the 729 * debugger for a long time; take care of (at most) four 730 * of those missed seconds (tv_nsec is 32 bits, so 731 * anything >4s will be wrapping around). However, 732 * anything more than 2 seconds out of sync will trigger 733 * timedelta from clock() to go correct the time anyway, 734 * so do what we can, and let the big crowbar do the 735 * rest. A similar correction while loop exists inside 736 * hres_tick(); in all cases we'd like tv_nsec to 737 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing 738 * user processes, but if tv_sec's a little behind for a 739 * little while, that's OK; time still monotonically 740 * increases. 741 */ 742 743 now.tv_nsec -= NANOSEC; 744 now.tv_sec++; 745 } 746 if ((hres_lock & ~1) != lock_prev) 747 goto loop; 748 749 *tp = now; 750 } 751 752 void 753 gethrestime_lasttick(timespec_t *tp) 754 { 755 int s; 756 757 s = hr_clock_lock(); 758 *tp = hrestime; 759 hr_clock_unlock(s); 760 } 761 762 time_t 763 gethrestime_sec(void) 764 { 765 timestruc_t now; 766 767 gethrestime(&now); 768 return (now.tv_sec); 769 } 770 771 /* 772 * Initialize a kernel thread's stack 773 */ 774 775 caddr_t 776 thread_stk_init(caddr_t stk) 777 { 778 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); 779 return (stk - SA(MINFRAME)); 780 } 781 782 /* 783 * Initialize lwp's kernel stack. 784 */ 785 786 #ifdef TRAPTRACE 787 /* 788 * There's a tricky interdependency here between use of sysenter and 789 * TRAPTRACE which needs recording to avoid future confusion (this is 790 * about the third time I've re-figured this out ..) 791 * 792 * Here's how debugging lcall works with TRAPTRACE. 793 * 794 * 1 We're in userland with a breakpoint on the lcall instruction. 795 * 2 We execute the instruction - the instruction pushes the userland 796 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel 797 * via the call gate. 798 * 3 The hardware raises a debug trap in kernel mode, the hardware 799 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. 800 * 4 dbgtrap pushes the error code and trapno and calls cmntrap 801 * 5 cmntrap finishes building a trap frame 802 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk 803 * off the stack into the traptrace buffer. 804 * 805 * This means that the traptrace buffer contains the wrong values in 806 * %esp and %ss, but everything else in there is correct. 807 * 808 * Here's how debugging sysenter works with TRAPTRACE. 809 * 810 * a We're in userland with a breakpoint on the sysenter instruction. 811 * b We execute the instruction - the instruction pushes -nothing- 812 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged 813 * values to take us to sys_sysenter, at the top of the lwp's 814 * stack. 815 * c goto 3 816 * 817 * At this point, because we got into the kernel without the requisite 818 * five pushes on the stack, if we didn't make extra room, we'd 819 * end up with the TRACE_REGS macro fetching the saved %ss and %esp 820 * values from negative (unmapped) stack addresses -- which really bites. 821 * That's why we do the '-= 8' below. 822 * 823 * XXX Note that reading "up" lwp0's stack works because t0 is declared 824 * right next to t0stack in locore.s 825 */ 826 #endif 827 828 caddr_t 829 lwp_stk_init(klwp_t *lwp, caddr_t stk) 830 { 831 caddr_t oldstk; 832 struct pcb *pcb = &lwp->lwp_pcb; 833 834 oldstk = stk; 835 stk -= SA(sizeof (struct regs) + SA(MINFRAME)); 836 #ifdef TRAPTRACE 837 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ 838 #endif 839 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); 840 bzero(stk, oldstk - stk); 841 lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); 842 843 /* 844 * Arrange that the virtualized %fs and %gs GDT descriptors 845 * have a well-defined initial state (present, ring 3 846 * and of type data). 847 */ 848 #if defined(__amd64) 849 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) 850 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 851 else 852 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 853 #elif defined(__i386) 854 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 855 #endif /* __i386 */ 856 lwp_installctx(lwp); 857 return (stk); 858 } 859 860 /*ARGSUSED*/ 861 void 862 lwp_stk_fini(klwp_t *lwp) 863 {} 864 865 /* 866 * If we're not the panic CPU, we wait in panic_idle for reboot. 867 */ 868 void 869 panic_idle(void) 870 { 871 splx(ipltospl(CLOCK_LEVEL)); 872 (void) setjmp(&curthread->t_pcb); 873 874 dumpsys_helper(); 875 876 #ifndef __xpv 877 for (;;) 878 i86_halt(); 879 #else 880 for (;;) 881 ; 882 #endif 883 } 884 885 /* 886 * Stop the other CPUs by cross-calling them and forcing them to enter 887 * the panic_idle() loop above. 888 */ 889 /*ARGSUSED*/ 890 void 891 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 892 { 893 processorid_t i; 894 cpuset_t xcset; 895 896 /* 897 * In the case of a Xen panic, the hypervisor has already stopped 898 * all of the CPUs. 899 */ 900 if (!IN_XPV_PANIC()) { 901 (void) splzs(); 902 903 CPUSET_ALL_BUT(xcset, cp->cpu_id); 904 xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)panic_idle); 905 } 906 907 for (i = 0; i < NCPU; i++) { 908 if (i != cp->cpu_id && cpu[i] != NULL && 909 (cpu[i]->cpu_flags & CPU_EXISTS)) 910 cpu[i]->cpu_flags |= CPU_QUIESCED; 911 } 912 } 913 914 /* 915 * Platform callback following each entry to panicsys(). 916 */ 917 /*ARGSUSED*/ 918 void 919 panic_enter_hw(int spl) 920 { 921 /* Nothing to do here */ 922 } 923 924 /* 925 * Platform-specific code to execute after panicstr is set: we invoke 926 * the PSM entry point to indicate that a panic has occurred. 927 */ 928 /*ARGSUSED*/ 929 void 930 panic_quiesce_hw(panic_data_t *pdp) 931 { 932 psm_notifyf(PSM_PANIC_ENTER); 933 934 cmi_panic_callback(); 935 936 #ifdef TRAPTRACE 937 /* 938 * Turn off TRAPTRACE 939 */ 940 TRAPTRACE_FREEZE; 941 #endif /* TRAPTRACE */ 942 } 943 944 /* 945 * Platform callback prior to writing crash dump. 946 */ 947 /*ARGSUSED*/ 948 void 949 panic_dump_hw(int spl) 950 { 951 /* Nothing to do here */ 952 } 953 954 void * 955 plat_traceback(void *fpreg) 956 { 957 #ifdef __xpv 958 if (IN_XPV_PANIC()) 959 return (xpv_traceback(fpreg)); 960 #endif 961 return (fpreg); 962 } 963 964 /*ARGSUSED*/ 965 void 966 plat_tod_fault(enum tod_fault_type tod_bad) 967 {} 968 969 /*ARGSUSED*/ 970 int 971 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 972 { 973 return (ENOTSUP); 974 } 975 976 /* 977 * The underlying console output routines are protected by raising IPL in case 978 * we are still calling into the early boot services. Once we start calling 979 * the kernel console emulator, it will disable interrupts completely during 980 * character rendering (see sysp_putchar, for example). Refer to the comments 981 * and code in common/os/console.c for more information on these callbacks. 982 */ 983 /*ARGSUSED*/ 984 int 985 console_enter(int busy) 986 { 987 return (splzs()); 988 } 989 990 /*ARGSUSED*/ 991 void 992 console_exit(int busy, int spl) 993 { 994 splx(spl); 995 } 996 997 /* 998 * Allocate a region of virtual address space, unmapped. 999 * Stubbed out except on sparc, at least for now. 1000 */ 1001 /*ARGSUSED*/ 1002 void * 1003 boot_virt_alloc(void *addr, size_t size) 1004 { 1005 return (addr); 1006 } 1007 1008 volatile unsigned long tenmicrodata; 1009 1010 void 1011 tenmicrosec(void) 1012 { 1013 extern int gethrtime_hires; 1014 1015 if (gethrtime_hires) { 1016 hrtime_t start, end; 1017 start = end = gethrtime(); 1018 while ((end - start) < (10 * (NANOSEC / MICROSEC))) { 1019 SMT_PAUSE(); 1020 end = gethrtime(); 1021 } 1022 } else { 1023 #if defined(__xpv) 1024 hrtime_t newtime; 1025 1026 newtime = xpv_gethrtime() + 10000; /* now + 10 us */ 1027 while (xpv_gethrtime() < newtime) 1028 SMT_PAUSE(); 1029 #else /* __xpv */ 1030 int i; 1031 1032 /* 1033 * Artificial loop to induce delay. 1034 */ 1035 for (i = 0; i < microdata; i++) 1036 tenmicrodata = microdata; 1037 #endif /* __xpv */ 1038 } 1039 } 1040 1041 /* 1042 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 1043 * long, and it fills in the array with the time spent on cpu in 1044 * each of the mstates, where time is returned in nsec. 1045 * 1046 * No guarantee is made that the returned values in times[] will 1047 * monotonically increase on sequential calls, although this will 1048 * be true in the long run. Any such guarantee must be handled by 1049 * the caller, if needed. This can happen if we fail to account 1050 * for elapsed time due to a generation counter conflict, yet we 1051 * did account for it on a prior call (see below). 1052 * 1053 * The complication is that the cpu in question may be updating 1054 * its microstate at the same time that we are reading it. 1055 * Because the microstate is only updated when the CPU's state 1056 * changes, the values in cpu_intracct[] can be indefinitely out 1057 * of date. To determine true current values, it is necessary to 1058 * compare the current time with cpu_mstate_start, and add the 1059 * difference to times[cpu_mstate]. 1060 * 1061 * This can be a problem if those values are changing out from 1062 * under us. Because the code path in new_cpu_mstate() is 1063 * performance critical, we have not added a lock to it. Instead, 1064 * we have added a generation counter. Before beginning 1065 * modifications, the counter is set to 0. After modifications, 1066 * it is set to the old value plus one. 1067 * 1068 * get_cpu_mstate() will not consider the values of cpu_mstate 1069 * and cpu_mstate_start to be usable unless the value of 1070 * cpu_mstate_gen is both non-zero and unchanged, both before and 1071 * after reading the mstate information. Note that we must 1072 * protect against out-of-order loads around accesses to the 1073 * generation counter. Also, this is a best effort approach in 1074 * that we do not retry should the counter be found to have 1075 * changed. 1076 * 1077 * cpu_intracct[] is used to identify time spent in each CPU 1078 * mstate while handling interrupts. Such time should be reported 1079 * against system time, and so is subtracted out from its 1080 * corresponding cpu_acct[] time and added to 1081 * cpu_acct[CMS_SYSTEM]. 1082 */ 1083 1084 void 1085 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 1086 { 1087 int i; 1088 hrtime_t now, start; 1089 uint16_t gen; 1090 uint16_t state; 1091 hrtime_t intracct[NCMSTATES]; 1092 1093 /* 1094 * Load all volatile state under the protection of membar. 1095 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 1096 * of (now - cpu_mstate_start) by a change in CPU mstate that 1097 * arrives after we make our last check of cpu_mstate_gen. 1098 */ 1099 1100 now = gethrtime_unscaled(); 1101 gen = cpu->cpu_mstate_gen; 1102 1103 membar_consumer(); /* guarantee load ordering */ 1104 start = cpu->cpu_mstate_start; 1105 state = cpu->cpu_mstate; 1106 for (i = 0; i < NCMSTATES; i++) { 1107 intracct[i] = cpu->cpu_intracct[i]; 1108 times[i] = cpu->cpu_acct[i]; 1109 } 1110 membar_consumer(); /* guarantee load ordering */ 1111 1112 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 1113 times[state] += now - start; 1114 1115 for (i = 0; i < NCMSTATES; i++) { 1116 if (i == CMS_SYSTEM) 1117 continue; 1118 times[i] -= intracct[i]; 1119 if (times[i] < 0) { 1120 intracct[i] += times[i]; 1121 times[i] = 0; 1122 } 1123 times[CMS_SYSTEM] += intracct[i]; 1124 scalehrtime(×[i]); 1125 } 1126 scalehrtime(×[CMS_SYSTEM]); 1127 } 1128 1129 /* 1130 * This is a version of the rdmsr instruction that allows 1131 * an error code to be returned in the case of failure. 1132 */ 1133 int 1134 checked_rdmsr(uint_t msr, uint64_t *value) 1135 { 1136 if ((x86_feature & X86_MSR) == 0) 1137 return (ENOTSUP); 1138 *value = rdmsr(msr); 1139 return (0); 1140 } 1141 1142 /* 1143 * This is a version of the wrmsr instruction that allows 1144 * an error code to be returned in the case of failure. 1145 */ 1146 int 1147 checked_wrmsr(uint_t msr, uint64_t value) 1148 { 1149 if ((x86_feature & X86_MSR) == 0) 1150 return (ENOTSUP); 1151 wrmsr(msr, value); 1152 return (0); 1153 } 1154 1155 /* 1156 * The mem driver's usual method of using hat_devload() to establish a 1157 * temporary mapping will not work for foreign pages mapped into this 1158 * domain or for the special hypervisor-provided pages. For the foreign 1159 * pages, we often don't know which domain owns them, so we can't ask the 1160 * hypervisor to set up a new mapping. For the other pages, we don't have 1161 * a pfn, so we can't create a new PTE. For these special cases, we do a 1162 * direct uiomove() from the existing kernel virtual address. 1163 */ 1164 /*ARGSUSED*/ 1165 int 1166 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw) 1167 { 1168 #if defined(__xpv) 1169 void *va = (void *)(uintptr_t)uio->uio_loffset; 1170 off_t pageoff = uio->uio_loffset & PAGEOFFSET; 1171 size_t nbytes = MIN((size_t)(PAGESIZE - pageoff), 1172 (size_t)uio->uio_iov->iov_len); 1173 1174 if ((rw == UIO_READ && 1175 (va == HYPERVISOR_shared_info || va == xen_info)) || 1176 (pfn_is_foreign(hat_getpfnum(kas.a_hat, va)))) 1177 return (uiomove(va, nbytes, rw, uio)); 1178 #endif 1179 return (ENOTSUP); 1180 } 1181 1182 pgcnt_t 1183 num_phys_pages() 1184 { 1185 pgcnt_t npages = 0; 1186 struct memlist *mp; 1187 1188 #if defined(__xpv) 1189 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1190 return (xpv_nr_phys_pages()); 1191 #endif /* __xpv */ 1192 1193 for (mp = phys_install; mp != NULL; mp = mp->next) 1194 npages += mp->size >> PAGESHIFT; 1195 1196 return (npages); 1197 } 1198 1199 /* cpu threshold for compressed dumps */ 1200 #ifdef _LP64 1201 uint_t dump_plat_mincpu = DUMP_PLAT_X86_64_MINCPU; 1202 #else 1203 uint_t dump_plat_mincpu = DUMP_PLAT_X86_32_MINCPU; 1204 #endif 1205 1206 int 1207 dump_plat_addr() 1208 { 1209 #ifdef __xpv 1210 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1211 mem_vtop_t mem_vtop; 1212 int cnt; 1213 1214 /* 1215 * On the hypervisor, we want to dump the page with shared_info on it. 1216 */ 1217 if (!IN_XPV_PANIC()) { 1218 mem_vtop.m_as = &kas; 1219 mem_vtop.m_va = HYPERVISOR_shared_info; 1220 mem_vtop.m_pfn = pfn; 1221 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 1222 cnt = 1; 1223 } else { 1224 cnt = dump_xpv_addr(); 1225 } 1226 return (cnt); 1227 #else 1228 return (0); 1229 #endif 1230 } 1231 1232 void 1233 dump_plat_pfn() 1234 { 1235 #ifdef __xpv 1236 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1237 1238 if (!IN_XPV_PANIC()) 1239 dumpvp_write(&pfn, sizeof (pfn)); 1240 else 1241 dump_xpv_pfn(); 1242 #endif 1243 } 1244 1245 /*ARGSUSED*/ 1246 int 1247 dump_plat_data(void *dump_cbuf) 1248 { 1249 #ifdef __xpv 1250 uint32_t csize; 1251 int cnt; 1252 1253 if (!IN_XPV_PANIC()) { 1254 csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf, 1255 PAGESIZE); 1256 dumpvp_write(&csize, sizeof (uint32_t)); 1257 dumpvp_write(dump_cbuf, csize); 1258 cnt = 1; 1259 } else { 1260 cnt = dump_xpv_data(dump_cbuf); 1261 } 1262 return (cnt); 1263 #else 1264 return (0); 1265 #endif 1266 } 1267 1268 /* 1269 * Calculates a linear address, given the CS selector and PC values 1270 * by looking up the %cs selector process's LDT or the CPU's GDT. 1271 * proc->p_ldtlock must be held across this call. 1272 */ 1273 int 1274 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1275 { 1276 user_desc_t *descrp; 1277 caddr_t baseaddr; 1278 uint16_t idx = SELTOIDX(rp->r_cs); 1279 1280 ASSERT(rp->r_cs <= 0xFFFF); 1281 ASSERT(MUTEX_HELD(&p->p_ldtlock)); 1282 1283 if (SELISLDT(rp->r_cs)) { 1284 /* 1285 * Currently 64 bit processes cannot have private LDTs. 1286 */ 1287 ASSERT(p->p_model != DATAMODEL_LP64); 1288 1289 if (p->p_ldt == NULL) 1290 return (-1); 1291 1292 descrp = &p->p_ldt[idx]; 1293 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1294 1295 /* 1296 * Calculate the linear address (wraparound is not only ok, 1297 * it's expected behavior). The cast to uint32_t is because 1298 * LDT selectors are only allowed in 32-bit processes. 1299 */ 1300 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1301 rp->r_pc); 1302 } else { 1303 #ifdef DEBUG 1304 descrp = &CPU->cpu_gdt[idx]; 1305 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1306 /* GDT-based descriptors' base addresses should always be 0 */ 1307 ASSERT(baseaddr == 0); 1308 #endif 1309 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1310 } 1311 1312 return (0); 1313 } 1314 1315 /* 1316 * The implementation of dtrace_linear_pc is similar to the that of 1317 * linear_pc, above, but here we acquire p_ldtlock before accessing 1318 * p_ldt. This implementation is used by the pid provider; we prefix 1319 * it with "dtrace_" to avoid inducing spurious tracing events. 1320 */ 1321 int 1322 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1323 { 1324 user_desc_t *descrp; 1325 caddr_t baseaddr; 1326 uint16_t idx = SELTOIDX(rp->r_cs); 1327 1328 ASSERT(rp->r_cs <= 0xFFFF); 1329 1330 if (SELISLDT(rp->r_cs)) { 1331 /* 1332 * Currently 64 bit processes cannot have private LDTs. 1333 */ 1334 ASSERT(p->p_model != DATAMODEL_LP64); 1335 1336 mutex_enter(&p->p_ldtlock); 1337 if (p->p_ldt == NULL) { 1338 mutex_exit(&p->p_ldtlock); 1339 return (-1); 1340 } 1341 descrp = &p->p_ldt[idx]; 1342 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1343 mutex_exit(&p->p_ldtlock); 1344 1345 /* 1346 * Calculate the linear address (wraparound is not only ok, 1347 * it's expected behavior). The cast to uint32_t is because 1348 * LDT selectors are only allowed in 32-bit processes. 1349 */ 1350 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1351 rp->r_pc); 1352 } else { 1353 #ifdef DEBUG 1354 descrp = &CPU->cpu_gdt[idx]; 1355 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1356 /* GDT-based descriptors' base addresses should always be 0 */ 1357 ASSERT(baseaddr == 0); 1358 #endif 1359 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1360 } 1361 1362 return (0); 1363 } 1364