xref: /titanic_50/usr/src/uts/i86pc/os/lgrpplat.c (revision 7e16fca05dfbcfd32c2ebc9e4d1abdac1cd8657c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * LOCALITY GROUP (LGROUP) PLATFORM SUPPORT FOR X86/AMD64 PLATFORMS
29  * ================================================================
30  * Multiprocessor AMD and Intel systems may have Non Uniform Memory Access
31  * (NUMA).  A NUMA machine consists of one or more "nodes" that each consist of
32  * one or more CPUs and some local memory.  The CPUs in each node can access
33  * the memory in the other nodes but at a higher latency than accessing their
34  * local memory.  Typically, a system with only one node has Uniform Memory
35  * Access (UMA), but it may be possible to have a one node system that has
36  * some global memory outside of the node which is higher latency.
37  *
38  * Module Description
39  * ------------------
40  * This module provides a platform interface for determining which CPUs and
41  * which memory (and how much) are in a NUMA node and how far each node is from
42  * each other.  The interface is used by the Virtual Memory (VM) system and the
43  * common lgroup framework.  The VM system uses the plat_*() routines to fill
44  * in its memory node (memnode) array with the physical address range spanned
45  * by each NUMA node to know which memory belongs to which node, so it can
46  * build and manage a physical page free list for each NUMA node and allocate
47  * local memory from each node as needed.  The common lgroup framework uses the
48  * exported lgrp_plat_*() routines to figure out which CPUs and memory belong
49  * to each node (leaf lgroup) and how far each node is from each other, so it
50  * can build the latency (lgroup) topology for the machine in order to optimize
51  * for locality.  Also, an lgroup platform handle instead of lgroups are used
52  * in the interface with this module, so this module shouldn't need to know
53  * anything about lgroups.  Instead, it just needs to know which CPUs, memory,
54  * etc. are in each NUMA node, how far each node is from each other, and to use
55  * a unique lgroup platform handle to refer to each node through the interface.
56  *
57  * Determining NUMA Configuration
58  * ------------------------------
59  * By default, this module will try to determine the NUMA configuration of the
60  * machine by reading the ACPI System Resource Affinity Table (SRAT) and System
61  * Locality Information Table (SLIT).  The SRAT contains info to tell which
62  * CPUs and memory are local to a given proximity domain (NUMA node).  The SLIT
63  * is a matrix that gives the distance between each system locality (which is
64  * a NUMA node and should correspond to proximity domains in the SRAT).  For
65  * more details on the SRAT and SLIT, please refer to an ACPI 3.0 or newer
66  * specification.
67  *
68  * If the SRAT doesn't exist on a system with AMD Opteron processors, we
69  * examine registers in PCI configuration space to determine how many nodes are
70  * in the system and which CPUs and memory are in each node.
71  * do while booting the kernel.
72  *
73  * NOTE: Using these PCI configuration space registers to determine this
74  *       locality info is not guaranteed to work or be compatible across all
75  *	 Opteron processor families.
76  *
77  * If the SLIT does not exist or look right, the kernel will probe to determine
78  * the distance between nodes as long as the NUMA CPU and memory configuration
79  * has been determined (see lgrp_plat_probe() for details).
80  *
81  * Data Structures
82  * ---------------
83  * The main data structures used by this code are the following:
84  *
85  * - lgrp_plat_cpu_node[]		CPU to node ID mapping table indexed by
86  *					CPU ID (only used for SRAT)
87  *
88  * - lgrp_plat_lat_stats.latencies[][]	Table of latencies between same and
89  *					different nodes indexed by node ID
90  *
91  * - lgrp_plat_node_cnt			Number of NUMA nodes in system
92  *
93  * - lgrp_plat_node_domain[]		Node ID to proximity domain ID mapping
94  *					table indexed by node ID (only used
95  *					for SRAT)
96  *
97  * - lgrp_plat_node_memory[]		Table with physical address range for
98  *					each node indexed by node ID
99  *
100  * The code is implemented to make the following always be true:
101  *
102  *	lgroup platform handle == node ID == memnode ID
103  *
104  * Moreover, it allows for the proximity domain ID to be equal to all of the
105  * above as long as the proximity domains IDs are numbered from 0 to <number of
106  * nodes - 1>.  This is done by hashing each proximity domain ID into the range
107  * from 0 to <number of nodes - 1>.  Then proximity ID N will hash into node ID
108  * N and proximity domain ID N will be entered into lgrp_plat_node_domain[N]
109  * and be assigned node ID N.  If the proximity domain IDs aren't numbered
110  * from 0 to <number of nodes - 1>, then hashing the proximity domain IDs into
111  * lgrp_plat_node_domain[] will still work for assigning proximity domain IDs
112  * to node IDs.  However, the proximity domain IDs may not map to the
113  * equivalent node ID since we want to keep the node IDs numbered from 0 to
114  * <number of nodes - 1> to minimize cost of searching and potentially space.
115  */
116 
117 
118 #include <sys/archsystm.h>	/* for {in,out}{b,w,l}() */
119 #include <sys/bootconf.h>
120 #include <sys/cmn_err.h>
121 #include <sys/controlregs.h>
122 #include <sys/cpupart.h>
123 #include <sys/cpuvar.h>
124 #include <sys/lgrp.h>
125 #include <sys/machsystm.h>
126 #include <sys/memlist.h>
127 #include <sys/memnode.h>
128 #include <sys/mman.h>
129 #include <sys/pci_cfgspace.h>
130 #include <sys/pci_impl.h>
131 #include <sys/param.h>
132 #include <sys/pghw.h>
133 #include <sys/promif.h>		/* for prom_printf() */
134 #include <sys/sysmacros.h>
135 #include <sys/systm.h>
136 #include <sys/thread.h>
137 #include <sys/types.h>
138 #include <sys/var.h>
139 #include <sys/x86_archext.h>	/* for x86_feature and X86_AMD */
140 #include <vm/hat_i86.h>
141 #include <vm/seg_kmem.h>
142 #include <vm/vm_dep.h>
143 
144 #include "acpi_fw.h"		/* for SRAT and SLIT */
145 
146 
147 #define	MAX_NODES		8
148 #define	NLGRP			(MAX_NODES * (MAX_NODES - 1) + 1)
149 
150 /*
151  * Constants for configuring probing
152  */
153 #define	LGRP_PLAT_PROBE_NROUNDS		64	/* default laps for probing */
154 #define	LGRP_PLAT_PROBE_NSAMPLES	1	/* default samples to take */
155 #define	LGRP_PLAT_PROBE_NREADS		256	/* number of vendor ID reads */
156 
157 /*
158  * Flags for probing
159  */
160 #define	LGRP_PLAT_PROBE_ENABLE		0x1	/* enable probing */
161 #define	LGRP_PLAT_PROBE_PGCPY		0x2	/* probe using page copy */
162 #define	LGRP_PLAT_PROBE_VENDOR		0x4	/* probe vendor ID register */
163 
164 /*
165  * Hash proximity domain ID into node to domain mapping table using to minimize
166  * span of entries used
167  */
168 #define	NODE_DOMAIN_HASH(domain, node_cnt)	((domain) % node_cnt)
169 
170 
171 /*
172  * CPU to node ID mapping structure (only used with SRAT)
173  */
174 typedef	struct cpu_node_map {
175 	int		exists;
176 	uint_t		node;
177 	uint32_t	apicid;
178 	uint32_t	prox_domain;
179 } cpu_node_map_t;
180 
181 /*
182  * Latency statistics
183  */
184 typedef struct lgrp_plat_latency_stats {
185 	hrtime_t	latencies[MAX_NODES][MAX_NODES];
186 	hrtime_t	latency_max;
187 	hrtime_t	latency_min;
188 } lgrp_plat_latency_stats_t;
189 
190 /*
191  * Memory configuration for probing
192  */
193 typedef struct lgrp_plat_probe_mem_config {
194 	size_t	probe_memsize;		/* how much memory to probe per node */
195 	caddr_t	probe_va[MAX_NODES];	/* where memory mapped for probing */
196 	pfn_t	probe_pfn[MAX_NODES];	/* physical pages to map for probing */
197 } lgrp_plat_probe_mem_config_t;
198 
199 /*
200  * Statistics kept for probing
201  */
202 typedef struct lgrp_plat_probe_stats {
203 	hrtime_t	flush_cost;
204 	hrtime_t	probe_cost;
205 	hrtime_t	probe_cost_total;
206 	hrtime_t	probe_error_code;
207 	hrtime_t	probe_errors[MAX_NODES][MAX_NODES];
208 	int		probe_suspect[MAX_NODES][MAX_NODES];
209 	hrtime_t	probe_max[MAX_NODES][MAX_NODES];
210 	hrtime_t	probe_min[MAX_NODES][MAX_NODES];
211 } lgrp_plat_probe_stats_t;
212 
213 /*
214  * Node to proximity domain ID mapping structure (only used with SRAT)
215  */
216 typedef	struct node_domain_map {
217 	int		exists;
218 	uint32_t	prox_domain;
219 } node_domain_map_t;
220 
221 /*
222  * Node ID and starting and ending page for physical memory in node
223  */
224 typedef	struct node_phys_addr_map {
225 	pfn_t		start;
226 	pfn_t		end;
227 	int		exists;
228 	uint32_t	prox_domain;
229 } node_phys_addr_map_t;
230 
231 /*
232  * Number of CPUs for which we got APIC IDs
233  */
234 static int				lgrp_plat_apic_ncpus = 0;
235 
236 /*
237  * CPU to node ID mapping table (only used for SRAT)
238  */
239 static cpu_node_map_t			lgrp_plat_cpu_node[NCPU];
240 
241 /*
242  * Latency statistics
243  */
244 lgrp_plat_latency_stats_t		lgrp_plat_lat_stats;
245 
246 /*
247  * Whether memory is interleaved across nodes causing MPO to be disabled
248  */
249 static int				lgrp_plat_mem_intrlv = 0;
250 
251 /*
252  * Node ID to proximity domain ID mapping table (only used for SRAT)
253  */
254 static node_domain_map_t		lgrp_plat_node_domain[MAX_NODES];
255 
256 /*
257  * Physical address range for memory in each node
258  */
259 static node_phys_addr_map_t		lgrp_plat_node_memory[MAX_NODES];
260 
261 /*
262  * Statistics gotten from probing
263  */
264 static lgrp_plat_probe_stats_t		lgrp_plat_probe_stats;
265 
266 /*
267  * Memory configuration for probing
268  */
269 static lgrp_plat_probe_mem_config_t	lgrp_plat_probe_mem_config;
270 
271 /*
272  * Error code from processing ACPI SRAT
273  */
274 static int				lgrp_plat_srat_error = 0;
275 
276 /*
277  * Error code from processing ACPI SLIT
278  */
279 static int				lgrp_plat_slit_error = 0;
280 
281 /*
282  * Allocate lgroup array statically
283  */
284 static lgrp_t				lgrp_space[NLGRP];
285 static int				nlgrps_alloc;
286 
287 
288 /*
289  * Number of nodes in system
290  */
291 uint_t			lgrp_plat_node_cnt = 1;
292 
293 /*
294  * Configuration Parameters for Probing
295  * - lgrp_plat_probe_flags	Flags to specify enabling probing, probe
296  *				operation, etc.
297  * - lgrp_plat_probe_nrounds	How many rounds of probing to do
298  * - lgrp_plat_probe_nsamples	Number of samples to take when probing each
299  *				node
300  * - lgrp_plat_probe_nreads	Number of times to read vendor ID from
301  *				Northbridge for each probe
302  */
303 uint_t			lgrp_plat_probe_flags = 0;
304 int			lgrp_plat_probe_nrounds = LGRP_PLAT_PROBE_NROUNDS;
305 int			lgrp_plat_probe_nsamples = LGRP_PLAT_PROBE_NSAMPLES;
306 int			lgrp_plat_probe_nreads = LGRP_PLAT_PROBE_NREADS;
307 
308 /*
309  * Enable use of ACPI System Resource Affinity Table (SRAT) and System
310  * Locality Information Table (SLIT)
311  */
312 int			lgrp_plat_srat_enable = 1;
313 int			lgrp_plat_slit_enable = 1;
314 
315 /*
316  * Static array to hold lgroup statistics
317  */
318 struct lgrp_stats	lgrp_stats[NLGRP];
319 
320 
321 /*
322  * Forward declarations of platform interface routines
323  */
324 void		plat_build_mem_nodes(struct memlist *list);
325 
326 int		plat_lgrphand_to_mem_node(lgrp_handle_t hand);
327 
328 lgrp_handle_t	plat_mem_node_to_lgrphand(int mnode);
329 
330 int		plat_mnode_xcheck(pfn_t pfncnt);
331 
332 int		plat_pfn_to_mem_node(pfn_t pfn);
333 
334 /*
335  * Forward declarations of lgroup platform interface routines
336  */
337 lgrp_t		*lgrp_plat_alloc(lgrp_id_t lgrpid);
338 
339 void		lgrp_plat_config(lgrp_config_flag_t flag, uintptr_t arg);
340 
341 lgrp_handle_t	lgrp_plat_cpu_to_hand(processorid_t id);
342 
343 void		lgrp_plat_init(void);
344 
345 int		lgrp_plat_latency(lgrp_handle_t from, lgrp_handle_t to);
346 
347 void		lgrp_plat_main_init(void);
348 
349 int		lgrp_plat_max_lgrps(void);
350 
351 pgcnt_t		lgrp_plat_mem_size(lgrp_handle_t plathand,
352     lgrp_mem_query_t query);
353 
354 lgrp_handle_t	lgrp_plat_pfn_to_hand(pfn_t pfn);
355 
356 void		lgrp_plat_probe(void);
357 
358 lgrp_handle_t	lgrp_plat_root_hand(void);
359 
360 
361 /*
362  * Forward declarations of local routines
363  */
364 static int	is_opteron(void);
365 
366 static int	lgrp_plat_cpu_node_update(node_domain_map_t *node_domain,
367     int node_cnt, cpu_node_map_t *cpu_node, int nentries, uint32_t apicid,
368     uint32_t domain);
369 
370 static int	lgrp_plat_cpu_to_node(cpu_t *cp, cpu_node_map_t *cpu_node);
371 
372 static int	lgrp_plat_domain_to_node(node_domain_map_t *node_domain,
373     int node_cnt, uint32_t domain);
374 
375 static void	lgrp_plat_latency_adjust(node_phys_addr_map_t *node_memory,
376     lgrp_plat_latency_stats_t *lat_stats,
377     lgrp_plat_probe_stats_t *probe_stats);
378 
379 static int	lgrp_plat_latency_verify(node_phys_addr_map_t *node_memory,
380     lgrp_plat_latency_stats_t *lat_stats);
381 
382 static pgcnt_t	lgrp_plat_mem_size_default(lgrp_handle_t, lgrp_mem_query_t);
383 
384 static int	lgrp_plat_node_domain_update(node_domain_map_t *node_domain,
385     int node_cnt, uint32_t domain);
386 
387 static int	lgrp_plat_node_memory_update(node_domain_map_t *node_domain,
388     int node_cnt, node_phys_addr_map_t *node_memory, uint64_t start,
389     uint64_t end, uint32_t domain);
390 
391 static hrtime_t	lgrp_plat_probe_time(int to, cpu_node_map_t *cpu_node,
392     lgrp_plat_probe_mem_config_t *probe_mem_config,
393     lgrp_plat_latency_stats_t *lat_stats,
394     lgrp_plat_probe_stats_t *probe_stats);
395 
396 static int	lgrp_plat_process_cpu_apicids(cpu_node_map_t *cpu_node);
397 
398 static int	lgrp_plat_process_slit(struct slit *tp, uint_t node_cnt,
399     node_phys_addr_map_t *node_memory, lgrp_plat_latency_stats_t *lat_stats);
400 
401 static int	lgrp_plat_process_srat(struct srat *tp,
402     node_domain_map_t *node_domain, cpu_node_map_t *cpu_node, int cpu_count,
403     node_phys_addr_map_t *node_memory);
404 
405 static int	lgrp_plat_srat_domains(struct srat *tp);
406 
407 static void	lgrp_plat_2level_setup(node_phys_addr_map_t *node_memory,
408     lgrp_plat_latency_stats_t *lat_stats);
409 
410 static void	opt_get_numa_config(uint_t *node_cnt, int *mem_intrlv,
411     node_phys_addr_map_t *node_memory);
412 
413 static hrtime_t	opt_probe_vendor(int dest_node, int nreads);
414 
415 
416 /*
417  * PLATFORM INTERFACE ROUTINES
418  */
419 
420 /*
421  * Configure memory nodes for machines with more than one node (ie NUMA)
422  */
423 void
424 plat_build_mem_nodes(struct memlist *list)
425 {
426 	pfn_t		cur_start;	/* start addr of subrange */
427 	pfn_t		cur_end;	/* end addr of subrange */
428 	pfn_t		start;		/* start addr of whole range */
429 	pfn_t		end;		/* end addr of whole range */
430 
431 	/*
432 	 * Boot install lists are arranged <addr, len>, ...
433 	 */
434 	while (list) {
435 		int	node;
436 
437 		start = list->address >> PAGESHIFT;
438 		end = (list->address + list->size - 1) >> PAGESHIFT;
439 
440 		if (start > physmax) {
441 			list = list->next;
442 			continue;
443 		}
444 		if (end > physmax)
445 			end = physmax;
446 
447 		/*
448 		 * When there is only one memnode, just add memory to memnode
449 		 */
450 		if (max_mem_nodes == 1) {
451 			mem_node_add_slice(start, end);
452 			list = list->next;
453 			continue;
454 		}
455 
456 		/*
457 		 * mem_node_add_slice() expects to get a memory range that
458 		 * is within one memnode, so need to split any memory range
459 		 * that spans multiple memnodes into subranges that are each
460 		 * contained within one memnode when feeding them to
461 		 * mem_node_add_slice()
462 		 */
463 		cur_start = start;
464 		do {
465 			node = plat_pfn_to_mem_node(cur_start);
466 
467 			/*
468 			 * Panic if DRAM address map registers or SRAT say
469 			 * memory in node doesn't exist or address from
470 			 * boot installed memory list entry isn't in this node.
471 			 * This shouldn't happen and rest of code can't deal
472 			 * with this if it does.
473 			 */
474 			if (node < 0 || node >= lgrp_plat_node_cnt ||
475 			    !lgrp_plat_node_memory[node].exists ||
476 			    cur_start < lgrp_plat_node_memory[node].start ||
477 			    cur_start > lgrp_plat_node_memory[node].end) {
478 				cmn_err(CE_PANIC, "Don't know which memnode "
479 				    "to add installed memory address 0x%lx\n",
480 				    cur_start);
481 			}
482 
483 			/*
484 			 * End of current subrange should not span memnodes
485 			 */
486 			cur_end = end;
487 			if (lgrp_plat_node_memory[node].exists &&
488 			    cur_end > lgrp_plat_node_memory[node].end)
489 				cur_end = lgrp_plat_node_memory[node].end;
490 
491 			mem_node_add_slice(cur_start, cur_end);
492 
493 			/*
494 			 * Next subrange starts after end of current one
495 			 */
496 			cur_start = cur_end + 1;
497 		} while (cur_end < end);
498 
499 		list = list->next;
500 	}
501 	mem_node_physalign = 0;
502 	mem_node_pfn_shift = 0;
503 }
504 
505 
506 int
507 plat_lgrphand_to_mem_node(lgrp_handle_t hand)
508 {
509 	if (max_mem_nodes == 1)
510 		return (0);
511 
512 	return ((int)hand);
513 }
514 
515 
516 /*
517  * plat_mnode_xcheck: checks the node memory ranges to see if there is a pfncnt
518  * range of pages aligned on pfncnt that crosses an node boundary. Returns 1 if
519  * a crossing is found and returns 0 otherwise.
520  */
521 int
522 plat_mnode_xcheck(pfn_t pfncnt)
523 {
524 	int	node, prevnode = -1, basenode;
525 	pfn_t	ea, sa;
526 
527 	for (node = 0; node < lgrp_plat_node_cnt; node++) {
528 
529 		if (lgrp_plat_node_memory[node].exists == 0)
530 			continue;
531 
532 		if (prevnode == -1) {
533 			prevnode = node;
534 			basenode = node;
535 			continue;
536 		}
537 
538 		/* assume x86 node pfn ranges are in increasing order */
539 		ASSERT(lgrp_plat_node_memory[node].start >
540 		    lgrp_plat_node_memory[prevnode].end);
541 
542 		/*
543 		 * continue if the starting address of node is not contiguous
544 		 * with the previous node.
545 		 */
546 
547 		if (lgrp_plat_node_memory[node].start !=
548 		    (lgrp_plat_node_memory[prevnode].end + 1)) {
549 			basenode = node;
550 			prevnode = node;
551 			continue;
552 		}
553 
554 		/* check if the starting address of node is pfncnt aligned */
555 		if ((lgrp_plat_node_memory[node].start & (pfncnt - 1)) != 0) {
556 
557 			/*
558 			 * at this point, node starts at an unaligned boundary
559 			 * and is contiguous with the previous node(s) to
560 			 * basenode. Check if there is an aligned contiguous
561 			 * range of length pfncnt that crosses this boundary.
562 			 */
563 
564 			sa = P2ALIGN(lgrp_plat_node_memory[prevnode].end,
565 			    pfncnt);
566 			ea = P2ROUNDUP((lgrp_plat_node_memory[node].start),
567 			    pfncnt);
568 
569 			ASSERT((ea - sa) == pfncnt);
570 			if (sa >= lgrp_plat_node_memory[basenode].start &&
571 			    ea <= (lgrp_plat_node_memory[node].end + 1))
572 				return (1);
573 		}
574 		prevnode = node;
575 	}
576 	return (0);
577 }
578 
579 
580 lgrp_handle_t
581 plat_mem_node_to_lgrphand(int mnode)
582 {
583 	if (max_mem_nodes == 1)
584 		return (LGRP_DEFAULT_HANDLE);
585 
586 	return ((lgrp_handle_t)mnode);
587 }
588 
589 
590 int
591 plat_pfn_to_mem_node(pfn_t pfn)
592 {
593 	int	node;
594 
595 	if (max_mem_nodes == 1)
596 		return (0);
597 
598 	for (node = 0; node < lgrp_plat_node_cnt; node++) {
599 		/*
600 		 * Skip nodes with no memory
601 		 */
602 		if (!lgrp_plat_node_memory[node].exists)
603 			continue;
604 
605 		if (pfn >= lgrp_plat_node_memory[node].start &&
606 		    pfn <= lgrp_plat_node_memory[node].end)
607 			return (node);
608 	}
609 
610 	/*
611 	 * Didn't find memnode where this PFN lives which should never happen
612 	 */
613 	ASSERT(node < lgrp_plat_node_cnt);
614 	return (-1);
615 }
616 
617 
618 /*
619  * LGROUP PLATFORM INTERFACE ROUTINES
620  */
621 
622 /*
623  * Allocate additional space for an lgroup.
624  */
625 /* ARGSUSED */
626 lgrp_t *
627 lgrp_plat_alloc(lgrp_id_t lgrpid)
628 {
629 	lgrp_t *lgrp;
630 
631 	lgrp = &lgrp_space[nlgrps_alloc++];
632 	if (lgrpid >= NLGRP || nlgrps_alloc > NLGRP)
633 		return (NULL);
634 	return (lgrp);
635 }
636 
637 
638 /*
639  * Platform handling for (re)configuration changes
640  */
641 /* ARGSUSED */
642 void
643 lgrp_plat_config(lgrp_config_flag_t flag, uintptr_t arg)
644 {
645 }
646 
647 
648 /*
649  * Return the platform handle for the lgroup containing the given CPU
650  */
651 /* ARGSUSED */
652 lgrp_handle_t
653 lgrp_plat_cpu_to_hand(processorid_t id)
654 {
655 	lgrp_handle_t	hand;
656 
657 	if (lgrp_plat_node_cnt == 1)
658 		return (LGRP_DEFAULT_HANDLE);
659 
660 	hand = (lgrp_handle_t)lgrp_plat_cpu_to_node(cpu[id],
661 	    lgrp_plat_cpu_node);
662 
663 	ASSERT(hand != (lgrp_handle_t)-1);
664 	if (hand == (lgrp_handle_t)-1)
665 		return (LGRP_NULL_HANDLE);
666 
667 	return (hand);
668 }
669 
670 
671 /*
672  * Platform-specific initialization of lgroups
673  */
674 void
675 lgrp_plat_init(void)
676 {
677 #if defined(__xpv)
678 	/*
679 	 * XXPV	For now, the hypervisor treats all memory equally.
680 	 */
681 	lgrp_plat_node_cnt = max_mem_nodes = 1;
682 #else	/* __xpv */
683 	uint_t		probe_op;
684 	u_longlong_t	value;
685 
686 	/*
687 	 * Get boot property for lgroup topology height limit
688 	 */
689 	if (bootprop_getval(BP_LGRP_TOPO_LEVELS, &value) == 0)
690 		(void) lgrp_topo_ht_limit_set((int)value);
691 
692 	/*
693 	 * Get boot property for enabling/disabling SRAT
694 	 */
695 	if (bootprop_getval(BP_LGRP_SRAT_ENABLE, &value) == 0)
696 		lgrp_plat_srat_enable = (int)value;
697 
698 	/*
699 	 * Get boot property for enabling/disabling SLIT
700 	 */
701 	if (bootprop_getval(BP_LGRP_SLIT_ENABLE, &value) == 0)
702 		lgrp_plat_slit_enable = (int)value;
703 
704 	/*
705 	 * Initialize as a UMA machine
706 	 */
707 	if (lgrp_topo_ht_limit() == 1) {
708 		lgrp_plat_node_cnt = max_mem_nodes = 1;
709 		return;
710 	}
711 
712 	/*
713 	 * Read boot property with CPU to APIC ID mapping table/array and fill
714 	 * in CPU to node ID mapping table with APIC ID for each CPU
715 	 */
716 	lgrp_plat_apic_ncpus =
717 	    lgrp_plat_process_cpu_apicids(lgrp_plat_cpu_node);
718 
719 	/*
720 	 * Determine which CPUs and memory are local to each other and number
721 	 * of NUMA nodes by reading ACPI System Resource Affinity Table (SRAT)
722 	 */
723 	if (lgrp_plat_apic_ncpus > 0) {
724 		int	retval;
725 
726 		retval = lgrp_plat_process_srat(srat_ptr,
727 		    lgrp_plat_node_domain, lgrp_plat_cpu_node,
728 		    lgrp_plat_apic_ncpus, lgrp_plat_node_memory);
729 		if (retval <= 0) {
730 			lgrp_plat_srat_error = retval;
731 			lgrp_plat_node_cnt = 1;
732 		} else {
733 			lgrp_plat_srat_error = 0;
734 			lgrp_plat_node_cnt = retval;
735 		}
736 	}
737 
738 	/*
739 	 * Try to use PCI config space registers on Opteron if there's an error
740 	 * processing CPU to APIC ID mapping or SRAT
741 	 */
742 	if ((lgrp_plat_apic_ncpus <= 0 || lgrp_plat_srat_error != 0) &&
743 	    is_opteron())
744 		opt_get_numa_config(&lgrp_plat_node_cnt, &lgrp_plat_mem_intrlv,
745 		    lgrp_plat_node_memory);
746 
747 	/*
748 	 * Don't bother to setup system for multiple lgroups and only use one
749 	 * memory node when memory is interleaved between any nodes or there is
750 	 * only one NUMA node
751 	 *
752 	 * NOTE: May need to change this for Dynamic Reconfiguration (DR)
753 	 *	 when and if it happens for x86/x64
754 	 */
755 	if (lgrp_plat_mem_intrlv || lgrp_plat_node_cnt == 1) {
756 		lgrp_plat_node_cnt = max_mem_nodes = 1;
757 		(void) lgrp_topo_ht_limit_set(1);
758 		return;
759 	}
760 
761 	/*
762 	 * Leaf lgroups on x86/x64 architectures contain one physical
763 	 * processor chip. Tune lgrp_expand_proc_thresh and
764 	 * lgrp_expand_proc_diff so that lgrp_choose() will spread
765 	 * things out aggressively.
766 	 */
767 	lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX / 2;
768 	lgrp_expand_proc_diff = 0;
769 
770 	/*
771 	 * There should be one memnode (physical page free list(s)) for
772 	 * each node
773 	 */
774 	max_mem_nodes = lgrp_plat_node_cnt;
775 
776 	/*
777 	 * Initialize min and max latency before reading SLIT or probing
778 	 */
779 	lgrp_plat_lat_stats.latency_min = -1;
780 	lgrp_plat_lat_stats.latency_max = 0;
781 
782 	/*
783 	 * Determine how far each NUMA node is from each other by
784 	 * reading ACPI System Locality Information Table (SLIT) if it
785 	 * exists
786 	 */
787 	lgrp_plat_slit_error = lgrp_plat_process_slit(slit_ptr,
788 	    lgrp_plat_node_cnt, lgrp_plat_node_memory,
789 	    &lgrp_plat_lat_stats);
790 	if (lgrp_plat_slit_error == 0)
791 		return;
792 
793 	/*
794 	 * Probe to determine latency between NUMA nodes when SLIT
795 	 * doesn't exist or make sense
796 	 */
797 	lgrp_plat_probe_flags |= LGRP_PLAT_PROBE_ENABLE;
798 
799 	/*
800 	 * Specify whether to probe using vendor ID register or page copy
801 	 * if hasn't been specified already or is overspecified
802 	 */
803 	probe_op = lgrp_plat_probe_flags &
804 	    (LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR);
805 
806 	if (probe_op == 0 ||
807 	    probe_op == (LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR)) {
808 		lgrp_plat_probe_flags &=
809 		    ~(LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR);
810 		if (is_opteron())
811 			lgrp_plat_probe_flags |=
812 			    LGRP_PLAT_PROBE_VENDOR;
813 		else
814 			lgrp_plat_probe_flags |= LGRP_PLAT_PROBE_PGCPY;
815 	}
816 
817 	/*
818 	 * Probing errors can mess up the lgroup topology and
819 	 * force us fall back to a 2 level lgroup topology.
820 	 * Here we bound how tall the lgroup topology can grow
821 	 * in hopes of avoiding any anamolies in probing from
822 	 * messing up the lgroup topology by limiting the
823 	 * accuracy of the latency topology.
824 	 *
825 	 * Assume that nodes will at least be configured in a
826 	 * ring, so limit height of lgroup topology to be less
827 	 * than number of nodes on a system with 4 or more
828 	 * nodes
829 	 */
830 	if (lgrp_plat_node_cnt >= 4 && lgrp_topo_ht_limit() ==
831 	    lgrp_topo_ht_limit_default())
832 		(void) lgrp_topo_ht_limit_set(lgrp_plat_node_cnt - 1);
833 #endif	/* __xpv */
834 }
835 
836 
837 /*
838  * Return latency between "from" and "to" lgroups
839  *
840  * This latency number can only be used for relative comparison
841  * between lgroups on the running system, cannot be used across platforms,
842  * and may not reflect the actual latency.  It is platform and implementation
843  * specific, so platform gets to decide its value.  It would be nice if the
844  * number was at least proportional to make comparisons more meaningful though.
845  */
846 /* ARGSUSED */
847 int
848 lgrp_plat_latency(lgrp_handle_t from, lgrp_handle_t to)
849 {
850 	lgrp_handle_t	src, dest;
851 	int		node;
852 
853 	if (max_mem_nodes == 1)
854 		return (0);
855 
856 	/*
857 	 * Return max latency for root lgroup
858 	 */
859 	if (from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE)
860 		return (lgrp_plat_lat_stats.latency_max);
861 
862 	src = from;
863 	dest = to;
864 
865 	/*
866 	 * Return 0 for nodes (lgroup platform handles) out of range
867 	 */
868 	if (src < 0 || src >= MAX_NODES || dest < 0 || dest >= MAX_NODES)
869 		return (0);
870 
871 	/*
872 	 * Probe from current CPU if its lgroup latencies haven't been set yet
873 	 * and we are trying to get latency from current CPU to some node
874 	 */
875 	node = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node);
876 	ASSERT(node >= 0 && node < lgrp_plat_node_cnt);
877 	if (lgrp_plat_lat_stats.latencies[src][src] == 0 && node == src)
878 		lgrp_plat_probe();
879 
880 	return (lgrp_plat_lat_stats.latencies[src][dest]);
881 }
882 
883 
884 /*
885  * Platform-specific initialization
886  */
887 void
888 lgrp_plat_main_init(void)
889 {
890 	int	curnode;
891 	int	ht_limit;
892 	int	i;
893 
894 	/*
895 	 * Print a notice that MPO is disabled when memory is interleaved
896 	 * across nodes....Would do this when it is discovered, but can't
897 	 * because it happens way too early during boot....
898 	 */
899 	if (lgrp_plat_mem_intrlv)
900 		cmn_err(CE_NOTE,
901 		    "MPO disabled because memory is interleaved\n");
902 
903 	/*
904 	 * Don't bother to do any probing if it is disabled, there is only one
905 	 * node, or the height of the lgroup topology less than or equal to 2
906 	 */
907 	ht_limit = lgrp_topo_ht_limit();
908 	if (!(lgrp_plat_probe_flags & LGRP_PLAT_PROBE_ENABLE) ||
909 	    max_mem_nodes == 1 || ht_limit <= 2) {
910 		/*
911 		 * Setup lgroup latencies for 2 level lgroup topology
912 		 * (ie. local and remote only) if they haven't been set yet
913 		 */
914 		if (ht_limit == 2 && lgrp_plat_lat_stats.latency_min == -1 &&
915 		    lgrp_plat_lat_stats.latency_max == 0)
916 			lgrp_plat_2level_setup(lgrp_plat_node_memory,
917 			    &lgrp_plat_lat_stats);
918 		return;
919 	}
920 
921 	if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_VENDOR) {
922 		/*
923 		 * Should have been able to probe from CPU 0 when it was added
924 		 * to lgroup hierarchy, but may not have been able to then
925 		 * because it happens so early in boot that gethrtime() hasn't
926 		 * been initialized.  (:-(
927 		 */
928 		curnode = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node);
929 		ASSERT(curnode >= 0 && curnode < lgrp_plat_node_cnt);
930 		if (lgrp_plat_lat_stats.latencies[curnode][curnode] == 0)
931 			lgrp_plat_probe();
932 
933 		return;
934 	}
935 
936 	/*
937 	 * When probing memory, use one page for every sample to determine
938 	 * lgroup topology and taking multiple samples
939 	 */
940 	if (lgrp_plat_probe_mem_config.probe_memsize == 0)
941 		lgrp_plat_probe_mem_config.probe_memsize = PAGESIZE *
942 		    lgrp_plat_probe_nsamples;
943 
944 	/*
945 	 * Map memory in each node needed for probing to determine latency
946 	 * topology
947 	 */
948 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
949 		int	mnode;
950 
951 		/*
952 		 * Skip this node and leave its probe page NULL
953 		 * if it doesn't have any memory
954 		 */
955 		mnode = plat_lgrphand_to_mem_node((lgrp_handle_t)i);
956 		if (!mem_node_config[mnode].exists) {
957 			lgrp_plat_probe_mem_config.probe_va[i] = NULL;
958 			continue;
959 		}
960 
961 		/*
962 		 * Allocate one kernel virtual page
963 		 */
964 		lgrp_plat_probe_mem_config.probe_va[i] = vmem_alloc(heap_arena,
965 		    lgrp_plat_probe_mem_config.probe_memsize, VM_NOSLEEP);
966 		if (lgrp_plat_probe_mem_config.probe_va[i] == NULL) {
967 			cmn_err(CE_WARN,
968 			    "lgrp_plat_main_init: couldn't allocate memory");
969 			return;
970 		}
971 
972 		/*
973 		 * Get PFN for first page in each node
974 		 */
975 		lgrp_plat_probe_mem_config.probe_pfn[i] =
976 		    mem_node_config[mnode].physbase;
977 
978 		/*
979 		 * Map virtual page to first page in node
980 		 */
981 		hat_devload(kas.a_hat, lgrp_plat_probe_mem_config.probe_va[i],
982 		    lgrp_plat_probe_mem_config.probe_memsize,
983 		    lgrp_plat_probe_mem_config.probe_pfn[i],
984 		    PROT_READ | PROT_WRITE | HAT_PLAT_NOCACHE,
985 		    HAT_LOAD_NOCONSIST);
986 	}
987 
988 	/*
989 	 * Probe from current CPU
990 	 */
991 	lgrp_plat_probe();
992 }
993 
994 
995 /*
996  * Return the maximum number of lgrps supported by the platform.
997  * Before lgrp topology is known it returns an estimate based on the number of
998  * nodes. Once topology is known it returns the actual maximim number of lgrps
999  * created. Since x86/x64 doesn't support Dynamic Reconfiguration (DR) and
1000  * dynamic addition of new nodes, this number may not grow during system
1001  * lifetime (yet).
1002  */
1003 int
1004 lgrp_plat_max_lgrps(void)
1005 {
1006 	return (lgrp_topo_initialized ?
1007 	    lgrp_alloc_max + 1 :
1008 	    lgrp_plat_node_cnt * (lgrp_plat_node_cnt - 1) + 1);
1009 }
1010 
1011 
1012 /*
1013  * Return the number of free pages in an lgroup.
1014  *
1015  * For query of LGRP_MEM_SIZE_FREE, return the number of base pagesize
1016  * pages on freelists.  For query of LGRP_MEM_SIZE_AVAIL, return the
1017  * number of allocatable base pagesize pages corresponding to the
1018  * lgroup (e.g. do not include page_t's, BOP_ALLOC()'ed memory, ..)
1019  * For query of LGRP_MEM_SIZE_INSTALL, return the amount of physical
1020  * memory installed, regardless of whether or not it's usable.
1021  */
1022 pgcnt_t
1023 lgrp_plat_mem_size(lgrp_handle_t plathand, lgrp_mem_query_t query)
1024 {
1025 	int	mnode;
1026 	pgcnt_t npgs = (pgcnt_t)0;
1027 	extern struct memlist *phys_avail;
1028 	extern struct memlist *phys_install;
1029 
1030 
1031 	if (plathand == LGRP_DEFAULT_HANDLE)
1032 		return (lgrp_plat_mem_size_default(plathand, query));
1033 
1034 	if (plathand != LGRP_NULL_HANDLE) {
1035 		mnode = plat_lgrphand_to_mem_node(plathand);
1036 		if (mnode >= 0 && mem_node_config[mnode].exists) {
1037 			switch (query) {
1038 			case LGRP_MEM_SIZE_FREE:
1039 				npgs = MNODE_PGCNT(mnode);
1040 				break;
1041 			case LGRP_MEM_SIZE_AVAIL:
1042 				npgs = mem_node_memlist_pages(mnode,
1043 				    phys_avail);
1044 				break;
1045 			case LGRP_MEM_SIZE_INSTALL:
1046 				npgs = mem_node_memlist_pages(mnode,
1047 				    phys_install);
1048 				break;
1049 			default:
1050 				break;
1051 			}
1052 		}
1053 	}
1054 	return (npgs);
1055 }
1056 
1057 
1058 /*
1059  * Return the platform handle of the lgroup that contains the physical memory
1060  * corresponding to the given page frame number
1061  */
1062 /* ARGSUSED */
1063 lgrp_handle_t
1064 lgrp_plat_pfn_to_hand(pfn_t pfn)
1065 {
1066 	int	mnode;
1067 
1068 	if (max_mem_nodes == 1)
1069 		return (LGRP_DEFAULT_HANDLE);
1070 
1071 	if (pfn > physmax)
1072 		return (LGRP_NULL_HANDLE);
1073 
1074 	mnode = plat_pfn_to_mem_node(pfn);
1075 	if (mnode < 0)
1076 		return (LGRP_NULL_HANDLE);
1077 
1078 	return (MEM_NODE_2_LGRPHAND(mnode));
1079 }
1080 
1081 
1082 /*
1083  * Probe memory in each node from current CPU to determine latency topology
1084  *
1085  * The probing code will probe the vendor ID register on the Northbridge of
1086  * Opteron processors and probe memory for other processors by default.
1087  *
1088  * Since probing is inherently error prone, the code takes laps across all the
1089  * nodes probing from each node to each of the other nodes some number of
1090  * times.  Furthermore, each node is probed some number of times before moving
1091  * onto the next one during each lap.  The minimum latency gotten between nodes
1092  * is kept as the latency between the nodes.
1093  *
1094  * After all that,  the probe times are adjusted by normalizing values that are
1095  * close to each other and local latencies are made the same.  Lastly, the
1096  * latencies are verified to make sure that certain conditions are met (eg.
1097  * local < remote, latency(a, b) == latency(b, a), etc.).
1098  *
1099  * If any of the conditions aren't met, the code will export a NUMA
1100  * configuration with the local CPUs and memory given by the SRAT or PCI config
1101  * space registers and one remote memory latency since it can't tell exactly
1102  * how far each node is from each other.
1103  */
1104 void
1105 lgrp_plat_probe(void)
1106 {
1107 	int				from;
1108 	int				i;
1109 	lgrp_plat_latency_stats_t	*lat_stats;
1110 	hrtime_t			probe_time;
1111 	int				to;
1112 
1113 	if (!(lgrp_plat_probe_flags & LGRP_PLAT_PROBE_ENABLE) ||
1114 	    max_mem_nodes == 1 || lgrp_topo_ht_limit() <= 2)
1115 		return;
1116 
1117 	/*
1118 	 * Determine ID of node containing current CPU
1119 	 */
1120 	from = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node);
1121 	ASSERT(from >= 0 && from < lgrp_plat_node_cnt);
1122 	if (srat_ptr && lgrp_plat_srat_enable && !lgrp_plat_srat_error)
1123 		ASSERT(lgrp_plat_node_domain[from].exists);
1124 
1125 	/*
1126 	 * Don't need to probe if got times already
1127 	 */
1128 	lat_stats = &lgrp_plat_lat_stats;
1129 	if (lat_stats->latencies[from][from] != 0)
1130 		return;
1131 
1132 	/*
1133 	 * Read vendor ID in Northbridge or read and write page(s)
1134 	 * in each node from current CPU and remember how long it takes,
1135 	 * so we can build latency topology of machine later.
1136 	 * This should approximate the memory latency between each node.
1137 	 */
1138 	for (i = 0; i < lgrp_plat_probe_nrounds; i++) {
1139 		for (to = 0; to < lgrp_plat_node_cnt; to++) {
1140 			/*
1141 			 * Get probe time and bail out if can't get it yet
1142 			 */
1143 			probe_time = lgrp_plat_probe_time(to,
1144 			    lgrp_plat_cpu_node, &lgrp_plat_probe_mem_config,
1145 			    &lgrp_plat_lat_stats, &lgrp_plat_probe_stats);
1146 			if (probe_time == 0)
1147 				return;
1148 
1149 			/*
1150 			 * Keep lowest probe time as latency between nodes
1151 			 */
1152 			if (lat_stats->latencies[from][to] == 0 ||
1153 			    probe_time < lat_stats->latencies[from][to])
1154 				lat_stats->latencies[from][to] = probe_time;
1155 
1156 			/*
1157 			 * Update overall minimum and maximum probe times
1158 			 * across all nodes
1159 			 */
1160 			if (probe_time < lat_stats->latency_min ||
1161 			    lat_stats->latency_min == -1)
1162 				lat_stats->latency_min = probe_time;
1163 			if (probe_time > lat_stats->latency_max)
1164 				lat_stats->latency_max = probe_time;
1165 		}
1166 	}
1167 
1168 	/*
1169 	 * - Fix up latencies such that local latencies are same,
1170 	 *   latency(i, j) == latency(j, i), etc. (if possible)
1171 	 *
1172 	 * - Verify that latencies look ok
1173 	 *
1174 	 * - Fallback to just optimizing for local and remote if
1175 	 *   latencies didn't look right
1176 	 */
1177 	lgrp_plat_latency_adjust(lgrp_plat_node_memory, &lgrp_plat_lat_stats,
1178 	    &lgrp_plat_probe_stats);
1179 	lgrp_plat_probe_stats.probe_error_code =
1180 	    lgrp_plat_latency_verify(lgrp_plat_node_memory,
1181 	    &lgrp_plat_lat_stats);
1182 	if (lgrp_plat_probe_stats.probe_error_code)
1183 		lgrp_plat_2level_setup(lgrp_plat_node_memory,
1184 		    &lgrp_plat_lat_stats);
1185 }
1186 
1187 
1188 /*
1189  * Return platform handle for root lgroup
1190  */
1191 lgrp_handle_t
1192 lgrp_plat_root_hand(void)
1193 {
1194 	return (LGRP_DEFAULT_HANDLE);
1195 }
1196 
1197 
1198 /*
1199  * INTERNAL ROUTINES
1200  */
1201 
1202 
1203 /*
1204  * Update CPU to node mapping for given CPU and proximity domain (and returns
1205  * negative numbers for errors and positive ones for success)
1206  */
1207 static int
1208 lgrp_plat_cpu_node_update(node_domain_map_t *node_domain, int node_cnt,
1209     cpu_node_map_t *cpu_node, int nentries, uint32_t apicid, uint32_t domain)
1210 {
1211 	uint_t	i;
1212 	int	node;
1213 
1214 	/*
1215 	 * Get node number for proximity domain
1216 	 */
1217 	node = lgrp_plat_domain_to_node(node_domain, node_cnt, domain);
1218 	if (node == -1) {
1219 		node = lgrp_plat_node_domain_update(node_domain, node_cnt,
1220 		    domain);
1221 		if (node == -1)
1222 			return (-1);
1223 	}
1224 
1225 	/*
1226 	 * Search for entry with given APIC ID and fill in its node and
1227 	 * proximity domain IDs (if they haven't been set already)
1228 	 */
1229 	for (i = 0; i < nentries; i++) {
1230 		/*
1231 		 * Skip nonexistent entries and ones without matching APIC ID
1232 		 */
1233 		if (!cpu_node[i].exists || cpu_node[i].apicid != apicid)
1234 			continue;
1235 
1236 		/*
1237 		 * Just return if entry completely and correctly filled in
1238 		 * already
1239 		 */
1240 		if (cpu_node[i].prox_domain == domain &&
1241 		    cpu_node[i].node == node)
1242 			return (1);
1243 
1244 		/*
1245 		 * Fill in node and proximity domain IDs
1246 		 */
1247 		cpu_node[i].prox_domain = domain;
1248 		cpu_node[i].node = node;
1249 
1250 		return (0);
1251 	}
1252 
1253 	/*
1254 	 * Return error when entry for APIC ID wasn't found in table
1255 	 */
1256 	return (-2);
1257 }
1258 
1259 
1260 /*
1261  * Get node ID for given CPU
1262  */
1263 static int
1264 lgrp_plat_cpu_to_node(cpu_t *cp, cpu_node_map_t *cpu_node)
1265 {
1266 	processorid_t	cpuid;
1267 
1268 	if (cp == NULL)
1269 		return (-1);
1270 
1271 	cpuid = cp->cpu_id;
1272 	if (cpuid < 0 || cpuid >= max_ncpus)
1273 		return (-1);
1274 
1275 	/*
1276 	 * SRAT doesn't exist, isn't enabled, or there was an error processing
1277 	 * it, so return chip ID for Opteron and -1 otherwise.
1278 	 */
1279 	if (srat_ptr == NULL || !lgrp_plat_srat_enable ||
1280 	    lgrp_plat_srat_error) {
1281 		if (is_opteron())
1282 			return (pg_plat_hw_instance_id(cp, PGHW_CHIP));
1283 		return (-1);
1284 	}
1285 
1286 	/*
1287 	 * Return -1 when CPU to node ID mapping entry doesn't exist for given
1288 	 * CPU
1289 	 */
1290 	if (!cpu_node[cpuid].exists)
1291 		return (-1);
1292 
1293 	return (cpu_node[cpuid].node);
1294 }
1295 
1296 
1297 /*
1298  * Return node number for given proximity domain/system locality
1299  */
1300 static int
1301 lgrp_plat_domain_to_node(node_domain_map_t *node_domain, int node_cnt,
1302     uint32_t domain)
1303 {
1304 	uint_t	node;
1305 	uint_t	start;
1306 
1307 	/*
1308 	 * Hash proximity domain ID into node to domain mapping table (array),
1309 	 * search for entry with matching proximity domain ID, and return index
1310 	 * of matching entry as node ID.
1311 	 */
1312 	node = start = NODE_DOMAIN_HASH(domain, node_cnt);
1313 	do {
1314 		if (node_domain[node].prox_domain == domain &&
1315 		    node_domain[node].exists)
1316 			return (node);
1317 		node = NODE_DOMAIN_HASH(node + 1, node_cnt);
1318 	} while (node != start);
1319 	return (-1);
1320 }
1321 
1322 
1323 /*
1324  * Latencies must be within 1/(2**LGRP_LAT_TOLERANCE_SHIFT) of each other to
1325  * be considered same
1326  */
1327 #define	LGRP_LAT_TOLERANCE_SHIFT	4
1328 
1329 int	lgrp_plat_probe_lt_shift = LGRP_LAT_TOLERANCE_SHIFT;
1330 
1331 
1332 /*
1333  * Adjust latencies between nodes to be symmetric, normalize latencies between
1334  * any nodes that are within some tolerance to be same, and make local
1335  * latencies be same
1336  */
1337 static void
1338 lgrp_plat_latency_adjust(node_phys_addr_map_t *node_memory,
1339     lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats)
1340 {
1341 	int				i;
1342 	int				j;
1343 	int				k;
1344 	int				l;
1345 	u_longlong_t			max;
1346 	u_longlong_t			min;
1347 	u_longlong_t			t;
1348 	u_longlong_t			t1;
1349 	u_longlong_t			t2;
1350 	const lgrp_config_flag_t	cflag = LGRP_CONFIG_LAT_CHANGE_ALL;
1351 	int				lat_corrected[MAX_NODES][MAX_NODES];
1352 
1353 	/*
1354 	 * Nothing to do when this is an UMA machine or don't have args needed
1355 	 */
1356 	if (max_mem_nodes == 1)
1357 		return;
1358 
1359 	ASSERT(node_memory != NULL && lat_stats != NULL &&
1360 	    probe_stats != NULL);
1361 
1362 	/*
1363 	 * Make sure that latencies are symmetric between any two nodes
1364 	 * (ie. latency(node0, node1) == latency(node1, node0))
1365 	 */
1366 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
1367 		if (!node_memory[i].exists)
1368 			continue;
1369 
1370 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
1371 			if (!node_memory[j].exists)
1372 				continue;
1373 
1374 			t1 = lat_stats->latencies[i][j];
1375 			t2 = lat_stats->latencies[j][i];
1376 
1377 			if (t1 == 0 || t2 == 0 || t1 == t2)
1378 				continue;
1379 
1380 			/*
1381 			 * Latencies should be same
1382 			 * - Use minimum of two latencies which should be same
1383 			 * - Track suspect probe times not within tolerance of
1384 			 *   min value
1385 			 * - Remember how much values are corrected by
1386 			 */
1387 			if (t1 > t2) {
1388 				t = t2;
1389 				probe_stats->probe_errors[i][j] += t1 - t2;
1390 				if (t1 - t2 > t2 >> lgrp_plat_probe_lt_shift) {
1391 					probe_stats->probe_suspect[i][j]++;
1392 					probe_stats->probe_suspect[j][i]++;
1393 				}
1394 			} else if (t2 > t1) {
1395 				t = t1;
1396 				probe_stats->probe_errors[j][i] += t2 - t1;
1397 				if (t2 - t1 > t1 >> lgrp_plat_probe_lt_shift) {
1398 					probe_stats->probe_suspect[i][j]++;
1399 					probe_stats->probe_suspect[j][i]++;
1400 				}
1401 			}
1402 
1403 			lat_stats->latencies[i][j] =
1404 			    lat_stats->latencies[j][i] = t;
1405 			lgrp_config(cflag, t1, t);
1406 			lgrp_config(cflag, t2, t);
1407 		}
1408 	}
1409 
1410 	/*
1411 	 * Keep track of which latencies get corrected
1412 	 */
1413 	for (i = 0; i < MAX_NODES; i++)
1414 		for (j = 0; j < MAX_NODES; j++)
1415 			lat_corrected[i][j] = 0;
1416 
1417 	/*
1418 	 * For every two nodes, see whether there is another pair of nodes which
1419 	 * are about the same distance apart and make the latencies be the same
1420 	 * if they are close enough together
1421 	 */
1422 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
1423 		if (!node_memory[i].exists)
1424 			continue;
1425 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
1426 			if (!node_memory[j].exists)
1427 				continue;
1428 			/*
1429 			 * Pick one pair of nodes (i, j)
1430 			 * and get latency between them
1431 			 */
1432 			t1 = lat_stats->latencies[i][j];
1433 
1434 			/*
1435 			 * Skip this pair of nodes if there isn't a latency
1436 			 * for it yet
1437 			 */
1438 			if (t1 == 0)
1439 				continue;
1440 
1441 			for (k = 0; k < lgrp_plat_node_cnt; k++) {
1442 				if (!node_memory[k].exists)
1443 					continue;
1444 				for (l = 0; l < lgrp_plat_node_cnt; l++) {
1445 					if (!node_memory[l].exists)
1446 						continue;
1447 					/*
1448 					 * Pick another pair of nodes (k, l)
1449 					 * not same as (i, j) and get latency
1450 					 * between them
1451 					 */
1452 					if (k == i && l == j)
1453 						continue;
1454 
1455 					t2 = lat_stats->latencies[k][l];
1456 
1457 					/*
1458 					 * Skip this pair of nodes if there
1459 					 * isn't a latency for it yet
1460 					 */
1461 
1462 					if (t2 == 0)
1463 						continue;
1464 
1465 					/*
1466 					 * Skip nodes (k, l) if they already
1467 					 * have same latency as (i, j) or
1468 					 * their latency isn't close enough to
1469 					 * be considered/made the same
1470 					 */
1471 					if (t1 == t2 || (t1 > t2 && t1 - t2 >
1472 					    t1 >> lgrp_plat_probe_lt_shift) ||
1473 					    (t2 > t1 && t2 - t1 >
1474 					    t2 >> lgrp_plat_probe_lt_shift))
1475 						continue;
1476 
1477 					/*
1478 					 * Make latency(i, j) same as
1479 					 * latency(k, l), try to use latency
1480 					 * that has been adjusted already to get
1481 					 * more consistency (if possible), and
1482 					 * remember which latencies were
1483 					 * adjusted for next time
1484 					 */
1485 					if (lat_corrected[i][j]) {
1486 						t = t1;
1487 						lgrp_config(cflag, t2, t);
1488 						t2 = t;
1489 					} else if (lat_corrected[k][l]) {
1490 						t = t2;
1491 						lgrp_config(cflag, t1, t);
1492 						t1 = t;
1493 					} else {
1494 						if (t1 > t2)
1495 							t = t2;
1496 						else
1497 							t = t1;
1498 						lgrp_config(cflag, t1, t);
1499 						lgrp_config(cflag, t2, t);
1500 						t1 = t2 = t;
1501 					}
1502 
1503 					lat_stats->latencies[i][j] =
1504 					    lat_stats->latencies[k][l] = t;
1505 
1506 					lat_corrected[i][j] =
1507 					    lat_corrected[k][l] = 1;
1508 				}
1509 			}
1510 		}
1511 	}
1512 
1513 	/*
1514 	 * Local latencies should be same
1515 	 * - Find min and max local latencies
1516 	 * - Make all local latencies be minimum
1517 	 */
1518 	min = -1;
1519 	max = 0;
1520 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
1521 		if (!node_memory[i].exists)
1522 			continue;
1523 		t = lat_stats->latencies[i][i];
1524 		if (t == 0)
1525 			continue;
1526 		if (min == -1 || t < min)
1527 			min = t;
1528 		if (t > max)
1529 			max = t;
1530 	}
1531 	if (min != max) {
1532 		for (i = 0; i < lgrp_plat_node_cnt; i++) {
1533 			int	local;
1534 
1535 			if (!node_memory[i].exists)
1536 				continue;
1537 
1538 			local = lat_stats->latencies[i][i];
1539 			if (local == 0)
1540 				continue;
1541 
1542 			/*
1543 			 * Track suspect probe times that aren't within
1544 			 * tolerance of minimum local latency and how much
1545 			 * probe times are corrected by
1546 			 */
1547 			if (local - min > min >> lgrp_plat_probe_lt_shift)
1548 				probe_stats->probe_suspect[i][i]++;
1549 
1550 			probe_stats->probe_errors[i][i] += local - min;
1551 
1552 			/*
1553 			 * Make local latencies be minimum
1554 			 */
1555 			lgrp_config(LGRP_CONFIG_LAT_CHANGE, i, min);
1556 			lat_stats->latencies[i][i] = min;
1557 		}
1558 	}
1559 
1560 	/*
1561 	 * Determine max probe time again since just adjusted latencies
1562 	 */
1563 	lat_stats->latency_max = 0;
1564 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
1565 		if (!node_memory[i].exists)
1566 			continue;
1567 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
1568 			if (!node_memory[j].exists)
1569 				continue;
1570 			t = lat_stats->latencies[i][j];
1571 			if (t > lat_stats->latency_max)
1572 				lat_stats->latency_max = t;
1573 		}
1574 	}
1575 }
1576 
1577 
1578 /*
1579  * Verify following about latencies between nodes:
1580  *
1581  * - Latencies should be symmetric (ie. latency(a, b) == latency(b, a))
1582  * - Local latencies same
1583  * - Local < remote
1584  * - Number of latencies seen is reasonable
1585  * - Number of occurrences of a given latency should be more than 1
1586  *
1587  * Returns:
1588  *	0	Success
1589  *	-1	Not symmetric
1590  *	-2	Local latencies not same
1591  *	-3	Local >= remote
1592  */
1593 static int
1594 lgrp_plat_latency_verify(node_phys_addr_map_t *node_memory,
1595     lgrp_plat_latency_stats_t *lat_stats)
1596 {
1597 	int				i;
1598 	int				j;
1599 	u_longlong_t			t1;
1600 	u_longlong_t			t2;
1601 
1602 	ASSERT(node_memory != NULL && lat_stats != NULL);
1603 
1604 	/*
1605 	 * Nothing to do when this is an UMA machine, lgroup topology is
1606 	 * limited to 2 levels, or there aren't any probe times yet
1607 	 */
1608 	if (max_mem_nodes == 1 || lgrp_topo_levels < 2 ||
1609 	    lat_stats->latencies[0][0] == 0)
1610 		return (0);
1611 
1612 	/*
1613 	 * Make sure that latencies are symmetric between any two nodes
1614 	 * (ie. latency(node0, node1) == latency(node1, node0))
1615 	 */
1616 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
1617 		if (!node_memory[i].exists)
1618 			continue;
1619 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
1620 			if (!node_memory[j].exists)
1621 				continue;
1622 			t1 = lat_stats->latencies[i][j];
1623 			t2 = lat_stats->latencies[j][i];
1624 
1625 			if (t1 == 0 || t2 == 0 || t1 == t2)
1626 				continue;
1627 
1628 			return (-1);
1629 		}
1630 	}
1631 
1632 	/*
1633 	 * Local latencies should be same
1634 	 */
1635 	t1 = lat_stats->latencies[0][0];
1636 	for (i = 1; i < lgrp_plat_node_cnt; i++) {
1637 		if (!node_memory[i].exists)
1638 			continue;
1639 
1640 		t2 = lat_stats->latencies[i][i];
1641 		if (t2 == 0)
1642 			continue;
1643 
1644 		if (t1 == 0) {
1645 			t1 = t2;
1646 			continue;
1647 		}
1648 
1649 		if (t1 != t2)
1650 			return (-2);
1651 	}
1652 
1653 	/*
1654 	 * Local latencies should be less than remote
1655 	 */
1656 	if (t1) {
1657 		for (i = 0; i < lgrp_plat_node_cnt; i++) {
1658 			if (!node_memory[i].exists)
1659 				continue;
1660 			for (j = 0; j < lgrp_plat_node_cnt; j++) {
1661 				if (!node_memory[j].exists)
1662 					continue;
1663 				t2 = lat_stats->latencies[i][j];
1664 				if (i == j || t2 == 0)
1665 					continue;
1666 
1667 				if (t1 >= t2)
1668 					return (-3);
1669 			}
1670 		}
1671 	}
1672 
1673 	return (0);
1674 }
1675 
1676 
1677 /*
1678  * Return the number of free, allocatable, or installed
1679  * pages in an lgroup
1680  * This is a copy of the MAX_MEM_NODES == 1 version of the routine
1681  * used when MPO is disabled (i.e. single lgroup) or this is the root lgroup
1682  */
1683 /* ARGSUSED */
1684 static pgcnt_t
1685 lgrp_plat_mem_size_default(lgrp_handle_t lgrphand, lgrp_mem_query_t query)
1686 {
1687 	struct memlist *mlist;
1688 	pgcnt_t npgs = 0;
1689 	extern struct memlist *phys_avail;
1690 	extern struct memlist *phys_install;
1691 
1692 	switch (query) {
1693 	case LGRP_MEM_SIZE_FREE:
1694 		return ((pgcnt_t)freemem);
1695 	case LGRP_MEM_SIZE_AVAIL:
1696 		memlist_read_lock();
1697 		for (mlist = phys_avail; mlist; mlist = mlist->next)
1698 			npgs += btop(mlist->size);
1699 		memlist_read_unlock();
1700 		return (npgs);
1701 	case LGRP_MEM_SIZE_INSTALL:
1702 		memlist_read_lock();
1703 		for (mlist = phys_install; mlist; mlist = mlist->next)
1704 			npgs += btop(mlist->size);
1705 		memlist_read_unlock();
1706 		return (npgs);
1707 	default:
1708 		return ((pgcnt_t)0);
1709 	}
1710 }
1711 
1712 
1713 /*
1714  * Update node to proximity domain mappings for given domain and return node ID
1715  */
1716 static int
1717 lgrp_plat_node_domain_update(node_domain_map_t *node_domain, int node_cnt,
1718     uint32_t domain)
1719 {
1720 	uint_t	node;
1721 	uint_t	start;
1722 
1723 	/*
1724 	 * Hash proximity domain ID into node to domain mapping table (array)
1725 	 * and add entry for it into first non-existent or matching entry found
1726 	 */
1727 	node = start = NODE_DOMAIN_HASH(domain, node_cnt);
1728 	do {
1729 		/*
1730 		 * Entry doesn't exist yet, so create one for this proximity
1731 		 * domain and return node ID which is index into mapping table.
1732 		 */
1733 		if (!node_domain[node].exists) {
1734 			node_domain[node].exists = 1;
1735 			node_domain[node].prox_domain = domain;
1736 			return (node);
1737 		}
1738 
1739 		/*
1740 		 * Entry exists for this proximity domain already, so just
1741 		 * return node ID (index into table).
1742 		 */
1743 		if (node_domain[node].prox_domain == domain)
1744 			return (node);
1745 		node = NODE_DOMAIN_HASH(node + 1, node_cnt);
1746 	} while (node != start);
1747 
1748 	/*
1749 	 * Ran out of supported number of entries which shouldn't happen....
1750 	 */
1751 	ASSERT(node != start);
1752 	return (-1);
1753 }
1754 
1755 
1756 /*
1757  * Update node memory information for given proximity domain with specified
1758  * starting and ending physical address range (and return positive numbers for
1759  * success and negative ones for errors)
1760  */
1761 static int
1762 lgrp_plat_node_memory_update(node_domain_map_t *node_domain, int node_cnt,
1763     node_phys_addr_map_t *node_memory, uint64_t start, uint64_t end,
1764     uint32_t domain)
1765 {
1766 	int	node;
1767 
1768 	/*
1769 	 * Get node number for proximity domain
1770 	 */
1771 	node = lgrp_plat_domain_to_node(node_domain, node_cnt, domain);
1772 	if (node == -1) {
1773 		node = lgrp_plat_node_domain_update(node_domain, node_cnt,
1774 		    domain);
1775 		if (node == -1)
1776 			return (-1);
1777 	}
1778 
1779 	/*
1780 	 * Create entry in table for node if it doesn't exist
1781 	 */
1782 	if (!node_memory[node].exists) {
1783 		node_memory[node].exists = 1;
1784 		node_memory[node].start = btop(start);
1785 		node_memory[node].end = btop(end);
1786 		node_memory[node].prox_domain = domain;
1787 		return (0);
1788 	}
1789 
1790 	/*
1791 	 * Entry already exists for this proximity domain
1792 	 *
1793 	 * There may be more than one SRAT memory entry for a domain, so we may
1794 	 * need to update existing start or end address for the node.
1795 	 */
1796 	if (node_memory[node].prox_domain == domain) {
1797 		if (btop(start) < node_memory[node].start)
1798 			node_memory[node].start = btop(start);
1799 		if (btop(end) > node_memory[node].end)
1800 			node_memory[node].end = btop(end);
1801 		return (1);
1802 	}
1803 	return (-2);
1804 }
1805 
1806 
1807 /*
1808  * Return time needed to probe from current CPU to memory in given node
1809  */
1810 static hrtime_t
1811 lgrp_plat_probe_time(int to, cpu_node_map_t *cpu_node,
1812     lgrp_plat_probe_mem_config_t *probe_mem_config,
1813     lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats)
1814 {
1815 	caddr_t			buf;
1816 	hrtime_t		elapsed;
1817 	hrtime_t		end;
1818 	int			from;
1819 	int			i;
1820 	int			ipl;
1821 	hrtime_t		max;
1822 	hrtime_t		min;
1823 	hrtime_t		start;
1824 	extern int		use_sse_pagecopy;
1825 
1826 	/*
1827 	 * Determine ID of node containing current CPU
1828 	 */
1829 	from = lgrp_plat_cpu_to_node(CPU, cpu_node);
1830 	ASSERT(from >= 0 && from < lgrp_plat_node_cnt);
1831 
1832 	/*
1833 	 * Do common work for probing main memory
1834 	 */
1835 	if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_PGCPY) {
1836 		/*
1837 		 * Skip probing any nodes without memory and
1838 		 * set probe time to 0
1839 		 */
1840 		if (probe_mem_config->probe_va[to] == NULL) {
1841 			lat_stats->latencies[from][to] = 0;
1842 			return (0);
1843 		}
1844 
1845 		/*
1846 		 * Invalidate caches once instead of once every sample
1847 		 * which should cut cost of probing by a lot
1848 		 */
1849 		probe_stats->flush_cost = gethrtime();
1850 		invalidate_cache();
1851 		probe_stats->flush_cost = gethrtime() -
1852 		    probe_stats->flush_cost;
1853 		probe_stats->probe_cost_total += probe_stats->flush_cost;
1854 	}
1855 
1856 	/*
1857 	 * Probe from current CPU to given memory using specified operation
1858 	 * and take specified number of samples
1859 	 */
1860 	max = 0;
1861 	min = -1;
1862 	for (i = 0; i < lgrp_plat_probe_nsamples; i++) {
1863 		probe_stats->probe_cost = gethrtime();
1864 
1865 		/*
1866 		 * Can't measure probe time if gethrtime() isn't working yet
1867 		 */
1868 		if (probe_stats->probe_cost == 0 && gethrtime() == 0)
1869 			return (0);
1870 
1871 		if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_VENDOR) {
1872 			/*
1873 			 * Measure how long it takes to read vendor ID from
1874 			 * Northbridge
1875 			 */
1876 			elapsed = opt_probe_vendor(to, lgrp_plat_probe_nreads);
1877 		} else {
1878 			/*
1879 			 * Measure how long it takes to copy page
1880 			 * on top of itself
1881 			 */
1882 			buf = probe_mem_config->probe_va[to] + (i * PAGESIZE);
1883 
1884 			kpreempt_disable();
1885 			ipl = splhigh();
1886 			start = gethrtime();
1887 			if (use_sse_pagecopy)
1888 				hwblkpagecopy(buf, buf);
1889 			else
1890 				bcopy(buf, buf, PAGESIZE);
1891 			end = gethrtime();
1892 			elapsed = end - start;
1893 			splx(ipl);
1894 			kpreempt_enable();
1895 		}
1896 
1897 		probe_stats->probe_cost = gethrtime() -
1898 		    probe_stats->probe_cost;
1899 		probe_stats->probe_cost_total += probe_stats->probe_cost;
1900 
1901 		if (min == -1 || elapsed < min)
1902 			min = elapsed;
1903 		if (elapsed > max)
1904 			max = elapsed;
1905 	}
1906 
1907 	/*
1908 	 * Update minimum and maximum probe times between
1909 	 * these two nodes
1910 	 */
1911 	if (min < probe_stats->probe_min[from][to] ||
1912 	    probe_stats->probe_min[from][to] == 0)
1913 		probe_stats->probe_min[from][to] = min;
1914 
1915 	if (max > probe_stats->probe_max[from][to])
1916 		probe_stats->probe_max[from][to] = max;
1917 
1918 	return (min);
1919 }
1920 
1921 
1922 /*
1923  * Read boot property with CPU to APIC ID array, fill in CPU to node ID
1924  * mapping table with APIC ID for each CPU, and return number of CPU APIC IDs.
1925  *
1926  * NOTE: This code assumes that CPU IDs are assigned in order that they appear
1927  *       in in cpu_apicid_array boot property which is based on and follows
1928  *	 same ordering as processor list in ACPI MADT.  If the code in
1929  *	 usr/src/uts/i86pc/io/pcplusmp/apic.c that reads MADT and assigns
1930  *	 CPU IDs ever changes, then this code will need to change too....
1931  */
1932 static int
1933 lgrp_plat_process_cpu_apicids(cpu_node_map_t *cpu_node)
1934 {
1935 	int	boot_prop_len;
1936 	char	*boot_prop_name = BP_CPU_APICID_ARRAY;
1937 	uint8_t	cpu_apicid_array[UINT8_MAX + 1];
1938 	int	i;
1939 	int	n;
1940 
1941 	/*
1942 	 * Nothing to do when no array to fill in or not enough CPUs
1943 	 */
1944 	if (cpu_node == NULL)
1945 		return (-1);
1946 
1947 	/*
1948 	 * Check length of property value
1949 	 */
1950 	boot_prop_len = BOP_GETPROPLEN(bootops, boot_prop_name);
1951 	if (boot_prop_len <= 0 || boot_prop_len > sizeof (cpu_apicid_array))
1952 		return (-2);
1953 
1954 	/*
1955 	 * Calculate number of entries in array and return when there's just
1956 	 * one CPU since that's not very interesting for NUMA
1957 	 */
1958 	n = boot_prop_len / sizeof (uint8_t);
1959 	if (n == 1)
1960 		return (-3);
1961 
1962 	/*
1963 	 * Get CPU to APIC ID property value
1964 	 */
1965 	if (BOP_GETPROP(bootops, boot_prop_name, cpu_apicid_array) < 0)
1966 		return (-4);
1967 
1968 	/*
1969 	 * Fill in CPU to node ID mapping table with APIC ID for each CPU
1970 	 */
1971 	for (i = 0; i < n; i++) {
1972 		cpu_node[i].exists = 1;
1973 		cpu_node[i].apicid = cpu_apicid_array[i];
1974 	}
1975 
1976 	/*
1977 	 * Return number of CPUs based on number of APIC IDs
1978 	 */
1979 	return (n);
1980 }
1981 
1982 
1983 /*
1984  * Read ACPI System Locality Information Table (SLIT) to determine how far each
1985  * NUMA node is from each other
1986  */
1987 static int
1988 lgrp_plat_process_slit(struct slit *tp, uint_t node_cnt,
1989     node_phys_addr_map_t *node_memory, lgrp_plat_latency_stats_t *lat_stats)
1990 {
1991 	int		i;
1992 	int		j;
1993 	int		localities;
1994 	hrtime_t	max;
1995 	hrtime_t	min;
1996 	int		retval;
1997 	uint8_t		*slit_entries;
1998 
1999 	if (tp == NULL || !lgrp_plat_slit_enable)
2000 		return (1);
2001 
2002 	if (lat_stats == NULL)
2003 		return (2);
2004 
2005 	localities = tp->number;
2006 	if (localities != node_cnt)
2007 		return (3);
2008 
2009 	min = lat_stats->latency_min;
2010 	max = lat_stats->latency_max;
2011 
2012 	/*
2013 	 * Fill in latency matrix based on SLIT entries
2014 	 */
2015 	slit_entries = tp->entry;
2016 	for (i = 0; i < localities; i++) {
2017 		for (j = 0; j < localities; j++) {
2018 			uint8_t	latency;
2019 
2020 			latency = slit_entries[(i * localities) + j];
2021 			lat_stats->latencies[i][j] = latency;
2022 			if (latency < min || min == -1)
2023 				min = latency;
2024 			if (latency > max)
2025 				max = latency;
2026 		}
2027 	}
2028 
2029 	/*
2030 	 * Verify that latencies/distances given in SLIT look reasonable
2031 	 */
2032 	retval = lgrp_plat_latency_verify(node_memory, lat_stats);
2033 
2034 	if (retval) {
2035 		/*
2036 		 * Reinitialize (zero) latency table since SLIT doesn't look
2037 		 * right
2038 		 */
2039 		for (i = 0; i < localities; i++) {
2040 			for (j = 0; j < localities; j++)
2041 				lat_stats->latencies[i][j] = 0;
2042 		}
2043 	} else {
2044 		/*
2045 		 * Update min and max latencies seen since SLIT looks valid
2046 		 */
2047 		lat_stats->latency_min = min;
2048 		lat_stats->latency_max = max;
2049 	}
2050 
2051 	return (retval);
2052 }
2053 
2054 
2055 /*
2056  * Read ACPI System Resource Affinity Table (SRAT) to determine which CPUs
2057  * and memory are local to each other in the same NUMA node and return number
2058  * of nodes
2059  */
2060 static int
2061 lgrp_plat_process_srat(struct srat *tp, node_domain_map_t *node_domain,
2062     cpu_node_map_t *cpu_node, int cpu_count, node_phys_addr_map_t *node_memory)
2063 {
2064 	struct srat_item	*srat_end;
2065 	int			i;
2066 	struct srat_item	*item;
2067 	int			node_cnt;
2068 	int			proc_entry_count;
2069 
2070 	/*
2071 	 * Nothing to do when no SRAT or disabled
2072 	 */
2073 	if (tp == NULL || !lgrp_plat_srat_enable)
2074 		return (-1);
2075 
2076 	/*
2077 	 * Determine number of nodes by counting number of proximity domains in
2078 	 * SRAT and return if number of nodes is 1 or less since don't need to
2079 	 * read SRAT then
2080 	 */
2081 	node_cnt = lgrp_plat_srat_domains(tp);
2082 	if (node_cnt == 1)
2083 		return (1);
2084 	else if (node_cnt <= 0)
2085 		return (-2);
2086 
2087 	/*
2088 	 * Walk through SRAT, examining each CPU and memory entry to determine
2089 	 * which CPUs and memory belong to which node.
2090 	 */
2091 	item = tp->list;
2092 	srat_end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp);
2093 	proc_entry_count = 0;
2094 	while (item < srat_end) {
2095 		uint32_t	apic_id;
2096 		uint32_t	domain;
2097 		uint64_t	end;
2098 		uint64_t	length;
2099 		uint64_t	start;
2100 
2101 		switch (item->type) {
2102 		case SRAT_PROCESSOR:	/* CPU entry */
2103 			if (!(item->i.p.flags & SRAT_ENABLED) ||
2104 			    cpu_node == NULL)
2105 				break;
2106 
2107 			/*
2108 			 * Calculate domain (node) ID and fill in APIC ID to
2109 			 * domain/node mapping table
2110 			 */
2111 			domain = item->i.p.domain1;
2112 			for (i = 0; i < 3; i++) {
2113 				domain += item->i.p.domain2[i] <<
2114 				    ((i + 1) * 8);
2115 			}
2116 			apic_id = item->i.p.apic_id;
2117 
2118 			if (lgrp_plat_cpu_node_update(node_domain, node_cnt,
2119 			    cpu_node, cpu_count, apic_id, domain) < 0)
2120 				return (-3);
2121 
2122 			proc_entry_count++;
2123 			break;
2124 
2125 		case SRAT_MEMORY:	/* memory entry */
2126 			if (!(item->i.m.flags & SRAT_ENABLED) ||
2127 			    node_memory == NULL)
2128 				break;
2129 
2130 			/*
2131 			 * Get domain (node) ID and fill in domain/node
2132 			 * to memory mapping table
2133 			 */
2134 			domain = item->i.m.domain;
2135 			start = item->i.m.base_addr;
2136 			length = item->i.m.len;
2137 			end = start + length - 1;
2138 
2139 			if (lgrp_plat_node_memory_update(node_domain, node_cnt,
2140 			    node_memory, start, end, domain) < 0)
2141 				return (-4);
2142 			break;
2143 		case SRAT_X2APIC:	/* x2apic CPU entry */
2144 			if (!(item->i.xp.flags & SRAT_ENABLED) ||
2145 			    cpu_node == NULL)
2146 				break;
2147 
2148 			/*
2149 			 * Calculate domain (node) ID and fill in APIC ID to
2150 			 * domain/node mapping table
2151 			 */
2152 			domain = item->i.xp.domain;
2153 			apic_id = item->i.xp.x2apic_id;
2154 
2155 			if (lgrp_plat_cpu_node_update(node_domain, node_cnt,
2156 			    cpu_node, cpu_count, apic_id, domain) < 0)
2157 				return (-3);
2158 
2159 			proc_entry_count++;
2160 			break;
2161 
2162 		default:
2163 			break;
2164 		}
2165 
2166 		item = (struct srat_item *)((uintptr_t)item + item->len);
2167 	}
2168 
2169 	/*
2170 	 * Should have seen at least as many SRAT processor entries as CPUs
2171 	 */
2172 	if (proc_entry_count < cpu_count)
2173 		return (-5);
2174 
2175 	return (node_cnt);
2176 }
2177 
2178 
2179 /*
2180  * Return number of proximity domains given in ACPI SRAT
2181  */
2182 static int
2183 lgrp_plat_srat_domains(struct srat *tp)
2184 {
2185 	int			domain_cnt;
2186 	struct srat_item	*end;
2187 	int			i;
2188 	struct srat_item	*item;
2189 	node_domain_map_t	node_domain[MAX_NODES];
2190 
2191 
2192 	if (tp == NULL || !lgrp_plat_srat_enable)
2193 		return (1);
2194 
2195 	/*
2196 	 * Walk through SRAT, examining each CPU and memory entry to determine
2197 	 * proximity domain ID for each.
2198 	 */
2199 	domain_cnt = 0;
2200 	item = tp->list;
2201 	end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp);
2202 	bzero(node_domain, MAX_NODES * sizeof (node_domain_map_t));
2203 	while (item < end) {
2204 		uint32_t	domain;
2205 		boolean_t	overflow;
2206 		uint_t		start;
2207 
2208 		switch (item->type) {
2209 		case SRAT_PROCESSOR:	/* CPU entry */
2210 			if (!(item->i.p.flags & SRAT_ENABLED))
2211 				break;
2212 			domain = item->i.p.domain1;
2213 			for (i = 0; i < 3; i++) {
2214 				domain += item->i.p.domain2[i] <<
2215 				    ((i + 1) * 8);
2216 			}
2217 			break;
2218 
2219 		case SRAT_MEMORY:	/* memory entry */
2220 			if (!(item->i.m.flags & SRAT_ENABLED))
2221 				break;
2222 			domain = item->i.m.domain;
2223 			break;
2224 
2225 		case SRAT_X2APIC:	/* x2apic CPU entry */
2226 			if (!(item->i.xp.flags & SRAT_ENABLED))
2227 				break;
2228 			domain = item->i.xp.domain;
2229 			break;
2230 
2231 		default:
2232 			break;
2233 		}
2234 
2235 		/*
2236 		 * Count and keep track of which proximity domain IDs seen
2237 		 */
2238 		start = i = domain % MAX_NODES;
2239 		overflow = B_TRUE;
2240 		do {
2241 			/*
2242 			 * Create entry for proximity domain and increment
2243 			 * count when no entry exists where proximity domain
2244 			 * hashed
2245 			 */
2246 			if (!node_domain[i].exists) {
2247 				node_domain[i].exists = 1;
2248 				node_domain[i].prox_domain = domain;
2249 				domain_cnt++;
2250 				overflow = B_FALSE;
2251 				break;
2252 			}
2253 
2254 			/*
2255 			 * Nothing to do when proximity domain seen already
2256 			 * and its entry exists
2257 			 */
2258 			if (node_domain[i].prox_domain == domain) {
2259 				overflow = B_FALSE;
2260 				break;
2261 			}
2262 
2263 			/*
2264 			 * Entry exists where proximity domain hashed, but for
2265 			 * different proximity domain so keep search for empty
2266 			 * slot to put it or matching entry whichever comes
2267 			 * first.
2268 			 */
2269 			i = (i + 1) % MAX_NODES;
2270 		} while (i != start);
2271 
2272 		/*
2273 		 * Didn't find empty or matching entry which means have more
2274 		 * proximity domains than supported nodes (:-(
2275 		 */
2276 		ASSERT(overflow != B_TRUE);
2277 		if (overflow == B_TRUE)
2278 			return (-1);
2279 
2280 		item = (struct srat_item *)((uintptr_t)item + item->len);
2281 	}
2282 	return (domain_cnt);
2283 }
2284 
2285 
2286 /*
2287  * Set lgroup latencies for 2 level lgroup topology
2288  */
2289 static void
2290 lgrp_plat_2level_setup(node_phys_addr_map_t *node_memory,
2291     lgrp_plat_latency_stats_t *lat_stats)
2292 {
2293 	int	i;
2294 
2295 	ASSERT(node_memory != NULL && lat_stats != NULL);
2296 
2297 	if (lgrp_plat_node_cnt >= 4)
2298 		cmn_err(CE_NOTE,
2299 		    "MPO only optimizing for local and remote\n");
2300 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
2301 		int	j;
2302 
2303 		if (!node_memory[i].exists)
2304 			continue;
2305 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
2306 			if (!node_memory[j].exists)
2307 				continue;
2308 			if (i == j)
2309 				lat_stats->latencies[i][j] = 2;
2310 			else
2311 				lat_stats->latencies[i][j] = 3;
2312 		}
2313 	}
2314 	lat_stats->latency_min = 2;
2315 	lat_stats->latency_max = 3;
2316 	lgrp_config(LGRP_CONFIG_FLATTEN, 2, 0);
2317 }
2318 
2319 
2320 /*
2321  * The following Opteron specific constants, macros, types, and routines define
2322  * PCI configuration space registers and how to read them to determine the NUMA
2323  * configuration of *supported* Opteron processors.  They provide the same
2324  * information that may be gotten from the ACPI System Resource Affinity Table
2325  * (SRAT) if it exists on the machine of interest.
2326  *
2327  * The AMD BIOS and Kernel Developer's Guide (BKDG) for the processor family
2328  * of interest describes all of these registers and their contents.  The main
2329  * registers used by this code to determine the NUMA configuration of the
2330  * machine are the node ID register for the number of NUMA nodes and the DRAM
2331  * address map registers for the physical address range of each node.
2332  *
2333  * NOTE: The format and how to determine the NUMA configuration using PCI
2334  *	 config space registers may change or may not be supported in future
2335  *	 Opteron processor families.
2336  */
2337 
2338 /*
2339  * How many bits to shift Opteron DRAM Address Map base and limit registers
2340  * to get actual value
2341  */
2342 #define	OPT_DRAMADDR_HI_LSHIFT_ADDR	40	/* shift left for address */
2343 #define	OPT_DRAMADDR_LO_LSHIFT_ADDR	8	/* shift left for address */
2344 
2345 #define	OPT_DRAMADDR_HI_MASK_ADDR	0x000000FF /* address bits 47-40 */
2346 #define	OPT_DRAMADDR_LO_MASK_ADDR	0xFFFF0000 /* address bits 39-24 */
2347 
2348 #define	OPT_DRAMADDR_LO_MASK_OFF	0xFFFFFF /* offset for address */
2349 
2350 /*
2351  * Macros to derive addresses from Opteron DRAM Address Map registers
2352  */
2353 #define	OPT_DRAMADDR_HI(reg) \
2354 	(((u_longlong_t)reg & OPT_DRAMADDR_HI_MASK_ADDR) << \
2355 	    OPT_DRAMADDR_HI_LSHIFT_ADDR)
2356 
2357 #define	OPT_DRAMADDR_LO(reg) \
2358 	(((u_longlong_t)reg & OPT_DRAMADDR_LO_MASK_ADDR) << \
2359 	    OPT_DRAMADDR_LO_LSHIFT_ADDR)
2360 
2361 #define	OPT_DRAMADDR(high, low) \
2362 	(OPT_DRAMADDR_HI(high) | OPT_DRAMADDR_LO(low))
2363 
2364 /*
2365  * Bit masks defining what's in Opteron DRAM Address Map base register
2366  */
2367 #define	OPT_DRAMBASE_LO_MASK_RE		0x1	/* read enable */
2368 #define	OPT_DRAMBASE_LO_MASK_WE		0x2	/* write enable */
2369 #define	OPT_DRAMBASE_LO_MASK_INTRLVEN	0x700	/* interleave */
2370 
2371 /*
2372  * Bit masks defining what's in Opteron DRAM Address Map limit register
2373  */
2374 #define	OPT_DRAMLIMIT_LO_MASK_DSTNODE	0x7		/* destination node */
2375 #define	OPT_DRAMLIMIT_LO_MASK_INTRLVSEL	0x700		/* interleave select */
2376 
2377 
2378 /*
2379  * Opteron Node ID register in PCI configuration space contains
2380  * number of nodes in system, etc. for Opteron K8.  The following
2381  * constants and macros define its contents, structure, and access.
2382  */
2383 
2384 /*
2385  * Bit masks defining what's in Opteron Node ID register
2386  */
2387 #define	OPT_NODE_MASK_ID	0x7	/* node ID */
2388 #define	OPT_NODE_MASK_CNT	0x70	/* node count */
2389 #define	OPT_NODE_MASK_IONODE	0x700	/* Hypertransport I/O hub node ID */
2390 #define	OPT_NODE_MASK_LCKNODE	0x7000	/* lock controller node ID */
2391 #define	OPT_NODE_MASK_CPUCNT	0xF0000	/* CPUs in system (0 means 1 CPU)  */
2392 
2393 /*
2394  * How many bits in Opteron Node ID register to shift right to get actual value
2395  */
2396 #define	OPT_NODE_RSHIFT_CNT	0x4	/* shift right for node count value */
2397 
2398 /*
2399  * Macros to get values from Opteron Node ID register
2400  */
2401 #define	OPT_NODE_CNT(reg) \
2402 	((reg & OPT_NODE_MASK_CNT) >> OPT_NODE_RSHIFT_CNT)
2403 
2404 /*
2405  * Macro to setup PCI Extended Configuration Space (ECS) address to give to
2406  * "in/out" instructions
2407  *
2408  * NOTE: Should only be used in lgrp_plat_init() before MMIO setup because any
2409  *	 other uses should just do MMIO to access PCI ECS.
2410  *	 Must enable special bit in Northbridge Configuration Register on
2411  *	 Greyhound for extended CF8 space access to be able to access PCI ECS
2412  *	 using "in/out" instructions and restore special bit after done
2413  *	 accessing PCI ECS.
2414  */
2415 #define	OPT_PCI_ECS_ADDR(bus, device, function, reg) \
2416 	(PCI_CONE | (((bus) & 0xff) << 16) | (((device & 0x1f)) << 11)  | \
2417 	    (((function) & 0x7) << 8) | ((reg) & 0xfc) | \
2418 	    ((((reg) >> 8) & 0xf) << 24))
2419 
2420 /*
2421  * PCI configuration space registers accessed by specifying
2422  * a bus, device, function, and offset.  The following constants
2423  * define the values needed to access Opteron K8 configuration
2424  * info to determine its node topology
2425  */
2426 
2427 #define	OPT_PCS_BUS_CONFIG	0	/* Hypertransport config space bus */
2428 
2429 /*
2430  * Opteron PCI configuration space register function values
2431  */
2432 #define	OPT_PCS_FUNC_HT		0	/* Hypertransport configuration */
2433 #define	OPT_PCS_FUNC_ADDRMAP	1	/* Address map configuration */
2434 #define	OPT_PCS_FUNC_DRAM	2	/* DRAM configuration */
2435 #define	OPT_PCS_FUNC_MISC	3	/* Miscellaneous configuration */
2436 
2437 /*
2438  * PCI Configuration Space register offsets
2439  */
2440 #define	OPT_PCS_OFF_VENDOR	0x0	/* device/vendor ID register */
2441 #define	OPT_PCS_OFF_DRAMBASE_HI	0x140	/* DRAM Base register (node 0) */
2442 #define	OPT_PCS_OFF_DRAMBASE_LO	0x40	/* DRAM Base register (node 0) */
2443 #define	OPT_PCS_OFF_NODEID	0x60	/* Node ID register */
2444 
2445 /*
2446  * Opteron PCI Configuration Space device IDs for nodes
2447  */
2448 #define	OPT_PCS_DEV_NODE0		24	/* device number for node 0 */
2449 
2450 
2451 /*
2452  * Opteron DRAM address map gives base and limit for physical memory in a node
2453  */
2454 typedef	struct opt_dram_addr_map {
2455 	uint32_t	base_hi;
2456 	uint32_t	base_lo;
2457 	uint32_t	limit_hi;
2458 	uint32_t	limit_lo;
2459 } opt_dram_addr_map_t;
2460 
2461 
2462 /*
2463  * Supported AMD processor families
2464  */
2465 #define	AMD_FAMILY_HAMMER	15
2466 #define	AMD_FAMILY_GREYHOUND	16
2467 
2468 /*
2469  * Whether to have is_opteron() return 1 even when processor isn't supported
2470  */
2471 uint_t	is_opteron_override = 0;
2472 
2473 /*
2474  * AMD processor family for current CPU
2475  */
2476 uint_t	opt_family = 0;
2477 
2478 
2479 /*
2480  * Determine whether we're running on a supported AMD Opteron since reading
2481  * node count and DRAM address map registers may have different format or
2482  * may not be supported across processor families
2483  */
2484 static int
2485 is_opteron(void)
2486 {
2487 
2488 	if (x86_vendor != X86_VENDOR_AMD)
2489 		return (0);
2490 
2491 	opt_family = cpuid_getfamily(CPU);
2492 	if (opt_family == AMD_FAMILY_HAMMER ||
2493 	    opt_family == AMD_FAMILY_GREYHOUND || is_opteron_override)
2494 		return (1);
2495 	else
2496 		return (0);
2497 }
2498 
2499 
2500 /*
2501  * Determine NUMA configuration for Opteron from registers that live in PCI
2502  * configuration space
2503  */
2504 static void
2505 opt_get_numa_config(uint_t *node_cnt, int *mem_intrlv,
2506     node_phys_addr_map_t *node_memory)
2507 {
2508 	uint_t				bus;
2509 	uint_t				dev;
2510 	struct opt_dram_addr_map	dram_map[MAX_NODES];
2511 	uint_t				node;
2512 	uint_t				node_info[MAX_NODES];
2513 	uint_t				off_hi;
2514 	uint_t				off_lo;
2515 	uint64_t			nb_cfg_reg;
2516 
2517 	/*
2518 	 * Read configuration registers from PCI configuration space to
2519 	 * determine node information, which memory is in each node, etc.
2520 	 *
2521 	 * Write to PCI configuration space address register to specify
2522 	 * which configuration register to read and read/write PCI
2523 	 * configuration space data register to get/set contents
2524 	 */
2525 	bus = OPT_PCS_BUS_CONFIG;
2526 	dev = OPT_PCS_DEV_NODE0;
2527 	off_hi = OPT_PCS_OFF_DRAMBASE_HI;
2528 	off_lo = OPT_PCS_OFF_DRAMBASE_LO;
2529 
2530 	/*
2531 	 * Read node ID register for node 0 to get node count
2532 	 */
2533 	node_info[0] = pci_getl_func(bus, dev, OPT_PCS_FUNC_HT,
2534 	    OPT_PCS_OFF_NODEID);
2535 	*node_cnt = OPT_NODE_CNT(node_info[0]) + 1;
2536 
2537 	/*
2538 	 * If number of nodes is more than maximum supported, then set node
2539 	 * count to 1 and treat system as UMA instead of NUMA.
2540 	 */
2541 	if (*node_cnt > MAX_NODES) {
2542 		*node_cnt = 1;
2543 		return;
2544 	}
2545 
2546 	/*
2547 	 * For Greyhound, PCI Extended Configuration Space must be enabled to
2548 	 * read high DRAM address map base and limit registers
2549 	 */
2550 	if (opt_family == AMD_FAMILY_GREYHOUND) {
2551 		nb_cfg_reg = rdmsr(MSR_AMD_NB_CFG);
2552 		if ((nb_cfg_reg & AMD_GH_NB_CFG_EN_ECS) == 0)
2553 			wrmsr(MSR_AMD_NB_CFG,
2554 			    nb_cfg_reg | AMD_GH_NB_CFG_EN_ECS);
2555 	}
2556 
2557 	for (node = 0; node < *node_cnt; node++) {
2558 		uint32_t	base_hi;
2559 		uint32_t	base_lo;
2560 		uint32_t	limit_hi;
2561 		uint32_t	limit_lo;
2562 
2563 		/*
2564 		 * Read node ID register (except for node 0 which we just read)
2565 		 */
2566 		if (node > 0) {
2567 			node_info[node] = pci_getl_func(bus, dev,
2568 			    OPT_PCS_FUNC_HT, OPT_PCS_OFF_NODEID);
2569 		}
2570 
2571 		/*
2572 		 * Read DRAM base and limit registers which specify
2573 		 * physical memory range of each node
2574 		 */
2575 		if (opt_family != AMD_FAMILY_GREYHOUND)
2576 			base_hi = 0;
2577 		else {
2578 			outl(PCI_CONFADD, OPT_PCI_ECS_ADDR(bus, dev,
2579 			    OPT_PCS_FUNC_ADDRMAP, off_hi));
2580 			base_hi = dram_map[node].base_hi =
2581 			    inl(PCI_CONFDATA);
2582 		}
2583 		base_lo = dram_map[node].base_lo = pci_getl_func(bus, dev,
2584 		    OPT_PCS_FUNC_ADDRMAP, off_lo);
2585 
2586 		if ((dram_map[node].base_lo & OPT_DRAMBASE_LO_MASK_INTRLVEN) &&
2587 		    mem_intrlv)
2588 			*mem_intrlv = *mem_intrlv + 1;
2589 
2590 		off_hi += 4;	/* high limit register offset */
2591 		if (opt_family != AMD_FAMILY_GREYHOUND)
2592 			limit_hi = 0;
2593 		else {
2594 			outl(PCI_CONFADD, OPT_PCI_ECS_ADDR(bus, dev,
2595 			    OPT_PCS_FUNC_ADDRMAP, off_hi));
2596 			limit_hi = dram_map[node].limit_hi =
2597 			    inl(PCI_CONFDATA);
2598 		}
2599 
2600 		off_lo += 4;	/* low limit register offset */
2601 		limit_lo = dram_map[node].limit_lo = pci_getl_func(bus,
2602 		    dev, OPT_PCS_FUNC_ADDRMAP, off_lo);
2603 
2604 		/*
2605 		 * Increment device number to next node and register offsets
2606 		 * for DRAM base register of next node
2607 		 */
2608 		off_hi += 4;
2609 		off_lo += 4;
2610 		dev++;
2611 
2612 		/*
2613 		 * Both read and write enable bits must be enabled in DRAM
2614 		 * address map base register for physical memory to exist in
2615 		 * node
2616 		 */
2617 		if ((base_lo & OPT_DRAMBASE_LO_MASK_RE) == 0 ||
2618 		    (base_lo & OPT_DRAMBASE_LO_MASK_WE) == 0) {
2619 			/*
2620 			 * Mark node memory as non-existent and set start and
2621 			 * end addresses to be same in node_memory[]
2622 			 */
2623 			node_memory[node].exists = 0;
2624 			node_memory[node].start = node_memory[node].end =
2625 			    (pfn_t)-1;
2626 			continue;
2627 		}
2628 
2629 		/*
2630 		 * Mark node memory as existing and remember physical address
2631 		 * range of each node for use later
2632 		 */
2633 		node_memory[node].exists = 1;
2634 
2635 		node_memory[node].start = btop(OPT_DRAMADDR(base_hi, base_lo));
2636 
2637 		node_memory[node].end = btop(OPT_DRAMADDR(limit_hi, limit_lo) |
2638 		    OPT_DRAMADDR_LO_MASK_OFF);
2639 	}
2640 
2641 	/*
2642 	 * Restore PCI Extended Configuration Space enable bit
2643 	 */
2644 	if (opt_family == AMD_FAMILY_GREYHOUND) {
2645 		if ((nb_cfg_reg & AMD_GH_NB_CFG_EN_ECS) == 0)
2646 			wrmsr(MSR_AMD_NB_CFG, nb_cfg_reg);
2647 	}
2648 }
2649 
2650 
2651 /*
2652  * Return average amount of time to read vendor ID register on Northbridge
2653  * N times on specified destination node from current CPU
2654  */
2655 static hrtime_t
2656 opt_probe_vendor(int dest_node, int nreads)
2657 {
2658 	int		cnt;
2659 	uint_t		dev;
2660 	/* LINTED: set but not used in function */
2661 	volatile uint_t	dev_vendor;
2662 	hrtime_t	elapsed;
2663 	hrtime_t	end;
2664 	int		ipl;
2665 	hrtime_t	start;
2666 
2667 	dev = OPT_PCS_DEV_NODE0 + dest_node;
2668 	kpreempt_disable();
2669 	ipl = spl8();
2670 	outl(PCI_CONFADD, PCI_CADDR1(0, dev, OPT_PCS_FUNC_DRAM,
2671 	    OPT_PCS_OFF_VENDOR));
2672 	start = gethrtime();
2673 	for (cnt = 0; cnt < nreads; cnt++)
2674 		dev_vendor = inl(PCI_CONFDATA);
2675 	end = gethrtime();
2676 	elapsed = (end - start) / nreads;
2677 	splx(ipl);
2678 	kpreempt_enable();
2679 	return (elapsed);
2680 }
2681