xref: /titanic_50/usr/src/uts/i86pc/os/machdep.c (revision 183971bab0e50aa34f0476451276612019e36db5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/t_lock.h>
29 #include <sys/param.h>
30 #include <sys/segments.h>
31 #include <sys/sysmacros.h>
32 #include <sys/signal.h>
33 #include <sys/systm.h>
34 #include <sys/user.h>
35 #include <sys/mman.h>
36 #include <sys/vm.h>
37 
38 #include <sys/disp.h>
39 #include <sys/class.h>
40 
41 #include <sys/proc.h>
42 #include <sys/buf.h>
43 #include <sys/kmem.h>
44 
45 #include <sys/reboot.h>
46 #include <sys/uadmin.h>
47 #include <sys/callb.h>
48 
49 #include <sys/cred.h>
50 #include <sys/vnode.h>
51 #include <sys/file.h>
52 
53 #include <sys/procfs.h>
54 #include <sys/acct.h>
55 
56 #include <sys/vfs.h>
57 #include <sys/dnlc.h>
58 #include <sys/var.h>
59 #include <sys/cmn_err.h>
60 #include <sys/utsname.h>
61 #include <sys/debug.h>
62 
63 #include <sys/dumphdr.h>
64 #include <sys/bootconf.h>
65 #include <sys/varargs.h>
66 #include <sys/promif.h>
67 #include <sys/modctl.h>
68 
69 #include <sys/consdev.h>
70 #include <sys/frame.h>
71 
72 #include <sys/sunddi.h>
73 #include <sys/ddidmareq.h>
74 #include <sys/psw.h>
75 #include <sys/regset.h>
76 #include <sys/privregs.h>
77 #include <sys/clock.h>
78 #include <sys/tss.h>
79 #include <sys/cpu.h>
80 #include <sys/stack.h>
81 #include <sys/trap.h>
82 #include <sys/pic.h>
83 #include <vm/hat.h>
84 #include <vm/anon.h>
85 #include <vm/as.h>
86 #include <vm/page.h>
87 #include <vm/seg.h>
88 #include <vm/seg_kmem.h>
89 #include <vm/seg_map.h>
90 #include <vm/seg_vn.h>
91 #include <vm/seg_kp.h>
92 #include <vm/hat_i86.h>
93 #include <sys/swap.h>
94 #include <sys/thread.h>
95 #include <sys/sysconf.h>
96 #include <sys/vm_machparam.h>
97 #include <sys/archsystm.h>
98 #include <sys/machsystm.h>
99 #include <sys/machlock.h>
100 #include <sys/x_call.h>
101 #include <sys/instance.h>
102 
103 #include <sys/time.h>
104 #include <sys/smp_impldefs.h>
105 #include <sys/psm_types.h>
106 #include <sys/atomic.h>
107 #include <sys/panic.h>
108 #include <sys/cpuvar.h>
109 #include <sys/dtrace.h>
110 #include <sys/bl.h>
111 #include <sys/nvpair.h>
112 #include <sys/x86_archext.h>
113 #include <sys/pool_pset.h>
114 #include <sys/autoconf.h>
115 #include <sys/mem.h>
116 #include <sys/dumphdr.h>
117 #include <sys/compress.h>
118 #include <sys/cpu_module.h>
119 #if defined(__xpv)
120 #include <sys/hypervisor.h>
121 #include <sys/xpv_panic.h>
122 #endif
123 
124 #include <sys/fastboot.h>
125 #include <sys/machelf.h>
126 #include <sys/kobj.h>
127 #include <sys/multiboot.h>
128 
129 #ifdef	TRAPTRACE
130 #include <sys/traptrace.h>
131 #endif	/* TRAPTRACE */
132 
133 extern void audit_enterprom(int);
134 extern void audit_exitprom(int);
135 
136 /*
137  * Occassionally the kernel knows better whether to power-off or reboot.
138  */
139 int force_shutdown_method = AD_UNKNOWN;
140 
141 /*
142  * The panicbuf array is used to record messages and state:
143  */
144 char panicbuf[PANICBUFSIZE];
145 
146 /*
147  * maxphys - used during physio
148  * klustsize - used for klustering by swapfs and specfs
149  */
150 int maxphys = 56 * 1024;    /* XXX See vm_subr.c - max b_count in physio */
151 int klustsize = 56 * 1024;
152 
153 caddr_t	p0_va;		/* Virtual address for accessing physical page 0 */
154 
155 /*
156  * defined here, though unused on x86,
157  * to make kstat_fr.c happy.
158  */
159 int vac;
160 
161 void stop_other_cpus();
162 void debug_enter(char *);
163 
164 extern void pm_cfb_check_and_powerup(void);
165 extern void pm_cfb_rele(void);
166 
167 extern fastboot_info_t newkernel;
168 
169 /*
170  * Machine dependent code to reboot.
171  * "mdep" is interpreted as a character pointer; if non-null, it is a pointer
172  * to a string to be used as the argument string when rebooting.
173  *
174  * "invoke_cb" is a boolean. It is set to true when mdboot() can safely
175  * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when
176  * we are in a normal shutdown sequence (interrupts are not blocked, the
177  * system is not panic'ing or being suspended).
178  */
179 /*ARGSUSED*/
180 void
181 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb)
182 {
183 	processorid_t bootcpuid = 0;
184 	static int is_first_quiesce = 1;
185 	static int is_first_reset = 1;
186 	int reset_status = 0;
187 	static char fallback_str[] = "Falling back to regular reboot.\n";
188 
189 	if (fcn == AD_FASTREBOOT && !newkernel.fi_valid)
190 		fcn = AD_BOOT;
191 
192 	if (!panicstr) {
193 		kpreempt_disable();
194 		if (fcn == AD_FASTREBOOT) {
195 			mutex_enter(&cpu_lock);
196 			if (CPU_ACTIVE(cpu_get(bootcpuid))) {
197 				affinity_set(bootcpuid);
198 			}
199 			mutex_exit(&cpu_lock);
200 		} else {
201 			affinity_set(CPU_CURRENT);
202 		}
203 	}
204 
205 	if (force_shutdown_method != AD_UNKNOWN)
206 		fcn = force_shutdown_method;
207 
208 	/*
209 	 * XXX - rconsvp is set to NULL to ensure that output messages
210 	 * are sent to the underlying "hardware" device using the
211 	 * monitor's printf routine since we are in the process of
212 	 * either rebooting or halting the machine.
213 	 */
214 	rconsvp = NULL;
215 
216 	/*
217 	 * Print the reboot message now, before pausing other cpus.
218 	 * There is a race condition in the printing support that
219 	 * can deadlock multiprocessor machines.
220 	 */
221 	if (!(fcn == AD_HALT || fcn == AD_POWEROFF))
222 		prom_printf("rebooting...\n");
223 
224 	if (IN_XPV_PANIC())
225 		reset();
226 
227 	/*
228 	 * We can't bring up the console from above lock level, so do it now
229 	 */
230 	pm_cfb_check_and_powerup();
231 
232 	/* make sure there are no more changes to the device tree */
233 	devtree_freeze();
234 
235 	if (invoke_cb)
236 		(void) callb_execute_class(CB_CL_MDBOOT, NULL);
237 
238 	/*
239 	 * Clear any unresolved UEs from memory.
240 	 */
241 	page_retire_mdboot();
242 
243 #if defined(__xpv)
244 	/*
245 	 * XXPV	Should probably think some more about how we deal
246 	 *	with panicing before it's really safe to panic.
247 	 *	On hypervisors, we reboot very quickly..  Perhaps panic
248 	 *	should only attempt to recover by rebooting if,
249 	 *	say, we were able to mount the root filesystem,
250 	 *	or if we successfully launched init(1m).
251 	 */
252 	if (panicstr && proc_init == NULL)
253 		(void) HYPERVISOR_shutdown(SHUTDOWN_poweroff);
254 #endif
255 	/*
256 	 * stop other cpus and raise our priority.  since there is only
257 	 * one active cpu after this, and our priority will be too high
258 	 * for us to be preempted, we're essentially single threaded
259 	 * from here on out.
260 	 */
261 	(void) spl6();
262 	if (!panicstr) {
263 		mutex_enter(&cpu_lock);
264 		pause_cpus(NULL);
265 		mutex_exit(&cpu_lock);
266 	}
267 
268 	/*
269 	 * If the system is panicking, the preloaded kernel is valid,
270 	 * and fastreboot_onpanic has been set, choose Fast Reboot.
271 	 */
272 	if (fcn == AD_BOOT && panicstr && newkernel.fi_valid &&
273 	    fastreboot_onpanic)
274 		fcn = AD_FASTREBOOT;
275 
276 	/*
277 	 * Try to quiesce devices.
278 	 */
279 	if (is_first_quiesce) {
280 		/*
281 		 * Clear is_first_quiesce before calling quiesce_devices()
282 		 * so that if quiesce_devices() causes panics, it will not
283 		 * be invoked again.
284 		 */
285 		is_first_quiesce = 0;
286 
287 		quiesce_active = 1;
288 		quiesce_devices(ddi_root_node(), &reset_status);
289 		if (reset_status == -1) {
290 			if (fcn == AD_FASTREBOOT && !force_fastreboot) {
291 				prom_printf("Driver(s) not capable of fast "
292 				    "reboot.\n");
293 				prom_printf(fallback_str);
294 				fastreboot_capable = 0;
295 				fcn = AD_BOOT;
296 			} else if (fcn != AD_FASTREBOOT)
297 				fastreboot_capable = 0;
298 		}
299 		quiesce_active = 0;
300 	}
301 
302 	/*
303 	 * Try to reset devices. reset_leaves() should only be called
304 	 * a) when there are no other threads that could be accessing devices,
305 	 *    and
306 	 * b) on a system that's not capable of fast reboot (fastreboot_capable
307 	 *    being 0), or on a system where quiesce_devices() failed to
308 	 *    complete (quiesce_active being 1).
309 	 */
310 	if (is_first_reset && (!fastreboot_capable || quiesce_active)) {
311 		/*
312 		 * Clear is_first_reset before calling reset_devices()
313 		 * so that if reset_devices() causes panics, it will not
314 		 * be invoked again.
315 		 */
316 		is_first_reset = 0;
317 		reset_leaves();
318 	}
319 
320 	/* Verify newkernel checksum */
321 	if (fastreboot_capable && fcn == AD_FASTREBOOT &&
322 	    fastboot_cksum_verify(&newkernel) != 0) {
323 		fastreboot_capable = 0;
324 		prom_printf("Fast reboot: checksum failed for the new "
325 		    "kernel.\n");
326 		prom_printf(fallback_str);
327 	}
328 
329 	(void) spl8();
330 
331 	if (fastreboot_capable && fcn == AD_FASTREBOOT) {
332 		/*
333 		 * psm_shutdown is called within fast_reboot()
334 		 */
335 		fast_reboot();
336 	} else {
337 		(*psm_shutdownf)(cmd, fcn);
338 
339 		if (fcn == AD_HALT || fcn == AD_POWEROFF)
340 			halt((char *)NULL);
341 		else
342 			prom_reboot("");
343 	}
344 	/*NOTREACHED*/
345 }
346 
347 /* mdpreboot - may be called prior to mdboot while root fs still mounted */
348 /*ARGSUSED*/
349 void
350 mdpreboot(int cmd, int fcn, char *mdep)
351 {
352 	if (fcn == AD_FASTREBOOT && !fastreboot_capable) {
353 		fcn = AD_BOOT;
354 #ifdef	__xpv
355 		cmn_err(CE_WARN, "Fast reboot is not supported on xVM");
356 #else
357 		cmn_err(CE_WARN,
358 		    "Fast reboot is not supported on this platform");
359 #endif
360 	}
361 
362 	if (fcn == AD_FASTREBOOT) {
363 		fastboot_load_kernel(mdep);
364 		if (!newkernel.fi_valid)
365 			fcn = AD_BOOT;
366 	}
367 
368 	(*psm_preshutdownf)(cmd, fcn);
369 }
370 
371 void
372 idle_other_cpus()
373 {
374 	int cpuid = CPU->cpu_id;
375 	cpuset_t xcset;
376 
377 	ASSERT(cpuid < NCPU);
378 	CPUSET_ALL_BUT(xcset, cpuid);
379 	xc_capture_cpus(xcset);
380 }
381 
382 void
383 resume_other_cpus()
384 {
385 	ASSERT(CPU->cpu_id < NCPU);
386 
387 	xc_release_cpus();
388 }
389 
390 void
391 stop_other_cpus()
392 {
393 	int cpuid = CPU->cpu_id;
394 	cpuset_t xcset;
395 
396 	ASSERT(cpuid < NCPU);
397 
398 	/*
399 	 * xc_trycall will attempt to make all other CPUs execute mach_cpu_halt,
400 	 * and will return immediately regardless of whether or not it was
401 	 * able to make them do it.
402 	 */
403 	CPUSET_ALL_BUT(xcset, cpuid);
404 	xc_trycall(NULL, NULL, NULL, xcset, (int (*)())mach_cpu_halt);
405 }
406 
407 /*
408  *	Machine dependent abort sequence handling
409  */
410 void
411 abort_sequence_enter(char *msg)
412 {
413 	if (abort_enable == 0) {
414 		if (audit_active)
415 			audit_enterprom(0);
416 		return;
417 	}
418 	if (audit_active)
419 		audit_enterprom(1);
420 	debug_enter(msg);
421 	if (audit_active)
422 		audit_exitprom(1);
423 }
424 
425 /*
426  * Enter debugger.  Called when the user types ctrl-alt-d or whenever
427  * code wants to enter the debugger and possibly resume later.
428  */
429 void
430 debug_enter(
431 	char	*msg)		/* message to print, possibly NULL */
432 {
433 	if (dtrace_debugger_init != NULL)
434 		(*dtrace_debugger_init)();
435 
436 	if (msg)
437 		prom_printf("%s\n", msg);
438 
439 	if (boothowto & RB_DEBUG)
440 		kmdb_enter();
441 
442 	if (dtrace_debugger_fini != NULL)
443 		(*dtrace_debugger_fini)();
444 }
445 
446 void
447 reset(void)
448 {
449 #if !defined(__xpv)
450 	ushort_t *bios_memchk;
451 
452 	/*
453 	 * Can't use psm_map_phys before the hat is initialized.
454 	 */
455 	if (khat_running) {
456 		bios_memchk = (ushort_t *)psm_map_phys(0x472,
457 		    sizeof (ushort_t), PROT_READ | PROT_WRITE);
458 		if (bios_memchk)
459 			*bios_memchk = 0x1234;	/* bios memory check disable */
460 	}
461 
462 	if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0, "efi-systab"))
463 		efi_reset();
464 	pc_reset();
465 #else
466 	if (IN_XPV_PANIC())
467 		pc_reset();
468 	(void) HYPERVISOR_shutdown(SHUTDOWN_reboot);
469 	panic("HYPERVISOR_shutdown() failed");
470 #endif
471 	/*NOTREACHED*/
472 }
473 
474 /*
475  * Halt the machine and return to the monitor
476  */
477 void
478 halt(char *s)
479 {
480 	stop_other_cpus();	/* send stop signal to other CPUs */
481 	if (s)
482 		prom_printf("(%s) \n", s);
483 	prom_exit_to_mon();
484 	/*NOTREACHED*/
485 }
486 
487 /*
488  * Initiate interrupt redistribution.
489  */
490 void
491 i_ddi_intr_redist_all_cpus()
492 {
493 }
494 
495 /*
496  * XXX These probably ought to live somewhere else
497  * XXX They are called from mem.c
498  */
499 
500 /*
501  * Convert page frame number to an OBMEM page frame number
502  * (i.e. put in the type bits -- zero for this implementation)
503  */
504 pfn_t
505 impl_obmem_pfnum(pfn_t pf)
506 {
507 	return (pf);
508 }
509 
510 #ifdef	NM_DEBUG
511 int nmi_test = 0;	/* checked in intentry.s during clock int */
512 int nmtest = -1;
513 nmfunc1(arg, rp)
514 int	arg;
515 struct regs *rp;
516 {
517 	printf("nmi called with arg = %x, regs = %x\n", arg, rp);
518 	nmtest += 50;
519 	if (arg == nmtest) {
520 		printf("ip = %x\n", rp->r_pc);
521 		return (1);
522 	}
523 	return (0);
524 }
525 
526 #endif
527 
528 #include <sys/bootsvcs.h>
529 
530 /* Hacked up initialization for initial kernel check out is HERE. */
531 /* The basic steps are: */
532 /*	kernel bootfuncs definition/initialization for KADB */
533 /*	kadb bootfuncs pointer initialization */
534 /*	putchar/getchar (interrupts disabled) */
535 
536 /* kadb bootfuncs pointer initialization */
537 
538 int
539 sysp_getchar()
540 {
541 	int i;
542 	ulong_t s;
543 
544 	if (cons_polledio == NULL) {
545 		/* Uh oh */
546 		prom_printf("getchar called with no console\n");
547 		for (;;)
548 			/* LOOP FOREVER */;
549 	}
550 
551 	s = clear_int_flag();
552 	i = cons_polledio->cons_polledio_getchar(
553 	    cons_polledio->cons_polledio_argument);
554 	restore_int_flag(s);
555 	return (i);
556 }
557 
558 void
559 sysp_putchar(int c)
560 {
561 	ulong_t s;
562 
563 	/*
564 	 * We have no alternative but to drop the output on the floor.
565 	 */
566 	if (cons_polledio == NULL ||
567 	    cons_polledio->cons_polledio_putchar == NULL)
568 		return;
569 
570 	s = clear_int_flag();
571 	cons_polledio->cons_polledio_putchar(
572 	    cons_polledio->cons_polledio_argument, c);
573 	restore_int_flag(s);
574 }
575 
576 int
577 sysp_ischar()
578 {
579 	int i;
580 	ulong_t s;
581 
582 	if (cons_polledio == NULL ||
583 	    cons_polledio->cons_polledio_ischar == NULL)
584 		return (0);
585 
586 	s = clear_int_flag();
587 	i = cons_polledio->cons_polledio_ischar(
588 	    cons_polledio->cons_polledio_argument);
589 	restore_int_flag(s);
590 	return (i);
591 }
592 
593 int
594 goany(void)
595 {
596 	prom_printf("Type any key to continue ");
597 	(void) prom_getchar();
598 	prom_printf("\n");
599 	return (1);
600 }
601 
602 static struct boot_syscalls kern_sysp = {
603 	sysp_getchar,	/*	unchar	(*getchar)();	7  */
604 	sysp_putchar,	/*	int	(*putchar)();	8  */
605 	sysp_ischar,	/*	int	(*ischar)();	9  */
606 };
607 
608 #if defined(__xpv)
609 int using_kern_polledio;
610 #endif
611 
612 void
613 kadb_uses_kernel()
614 {
615 	/*
616 	 * This routine is now totally misnamed, since it does not in fact
617 	 * control kadb's I/O; it only controls the kernel's prom_* I/O.
618 	 */
619 	sysp = &kern_sysp;
620 #if defined(__xpv)
621 	using_kern_polledio = 1;
622 #endif
623 }
624 
625 /*
626  *	the interface to the outside world
627  */
628 
629 /*
630  * poll_port -- wait for a register to achieve a
631  *		specific state.  Arguments are a mask of bits we care about,
632  *		and two sub-masks.  To return normally, all the bits in the
633  *		first sub-mask must be ON, all the bits in the second sub-
634  *		mask must be OFF.  If about seconds pass without the register
635  *		achieving the desired bit configuration, we return 1, else
636  *		0.
637  */
638 int
639 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits)
640 {
641 	int i;
642 	ushort_t maskval;
643 
644 	for (i = 500000; i; i--) {
645 		maskval = inb(port) & mask;
646 		if (((maskval & onbits) == onbits) &&
647 		    ((maskval & offbits) == 0))
648 			return (0);
649 		drv_usecwait(10);
650 	}
651 	return (1);
652 }
653 
654 /*
655  * set_idle_cpu is called from idle() when a CPU becomes idle.
656  */
657 /*LINTED: static unused */
658 static uint_t last_idle_cpu;
659 
660 /*ARGSUSED*/
661 void
662 set_idle_cpu(int cpun)
663 {
664 	last_idle_cpu = cpun;
665 	(*psm_set_idle_cpuf)(cpun);
666 }
667 
668 /*
669  * unset_idle_cpu is called from idle() when a CPU is no longer idle.
670  */
671 /*ARGSUSED*/
672 void
673 unset_idle_cpu(int cpun)
674 {
675 	(*psm_unset_idle_cpuf)(cpun);
676 }
677 
678 /*
679  * This routine is almost correct now, but not quite.  It still needs the
680  * equivalent concept of "hres_last_tick", just like on the sparc side.
681  * The idea is to take a snapshot of the hi-res timer while doing the
682  * hrestime_adj updates under hres_lock in locore, so that the small
683  * interval between interrupt assertion and interrupt processing is
684  * accounted for correctly.  Once we have this, the code below should
685  * be modified to subtract off hres_last_tick rather than hrtime_base.
686  *
687  * I'd have done this myself, but I don't have source to all of the
688  * vendor-specific hi-res timer routines (grrr...).  The generic hook I
689  * need is something like "gethrtime_unlocked()", which would be just like
690  * gethrtime() but would assume that you're already holding CLOCK_LOCK().
691  * This is what the GET_HRTIME() macro is for on sparc (although it also
692  * serves the function of making time available without a function call
693  * so you don't take a register window overflow while traps are disabled).
694  */
695 void
696 pc_gethrestime(timestruc_t *tp)
697 {
698 	int lock_prev;
699 	timestruc_t now;
700 	int nslt;		/* nsec since last tick */
701 	int adj;		/* amount of adjustment to apply */
702 
703 loop:
704 	lock_prev = hres_lock;
705 	now = hrestime;
706 	nslt = (int)(gethrtime() - hres_last_tick);
707 	if (nslt < 0) {
708 		/*
709 		 * nslt < 0 means a tick came between sampling
710 		 * gethrtime() and hres_last_tick; restart the loop
711 		 */
712 
713 		goto loop;
714 	}
715 	now.tv_nsec += nslt;
716 	if (hrestime_adj != 0) {
717 		if (hrestime_adj > 0) {
718 			adj = (nslt >> ADJ_SHIFT);
719 			if (adj > hrestime_adj)
720 				adj = (int)hrestime_adj;
721 		} else {
722 			adj = -(nslt >> ADJ_SHIFT);
723 			if (adj < hrestime_adj)
724 				adj = (int)hrestime_adj;
725 		}
726 		now.tv_nsec += adj;
727 	}
728 	while ((unsigned long)now.tv_nsec >= NANOSEC) {
729 
730 		/*
731 		 * We might have a large adjustment or have been in the
732 		 * debugger for a long time; take care of (at most) four
733 		 * of those missed seconds (tv_nsec is 32 bits, so
734 		 * anything >4s will be wrapping around).  However,
735 		 * anything more than 2 seconds out of sync will trigger
736 		 * timedelta from clock() to go correct the time anyway,
737 		 * so do what we can, and let the big crowbar do the
738 		 * rest.  A similar correction while loop exists inside
739 		 * hres_tick(); in all cases we'd like tv_nsec to
740 		 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing
741 		 * user processes, but if tv_sec's a little behind for a
742 		 * little while, that's OK; time still monotonically
743 		 * increases.
744 		 */
745 
746 		now.tv_nsec -= NANOSEC;
747 		now.tv_sec++;
748 	}
749 	if ((hres_lock & ~1) != lock_prev)
750 		goto loop;
751 
752 	*tp = now;
753 }
754 
755 void
756 gethrestime_lasttick(timespec_t *tp)
757 {
758 	int s;
759 
760 	s = hr_clock_lock();
761 	*tp = hrestime;
762 	hr_clock_unlock(s);
763 }
764 
765 time_t
766 gethrestime_sec(void)
767 {
768 	timestruc_t now;
769 
770 	gethrestime(&now);
771 	return (now.tv_sec);
772 }
773 
774 /*
775  * Initialize a kernel thread's stack
776  */
777 
778 caddr_t
779 thread_stk_init(caddr_t stk)
780 {
781 	ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0);
782 	return (stk - SA(MINFRAME));
783 }
784 
785 /*
786  * Initialize lwp's kernel stack.
787  */
788 
789 #ifdef TRAPTRACE
790 /*
791  * There's a tricky interdependency here between use of sysenter and
792  * TRAPTRACE which needs recording to avoid future confusion (this is
793  * about the third time I've re-figured this out ..)
794  *
795  * Here's how debugging lcall works with TRAPTRACE.
796  *
797  * 1 We're in userland with a breakpoint on the lcall instruction.
798  * 2 We execute the instruction - the instruction pushes the userland
799  *   %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel
800  *   via the call gate.
801  * 3 The hardware raises a debug trap in kernel mode, the hardware
802  *   pushes %efl, %cs, %eip and gets to dbgtrap via the idt.
803  * 4 dbgtrap pushes the error code and trapno and calls cmntrap
804  * 5 cmntrap finishes building a trap frame
805  * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk
806  *   off the stack into the traptrace buffer.
807  *
808  * This means that the traptrace buffer contains the wrong values in
809  * %esp and %ss, but everything else in there is correct.
810  *
811  * Here's how debugging sysenter works with TRAPTRACE.
812  *
813  * a We're in userland with a breakpoint on the sysenter instruction.
814  * b We execute the instruction - the instruction pushes -nothing-
815  *   on the stack, but sets %cs, %eip, %ss, %esp to prearranged
816  *   values to take us to sys_sysenter, at the top of the lwp's
817  *   stack.
818  * c goto 3
819  *
820  * At this point, because we got into the kernel without the requisite
821  * five pushes on the stack, if we didn't make extra room, we'd
822  * end up with the TRACE_REGS macro fetching the saved %ss and %esp
823  * values from negative (unmapped) stack addresses -- which really bites.
824  * That's why we do the '-= 8' below.
825  *
826  * XXX	Note that reading "up" lwp0's stack works because t0 is declared
827  *	right next to t0stack in locore.s
828  */
829 #endif
830 
831 caddr_t
832 lwp_stk_init(klwp_t *lwp, caddr_t stk)
833 {
834 	caddr_t oldstk;
835 	struct pcb *pcb = &lwp->lwp_pcb;
836 
837 	oldstk = stk;
838 	stk -= SA(sizeof (struct regs) + SA(MINFRAME));
839 #ifdef TRAPTRACE
840 	stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */
841 #endif
842 	stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul));
843 	bzero(stk, oldstk - stk);
844 	lwp->lwp_regs = (void *)(stk + SA(MINFRAME));
845 
846 	/*
847 	 * Arrange that the virtualized %fs and %gs GDT descriptors
848 	 * have a well-defined initial state (present, ring 3
849 	 * and of type data).
850 	 */
851 #if defined(__amd64)
852 	if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE)
853 		pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
854 	else
855 		pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc;
856 #elif defined(__i386)
857 	pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
858 #endif	/* __i386 */
859 	lwp_installctx(lwp);
860 	return (stk);
861 }
862 
863 /*ARGSUSED*/
864 void
865 lwp_stk_fini(klwp_t *lwp)
866 {}
867 
868 /*
869  * If we're not the panic CPU, we wait in panic_idle for reboot.
870  */
871 static void
872 panic_idle(void)
873 {
874 	splx(ipltospl(CLOCK_LEVEL));
875 	(void) setjmp(&curthread->t_pcb);
876 
877 	for (;;)
878 		;
879 }
880 
881 /*
882  * Stop the other CPUs by cross-calling them and forcing them to enter
883  * the panic_idle() loop above.
884  */
885 /*ARGSUSED*/
886 void
887 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl)
888 {
889 	processorid_t i;
890 	cpuset_t xcset;
891 
892 	/*
893 	 * In the case of a Xen panic, the hypervisor has already stopped
894 	 * all of the CPUs.
895 	 */
896 	if (!IN_XPV_PANIC()) {
897 		(void) splzs();
898 
899 		CPUSET_ALL_BUT(xcset, cp->cpu_id);
900 		xc_trycall(NULL, NULL, NULL, xcset, (int (*)())panic_idle);
901 	}
902 
903 	for (i = 0; i < NCPU; i++) {
904 		if (i != cp->cpu_id && cpu[i] != NULL &&
905 		    (cpu[i]->cpu_flags & CPU_EXISTS))
906 			cpu[i]->cpu_flags |= CPU_QUIESCED;
907 	}
908 }
909 
910 /*
911  * Platform callback following each entry to panicsys().
912  */
913 /*ARGSUSED*/
914 void
915 panic_enter_hw(int spl)
916 {
917 	/* Nothing to do here */
918 }
919 
920 /*
921  * Platform-specific code to execute after panicstr is set: we invoke
922  * the PSM entry point to indicate that a panic has occurred.
923  */
924 /*ARGSUSED*/
925 void
926 panic_quiesce_hw(panic_data_t *pdp)
927 {
928 	psm_notifyf(PSM_PANIC_ENTER);
929 
930 	cmi_panic_callback();
931 
932 #ifdef	TRAPTRACE
933 	/*
934 	 * Turn off TRAPTRACE
935 	 */
936 	TRAPTRACE_FREEZE;
937 #endif	/* TRAPTRACE */
938 }
939 
940 /*
941  * Platform callback prior to writing crash dump.
942  */
943 /*ARGSUSED*/
944 void
945 panic_dump_hw(int spl)
946 {
947 	/* Nothing to do here */
948 }
949 
950 void *
951 plat_traceback(void *fpreg)
952 {
953 #ifdef __xpv
954 	if (IN_XPV_PANIC())
955 		return (xpv_traceback(fpreg));
956 #endif
957 	return (fpreg);
958 }
959 
960 /*ARGSUSED*/
961 void
962 plat_tod_fault(enum tod_fault_type tod_bad)
963 {}
964 
965 /*ARGSUSED*/
966 int
967 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class)
968 {
969 	return (ENOTSUP);
970 }
971 
972 /*
973  * The underlying console output routines are protected by raising IPL in case
974  * we are still calling into the early boot services.  Once we start calling
975  * the kernel console emulator, it will disable interrupts completely during
976  * character rendering (see sysp_putchar, for example).  Refer to the comments
977  * and code in common/os/console.c for more information on these callbacks.
978  */
979 /*ARGSUSED*/
980 int
981 console_enter(int busy)
982 {
983 	return (splzs());
984 }
985 
986 /*ARGSUSED*/
987 void
988 console_exit(int busy, int spl)
989 {
990 	splx(spl);
991 }
992 
993 /*
994  * Allocate a region of virtual address space, unmapped.
995  * Stubbed out except on sparc, at least for now.
996  */
997 /*ARGSUSED*/
998 void *
999 boot_virt_alloc(void *addr, size_t size)
1000 {
1001 	return (addr);
1002 }
1003 
1004 volatile unsigned long	tenmicrodata;
1005 
1006 void
1007 tenmicrosec(void)
1008 {
1009 	extern int gethrtime_hires;
1010 
1011 	if (gethrtime_hires) {
1012 		hrtime_t start, end;
1013 		start = end =  gethrtime();
1014 		while ((end - start) < (10 * (NANOSEC / MICROSEC))) {
1015 			SMT_PAUSE();
1016 			end = gethrtime();
1017 		}
1018 	} else {
1019 #if defined(__xpv)
1020 		hrtime_t newtime;
1021 
1022 		newtime = xpv_gethrtime() + 10000; /* now + 10 us */
1023 		while (xpv_gethrtime() < newtime)
1024 			SMT_PAUSE();
1025 #else	/* __xpv */
1026 		int i;
1027 
1028 		/*
1029 		 * Artificial loop to induce delay.
1030 		 */
1031 		for (i = 0; i < microdata; i++)
1032 			tenmicrodata = microdata;
1033 #endif	/* __xpv */
1034 	}
1035 }
1036 
1037 /*
1038  * get_cpu_mstate() is passed an array of timestamps, NCMSTATES
1039  * long, and it fills in the array with the time spent on cpu in
1040  * each of the mstates, where time is returned in nsec.
1041  *
1042  * No guarantee is made that the returned values in times[] will
1043  * monotonically increase on sequential calls, although this will
1044  * be true in the long run. Any such guarantee must be handled by
1045  * the caller, if needed. This can happen if we fail to account
1046  * for elapsed time due to a generation counter conflict, yet we
1047  * did account for it on a prior call (see below).
1048  *
1049  * The complication is that the cpu in question may be updating
1050  * its microstate at the same time that we are reading it.
1051  * Because the microstate is only updated when the CPU's state
1052  * changes, the values in cpu_intracct[] can be indefinitely out
1053  * of date. To determine true current values, it is necessary to
1054  * compare the current time with cpu_mstate_start, and add the
1055  * difference to times[cpu_mstate].
1056  *
1057  * This can be a problem if those values are changing out from
1058  * under us. Because the code path in new_cpu_mstate() is
1059  * performance critical, we have not added a lock to it. Instead,
1060  * we have added a generation counter. Before beginning
1061  * modifications, the counter is set to 0. After modifications,
1062  * it is set to the old value plus one.
1063  *
1064  * get_cpu_mstate() will not consider the values of cpu_mstate
1065  * and cpu_mstate_start to be usable unless the value of
1066  * cpu_mstate_gen is both non-zero and unchanged, both before and
1067  * after reading the mstate information. Note that we must
1068  * protect against out-of-order loads around accesses to the
1069  * generation counter. Also, this is a best effort approach in
1070  * that we do not retry should the counter be found to have
1071  * changed.
1072  *
1073  * cpu_intracct[] is used to identify time spent in each CPU
1074  * mstate while handling interrupts. Such time should be reported
1075  * against system time, and so is subtracted out from its
1076  * corresponding cpu_acct[] time and added to
1077  * cpu_acct[CMS_SYSTEM].
1078  */
1079 
1080 void
1081 get_cpu_mstate(cpu_t *cpu, hrtime_t *times)
1082 {
1083 	int i;
1084 	hrtime_t now, start;
1085 	uint16_t gen;
1086 	uint16_t state;
1087 	hrtime_t intracct[NCMSTATES];
1088 
1089 	/*
1090 	 * Load all volatile state under the protection of membar.
1091 	 * cpu_acct[cpu_mstate] must be loaded to avoid double counting
1092 	 * of (now - cpu_mstate_start) by a change in CPU mstate that
1093 	 * arrives after we make our last check of cpu_mstate_gen.
1094 	 */
1095 
1096 	now = gethrtime_unscaled();
1097 	gen = cpu->cpu_mstate_gen;
1098 
1099 	membar_consumer();	/* guarantee load ordering */
1100 	start = cpu->cpu_mstate_start;
1101 	state = cpu->cpu_mstate;
1102 	for (i = 0; i < NCMSTATES; i++) {
1103 		intracct[i] = cpu->cpu_intracct[i];
1104 		times[i] = cpu->cpu_acct[i];
1105 	}
1106 	membar_consumer();	/* guarantee load ordering */
1107 
1108 	if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start)
1109 		times[state] += now - start;
1110 
1111 	for (i = 0; i < NCMSTATES; i++) {
1112 		if (i == CMS_SYSTEM)
1113 			continue;
1114 		times[i] -= intracct[i];
1115 		if (times[i] < 0) {
1116 			intracct[i] += times[i];
1117 			times[i] = 0;
1118 		}
1119 		times[CMS_SYSTEM] += intracct[i];
1120 		scalehrtime(&times[i]);
1121 	}
1122 	scalehrtime(&times[CMS_SYSTEM]);
1123 }
1124 
1125 /*
1126  * This is a version of the rdmsr instruction that allows
1127  * an error code to be returned in the case of failure.
1128  */
1129 int
1130 checked_rdmsr(uint_t msr, uint64_t *value)
1131 {
1132 	if ((x86_feature & X86_MSR) == 0)
1133 		return (ENOTSUP);
1134 	*value = rdmsr(msr);
1135 	return (0);
1136 }
1137 
1138 /*
1139  * This is a version of the wrmsr instruction that allows
1140  * an error code to be returned in the case of failure.
1141  */
1142 int
1143 checked_wrmsr(uint_t msr, uint64_t value)
1144 {
1145 	if ((x86_feature & X86_MSR) == 0)
1146 		return (ENOTSUP);
1147 	wrmsr(msr, value);
1148 	return (0);
1149 }
1150 
1151 /*
1152  * The mem driver's usual method of using hat_devload() to establish a
1153  * temporary mapping will not work for foreign pages mapped into this
1154  * domain or for the special hypervisor-provided pages.  For the foreign
1155  * pages, we often don't know which domain owns them, so we can't ask the
1156  * hypervisor to set up a new mapping.  For the other pages, we don't have
1157  * a pfn, so we can't create a new PTE.  For these special cases, we do a
1158  * direct uiomove() from the existing kernel virtual address.
1159  */
1160 /*ARGSUSED*/
1161 int
1162 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw)
1163 {
1164 #if defined(__xpv)
1165 	void *va = (void *)(uintptr_t)uio->uio_loffset;
1166 	off_t pageoff = uio->uio_loffset & PAGEOFFSET;
1167 	size_t nbytes = MIN((size_t)(PAGESIZE - pageoff),
1168 	    (size_t)uio->uio_iov->iov_len);
1169 
1170 	if ((rw == UIO_READ &&
1171 	    (va == HYPERVISOR_shared_info || va == xen_info)) ||
1172 	    (pfn_is_foreign(hat_getpfnum(kas.a_hat, va))))
1173 		return (uiomove(va, nbytes, rw, uio));
1174 #endif
1175 	return (ENOTSUP);
1176 }
1177 
1178 pgcnt_t
1179 num_phys_pages()
1180 {
1181 	pgcnt_t npages = 0;
1182 	struct memlist *mp;
1183 
1184 #if defined(__xpv)
1185 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1186 		xen_sysctl_t op;
1187 
1188 		op.cmd = XEN_SYSCTL_physinfo;
1189 		op.interface_version = XEN_SYSCTL_INTERFACE_VERSION;
1190 		if (HYPERVISOR_sysctl(&op) != 0)
1191 			panic("physinfo op refused");
1192 
1193 		return ((pgcnt_t)op.u.physinfo.total_pages);
1194 	}
1195 #endif /* __xpv */
1196 
1197 	for (mp = phys_install; mp != NULL; mp = mp->next)
1198 		npages += mp->size >> PAGESHIFT;
1199 
1200 	return (npages);
1201 }
1202 
1203 int
1204 dump_plat_addr()
1205 {
1206 #ifdef __xpv
1207 	pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1208 	mem_vtop_t mem_vtop;
1209 	int cnt;
1210 
1211 	/*
1212 	 * On the hypervisor, we want to dump the page with shared_info on it.
1213 	 */
1214 	if (!IN_XPV_PANIC()) {
1215 		mem_vtop.m_as = &kas;
1216 		mem_vtop.m_va = HYPERVISOR_shared_info;
1217 		mem_vtop.m_pfn = pfn;
1218 		dumpvp_write(&mem_vtop, sizeof (mem_vtop_t));
1219 		cnt = 1;
1220 	} else {
1221 		cnt = dump_xpv_addr();
1222 	}
1223 	return (cnt);
1224 #else
1225 	return (0);
1226 #endif
1227 }
1228 
1229 void
1230 dump_plat_pfn()
1231 {
1232 #ifdef __xpv
1233 	pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1234 
1235 	if (!IN_XPV_PANIC())
1236 		dumpvp_write(&pfn, sizeof (pfn));
1237 	else
1238 		dump_xpv_pfn();
1239 #endif
1240 }
1241 
1242 /*ARGSUSED*/
1243 int
1244 dump_plat_data(void *dump_cbuf)
1245 {
1246 #ifdef __xpv
1247 	uint32_t csize;
1248 	int cnt;
1249 
1250 	if (!IN_XPV_PANIC()) {
1251 		csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf,
1252 		    PAGESIZE);
1253 		dumpvp_write(&csize, sizeof (uint32_t));
1254 		dumpvp_write(dump_cbuf, csize);
1255 		cnt = 1;
1256 	} else {
1257 		cnt = dump_xpv_data(dump_cbuf);
1258 	}
1259 	return (cnt);
1260 #else
1261 	return (0);
1262 #endif
1263 }
1264 
1265 /*
1266  * Calculates a linear address, given the CS selector and PC values
1267  * by looking up the %cs selector process's LDT or the CPU's GDT.
1268  * proc->p_ldtlock must be held across this call.
1269  */
1270 int
1271 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1272 {
1273 	user_desc_t	*descrp;
1274 	caddr_t		baseaddr;
1275 	uint16_t	idx = SELTOIDX(rp->r_cs);
1276 
1277 	ASSERT(rp->r_cs <= 0xFFFF);
1278 	ASSERT(MUTEX_HELD(&p->p_ldtlock));
1279 
1280 	if (SELISLDT(rp->r_cs)) {
1281 		/*
1282 		 * Currently 64 bit processes cannot have private LDTs.
1283 		 */
1284 		ASSERT(p->p_model != DATAMODEL_LP64);
1285 
1286 		if (p->p_ldt == NULL)
1287 			return (-1);
1288 
1289 		descrp = &p->p_ldt[idx];
1290 		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1291 
1292 		/*
1293 		 * Calculate the linear address (wraparound is not only ok,
1294 		 * it's expected behavior).  The cast to uint32_t is because
1295 		 * LDT selectors are only allowed in 32-bit processes.
1296 		 */
1297 		*linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1298 		    rp->r_pc);
1299 	} else {
1300 #ifdef DEBUG
1301 		descrp = &CPU->cpu_gdt[idx];
1302 		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1303 		/* GDT-based descriptors' base addresses should always be 0 */
1304 		ASSERT(baseaddr == 0);
1305 #endif
1306 		*linearp = (caddr_t)(uintptr_t)rp->r_pc;
1307 	}
1308 
1309 	return (0);
1310 }
1311 
1312 /*
1313  * The implementation of dtrace_linear_pc is similar to the that of
1314  * linear_pc, above, but here we acquire p_ldtlock before accessing
1315  * p_ldt.  This implementation is used by the pid provider; we prefix
1316  * it with "dtrace_" to avoid inducing spurious tracing events.
1317  */
1318 int
1319 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1320 {
1321 	user_desc_t	*descrp;
1322 	caddr_t		baseaddr;
1323 	uint16_t	idx = SELTOIDX(rp->r_cs);
1324 
1325 	ASSERT(rp->r_cs <= 0xFFFF);
1326 
1327 	if (SELISLDT(rp->r_cs)) {
1328 		/*
1329 		 * Currently 64 bit processes cannot have private LDTs.
1330 		 */
1331 		ASSERT(p->p_model != DATAMODEL_LP64);
1332 
1333 		mutex_enter(&p->p_ldtlock);
1334 		if (p->p_ldt == NULL) {
1335 			mutex_exit(&p->p_ldtlock);
1336 			return (-1);
1337 		}
1338 		descrp = &p->p_ldt[idx];
1339 		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1340 		mutex_exit(&p->p_ldtlock);
1341 
1342 		/*
1343 		 * Calculate the linear address (wraparound is not only ok,
1344 		 * it's expected behavior).  The cast to uint32_t is because
1345 		 * LDT selectors are only allowed in 32-bit processes.
1346 		 */
1347 		*linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1348 		    rp->r_pc);
1349 	} else {
1350 #ifdef DEBUG
1351 		descrp = &CPU->cpu_gdt[idx];
1352 		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1353 		/* GDT-based descriptors' base addresses should always be 0 */
1354 		ASSERT(baseaddr == 0);
1355 #endif
1356 		*linearp = (caddr_t)(uintptr_t)rp->r_pc;
1357 	}
1358 
1359 	return (0);
1360 }
1361