xref: /titanic_50/usr/src/uts/i86pc/os/machdep.c (revision 0a1278f26ea4b7c8c0285d4f2d6c5b680904aa01)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/t_lock.h>
32 #include <sys/param.h>
33 #include <sys/segments.h>
34 #include <sys/sysmacros.h>
35 #include <sys/signal.h>
36 #include <sys/systm.h>
37 #include <sys/user.h>
38 #include <sys/mman.h>
39 #include <sys/vm.h>
40 
41 #include <sys/disp.h>
42 #include <sys/class.h>
43 
44 #include <sys/proc.h>
45 #include <sys/buf.h>
46 #include <sys/kmem.h>
47 
48 #include <sys/reboot.h>
49 #include <sys/uadmin.h>
50 #include <sys/callb.h>
51 
52 #include <sys/cred.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 
56 #include <sys/procfs.h>
57 #include <sys/acct.h>
58 
59 #include <sys/vfs.h>
60 #include <sys/dnlc.h>
61 #include <sys/var.h>
62 #include <sys/cmn_err.h>
63 #include <sys/utsname.h>
64 #include <sys/debug.h>
65 
66 #include <sys/dumphdr.h>
67 #include <sys/bootconf.h>
68 #include <sys/varargs.h>
69 #include <sys/promif.h>
70 #include <sys/modctl.h>
71 
72 #include <sys/consdev.h>
73 #include <sys/frame.h>
74 
75 #include <sys/sunddi.h>
76 #include <sys/ddidmareq.h>
77 #include <sys/psw.h>
78 #include <sys/regset.h>
79 #include <sys/privregs.h>
80 #include <sys/clock.h>
81 #include <sys/tss.h>
82 #include <sys/cpu.h>
83 #include <sys/stack.h>
84 #include <sys/trap.h>
85 #include <sys/pic.h>
86 #include <vm/hat.h>
87 #include <vm/anon.h>
88 #include <vm/as.h>
89 #include <vm/page.h>
90 #include <vm/seg.h>
91 #include <vm/seg_kmem.h>
92 #include <vm/seg_map.h>
93 #include <vm/seg_vn.h>
94 #include <vm/seg_kp.h>
95 #include <vm/hat_i86.h>
96 #include <sys/swap.h>
97 #include <sys/thread.h>
98 #include <sys/sysconf.h>
99 #include <sys/vm_machparam.h>
100 #include <sys/archsystm.h>
101 #include <sys/machsystm.h>
102 #include <sys/machlock.h>
103 #include <sys/x_call.h>
104 #include <sys/instance.h>
105 
106 #include <sys/time.h>
107 #include <sys/smp_impldefs.h>
108 #include <sys/psm_types.h>
109 #include <sys/atomic.h>
110 #include <sys/panic.h>
111 #include <sys/cpuvar.h>
112 #include <sys/dtrace.h>
113 #include <sys/bl.h>
114 #include <sys/nvpair.h>
115 #include <sys/x86_archext.h>
116 #include <sys/pool_pset.h>
117 #include <sys/autoconf.h>
118 #include <sys/mem.h>
119 #include <sys/dumphdr.h>
120 #include <sys/compress.h>
121 #include <sys/cpu_module.h>
122 #if defined(__xpv)
123 #include <sys/hypervisor.h>
124 #include <sys/xpv_panic.h>
125 #endif
126 
127 #include <sys/fastboot.h>
128 #include <sys/machelf.h>
129 #include <sys/kobj.h>
130 #include <sys/multiboot.h>
131 
132 #ifdef	TRAPTRACE
133 #include <sys/traptrace.h>
134 #endif	/* TRAPTRACE */
135 
136 #include <c2/audit.h>
137 #include <sys/clock_impl.h>
138 
139 extern void audit_enterprom(int);
140 extern void audit_exitprom(int);
141 
142 /*
143  * Tunable to enable apix PSM; if set to 0, pcplusmp PSM will be used.
144  */
145 int	apix_enable = 1;
146 
147 int	apic_nvidia_io_max = 0;	/* no. of NVIDIA i/o apics */
148 
149 /*
150  * Occassionally the kernel knows better whether to power-off or reboot.
151  */
152 int force_shutdown_method = AD_UNKNOWN;
153 
154 /*
155  * The panicbuf array is used to record messages and state:
156  */
157 char panicbuf[PANICBUFSIZE];
158 
159 /*
160  * Flags to control Dynamic Reconfiguration features.
161  */
162 uint64_t plat_dr_options;
163 
164 /*
165  * Maximum physical address for memory DR operations.
166  */
167 uint64_t plat_dr_physmax;
168 
169 /*
170  * maxphys - used during physio
171  * klustsize - used for klustering by swapfs and specfs
172  */
173 int maxphys = 56 * 1024;    /* XXX See vm_subr.c - max b_count in physio */
174 int klustsize = 56 * 1024;
175 
176 caddr_t	p0_va;		/* Virtual address for accessing physical page 0 */
177 
178 /*
179  * defined here, though unused on x86,
180  * to make kstat_fr.c happy.
181  */
182 int vac;
183 
184 void debug_enter(char *);
185 
186 extern void pm_cfb_check_and_powerup(void);
187 extern void pm_cfb_rele(void);
188 
189 extern fastboot_info_t newkernel;
190 
191 /*
192  * Machine dependent code to reboot.
193  * "mdep" is interpreted as a character pointer; if non-null, it is a pointer
194  * to a string to be used as the argument string when rebooting.
195  *
196  * "invoke_cb" is a boolean. It is set to true when mdboot() can safely
197  * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when
198  * we are in a normal shutdown sequence (interrupts are not blocked, the
199  * system is not panic'ing or being suspended).
200  */
201 /*ARGSUSED*/
202 void
203 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb)
204 {
205 	processorid_t bootcpuid = 0;
206 	static int is_first_quiesce = 1;
207 	static int is_first_reset = 1;
208 	int reset_status = 0;
209 	static char fallback_str[] = "Falling back to regular reboot.\n";
210 
211 	if (fcn == AD_FASTREBOOT && !newkernel.fi_valid)
212 		fcn = AD_BOOT;
213 
214 	if (!panicstr) {
215 		kpreempt_disable();
216 		if (fcn == AD_FASTREBOOT) {
217 			mutex_enter(&cpu_lock);
218 			if (CPU_ACTIVE(cpu_get(bootcpuid))) {
219 				affinity_set(bootcpuid);
220 			}
221 			mutex_exit(&cpu_lock);
222 		} else {
223 			affinity_set(CPU_CURRENT);
224 		}
225 	}
226 
227 	if (force_shutdown_method != AD_UNKNOWN)
228 		fcn = force_shutdown_method;
229 
230 	/*
231 	 * XXX - rconsvp is set to NULL to ensure that output messages
232 	 * are sent to the underlying "hardware" device using the
233 	 * monitor's printf routine since we are in the process of
234 	 * either rebooting or halting the machine.
235 	 */
236 	rconsvp = NULL;
237 
238 	/*
239 	 * Print the reboot message now, before pausing other cpus.
240 	 * There is a race condition in the printing support that
241 	 * can deadlock multiprocessor machines.
242 	 */
243 	if (!(fcn == AD_HALT || fcn == AD_POWEROFF))
244 		prom_printf("rebooting...\n");
245 
246 	if (IN_XPV_PANIC())
247 		reset();
248 
249 	/*
250 	 * We can't bring up the console from above lock level, so do it now
251 	 */
252 	pm_cfb_check_and_powerup();
253 
254 	/* make sure there are no more changes to the device tree */
255 	devtree_freeze();
256 
257 	if (invoke_cb)
258 		(void) callb_execute_class(CB_CL_MDBOOT, NULL);
259 
260 	/*
261 	 * Clear any unresolved UEs from memory.
262 	 */
263 	page_retire_mdboot();
264 
265 #if defined(__xpv)
266 	/*
267 	 * XXPV	Should probably think some more about how we deal
268 	 *	with panicing before it's really safe to panic.
269 	 *	On hypervisors, we reboot very quickly..  Perhaps panic
270 	 *	should only attempt to recover by rebooting if,
271 	 *	say, we were able to mount the root filesystem,
272 	 *	or if we successfully launched init(1m).
273 	 */
274 	if (panicstr && proc_init == NULL)
275 		(void) HYPERVISOR_shutdown(SHUTDOWN_poweroff);
276 #endif
277 	/*
278 	 * stop other cpus and raise our priority.  since there is only
279 	 * one active cpu after this, and our priority will be too high
280 	 * for us to be preempted, we're essentially single threaded
281 	 * from here on out.
282 	 */
283 	(void) spl6();
284 	if (!panicstr) {
285 		mutex_enter(&cpu_lock);
286 		pause_cpus(NULL);
287 		mutex_exit(&cpu_lock);
288 	}
289 
290 	/*
291 	 * If the system is panicking, the preloaded kernel is valid, and
292 	 * fastreboot_onpanic has been set, and the system has been up for
293 	 * longer than fastreboot_onpanic_uptime (default to 10 minutes),
294 	 * choose Fast Reboot.
295 	 */
296 	if (fcn == AD_BOOT && panicstr && newkernel.fi_valid &&
297 	    fastreboot_onpanic &&
298 	    (panic_lbolt - lbolt_at_boot) > fastreboot_onpanic_uptime) {
299 		fcn = AD_FASTREBOOT;
300 	}
301 
302 	/*
303 	 * Try to quiesce devices.
304 	 */
305 	if (is_first_quiesce) {
306 		/*
307 		 * Clear is_first_quiesce before calling quiesce_devices()
308 		 * so that if quiesce_devices() causes panics, it will not
309 		 * be invoked again.
310 		 */
311 		is_first_quiesce = 0;
312 
313 		quiesce_active = 1;
314 		quiesce_devices(ddi_root_node(), &reset_status);
315 		if (reset_status == -1) {
316 			if (fcn == AD_FASTREBOOT && !force_fastreboot) {
317 				prom_printf("Driver(s) not capable of fast "
318 				    "reboot.\n");
319 				prom_printf(fallback_str);
320 				fastreboot_capable = 0;
321 				fcn = AD_BOOT;
322 			} else if (fcn != AD_FASTREBOOT)
323 				fastreboot_capable = 0;
324 		}
325 		quiesce_active = 0;
326 	}
327 
328 	/*
329 	 * Try to reset devices. reset_leaves() should only be called
330 	 * a) when there are no other threads that could be accessing devices,
331 	 *    and
332 	 * b) on a system that's not capable of fast reboot (fastreboot_capable
333 	 *    being 0), or on a system where quiesce_devices() failed to
334 	 *    complete (quiesce_active being 1).
335 	 */
336 	if (is_first_reset && (!fastreboot_capable || quiesce_active)) {
337 		/*
338 		 * Clear is_first_reset before calling reset_devices()
339 		 * so that if reset_devices() causes panics, it will not
340 		 * be invoked again.
341 		 */
342 		is_first_reset = 0;
343 		reset_leaves();
344 	}
345 
346 	/* Verify newkernel checksum */
347 	if (fastreboot_capable && fcn == AD_FASTREBOOT &&
348 	    fastboot_cksum_verify(&newkernel) != 0) {
349 		fastreboot_capable = 0;
350 		prom_printf("Fast reboot: checksum failed for the new "
351 		    "kernel.\n");
352 		prom_printf(fallback_str);
353 	}
354 
355 	(void) spl8();
356 
357 	if (fastreboot_capable && fcn == AD_FASTREBOOT) {
358 		/*
359 		 * psm_shutdown is called within fast_reboot()
360 		 */
361 		fast_reboot();
362 	} else {
363 		(*psm_shutdownf)(cmd, fcn);
364 
365 		if (fcn == AD_HALT || fcn == AD_POWEROFF)
366 			halt((char *)NULL);
367 		else
368 			prom_reboot("");
369 	}
370 	/*NOTREACHED*/
371 }
372 
373 /* mdpreboot - may be called prior to mdboot while root fs still mounted */
374 /*ARGSUSED*/
375 void
376 mdpreboot(int cmd, int fcn, char *mdep)
377 {
378 	if (fcn == AD_FASTREBOOT && !fastreboot_capable) {
379 		fcn = AD_BOOT;
380 #ifdef	__xpv
381 		cmn_err(CE_WARN, "Fast reboot is not supported on xVM");
382 #else
383 		cmn_err(CE_WARN,
384 		    "Fast reboot is not supported on this platform%s",
385 		    fastreboot_nosup_message());
386 #endif
387 	}
388 
389 	if (fcn == AD_FASTREBOOT) {
390 		fastboot_load_kernel(mdep);
391 		if (!newkernel.fi_valid)
392 			fcn = AD_BOOT;
393 	}
394 
395 	(*psm_preshutdownf)(cmd, fcn);
396 }
397 
398 static void
399 stop_other_cpus(void)
400 {
401 	ulong_t s = clear_int_flag(); /* fast way to keep CPU from changing */
402 	cpuset_t xcset;
403 
404 	CPUSET_ALL_BUT(xcset, CPU->cpu_id);
405 	xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)mach_cpu_halt);
406 	restore_int_flag(s);
407 }
408 
409 /*
410  *	Machine dependent abort sequence handling
411  */
412 void
413 abort_sequence_enter(char *msg)
414 {
415 	if (abort_enable == 0) {
416 		if (AU_ZONE_AUDITING(GET_KCTX_GZ))
417 			audit_enterprom(0);
418 		return;
419 	}
420 	if (AU_ZONE_AUDITING(GET_KCTX_GZ))
421 		audit_enterprom(1);
422 	debug_enter(msg);
423 	if (AU_ZONE_AUDITING(GET_KCTX_GZ))
424 		audit_exitprom(1);
425 }
426 
427 /*
428  * Enter debugger.  Called when the user types ctrl-alt-d or whenever
429  * code wants to enter the debugger and possibly resume later.
430  */
431 void
432 debug_enter(
433 	char	*msg)		/* message to print, possibly NULL */
434 {
435 	if (dtrace_debugger_init != NULL)
436 		(*dtrace_debugger_init)();
437 
438 	if (msg)
439 		prom_printf("%s\n", msg);
440 
441 	if (boothowto & RB_DEBUG)
442 		kmdb_enter();
443 
444 	if (dtrace_debugger_fini != NULL)
445 		(*dtrace_debugger_fini)();
446 }
447 
448 void
449 reset(void)
450 {
451 	extern	void acpi_reset_system();
452 #if !defined(__xpv)
453 	ushort_t *bios_memchk;
454 
455 	/*
456 	 * Can't use psm_map_phys or acpi_reset_system before the hat is
457 	 * initialized.
458 	 */
459 	if (khat_running) {
460 		bios_memchk = (ushort_t *)psm_map_phys(0x472,
461 		    sizeof (ushort_t), PROT_READ | PROT_WRITE);
462 		if (bios_memchk)
463 			*bios_memchk = 0x1234;	/* bios memory check disable */
464 
465 		if (options_dip != NULL &&
466 		    ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0,
467 		    "efi-systab")) {
468 			efi_reset();
469 		}
470 
471 		/*
472 		 * The problem with using stubs is that we can call
473 		 * acpi_reset_system only after the kernel is up and running.
474 		 *
475 		 * We should create a global state to keep track of how far
476 		 * up the kernel is but for the time being we will depend on
477 		 * bootops. bootops cleared in startup_end().
478 		 */
479 		if (bootops == NULL)
480 			acpi_reset_system();
481 	}
482 
483 	pc_reset();
484 #else
485 	if (IN_XPV_PANIC()) {
486 		if (khat_running && bootops == NULL) {
487 			acpi_reset_system();
488 		}
489 
490 		pc_reset();
491 	}
492 
493 	(void) HYPERVISOR_shutdown(SHUTDOWN_reboot);
494 	panic("HYPERVISOR_shutdown() failed");
495 #endif
496 	/*NOTREACHED*/
497 }
498 
499 /*
500  * Halt the machine and return to the monitor
501  */
502 void
503 halt(char *s)
504 {
505 	stop_other_cpus();	/* send stop signal to other CPUs */
506 	if (s)
507 		prom_printf("(%s) \n", s);
508 	prom_exit_to_mon();
509 	/*NOTREACHED*/
510 }
511 
512 /*
513  * Initiate interrupt redistribution.
514  */
515 void
516 i_ddi_intr_redist_all_cpus()
517 {
518 }
519 
520 /*
521  * XXX These probably ought to live somewhere else
522  * XXX They are called from mem.c
523  */
524 
525 /*
526  * Convert page frame number to an OBMEM page frame number
527  * (i.e. put in the type bits -- zero for this implementation)
528  */
529 pfn_t
530 impl_obmem_pfnum(pfn_t pf)
531 {
532 	return (pf);
533 }
534 
535 #ifdef	NM_DEBUG
536 int nmi_test = 0;	/* checked in intentry.s during clock int */
537 int nmtest = -1;
538 nmfunc1(arg, rp)
539 int	arg;
540 struct regs *rp;
541 {
542 	printf("nmi called with arg = %x, regs = %x\n", arg, rp);
543 	nmtest += 50;
544 	if (arg == nmtest) {
545 		printf("ip = %x\n", rp->r_pc);
546 		return (1);
547 	}
548 	return (0);
549 }
550 
551 #endif
552 
553 #include <sys/bootsvcs.h>
554 
555 /* Hacked up initialization for initial kernel check out is HERE. */
556 /* The basic steps are: */
557 /*	kernel bootfuncs definition/initialization for KADB */
558 /*	kadb bootfuncs pointer initialization */
559 /*	putchar/getchar (interrupts disabled) */
560 
561 /* kadb bootfuncs pointer initialization */
562 
563 int
564 sysp_getchar()
565 {
566 	int i;
567 	ulong_t s;
568 
569 	if (cons_polledio == NULL) {
570 		/* Uh oh */
571 		prom_printf("getchar called with no console\n");
572 		for (;;)
573 			/* LOOP FOREVER */;
574 	}
575 
576 	s = clear_int_flag();
577 	i = cons_polledio->cons_polledio_getchar(
578 	    cons_polledio->cons_polledio_argument);
579 	restore_int_flag(s);
580 	return (i);
581 }
582 
583 void
584 sysp_putchar(int c)
585 {
586 	ulong_t s;
587 
588 	/*
589 	 * We have no alternative but to drop the output on the floor.
590 	 */
591 	if (cons_polledio == NULL ||
592 	    cons_polledio->cons_polledio_putchar == NULL)
593 		return;
594 
595 	s = clear_int_flag();
596 	cons_polledio->cons_polledio_putchar(
597 	    cons_polledio->cons_polledio_argument, c);
598 	restore_int_flag(s);
599 }
600 
601 int
602 sysp_ischar()
603 {
604 	int i;
605 	ulong_t s;
606 
607 	if (cons_polledio == NULL ||
608 	    cons_polledio->cons_polledio_ischar == NULL)
609 		return (0);
610 
611 	s = clear_int_flag();
612 	i = cons_polledio->cons_polledio_ischar(
613 	    cons_polledio->cons_polledio_argument);
614 	restore_int_flag(s);
615 	return (i);
616 }
617 
618 int
619 goany(void)
620 {
621 	prom_printf("Type any key to continue ");
622 	(void) prom_getchar();
623 	prom_printf("\n");
624 	return (1);
625 }
626 
627 static struct boot_syscalls kern_sysp = {
628 	sysp_getchar,	/*	unchar	(*getchar)();	7  */
629 	sysp_putchar,	/*	int	(*putchar)();	8  */
630 	sysp_ischar,	/*	int	(*ischar)();	9  */
631 };
632 
633 #if defined(__xpv)
634 int using_kern_polledio;
635 #endif
636 
637 void
638 kadb_uses_kernel()
639 {
640 	/*
641 	 * This routine is now totally misnamed, since it does not in fact
642 	 * control kadb's I/O; it only controls the kernel's prom_* I/O.
643 	 */
644 	sysp = &kern_sysp;
645 #if defined(__xpv)
646 	using_kern_polledio = 1;
647 #endif
648 }
649 
650 /*
651  *	the interface to the outside world
652  */
653 
654 /*
655  * poll_port -- wait for a register to achieve a
656  *		specific state.  Arguments are a mask of bits we care about,
657  *		and two sub-masks.  To return normally, all the bits in the
658  *		first sub-mask must be ON, all the bits in the second sub-
659  *		mask must be OFF.  If about seconds pass without the register
660  *		achieving the desired bit configuration, we return 1, else
661  *		0.
662  */
663 int
664 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits)
665 {
666 	int i;
667 	ushort_t maskval;
668 
669 	for (i = 500000; i; i--) {
670 		maskval = inb(port) & mask;
671 		if (((maskval & onbits) == onbits) &&
672 		    ((maskval & offbits) == 0))
673 			return (0);
674 		drv_usecwait(10);
675 	}
676 	return (1);
677 }
678 
679 /*
680  * set_idle_cpu is called from idle() when a CPU becomes idle.
681  */
682 /*LINTED: static unused */
683 static uint_t last_idle_cpu;
684 
685 /*ARGSUSED*/
686 void
687 set_idle_cpu(int cpun)
688 {
689 	last_idle_cpu = cpun;
690 	(*psm_set_idle_cpuf)(cpun);
691 }
692 
693 /*
694  * unset_idle_cpu is called from idle() when a CPU is no longer idle.
695  */
696 /*ARGSUSED*/
697 void
698 unset_idle_cpu(int cpun)
699 {
700 	(*psm_unset_idle_cpuf)(cpun);
701 }
702 
703 /*
704  * This routine is almost correct now, but not quite.  It still needs the
705  * equivalent concept of "hres_last_tick", just like on the sparc side.
706  * The idea is to take a snapshot of the hi-res timer while doing the
707  * hrestime_adj updates under hres_lock in locore, so that the small
708  * interval between interrupt assertion and interrupt processing is
709  * accounted for correctly.  Once we have this, the code below should
710  * be modified to subtract off hres_last_tick rather than hrtime_base.
711  *
712  * I'd have done this myself, but I don't have source to all of the
713  * vendor-specific hi-res timer routines (grrr...).  The generic hook I
714  * need is something like "gethrtime_unlocked()", which would be just like
715  * gethrtime() but would assume that you're already holding CLOCK_LOCK().
716  * This is what the GET_HRTIME() macro is for on sparc (although it also
717  * serves the function of making time available without a function call
718  * so you don't take a register window overflow while traps are disabled).
719  */
720 void
721 pc_gethrestime(timestruc_t *tp)
722 {
723 	int lock_prev;
724 	timestruc_t now;
725 	int nslt;		/* nsec since last tick */
726 	int adj;		/* amount of adjustment to apply */
727 
728 loop:
729 	lock_prev = hres_lock;
730 	now = hrestime;
731 	nslt = (int)(gethrtime() - hres_last_tick);
732 	if (nslt < 0) {
733 		/*
734 		 * nslt < 0 means a tick came between sampling
735 		 * gethrtime() and hres_last_tick; restart the loop
736 		 */
737 
738 		goto loop;
739 	}
740 	now.tv_nsec += nslt;
741 	if (hrestime_adj != 0) {
742 		if (hrestime_adj > 0) {
743 			adj = (nslt >> ADJ_SHIFT);
744 			if (adj > hrestime_adj)
745 				adj = (int)hrestime_adj;
746 		} else {
747 			adj = -(nslt >> ADJ_SHIFT);
748 			if (adj < hrestime_adj)
749 				adj = (int)hrestime_adj;
750 		}
751 		now.tv_nsec += adj;
752 	}
753 	while ((unsigned long)now.tv_nsec >= NANOSEC) {
754 
755 		/*
756 		 * We might have a large adjustment or have been in the
757 		 * debugger for a long time; take care of (at most) four
758 		 * of those missed seconds (tv_nsec is 32 bits, so
759 		 * anything >4s will be wrapping around).  However,
760 		 * anything more than 2 seconds out of sync will trigger
761 		 * timedelta from clock() to go correct the time anyway,
762 		 * so do what we can, and let the big crowbar do the
763 		 * rest.  A similar correction while loop exists inside
764 		 * hres_tick(); in all cases we'd like tv_nsec to
765 		 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing
766 		 * user processes, but if tv_sec's a little behind for a
767 		 * little while, that's OK; time still monotonically
768 		 * increases.
769 		 */
770 
771 		now.tv_nsec -= NANOSEC;
772 		now.tv_sec++;
773 	}
774 	if ((hres_lock & ~1) != lock_prev)
775 		goto loop;
776 
777 	*tp = now;
778 }
779 
780 void
781 gethrestime_lasttick(timespec_t *tp)
782 {
783 	int s;
784 
785 	s = hr_clock_lock();
786 	*tp = hrestime;
787 	hr_clock_unlock(s);
788 }
789 
790 time_t
791 gethrestime_sec(void)
792 {
793 	timestruc_t now;
794 
795 	gethrestime(&now);
796 	return (now.tv_sec);
797 }
798 
799 /*
800  * Initialize a kernel thread's stack
801  */
802 
803 caddr_t
804 thread_stk_init(caddr_t stk)
805 {
806 	ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0);
807 	return (stk - SA(MINFRAME));
808 }
809 
810 /*
811  * Initialize lwp's kernel stack.
812  */
813 
814 #ifdef TRAPTRACE
815 /*
816  * There's a tricky interdependency here between use of sysenter and
817  * TRAPTRACE which needs recording to avoid future confusion (this is
818  * about the third time I've re-figured this out ..)
819  *
820  * Here's how debugging lcall works with TRAPTRACE.
821  *
822  * 1 We're in userland with a breakpoint on the lcall instruction.
823  * 2 We execute the instruction - the instruction pushes the userland
824  *   %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel
825  *   via the call gate.
826  * 3 The hardware raises a debug trap in kernel mode, the hardware
827  *   pushes %efl, %cs, %eip and gets to dbgtrap via the idt.
828  * 4 dbgtrap pushes the error code and trapno and calls cmntrap
829  * 5 cmntrap finishes building a trap frame
830  * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk
831  *   off the stack into the traptrace buffer.
832  *
833  * This means that the traptrace buffer contains the wrong values in
834  * %esp and %ss, but everything else in there is correct.
835  *
836  * Here's how debugging sysenter works with TRAPTRACE.
837  *
838  * a We're in userland with a breakpoint on the sysenter instruction.
839  * b We execute the instruction - the instruction pushes -nothing-
840  *   on the stack, but sets %cs, %eip, %ss, %esp to prearranged
841  *   values to take us to sys_sysenter, at the top of the lwp's
842  *   stack.
843  * c goto 3
844  *
845  * At this point, because we got into the kernel without the requisite
846  * five pushes on the stack, if we didn't make extra room, we'd
847  * end up with the TRACE_REGS macro fetching the saved %ss and %esp
848  * values from negative (unmapped) stack addresses -- which really bites.
849  * That's why we do the '-= 8' below.
850  *
851  * XXX	Note that reading "up" lwp0's stack works because t0 is declared
852  *	right next to t0stack in locore.s
853  */
854 #endif
855 
856 caddr_t
857 lwp_stk_init(klwp_t *lwp, caddr_t stk)
858 {
859 	caddr_t oldstk;
860 	struct pcb *pcb = &lwp->lwp_pcb;
861 
862 	oldstk = stk;
863 	stk -= SA(sizeof (struct regs) + SA(MINFRAME));
864 #ifdef TRAPTRACE
865 	stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */
866 #endif
867 	stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul));
868 	bzero(stk, oldstk - stk);
869 	lwp->lwp_regs = (void *)(stk + SA(MINFRAME));
870 
871 	/*
872 	 * Arrange that the virtualized %fs and %gs GDT descriptors
873 	 * have a well-defined initial state (present, ring 3
874 	 * and of type data).
875 	 */
876 #if defined(__amd64)
877 	if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE)
878 		pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
879 	else
880 		pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc;
881 #elif defined(__i386)
882 	pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
883 #endif	/* __i386 */
884 	lwp_installctx(lwp);
885 	return (stk);
886 }
887 
888 /*ARGSUSED*/
889 void
890 lwp_stk_fini(klwp_t *lwp)
891 {}
892 
893 /*
894  * If we're not the panic CPU, we wait in panic_idle for reboot.
895  */
896 void
897 panic_idle(void)
898 {
899 	splx(ipltospl(CLOCK_LEVEL));
900 	(void) setjmp(&curthread->t_pcb);
901 
902 	dumpsys_helper();
903 
904 #ifndef __xpv
905 	for (;;)
906 		i86_halt();
907 #else
908 	for (;;)
909 		;
910 #endif
911 }
912 
913 /*
914  * Stop the other CPUs by cross-calling them and forcing them to enter
915  * the panic_idle() loop above.
916  */
917 /*ARGSUSED*/
918 void
919 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl)
920 {
921 	processorid_t i;
922 	cpuset_t xcset;
923 
924 	/*
925 	 * In the case of a Xen panic, the hypervisor has already stopped
926 	 * all of the CPUs.
927 	 */
928 	if (!IN_XPV_PANIC()) {
929 		(void) splzs();
930 
931 		CPUSET_ALL_BUT(xcset, cp->cpu_id);
932 		xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)panic_idle);
933 	}
934 
935 	for (i = 0; i < NCPU; i++) {
936 		if (i != cp->cpu_id && cpu[i] != NULL &&
937 		    (cpu[i]->cpu_flags & CPU_EXISTS))
938 			cpu[i]->cpu_flags |= CPU_QUIESCED;
939 	}
940 }
941 
942 /*
943  * Platform callback following each entry to panicsys().
944  */
945 /*ARGSUSED*/
946 void
947 panic_enter_hw(int spl)
948 {
949 	/* Nothing to do here */
950 }
951 
952 /*
953  * Platform-specific code to execute after panicstr is set: we invoke
954  * the PSM entry point to indicate that a panic has occurred.
955  */
956 /*ARGSUSED*/
957 void
958 panic_quiesce_hw(panic_data_t *pdp)
959 {
960 	psm_notifyf(PSM_PANIC_ENTER);
961 
962 	cmi_panic_callback();
963 
964 #ifdef	TRAPTRACE
965 	/*
966 	 * Turn off TRAPTRACE
967 	 */
968 	TRAPTRACE_FREEZE;
969 #endif	/* TRAPTRACE */
970 }
971 
972 /*
973  * Platform callback prior to writing crash dump.
974  */
975 /*ARGSUSED*/
976 void
977 panic_dump_hw(int spl)
978 {
979 	/* Nothing to do here */
980 }
981 
982 void *
983 plat_traceback(void *fpreg)
984 {
985 #ifdef __xpv
986 	if (IN_XPV_PANIC())
987 		return (xpv_traceback(fpreg));
988 #endif
989 	return (fpreg);
990 }
991 
992 /*ARGSUSED*/
993 void
994 plat_tod_fault(enum tod_fault_type tod_bad)
995 {}
996 
997 /*ARGSUSED*/
998 int
999 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class)
1000 {
1001 	return (ENOTSUP);
1002 }
1003 
1004 /*
1005  * The underlying console output routines are protected by raising IPL in case
1006  * we are still calling into the early boot services.  Once we start calling
1007  * the kernel console emulator, it will disable interrupts completely during
1008  * character rendering (see sysp_putchar, for example).  Refer to the comments
1009  * and code in common/os/console.c for more information on these callbacks.
1010  */
1011 /*ARGSUSED*/
1012 int
1013 console_enter(int busy)
1014 {
1015 	return (splzs());
1016 }
1017 
1018 /*ARGSUSED*/
1019 void
1020 console_exit(int busy, int spl)
1021 {
1022 	splx(spl);
1023 }
1024 
1025 /*
1026  * Allocate a region of virtual address space, unmapped.
1027  * Stubbed out except on sparc, at least for now.
1028  */
1029 /*ARGSUSED*/
1030 void *
1031 boot_virt_alloc(void *addr, size_t size)
1032 {
1033 	return (addr);
1034 }
1035 
1036 volatile unsigned long	tenmicrodata;
1037 
1038 void
1039 tenmicrosec(void)
1040 {
1041 	extern int gethrtime_hires;
1042 
1043 	if (gethrtime_hires) {
1044 		hrtime_t start, end;
1045 		start = end =  gethrtime();
1046 		while ((end - start) < (10 * (NANOSEC / MICROSEC))) {
1047 			SMT_PAUSE();
1048 			end = gethrtime();
1049 		}
1050 	} else {
1051 #if defined(__xpv)
1052 		hrtime_t newtime;
1053 
1054 		newtime = xpv_gethrtime() + 10000; /* now + 10 us */
1055 		while (xpv_gethrtime() < newtime)
1056 			SMT_PAUSE();
1057 #else	/* __xpv */
1058 		int i;
1059 
1060 		/*
1061 		 * Artificial loop to induce delay.
1062 		 */
1063 		for (i = 0; i < microdata; i++)
1064 			tenmicrodata = microdata;
1065 #endif	/* __xpv */
1066 	}
1067 }
1068 
1069 /*
1070  * get_cpu_mstate() is passed an array of timestamps, NCMSTATES
1071  * long, and it fills in the array with the time spent on cpu in
1072  * each of the mstates, where time is returned in nsec.
1073  *
1074  * No guarantee is made that the returned values in times[] will
1075  * monotonically increase on sequential calls, although this will
1076  * be true in the long run. Any such guarantee must be handled by
1077  * the caller, if needed. This can happen if we fail to account
1078  * for elapsed time due to a generation counter conflict, yet we
1079  * did account for it on a prior call (see below).
1080  *
1081  * The complication is that the cpu in question may be updating
1082  * its microstate at the same time that we are reading it.
1083  * Because the microstate is only updated when the CPU's state
1084  * changes, the values in cpu_intracct[] can be indefinitely out
1085  * of date. To determine true current values, it is necessary to
1086  * compare the current time with cpu_mstate_start, and add the
1087  * difference to times[cpu_mstate].
1088  *
1089  * This can be a problem if those values are changing out from
1090  * under us. Because the code path in new_cpu_mstate() is
1091  * performance critical, we have not added a lock to it. Instead,
1092  * we have added a generation counter. Before beginning
1093  * modifications, the counter is set to 0. After modifications,
1094  * it is set to the old value plus one.
1095  *
1096  * get_cpu_mstate() will not consider the values of cpu_mstate
1097  * and cpu_mstate_start to be usable unless the value of
1098  * cpu_mstate_gen is both non-zero and unchanged, both before and
1099  * after reading the mstate information. Note that we must
1100  * protect against out-of-order loads around accesses to the
1101  * generation counter. Also, this is a best effort approach in
1102  * that we do not retry should the counter be found to have
1103  * changed.
1104  *
1105  * cpu_intracct[] is used to identify time spent in each CPU
1106  * mstate while handling interrupts. Such time should be reported
1107  * against system time, and so is subtracted out from its
1108  * corresponding cpu_acct[] time and added to
1109  * cpu_acct[CMS_SYSTEM].
1110  */
1111 
1112 void
1113 get_cpu_mstate(cpu_t *cpu, hrtime_t *times)
1114 {
1115 	int i;
1116 	hrtime_t now, start;
1117 	uint16_t gen;
1118 	uint16_t state;
1119 	hrtime_t intracct[NCMSTATES];
1120 
1121 	/*
1122 	 * Load all volatile state under the protection of membar.
1123 	 * cpu_acct[cpu_mstate] must be loaded to avoid double counting
1124 	 * of (now - cpu_mstate_start) by a change in CPU mstate that
1125 	 * arrives after we make our last check of cpu_mstate_gen.
1126 	 */
1127 
1128 	now = gethrtime_unscaled();
1129 	gen = cpu->cpu_mstate_gen;
1130 
1131 	membar_consumer();	/* guarantee load ordering */
1132 	start = cpu->cpu_mstate_start;
1133 	state = cpu->cpu_mstate;
1134 	for (i = 0; i < NCMSTATES; i++) {
1135 		intracct[i] = cpu->cpu_intracct[i];
1136 		times[i] = cpu->cpu_acct[i];
1137 	}
1138 	membar_consumer();	/* guarantee load ordering */
1139 
1140 	if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start)
1141 		times[state] += now - start;
1142 
1143 	for (i = 0; i < NCMSTATES; i++) {
1144 		if (i == CMS_SYSTEM)
1145 			continue;
1146 		times[i] -= intracct[i];
1147 		if (times[i] < 0) {
1148 			intracct[i] += times[i];
1149 			times[i] = 0;
1150 		}
1151 		times[CMS_SYSTEM] += intracct[i];
1152 		scalehrtime(&times[i]);
1153 	}
1154 	scalehrtime(&times[CMS_SYSTEM]);
1155 }
1156 
1157 /*
1158  * This is a version of the rdmsr instruction that allows
1159  * an error code to be returned in the case of failure.
1160  */
1161 int
1162 checked_rdmsr(uint_t msr, uint64_t *value)
1163 {
1164 	if (!is_x86_feature(x86_featureset, X86FSET_MSR))
1165 		return (ENOTSUP);
1166 	*value = rdmsr(msr);
1167 	return (0);
1168 }
1169 
1170 /*
1171  * This is a version of the wrmsr instruction that allows
1172  * an error code to be returned in the case of failure.
1173  */
1174 int
1175 checked_wrmsr(uint_t msr, uint64_t value)
1176 {
1177 	if (!is_x86_feature(x86_featureset, X86FSET_MSR))
1178 		return (ENOTSUP);
1179 	wrmsr(msr, value);
1180 	return (0);
1181 }
1182 
1183 /*
1184  * The mem driver's usual method of using hat_devload() to establish a
1185  * temporary mapping will not work for foreign pages mapped into this
1186  * domain or for the special hypervisor-provided pages.  For the foreign
1187  * pages, we often don't know which domain owns them, so we can't ask the
1188  * hypervisor to set up a new mapping.  For the other pages, we don't have
1189  * a pfn, so we can't create a new PTE.  For these special cases, we do a
1190  * direct uiomove() from the existing kernel virtual address.
1191  */
1192 /*ARGSUSED*/
1193 int
1194 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw)
1195 {
1196 #if defined(__xpv)
1197 	void *va = (void *)(uintptr_t)uio->uio_loffset;
1198 	off_t pageoff = uio->uio_loffset & PAGEOFFSET;
1199 	size_t nbytes = MIN((size_t)(PAGESIZE - pageoff),
1200 	    (size_t)uio->uio_iov->iov_len);
1201 
1202 	if ((rw == UIO_READ &&
1203 	    (va == HYPERVISOR_shared_info || va == xen_info)) ||
1204 	    (pfn_is_foreign(hat_getpfnum(kas.a_hat, va))))
1205 		return (uiomove(va, nbytes, rw, uio));
1206 #endif
1207 	return (ENOTSUP);
1208 }
1209 
1210 pgcnt_t
1211 num_phys_pages()
1212 {
1213 	pgcnt_t npages = 0;
1214 	struct memlist *mp;
1215 
1216 #if defined(__xpv)
1217 	if (DOMAIN_IS_INITDOMAIN(xen_info))
1218 		return (xpv_nr_phys_pages());
1219 #endif /* __xpv */
1220 
1221 	for (mp = phys_install; mp != NULL; mp = mp->ml_next)
1222 		npages += mp->ml_size >> PAGESHIFT;
1223 
1224 	return (npages);
1225 }
1226 
1227 /* cpu threshold for compressed dumps */
1228 #ifdef _LP64
1229 uint_t dump_plat_mincpu_default = DUMP_PLAT_X86_64_MINCPU;
1230 #else
1231 uint_t dump_plat_mincpu_default = DUMP_PLAT_X86_32_MINCPU;
1232 #endif
1233 
1234 int
1235 dump_plat_addr()
1236 {
1237 #ifdef __xpv
1238 	pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1239 	mem_vtop_t mem_vtop;
1240 	int cnt;
1241 
1242 	/*
1243 	 * On the hypervisor, we want to dump the page with shared_info on it.
1244 	 */
1245 	if (!IN_XPV_PANIC()) {
1246 		mem_vtop.m_as = &kas;
1247 		mem_vtop.m_va = HYPERVISOR_shared_info;
1248 		mem_vtop.m_pfn = pfn;
1249 		dumpvp_write(&mem_vtop, sizeof (mem_vtop_t));
1250 		cnt = 1;
1251 	} else {
1252 		cnt = dump_xpv_addr();
1253 	}
1254 	return (cnt);
1255 #else
1256 	return (0);
1257 #endif
1258 }
1259 
1260 void
1261 dump_plat_pfn()
1262 {
1263 #ifdef __xpv
1264 	pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1265 
1266 	if (!IN_XPV_PANIC())
1267 		dumpvp_write(&pfn, sizeof (pfn));
1268 	else
1269 		dump_xpv_pfn();
1270 #endif
1271 }
1272 
1273 /*ARGSUSED*/
1274 int
1275 dump_plat_data(void *dump_cbuf)
1276 {
1277 #ifdef __xpv
1278 	uint32_t csize;
1279 	int cnt;
1280 
1281 	if (!IN_XPV_PANIC()) {
1282 		csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf,
1283 		    PAGESIZE);
1284 		dumpvp_write(&csize, sizeof (uint32_t));
1285 		dumpvp_write(dump_cbuf, csize);
1286 		cnt = 1;
1287 	} else {
1288 		cnt = dump_xpv_data(dump_cbuf);
1289 	}
1290 	return (cnt);
1291 #else
1292 	return (0);
1293 #endif
1294 }
1295 
1296 /*
1297  * Calculates a linear address, given the CS selector and PC values
1298  * by looking up the %cs selector process's LDT or the CPU's GDT.
1299  * proc->p_ldtlock must be held across this call.
1300  */
1301 int
1302 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1303 {
1304 	user_desc_t	*descrp;
1305 	caddr_t		baseaddr;
1306 	uint16_t	idx = SELTOIDX(rp->r_cs);
1307 
1308 	ASSERT(rp->r_cs <= 0xFFFF);
1309 	ASSERT(MUTEX_HELD(&p->p_ldtlock));
1310 
1311 	if (SELISLDT(rp->r_cs)) {
1312 		/*
1313 		 * Currently 64 bit processes cannot have private LDTs.
1314 		 */
1315 		ASSERT(p->p_model != DATAMODEL_LP64);
1316 
1317 		if (p->p_ldt == NULL)
1318 			return (-1);
1319 
1320 		descrp = &p->p_ldt[idx];
1321 		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1322 
1323 		/*
1324 		 * Calculate the linear address (wraparound is not only ok,
1325 		 * it's expected behavior).  The cast to uint32_t is because
1326 		 * LDT selectors are only allowed in 32-bit processes.
1327 		 */
1328 		*linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1329 		    rp->r_pc);
1330 	} else {
1331 #ifdef DEBUG
1332 		descrp = &CPU->cpu_gdt[idx];
1333 		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1334 		/* GDT-based descriptors' base addresses should always be 0 */
1335 		ASSERT(baseaddr == 0);
1336 #endif
1337 		*linearp = (caddr_t)(uintptr_t)rp->r_pc;
1338 	}
1339 
1340 	return (0);
1341 }
1342 
1343 /*
1344  * The implementation of dtrace_linear_pc is similar to the that of
1345  * linear_pc, above, but here we acquire p_ldtlock before accessing
1346  * p_ldt.  This implementation is used by the pid provider; we prefix
1347  * it with "dtrace_" to avoid inducing spurious tracing events.
1348  */
1349 int
1350 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1351 {
1352 	user_desc_t	*descrp;
1353 	caddr_t		baseaddr;
1354 	uint16_t	idx = SELTOIDX(rp->r_cs);
1355 
1356 	ASSERT(rp->r_cs <= 0xFFFF);
1357 
1358 	if (SELISLDT(rp->r_cs)) {
1359 		/*
1360 		 * Currently 64 bit processes cannot have private LDTs.
1361 		 */
1362 		ASSERT(p->p_model != DATAMODEL_LP64);
1363 
1364 		mutex_enter(&p->p_ldtlock);
1365 		if (p->p_ldt == NULL) {
1366 			mutex_exit(&p->p_ldtlock);
1367 			return (-1);
1368 		}
1369 		descrp = &p->p_ldt[idx];
1370 		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1371 		mutex_exit(&p->p_ldtlock);
1372 
1373 		/*
1374 		 * Calculate the linear address (wraparound is not only ok,
1375 		 * it's expected behavior).  The cast to uint32_t is because
1376 		 * LDT selectors are only allowed in 32-bit processes.
1377 		 */
1378 		*linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1379 		    rp->r_pc);
1380 	} else {
1381 #ifdef DEBUG
1382 		descrp = &CPU->cpu_gdt[idx];
1383 		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1384 		/* GDT-based descriptors' base addresses should always be 0 */
1385 		ASSERT(baseaddr == 0);
1386 #endif
1387 		*linearp = (caddr_t)(uintptr_t)rp->r_pc;
1388 	}
1389 
1390 	return (0);
1391 }
1392 
1393 /*
1394  * We need to post a soft interrupt to reprogram the lbolt cyclic when
1395  * switching from event to cyclic driven lbolt. The following code adds
1396  * and posts the softint for x86.
1397  */
1398 static ddi_softint_hdl_impl_t lbolt_softint_hdl =
1399 	{0, NULL, NULL, NULL, 0, NULL, NULL, NULL};
1400 
1401 void
1402 lbolt_softint_add(void)
1403 {
1404 	(void) add_avsoftintr((void *)&lbolt_softint_hdl, LOCK_LEVEL,
1405 	    (avfunc)lbolt_ev_to_cyclic, "lbolt_ev_to_cyclic", NULL, NULL);
1406 }
1407 
1408 void
1409 lbolt_softint_post(void)
1410 {
1411 	(*setsoftint)(CBE_LOCK_PIL, lbolt_softint_hdl.ih_pending);
1412 }
1413 
1414 boolean_t
1415 plat_dr_check_capability(uint64_t features)
1416 {
1417 	return ((plat_dr_options & features) == features);
1418 }
1419 
1420 boolean_t
1421 plat_dr_support_cpu(void)
1422 {
1423 	return (plat_dr_options & PLAT_DR_FEATURE_CPU);
1424 }
1425 
1426 boolean_t
1427 plat_dr_support_memory(void)
1428 {
1429 	return (plat_dr_options & PLAT_DR_FEATURE_MEMORY);
1430 }
1431 
1432 void
1433 plat_dr_enable_capability(uint64_t features)
1434 {
1435 	atomic_or_64(&plat_dr_options, features);
1436 }
1437 
1438 void
1439 plat_dr_disable_capability(uint64_t features)
1440 {
1441 	atomic_and_64(&plat_dr_options, ~features);
1442 }
1443